

Exercises in
Programming Style

http://taylorandfrancis.com

Exercises in
Programming Style

Second Edition

Cristina Videira Lopes

MATLAB R© is a trademark of The MathWorks, Inc. and is used with permission. The
Mathworks does not warrant the accuracy of the text or exercises in this book. This book’s
use or discussion of MATLAB R© software or related products does not constitute endorse-
ment or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB R© software.

Second edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

c© 2021 Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and record-
ing, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rose-
wood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Lopes, Cristina Videira, author.
Title: Exercises in programming style / Cristina Videira Lopes.
Description: Second edition. | Boca Raton : CRC Press, 2020. | Includes
bibliographical references and index.
Identifiers: LCCN 2020014298 | ISBN 9780367350208 (paperback) |
ISBN 9780367360207 (hardback) | ISBN 9780429343216 (ebook)
Subjects: LCSH: Computer programming.
Classification: LCC QA76.6 .L636 2020 | DDC 005.13--dc23
LC record available at https://lccn.loc.gov/2020014298

ISBN: 9780367360207 (hbk)
ISBN: 9780367350208 (pbk)
ISBN: 9780429343216 (ebk)

Typeset in CMR
by Nova Techset Private Limited, Bengaluru & Chennai, India

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2020014298

To Julia

http://taylorandfrancis.com

Contents

Preface to the Second Edition xi

Preface to the First Edition xiii

Prologue xvii

Author xxiii

Part I Historical

Chapter 1 � Good Old Times 5

Chapter 2 � Go Forth 15

Chapter 3 � Arrays 23

Part II Basic Styles

Chapter 4 � Monolithic 35

Chapter 5 � Cookbook 41

Chapter 6 � Pipeline 49

Chapter 7 � Code Golf 59

vii

viii � Contents

Part III Function Composition

Chapter 8 � Infinite Mirror 69

Chapter 9 � Kick Forward 73

Chapter 10 � The One 79

Part IV Objects and Object Interaction

Chapter 11 � Things 89

Chapter 12 � Letterbox 97

Chapter 13 � Closed Maps 103

Chapter 14 � Abstract Things 109

Chapter 15 � Hollywood 117

Chapter 16 � Bulletin Board 123

Part V Reflection and Metaprogramming

Chapter 17 � Introspective 133

Chapter 18 � Reflective 137

Chapter 19 � Aspects 143

Chapter 20 � Plugins 149

Part VI Adversity

Chapter 21 � Constructivist 161

Contents � ix

Chapter 22 � Tantrum 167

Chapter 23 � Passive Aggressive 173

Chapter 24 � Declared Intentions 179

Chapter 25 � Quarantine 187

Part VII Data-Centric

Chapter 26 � Persistent Tables 201

Chapter 27 � Spreadsheet 209

Chapter 28 � Lazy Rivers 215

Part VIII Concurrency

Chapter 29 � Actors 225

Chapter 30 � Dataspaces 233

Chapter 31 � Map Reduce 237

Chapter 32 � Double Map Reduce 245

Part IX Interactivity

Chapter 33 � Trinity 255

Chapter 34 � Restful 263

Part X Neural Networks

Chapter 35 � Dense, Shallow, under Control 277

x � Contents

Chapter 36 � Dense, Shallow, out of Control 287

Chapter 37 � Bow Tie 297

Chapter 38 � Neuro-Monolithic 307

Chapter 39 � Sliding Window 315

Chapter 40 � Recurrent 321

Index 329

Preface to the Second
Edition

In the six years since the first edition of this book was published, two things
happened that made me want to update the book. The first one was the wide
adoption of Python 3. The original edition had all its code in Python 2, which
has now reached its official end of life. This second edition updates all the
code to Python 3.

But the second, and most important, thing that happened since 2014 was
the dizzying developments in machine learning, more specifically, in neural
networks (NNs). By 2018, I felt it was my duty, and personal challenge, to
capture the basic programming concepts in neural networks in exactly the
same way I had done for all other concepts: by doing term frequency in neural
networks. This led me into a fascinating tour of that field, focused, as I was,
on exploring it using a problem for which neural networks are not typically
used – term frequency is a well-specified problem for which we know the exact
logic. This second edition includes a whole new part, Part X, featuring several
basic programming concepts in NNs.

In the process of doing this tour of neural networks for the term frequency
problem, four things became clear. First, I had to break the problem down
into its smaller components, and show how to solve those smaller sub-problems
using NNs. This is because the solution of the complete problem is essentially
a pipeline of functions that requires knowledge of too many NN concepts at
once. Second, although learning is the magic sauce for which neural networks
are popular, I found myself being even more fascinated by the concept of net-
works as computing machines. As much as I admire the power of statistics
for making predictions based on existing data, the computer engineer in me
absolutely wants to program these networks by hand by setting the weights
manually. I couldn’t help it! Part X is full of neural networks that are pro-
grammed manually, without learning. Third, the most popular framework for
programming NNs, TensorFlow, uses array programming concepts at its core.
This is not surprising, given that we are dealing, essentially, with linear algebra
operations. I realized the first edition had missed this historically important
programming style – array programming – so I added a new chapter about
it in Part I, Historical. (Hello, APL, apologies for having missed you the first
time!) Finally, the fourth thing I realized was that I could easily write an

xi

xii � Preface to the Second Edition

entire new book just covering neural network programming concepts. I had to
stop myself at six chapters in Part X, but these chapters don’t even begin to
cover the immense and fertile field of programming ideas in neural networks.

NNs require a fundamentally different way of thinking about computing
that is at the same time very low level and very powerful. I am now convinced
that every programmer needs to learn this connectionist computing model,
not just for the hype that its applications currently enjoy, but in spite of it.

Pierre Baldi was instrumental in my developing an interest in neural net-
works, and in my ability to navigate that field as an outsider. I thank him
for the many conversations we had about all that is covered in Part X. In
these past six years, my daughter Julia grew up, and, at points, helped me
stay focused on finishing this second edition of the book. I thank her for that.
Thank you, also, to my Department Chair, André van der Hoek, and to my
Dean, Marios Papaefthymiou, for letting me go on sabbatical in 2018. That
allowed me to dive into the world of machine learning. Finally, I want to
thank the hundreds of students who have taken my course, and who have
enthusiastically provided all sorts of feedback.

Cristina Videira Lopes
Irvine, February 29, 2020

Preface to the First
Edition

THE CODE

This book is a companion text for code that is publicly available at
http://github.com/crista/exercises-in-programming-style

WHO WILL BENEFIT FROM THIS BOOK

The collection of code that is the foundation of this book is for everyone who
enjoys the art of programming. I’ve written this book in order to complement
and explain the raw code, as some of the idioms may not be obvious. Software
developers with many years of experience may enjoy revisiting familiar pro-
gramming styles in the broad context of this book and learning about styles
that may not be part of their normal repertoire.

This book can be used as a textbook for advanced programming courses
in computer science and software engineering. Additional teaching materials,
such as lecture slides, are also available. The book is not designed for introduc-
tory programming courses; it is important for students to be able to crawl (i.e.
learn to program under the illusion that there’s only one way of doing things)
before they can run (i.e. realize that there’s a lot more variety). I expect that
many of the readers will be students in their junior/senior years or in their
early stages of graduate study. The exercise list at the end of each chapter is
a good mechanism for testing the reader’s understanding of each style. The
suggested further readings are more appropriate for graduate students.

This book may also be of interest to writers, especially those who know
a little programming or have a strong interest in programming technology.
Despite important differences, there are many similarities between writing
programs and writing in general.

MOTIVATION FOR THESE EXERCISES

In the 1940s, the French writer Raymond Queneau wrote a jewel of a book
called Exercises in Style, featuring 99 renditions of the exact same story, each
written in a different style. The book is a masterpiece of writing technique,
as it illustrates the many different ways a story can be told. The story being

xiii

http://github.com/

xiv � Preface to the First Edition

fairly trivial and always the same, highlights form, rather than content; it
illustrates how the decisions we make in telling a story affect the perception
of that story.

Queneau’s story is trivially simple and can be told in two sentences: The
narrator is on the “S” bus and notices a man with a long neck who is wearing
a hat, and who gets into an altercation with the man sitting next to him.
Two hours later, the narrator sees this same man near the Saint Lazare train
station, with a friend, and the friend is giving this man some advice regarding
an extra button on his overcoat. That’s it! He then goes through 99 renditions
of this story using, for example, litotes, metaphors, animism, etc.

Over the years, as an instructor of many programming-intensive courses, I
noticed that often students have a hard time understanding the different ways
of writing programs and of designing systems, in general. They have been
trained in one, at most two, programming languages, so they understand only
the styles that are encouraged by those languages, and have a hard time
wrapping their heads around other styles. It’s not their fault. Looking at the
history of programming languages and the lack of pedagogical material on
style in most computer science programs, one hardly gets exposed to the issue
until after an enormous amount of experience is accumulated. Even then, style
is seen as an intangible property of programs that remains elusive to explain
to others – and over which many technical arguments ensue. So, in order to
give programming styles the proper due, and inspired by Queneau, I decided
to embark on the project of writing the exact same computational task in as
many styles as I have come across over the years.

So what is style? In Queneau’s circle of intellectuals, a group known as
Oulipo (for French Ouvroir de la littérature potentielle, roughly translated as
“workshop of potential literature”), style was nothing but the consequence
of creating under constraints, often based on mathematical concepts such as
permutations or lipograms. These constraints are used as a means to create
something intellectually interesting besides the story itself. The ideas caught
on, and over the years, several literary works have been created using Oulipo’s
constraints.

In this book, too, programming style is what results from writing programs
under a set of constraints. Constraints can come from external sources or they
can be self-imposed; they can capture true challenges of the environment or
they can be artificial; they can come from past experiences and measurable
data or they can come from personal preferences. Independent of their origin,
constraints are the seeds of style. By honoring different constraints, we can
write a variety of programs that are virtually identical in terms of what they
do, but that are radically different in terms of how they do it.

In the universe of all things a good programmer must know, I see collec-
tions of programming styles as being as important as any collection of data
structures and algorithms, but with a focus on human effects rather than on
computing effects. Programs convey information not just to the computers
but, more importantly, to the people who read them. As with any form of

Preface to the First Edition � xv

expression, the consequences of what is being said are shaped and influenced
by how they are being said. An advanced programmer needs not be able to just
write correct programs that perform well; he/she needs to be able to choose
appropriate styles for expressing those programs for a variety of purposes.

Traditionally, however, it has been much easier to teach algorithms and
data structures than it is to teach the nuances of programming expression.
Books on data structures and algorithms all follow more or less the same for-
mula: pseudo-code, explanation, and complexity analysis. The literature on
programming tends to fall into two camps: books that explain programming
languages and books that present collections of design or architectural pat-
terns. However, there is a continuum in the spectrum of how to write programs
that go from the concepts that the programming languages encourage/enforce
to the combination of program elements that end up making up the program;
languages and patterns feed on each other, and separating them as two differ-
ent things creates a false dichotomy. Having come across Queneau’s body of
work, it seemed to me that his focus on constraints as the basis for explaining
expression styles was a perfectly good model for unifying a lot of important
creative work in the programming world.

I should note that I’m not the first one to look at constraints as a good
unifying principle for explaining style in software systems. The work on archi-
tectural styles has taken that approach for a long time. I confess that the
notion that style arises from constraints (some things are disallowed, some
things must exist, some things are limited, etc.) was a bit hard to understand
at first. After all, who wants to write programs under constraints? It wasn’t
until I came across Queneau’s work that the idea made perfect sense.

Like Queneau’s story, the computational task in this book is trivial: given
a text file, we want to produce the list of words in the file and their frequen-
cies, and print them out in decreasing order of frequency. This computational
task is known as term frequency. This book contains 33 different styles for
writing the term frequency task, one in each chapter. Unlike Queneau’s book,
I decided to verbalize the constraints in each style and explain the example
programs. Given the target audience, I think it’s important to provide those
insights explicitly rather than leaving them to the reader’s interpretation.
Each chapter starts by presenting the constraints of the style, then it shows
an example program; a detailed explanation of the code follows; most chap-
ters have additional sections regarding the use of the style in systems design
and another section on the historical context in which the programming style
emerged. History is important; a discipline should not forget the origins of its
core ideas. I hope the readers will be curious enough to follow through some
of the suggested further readings.

Why 33 styles? I chose 33 as a bounded personal challenge. Queneau’s book
has 99 styles. Had I set my goal to writing a book with 99 chapters, I probably
never would have finished it! The public repository of code that is the basis
for this book, however, is likely to continue to grow. The styles are grouped
into nine categories: historical, basic, function composition, objects and object

xvi � Preface to the First Edition

interactions, reflection and metaprogramming, adversity, data-centric, concur-
rency, and interactivity. The categories emerged as a way to organize the book,
grouping together styles that are more related to each other than to the others.
Other categorizations would be possible.

Similar to Queneau’s book, these exercises in programming style are
exactly that: exercises. They are the sketches, or arpeggios, of software; they
aren’t the music. A piece of real software usually employs a variety of styles for
the different parts of the system. Furthermore, all these styles can be mixed
and matched, creating hybrids that are interesting in themselves.

Finally, one last important remark. Although Queneau’s book was the
inspiration for this project, software is not exactly the same as the language
arts; there are utility functions attached to software design decisions, i.e. some
expressions are better than others for specific objectives.1 In this book I try
to stand clear of judgments of good and bad, except in certain clear cases. It
is not up to me to make those judgments, since they depend heavily on the
context of each project.

ACKNOWLEDGMENTS

I would like to thank the following people for valuable feedback on earlier
drafts of this book: Richard Gabriel, Andrew Black, Guy Steele, James Noble,
Paul Steckler, Paul McJones, Laurie Tratt, Tijs van der Storm, and the stu-
dents of INF 212 / CS 235 (Winter 14) at UC Irvine, especially Matias Giorgio
and David Dinh.

Thanks also to members of the IFIP Working Group 2.16, where I first
presented the idea of this book, and whose reactions were critical for shaping
the material.

A special thanks to the contributors to the exercises-in-style code reposi-
tory so far: Peter Norvig, Kyle Kingsbury, Sara Triplett, Jørgen Edelbo, Dar-
ius Bacon, Eugenia Grabrielova, Kun Hu, Bruce Adams, Krishnan Raman,
Matias Giorgio, David Foster, Chad Whitacre, Jeremy MacCabe, and Mircea
Lungu.

1Maybe that’s also the case for the language arts, but I’m afraid I don’t know enough!

Prologue

TERM FREQUENCY

L IKE QUENEAU’S STORY, the computational task in this book is triv-
ial: given a text file, we want to display the N (e.g. 25) most frequent words

and corresponding frequencies ordered by decreasing value of frequency. We
should make sure to normalize for capitalization and to ignore stop words like
“the,” “for,” etc. To keep things simple, we don’t care about the ordering of
words that have equal frequencies. This computational task is known as term
frequency.

Here is an example of an input file and corresponding output after com-
puting the term frequency:

Input:
White tigers live mostly in India
Wild lions live mostly in Africa

Output:
live - 2
mostly - 2
africa - 1
india - 1
lions - 1
tigers - 1
white - 1
wild - 1

If we were to run this flavor of term frequency on Jane Austen’s Pride and
Prejudice available from the Gutenberg Collection, we would get the following
output:

mr - 786
elizabeth - 635
very - 488
darcy - 418
such - 395
mrs - 343
much - 329
more - 327

xvii

xviii � Prologue

bennet - 323
bingley - 306
jane - 295
miss - 283
one - 275
know - 239
before - 229
herself - 227
though - 226
well - 224
never - 220
sister - 218
soon - 216
think - 211
now - 209
time - 203
good - 201

This book’s example programs cover this term frequency task. Addition-
ally, all chapters have a list of exercises. One of those exercises is to write
another simple computational task using the corresponding style. Some sug-
gestions are given below.

These computational tasks are simple enough for any advanced student to
tackle easily. Algorithmic difficulties out of the way, the focus should be on
following the constraints that underlie each style.

WORD INDEX

Given a text file, output all words alphabetically, along with the page numbers
on which they occur. Ignore all words that occur more than 100 times. Assume
that a page is a sequence of 45 lines. For example, given Pride and Prejudice,
the first few entries of the index would be:

abatement - 89
abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253
abide - 158, 292
...

WORDS IN CONTEXT

Given a text file, display certain words alphabetically and in context, along
with the page numbers of the pages in which they occur. Assume that a
page is a sequence of 45 lines. Assume that context consists of the preceding
and succeeding two words. Ignore punctuation. For example, given Pride and

Prologue � xix

Prejudice, the words “concealment” and “hurt” would result in the following
output:

perhaps this concealment this disguise - 150
purpose of concealment for no - 207
pride was hurt he suffered - 87
must be hurt by such - 95
and are hurt if i - 103
pride been hurt by my - 145
must be hurt by such - 157
infamy was hurt and distressed – 248

Suggestion of words for the words in context task: concealment, discon-
tented, hurt, agitation, mortifying, reproach, unexpected, indignation, mis-
take, and confusion.

PYTHONISMS

The example code used in this book is all written in Python, but expertise
in Python is not necessary in order to understand the styles. In fact, one of
the exercises in all of the chapters is to write the example program in another
language. As such, the reader needs only to be able to read Python without
needing to write in Python.

Python is relatively easy to read. There are, however, a few corners of the
language that may confuse readers coming from other languages. I explain
some of them here.

• Lists. In Python, a list is a primitive data type supported by dedicated
syntax that is normally associated with arrays in C-like languages. Here
is an example of a list: mylist = [0, 1, 2, 3, 4, 5]. Python
doesn’t have an array as a primitive data type,2 and most situations
that would use an array in C-like languages use a list in Python.

• Tuples. A tuple is an immutable list. Tuples are also primitive data
types supported by dedicated syntax that is normally associated with
lists in Lisp-like languages. Here is an example of a tuple: mytuple
= (0, 1, 2, 3, 4). Tuples and lists are handled in similar ways,
except for the fact that tuples are immutable, so the operations that
change lists don’t work on tuples.

• List indexing. List and tuple elements are accessed by index like this:
mylist[some index]. The lower bound of a list is index 0, like in C-
like languages, and the list length is given by len(mylist). Indexing
a list can be much more expressive than this simple example suggests.
Here are some more examples:

2There is an array data object, but it’s not a primitive type of the language and it
doesn’t have any special syntax. It’s not used as much as lists.

xx � Prologue

– mylist[0] – first element of the list

– mylist[-1] – last element of the list

– mylist[-2] – next-to-last element of the list

– mylist[1:] – a list starting at index 1 until the end of mylist

– mylist[1:3] – a list starting at index 1 and stopping before
index 3 of mylist

– mylist[::2] – a list containing every other element of mylist

– mylist[start:stop:step] – a list containing every step ele-
ment between start and stop indexes of mylist

• Bounds. Indexing an element beyond the length of a list results in an
IndexError. For example, trying to access the 4th element of a list of
3 elements (e.g. [10, 20, 30][3]) results in an IndexError, as expected.
However, many Python operations on lists (and collections in general)
are constructivist with respect to indexing. For example, obtaining a
list consisting of the range from 3 to 100 in a list with only 3 elements
(e.g. [10, 20, 30][3:100]) results in an empty list ([]) rather than an
IndexError. Similarly, any range that partially covers a list results in
whatever part of the list is covered, with no IndexError (e.g. [10, 20,
30][2:10] results in [30]). This constructivist behavior may be puzzling
at first for people used to more intolerant languages.

• Dictionaries. In Python, a dictionary, or map, is also a primitive data
type supported by dedicated syntax. Here is an example of a dictionary:
mydict = {’a’ : 1, ’b’ : 2}. This particular dictionary maps
two string keys to two integer values; in general, keys and values can be
of any type. In Java, these kinds of dictionaries can be found in the form
of the HashMap class (among others), and in C++ they can be found
in the form of the class template map (among others).

• self. In most object-oriented languages, the reference that an object has
to itself is implicitly available through special syntax. For example, this
in Java and C++, $this in PHP, or @ in Ruby. Unlike these languages,
Python has no special syntax for it. Moreover, instance methods are
simply class methods that take an object as the first parameter; this first
parameter is called self by convention, but not by special mandate of
the language. Here is an example of a class definition with two instance
methods:

1 class Example:
2 def set_name(self, n):
3 self._name = n
4 def say_my_name(self):
5 print self._name

Prologue � xxi

Both methods have a parameter named self in the first position, which
is then accessed in their bodies. There is nothing special about the word
self, and the methods could use any other name, for example me or
my or even this, but any word other than self will be frowned upon
by Python programmers. Calling instance methods, however, may be
surprising, because the first parameter is omitted:

e = Example()
e.set_my_name(‘‘Heisenberg’’)
e.say_my_name()

This mismatch on the number of parameters is due to the fact that the
dot-notation in Python (’.’) is simply syntactic sugar for this other, more
primitive form of calling the methods:

e = Example()
Example.set_my_name(e, ‘‘Heisenberg’’)
Example.say_my_name(e)

• Constructors. In Python, a constructor is a regular method with the
name init (two underscores on each side of the word). Methods with
this exact name are called automatically by the Python runtime right
after object creation. Here is one example of a class with a constructor,
and its use:

1 class Example:
2 # This is the constructor of this class
3 def __init__(self, n):
4 self._name = n
5 def say_my_name(self):
6 print self._name
7

8 e = Example(‘‘Heisenberg’’)
9 e.say_my_name()

http://taylorandfrancis.com

Author

Cristina (Crista) Videira Lopes is a Professor of Software Engineering at
the Donald Bren School of Information and Computer Sciences, University of
California, Irvine. Her research focuses on software engineering for large-scale
data and systems. Early in her career, she was a founding member of the team
at Xerox PARC that developed Aspect-Oriented Programming and AspectJ.
Along with her research program, she is also a prolific software developer. Her
open source contributions include acoustic software modems, and the virtual
world server OpenSimulator. She is a co-founder of a company specializing in
online virtual reality for early-stage sustainable urban redevelopment projects.
She developed and maintains a search engine for OpenSimulator-based virtual
worlds.

Dr. Lopes has a PhD from Northeastern University, and MS and BS degrees
from Instituto Superior Técnico in Portugal. She is the recipient of several
National Science Foundation grants, including a prestigious CAREER Award.
She is an ACM Distinguished Scientist and an IEEE Fellow.

xxiii

http://taylorandfrancis.com

I
Historical

1

http://taylorandfrancis.com

Historical � 3

Computing systems are like an onion, with layers upon layers of abstraction
developed over the years in order to facilitate the expression of intent. It is
important to know what the inner layers really entail. The first three pro-
gramming styles illustrate what programming was like several decades ago,
and to some extent, what it still is – because ideas keep getting reinvented.

http://taylorandfrancis.com

CHA PT E R 1

Good Old Times

1.1 CONSTRAINTS

B Very small amount of primary memory, typically orders of magnitude
smaller than the data that needs to be processed/generated.

B No identifiers – i.e. no variable names or tagged memory addresses. All
we have is memory that is addressable with numbers.

5

6 � Exercises in Programming Style

1.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, os, string
3

4 # Utility for handling the intermediate ’secondary memory’
5 def touchopen(filename, *args, **kwargs):
6 try:
7 os.remove(filename)
8 except OSError:
9 pass

10 open(filename, "a").close() # "touch" file
11 return open(filename, *args, **kwargs)
12

13 # The constrained memory should have no more than 1024 cells
14 data = []
15 # We’re lucky:
16 # The stop words are only 556 characters and the lines are all
17 # less than 80 characters, so we can use that knowledge to
18 # simplify the problem: we can have the stop words loaded in
19 # memory while processing one line of the input at a time.
20 # If these two assumptions didn’t hold, the algorithm would
21 # need to be changed considerably.
22

23 # Overall strategy: (PART 1) read the input file, count the
24 # words, increment/store counts in secondary memory (a file)
25 # (PART 2) find the 25 most frequent words in secondary memory
26

27 # PART 1:
28 # - read the input file one line at a time
29 # - filter the characters, normalize to lower case
30 # - identify words, increment corresponding counts in file
31

32 # Load the list of stop words
33 f = open(’../stop_words.txt’)
34 data = [f.read(1024).split(’,’)] # data[0] holds the stop words
35 f.close()
36

37 data.append([]) # data[1] is line (max 80 characters)
38 data.append(None) # data[2] is index of the start_char of word
39 data.append(0) # data[3] is index on characters, i = 0
40 data.append(False) # data[4] is flag indicating if word was found
41 data.append(’’) # data[5] is the word
42 data.append(’’) # data[6] is word,NNNN
43 data.append(0) # data[7] is frequency
44

45 # Open the secondary memory
46 word_freqs = touchopen(’word_freqs’, ’rb+’)
47 # Open the input file
48 f = open(sys.argv[1], ’r’)
49 # Loop over input file’s lines
50 while True:
51 data[1] = [f.readline()]
52 if data[1] == [’’]: # end of input file
53 break

Good Old Times � 7

54 if data[1][0][len(data[1][0])-1] != ’\n’: # If it does not end
with \n

55 data[1][0] = data[1][0] + ’\n’ # Add \n
56 data[2] = None
57 data[3] = 0
58 # Loop over characters in the line
59 for c in data[1][0]: # elimination of symbol c is exercise
60 if data[2] == None:
61 if c.isalnum():
62 # We found the start of a word
63 data[2] = data[3]
64 else:
65 if not c.isalnum():
66 # We found the end of a word. Process it
67 data[4] = False
68 data[5] = data[1][0][data[2]:data[3]].lower()
69 # Ignore words with len < 2, and stop words
70 if len(data[5]) >= 2 and data[5] not in data[0]:
71 # Let’s see if it already exists
72 while True:
73 data[6] = str(word_freqs.readline().strip

(), ’utf-8’)
74 if data[6] == ’’:
75 break;
76 data[7] = int(data[6].split(’,’)[1])
77 # word, no white space
78 data[6] = data[6].split(’,’)[0].strip()
79 if data[5] == data[6]:
80 data[7] += 1
81 data[4] = True
82 break
83 if not data[4]:
84 word_freqs.seek(0, 1) # Needed in Windows
85 word_freqs.write(bytes("%20s,%04d\n" % (

data[5], 1), ’utf-8’))
86 else:
87 word_freqs.seek(-26, 1)
88 word_freqs.write(bytes("%20s,%04d\n" % (

data[5], data[7]), ’utf-8’))
89 word_freqs.seek(0,0)
90 # Let’s reset
91 data[2] = None
92 data[3] += 1
93 # We’re done with the input file
94 f.close()
95 word_freqs.flush()
96

97 # PART 2
98 # Now we need to find the 25 most frequently occurring words.
99 # We don’t need anything from the previous values in memory

100 del data[:]
101

102 # Let’s use the first 25 entries for the top 25 words
103 data = data + [[]]*(25 - len(data))
104 data.append(’’) # data[25] is word,freq from file
105 data.append(0) # data[26] is freq
106

8 � Exercises in Programming Style

107 # Loop over secondary memory file
108 while True:
109 data[25] = str(word_freqs.readline().strip(), ’utf-8’)
110 if data[25] == ’’: # EOF
111 break
112 data[26] = int(data[25].split(’,’)[1]) # Read it as integer
113 data[25] = data[25].split(’,’)[0].strip() # word
114 # Check if this word has more counts than the ones in memory
115 for i in range(25): # elimination of symbol i is exercise
116 if data[i] == [] or data[i][1] < data[26]:
117 data.insert(i, [data[25], data[26]])
118 del data[26] # delete the last element
119 break
120

121 for tf in data[0:25]: # elimination of symbol tf is exercise
122 if len(tf) == 2:
123 print(tf[0], ’-’, tf[1])
124 # We’re done
125 word_freqs.close()

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of lists, indexes, and bounds.

Good Old Times � 9

1.3 COMMENTARY

IN THIS STYLE, the program reflects the constrained computing envi-
ronment where it executes. The memory limitations force the programmer

to come up with ways of rotating data through the available memory, adding
complexity to the computational task at hand. Additionally, the absence of
identifiers results in programs where the natural terminology of the problem is
absent from the program text, and, instead, is added through comments and
documentation. This is what programming was all about in the early 1950s.
This style of programming, however, is not extinct; it is still in use today when
dealing directly with hardware and when optimizing the use of memory.

The example program may look quite foreign to programmers not used to
these kinds of constraints. While this is certainly a program that one doesn’t
associate with Python or with any of the modern programming languages, it
embodies the theme of this book quite well: programming styles emerge from
constraints. Very often, the constraints are imposed externally – maybe the
hardware has limited memory, maybe the assembly language doesn’t support
identifiers, maybe performance is critical and one must deal directly with the
machine, etc.; other times the constraints are self-imposed: the programmer,
or the entire development team, decides to adhere to certain ways of think-
ing about the problems and of writing the code, for many different reasons –
maintainability, readability, extensibility, adequacy for the problem domain,
past experiences on the part of the developers; or simply, as is the case here, to
teach what low-level programming looks like without having to learn new syn-
tax. Indeed, it is possible to write low-level, Good Old Times style programs
in just about any programming language!

Having explained the reason for this unusual implementation of term fre-
quency, let’s dive into this program. The memory limitations are such that
we can’t ignore the size of the data to be processed. In the example, we have
self-imposed a size of 1024 memory cells (line #15). The term “memory cell”
is used here in a somewhat fuzzy manner to denote, roughly, a piece of simple
data, such as a character or a number. Given that books like Pride and Preju-
dice contain much more than 1024 characters, we need to come up with ways
to read and process the data in small chunks, making heavy use of “secondary
memory” (a file) to store the data that doesn’t fit in primary memory. Before
we start coding, we need to do some back-of-the-envelope calculations about
the different options regarding what to hold in primary memory and what to
dump to secondary memory, and when (see comments in lines #16 through
#26). Then as now, access to primary memory is orders of magnitude faster
than access to secondary memory, so these calculations are about optimizing
for performance.

Many options could have been pursued, and the reader is encouraged
to explore the solution space within this style. The example program is
divided into two distinct parts: the first part (lines #28 through #98) pro-
cesses the input file, counting word occurrences and writing that data into a

10 � Exercises in Programming Style

word-frequency file; the second part (lines #100 through #128) processes the
intermediate word-frequency file in order to discover the 25 most frequently
occurring words, printing them at the end.

The first part of the program works as follows:

• Hold the stop words, roughly 500 characters, in primary memory (lines
#33 through #36)

• Read the input file one line at a time; each line is only 80 characters
maximum (lines #50 through #95)

• For each line (lines #60 through #95), filter the characters, identify the
words, and normalize them to lowercase

• Retrieve/Write the words and their frequencies from/to secondary mem-
ory (lines #73 through #90)

After processing the entire input file like this, we then turn our attention
to the word frequencies that have been accumulated in the intermediate file.
We need a sorted list of the most frequently occurring words, so the program
does the following:

• Keep an ordered list in memory holding the current 25 most frequently
occurring words, and their frequencies (line #104)

• Read one line at a time from the file. Each line contains a word and its
corresponding frequency (lines #108 through #120)

• If the new word has higher frequency than any of the words in memory,
insert it at the appropriate place in the list and remove the word at the
end of the list (lines #116 through #120)

• Finally, print the 25 top words and their frequencies (lines #122 through
#124) and close the intermediate file (line #126)

As seen, the memory constraint has a strong effect on the algorithm
employed, as we must be mindful of how much data there is in memory at
any given point in time.

The second self-imposed constraint of this style is the absence of iden-
tifiers. This second constraint also has a strong effect on the program, but
this effect is of a different nature: readability. There are no variables, as such;
there is only a data memory that is accessed by indexing it with numbers.
The problem’s natural concepts (words, frequencies, counts, sorting, etc.) are
completely absent from the program text, and are, instead, indirectly repre-
sented as indexes over memory. The only way we can bring those concepts
back in is by adding comments that explain what kinds of data the memory
cells hold (e.g. see comments in lines #38 through #44 and #103 through
#106, among others). When reading through the program, we often need to
go back to those comments to remind ourselves what high-level concept a
certain memory index corresponds to.

Good Old Times � 11

1.4 THIS STYLE IN SYSTEMS DESIGN

In the age of computers with multi-gigabyte RAM, constrained memory such
as that shown here is mostly a vague memory from the past. Nevertheless, with
modern programming languages that encourage obliviousness with respect to
memory management, and with the ever-growing amounts of data that modern
programs handle, it is very easy to let memory consumption of programs
run out of control, with negative consequences on run-time performance. A
certain amount of awareness regarding the consequences that the different
programming styles carry for memory usage is always a good thing.

Many applications these days – namely those falling in what’s known as
Big Data – have brought the complexities of dealing with small memory back
to the center of attention. In this case, although memory is not scarce in
absolute terms, it is much smaller than the size of the data to be processed.
For example, if instead of just Pride and Prejudice we would apply term
frequency to the entire Gutenberg Collection, we would likely not be able
to hold all the books in memory at the same time; we might not even be
able to hold the list of word frequencies all in memory either. Once the data
can’t fit in memory all at once, developers must devise smart schemes for (1)
representing data so that more of it can fit in memory at any given time; and
(2) rotating the data through primary and secondary memory. Programming
with these constraints tends to make programs feel like the Good Old Times
style.

Regarding the absence of names, one of the main drivers behind program-
ming language evolution throughout the 1950s and 1960s was precisely the
elimination of cognitive indirections such as those shown in the example: we
want the program texts to reflect the high-level concepts of the domain as
much as possible, instead of reflecting the low-level machine concepts and
relying on external documentation to do the mapping between the two. But
even though programming languages have provided for user-defined named
abstractions for a long time, it is not unusual for programmers to fail to
name their program elements, Application Programming Interfaces (APIs)
and entire components appropriately, resulting in programs, libraries and sys-
tems as obscure as the one shown here.

Let this Good Old Times style be a reminder of how thankful we should
be for being able to hold so much data in memory and for being able to give
appropriate names to each and every one of our program elements!

1.5 HISTORICAL NOTES

This style of programming came directly from the first viable model of com-
putation, the Turing Machine. A Turing Machine consists of an unbounded
modifiable state “tape” (the data memory) and a state machine that reads
and modifies that state. The Turing Machine had a tremendous influence
in the development of computers and how they were programmed. Turing’s

12 � Exercises in Programming Style

ideas influenced von Neumann’s design of the first computer with stored pro-
grams. Turing himself also wrote the specifications of a computing machine
known as the Automatic Computing Engine (ACE), which was, in many ways,
more advanced than von Neumann’s. Because that report was classified by
the British government, and also because of the politics following the Second
World War, Turing’s design was not acted upon until several years later, and
still in secrecy. Both von Neumann’s architecture and Turing’s machines led
to the first programming languages in the 1950s, which enforced the concept
of programming by reusing and changing state in memory over time.

1.6 FURTHER READING

Bashe, C., Johnson, L., Palmer, J. and Pugh, E. (1986). IBM’s Early Comput-
ers: A Technical History (History of Computing), MIT Press, Cambridge,
MA.
Synopsis: IBM was the major commercial player in the early days of
computing machines. This book tells the story of IBM’s transition from
manufacturer of electromechanical machines to a powerhouse of comput-
ing machines.

Carpenter, B.E. and Doran, R.W. (1977). The other Turing Machine. Com-
puter Journal 20(3): 269–279.
Synopsis: An account of one of Turing’s technical reports describing a
complete architecture for a computing machine based on von Neumann’s,
but including subroutines, stacks and much more. The original report can
be found at
http://www.npl.co.uk/about/history/notable-individuals/turing/ace-proposal

Turing, A. (1936). On computable numbers, with an application to the
Entscheidungs problem. Proceedings of the London Mathematical Soci-
ety 2(42): 230–265.
Synopsis: The original “Turing Machine.” In the context of this book,
this paper is suggested not for its mathematics but for the programming
model of a Turing Machine: a tape with symbols, a tape reader/writer
that moves left and right, and the overwriting of symbols on the tape.

von Neumann, J. (1945). First draft of a report on the EDVAC. Reprinted in
IEEE Annals of the History of Computing 15(4): 27–43, 1993.
Synopsis: The original “von Neumann architecture.” As with Turing’s
paper, suggested for the programming model.

1.7 GLOSSARY

Main memory: Often referred to simply as memory, this data storage is
directly accessible by the CPU. Most data in this storage is volatile in
the sense that it does not persist beyond the execution of the programs

http://www.npl.co.uk/

Good Old Times � 13

that use it and also does not persist upon machine power downs. These
days, the main memory is random access memory (RAM), meaning that
the CPU can address any cell in it quickly, as opposed to having to scan
sequentially.

Secondary memory: In contrast to primary memory, secondary memory
refers to any storage facility that is not directly accessible by the CPU
and that, instead, is indirectly accessed via input/output channels. Data
in secondary memory persists in the device through power downs and
until it is explicitly deleted. In modern computers, hard disk drives and
“pen” drives are the most common secondary storage forms. Access to
secondary memory is several orders of magnitude slower than access to
primary memory.

1.8 EXERCISES

1.1 Another language. Implement the example program in another language,
but preserve the style.

1.2 No identifiers. The example program still has a few identifiers left,
namely in lines #60 (c), #116 (i) and #122 (tf). Change the program
so that these identifiers are also eliminated.

1.3 More lines. The example program reads one line at a time into memory.
In doing so it is underutilizing the main memory. Modify the program so
that it loads as many lines as possible into memory without going over
the established limit of 1024 memory cells. Justify the number of lines
you chose. Check if your version runs faster than the original example
program, and explain the result.

1.4 A different task. Write one of the tasks proposed in the Prologue using
the Good Old Times style.

http://taylorandfrancis.com

CHA PT E R 2

Go Forth

2.1 CONSTRAINTS

B Existence of a data stack. All operations (conditionals, arithmetic, etc.)
are done over data on the stack.

B Existence of a heap for storing data that’s needed for later operations.
The heap data can be associated with names (i.e. variables). As said
above, all operations are done over data on the stack, so any heap data
that needs to be operated upon needs to be moved first to the stack and
eventually back to the heap.

B Abstraction in the form of user-defined “procedures” (i.e. names bound
to a set of instructions), which may be called something else entirely.

15

16 � Exercises in Programming Style

2.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The all-important data stack
6 #
7 stack = []
8

9 #
10 # The heap. Maps names to data (i.e. variables)
11 #
12 heap = {}
13

14 #
15 # The new "words" (procedures) of our program
16 #
17 def read_file():
18 """
19 Takes a path to a file on the stack and places the entire
20 contents of the file back on the stack.
21 """
22 f = open(stack.pop())
23 # Push the result onto the stack
24 stack.append([f.read()])
25 f.close()
26

27 def filter_chars():
28 """
29 Takes data on the stack and places back a copy with all
30 nonalphanumeric chars replaced by white space.
31 """
32 # This is not in style. RE is too high-level, but using it
33 # for doing this fast and short. Push the pattern onto stack
34 stack.append(re.compile(’[\W_]+’))
35 # Push the result onto the stack
36 stack.append([stack.pop().sub(’ ’, stack.pop()[0]).lower()])
37

38 def scan():
39 """
40 Takes a string on the stack and scans for words, placing
41 the list of words back on the stack
42 """
43 # Again, split() is too high-level for this style, but using
44 # it for doing this fast and short. Left as exercise.
45 stack.extend(stack.pop()[0].split())
46

47 def remove_stop_words():
48 """
49 Takes a list of words on the stack and removes stop words.
50 """
51 f = open(’../stop_words.txt’)
52 stack.append(f.read().split(’,’))
53 f.close()
54 # add single-letter words

Go Forth � 17

55 stack[-1].extend(list(string.ascii_lowercase))
56 heap[’stop_words’] = stack.pop()
57 # Again, this is too high-level for this style, but using it
58 # for doing this fast and short. Left as exercise.
59 heap[’words’] = []
60 while len(stack) > 0:
61 if stack[-1] in heap[’stop_words’]:
62 stack.pop() # pop it and drop it
63 else:
64 heap[’words’].append(stack.pop()) # pop it, store it
65 stack.extend(heap[’words’]) # Load the words onto the stack
66 del heap[’stop_words’]; del heap[’words’] # Not needed
67

68 def frequencies():
69 """
70 Takes a list of words and returns a dictionary associating
71 words with frequencies of occurrence.
72 """
73 heap[’word_freqs’] = {}
74 # A little flavour of the real Forth style here...
75 while len(stack) > 0:
76 # ... but the following line is not in style, because the
77 # naive implementation would be too slow
78 if stack[-1] in heap[’word_freqs’]:
79 # Increment the frequency, postfix style: f 1 +
80 stack.append(heap[’word_freqs’][stack[-1]]) # push f
81 stack.append(1) # push 1
82 stack.append(stack.pop() + stack.pop()) # add
83 else:
84 stack.append(1) # Push 1 in stack[2]
85 # Load the updated freq back onto the heap
86 heap[’word_freqs’][stack.pop()] = stack.pop()
87

88 # Push the result onto the stack
89 stack.append(heap[’word_freqs’])
90 del heap[’word_freqs’] # We don’t need this variable anymore
91

92 def sort():
93 # Not in style, left as exercise
94 stack.extend(sorted(stack.pop().items(), key=operator.

itemgetter(1)))
95

96 # The main function
97 #
98 stack.append(sys.argv[1])
99 read_file(); filter_chars(); scan(); remove_stop_words()

100 frequencies(); sort()
101

102 stack.append(0)
103 # Check stack length against 1, because after we process
104 # the last word there will be one item left
105 while stack[-1] < 25 and len(stack) > 1:
106 heap[’i’] = stack.pop()
107 (w, f) = stack.pop(); print(w, ’-’, f)
108 stack.append(heap[’i’]); stack.append(1)
109 stack.append(stack.pop() + stack.pop())

18 � Exercises in Programming Style

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of lists, indexes, and bounds.

2.3 COMMENTARY

THIS STYLE takes inspiration in Forth, a small programming language
first developed as a personal programming system in the late 1950s by

Charles Moore, a programmer working at the time for the Smithsonian Astro-
physical Laboratory. This programming system – an interpreter for a simple
language – supported the need to handle different equations without having
to recompile the program – a time-consuming activity at the time.

This curious little language has at its heart the concept of a stack. Equa-
tions are entered in postfix notation, e.g. “3 4 +”. Operands are pushed onto
the stack one at a time; operators take the operands on the stack and replace
them with the result. When data is not immediately needed, it can be placed
on a part of the memory called the heap. Besides the stack machine, Forth sup-
ports the definition of procedures (called “words” in Forth); these procedures,
like the built-in ones, operate over data on the stack.

The syntax of Forth may be hard to understand due to its postfix nature
and several special symbols that aren’t used in any other language. But the
language model is surprisingly simple once we understand the constraints – the
stack, the heap, procedures and names. Rather than using a Forth interpreter
written in Python, this chapter shows how the constraints underlying Forth
can be codified in Python programs, resulting, roughly, in a Forth style of
programming. Let’s analyze the example program.

To start with, to support the style, we first define the stack (line #7) and
the heap (line #12).1 Next we define a set of procedures (“words” in Forth ter-
minology). These procedures help us divide the problem in smaller sub-steps,
such as reading a file (lines #17 through #25), filtering the characters (lines
#27 through #36), scanning for words (lines #38 through #45), removing
stop words (lines #47 through #66), computing the frequencies (lines #68
through #90), and sorting the result (lines #92 through #94). We’ll look into
some of these in more detail next. But one thing to notice is that all these
procedures use (pop) data from the stack (e.g. lines #22, #36, #45) and end
by pushing data onto the stack (e.g. lines #24, #36, #45).

Forth’s heap supports the allocation of data blocks that can be – and
usually are – bound to names. In other words, variables. The mechanism is
relatively low level, as the programmer needs to define the size of the data.
In our emulation of Forth’s style, we simply use a dictionary (line #12). So
for example, in line #56, we are popping the stop words on the stack directly
into a variable on the heap named stop words.

Many parts of the example program are not written in Forth style,
but some parts are true to it, so let’s focus on those. The procedure

1In Python, stacks are simply lists; we use them as stacks by invoking the stack operations
pop and append (acting as push). Occasionally, extend is also used, as a shortcut to
append/push the elements of an entire list onto the stack.

Go Forth � 19

remove stop words (starting in line #47), as the name suggests, removes
the stop words. When that procedure is called, the stack contains all the
words of the input file, properly normalized. The first few words of Pride and
Prejudice are:
[‘the’, ‘project’, ‘gutenberg’, ‘ebook’, ‘of’, ‘pride’, ‘and’, ‘prejudice’, ...]
That is how the stack looks like at that point, for that book. Next, we open
the stop words file and push the list of stop words onto the stack (lines #51
through #55). To make things simple, we keep them in a list of their own
instead of merging them with the rest of the data on the stack. The stack now
looks like this:
[‘the’, ‘project’, ‘gutenberg’, ‘ebook’, ‘of’, ‘pride’, ‘and’, ‘prejudice’, ..., [‘a’,
‘able’, ‘about’, ‘across’, ...]]

After reading all the stop words from the file and placing them onto the
stack, we then pop them out to the heap (line #56), in preparation to process
the words of the book that are still on the stack. Lines #60 through #64
iterate through the words on the stack in the following way. Until the stack
is empty (test in line #60), we check if the word at the top of the stack
(stack[-1] in Python) is in the list of stop words (line #61). In real Forth,
this test would be much more low level than what is shown here, as we would
need to explicitly iterate through the list of stop words too. In any case, if the
word is in the stop words list, we simply pop it out of the stack and ignore
it. If the word is not in the list of stop words (line #63), we pop it out of the
stack onto another variable in the heap called words – the list accumulates
the non-stop words (line #64). When the iteration is over, we take the variable
words and place its entire contents back on the stack (line #65). We end up
with the stack containing all non-stop words, like this:
[‘project’, ‘gutenberg’, ‘ebook’, ‘pride’, ‘prejudice’, ...]

At that point, we don’t need the variables on the heap anymore, so we
discard them (line #66). Forth supports deletion of variables from the heap
in the spirit of what is being done here.

The frequencies procedure (starting in line #68) shows one more stylis-
tic detail related to arithmetic operations. That procedure starts with the
non-stop words on the stack (as shown above) and ends with placing a dic-
tionary of word frequencies onto the stack (line #89). It works as follows.
First, it allocates a variable on the heap called word freqs that stores the
word-frequency pairs (line #73) – it starts with the empty dictionary. It then
iterates through the words on the stack. For each word at the top of the
stack, it checks whether that word has been seen before (line #78). Again,
this test is expressed at a much higher level than it would be in Forth, for
performance reasons. If the word has been seen before, we need to increment
its frequency count. That is done by pushing the current frequency count onto
the stack (line #80), then pushing the value 1 onto the stack (line #81), and
then adding those 2 top-most operands on the stack and placing the result
on the stack (line #82). If the word had not been seen before (line #83), we
simply push the value 1 onto the stack. Finally, we pop both the frequency

20 � Exercises in Programming Style

count (right side of assignment in line #86) and the word itself (left side of
assignment in line #86) out of the stack and into the variable on the heap,
and move to the next word on top of the stack, until the stack is empty (back
to line #75). At the end, as stated before, we push the entire content of the
heap variable onto the stack, and delete that variable.

The main function starting in line #98 is the beginning of the program. We
start by pushing the name of the input file onto the stack (line #98), and then
invoke the procedures sequentially. Note that these procedures are not com-
pletely independent of each other: each of them relies on strong assumptions
about the data that is left on the stack by the previous one.

Once the counting and sorting is done, we then print out the result (lines
#105 through #109). This block of code shows a final stylistic detail related
to what Forth calls “indefinite loops,” or loops that run until a condition is
true. In our case, we want to iterate through the dictionary of word frequencies
until we count 25 iterations. So we do the following. We start by pushing the
number 0 onto the stack (line #102), on top of the data that is already there
(word frequencies), and proceed to an indefinite loop until the top of the stack
reaches the number 25. In each iteration, we pop the count out of the stack
into a variable (line #106), then pop the next word and frequency out of the
stack and print them (line #107); then, we push the count in the variable back
to the stack, followed by the value 1, and add them, effectively incrementing
the count. The loop, and the program, terminate when the top of the stack
has the value 25. The second clause for termination (len(stack) > 1) is
there in the case of small test files that might not even have 25 words.

Many options could have been pursued, and the reader is encouraged to
explore the solution space within this style.

2.4 HISTORICAL NOTES

Early computing machines did not have stacks. The earliest reference for the
idea of using a stack in computers can be found in Alan Turing’s Automatic
Computing Engine (ACE) report in 1945. Unfortunately, that report was clas-
sified for many years, so not many knew about it.

Stacks were invented again in the late 1950s by several people indepen-
dently. It was several more years before computer architectures started to
include stacks, and to use them for purposes such as subroutine calls.

Forth was a personal project from a computer maverick that never caught
the attention of the dominant players of the time. Forth was entirely done in
software, and it has been ported [by Moore] to several generations of com-
puters since 1958. Considering that Moore started using it in the late 1950s,
the fact that Forth was a stack machine interpreter that early on makes it
historically relevant.

Another well-known stack machine-based language is PostScript, a lan-
guage used to describe documents for printing purposes. PostScript was devel-
oped at Xerox PARC in the late 1970s by John Warnock and others; it was

Go Forth � 21

based on an earlier language designed by John Warnock. The group eventually
left PARC to start Adobe Systems.

2.5 FURTHER READING

Koopman, P. (1989). Stack Computers: The New Wave. Ellis Horwood Pub-
lisher. Available at
http://www.ece.cmu.edu/˜koopman/stack computers/
Synopsis: An introduction to stack machines, a not so new wave, but
interesting nevertheless.

Rather, E., Colburn, D. and Moore, C. (1993). The evolution of Forth. ACM
SIGPLAN Notices 28(3) – HOPL II, pp. 177–199.
Synopsis: Charles Moore is a maverick in the computing world, and every-
one should know about his work. This paper tells the story of Forth.

Warnock, J. E. (2012). Simple ideas that changed printing and publishing.
Proceedings of the American Philosophical Society 156(4): 363–378.
Synopsis: A historical perspective on PostScript, a stack machine lan-
guage for printing.

2.6 GLOSSARY

Stack: A stack is “Last-In-First-Out” data structure. Its main operations are
push – add an element to the top of the stack – and pop – remove the ele-
ment from the top of the stack. Stacks play a critical role in programming
language implementations well beyond Forth. Although usually invisible
to the programmer, in virtually every modern programming language, a
stack is the piece of memory that supports a thread of program execu-
tion. When procedures/functions are called, a block of data related to the
parameters and return addresses is usually pushed onto the stack; subse-
quent procedure/function calls push other similar blocks onto the stack.
Upon return, the corresponding blocks on the stack are usually popped.

Heap: The heap is another piece of memory underlying the implementation
of many modern programming languages. The heap is used for dynamic
memory allocation/deallocation, such as the creation of lists and objects.
(Not to be confused with a data structure called Heap, a specialized tree-
based data structure.)

Stack machine: A stack machine is a real or emulated computing machine
that uses a stack, instead of registers, as its main support for evaluating
the expressions of the program. Forth is a stack machine programming
language. So are many modern virtual machines, such as the Java Virtual
Machine.

http://www.ece.cmu.edu/

22 � Exercises in Programming Style

2.7 EXERCISES

2.1 Another language. Implement the example program in another language,
but preserve the style.

2.2 Search. In the example program, the comparison in line #78 is not in
style, as it uses Python’s high-level containment checking if x in y.
Rewrite this piece of the program, i.e. searching whether a given word is
in the dictionary on the heap, using go-forth style. Explain what happens
to the performance of your program.

2.3 True stack. Python uses lists for implementing stacks, which makes the
example program a bit confusing. Implement a true stack data structure
in Python (possibly wrapping around a list) that provides the expected
push, pop, peek and empty operations. Use your data structure in
the example program, instead of the list introduced in line #7.

2.4 A different task. Write one of the tasks proposed in the Prologue using
the go-forth style.

CHA PT E R 3

Arrays

3.1 CONSTRAINTS

B Main data type: array – a fixed-size collection of elements.

B No explicit iteration; instead, an array is accessed by high-level, declar-
ative operations.

B Computation unfolds as search, selection, and transformation of fixed-
size data.

23

24 � Exercises in Programming Style

3.2 A PROGRAM IN THIS STYLE

1 import sys, string
2 import numpy as np
3

4 # Example input: "Hello World!"
5 characters = np.array([’ ’]+list(open(sys.argv[1]).read())+[’ ’])
6 # Result: array([’ ’, ’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’ ’,
7 # ’W’, ’o’, ’r’, ’l’, ’d’, ’!’, ’ ’], dtype=’<U1’)
8

9 # Normalize
10 characters[˜np.char.isalpha(characters)] = ’ ’
11 characters = np.char.lower(characters)
12 # Result: array([’ ’, ’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’ ’,
13 # ’w’, ’o’, ’r’, ’l’, ’d’, ’ ’, ’ ’], dtype=’<U1’)
14

15 ### Split the words by finding the indices of spaces
16 sp = np.where(characters == ’ ’)
17 # Result: (array([0, 6, 7, 13, 14], dtype=int64),)
18 # A little trick: let’s double each index, and then take pairs
19 sp2 = np.repeat(sp, 2)
20 # Result: array([0, 0, 6, 6, 7, 7, 13, 13, 14, 14], dtype=int64)
21 # Get the pairs as a 2D matrix, skip the first and the last
22 w_ranges = np.reshape(sp2[1:-1], (-1, 2))
23 # Result: array([[0, 6],
24 # [6, 7],
25 # [7, 13],
26 # [13, 14]], dtype=int64)
27 # Remove the indexing to the spaces themselves
28 w_ranges = w_ranges[np.where(w_ranges[:, 1] - w_ranges[:, 0] > 2)]
29 # Result: array([[0, 6],
30 # [7, 13]], dtype=int64)
31

32 # Voila! Words are in between spaces, given as pairs of indices
33 words = list(map(lambda r: characters[r[0]:r[1]], w_ranges))
34 # Result: [array([’ ’, ’h’, ’e’, ’l’, ’l’, ’o’], dtype=’<U1’),
35 # array([’ ’, ’w’, ’o’, ’r’, ’l’, ’d’], dtype=’<U1’)]
36 # Let’s recode the characters as strings
37 swords = np.array(list(map(lambda w: ’’.join(w).strip(), words)))
38 # Result: array([’hello’, ’world’], dtype=’<U5’)
39

40 # Next, let’s remove stop words
41 stop_words = np.array(list(set(open(’../stop_words.txt’).read().

split(’,’))))
42 ns_words = swords[˜np.isin(swords, stop_words)]
43

44 ### Finally, count the word occurrences
45 uniq, counts = np.unique(ns_words, axis=0, return_counts=True)
46 wf_sorted = sorted(zip(uniq, counts), key=lambda t: t[1], reverse=

True)
47

48 for w, c in wf_sorted[:25]:
49 print(w, ’-’, c)

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of lists, indexes and bounds.

Arrays � 25

3.3 COMMENTARY

THE MOST VISIBLE ELEMENT OF THIS STYLE is the concept of
an array: a fixed-size collection of elements. All data is placed in arrays,

and the sizes of these arrays are fixed, and must be known. Arrays can have
one or more dimensions. A 1-dimensional array is called a vector, while an
N -dimensional array is called an N -D matrix. When the data is smaller than
the allotted slots in an array, the data is typically padded with some zero-like
value through the end of the array.

Arrays, of course, are data structures that every programmer knows very
well. But the mere use of arrays does not constitute the array programming
style – far from it. A second, more important, constraint of this style is the
absence of explicit iteration. Rather than explicitly iterating through the ele-
ments of arrays, as one might do in imperative languages, arrays are accessed
with high-level, declarative operations that apply to the entire array at once.
The high-level mathematical abstractions of array operations hide the low-
level implementation details, and make these operations a perfect fit for highly
parallel implementations, such as those supported by Graphical Processing
Units (GPUs).

For example, consider the following snippet written in an imperative
pseudo-language:

1 String[] cars = {’Volvo’, ’BMW’, ’Ford’, ’Mazda’}
2 for (i = 0; i < cars.length; i++) {
3 cars[i] = cars[i].toLowerCase();
4 }
5 List<String> ocars = new List<String>();
6 for (int i = 0; i < cars.length; i++) {
7 if (cars[i].conatains(’o’))
8 ocars.append(cars[i])
9 }

This snippet uses an array for placing the data (cars), but it is not writ-
ten in array programming style. This other snippet, however, uses the array
programming style:

1 String[] cars = {’Volvo’, ’BMW’, ’Ford’, ’Mazda’}
2 cars = ToLowerCase(cars);
3 ocars = Where(cars.contains(’o’))

Where the former snippet uses explicit iteration, the latter uses high-level,
declarative operations on the array. Without these operations, we may be
using arrays, but we are not using the array programming style.

In Python, collections of data are typically placed in variably sized lists,
tuples, or dictionaries. Python also supports arrays, via the array module;
however, those arrays are just the basic data structures, and do not support
the array programming style. Python’s lack of support for high-level array
operations made some of its applications, especially in scientific computing,
quite limited. Third-party libraries filled the void. The most popular of such

26 � Exercises in Programming Style

libraries is numpy, a library that not only supports arrays but also supports
powerful array operations. The example program uses numpy. Let’s analyze
it in detail.

At a high level, solving the term frequency problem in array style means
placing all the textual data in an array, and then performing several array
operations until we get the terms and their counts. In this implementation,
we start with the raw data – an array of characters – in line #5. In order to
simplify certain operations, white space is placed in the first and last positions
of the array. Lines #10 and #11 show the first uses of the high-level array
operations available in numpy. In them, the characters array is normalized
by replacing all non-alphanumeric characters with white space and by trans-
forming all characters to lowercase. The implementation of these high-level
search-and-replace operations may perform several optimizations for parallel
processing, but that is invisible to us.

Next, we need to tokenize, i.e. we need to identify the words in the array of
characters. In order to stay true to the array programming style, this requires
thinking about the problem differently than what we would normally think
if we were using other kinds of data structures. The approach taken here
is as follows: let’s find the indices of the spaces; words, then, are sequences
of characters between any two of those indices. We want to end up with a
two-dimensional matrix where each row is a pair of [start, end] indices of
words. To implement this approach, line #16 finds the indices of the spaces;
then line #19 duplicates each of those numbers, in preparation for the two-
dimensional matrix; the operation reshape in line #22 transforms the vector
of duplicated indices into a 2D matrix; finally, line #28 selects only the rows
where the difference between the end index and the start index is greater than
2, meaning that the word has at least two characters. At the end of that part
of the program, in line #28, w ranges contains the pairs [start, end] of all
the words.

At this point in the program, we break from array programming style, and
produce a variably sized list of words (line #33). This is because we cannot
anticipate how many words there are, so we cannot use an array (unless we
would assume some default maximum). The list words in line #33 is still
a list of numpy character arrays. But from here on, we want to operate on
words, not on characters. So in line #37 we create a new numpy array, this
time with string elements (the words), rather than characters. Line #41 loads
the stop words into an array of strings, and line #42 uses a powerful array
operation for selecting only the words in the swords array that are not in
the stop words array stop words.

Finally, in line #45 another powerful array operation is used to return the
unique words and their counts. Sorting, in line #46, is done in the traditional,
non-array programming, manner.

The example program is intermingled with comments showing a running
input data example, so that the reader can better understand the meaning of

Arrays � 27

the array operations. For that reason, the program seems longer than it really
is. Without comments, the example program is quite concise:

1 import sys, string
2 import numpy as np
3

4 # Split characters into words
5 characters = np.array([’ ’]+list(open(sys.argv[1]).read())+[’ ’])
6 characters[˜np.char.isalpha(characters)] = ’ ’
7 characters = np.char.lower(characters)
8 sp = np.where(characters == ’ ’)
9 sp2 = np.repeat(sp, 2)

10 w_ranges = np.reshape(sp2[1:-1], (-1, 2))
11 w_ranges = w_ranges[np.where(w_ranges[:, 1] - w_ranges[:, 0] > 2)]
12 words = list(map(lambda r: characters[r[0]:r[1]], w_ranges))
13 swords = np.array(list(map(lambda w: ’’.join(w).strip(), words)))
14

15 # Next, let’s remove stop words
16 stop_words = np.array(list(set(open(’../stop_words.txt’).read().

split(’,’))))
17 ns_words = swords[˜np.isin(swords, stop_words)]
18

19 # Finally, count the word occurrences
20 uniq, counts = np.unique(ns_words, axis=0, return_counts=True)
21 wf_sorted = sorted(zip(uniq, counts), key=lambda t: t[1], reverse=

True)
22

23 for w, c in wf_sorted[:25]:
24 print(w, ’-’, c)

Typically, data-intensive programs written in array programming style
tend to be small, concise, and, once we are familiar with the array opera-
tions, easy to read.

3.4 THIS STYLE IN SYSTEMS DESIGN

Array programming is inherently a set of intent expression ideas that come
from mathematics. Nevertheless, some of these ideas have spilled over beyond
mathematical applications. For starters, the powerful array operations for
selecting, searching, and updating elements have found their way to the query
languages of relational databases. Moreover, array programming, thought, for
a time, to be a niche for engineering applications, is coming back with a
vengeance in modern machine learning frameworks such as TensorFlow. Part
X of this book covers these new developments.

3.5 HISTORICAL NOTES

Array programming is one of the oldest ideas in high-level programming. Com-
puters were first developed to make calculations for scientific and engineering
purposes. In science and engineering, linear algebra dominates. For that rea-
son, the concept of multidimensional matrices, and operations on them, was,

28 � Exercises in Programming Style

perhaps, one of the first concepts that made people want to elevate computer
languages to notations that would be closer to mathematics than to assembly.
The concepts of this programming style were first documented in the 1962
book A Programming Language by Kenneth Iverson, designer of APL. APL
itself was an important and influential array programming language imple-
mented at IBM in the 1960s, albeit a victim of its own obscure symbols. Its
conciseness for describing array operations was unmatched at the time. “APL
one-liners” – the ability to write a complex program in 1 line of APL code –
became, at some point, a popular hobby among APL programmers.

Dartmouth BASIC adopted simple matrix operations in the mid-1960s. In
the 1970s, the statistical programming system S (precursor of R) built on the
same ideas. In the 1980s, MATLAB R© came along as a modern programming
environment for scientific and engineering applications. Like APL, MATLAB
supports the powerful array operations that are characteristics of the array
programming style. More recently, in the early 2000s, numpy was added to the
Python ecosystem. Julia is an example of a modern language that supports
vectorized operations.

3.6 FURTHER READING

Iverson, K. (1962). A Programming Language. Wiley. Available at
http://www.softwarepreservation.org/projects/apl
Synopsis: The rationale for, and detailed description of, APL.

3.7 GLOSSARY

Array: A fixed-size collection of data. Typically, the elements of an array
are all of the same type, but that is not necessary. APL, for example,
supported arrays where elements could be of different types.

Matrix: A multidimensional array.

Shape: The dimensions of an array. For example, a 3×2 matrix has shape
(3, 2).

Vector: A 1-dimensional array.

Vectorization: Abstraction of iteration on elements of arrays as operations
on the entire array.

3.8 EXERCISES

3.1 Another language. Implement the example program in another array
programming language, such as MATLAB or Julia.

http://www.softwarepreservation.org/

Arrays � 29

3.2 Stay in style. In line #33, followed by line #37, we broke from the
array programming style to construct a list of words from the array
of characters, and then create an array of strings from those words.
Reimplement the second part of the program (from line #28 onward)
without breaking from the array programming style. That is, work on
an array of words expressed as a 2D array of characters.

3.3 A different task. Write one of the tasks proposed in the Prologue using
the array programming style.

http://taylorandfrancis.com

II
Basic Styles

31

http://taylorandfrancis.com

Basic Styles � 33

This part of the book presents four basic styles: Monolithic, Cookbook, Pipeline
and Code Golf. These are basic in the sense that their presence is pervasive
in programming. All other styles use elements from these four.

http://taylorandfrancis.com

CHA PT E R 4

Monolithic

4.1 CONSTRAINTS

B No named abstractions.

B No, or little, use of libraries.

35

36 � Exercises in Programming Style

4.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, string
3

4 # the global list of [word, frequency] pairs
5 word_freqs = []
6 # the list of stop words
7 with open(’../stop_words.txt’) as f:
8 stop_words = f.read().split(’,’)
9 stop_words.extend(list(string.ascii_lowercase))

10

11 # iterate through the file one line at a time
12 for line in open(sys.argv[1]):
13 start_char = None
14 i = 0
15 for c in line:
16 if start_char == None:
17 if c.isalnum():
18 # We found the start of a word
19 start_char = i
20 else:
21 if not c.isalnum():
22 # We found the end of a word. Process it
23 found = False
24 word = line[start_char:i].lower()
25 # Ignore stop words
26 if word not in stop_words:
27 pair_index = 0
28 # Let’s see if it already exists
29 for pair in word_freqs:
30 if word == pair[0]:
31 pair[1] += 1
32 found = True
33 break
34 pair_index += 1
35 if not found:
36 word_freqs.append([word, 1])
37 elif len(word_freqs) > 1:
38 # We may need to reorder
39 for n in reversed(range(pair_index)):
40 if word_freqs[pair_index][1] >

word_freqs[n][1]:
41 # swap
42 word_freqs[n], word_freqs[

pair_index] = word_freqs[
pair_index], word_freqs[n]

43 pair_index = n
44 # Let’s reset
45 start_char = None
46 i += 1
47

48 for tf in word_freqs[0:25]:
49 print(tf[0], ’-’, tf[1])

Monolithic � 37

4.3 COMMENTARY

IN THIS STYLE, even though we may be using a modern high-level pro-
gramming language with powerful library functions available, the problem

is solved in almost Good Old Times style: one piece of code, from beginning
to end, with no new abstractions provided and not much use of the ones avail-
able in the libraries either. From a design perspective, the main concern is
to obtain the desired output without having to think much about subdivid-
ing the problem or how to take advantage of code that already exists. Given
that the entire problem is one single conceptual unit, the programming task
consists of defining the data and control flow that rule this unit.

The example program works as follows. It holds a global list variable
word freqs (line #5) that is used for holding the pairs associating words
with corresponding frequencies. The program first reads a list of stop words
from a file, and extends with words comprising single letters, e.g. a (lines #7–
9). Then the program engages in one long loop (lines #12–46) that iterates
through the input file’s lines, one by one. Inside that loop, there is a sec-
ond, nested loop (lines #15–45) that iterates through each character of each
line. The problem to be solved in this nested loop is to detect the beginning
(lines #17–19) and the end (lines #21–43) of words, incrementing the fre-
quency count for each detected word that is not a stop word (lines #26–43).
In the case of a word that hasn’t been seen before, a new pair is added to
the word freqs list, with count 1 (lines #35–36); in the case of a word that
has already occurred (lines #29–34), the count is simply incremented (line
#31). Since we want to print out the word frequencies by decreasing order of
frequency, this program further ensures that the word freqs list is always
ordered by decreasing order of frequency (lines #39–43). At the end (lines
#48–49), the program simply outputs the first 25 entries of the word freqs
list. Note that the only imports from the Python standard library are sys
and string (line #3).

In the early days of computer programming, with low-level programming
languages and relatively small programs, this style was all there was. Con-
structs such as goto gave further expression capabilities regarding control
flow and therefore encouraged the existence of long “spaghetti code.” Such
constructs have been considered harmful for the development of all but the
simplest programs, and are, for the most part, absent from modern program-
ming languages. But goto statements are not the root cause of monolithic
programs; when used responsibly, goto statements can result in nicely writ-
ten programs. What is potentially bad from a maintenance point of view is the
existence of long blocks of program text that fail to give the reader appropriate
higher-level abstractions for what is going on.

It is possible to write programs in the monolithic style in any programming
language, like the example program shows. In fact, it is not unusual to see
long blocks of program text in modern programs. In some cases, those long
program texts are warranted, for performance reasons or because the task

38 � Exercises in Programming Style

being coded can’t be easily subdivided. In many cases, however, they may
be a symptom that the programmer didn’t take the time to think carefully
about the computational task at hand. Monolithic programs are often hard
to follow, in the same way that a manual without chapters or sections would
be hard to follow.

Cyclomatic complexity is a metric developed to measure the complexity
of program texts, specifically the amount of control flow paths. As a rule
of thumb, the higher the cyclomatic complexity of a piece of program text,
the higher the chances that it is hard to understand. The computation of
cyclomatic complexity sees program texts as directed graphs, and is given by
the following formula:

CC = E −N + 2P (4.1)

where

E = number of edges

N = number of nodes

P = number of exit nodes

For example, consider the following piece of program text:

1 x = raw_input()
2 if (x > 0):
3 print ‘‘Positive’’
4 else:
5 print ‘‘Negative’’

The directed graph of this text is as follows (node numbers correspond to
line numbers):

The cyclomatic complexity of this program text is
CC = E −N + 2P = 5− 5 + 2 = 2.

Monolithic � 39

The cyclomatic complexity has the same intention as metrics pertaining to
measuring the readability of natural language texts such as the Flesch Reading
Ease test and the Flesch-Kincaid grade level test. These metrics try to summa-
rize style down to a number, and are backed up by some evidence in psychol-
ogy regarding the difficulty that writing style has in people’s understanding
of texts. Clearly, writing programs is not the same as writing literary works.
But when it comes to understanding what the writing is all about, there are
many similarities. In some cases, a long piece of program text may be needed
to make clear to the reader the inherent complexity of the programming task.
More often, though, it probably isn’t.

4.4 THIS STYLE IN SYSTEMS DESIGN

At the systems scale, monoliths are reflected in having single, large compo-
nents that do everything that the application needs to do. This is in contrast to
breaking down the system into modular subcomponents, each one responsible
for a specific piece of functionality.

This style is considered bad practice at all scales. However, it is quite
common to see monolithic code. It is important to recognize monoliths, and
to try to understand the reasons that led to them.

4.5 FURTHER READING

Dijkstra, E. (1968). Go To statement considered harmful. Communications of
the ACM 11(3): 147–148.
Synopsis: Dijkstra rages against GOTO. A classic.

Knuth, D. (1974). Structured programming with go to statements. ACM Com-
puting Surveys 6(4): 265–301.
Synopsis: The best of many rebuttals of Dijkstra’s rage against GOTO.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software
Engineering SE-2(4): 308–320.
Synopsis: Complexity metric for FORTRAN programs based on graphs.
The first attempt at quantifying the cognitive load of various program
design decisions.

4.6 GLOSSARY

Control flow: The order in which program statements are executed and pro-
gram expressions are evaluated. Includes conditionals, iterations, function
calls, returns, etc.

Cyclomatic complexity: A software metric that measures the number of
linearly independent execution paths through a program’s source code.

40 � Exercises in Programming Style

4.7 EXERCISES

4.1 Another language. Implement the example program in another language,
but preserve the style.

4.2 Readlines. The example program reads one line at a time from the
file. Modify it so that it first loads the entire file into memory (with
readlines()), and then iterates over the lines in memory. Is this bet-
ter or worse practice? Why?

4.3 Two loops. In lines #36–42 the example program potentially reorders,
at every detected word, the list of word frequencies, so that it is always
ordered by decreasing value of frequency. Within the monolithic style,
modify the program so that the reordering is done in a separate loop
at the end, before the word frequencies are printed out on the screen.
What are the pros and cons of doing that?

4.4 Cyclomatic complexity. What is the cyclomatic complexity of the exam-
ple program?

4.5 A different task. Write one of the tasks proposed in the Prologue using
the monolithic style.

CHA PT E R 5

Cookbook

5.1 CONSTRAINTS

B No long jumps.

B Complexity of control flow tamed by dividing the large problem into
smaller units using procedural abstraction. Procedures are pieces of func-
tionality that may take input, but that don’t necessarily produce output
that is relevant for the problem.

B Procedures may share state in the form of global variables.

B The larger problem is solved by applying the procedures, one after the
other, that change, or add to, the shared state.

41

42 � Exercises in Programming Style

5.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, string
3

4 # The shared mutable data
5 data = []
6 words = []
7 word_freqs = []
8

9 #
10 # The procedures
11 #
12 def read_file(path_to_file):
13 """
14 Takes a path to a file and assigns the entire
15 contents of the file to the global variable data
16 """
17 global data
18 with open(path_to_file) as f:
19 data = data + list(f.read())
20

21 def filter_chars_and_normalize():
22 """
23 Replaces all nonalphanumeric chars in data with white space
24 """
25 global data
26 for i in range(len(data)):
27 if not data[i].isalnum():
28 data[i] = ’ ’
29 else:
30 data[i] = data[i].lower()
31

32 def scan():
33 """
34 Scans data for words, filling the global variable words
35 """
36 global data
37 global words
38 data_str = ’’.join(data)
39 words = words + data_str.split()
40

41 def remove_stop_words():
42 global words
43 with open(’../stop_words.txt’) as f:
44 stop_words = f.read().split(’,’)
45 # add single-letter words
46 stop_words.extend(list(string.ascii_lowercase))
47 indexes = []
48 for i in range(len(words)):
49 if words[i] in stop_words:
50 indexes.append(i)
51 for i in reversed(indexes):
52 words.pop(i)
53

54 def frequencies():

Cookbook � 43

55 """
56 Creates a list of pairs associating
57 words with frequencies
58 """
59 global words
60 global word_freqs
61 for w in words:
62 keys = [wd[0] for wd in word_freqs]
63 if w in keys:
64 word_freqs[keys.index(w)][1] += 1
65 else:
66 word_freqs.append([w, 1])
67

68 def sort():
69 """
70 Sorts word_freqs by frequency
71 """
72 global word_freqs
73 word_freqs.sort(key=lambda x: x[1], reverse=True)
74

75

76 #
77 # The main function
78 #
79 read_file(sys.argv[1])
80 filter_chars_and_normalize()
81 scan()
82 remove_stop_words()
83 frequencies()
84 sort()
85

86 for tf in word_freqs[0:25]:
87 print(tf[0], ’-’, tf[1])

44 � Exercises in Programming Style

5.3 COMMENTARY

IN THIS STYLE, the larger problem is subdivided into subunits, aka pro-
cedures, each doing one thing. It is common in this style for the procedures

to share data among themselves, as a means to achieve the final goal. Fur-
thermore, the state changes may depend on previous values of the variables.
The procedures are said to have side effects on this data. The computation
proceeds with one procedure processing some data in the pool and preparing
data for the next procedure. Procedures don’t return data, as such, they just
act on the shared data.

The example program is implemented as follows. A pool of shared data is
declared (lines #5–7): the first variable, data, holds the contents of the input
file; the second variable, words, holds the words that are extracted from the
data; finally, the third variable, word freqs, holds the word-frequency pairs.
The three variables are all initialized to the empty list. This data is shared by
a collection of procedures (lines #12–75), each doing a specific task:

• read file(path to file) (lines #12–19) takes a path to a file and
joins the entire contents of that file with the current value of the global
variable data.

• filter chars and normalize() (lines #21–30) replaces all non-
alphanumeric characters in data with white space. The replacement
is done in place.

• scan() scans the data (lines #32–39) for words by using the built-in
function split, and it adds them to the global variable words.

• remove stop words() (lines #41–52) first loads the list of stop words
from a file and appends it with single-letter words (lines #44–48). Then
it traverses the words list and removes all the stop words from it. It
does so by first storing the indexes of where the stop words are in the
words list, and then by using the built-in function pop to remove those
words from the words list.

• frequencies() (lines #54–66) traverses the words list and creates
a list of pairs associating words with frequencies.

• sort() (lines #68–73) sorts the contents of the variable word freqs
by decreasing order of frequency. It does so by using the built-in func-
tion sort, which can take an anonymous function of two arguments,
which, in this case, is the second element (index 1) of each pair in the
word freqs list.

The main program is from line #79 until the end. This piece of program
text is where the cookbook nature of this style is most visible. Given that
the larger problem is neatly divided into smaller subproblems, each addressed
by a named procedure, the main program consists of issuing a sequence of

Cookbook � 45

commands corresponding to each of those procedures, similar to what one does
when following an elaborate cooking recipe. In turn, each of those procedures
changes the state of the shared variables, just like our following a cooking
recipe changes the state of the ingredients.

A consequence of changing state over time (i.e. mutable state) is that
procedures may not be idempotent. That is, calling a procedure twice
may result in completely different states of the world, and completely dif-
ferent outputs for the program. For example, if we call the procedure
read file(path to file) twice, we end up with duplicate data in the
data variable because of the cumulative nature of the assignment in line
#19. An idempotent function or procedure is one that can be called multiple
times yielding exactly the same observable effects as calling it just once. The
lack of idempotency is seen by many as a source of programming errors.

5.4 THIS STYLE IN SYSTEMS DESIGN

In programming, this style is well suited for computational tasks that accu-
mulate external data over time and whose behavior depends on that data. For
example, for user interactions where the user is prompted for pieces of input
at different points in time, maybe changing that input later, and where the
outputs of the program depend on all data that the user has entered, holding
on to state and changing it over time is a natural fit.

One issue that will be visible in later chapters is the granularity with which
state is shared. In the example program, the variables are global, and they are
shared by the entire collection of procedures. Global variables have long been
considered a bad idea in all but the shortest programs. Many other styles
discussed in this book use procedures that share variables in much smaller
scopes. In fact, a lot of interesting stylistic work has been done over the years
in order to limit side effects in specific manners.

At the systems scale, cookbook architectural styles are widely used in
practice, with components sharing and changing external state such as that
stored in databases.

5.5 HISTORICAL NOTES

During the 1960s, more and larger programs were being developed that chal-
lenged the programming technologies of the time. One of the main challenges
had to do with programs being understood by other people. Programming
languages were becoming increasingly more featureful, without them neces-
sarily letting go of older constructs. The same program could be expressed in
many different ways. In the late 1960s, a debate started about which features
of the programming languages were “good” and which ones were “bad” [for
the purpose of program understanding]. This debate, led, in part, by Dijk-
stra, advocated restraint in using some features considered harmful, such as
long jumps (GOTO), and instead called for the use of higher-level iterative

46 � Exercises in Programming Style

constructs (e.g. while loops), procedures and appropriate modularization of
code. Not everyone agreed with Dijkstra’s position, but his arguments pre-
vailed. This gave rise to the era of structured programming – the style that is
illustrated in this chapter, and that emerged in opposition to unstructured, or
monolithic, programming as seen in the previous chapter.

5.6 FURTHER READING

Dijkstra, E. (1970). Notes on Structured Programming. Available from
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
Synopsis: Dijkstra was one of the most vocal advocates of structured
programming. These notes lay out some of Dijkstra’s thoughts on pro-
gramming in general. A classic.

Wulf, W. and Shaw, M. (1973). Global variable considered harmful. SIGPLAN
Notices 8(2): 28–34.
Synopsis: More opinions on structuring programs. This paper, as the title
says, argues against global variables: not just structured programming,
but well -structured programming.

5.7 GLOSSARY

Idempotence: A function, or procedure, is idempotent when multiple appli-
cations of it produce exactly the same observable effects as applying it
just once.

Mutable variable: A mutable variable is one in which its assigned value can
change over time.

Procedure: A procedure is a subroutine of a program. It may or may not
receive input parameters, and it may or may not return a value.

Side effect: Side effect is a change in an observable part of a program. Side
effects include writing to files or the screen, reading input, changing the
value of observable variables, raising an exception, etc. Programs interact
with the outside world via side effects.

5.8 EXERCISES

5.1 Another language. Implement the example program in another language,
but preserve the style.

5.2 Scope ’em. Modify the example program so that there are no global
variables but the imperative style is still the dominant style and the
procedures are essentially the same.

http://www.cs.utexas.edu/

Cookbook � 47

5.3 Double trouble. In the example program, which procedures are idempo-
tent and which ones aren’t?

5.4 Details matter. Modify the example program as little as possible but
make it so that all procedures become idempotent.

5.5 A different program. Write a different program, also in the Cookbook
style, that does exactly the same thing as the example program but with
different procedures.

5.6 A different task. Write one of the tasks proposed in the Prologue using
the Cookbook style.

http://taylorandfrancis.com

CHA PT E R 6

Pipeline

6.1 CONSTRAINTS

B Larger problem is decomposed using functional abstraction. Functions
take input and produce output.

B No shared state between functions.

B The larger problem is solved by composing functions one after the other,
in a pipeline, as a faithful reproduction of mathematical function com-
position f ◦ g.

49

50 � Exercises in Programming Style

6.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The functions
6 #
7 def read_file(path_to_file):
8 """
9 Takes a path to a file and returns the entire

10 contents of the file as a string
11 """
12 with open(path_to_file) as f:
13 data = f.read()
14 return data
15

16 def filter_chars_and_normalize(str_data):
17 """
18 Takes a string and returns a copy with all nonalphanumeric
19 chars replaced by white space
20 """
21 pattern = re.compile(’[\W_]+’)
22 return pattern.sub(’ ’, str_data).lower()
23

24 def scan(str_data):
25 """
26 Takes a string and scans for words, returning
27 a list of words.
28 """
29 return str_data.split()
30

31 def remove_stop_words(word_list):
32 """
33 Takes a list of words and returns a copy with all stop
34 words removed
35 """
36 with open(’../stop_words.txt’) as f:
37 stop_words = f.read().split(’,’)
38 # add single-letter words
39 stop_words.extend(list(string.ascii_lowercase))
40 return [w for w in word_list if not w in stop_words]
41

42 def frequencies(word_list):
43 """
44 Takes a list of words and returns a dictionary associating
45 words with frequencies of occurrence
46 """
47 word_freqs = {}
48 for w in word_list:
49 if w in word_freqs:
50 word_freqs[w] += 1
51 else:
52 word_freqs[w] = 1
53 return word_freqs
54

Pipeline � 51

55 def sort(word_freq):
56 """
57 Takes a dictionary of words and their frequencies
58 and returns a list of pairs where the entries are
59 sorted by frequency
60 """
61 return sorted(word_freq.items(), key=operator.itemgetter(1),

reverse=True)
62

63 def print_all(word_freqs):
64 """
65 Takes a list of pairs where the entries are sorted by

frequency and print them recursively.
66 """
67 if(len(word_freqs) > 0):
68 print(word_freqs[0][0], ’-’, word_freqs[0][1])
69 print_all(word_freqs[1:]);
70

71 #
72 # The main function
73 #
74 print_all(sort(frequencies(remove_stop_words(scan(

filter_chars_and_normalize(read_file(sys.argv[1]))))))[0:25])

52 � Exercises in Programming Style

6.3 COMMENTARY

THE PIPELINE STYLE captures the model of a factory pipeline, where
each station, or box, does one specific task over data that flows through

it. In its purest form, the pipeline style is a faithful reflection of the theory
of mathematical functions, where small boxes, aka functions, take input and
produce output. In mathematics, a function is a relation that maps a set of
inputs in one domain to a set of outputs in the same or another domain,
where each input relates to exactly one output; for example f(x) = x2 is a
function that maps real numbers to non-negative real numbers such that when
a value x is presented as input, the value x2 is given as output. Like in a fac-
tory pipeline, functions can be combined with each other using mathematical
function composition f ◦ g (“f after g”), as long as the output domain of the
second function, g, is the same as, or is contained in, the input domain of the
first, f . The input and output to functions can be anything, including other
functions (boxes that do things themselves); functions that take functions as
input or produce functions are called higher-order functions.

The pipeline programming style tries to achieve this kind of mathematical
purity by seeing everything as relations mapping one set of inputs to one
set of outputs. This constraint is very strong: in the pure pipeline style, the
world outside boxed functions doesn’t exist, other than in the beginning, as
the source of input to a computation, and at the end, as the receiver of the
output. The program needs to be expressed as boxed functions and function
composition. Unfortunately, our term frequency program needs to read data
from files, so it isn’t completely pure. But it tries. In Chapter 25 we will see
how to isolate impure actions from pure computation.

Let’s analyze the example program. Similar to what has been done for
the cookbook style, the problem of term frequency has been decomposed here
into smaller problems, each one addressing a specific computational task. The
decomposition is in all respects identical to the one used for the cookbook
style example – the same procedures with the same names are used. But these
procedures now have a special property: they each have one input parameter
and return one value at the end. For example, read file (lines #7–14)
receives a string (the name of a file) as input and returns the contents of
that file as output; filter chars and normalize (lines #16–22) receives
a string as input and returns a copy of that string with all non-alphanumeric
characters replaced by whitespace and normalized to lowercase; etc. These
procedures are now functions taking one input value and producing one output
value. There is no state outside the functions.

Contrast this with the cookbook style program, where the procedures take
no input, return nothing and simply make changes to the shared state. Note
also the idempotence of these boxes as opposed to the lack of it in the pro-
cedures of the cookbook style. Idempotence means that calling each of these
functions more than once yields exactly the same observable effects as calling
them just once: the functions have no side effects in the observable world,

Pipeline � 53

and always produce the same output for a given input. For example, calling
scan with the input ‘‘hello world’’ produces [’hello’, ’world’]
no matter how many times, and when, it is called.

The main program (from line #66 onward) is also indicative of the style:
instead of a sequence of steps, we now have a chain of boxed functions, with
the output of one function serving directly as input to the next. Mathematical
function composition is written from right to left, in the sense that the function
after is textually to the left of the previous function (f ◦ g = “f after g”), so
reading programs in this style may feel a bit awkward for those not used to
mathematics or to right-to-left languages. In this case, reading it sounds like
“sort after frequencies after remove stop words... etc.”; or, from right to left,
“read file then filter chars and normalize... etc.”

In the example program, all functions have one single argument, but, in
general, functions may have multiple arguments. However, every multiple-
argument function can be transformed in a sequence of single-value higher-
order functions using a technique called currying. Consider, for example, the
following function of three arguments:

def f(x, y, z):
return x * y + z

which can then be called as such:

>>> f(2, 3, 4)
10

This function can be transformed in the following higher-order function:

def f(x):
def g(y):
def h(z):

return x * y + z
return h

return g

which can then be called as such:

>>> f(2)(3)(4)
10

6.4 THIS STYLE IN SYSTEMS DESIGN

While it is hard to find systems with components that don’t hold on to, and
change, state in some form, the influence of pipelines can be found pervasively
in computer systems engineering. One of the oldest and most well-known
applications of this idea is the Unix shell pipes, where arbitrary commands can
be sequenced together by binding the output of one with the input of the next

54 � Exercises in Programming Style

using the character “|” (e.g. ps -ax | grep http). Each command in a
piped chain is an independent unit that consumes input and produces output.
Our term frequency program can be expressed nicely as a piped sequence of
commands in any Linux shell:

grep -o ‘‘[A-Za-z][A-Za-z][A-Za-z]*’’ $1 \
| tr ’[:upper:]’ ’[:lower:]’ \
| grep -Ev ‘‘ˆ($(sed -e ’s/,/|/g’ ../stop_words.txt))$’’ \
| sort | uniq -c | sort -rn | head -25 \
| sed -e ’s/ˆ *\([0-9]*\) *\([a-z]*\)/\2 - \1/’

($1 on the first line stands for an argument to this shell script, intended to
be the name of the file.)

The well-known MapReduce framework for data-intensive applications also
embodies the constraints of the Pipeline style. We will cover it in more detail
in Chapter 31.

The Pipeline style is particularly well suited for problems that can be
modeled as pipelines in nature. Artificial intelligence algorithms such as graph
searches, A*, etc. fall in this category. Compilers and other language processors
are also a good fit, as they tend to consist of functions over graph and tree
structures.

Besides problem fitness, there are good software engineering reasons for
using this style, namely unit testing and concurrency. A program in this style
is very easy to unit test, because it doesn’t hold on to any state outside the
testable boxed functions; running the tests once or multiple times or in dif-
ferent order always yields the same results. In imperative programming style,
this invariance doesn’t hold. For concurrency, again, the boxed functions are
the units of computation, and they are independent of each other. Therefore
it’s straightforward to distribute them among multiple processors without any
worries about synchronization and shared state. If a problem can be appro-
priately expressed in pipeline style, it’s probably a good idea to do it!

6.5 HISTORICAL NOTES

In programming, functions are everywhere, even if this programming style
isn’t. Functions were invented multiple times by multiple people in multiple
situations; the factory pipeline programming style is one that aims to stay
faithful to mathematics, and hence it has thrived in only a niche of all the
work related to functions.

The intense work in the theory of computation in the 1920s and 1930s
that gave rise to Turing’s work also had one mathematician, Alonzo Church,
pursuing functions as the basis for computation. At about the same time
that Turing published his work, Church showed how a very simple calculus
with just three rules, the λ−calculus, could transform arbitrary inputs into
outputs following specific relations. With this, he invented a universal symbol
substitution machine that was as powerful as the Turing machine, but whose
conceptual approach was quite different. A few years later, Turing’s model of

Pipeline � 55

computation was accepted to be equivalent to Church’s, in what’s known as
Kleene’s Church-Turing thesis. But functional programming wouldn’t exist,
as such, until several decades later.

Functions were “invented” again, by necessity, in the course of the nor-
mal evolution of computers. They first appeared during the 1950s with the
realization that in many programs some blocks of instructions needed to be
executed many times during the execution of the program. This gave rise to
the concept of the subroutine, and soon all languages supported that concept
one way or another. Subroutines, in turn, found their way to higher-level pro-
gramming languages either under that name or as procedures that could be
called at any point of the program and that return to the caller context after
completion. From procedures to functions was just a matter of supporting
the existence of input parameters and output values. The second version of
FORTRAN available in 1958, for example, had SUBROUTINE, FUNCTION,
CALL and RETURN as language constructs.

But having functions in a programming language, and using them to write
programs, is not the same as programming in pipelined functional style. As
stated earlier on, the pipeline style is a strongly constrained style that aims at
preserving the purity that exists in mathematical functions. Strictly speaking,
a FORTRAN, C or Python “function” that affects the observable state of the
world, in addition to implementing some relation between input and output,
is not a function in the mathematical sense, and hence is considered outside
the pipeline. Similarly, if a station in a factory pipeline counts the number of
units that pass through it and stops the processing after some number has
been processed, that is considered a side effect that breaks the purity of the
pipeline model.

This programming style emerged during the 1960s in the context of LISP.
LISP was designed to be a mathematical notation for computer programs,
and was highly influenced by Church’s λ−calculus. LISP was in sharp con-
trast with the dominant imperative programming languages of the time, pre-
cisely because of its strong functional style. LISP ended up departing from
the λ−calculus purity, soon including constructs that allowed variables and
mutable state. Nevertheless, its influence was substantial, especially in aca-
demic circles, where a new line of programming language design work emerged
based on the functional style of programming introduced by LISP.

These days, the Pipeline, functional programming, style is supported by
all main programming languages. As for the pure version of the Pipeline style,
Haskell is leading the way.

6.6 FURTHER READING

Backus, J. (1978). Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications of
the ACM 21(8): 613–641.
Synopsis: John Backus, of Backus-Naur Form (BNF) fame, radicalizes the
discussion of programming languages by bashing the “complex, bulky, not

56 � Exercises in Programming Style

useful” mainstream languages of the time and advocating pure functional
programming. Despite its polarization, this paper touches on important
problems in programming language design.

Church, A. (1936). An unsolvable problem of elementary number theory.
American Journal of Mathematics 58(2): 345–363.
Synopsis: The original λ-calculus.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their
computation by machine, Part I. Communications of the ACM 3(4): 184–
195.
Synopsis: Description of LISP and its relation to the λ-calculus.

Stratchey, C. (1967). Fundamental concepts in programming languages. Lec-
ture notes. Reprinted in 2000 in Higher-Order and Symbolic Computation
13: 11–49, 2000.
Synopsis: Stratchey started the field of semantics of programming lan-
guages with his clear definitions for concepts and words that were being
used carelessly and inconsistently, muddied by syntax. This paper is a
write-up of lectures he gave in 1967. The differences between expressions
and commands (statements), and functions and routines (procedures) are
covered in this paper. Stratchey believed that side effects were important
in programming and could have clear semantics. At the time of these lec-
tures, he was involved in the definition of CPL, a research language that
had a slow start and a faster disappearance, but was the grandmother
of C.

6.7 GLOSSARY

Currying: Currying is a technique for transforming a function of multiple
arguments into a sequence of higher-order functions, each with one single
argument.

Function: In mathematics, a function is a relation that maps inputs to
outputs. In programming, a function is a procedure that receives input
and produces output. Pure functions, as in mathematics, don’t have side
effects. Impure functions are functions that have side effects.

Idempotence: A function, or procedure, is idempotent when multiple appli-
cations of it always produce the same observable effects as the first appli-
cation.

Immutable variable: An immutable variable is one in which its assigned
value never changes after the initial binding.

Side effects: A piece of code is said to have side effects when it modifies
existing state or has an observable interaction with the world. Examples of

Pipeline � 57

side effects: modifying the value of a non-local variable or of an argument,
reading/writing data from/to a file or the network or the display, raising
an exception, and calling a function that has side effects.

6.8 EXERCISES

6.1 Another language. Implement the example program in another language,
but preserve the style.

6.2 2 in 1. In the example program, the name of the file containing the
list of stop words is hardcoded (line #36). Modify the program so that
the name of the stop words file is given as the second argument in
the command line. You must observe the following additional stylistic
constraints: (1) no function can have more than 1 argument, and (2) the
only function that can be changed is remove stop words; it’s OK to
change the call chain in the main block in order to reflect the changes
in remove stop words.

6.3 A different program. Write a different program, also in the functional
style, that does exactly the same thing as the example program, but
with different functions.

6.4 A different task. Write one of the tasks proposed in the Prologue using
the Pipeline style.

http://taylorandfrancis.com

CHA PT E R 7

Code Golf

7.1 CONSTRAINTS

B As few lines of code as possible.

59

60 � Exercises in Programming Style

7.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import re, sys, collections
3

4 stops = open(’../stop_words.txt’).read().split(’,’)
5 words = re.findall(’[a-z]{2,}’, open(sys.argv[1]).read().lower())
6 counts = collections.Counter(w for w in words if w not in stops)
7 for (w, c) in counts.most_common(25):
8 print (w, ’-’, c)

Code Golf � 61

7.3 COMMENTARY

THE MAIN CONCERN of this style is brevity. The goal is to implement
the program’s functionality in as few lines of code as possible. This is

usually achieved by using advanced features of the programming language
and its libraries. When brevity is the only goal, it is not unusual for this style
to result in lines of code that are very long, with instruction sequences that are
hard to understand. Often, too, textual brevity may result in programs that
perform poorly or that have bugs, some of which only manifest themselves
when the code is used in larger or different contexts. Brevity, however, when
used appropriately, may result in programs that are quite elegant and easy to
read because they are small.

The example program is possibly one of the shortest programs in terms of
lines of code that can be written for implementing term frequency in Python.1

Line #4 loads the list of stop words in just one line. It does so by chaining
several file operations together: it opens the stop words file, reads the entire
contents into memory, and then it splits the words around commas, obtaining
a list of stop words bound to variable stops. Line #5 loads the list of words
from the input file into memory in just one line. It does so by opening the file,
reading its entire contents, and normalizing all characters to lowercase; after
that it applies a regular expression to find all sequences of letters (a to z) with
length greater than 2, to automatically eliminate single letters from the input
file. The resulting list of words is placed in a list bound to the variable words.
Line #6 uses Python’s powerful collections library in order to obtain pairs of
word-counts for all words that are not stop words. Finally, lines #7 and #8
print the 25 most frequent words and their counts. Line #7 uses, again, the
powerful collections API, which provides a most common method.

Brevity in terms of lines of code is related to the use of powerful abstrac-
tions that have already been created by someone else. Some languages’ core
libraries include a very large collection of utilities that come in handy for
writing short programs; other languages’ core libraries are small, and it is
expected that utility libraries are provided by third parties. Python’s built-in
library is relatively large and varied. However, we could probably write an
even shorter program by using a third-party library for natural language text
processing (e.g. TextBlob). Indeed, if there’s a utility program out there for
computing term-frequency of a file, we could simply call one function like this:
term frequency(file, order=‘desc’, limit=25).

While core libraries are usually trusted, when it comes to using third-party
libraries, one needs to use some caution. By using an external library, we add
a dependency between our code and someone else’s project. It is not unusual
for library developers to stop maintaining their code at some point, leaving
the users of those libraries in limbo, especially when the source code is not

1This program is a slight improvement over the one contributed by Peter Norvig that is
available in the GitHub repository for this book – see Preface.

62 � Exercises in Programming Style

available. Another issue is the stability, or lack thereof, of third-party code,
which may introduce failures in our code.

7.4 THIS STYLE IN SYSTEMS DESIGN

One of the most popular metrics used by the software industry is Source Lines
of Code (SLOC). For better or for worse, SLOC is used pervasively as a proxy
for estimating cost, developer productivity, maintainability and many other
management concerns. Many other metrics have come and gone over the years,
but SLOC has survived them all. The Constructive Cost Model (COCOMO)
is an example of a software cost estimation model based on SLOC. Developed
in the 1970s, and updated a couple of times since then, this model is still
widely used today.2

Clearly, at close inspection, SLOC is a poor estimate for some of those
management concerns, especially programmer productivity, for which, unfor-
tunately, SLOC is still used as a proxy (yes, there are still companies that
assert that more SLOC/day = more programmer productivity!). The exam-
ple program shown above is an extreme case: no one would say that the person
who wrote the program in monolithic style is more productive than the per-
son who wrote this beautiful small program. In general, correlations between
SLOC and those higher-level management concerns such as cost and produc-
tivity have never been proven empirically; they are simply rough heuristics
for making software project plans that may be useful in the beginning of a
project.

On the popular culture front, brevity is seen as a sign of programming
prowess, and the art of creating the shortest possible programs in various pro-
gramming languages even has a name: Code Golf. However, trying to shorten
programs for the sake of brevity alone is usually not a good idea. Oftentimes,
the result is a small program that is very hard to read and that may also
have some serious performance issues. Take, for example, the following term
frequency program:

1 #!/usr/bin/env python
2 import re, string, sys
3

4 stops = set(open("../stop_words.txt").read().split(",") + list(
string.ascii_lowercase))

5 words = [x.lower() for x in re.split("[ˆa-zA-Z]+", open(sys.argv
[1]).read()) if len(x) > 0 and x.lower() not in stops]

6 unique_words = list(set(words))
7 unique_words.sort(key=lambda x: words.count(x), reverse=True)
8 print("\n".join(["%s - %s" % (x, words.count(x)) for x in

unique_words[:25]]))

This program has the exact same lines of code as the first one in this
chapter. However, each of these lines is doing a lot more, and is expressed in a

2See, for example, http://ohloh.net’s cost estimates for each project.

http://ohloh.net

Code Golf � 63

manner that is somewhat more difficult to understand. Let’s look at line #5.
This line is doing almost the same thing as line #5 of the first program: it’s
loading the words of the input file into memory, but filtering the stop words.
This is done using a list comprehension, over a regular expression, after a
couple of file system operations and a couple of tests! Lines #6 and #7 are
even harder to understand: their goal is to produce a sorted list of unique
words and their counts; first, line #6 computes the unique words by using the
set data structure, which removes duplicates; then line #7 sorts those unique
words using an anonymous function (a lambda in Python) that compares the
counts of words pairwise.

This second program, though correct, performs very poorly. While the poor
performance does not show in small text files, it will show quite dramatically
in books like Pride and Prejudice. The reason for the poor performance is that
the program keeps counting the words over and over again (line #7) whenever
it needs those counts.

Even though brevity is usually a good goal that many programmers strive
for, optimizing for LOC alone is a misguided goal, and may carry problems
down the line that may be very difficult to diagnose.

7.5 HISTORICAL NOTES

Code golfs first emerged within APL (A Programming Language), a language
developed in the 1960s by Ken Iverson, which included a large collection of
non-standard symbols used as mathematical notation for manipulating arrays.
By the early 1970s, a popular game had emerged among APL programmers
consisting of coding useful functions in only one line (aka APL one-liners).
Those one-liners tended to be relatively incomprehensible.

Code golfs can also be associated with the fewest keystrokes rather than
with the fewest lines of code.

7.6 FURTHER READING

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall.
Synopsis: The dark art of software cost estimation, featuring the
COCOMO model.

7.7 GLOSSARY

LOC: Lines of Code is one of the most widely used software metrics. Several
variations of LOC exist. The most commonly used is Source LOC (SLOC),
which counts only the lines with program instructions and ignores empty
lines and lines with comments.

64 � Exercises in Programming Style

7.8 EXERCISES

7.1 Another language. Implement the example program in another language,
but preserve the style.

7.2 Fix it. In the second example program, line #7 is a performance bottle-
neck. Fix it.

7.3 Shorter. Can you write a shorter term-frequency program in Python? If
so, show it.

7.4 A different task. Write one of the tasks proposed in the Prologue using
the code golf style.

III
Function Composition

65

http://taylorandfrancis.com

Function Composition � 67

This part of the book contains three styles related to function composition.
Infinite Mirror shows the well-known mechanism of recursion, and it illus-
trates how to solve problems using its original concept, mathematical induc-
tion. Kick Your Teammate Forward is based on a programming approach
known as continuation-passing style (CPS). The One is the first encounter in
this book with a concept known as monad. The latter two styles use func-
tions as regular data; this is one of the foundational offerings of functional
programming.

http://taylorandfrancis.com

CHA PT E R 8

Infinite Mirror

8.1 CONSTRAINTS

B All, or a significant part, of the problem is modeled using induction.
That is, specify the base case (n0) and then the n+ 1 rule.

69

70 � Exercises in Programming Style

8.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import re, sys, operator
3

4 # Mileage may vary. If this crashes, make it lower
5 RECURSION_LIMIT = 5000
6 # We add a few more, because, contrary to the name,
7 # this doesn’t just rule recursion: it rules the
8 # depth of the call stack
9 sys.setrecursionlimit(RECURSION_LIMIT+10)

10

11 def count(word_list, stopwords, wordfreqs):
12 # What to do with an empty list
13 if word_list == []:
14 return
15 # The inductive case, what to do with a list of words
16 else:
17 # Process the head word
18 word = word_list[0]
19 if word not in stopwords:
20 if word in wordfreqs:
21 wordfreqs[word] += 1
22 else:
23 wordfreqs[word] = 1
24 # Process the tail
25 count(word_list[1:], stopwords, wordfreqs)
26

27 def wf_print(wordfreq):
28 if wordfreq == []:
29 return
30 else:
31 (w, c) = wordfreq[0]
32 print(w, ’-’, c)
33 wf_print(wordfreq[1:])
34

35 stop_words = set(open(’../stop_words.txt’).read().split(’,’))
36 words = re.findall(’[a-z]{2,}’, open(sys.argv[1]).read().lower())
37 word_freqs = {}
38 # Theoretically, we would just call count(words, stop_words,

word_freqs)
39 # Try doing that and see what happens.
40 for i in range(0, len(words), RECURSION_LIMIT):
41 count(words[i:i+RECURSION_LIMIT], stop_words, word_freqs)
42

43 wf_print(sorted(word_freqs.items(), key=operator.itemgetter(1),
reverse=True)[:25])

Infinite Mirror � 71

8.3 COMMENTARY

THIS STYLE encourages problem solving by induction. An inductive solu-
tion is one where a general goal is achieved in two steps: (1) solving one

or more base cases, and (2) providing a solution that, if it works for the N th

case, also works for the N th + 1 case. In computing, inductive solutions are
usually expressed via recursion.

The example uses induction in two parts of the program: for counting the
term frequencies (function count, lines #11–25) and for printing them out
(function wf print, lines #27–33). In both cases, the approach is the same.
We check for the base case, the null list (lines #13–14 and #28–29), where
recursion stops. Then we establish what to do for the general case; in the
general case, we first process the head of the list (lines #18–23 and #31–32),
followed by exercising the functions on the rest of the list (lines #25 and #33).

The example program includes an idiosyncratic element related to recur-
sion in Python, expressed in lines #5–9 and then in line #40. As we recurse
on the count function, the new calls take new portions of the stack; the stack
is only popped at the end. But, existing on a finite amount of memory, the
program eventually reaches a stack overflow. In order to avoid that, we first
increase the recursion limit (line #9). But that is still not enough for a text as
large as Pride and Prejudice. So instead of unleashing the count function on
the entire list of words, we divide that list into N chunks, and call the function
on one chunk at a time (lines #40–41). The function wf print doesn’t suffer
from the same problem, because it only recurses 25 times.

In many programming languages, the problem of running into stack over-
flow on recursive calls is eliminated by a technique called tail recursion opti-
mization. A tail call is a function call that happens as the very last action in
a function. For example, in the following example, both calls to a and b are
in tail positions of the function f:

1 def f(data):
2 if data == []:
3 a()
4 else:
5 b(data)

Tail recursion, then, is a recursive call that is in a tail position of the
function. When that happens, language processors can safely eliminate the
previous call’s stack record altogether, as there is nothing else to do on that
particular function call. This is called tail recursion optimization, and it effec-
tively transforms recursive functions into loops, saving both space and time.
Some programming languages (e.g. Haskell) do loops via recursion.

Unfortunately, Python doesn’t do tail recursion optimizations, hence the
idiosyncrasy of having to limit the depth of the call stack in the example.

72 � Exercises in Programming Style

8.4 HISTORICAL NOTES

Recursion has its origins in mathematical induction. The early programming
languages of the 1950s, including Fortran, did not support recursive calls to
subroutines. In the early 1960s some programming languages, starting with
Algol 60 and Lisp, supported recursion, some of them with the use of explicit
syntax. By the 1970s, recursion was commonplace in programming.

8.5 FURTHER READING

Daylight, E. (2011). Dijkstra’s rallying cry for generalization: the advent of
the recursive procedure, late 1950s–early 1960s. The Computer Journal
54(11). Available at
http://www.dijkstrascry.com/node/4
Synopsis: A retrospective look at the emergence of the idea of call stacks
and recursion in programming.

Dijkstra, E. (1960). Recursive programming. Numerische Mathematik 2(1):
312–318.
Synopsis: Dijkstra’s original paper describing the use of stacks for subrou-
tine calls, as opposed to giving each subroutine its own memory space.

8.6 GLOSSARY

Stack overflow: Situation that happens when the program runs out of stack
memory.

Tail recursion: A recursive call that happens as the very last action of a
function.

8.7 EXERCISES

8.1 Another language. Implement the example program in another language,
but preserve the style. Pay particular attention to whether the language
you choose supports tail recursion optimization or not; if it does, your
program should reflect that, rather than blindingly copying the example
Python program.

8.2 More recursion. Replace line #35 (loading and identification of stop
words) with a function in infinite mirror style. What part of that line is
easy to do in this style and what part is hard?

8.3 No global counts. The global variable word freqs (line #37) is passed
to count, which modifies its value. So the code relies on the order of
side effects. Do this in the Pipeline style instead, by returning the word
frequencies from count and passing the returned value to the recursive
calls.

8.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://www.dijkstrascry.com/

CHA PT E R 9

Kick Forward

9.1 CONSTRAINTS

Variation of the Pipeline style, with the following additional constraints:

B Each function takes an additional parameter, usually the last, which is
another function.

B The function parameter is applied at the end of the current function.

B The function parameter is given, as input, what would be the output of
the current function.

B The larger problem is solved as a pipeline of functions, but where the
next function to be applied is given as a parameter to the current
function.

73

74 � Exercises in Programming Style

9.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The functions
6 #
7 def read_file(path_to_file, func):
8 with open(path_to_file) as f:
9 data = f.read()

10 func(data, normalize)
11

12 def filter_chars(str_data, func):
13 pattern = re.compile(’[\W_]+’)
14 func(pattern.sub(’ ’, str_data), scan)
15

16 def normalize(str_data, func):
17 func(str_data.lower(), remove_stop_words)
18

19 def scan(str_data, func):
20 func(str_data.split(), frequencies)
21

22 def remove_stop_words(word_list, func):
23 with open(’../stop_words.txt’) as f:
24 stop_words = f.read().split(’,’)
25 # add single-letter words
26 stop_words.extend(list(string.ascii_lowercase))
27 func([w for w in word_list if not w in stop_words], sort)
28

29 def frequencies(word_list, func):
30 wf = {}
31 for w in word_list:
32 if w in wf:
33 wf[w] += 1
34 else:
35 wf[w] = 1
36 func(wf, print_text)
37

38 def sort(wf, func):
39 func(sorted(wf.items(), key=operator.itemgetter(1), reverse=

True), no_op)
40

41 def print_text(word_freqs, func):
42 for (w, c) in word_freqs[0:25]:
43 print(w, ’-’, c)
44 func(None)
45

46 def no_op(func):
47 return
48

49 #
50 # The main function
51 #
52 read_file(sys.argv[1], filter_chars)

Kick Forward � 75

9.3 COMMENTARY

IN THIS STYLE, functions take one additional parameter – a function –
that is meant to be called at the very end, and passed what normally would

be the return value of the current function. This makes it so that the functions
don’t return to their callers, and instead continue to some other function.

This style is known in some circles as continuation-passing style, and it is
often used with anonymous functions (aka lambdas) as continuations, rather
than with named functions. The example here uses named functions for read-
ability.

The example program uses the same kind of decomposition that we have
seen in previous styles, specifically the Pipeline style, so there is no need to
repeat the explanation of the purpose of each function. What is noteworthy is
the extra parameter seen in all of those functions, func, and how it is used:
func is the next function after the current function finishes. Let’s compare
this program with the program written in the Pipeline style.

The main program in this style (line #52) calls one single function,
read file, giving it both the name of the file to read (coming from the
command line input) and the next function to be called after read file
does its job – filter chars. In contrast, in the Pipeline style, the main
program is a chain of function calls that completely define all the steps of the
“factory.”

In this style, the read file function (lines #7–10) reads the file and
then, as its very last action, calls the func argument, which, in this case is
the function filter chars (as per line #52). As it does so, it gives it what
would normally be its return value, data (see Pipeline style program, line
#14) and next function to be called, normalize. The rest of the functions
are designed in exactly the same manner. The chain of function calls is broken
only when the no op function is called in line #44; no op does nothing.

9.4 THIS STYLE IN SYSTEMS DESIGN

This style can be used for different purposes. One of those purposes is compiler
optimizations: some compilers transform the programs they compile into an
intermediate representation that uses this style, so they can optimize for tail
calls (see discussion in the previous chapter).

Another purpose is to deal with normal cases and failure cases: it may
be convenient for a function to, in addition to the normal parameters, receive
two functions as parameters that establish where to continue to if the function
succeeds and if the function fails.

A third purpose is to deal with blocking Input/Output (IO) in single-
threaded languages: in those languages, the programs never block until they
reach an IO operation (e.g. waiting on network or disk), at which point the
control is passed on to the next instruction of the program. Once the IO
operation completes, the language runtime needs to continue where it left

76 � Exercises in Programming Style

off, and that is done by sending one or more extra function arguments to
functions. For example, the following code is part of the examples of Socket.io,
a JavaScript library for WebSockets over Node.js:

1 function handler (req, res) {
2 fs.readFile(__dirname + ’/index.html’,
3 function (err, data) {
4 if (err) {
5 res.writeHead(500);
6 return res.end(’Error loading index.html’);
7 }
8

9 res.writeHead(200);
10 res.end(data);
11 });
12 }

In this example, the readFile function called in line 2 would, in principle,
block the thread until the data is read from disk – that’s the expected behav-
ior in languages like C, Java, Lisp, Python, etc. In the absence of threads,
that means that no requests would be served until the disk operation com-
pletes, which would be bad (disk accesses are slow). The design principle of
JavaScript is to make asynchronicity a concern not of the application but of
the underlying language processor. That is, the disk operation will block, but
the application program continues to the next instruction – line #12 in this
case, which is the return from the handler function. However, the language
processor needs to be told what to do once the data is read, successfully or
not, from the disk. That is achieved with a function as an extra parameter,
an anonymous function defined in lines #3–11. Once the disk read opera-
tion unblocks and the main thread blocks on some other IO operation, the
underlying language processor calls that anonymous function.

While used by necessity in JavaScript and other languages that don’t sup-
port threads, when abused, this style can result in spaghetti code that is very
hard to read (aka callback hell).

9.5 HISTORICAL NOTES

As is usually the case in all-things programming, this style has been “invented”
by many people over the years, and for different purposes.

This style has its origins in GOTO, or jumps out of the blocks in the early
1960s. The earliest description of continuations, as such, dates back to 1964,
in a presentation given by A. Wijngaarden, but, for a number of reasons,
the idea did not catch on at the time. In the early 1970s, the idea emerged
again in a few papers and presentations, as an alternative to GOTOs. From
then on, the concept became well known within the programming language
community. Continuations are used in the Scheme programming language,
which first emerged in the late 1970s. These days, continuations are heavily
used in logic programming languages.

Kick Forward � 77

9.6 FURTHER READING

Reynolds, J. (1993). The discoveries of continuations. Lisp and Symbolic Com-
putation 6: 233–247.
Synopsis: A retrospective look at the history of continuations.

9.7 GLOSSARY

Continuation: A continuation is a function representing “the rest of the pro-
gram.” This concept serves a variety of purposes, from optimizing com-
pilers to providing denotational semantics to dealing with asynchronicity.
It is also an alternative to language constructs such as goto statements
and exceptions, as it provides a generalized mechanism for doing non-local
returns from functions.

Callback hell: A form of spaghetti code that results from chaining anony-
mous functions as arguments several levels deep.

9.8 EXERCISES

9.1 Another language. Implement the example program in another language,
but preserve the style.

9.2 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 10

The One

10.1 CONSTRAINTS

B Existence of an abstraction to which values can be converted.

B This abstraction provides operations to (1) wrap around values, so that
they become the abstraction; (2) bind itself to functions, to establish
sequences of functions; and (3) unwrap the value, to examine the final
result.

B Larger problem is solved as a pipeline of functions bound together, with
unwrapping happening at the end.

B Particularly for The One style, the bind operation simply calls the given
function, giving it the value that it holds, and holds on to the returned
value.

79

80 � Exercises in Programming Style

10.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The One class for this example
6 #
7 class TFTheOne:
8 def __init__(self, v):
9 self._value = v

10

11 def bind(self, func):
12 self._value = func(self._value)
13 return self
14

15 def printme(self):
16 print(self._value)
17

18 #
19 # The functions
20 #
21 def read_file(path_to_file):
22 with open(path_to_file) as f:
23 data = f.read()
24 return data
25

26 def filter_chars(str_data):
27 pattern = re.compile(’[\W_]+’)
28 return pattern.sub(’ ’, str_data)
29

30 def normalize(str_data):
31 return str_data.lower()
32

33 def scan(str_data):
34 return str_data.split()
35

36 def remove_stop_words(word_list):
37 with open(’../stop_words.txt’) as f:
38 stop_words = f.read().split(’,’)
39 # add single-letter words
40 stop_words.extend(list(string.ascii_lowercase))
41 return [w for w in word_list if not w in stop_words]
42

43 def frequencies(word_list):
44 word_freqs = {}
45 for w in word_list:
46 if w in word_freqs:
47 word_freqs[w] += 1
48 else:
49 word_freqs[w] = 1
50 return word_freqs
51

52 def sort(word_freq):
53 return sorted(word_freq.items(), key=operator.itemgetter(1),

reverse=True)

The One � 81

54

55 def top25_freqs(word_freqs):
56 top25 = ""
57 for tf in word_freqs[0:25]:
58 top25 += str(tf[0]) + ’ - ’ + str(tf[1]) + ’\n’
59 return top25
60

61 #
62 # The main function
63 #
64 TFTheOne(sys.argv[1])\
65 .bind(read_file)\
66 .bind(filter_chars)\
67 .bind(normalize)\
68 .bind(scan)\
69 .bind(remove_stop_words)\
70 .bind(frequencies)\
71 .bind(sort)\
72 .bind(top25_freqs)\
73 .printme()

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of the use of self and constructors in Python.

82 � Exercises in Programming Style

10.3 COMMENTARY

THIS STYLE is another variation in sequencing functions beyond the tra-
ditional function composition provided by most programming languages.

In this style of composing functions, we establish an abstraction (“the one”)
that serves as the glue between values and functions. This abstraction pro-
vides two main operations: a wrap operation that takes a simple value and
returns an instance of the glue abstraction, and a bind operation that feeds a
wrapped value to a function.

This style comes from the Identity monad in Haskell, a functional pro-
gramming language where functions are not allowed to have side effects of
any kind. Because of this strong constraint, Haskell designers have come up
with interesting approaches to things that most programmers take for granted
– like state and exceptions – and they did it using an elegant uniform approach
called monad.

Rather than explaining what monads are, let’s analyze the style used in
the example program. Lines #7–15 define the glue abstraction for this exam-
ple, TFTheOne. Note that we are modeling it as a class, instead of a set of
independent functions (more about this in the exercises below). TFTheOne
provides a constructor and 2 methods, bind and printme. The constructor
takes a value and makes the newly created instance hold on to that value (line
#9); in other words, the constructor wraps a TFTheOne instance around a
given value. The bind method takes a function, calls it giving it the value
that the instance is holding on to, updates the internal value, and returns the
same TFTheOne instance; in other words, the bind method feeds a value into
a function and returns the instance that wraps the new result of that function
application. Finally, the printme method prints the value onto the screen.

The functions defined in lines #21 through #59 are generally similar to
the functions that we have seen in previous styles, specifically the Pipeline
style, so there is no need to explain what they do.

The interesting part of this program is from line #64 onward, the main
portion of the program. That block chains the functions together, from left
to right, binding the return values with the next functions to be called in the
sequence, using the TFTheOne abstraction as the glue for that chain. Note
that for all practical purposes, and ignoring minor differences, this line plays
the same role as line #66 in the Pipeline style:

1 word_freqs = sort(frequencies(remove_stop_words(scan(
filter_chars_and_normalize(read_file(sys.argv[1]))))))

Most programming languages have come to provide the style of the line
above as the norm of composing functions. However, like the Kick Forward
style, The One style does the composition in its own unique manner. Unlike
the Kick Forward style, however, The One style, by itself, doesn’t have distin-
guishing properties that make it desirable to use in practice, except, perhaps,
the interesting property of allowing us to write function chains from left to

The One � 83

right instead of right to left. Indeed, the Identity monad is considered a trivial
monad, because it doesn’t do anything interesting with the functions that it
handles – it just calls them. But not all monads are like that.

All monads have essentially the same interface as TFTheOne: a wrapper
operation (i.e. the constructor), a bind operation, and some operation that
shows what’s inside the monad. But these operations can do different things,
resulting in different monads – i.e. different ways of chaining computations.
We will see another example in Chapter 25, Quarantine.

10.4 HISTORICAL NOTES

Monads have their origins in category theory. They were brought to program-
ming languages in the early 1990s in the context of the Haskell programming
language, in an effort to model the incorporation of side effects into pure
functional languages.

10.5 FURTHER READING

Moggi, E. (1989). An abstract view of programming languages. Lecture Notes
produced at Stanford University.
Synopsis: With these notes, Moggi brought category theory into the realm
of programming languages.

Wadler, P. (1992). The essence of functional programming. 19th Symposium
on Principles of Programming Languages, ACM Press.
Synopsis: Wadler introduces monads in the context of pure functional
programming languages.

10.6 GLOSSARY

Monad: A structure (for example, an object) that encapsulates computations
defined as a sequence of steps. A monad has two main operations: (1) a
constuctor that wraps a value within the monad, (2) a bind operation
that takes a function as argument, binds it to the monad in some way,
and returns a monad (maybe itself). Additionally, a third operation is
used to unwrap/print/evaluate the monad.

10.7 EXERCISES

10.1 Another language. Implement the example program in another language,
but preserve the style.

10.2 Class vs. functions. The Identity monad in the example is expressed as
a class, TFTheOne. In functional programming languages, the monadic
operations are simple wrap and bind functions. wrap takes a simple

84 � Exercises in Programming Style

value and returns a function that, when called, returns the value; bind
takes a wrapped value and a function, and returns the result of calling
that function on the application of the wrapped value. Redo the example
by defining these two functions and using them in the following manner:

printme(..wrap(bind(wrap(sys.argv[1]),read_file),filter_chars)..)

10.3 A different task. Write one of the tasks proposed in the Prologue using
this style.

IV
Objects and Object Interaction

85

http://taylorandfrancis.com

Objects and Object Interaction � 87

There are many ways of abstracting a problem, a concept, or an observable
phenomenon. The Monolithic style is a baseline illustration of what it is like
when the problem is not abstracted and, instead, is solved in all its con-
creteness and detail. The example shown in the Code Golf style also doesn’t
abstract the problem, as such; but because it uses powerful abstractions pro-
vided by the programming language and its libraries, almost every line in
that program captures a conceptual unit of thought, even though those units
don’t have explicit names. The Cookbook style uses procedural abstraction:
the larger problem is decomposed as a series of steps, or procedures, each
with a name, that operate over a pool of shared data. The Pipeline style
program uses functional abstraction: the larger problem is decomposed as a
collection of functions, each with a name, that take input, produce output,
and combine with each other by providing the output of one function as the
input of another.

This part of the book contains a collection of styles related to the Object
abstraction. Ask programmers what an object is, and likely you will see the
answers converging to four or five main concepts, all related, but slightly
different from each other. As part of that variety, we can identify a number
of different mechanisms by which objects are thought to interact with each
other. This collection of styles reflects that variety.

http://taylorandfrancis.com

CHA PT E R 11

Things

11.1 CONSTRAINTS

B The larger problem is decomposed into things that make sense for the
problem domain.

B Each thing is a capsule of data that exposes procedures to the rest of
the world.

B Data is never accessed directly, only through these procedures.

B Capsules can reappropriate procedures defined in other capsules.

89

90 � Exercises in Programming Style

11.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3 from abc import ABCMeta
4

5 #
6 # The classes
7 #
8 class TFExercise():
9 __metaclass__ = ABCMeta

10

11 def info(self):
12 return self.__class__.__name__
13

14 class DataStorageManager(TFExercise):
15 """ Models the contents of the file """
16

17 def __init__(self, path_to_file):
18 with open(path_to_file) as f:
19 self._data = f.read()
20 pattern = re.compile(’[\W_]+’)
21 self._data = pattern.sub(’ ’, self._data).lower()
22

23 def words(self):
24 """ Returns the list words in storage """
25 return self._data.split()
26

27 def info(self):
28 return super(DataStorageManager, self).info() + ": My

major data structure is a " + self._data.__class__.
__name__

29

30 class StopWordManager(TFExercise):
31 """ Models the stop word filter """
32

33 def __init__(self):
34 with open(’../stop_words.txt’) as f:
35 self._stop_words = f.read().split(’,’)
36 # add single-letter words
37 self._stop_words.extend(list(string.ascii_lowercase))
38

39 def is_stop_word(self, word):
40 return word in self._stop_words
41

42 def info(self):
43 return super(StopWordManager, self).info() + ": My major

data structure is a " + self._stop_words.__class__.
__name__

44

45 class WordFrequencyManager(TFExercise):
46 """ Keeps the word frequency data """
47

48 def __init__(self):
49 self._word_freqs = {}
50

Things � 91

51 def increment_count(self, word):
52 if word in self._word_freqs:
53 self._word_freqs[word] += 1
54 else:
55 self._word_freqs[word] = 1
56

57 def sorted(self):
58 return sorted(self._word_freqs.items(), key=operator.

itemgetter(1), reverse=True)
59

60 def info(self):
61 return super(WordFrequencyManager, self).info() + ": My

major data structure is a " + self._word_freqs.
__class__.__name__

62

63 class WordFrequencyController(TFExercise):
64 def __init__(self, path_to_file):
65 self._storage_manager = DataStorageManager(path_to_file)
66 self._stop_word_manager = StopWordManager()
67 self._word_freq_manager = WordFrequencyManager()
68

69 def run(self):
70 for w in self._storage_manager.words():
71 if not self._stop_word_manager.is_stop_word(w):
72 self._word_freq_manager.increment_count(w)
73

74 word_freqs = self._word_freq_manager.sorted()
75 for (w, c) in word_freqs[0:25]:
76 print(w, ’-’, c)
77

78 #
79 # The main function
80 #
81 WordFrequencyController(sys.argv[1]).run()

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of the use of self and constructors (init) in Python.

92 � Exercises in Programming Style

11.3 COMMENTARY

IN THIS STYLE, the problem is divided into collections of procedures,
each collection sharing, and hiding, a main data structure and/or control.

Those capsules of data and procedures are called things or objects. Data is
never directly accessed from outside these things; instead it is hidden in them,
and accessed only through the exposed procedures, also called methods. From
the point of view of callers, things can be replaced by other things with differ-
ent sets of implementations, as long as the interface to the procedures is the
same.

This style of programming comes in many flavors, and we will see some
of them in other chapters. Mainstream Object-Oriented Programming (OOP)
languages such as Java, C# and C++ lump together several concepts that
define what has come to be expected out of objects. The essence of the Things
style is simply this: procedures that share data among themselves, hiding it
from the outside world. This style can be achieved not just with an OOP
language but also with any other language that supports imperative fea-
tures. Additionally, this style is often associated with classes and inheritance,
although strictly speaking, these concepts are neither necessary nor sufficient
for programming in Things style.

The example program takes advantage of Python’s OOP features, but
the explanation that follows focuses, first, on the essentials of this style. In
the example, the problem is modeled with four main objects: the WordFre-
quencyController, the DataStorageManager, the StopWordManager and the
WordFrequencyManager:

• The DataStorageManager (lines #14–28) is concerned with getting the
text data from the outside world and distilling it into words that the
rest of the application can use. Its main public method, words, returns
the list of words in storage. To that effect, its constructor first reads
the file, cleans the data out of non-alphanumeric characters and nor-
malizes it to lowercase. The DataStorageManager object hides the text
data, providing only a procedure to retrieve the words in it. This is a
typical example of encapsulation in object-oriented programming. The
DataStorageManager is an abstraction of data and behavior related to
the input text data of the problem at hand.

• StopWordManager (lines #30–43) offers a service to the rest of the appli-
cation that consists of determining if a given word is a stop word or not.
Internally, it holds a list of stop words against which it performs its ser-
vice is stop word. Also here, we see encapsulation at work: the rest of
the application doesn’t need to know what kind of data the StopWord-
Manager uses internally, and how it decides whether a given word is a
stop word or not. This object exposes the procedure is stop word,
which is the one that the rest of the application needs to know about.

Things � 93

• The WordFrequencyManager (lines #45-61) is concerned with manag-
ing the word counts. Internally, it revolves around one main data struc-
ture, a dictionary that maps words to counts. Externally, it provides
procedures that can be called by the rest of the application, namely:
increment count and sorted. The first, increment count,
changes the state of the object by changing the internal dictionary;
sorted returns a collection of the words sorted by their frequency.

• The WordFrequencyController (lines #63-76) is the object that starts
it all. Its constructor instantiates all the other application objects,
and its main method is simply called run. That method polls the
DataStorageManager for words, tests if each of those words is a stop
word by asking the StopWordManager and, if not, it invokes the Word-
FrequencyManager for it to increment the count for that word. After
iterating through all the words provided by the DataStorageManager,
the method run retrieves a sorted (by frequency count) collection of
words from the WordFrequencyManager and displays the 25 most fre-
quently occurring words.

• Finally, the main method simply instantiates a WordFrequencyCon-
troller and invokes its run method.

As customary when using mainstream OOP languages, including Python,
the example program uses classes to define the capsules of data and proce-
dures. Classes (lines #14, #30, #45 and #63) are templates for the construc-
tion of objects. As mentioned before, even though the most popular OOP
languages lead us to believe that classes are central to OOP, the fact is that
they are neither necessary nor sufficient for programming in the Things style.
They are simply a mechanism for defining objects, one that is particularly
convenient when the applications use many objects (aka instances) that are of
a similar kind. But many languages that support this style of programming,
most notably JavaScript, don’t support the concept of classes explicitly, so
objects are defined by other means – e.g. functions, dictionaries, etc.

Inheritance is another concept that has made it to all mainstream OOP
languages. The example program uses inheritance in a somewhat artificial
manner, simply for illustration purposes. In the example, an abstract base
class called TFExercise is defined (lines #8–12). The statement in line #9 is
Python’s way of saying that this class is abstract, meaning that it cannot be
used directly to create objects and, instead, it is meant to be extended by
other classes. The TFExercise class defines only one method, info, meant
to print out information about the each class in the example. All classes in
our example inherit from TFExercise – in Python, inheritance is established
with the syntax class A(B) meaning that class A extends class B. Three of
our four classes override the method info of the superclass – lines #27–28,
#42–43 and #60–61. The WordFrequencyController class doesn’t; instead, it
(re-)uses the method defined in the superclass as if it were its own. (Note that

94 � Exercises in Programming Style

none of these methods are being called in the example – they are used in the
Exercises section.)

At its core, inheritance is a modeling tool, a central part of the conceptual
tools for modeling the real world. Inheritance captures the is a relationship
between objects, or classes of objects: for example, a car is a vehicle, therefore
whatever general state and procedures vehicles have, should also be present
in cars. In programming, inheritance is also a mechanism for (re-)using code.
In the vehicle-car example, the procedures and internal implementation for
vehicle objects can be made available to car objects, even though car objects
may extend or override what vehicles do.

Inheritance is often associated with classes, as in the example program,
but, again, both concepts are independent of each other. Inheritance can also
be established between objects directly; OOP languages that don’t support
classes may still support inheritance between objects – such is the case with
JavaScript. In its essence, inheritance in programming is the ability to use
pre-existing object definitions as part of the definition of new objects.

The Things style is particularly well suited for modeling objects of the real
world such as originally envisioned by Simula 67. Graphical User Interface
(GUI) programming is a particularly well-suited domain for this style. The
dominance of C++ and Java over the past couple of decades has made an
entire generation of programmers think of modeling computational problems
using this style, but it is not always the best fit for everything.

11.4 THIS STYLE IN SYSTEMS DESIGN

With the interest in OOP in the 1980s and 1990s being so great, many peo-
ple tried to use the same principles in large-scale distributed systems. The
approach is generally known as “distributed objects,” and it gathered intense
attention from industry during the 1990s – before, and at about the same
time as, the advent of the Web. The main idea at systems design level is
that software in one node of the Internet can acquire references to remote
objects residing in another node; from then on, it can invoke the methods
of those remote objects, almost as if they were local – the invocation looks
identical to local object invocations. The platforms and frameworks support-
ing distributed objects automate, to a large extent, the generation of stubs
and network code, making the lower level virtually invisible for application
programmers.

Examples of such platforms and frameworks include CORBA (Common
Object Request Broker Architecture, a standard established by a large com-
mittee) and Java’s Remote Method Invocation.

While an interesting idea in principle, this approach has somewhat failed
to gain traction in practice. One of the main problems of distributed objects
is that the system needs to adopt a common programming language and/or a
common infrastructure for all its distributed components. Distributed systems
often need to access components developed by different groups of people at

Things � 95

different points in time, so the assumption of a common infrastructure tends
not to hold.

Additionally, the large standardization effort of CORBA collided with the
emergence and exponential adoption of the Web, which is based on a different
approach to large-scale systems design. Nevertheless, distributed objects is
an interesting approach to systems design, one that is well aligned with the
smaller scale programs written in the Things style.

11.5 HISTORICAL NOTES

Object-oriented programming was first introduced by Simula 67 in the 1960s.
Simula 67 already had all the main concepts explained above, namely objects,
classes and inheritance. Soon after, in the early 1970s, Xerox’s investment in
creating the personal computer included the effort to design and implement
Smalltalk, a language that was very much inspired by Simula but designed for
programming the “modern” (at the time) graphical displays and new periph-
erals. Smalltalk’s style is more similar to the one in the next chapter, though,
so it will be covered there.

11.6 FURTHER READING

Dahl, O.-J., Myhrhaug, B. and Nygaard, K. (1970). Common Base Language.
Technical report, Norwegian Computing Center, available at
http://www.fh-jena.de/ kleine/history/languages/Simula-CommonBaseLanguage.pdf

Synopsis: The original description of Simula.

11.7 GLOSSARY

Abstract class: A class that is not meant to be directly instantiated and,
instead, is used solely as a unit of behavior that can be inherited by other
classes.

Base class: A class from which another class inherits. Same as superclass.

Class: A template of data and procedures for creating (aka instantiating)
objects.

Derived class: A class that inherits from another class. Same as subclass.

Extension: The result of defining an object, or a class of objects, using
another object, or class, as the base and adding additional data and pro-
cedures.

Inheritance: The ability to use pre-existing object, or class, definitions as
part of the definition of new objects or classes.

http://www.fh-jena.de/

96 � Exercises in Programming Style

Instance: A concrete object, usually one that has been constructed from a
class.

Method: A procedure that is part of an object or class.

Object: A capsule of data and procedures.

Overriding: Changing an inherited procedure by giving it a new implemen-
tation in a subclass.

Singleton: An object that is the sole instance of a class of objects.

Subclass: Same as derived class.

Superclass: Same as base class.

11.8 EXERCISES

11.1 Another language. Implement the example program in another language,
but preserve the style.

11.2 Forgotten methods. In the example program, the methods info are
never invoked. Change the program (to the minimum) so that all of them
are invoked, and their results are printed out. What happens internally
when that method is invoked on the DataStorageManager object and
on the WordFrequencyController object? Explain the results.

11.3 A different program. Write a different program, also in the Things style,
that does exactly the same thing as the example program, but with
different classes, i.e. using a different decomposition of the problem.
No need to preserve the relatively artificial inheritance relations of the
example, or the info methods.

11.4 Classless. Write a Things style implementation of the term frequency
problem without using Python’s classes. No need to preserve the info
methods.

11.5 A different task. Write one of the tasks proposed in the Prologue using
this style.

CHA PT E R 12

Letterbox

12.1 CONSTRAINTS

B The larger problem is decomposed into things that make sense for the
problem domain.

B Each thing is a capsule of data that exposes one single procedure, namely
the ability to receive and dispatch messages that are sent to it.

B Message dispatch can result in sending the message to another capsule.

97

98 � Exercises in Programming Style

12.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 class DataStorageManager():
5 """ Models the contents of the file """
6 _data = ’’
7

8 def dispatch(self, message):
9 if message[0] == ’init’:

10 return self._init(message[1])
11 elif message[0] == ’words’:
12 return self._words()
13 else:
14 raise Exception("Message not understood " + message

[0])
15

16 def _init(self, path_to_file):
17 with open(path_to_file) as f:
18 self._data = f.read()
19 pattern = re.compile(’[\W_]+’)
20 self._data = pattern.sub(’ ’, self._data).lower()
21

22 def _words(self):
23 """ Returns the list words in storage"""
24 data_str = ’’.join(self._data)
25 return data_str.split()
26

27 class StopWordManager():
28 """ Models the stop word filter """
29 _stop_words = []
30

31 def dispatch(self, message):
32 if message[0] == ’init’:
33 return self._init()
34 elif message[0] == ’is_stop_word’:
35 return self._is_stop_word(message[1])
36 else:
37 raise Exception("Message not understood " + message

[0])
38

39 def _init(self):
40 with open(’../stop_words.txt’) as f:
41 self._stop_words = f.read().split(’,’)
42 self._stop_words.extend(list(string.ascii_lowercase))
43

44 def _is_stop_word(self, word):
45 return word in self._stop_words
46

47 class WordFrequencyManager():
48 """ Keeps the word frequency data """
49 _word_freqs = {}
50

51 def dispatch(self, message):
52 if message[0] == ’increment_count’:

Letterbox � 99

53 return self._increment_count(message[1])
54 elif message[0] == ’sorted’:
55 return self._sorted()
56 else:
57 raise Exception("Message not understood " + message

[0])
58

59 def _increment_count(self, word):
60 if word in self._word_freqs:
61 self._word_freqs[word] += 1
62 else:
63 self._word_freqs[word] = 1
64

65 def _sorted(self):
66 return sorted(self._word_freqs.items(), key=operator.

itemgetter(1), reverse=True)
67

68 class WordFrequencyController():
69

70 def dispatch(self, message):
71 if message[0] == ’init’:
72 return self._init(message[1])
73 elif message[0] == ’run’:
74 return self._run()
75 else:
76 raise Exception("Message not understood " + message

[0])
77

78 def _init(self, path_to_file):
79 self._storage_manager = DataStorageManager()
80 self._stop_word_manager = StopWordManager()
81 self._word_freq_manager = WordFrequencyManager()
82 self._storage_manager.dispatch([’init’, path_to_file])
83 self._stop_word_manager.dispatch([’init’])
84

85 def _run(self):
86 for w in self._storage_manager.dispatch([’words’]):
87 if not self._stop_word_manager.dispatch([’is_stop_word

’, w]):
88 self._word_freq_manager.dispatch([’increment_count

’, w])
89

90 word_freqs = self._word_freq_manager.dispatch([’sorted’])
91 for (w, c) in word_freqs[0:25]:
92 print(w, ’-’, c)
93

94 #
95 # The main function
96 #
97 wfcontroller = WordFrequencyController()
98 wfcontroller.dispatch([’init’, sys.argv[1]])
99 wfcontroller.dispatch([’run’])

100 � Exercises in Programming Style

12.3 COMMENTARY

THIS STYLE takes a different perspective on the Things concept
explained in the previous chapter. The application is divided in exactly

the same way. However, rather than the Things (aka objects) exposing a set
of procedures to the outside world, they expose one single procedure: that
of accepting messages. Data and procedures are hidden. Some messages are
understood by the objects, and acted upon by means of execution of pro-
cedures; others are not understood, and are either ignored or produce some
form of error; others may be processed not directly by the object but by other
objects that have some relation to the receiving object.

In the example program, the solution uses essentially the same entities as in
the previous example, but without exposing the methods. Instead, the classes,
all of them, expose only one method, dispatch, that takes a message – see
these methods in lines #8–14, #31–37, #51–57 and #70–76. The message
consists of a tag that identifies it, and zero or more arguments that carry data
for the internal procedure. Depending on the tag of the message, internal
methods may be called, or an exception “Message not understood” is raised.
Objects interact by sending messages to each other.

Styles based on object abstractions don’t necessarily require inheritance,
although these days most programming environments supporting Object-
Orientated Programming (OOP) also support inheritance. An alternative
reuse mechanism that achieves something very similar, but that is particu-
larly fit for the message dispatch style, is delegation. The example program
doesn’t show it, but it is possible for the dispatch methods to send the message
to another object when they don’t have a method for it. The programming
language Self, for example, gave objects parent slots that programmers could
set dynamically; when an object receives a message to execute some action,
if no such action is found within the object, the message is forwarded to its
parent(s).

12.4 THIS STYLE IN SYSTEMS DESIGN

In distributed systems, and without further abstractions, components inter-
act by sending messages to each other. The message-passing style of OOP
is a much better fit than remote procedure/method call for distributed sys-
tems design: messages carry a much lower overhead in terms of interfacing
components.

12.5 HISTORICAL NOTES

The Letterbox style illustrates the mechanism of message dispatch that under-
lies all OOP languages, at least conceptually. It is particularly similar to
Smalltalk (1970s), historically one of the most important OOP languages.
Smalltalk was designed under the principle of stylistic purity around objects;

Letterbox � 101

rather than trying to amass a large number of useful programming features
that had been seen in other languages, Smalltalk focused on trying to achieve
conceptual consistency by treating everything as objects, their interaction
being via messages – a purity goal similar to what certain functional lan-
guages do with the concept of functions. In Smalltalk, everything, including
numbers, for example, is an object; classes are objects too; etc.

Variations of this style also appear in concurrent programming, specifically
in the Actor model, which will be seen in a later chapter.

12.6 FURTHER READING

Kay, A. (1993). The Early History of Smalltalk. HOPL-II, ACM, New York,
pp. 69–95.
Synopsis: The history of Smalltalk told by Alan Kay, one of its creators.

12.7 GLOSSARY

Delegation: The ability of an object to use methods from another object
when requested to execute a procedure.

Message dispatch: The process of receiving a message, parsing its tag, and
determining the course of action, which can be a method execution, the
return of an error or the forwarding of the message to other objects.

12.8 EXERCISES

12.1 Another language. Implement the example program in another language,
but preserve the style.

12.2 Delegation. Let’s bring back the info methods of the Things style (pre-
vious chapter). Write a version of the program without using Python’s
inheritance relations, but in a way that preserves those relations’ code
reuse intention. That is, the info methods should be available to all
classes when they receive the info message, but no procedures should
be directly defined in any of the existing classes. Hint: Take inspiration
from the Self programming language in using parent fields.

12.3 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 13

Closed Maps

13.1 CONSTRAINTS

B The larger problem is decomposed into things that make sense for the
problem domain.

B Each thing is a map from keys to values. Some values are procedures/
functions.

B The procedures/functions close on the map itself by referring to its slots.

103

104 � Exercises in Programming Style

13.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 # Auxiliary functions that can’t be lambdas
5 #
6 def extract_words(obj, path_to_file):
7 with open(path_to_file) as f:
8 obj[’data’] = f.read()
9 pattern = re.compile(’[\W_]+’)

10 data_str = ’’.join(pattern.sub(’ ’, obj[’data’]).lower())
11 obj[’data’] = data_str.split()
12

13 def load_stop_words(obj):
14 with open(’../stop_words.txt’) as f:
15 obj[’stop_words’] = f.read().split(’,’)
16 # add single-letter words
17 obj[’stop_words’].extend(list(string.ascii_lowercase))
18

19 def increment_count(obj, w):
20 obj[’freqs’][w] = 1 if w not in obj[’freqs’] else obj[’freqs’

][w]+1
21

22 data_storage_obj = {
23 ’data’ : [],
24 ’init’ : lambda path_to_file : extract_words(data_storage_obj,

path_to_file),
25 ’words’ : lambda : data_storage_obj[’data’]
26 }
27

28 stop_words_obj = {
29 ’stop_words’ : [],
30 ’init’ : lambda : load_stop_words(stop_words_obj),
31 ’is_stop_word’ : lambda word : word in stop_words_obj[’

stop_words’]
32 }
33

34 word_freqs_obj = {
35 ’freqs’ : {},
36 ’increment_count’ : lambda w : increment_count(word_freqs_obj,

w),
37 ’sorted’ : lambda : sorted(word_freqs_obj[’freqs’].items(),

key=operator.itemgetter(1), reverse=True)
38 }
39

40 data_storage_obj[’init’](sys.argv[1])
41 stop_words_obj[’init’]()
42

43 for w in data_storage_obj[’words’]():
44 if not stop_words_obj[’is_stop_word’](w):
45 word_freqs_obj[’increment_count’](w)
46

47 word_freqs = word_freqs_obj[’sorted’]()
48 for (w, c) in word_freqs[0:25]:
49 print(w, ’-’, c)

Closed Maps � 105

13.3 COMMENTARY

THIS STYLE takes yet a different perspective on the Things style
explained in the previous chapters. The application is divided in exactly

the same way. However, these things (aka objects) are simple maps from keys
to values. Some of these values are simple data, while others are procedures
or functions.

Let’s take a look at the example program. The program uses essentially
the same entities as in the previous 2 examples, but implements those entities
in a very different way. Starting in line #22, we have our objects:

• data storage obj (lines #22–26) models the data storage, similar to
what we have seen before. Here we have a dictionary (a hash map) from
keywords to values. The first entry, data (line #23), is used to hold
the words from the input file. The second one, init (line #24), is our
constructor function, or the function that is meant to be called before
any others on this dictionary – it simply calls the extract words
procedure, which parses the file and extracts the non-stop words. Note
that the init function takes a path to a file as its argument. The third
entry on this map is words (line #25), which is mapped to a function
returning that object’s data field.

• stop words obj (lines #28–32) models the stop word manager that
we have seen before. Its plain data field, stop words (line #29), holds
the list of stop words. Its init entry is the constructor that fills out
the stop words entry. is stop word is a function that returns True
if the given argument is a stop word.

• word freqs obj (lines #34–38) models the word frequency counter
that we have seen before. freqs (line #35) holds the dictionary of
word frequencies. increment count is the procedure that updates the
freqs data. The third entry, sorted, is a function returning a sorted
list of word-frequency pairs.

In order to see these maps as objects, many conventions need to be fol-
lowed. First, fields in these objects are the entries that contain simple values,
while methods are the entries that contain functions. Constructors are meth-
ods that are meant to be called before any other entries. Note also that these
simple objects refer to themselves in the third person instead of using a self-
referential keyword like this or self – see, for example, line #25. Without
additional work to bring in the concept of self-reference, these maps are a lot
less expressive than the other concepts of objects that we have seen before.

The rest of the program indexes the right keys at the right time. In lines
#40–41, we initialize both data storage obj and stop words obj. These
keys hold procedure values, hence the (...) syntax that denotes a call. Those
procedures read the input file and the stop words file, parsing them both into

106 � Exercises in Programming Style

memory. Lines #43–45 loop over the words in data storage obj, incre-
menting the counts in word freqs obj for non-stop words. At the end, we
request the sorted list (line #47) and print it (lines #48–49).

The Closed Maps style illustrates a certain flavor of object-based program-
ming known as prototypes. This flavor of OOP is classless: each object is one-
of-a-kind. We see this style in JavaScript’s concept of object, for example. This
style of objects has some interesting possibilities, but also some shortcomings.

On the positive side, it becomes trivial to instantiate objects based on
existing ones, for example:

>>> data_storage_obj
{’init’: <function <lambda> at 0x01E26A70>, ’data’: [],
’words’: <function <lambda> at 0x01E26AB0>}

>>> ds2 = data_storage_obj.copy()
>>> ds2
{’init’: <function <lambda> at 0x01E26A70>, ’data’: [],
’words’: <function <lambda> at 0x01E26AB0>}

ds2 is a copy of data storage obj at that point in time. From here on,
these two objects are relatively independent of each other – although, again,
self-referentiality is an issue that would need to be addressed in order to make
them truly independent. It is not hard to envision how to create relationship
links between related objects using additional slots in the dictionaries.

Extending the objects’ functionality at any time is also trivial: we simply
need to add more keys to the maps. Removal of keys is also possible.

On the negative side, there is no access control, in the sense that all keys
are indexable – there are no hidden keys. It is up to the programmers to
use restraint. Also, implementing useful code reuse concepts such as classes,
inheritance and delegation requires additional programmer-facing machinery.

But this is a very simple object model that may be useful when the pro-
gramming languages don’t support more advanced notions of objects.

13.4 HISTORICAL NOTES

The idea of objects as prototypes first appeared in the language Self, designed
in the late 1980s. Self was heavily inspired by Smalltalk, but deviated from it
by using prototypes instead of classes, and delegation instead of inheritance.
Self also put forward the idea of objects as collections of “slots.” Slots are
accessor methods that return values. Self did not use the Closed Maps style
described here for representing objects, and access to slots of all kinds – simple
values as well as methods – was done via messages, in the Letterbox style. But
indexing a dictionary via keys can be seen as an act of sending messages to it.

Closed Maps � 107

13.5 FURTHER READING

Ungar, D. and Smith, R. (1987). Self: The power of simplicity. OOPSLA’87.
Also in Lisp and Symbolic Computation 4(3).
Synopsis: Self was a very nice object-oriented programming language
designed in the sequence of Smalltalk, but with some important differ-
ences. Although it never went further than being a research prototype,
it added to the community’s understanding of objects, and it influenced
languages such as JavaScript and Ruby.

13.6 GLOSSARY

Prototype: An object in a classless object-oriented language. Prototypes
carry with them their own data and functions, and can be changed at
any time without affecting others. New prototypes are created by cloning
existing ones.

13.7 EXERCISES

13.1 Another language. Implement the example program in another language,
but preserve the style.

13.2 Add method. Delete the last three lines of the example program, and
replace the printing of the information with the following. Add a new
method to the word freqs obj called top25 which sorts its freqs
data and prints the top 25 entries. Then call that method. Constraint:
The program cannot be changed at all until line #46 – your additions
should come after that line.

13.3 this. In the example program, the prototype objects don’t use this or
self to refer to themselves, and, instead, refer to themselves in the third
person – e.g. line #25, data storage obj. Propose another represen-
tation of Closed Maps that uses the self-reference this. So, for example,
the method words of the data storage object would be
’words’ : lambda : this[’data’]

13.4 Constructor. In the example program, there is nothing special about
constructors. Use your richer representation of object from the previous
question to execute the constructor methods every time an object is
created.

13.5 Object combinations. Let’s bring back the methods info of Chapter 11.
Show how to reuse and overwrite method collections in the Closed Maps
style by defining a map called tf exercise that contains a generic
info method that is then reused and overwritten by all the objects of
the example program (or your version above).

13.6 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 14

Abstract Things

14.1 CONSTRAINTS

B The larger problem is decomposed into abstract things that make sense
for the problem domain.

B Each abstract thing is described by what operations the things of that
abstraction can eventually do.

B Concrete things are then bound, somehow, to the abstractions; mecha-
nisms for doing that vary.

B The rest of the application uses the things, not by what they are, but
by what they do in the abstract.

109

110 � Exercises in Programming Style

14.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import abc, sys, re, operator, string
3

4 #
5 # The abstract things
6 #
7 class IDataStorage (metaclass=abc.ABCMeta):
8 """ Models the contents of the file """
9

10 @abc.abstractmethod
11 def words(self):
12 """ Returns the words in storage """
13 pass
14

15 class IStopWordFilter (metaclass=abc.ABCMeta):
16 """ Models the stop word filter """
17

18 @abc.abstractmethod
19 def is_stop_word(self, word):
20 """ Checks whether the given word is a stop word """
21 pass
22

23 class IWordFrequencyCounter(metaclass=abc.ABCMeta):
24 """ Keeps the word frequency data """
25

26 @abc.abstractmethod
27 def increment_count(self, word):
28 """ Increments the count for the given word """
29 pass
30

31 @abc.abstractmethod
32 def sorted(self):
33 """ Returns the words and their frequencies, sorted by

frequency"""
34 pass
35

36 #
37 # The concrete things
38 #
39 class DataStorageManager:
40 _data = ’’
41 def __init__(self, path_to_file):
42 with open(path_to_file) as f:
43 self._data = f.read()
44 pattern = re.compile(’[\W_]+’)
45 self._data = pattern.sub(’ ’, self._data).lower()
46 self._data = ’’.join(self._data).split()
47

48 def words(self):
49 return self._data
50

51 class StopWordManager:
52 _stop_words = []
53 def __init__(self):

Abstract Things � 111

54 with open(’../stop_words.txt’) as f:
55 self._stop_words = f.read().split(’,’)
56 self._stop_words.extend(list(string.ascii_lowercase))
57

58 def is_stop_word(self, word):
59 return word in self._stop_words
60

61 class WordFrequencyManager:
62 _word_freqs = {}
63

64 def increment_count(self, word):
65 if word in self._word_freqs:
66 self._word_freqs[word] += 1
67 else:
68 self._word_freqs[word] = 1
69

70 def sorted(self):
71 return sorted(self._word_freqs.items(), key=operator.

itemgetter(1), reverse=True)
72

73

74 #
75 # The wiring between abstract things and concrete things
76 #
77 IDataStorage.register(subclass=DataStorageManager)
78 IStopWordFilter.register(subclass=StopWordManager)
79 IWordFrequencyCounter.register(subclass=WordFrequencyManager)
80

81 #
82 # The application object
83 #
84 class WordFrequencyController:
85 def __init__(self, path_to_file):
86 self._storage = DataStorageManager(path_to_file)
87 self._stop_word_manager = StopWordManager()
88 self._word_freq_counter = WordFrequencyManager()
89

90 def run(self):
91 for w in self._storage.words():
92 if not self._stop_word_manager.is_stop_word(w):
93 self._word_freq_counter.increment_count(w)
94

95 word_freqs = self._word_freq_counter.sorted()
96 for (w, c) in word_freqs[0:25]:
97 print(w, ’-’, c)
98

99 #
100 # The main function
101 #
102 WordFrequencyController(sys.argv[1]).run()

112 � Exercises in Programming Style

14.3 COMMENTARY

IN THIS STYLE, the problem is first divided as collections of operations on
some abstract data that are important for the problem. These abstract oper-

ations are defined in terms of their names and what arguments they receive
and return; collectively, they define the access to the data structure that they
model. In this first stage, no concrete things exist, only the abstract things.
Any part of the application that uses the data needs only to know about their
abstract definition via the operations. In a second stage, concrete implemen-
tations are given, which are bound to the abstract things. From the point of
view of callers, concrete implementations can be replaced with other concrete
implementations as long as they provide the same abstract operations.

The Abstract Things style shares some similarities with the Things style,
and in several mainstream programming languages, they co-exist.

The example program uses the same entities as in the Things style exam-
ple: a DataStorage entity, a StopWord entity, a WordFrequency entity, and
the WordFrequencyController that starts it all. But the three main data
structures are modeled in terms of Abstract Things in lines #7–34. We use
Python’s Abstract Base Class (ABC) facility as the mechanism to define
these abstract things. Three ABCs are defined: IDataStorage (lines #7–
13), IStopWordFilter (lines #15–21) and IWordFrequencyCounter
(lines #23–34). IDataStorage provides an abstract words operation (lines
#11–13); IStopWordFilter provides an abstract is stop word opera-
tion (lines #19–21); IWordFrequencyCounter provides two abstract oper-
ations: increment count (lines #27–29) and sorted (lines #32–34). Any
implementations of these abstract things will have to provide concrete imple-
mentations of these operations.

Concrete implementations follow in lines #39–71. We use classes as the
mechanism to implement concrete data structures accessible via procedures.
These classes are identical to the ones in the Things style example, so no
explanation is necessary. The important thing to note is that, in this particular
implementation, nothing in the classes associates them with the ABCs defined
above. The association is done dynamically via the register method of the
ABCs (lines #77–79).1

The Abstract Things style is often used in conjunction with strong types.
For example, both Java and C# support the Abstract Things style through the
concept of interfaces. In a strongly typed language, the Abstract Things con-
cept encourages program design where the is-a relationship is detached from
concrete code reuse. Interfaces are used for enforcing the types of expected
arguments and return values without having to use concrete implementations
(classes).

In contrast to statically typed languages, nothing in the example verifies
that entities are of certain abstract (or concrete) types, because Python is

1register is a method available to all abstract base classes in Python that dynamically
associates abstract base classes with any other classes.

Abstract Things � 113

dynamically typed. However, the following decorator could be used to add
runtime type checking in certain method and constructor calls:

1 #
2 # Decorator for enforcing types of arguments in method calls
3 #
4 class AcceptTypes():
5 def __init__(self, *args):
6 self._args = args
7

8 def __call__(self, f):
9 def wrapped_f(*args):

10 for i in range(len(self._args)):
11 if self._args[i] == ’primitive’ and type(args[i

+1]) in (str, int, float, bool):
12 continue
13 if not isinstance(args[i+1], globals()[self._args[

i]]):
14 raise TypeError("Wrong type")
15

16 f(*args)
17 return wrapped_f
18

19 #
20 # Example of use
21 #
22 class DataStorageManager:
23 # Annotation for type checking
24 @AcceptTypes(’primitive’, ’IStopWordFilter’)
25 def __init__(self, path_to_file, word_filter):
26 with open(path_to_file) as f:
27 self._data = f.read()
28 self._stop_word_filter = word_filter
29 self.__filter_chars_normalize()
30 self.__scan()
31

32 def words(self):
33 return [w for w in self._data if not self.

_stop_word_filter.is_stop_word(w)]
34

35 ...
36

37 #
38 # The main function creates the objects
39 #
40 stop_word_manager = StopWordManager()
41 storage = DataStorageManager(sys.argv[1], stop_word_manager)
42 word_freq_counter = WordFrequencyManager()
43 WordFrequencyController(storage, word_freq_counter).run()

The class AcceptTypes (lines #4–17) is meant to be used as decorator.
In Python, a decorator is a class whose constructor (init) and method
(call) are called automatically upon the declaration and invocation of the
functions that they decorate. Decorations are done using a special @ symbol.

114 � Exercises in Programming Style

Let’s look at line #24, where an AcceptTypes decorator is placed right
before the definition of the constructor for class DataStorageManager.
Because of the decorator declaration in line #24, when the Python inter-
preter first encounters the constructor definition in line #25, it creates an
instance of the AcceptTypes class, invoking that instance’s init con-
structor. In this case, this constructor (lines #5–6) simply stores the param-
eter declarations that we have given it – primitive for the first argu-
ment and IStopWordFilter for the second. Later on, when an instance of
DataStorageManager is created in line #41, and just before the init
constructor for that class is actually called, the call method of the decora-
tor AcceptTypes is also called (lines #8–17). In this case, our method checks
that the arguments provided for the constructor of DataStorageManager
are of the types that we have declared them to be.

14.4 THIS STYLE IN SYSTEMS DESIGN

The Abstract Things concept plays an important role in large-scale systems
design. Software components that use other components, possibly developed
by third parties, are often designed against an abstract definition of those
components rather than against any concrete implementation. The realization
of those abstract interfaces varies depending on the programming language
involved.

The Adapter design pattern is an example of a system-level practice that
has the same intention as Abstract Things. For example, an application that
uses Bluetooth devices will likely use its own adapter as the primary interface
to the Bluetooth functionality in order to shield itself from the variability in
Bluetooth APIs; a 3D game that supports physics will likely want to use its
own adapter to be able to use different physics engines. These adapters typ-
ically consist of an interface, or an abstract class, that is then implemented
by different concrete classes, each one tailored to interface with each specific
third-party library. Such an adapter is playing the same role that an abstract
thing plays in small-scale program design: it is shielding the rest of the appli-
cation from concrete implementations of required functionality.

14.5 HISTORICAL NOTES

The Abstract Things style of programming started emerging in the early
1970s, around the same time that OOP languages were being designed. The
original design by Barbara Liskov already included parameterized types, i.e.
abstract data types that, internally, use values whose types are variables (e.g.
list< T >, where T can be any type).

Many modern programming languages include the concept of abstract
things in some form. Java and C# have them in the form of interfaces, which
can be parameterized on types. Haskell, a strongly typed pure functional lan-
guage, has them in the form of type classes. C++ has abstract classes; along

Abstract Things � 115

with templates, C++’s Standard Template Library (STL) effectively simulates
parameterized abstract things.

14.6 FURTHER READING

Cook, W. (2009). On understanding data abstraction, revisited. Proceedings of
the Twenty-Fourth ACM SIGPLAN Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’09). ACM,
New York, pp. 557–572.
Synopsis: With so many concepts related to objects, it’s easy to get
confused. William Cook analyzes the subtle but important differences
between objects and abstract data types.

Liskov, B. and Zilles, S. (1974) Programming with abstract data types. Pro-
ceedings of the ACM SIGPLAN Symposium on Very High Level Lan-
guages, ACM, New York, pp. 50–59.
Synopsis: The original description of Abstract Data Types, the grand-
parents of Java and C# interfaces.

14.7 GLOSSARY

Abstract data type: An entity defined in abstract by the operations that
it provides.

Decorator: In Python, a decorator is a linguistic counterpart to the object-
oriented design pattern with the same name, designed to allow behavior
to be added to individual objects. A Python decorator allows us to alter
functions and methods without changing their source code.

14.8 EXERCISES

14.1 Another language. Implement the example program in another language,
but preserve the style.

14.2 Mismatch. What happens if the sorted method of WordFrequency-
Manager is renamed to sorted freqs, for example? Explain the result
in detail.

14.3 Type checks. Use the decorator presented in this chapter in order to check
the types of parameters passed to certain constructors and methods.
Feel free to refactor the original example program in order to make type
checking more meaningful. Turn in two versions of your new program,
one that type checks and one that fails type checking.

14.4 A different bind. Quoting from the description of the example: “In this
particular implementation, nothing in the classes associates them with
the ABCs defined above. The association is done dynamically via the

116 � Exercises in Programming Style

register method of the ABCs.” Do the association between ABCs
and concrete implementations in a different way.

14.5 A different task. Write one of the tasks proposed in the Prologue using
this style.

CHA PT E R 15

Hollywood

15.1 CONSTRAINTS

B Larger problem is decomposed into entities using some form of abstrac-
tion (objects, modules, or similar).

B The entities are never called on directly for actions.

B The entities provide interfaces for other entities to be able to register
callbacks.

B At certain points of the computation, the entities call on the other enti-
ties that have registered for callbacks.

117

118 � Exercises in Programming Style

15.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The "I’ll call you back" Word Frequency Framework
6 #
7 class WordFrequencyFramework:
8 _load_event_handlers = []
9 _dowork_event_handlers = []

10 _end_event_handlers = []
11

12 def register_for_load_event(self, handler):
13 self._load_event_handlers.append(handler)
14

15 def register_for_dowork_event(self, handler):
16 self._dowork_event_handlers.append(handler)
17

18 def register_for_end_event(self, handler):
19 self._end_event_handlers.append(handler)
20

21 def run(self, path_to_file):
22 for h in self._load_event_handlers:
23 h(path_to_file)
24 for h in self._dowork_event_handlers:
25 h()
26 for h in self._end_event_handlers:
27 h()
28

29 #
30 # The entities of the application
31 #
32 class DataStorage:
33 """ Models the contents of the file """
34 _data = ’’
35 _stop_word_filter = None
36 _word_event_handlers = []
37

38 def __init__(self, wfapp, stop_word_filter):
39 self._stop_word_filter = stop_word_filter
40 wfapp.register_for_load_event(self.__load)
41 wfapp.register_for_dowork_event(self.__produce_words)
42

43 def __load(self, path_to_file):
44 with open(path_to_file) as f:
45 self._data = f.read()
46 pattern = re.compile(’[\W_]+’)
47 self._data = pattern.sub(’ ’, self._data).lower()
48

49 def __produce_words(self):
50 """ Iterates through the list words in storage
51 calling back handlers for words """
52 data_str = ’’.join(self._data)
53 for w in data_str.split():
54 if not self._stop_word_filter.is_stop_word(w):

Hollywood � 119

55 for h in self._word_event_handlers:
56 h(w)
57

58 def register_for_word_event(self, handler):
59 self._word_event_handlers.append(handler)
60

61 class StopWordFilter:
62 """ Models the stop word filter """
63 _stop_words = []
64 def __init__(self, wfapp):
65 wfapp.register_for_load_event(self.__load)
66

67 def __load(self, ignore):
68 with open(’../stop_words.txt’) as f:
69 self._stop_words = f.read().split(’,’)
70 # add single-letter words
71 self._stop_words.extend(list(string.ascii_lowercase))
72

73 def is_stop_word(self, word):
74 return word in self._stop_words
75

76 class WordFrequencyCounter:
77 """ Keeps the word frequency data """
78 _word_freqs = {}
79 def __init__(self, wfapp, data_storage):
80 data_storage.register_for_word_event(self.

__increment_count)
81 wfapp.register_for_end_event(self.__print_freqs)
82

83 def __increment_count(self, word):
84 if word in self._word_freqs:
85 self._word_freqs[word] += 1
86 else:
87 self._word_freqs[word] = 1
88

89 def __print_freqs(self):
90 word_freqs = sorted(self._word_freqs.items(), key=operator

.itemgetter(1), reverse=True)
91 for (w, c) in word_freqs[0:25]:
92 print(w, ’-’, c)
93

94 #
95 # The main function
96 #
97 wfapp = WordFrequencyFramework()
98 stop_word_filter = StopWordFilter(wfapp)
99 data_storage = DataStorage(wfapp, stop_word_filter)

100 word_freq_counter = WordFrequencyCounter(wfapp, data_storage)
101 wfapp.run(sys.argv[1])

120 � Exercises in Programming Style

15.3 COMMENTARY

THIS STYLE differs from the previous ones by its use of inversion of
control: rather than an entity e1 calling another entity e2 with the purpose

of getting some information, e1 registers with e2 for a callback; e2 then calls
back e1 at a later time.

The example program is divided into entities that are very similar to
the previous styles: there is an entity for data storage (DataStorage –
lines #32–59), another one for dealing with stop words (StopWordFilter
– lines #61–74), and a third one for managing the word frequency pairs
(WordFrequencyCounter – lines #76–92). Additionally, we define a
WordFrequencyFramework entity (lines #7–27), which is responsible for
orchestrating the execution of the program.

Let’s start by analyzing the WordFrequencyFramework. This class pro-
vides three registration methods and a fourth method, run, that executes the
program. The run method (lines #21–27) tells the story of this class: the
application has been decomposed into three phases, namely a load phase, a
dowork phase and an end phase; other entities of the application register for
callbacks for each of those phases by calling
register for load event (lines #12–13),
register for dowork event (lines #15–16), and
register for end event (lines #18–19),
respectively. The corresponding handlers are then called by the run proce-
dure at the right times. Figuratively speaking, WordFrequencyFramework
is like a puppet master pulling the strings on the application objects below so
that they actually do what they have to do at specific times.

Next, let’s look at the three application classes, and how they use the
WordFrequencyFramework, and each other.

As in previous examples, DataStorage models the input data. The
way this example was designed, this class produces words events that other
entities can register for. As such, it provides an event registration method,
register for word event (lines #58–59). Besides that, this class’s con-
structor (lines #38–41) gets a reference to the StopWordFilter object
(more on this later), and then registers with the WordFrequencyFramework
for two events: load and dowork. On load events, this class opens and reads
the entire contents of the input file, filtering the characters and normalizing
them to lowercase (lines #43–47); on dowork events, this class splits the data
into words (line #53), and then, for every non-stop word, it calls the handlers
of entities that have registered for word events (lines #53–56).

The constructor of StopWordFilter (lines #64–65) registers with
WordFrequencyFramework for the load event. When that handler is called
back, it simply opens the stop words file and produces the list of all stop words
(lines #67–71). This class exposes the method is stop word (lines #73–74)
which can be called by other classes – in this case, this method is called only

Hollywood � 121

by DataStorage (line #54) when it iterates through its list of words from
the input file.

The WordFrequencyCounter keeps a record of the word-count pairs.
Its constructor (lines #79–81) gets the reference for the DataStorage entity
and registers with it a handler for word events (line #80) – remember,
DataStorage calls back these handlers in lines #55–56. It then registers
with the WordFrequencyFramework for the end event. When that handler
is called, it prints the information on the screen (lines #89–92).

Let’s go back to WordFrequencyFramework. As mentioned before, this
class acts like a puppet master. Its run method simply calls all handlers that
have registered for the three phases of the application, load, dowork and end.
In our case, DataStorage and StopWordFilter both register for the load
phase (lines #40 and #65, respectively), so their handlers are called when
lines #22–23 execute; only DataStorage registers for the dowork phase (line
#41), so only its handler defined in lines #49–56 is called when lines #24–25
execute; finally, only WordFrequencyCounter registers for the end phase
(line #81), so its handler, defined in lines #89–92, is called when lines #26–27
execute.

The Hollywood style of programming seems rather contrived, but it has
one interesting property: rather than hardwiring callers to callees at specific
points of the program (i.e. function calls, where the binding is done by naming
functions), it reverts that relation, allowing a callee to trigger actions in many
callers at a time determined by the callee. This supports a different kind of
module composition, as many modules can register handlers for the same event
on a provider.

This style is used in many object-oriented frameworks, as it is a powerful
mechanism for the framework code to trigger actions in arbitrary application
code. Inversion of control is precisely what makes frameworks different from
regular libraries. The Hollywood style, however, should be used with care,
as it may result in code that is extremely hard to understand. We will see
variations of this style in subsequent chapters.

15.4 THIS STYLE IN SYSTEMS DESIGN

Inversion of control is an important concept in distributed systems design.
It is sometimes useful for a component in one node of the network to ask
another component on another node to call back when specific conditions
occur, rather than the first component polling the second one periodically.
Taken to the extreme, this concept results in event-driven architectures (see
Chapter 16).

15.5 HISTORICAL NOTES

The Hollywood style has its origins in asynchronous hardware interrupts. In
operating systems design, interrupt handlers play a critical role in ensur-

122 � Exercises in Programming Style

ing separation between layers. As seen by the example, the Hollywood style
doesn’t require asynchronicity, although the callbacks can be asynchronous.

This style gained traction in application software during the 1980s in the
context of Smalltalk and Graphical User Interfaces.

15.6 FURTHER READING

Johnson, R. and Foote, B. (1988). Designing reusable classes. Journal of
Object-Oriented Programming 1(2): 22–35.
Synopsis: The first written account of the idea of inversion of control,
which emerged in the context of Smalltalk.

Fowler, M. (2005). InversionOfControl. Blog post at:
http://martinfowler.com/bliki/InversionOfControl.html
Synopsis: Martin Fowler gives a short and sweet description of inversion
of control.

15.7 GLOSSARY

Inversion of control: Any technique that supports independently devel-
oped code being called by a generic library or component.

Framework: A special kind of library, or reusable component, providing a
generic application functionality that can be customized with additional
user-written code.

Handler: A function that is to be called back at a later time.

15.8 EXERCISES

15.1 Another language. Implement the example program in another language,
but preserve the style.

15.2 Words with z. Change the given example program so that it implements
an additional task: after printing out the list of 25 top words, it should
print out the number of non-stop words with the letter z. Additional
constraints: (i) no changes should be made to the existing classes; adding
new classes and more lines of code to the main function is allowed; (ii)
files should be read only once for both term frequency and “words with
z” tasks.

15.3 Words with z in other styles. Consider all the previous styles. For each
of them, try to do the additional “words with z” task observing the
constraints stated above. If you are able to do it, show the code; if not,
explain why you think it can’t be done.

15.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://martinfowler.com/

CHA PT E R 16

Bulletin Board

16.1 CONSTRAINTS

B Larger problem is decomposed into entities using some form of abstrac-
tion (objects, modules, or similar).

B The entities are never called on directly for actions.

B Existence of an infrastructure for publishing and subscribing to events,
aka the bulletin board.

B Entities post event subscriptions (aka “wanted”) to the bulletin board
and publish events (aka “offered”) to the bulletin board. The bulletin
board infrastructure does all the event management and distribution.

123

124 � Exercises in Programming Style

16.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The event management substrate
6 #
7 class EventManager:
8 def __init__(self):
9 self._subscriptions = {}

10

11 def subscribe(self, event_type, handler):
12 if event_type in self._subscriptions:
13 self._subscriptions[event_type].append(handler)
14 else:
15 self._subscriptions[event_type] = [handler]
16

17 def publish(self, event):
18 event_type = event[0]
19 if event_type in self._subscriptions:
20 for h in self._subscriptions[event_type]:
21 h(event)
22

23 #
24 # The application entities
25 #
26 class DataStorage:
27 """ Models the contents of the file """
28 def __init__(self, event_manager):
29 self._event_manager = event_manager
30 self._event_manager.subscribe(’load’, self.load)
31 self._event_manager.subscribe(’start’, self.produce_words)
32

33 def load(self, event):
34 path_to_file = event[1]
35 with open(path_to_file) as f:
36 self._data = f.read()
37 pattern = re.compile(’[\W_]+’)
38 self._data = pattern.sub(’ ’, self._data).lower()
39

40 def produce_words(self, event):
41 data_str = ’’.join(self._data)
42 for w in data_str.split():
43 self._event_manager.publish((’word’, w))
44 self._event_manager.publish((’eof’, None))
45

46 class StopWordFilter:
47 """ Models the stop word filter """
48 def __init__(self, event_manager):
49 self._stop_words = []
50 self._event_manager = event_manager
51 self._event_manager.subscribe(’load’, self.load)
52 self._event_manager.subscribe(’word’, self.is_stop_word)
53

54 def load(self, event):

Bulletin Board � 125

55 with open(’../stop_words.txt’) as f:
56 self._stop_words = f.read().split(’,’)
57 self._stop_words.extend(list(string.ascii_lowercase))
58

59 def is_stop_word(self, event):
60 word = event[1]
61 if word not in self._stop_words:
62 self._event_manager.publish((’valid_word’, word))
63

64 class WordFrequencyCounter:
65 """ Keeps the word frequency data """
66 def __init__(self, event_manager):
67 self._word_freqs = {}
68 self._event_manager = event_manager
69 self._event_manager.subscribe(’valid_word’, self.

increment_count)
70 self._event_manager.subscribe(’print’, self.print_freqs)
71

72 def increment_count(self, event):
73 word = event[1]
74 if word in self._word_freqs:
75 self._word_freqs[word] += 1
76 else:
77 self._word_freqs[word] = 1
78

79 def print_freqs(self, event):
80 word_freqs = sorted(self._word_freqs.items(), key=operator

.itemgetter(1), reverse=True)
81 for (w, c) in word_freqs[0:25]:
82 print(w, ’-’, c)
83

84 class WordFrequencyApplication:
85 def __init__(self, event_manager):
86 self._event_manager = event_manager
87 self._event_manager.subscribe(’run’, self.run)
88 self._event_manager.subscribe(’eof’, self.stop)
89

90 def run(self, event):
91 path_to_file = event[1]
92 self._event_manager.publish((’load’, path_to_file))
93 self._event_manager.publish((’start’, None))
94

95 def stop(self, event):
96 self._event_manager.publish((’print’, None))
97

98 #
99 # The main function

100 #
101 em = EventManager()
102 DataStorage(em), StopWordFilter(em), WordFrequencyCounter(em)
103 WordFrequencyApplication(em)
104 em.publish((’run’, sys.argv[1]))

126 � Exercises in Programming Style

16.3 COMMENTARY

THIS STYLE is a logical end point of the previous style, where com-
ponents never call each other directly. Furthermore, the infrastructure

that binds the entities together is made even more generic by removing any
application-specific semantics and adopting only two generic operations: pub-
lish an event and subscribe to an event type.

The example program defines an EventManager class that implements
the generic bulletin board concept (lines #7–21). This class wraps a dictionary
of subscriptions (line #9), and has two methods:

• subscribe (lines #11–15) takes an event type and a handler, and it
appends the handler to the subscription dictionary using the event type
as key.

• publish (lines #17–21) takes an event, which may be a complex data
structure. In our case, this data structure is assumed to have the event
type in its first position (line #18). It then proceeds to call all handlers
that have been registered for that event type (lines #19–21).

The entities of the example program are similar to those of the
previous styles: data storage (lines #26–44), stop word filter (lines
#46–62) and word frequency counter (lines #64–82). Additionally, the
WordFrequencyApplication class (lines #84–96) starts and ends the
word frequency application. These classes use EventManager in order to
interact with each other, by requesting notifications of events and publishing
their own events. The classes are arranged more or less in a pipeline of events,
as follows:

The application starts with the main function generating the run event
(line #104), which is handled by WordFrequencyApplication (line #87).
As part of the reaction to the run event, WordFrequencyApplication
first triggers the load event (line #92) that has actions in both
DataStorage (line #30) and StopWordFilter (line #51), resulting in files
being read and processed; then, it triggers the start event (line #93) that
has action in DataStorage (line #31), resulting in an iteration over words;
from then on, for each word, DataStorage triggers word events (line #43)
that have actions in StopWordFilter (line #52); in turn, in the presence of
a non-stop word, StopWordFilter triggers valid word events (line #62)
that have actions in WordFrequencyCounter (line #69), resulting in incre-
mented counters. When there are no more words, DataStorage triggers the
eof event (line #44) which has actions in WordFrequencyApplication
(line #88), resulting in the final information being printed on the screen.

In the example program, events are implemented as tuples having the event
type as string in the first position and any additional arguments as subsequent
elements of the tuple. So, for example, the run event generated by the main
function (line #104) is (’run’, sys.argv[1]), the word event generated
by DataStorage (line #43) is (’word’, w), etc.

Bulletin Board � 127

The Bulletin Board style is often used with asynchronous components, but
as seen here, that is not required. The infrastructure for handling events may
be as simple as the one shown here or much more sophisticated, with several
components interacting for the distribution of events. The infrastructure may
also include more sophisticated event structures that support more detailed
event filtering – for example, rather than simple subscriptions to event types,
as shown here, components may subscribe to a combination of event types
and contents.

Like the previous style, the Bulletin Board style supports inversion of con-
trol, but taken to its most extreme and minimal form – events generated by
some components in the system may cause actions in other components of the
system. The subscription is anonymous, so a component generating an event,
in principle, doesn’t know all the components that are going to handle that
event. This style supports a very flexible entity composition mechanism (via
events), but, like the previous style, in certain cases it may lead to systems
whose erroneous behaviors are difficult to trace.

16.4 THIS STYLE IN SYSTEMS DESIGN

This style is at its best as an architecture for distributed systems known as
publish-subscribe. Publish-subscribe architectures are popular in companies
with large computational infrastructures, because they are very extensible
and support unforeseen system evolution – components can be easily added
and removed, new types of events can be distributed, etc.

16.5 HISTORICAL NOTES

Historically, this style can be traced to the USENET, a distributed news
system developed in the late 1970s. The USENET was, indeed, the first elec-
tronic bulletin board, where users could post (publish) and read articles via
subscription to specific news channels. Unlike many modern pub-sub systems,
the USENET was truly distributed, in the sense that there was no central
server for managing news; instead, the system consisted of loosely connected
news servers, which could be hosted by different organizations, and which
distributed the users’ posts among themselves.

The USENET was one particular kind of distributed system – one for
sharing user-generated news. With the advent of the Web, USENET became
less and less popular, but the concept had a second life in RSS, a protocol
that enables publishers of Web content to notify subscribers of that content.

Over the years, the bulletin board concept has seen applications in many
other areas. In the 1990s, there was a considerable amount of work in gener-
alizing the concept to all sorts of distributed system infrastructures.

128 � Exercises in Programming Style

16.6 FURTHER READING

Oki, B., Pfluegl, M., Siegel, A. and Skeen, D. (1993). The Information Bus:
An architecture for extensible systems. ACM SIGOPS 27(5): 58–68.
Synopsis: One of the earliest written accounts of the idea of publish-
subscribe.

Truscott, T. (1979). Invitation to a General Access UNIX* Network. Fax of
first official announcement of the USENET. Available at
http://www.newsdemon.com/first-official-announcement-usenet.php
Synopsis: Long before Facebook and Hacker News, there was the Usenet
and its many newsgroups to which people subscribed and posted. The
Usenet was the ultimate electronic bulletin board.

16.7 GLOSSARY

Event: A data structure produced by a component at a certain point in time
and meant to be distributed to other components waiting for it.

Publish: An operation provided by the event distribution infrastructure
allowing components to distribute events to other components.

Subscribe: An operation provided by the event distribution infrastructure
allowing components to express their interest in specific kinds of events.

16.8 EXERCISES

16.1 Another language. Implement the example program in another language,
but preserve the style.

16.2 Words with z. Change the given example program so that it implements
an additional task: after printing out the list of 25 top words, it should
print out the number of non-stop words with the letter z. Additional
constraints: (i) no changes should be made to the existing classes; adding
new classes and more lines of code to the main function is allowed; (ii)
files should be read only once for both term frequency and “words with
z” tasks.

16.3 Unsubscribe. Pub-sub architectures usually also support the concept of
unsubscribing from event types. Change the example program so that
EventManager supports the operation unsubscribe. Make the com-
ponents unsubscribe from event types at appropriate times. Show that
your unsubscription mechanism works correctly.

16.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://www.newsdemon.com/

V
Reflection and Metaprogramming

129

http://taylorandfrancis.com

Reflection and Metaprogramming � 131

We have seen styles that use functions, procedures and objects; we have also
seen functions and objects being passed around and stored in variables, as
regular data values. However, these programs are blind tools: we see them,
and they interact with us via input/output, but they don’t see themselves.
This part of the book contains a few styles related to the use of computational
reflection and metaprogramming. Reflection is about programs being some-
how aware of themselves. Metaprogramming is programming that involves the
program accessing, and even changing, itself as it executes. Besides its geeky
appeal, metaprogramming can be very useful for engineering software systems
that evolve over time.

Reflection falls into the category of programming concepts that are too
powerful for their own sake, and that, therefore, should be used with great
care. However, many modern composition techniques would not be possible
without it.

http://taylorandfrancis.com

CHA PT E R 17

Introspective

17.1 CONSTRAINTS

B The problem is decomposed using some form of abstraction (procedures,
functions, objects, etc.).

B The abstractions have access to information about themselves and oth-
ers, although they cannot modify that information.

133

134 � Exercises in Programming Style

17.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string, inspect
3

4 def read_stop_words():
5 """ This function can only be called from a function
6 named extract_words."""
7 # Meta-level data: inspect.stack()
8 if inspect.stack()[1][3] != ’extract_words’:
9 return None

10

11 with open(’../stop_words.txt’) as f:
12 stop_words = f.read().split(’,’)
13 stop_words.extend(list(string.ascii_lowercase))
14 return stop_words
15

16 def extract_words(path_to_file):
17 # Meta-level data: locals()
18 with open(locals()[’path_to_file’]) as f:
19 str_data = f.read()
20 pattern = re.compile(’[\W_]+’)
21 word_list = pattern.sub(’ ’, str_data).lower().split()
22 stop_words = read_stop_words()
23 return [w for w in word_list if not w in stop_words]
24

25 def frequencies(word_list):
26 # Meta-level data: locals()
27 word_freqs = {}
28 for w in locals()[’word_list’]:
29 if w in word_freqs:
30 word_freqs[w] += 1
31 else:
32 word_freqs[w] = 1
33 return word_freqs
34

35 def sort(word_freq):
36 # Meta-level data: locals()
37 return sorted(locals()[’word_freq’].items(), key=operator.

itemgetter(1), reverse=True)
38

39 def main():
40 word_freqs = sort(frequencies(extract_words(sys.argv[1])))
41 for (w, c) in word_freqs[0:25]:
42 print(w, ’-’, c)
43

44 if __name__ == "__main__":
45 main()

Introspective � 135

17.3 COMMENTARY

THE FIRST STAGE toward computational reflection requires that the
programs have access to information about themselves. The ability for

a program to access information about itself is called introspection. Not all
programming languages support introspection, but some do. Python, Java,
C#, Ruby, JavaScript, and PHP are examples of languages that support it;
C and C++ are examples of languages that don’t support it.

The example program uses just a small amount of introspection, enough to
illustrate the main concept. The first encounter with introspection is in line
#8: the read stop words function checks who its caller function is, and
returns no value for all callers except the function extract words. This is a
somewhat draconian pre-condition for this function, but checking who callers
are may make sense in certain situations, and it can only be done in a language
that exposes the call stack to programs. Access to the identification of the
caller is done by inspecting the call stack (inspect.stack()), accessing
the previous frame ([1], with [0] being the current frame) and accessing its
third element, which is the function name.

The other occurrences of introspection are all the same: accessing argu-
ments passed to functions via an introspective runtime structure, locals()
– see lines #18, #28, #37. Normally, arguments are referenced directly by
name; for example, in line #18 one would normally write:

def extract_words(path_to_file):
with open(path_to_file) as f:
...

Instead, we are accessing it via locals()[’path to file’]. In
Python, locals() is a function that returns a dictionary representing the
current local symbol table. One can iterate through this symbol table to find
out all the local variables available to a function. It’s not uncommon to find
its use in idioms such as this one:

def f(a, b):
print "a is %(a)s, b is %(b)s" % locals()

where a and b within the string serve as indexes to the local variables dictio-
nary.

Python has powerful introspective functions, some of them built-in (e.g.
callable, which checks whether a given value is a callable entity such as
a function) and others provided by modules such as the inspect module.
Other languages that support introspection provide similar facilities, even if
the APIs are very different. These facilities open the door to an entire new
dimension of program design, one that takes the program itself into account.

136 � Exercises in Programming Style

17.4 THIS STYLE IN SYSTEMS DESIGN

When used with care in justified situations, accessing the program’s internal
structures for getting additional context can enable powerful behaviors with
relatively low programming complexity. However, the use of introspection adds
an additional indirection to programs that is not always desirable, and that
may make the programs hard to understand. Introspection should be avoided,
unless the alternatives are worse.

17.5 GLOSSARY

Introspection: The ability for a program to access information about itself.

17.6 EXERCISES

17.1 Another language. Implement the example program in another language,
but preserve the style.

17.2 Print out information. Change the example program so that it prints
out the following information in the beginning of each function:

My name is <function name>
my locals are <k1=v1, k2=v2, k3=v3, ...>
and I’m being called from <name of
caller function>

Additional constraint: these messages should be printed as the result of
a call to a function named print info(), with no arguments. So, for
example:

def read_stop_words():
print_info()
...

17.3 Browse. Let’s back to Chapters 11 and 12. For one of those chapters,
using either the Python example code or your own version in another
language, add code at the end of the program iterating through the
classes of the program using the introspection capabilities of the lan-
guage. At each iteration your new code should print out the name of
the class and the names of the methods.

CHA PT E R 18

Reflective

18.1 CONSTRAINTS

B The program has access to information about itself, i.e. introspection.

B The program can modify itself – adding more abstractions, variables,
etc., at runtime.

137

138 � Exercises in Programming Style

18.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string, os
3

4 #
5 # Two down-to-earth things
6 #
7 stops = set(open("../stop_words.txt").read().split(",") + list(

string.ascii_lowercase))
8

9 def frequencies_imp(word_list):
10 word_freqs = {}
11 for w in word_list:
12 if w in word_freqs:
13 word_freqs[w] += 1
14 else:
15 word_freqs[w] = 1
16 return word_freqs
17

18 #
19 # Let’s write our functions as strings.
20 #
21 if len(sys.argv) > 1:
22 extract_words_func = "lambda name : [x.lower() for x in re.

split(’[ˆa-zA-Z]+’, open(name).read()) if len(x) > 0 and x
.lower() not in stops]"

23 frequencies_func = "lambda wl : frequencies_imp(wl)"
24 sort_func = "lambda word_freq: sorted(word_freq.items(), key=

operator.itemgetter(1), reverse=True)"
25 filename = sys.argv[1]
26 else:
27 extract_words_func = "lambda x: []"
28 frequencies_func = "lambda x: []"
29 sort_func = "lambda x: []"
30 filename = os.path.basename(__file__)
31 #
32 # So far, this program isn’t much about term-frequency. It’s about
33 # a bunch of strings that look like functions.
34 # Let’s add our functions to the "base" program, dynamically.
35 #
36 exec(’extract_words = ’ + extract_words_func)
37 exec(’frequencies = ’ + frequencies_func)
38 exec(’sort = ’ + sort_func)
39

40 #
41 # The main function. This would work just fine:
42 # word_freqs = sort(frequencies(extract_words(filename)))
43 #
44 word_freqs = locals()[’sort’](locals()[’frequencies’](locals()[’

extract_words’](filename)))
45

46 for (w, c) in word_freqs[0:25]:
47 print(w, ’-’, c)

Reflective � 139

18.3 COMMENTARY

THE SECOND AND FINAL STAGE towards computational reflection
requires that the programs be able to modify themselves. The ability

for a program to examine and modify itself is called reflection. This is an
even more powerful proposition than introspection and, as such, of all the
languages that support introspection, only a small subset of them support full
reflection. Ruby is an example of a language supporting full reflection; Python
and JavaScript support it with restrictions; Java and C# support only a small
set of reflective operations.

The example program exercises some of Python’s reflection facilities. The
program starts by reading the stop words file in the normal way (line #8),
followed by the definition of a normal function for counting word occurrences
that would be too awkward to implement reflectively in Python (lines #7–16).

Next, the main program functions are defined (lines #21–30). But rather
than defining them using normal function definitions, we define them at the
meta-level: at that level, we have anonymous functions expressed as strings.
These are lazy (unevaluated) pieces of program, as lazy as it gets: unprocessed
strings whose contents happens to be Python code.

More importantly, the contents of these stringified functions depend on
whether the user has provided an input file as argument to the program or
not. If there is an input argument, the functions do something useful (lines
#21–24); if there isn’t, the functions don’t do anything, simply returning the
empty list (lines #26–29).

Let’s look into the three functions defined in lines #22–24:

• In line #22, we have the meta-level definition of a function that extracts
words from a file. The file name is given as its only argument, name.

• In line #23, we have the meta-level definition of a function that counts
word occurrences given a list of words. In this case, it simply calls the
base-level function that we have defined in lines #10–17.

• In line #24, we have the meta-level definition of a function that sorts a
dictionary of word frequencies.

At this point of the program, all that exists in the program is: (1) the
stops variable that has been defined in line #7; (2) the frequencies imp
function that has been defined in lines #9–16; (3) the three variables
extract words func, frequencies func and sort func, which hold
on to strings – those strings are different depending on whether there was an
input argument or not.

The next three lines (#36–38) are the part of the program that effectively
makes the program change itself. exec is a Python statement that supports
dynamic execution of Python code.1 Whatever is given as argument (a string)

1Other languages (e.g. Scheme, JavaScript) provide a similar facility through eval.

140 � Exercises in Programming Style

is assumed to be Python code. In this case we are giving it assignment state-
ments in the form a = b, where a is a name (extract words, frequencies
and sort), and b is the variable bound to a stringified function defined in lines
#21–30. So, for example, the complete statement in line #37 is either

exec(’frequencies = lambda wl : frequencies_imp(wl)’)

or

exec(’frequencies = lambda x : []’)

depending on whether there is an input argument given to the program.
exec takes its argument, parses the code, eventually raising exceptions

if there are syntax errors, and executes it. After line #38 is executed, the
program will contain 3 additional function variables whose values depend on
the existence of the input argument.

Finally, line #46 calls those functions. As stated in the comment in lines
#41–44, this is a somewhat contrived form of function calling; it is done only
to illustrate the lookup of functions via the local symbol table, as explained
in the previous chapter.

At this point, the reader should be puzzled about the definition of functions
as strings in lines #21–30, followed by their runtime loading via exec in lines
#36–38. After all, we could do this instead:

1 if len(sys.argv) > 1:
2 extract_words = lambda name : [x.lower() for x in re.split(’[ˆ

a-zA-Z]+’, open(name).read()) if len(x) > 0 and x.lower()
not in stops]

3 frequencies = lambda word_list : frequencies_imp(word_list)
4 sort = lambda word_freq: sorted(word_freq.iteritems(), key=

operator.itemgetter(1), reverse=True)
5 filename = sys.argv[1]
6 else:
7 extract_words = lambda x: []
8 frequencies = lambda x: []
9 sort = lambda x: []

10 filename = os.path.basename(__file__)

Python being a dynamic language with higher-order functions, it supports
dynamic definition of functions, as illustrated above. This would achieve the
goal of having different function definitions depending on the existence of the
input argument, while avoiding reflection (exec and friends) altogether.

18.4 THIS STYLE IN SYSTEMS DESIGN

Indeed, the example program is a bit artificial and begs the question: when is
reflection needed?

In general, reflection is needed when the ways by which programs will be
modified cannot be predicted at design time. Consider, for example, the case
in which the concrete implementation of the extract words function in the

Reflective � 141

example would be given by an external file provided by the user. In that case,
the designer of the example program would not be able to define the function
a priori, and the only solution to support such a situation would be to treat
the function as string and load it at runtime via reflection. Our example
program does not account for that situation, hence the use of reflection here
is questionable. In the next two chapters we will see two examples of reflection
being used for very good purposes that could not be supported without it.

18.5 HISTORICAL NOTES

Reflection was studied in philosophy and formalized in logic long before being
brought into programming. Computational reflection emerged in the 1970s
within the LISP world. Its emergence within the LISP community was a nat-
ural consequence of early work in artificial intelligence, which, for the first
few years, was coupled with work in LISP. At the time, it was assumed that
any system that would become intelligent would need to gain awareness of
itself – hence the effort in formalizing what such awareness might look like
within programming models. Those ideas influenced the design of Smalltalk
in the 1980s, which, from early on, supported reflection. Smalltalk went on
to influence all OOP languages, so reflection concepts were brought to OOP
languages early on. During the 1990s, as the work in artificial intelligence took
new directions away from LISP, the LISP community continued the work on
reflection; that work’s pinnacle was the MetaObject Protocol (MOP) in the
Common LISP Object System (CLOS). The software engineering community
took notice, and throughout the 1990s there was a considerable amount of
work in understanding reflection and its practical benefits. It was clear that
the ability to deal with unpredictable changes was quite useful, but dangerous
at the same time, and some sort of balance via proper APIs would need to
be defined. These ideas found their way to all major programming languages
designed since the 1990s.

18.6 FURTHER READING

Demers, F.-N. and Malenfant, J. (1995). Reflection in logic, functional
and object-oriented programming: a short comparative study. IJCAI’95
Workshop on Reflection and Metalevel Architectures and Their Applica-
tions in AI.
Synopsis: A nice retrospective overview of computational reflection in
various languages.

Kiczales, G., des Riviere, J. and Bobrow, D. (1991). The Art of the Metaobject
Protocol. MIT Press. 345 pages.
Synopsis: The Common LISP Object System included powerful reflective
and metaprogramming facilities. This book explains how to make objects
and their metaobjects work together in CLOS.

142 � Exercises in Programming Style

Maes, P. (1987). Concepts and Experiments in Computational Reflec-
tion. Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’87).
Synopsis: Patti Maes brought Brian Smith’s ideas to object-oriented lan-
guages.

Smith, B. (1984). Reflection and Semantics in LISP. ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL’84).
Synopsis: Brian Smith was the first one to formulate computational reflec-
tion. He did it in the context of LISP. This is the original paper.

18.7 GLOSSARY

Computational reflection: The ability for programs to access information
about themselves and modify themselves.

eval: A function, or statement, provided by several programming languages
that evaluates a quoted value (e.g. a string) assumed to be the repre-
sentation of a program. eval is one of the two foundational pieces of
meta-circular interpreters underlying many programming languages, the
other one being apply. Any language that exposes eval to program-
mers is capable of supporting reflection. However, eval is too powerful
and often considered harmful. Work on computational reflection focused
on how to tame eval.

18.8 EXERCISES

18.1 Another language. Implement the example program in another language,
but preserve the style.

18.2 From a file. Modify the example program so that the implementation of
extract words is given by a file. The command line interface should
be:

$ python tf-16-1.py ../pride-and-prejudice.txt ext1.py

Provide at least two alternative implementations of that function (i.e.
two files) that make the program work correctly.

18.3 More reflection. The example program doesn’t use reflection for reading
the stop words (line #7) and counting the word occurrences (lines #9–
16). Modify the program so that it also uses reflection to do those tasks.
If you can’t do it, explain what the obstacles are.

18.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

CHA PT E R 19

Aspects

19.1 CONSTRAINTS

B The problem is decomposed using some form of abstraction (procedures,
functions, objects, etc.).

B Aspects of the problem are added to the main program without any
edits to the source code of the abstractions or the sites that use them.

B An external binding mechanism binds the abstractions with the aspects.

143

144 � Exercises in Programming Style

19.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string, time
3

4 #
5 # The functions
6 #
7 def extract_words(path_to_file):
8 with open(path_to_file) as f:
9 str_data = f.read()

10 pattern = re.compile(’[\W_]+’)
11 word_list = pattern.sub(’ ’, str_data).lower().split()
12 with open(’../stop_words.txt’) as f:
13 stop_words = f.read().split(’,’)
14 stop_words.extend(list(string.ascii_lowercase))
15 return [w for w in word_list if not w in stop_words]
16

17 def frequencies(word_list):
18 word_freqs = {}
19 for w in word_list:
20 if w in word_freqs:
21 word_freqs[w] += 1
22 else:
23 word_freqs[w] = 1
24 return word_freqs
25

26 def sort(word_freq):
27 return sorted(word_freq.items(), key=operator.itemgetter(1),

reverse=True)
28

29 # The side functionality
30 def profile(f):
31 def profilewrapper(*arg, **kw):
32 start_time = time.time()
33 ret_value = f(*arg, **kw)
34 elapsed = time.time() - start_time
35 print("%s(...) took %s secs" % (f.__name__, elapsed))
36 return ret_value
37 return profilewrapper
38

39 # join points
40 tracked_functions = [extract_words, frequencies, sort]
41 # weaver
42 for func in tracked_functions:
43 globals()[func.__name__]=profile(func)
44

45 word_freqs = sort(frequencies(extract_words(sys.argv[1])))
46

47 for (w, c) in word_freqs[0:25]:
48 print(w, ’-’, c)

Aspects � 145

19.3 COMMENTARY

THIS STYLE can be described as “restrained reflection” for the specific
purpose of injecting arbitrary code before and after designated points of

existing programs. One reason for doing that might be not having access to,
or not wanting to modify, the source code while wanting to add additional
functionality to the program’s functions; another reason might be to simplify
development by localizing code that is usually scattered throughout the pro-
gram.

The example program starts by defining the three main program functions:
extract words (lines #7–15), which extract the non-stop words from the
input file into a list; frequencies (lines #17–24), which counts the number
of occurrences of words on a list; and sort (lines #26–27), which sorts a given
word-frequency dictionary. The program could run as is simply by executing
lines #45–48.

In addition to the main program, we are adding a side functionality: we
want to compute the time that each function takes to execute. This function-
ality is part of a set of diagnosis actions known as profiling. There are many
ways of implementing this side functionality. The most straightforward way
involves adding a couple of lines of code to each function, in the beginning
and in the end. We could also do it outside of the functions, at the calling
sites. However, that would violate the constraints of the Aspects style.

One of the constraints of this style is that the aside functionality should
bring no edits to the affected functions or their call sites. Given this constraint,
the ways of implementing the side functionality narrow down to the use of
some form of reflection, i.e. changing the program after the fact. The example
program does it as follows.

We define a profile function (lines #30–37) that is a function
wrapper: it takes a function argument (f) and returns another function,
profilewrapper (line #37), that wraps around the original function f (line
#33), adding profiling code before (line #32) and after (lines #34–35); then
the wrapper function returns the value that the original function returned
(line #36).

The machinery for profiling is in place, but it is still not enough. The last
piece that is missing is the expression of our intent about profiling the func-
tions of our program. Again, this can be done in a number of different ways.
This style of programming calls for an external binding mechanism: rather
than tagging the functions as profileable (e.g. using a decorator), we need to
make them profileable without that information being directly attached to
them, and, instead, that information being localized in another part of the
program.

As such, our program first states which functions should be profiled (line
#40); these are called the join points between the program’s functions and
the side functionality. Next, we use full-on reflection: for each of the functions
to be profiled, we replace their name’s binding in the symbol table with the

146 � Exercises in Programming Style

wrapper function instead. Note that we are changing the program’s internal
structure: for example, the binding between the name extract words and
the corresponding function defined in lines #7–15 has been broken; instead we
now have the name extract words bound to an instance of the profile
function taking the function extract words as a parameter. We changed
the programmer’s original specification: any calls to extract words will be
calls to profile(extract words) instead.

There are different implementation techniques for achieving this style of
programming in different languages. A slight variation in Python is to use dec-
orators, although that violates the third constraint of the style, as formulated
here.

19.4 HISTORICAL NOTES

The idea of “advising” a function to include additional behavior to it exter-
nally was first described in a PhD thesis by Warren Teitelman in 1966. That
work was done in the context of LISP. Advice found its way to several flavors
of LISP during the 1970s. This work had a strong influence in the Aspect-
Oriented Programming (AOP) style, developed in the 1990s at Xerox PARC
by a group led by Gregor Kiczales, of which I was a part.

AOP is a form of restrained reflection for allowing programmers to define
aspects of the programs. Aspects are concerns of the applications that tend
to be scattered all over the code because they naturally affect many of its
components. Typical aspects are tracing and profiling. Over the years, people
have used this concept to localize in one place of their programs functionality
that would be scattered otherwise.

19.5 FURTHER READING

Baldi, P., Lopes, C., Linstead, E. and Bajracharya, S. (2008). A theory of
aspects as latent topics. ACM Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’08).
Synopsis: A more recent information-theoretic perspective on aspects.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M. and Irwin, J. (1997). Aspect-oriented programming. European Con-
ference on Object-Oriented Programming (ECOOP’97).
Synopsis: The original paper for AOP co-authored by my group at Xerox
PARC led by Gregor Kiczales.

Teitelman, W. (1966). PILOT: A step towards man-computer symbiosis. PhD
Thesis, MIT. Available at:
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-221.pdf
Synopsis: The original idea of “advice.” Chapter 3 of the thesis describes
the concept.

http://publications.ai.mit.edu/

Aspects � 147

19.6 GLOSSARY

Aspect: (1) A program concern whose implementation within the established
problem decomposition defies textual localization using non-reflective
composition mechanisms. (2) A topic of the source code with high entropy.

19.7 EXERCISES

19.1 Another language. Implement the example program in another language,
but preserve the style.

19.2 Decorate it. Implement the profile aspect with a decorator. What do you
see as pros and cons of that alternative?

19.3 Quantification. In the example program, we specify which functions to
affect by providing a list of functions (line #40). Extend this little lan-
guage by allowing the specification of “all functions in scope” in addition
to specifying names; choose your syntax as you please.

19.4 Tracing. Add another aspect to the example program for tracing func-
tions. That is, the following should be printed out in the beginning of
functions:

Entering <function name>

and at the end of functions:

Exiting <function name>

This aspect should be in addition to the profile aspect that is already
there. Functions should exhibit both the profile and the tracing aspects.

19.5 Things. Take the example program in the Things style (Chapter 11) and
apply the profile aspect to the following methods: run in WordFrequen-
cyController and the constructor of DataStorageManager.

19.6 A different task. Apply the profile aspect to one of the tasks proposed
in the Prologue.

http://taylorandfrancis.com

CHA PT E R 20

Plugins

20.1 CONSTRAINTS

B The problem is decomposed using some form of abstraction (procedures,
functions, objects, etc.).

B All or some of those abstractions are physically encapsulated into their
own, usually pre-compiled, packages. Main program and each of the
packages are compiled independently. These packages are loaded dynam-
ically by the main program, usually in the beginning (but not necessar-
ily).

B Main program uses functions/objects from the dynamically loaded pack-
ages, without knowing which exact implementations will be used. New
implementations can be used without having to adapt or recompile the
main program.

B Existence of an external specification of which packages to load. This
can be done by a configuration file, path conventions, user input or other
mechanisms for external specification of code to be loaded at runtime.

149

150 � Exercises in Programming Style

20.2 A PROGRAM IN THIS STYLE

tf-19.py:

1 #!/usr/bin/env python
2 import sys, configparser, importlib.machinery
3

4 def load_plugins():
5 config = configparser.ConfigParser()
6 config.read("config.ini")
7 words_plugin = config.get("Plugins", "words")
8 frequencies_plugin = config.get("Plugins", "frequencies")
9 global tfwords, tffreqs

10 tfwords = importlib.machinery.SourcelessFileLoader(’tfwords’,
words_plugin).load_module()

11 tffreqs = importlib.machinery.SourcelessFileLoader(’tffreqs’,
frequencies_plugin).load_module()

12

13 load_plugins()
14 word_freqs = tffreqs.top25(tfwords.extract_words(sys.argv[1]))
15

16 for (w, c) in word_freqs:
17 print(w, ’-’, c)

config.ini:

1 [Plugins]
2 ;; Options: plugins/words1.pyc, plugins/words2.pyc
3 words = plugins/words1.pyc
4 ;; Options: plugins/frequencies1.pyc, plugins/frequencies2.pyc
5 frequencies = plugins/frequencies1.pyc

words1.py:

1 import sys, re, string
2

3 def extract_words(path_to_file):
4 with open(path_to_file) as f:
5 str_data = f.read()
6 pattern = re.compile(’[\W_]+’)
7 word_list = pattern.sub(’ ’, str_data).lower().split()
8

9 with open(’../stop_words.txt’) as f:
10 stop_words = f.read().split(’,’)
11 stop_words.extend(list(string.ascii_lowercase))
12

13 return [w for w in word_list if not w in stop_words]

words2.py:

1 import sys, re, string
2

3 def extract_words(path_to_file):
4 words = re.findall(’[a-z]{2,}’, open(path_to_file).read().

lower())
5 stopwords = set(open(’../stop_words.txt’).read().split(’,’))

Plugins � 151

6 return [w for w in words if w not in stopwords]

frequencies1.py:

1 import operator
2

3 def top25(word_list):
4 word_freqs = {}
5 for w in word_list:
6 if w in word_freqs:
7 word_freqs[w] += 1
8 else:
9 word_freqs[w] = 1

10 return sorted(word_freqs.items(), key=operator.itemgetter(1),
reverse=True)[:25]

frequencies2.py

1 import operator, collections
2

3 def top25(word_list):
4 counts = collections.Counter(w for w in word_list)
5 return counts.most_common(25)

152 � Exercises in Programming Style

20.3 COMMENTARY

THIS STYLE is at the center of software evolution and customization.
Developing software that is meant to be extended by others, or even by

the same developers but at a later point in time, carries a set of challenges
that don’t exist in close-ended software.

Let’s look at the example program. The main idea is to devoid the main
program of important implementation details, leaving it only as a “shell”
that executes two term frequency functions. In this case, we partition the
term frequency application into two separate steps: in the first step, called
extract words, we read the input file and produce a list of non-stop words; in
the second step, called top25, we take that list of words, count their occur-
rences, and return the 25 most frequently occurring words and their counts.
These two steps can be seen in line #14 of tf-19.py. Note that the main pro-
gram, tf-19.py, has no knowledge of the functions tfwords.extract words
and tffreqs.top25, other that they exist, hopefully. We want to be able
to choose the implementation of those functions at some later point in time,
maybe even allow the users of this program to provide their own implemen-
tations.

By the time it runs, the main program needs to know which functions
to use. That is specified externally in a configuration file. As such, the first
thing that our main program does before calling the term frequency functions,
is to load the corresponding plugins (line #13). load plugins (lines #4–
11) starts by reading the configuration file config.ini (lines #5–6) and
extracting the settings for the two functions (lines #7–8). It is assumed that
the configuration file contains a section named Plugins where two configu-
ration variables can be found: words (line #7) and frequencies (line #8).
The value of those variables is supposed to be paths to pre-compiled Python
code.

Before explaining the next 3 lines, let’s take a look at what the config-
uration file looks like – see config.ini. We are using a well-known configura-
tion format known as INI, which has pervasive support in the programming
world. Python’s standard library supports it via the ConfigParser mod-
ule. INI files are very simple, consisting of one or more sections denoted by
[SectionName] in a single line, under which configuration variables and their
values are listed as key-value pairs (name=value), one per line. In our case,
we have one section called [Plugins] (line #1) and two variables: words
(line #3) and frequencies (line #5). Both of the variables hold values
that are meant to be paths in the file system; for example, words is set
to plugins/words1.pyc, meaning that we want to use a file that is in a
sub-directory of the current directory. We can change which plugin to use by
changing the values of these variables.

Coming back to tf-19.py, lines #5–8 are, then, reading this configura-
tion file. The next 3 lines (#9–11) deal with loading the code dynamically
from the files that we have specified in the configuration. We do this using

Plugins � 153

Python’s imp module, which provides a reflective interface to the internals of
the import statement. In line #9, we declare two global variables, tfwords
and tffreqs, that are meant to be modules themselves. Then in lines #10
and #11 we load the code found in the specified paths and bind it to our
module variables. imp.load compiled takes a name and a path to a pre-
compiled Python file and loads that code into memory, returning the compiled
module object – we then need to bind that object to our module name, so
that we can use it in the rest of the main program (specifically in line #14).

The rest of the example program – words1.py, words2.py, frequencies1.py
and frequencies2.py – shows the different implementations of our term fre-
quency functions. words1.py and words2.py provide alternatives for the
extract words function; frequencies1.py and frequencies2.py provide alter-
natives for the top25 function.1

20.4 THIS STYLE IN SYSTEMS DESIGN

It is important to understand the alternatives to this style that achieve the
same goal of supporting different implementations of the same functions. It
is also important to understand those alternatives’ limits, and the benefits of
this style of programming.

When wanting to support different implementations of the same functions,
one can protect the callers of those functions using well-known design patterns
such as the Factory pattern: the callers request a specific implementation, and
a Factory method returns the right object. In their simplest form, Factories
are glorified conditional statements over a number of pre-defined alternatives.
Indeed, the simplest way to support alternatives is with conditional state-
ments.

Conditional statements and related mechanisms assume that the set of
alternatives is known at program design time. When that is the case, the
Plugins style is an overkill, and a simple Factory pattern will serve the goal
well. However, when the set of alternatives is open-ended, using conditionals
quickly becomes a burden: for every new alternative, we need to edit the
Factory code and compile it again. Furthermore, when the set of alternatives
is meant to be open to third parties who don’t necessarily have access to
the source code of the base program, it is simply not possible to achieve the
goal using hardcoded alternatives; dynamic code loading becomes necessary.
Modern frameworks have embraced this style of programming for supporting
usage-sensitive customizations.

Modern operating systems also support this style via shared, dynamically
linked libraries (e.g. .so in Lunix and .DLL in Windows).

However, when abused, software written in this style can become a “con-
figuration hell,” with dozens of customization points, each with many different

1Note that in order for our program to work as is, these files need to be compiled first
into .pyc files.

154 � Exercises in Programming Style

alternatives that can be hard to understand. Furthermore, when alternatives
for different customization points have dependencies among themselves, soft-
ware may fail mysteriously, because the simple configuration languages in
use today don’t provide good support for expression of dependencies between
external modules.

20.5 HISTORICAL NOTES

The origins of this style are somewhat foggy, but seem to spread across two
separate lines of work: distributed systems architecture and the need to extend
standalone applications with third-party code.

Mesa, a programming language designed at Xerox PARC in the 1970s and
used in the Xerox Star office automation system, included a configuration lan-
guage that was used to inform the linker how to bind together a set of modules
into a complete system. C/Mesa featured separate interface and implementa-
tion modules (similar to Abstract Things), so a C/Mesa program could wire
together the exports and imports of implementation modules. This was used
to assemble together different variants of the operating system.

By the mid-1980s, several sophisticated networked control systems were
being built that required careful thinking about the system as a collection
of independent components that needed to be connected, and that could
potentially be replaced by other components. As such, configuration languages
started to be proposed. These configuration languages embodied the concept of
separating the functional components from their interconnections, suggesting
“configuration programming” as a separate concern. This line of work contin-
ued through the 1990s under what is now known as software architecture, and
configuration languages became Architecture Description Languages (ADLs).
Many ADLs proposed during the 1990s, although powerful, were simply lan-
guages for the analysis of systems, and were not executable. This was due,
in part, to the fact that linking components at runtime was a hard thing to
do with the mainstream programming language technology of the time, which
was heavily C-based. The ADLs that were executable used niche languages
that were not mainstream.

During the 1990s, several desktop applications already supported plugins.
For example, PhotoShop had that concept from very early on, as it enabled a
clean separation of the “core” application from the several image filters that
could be added, possibly by end-users; it also allowed customizations of image
processing functions on the hardware of the desktops.

The advent of mainstream programming languages with reflective capa-
bilities changed the landscape of this work, as it suddenly became possible,
and trivially easy, to link components at runtime. Java frameworks, such as
Spring, were the first to embrace the new capabilities brought by reflection.
As many more languages started to embrace reflection, this style of engineer-
ing systems became commonplace in industry under the names “dependency

Plugins � 155

injection” and “plugins.” Within these practices, ADLs are back to being
simple declarative configuration languages, such as INI or XML.

20.6 FURTHER READING

Fowler, M. (2004). Inversion of control containers and the dependency injection
pattern. Blog post available at:
http://www.martinfowler.com/articles/injection.html
Synopsis: Martin Fowler explains inversion of control and dependency
injection in the context of OOP frameworks.

Kramer, J., Magee, J., Sloman, M. and Lister, A. (1983). CONIC: An inte-
grated approach to distributed computer control systems. IEE Proceed-
ings 130(1): 1–10.
Synopsis: The description of one of the first Architecture Description
Languages (ADL) to be called as such.

Mitchell, J., Maybury, W. and Sweet, R. (1979). Mesa Language Manual.
Xerox PARC Technical Report CSL-79-3. Available at:
http://bitsavers.trailing-edge.com/pdf/xerox/mesa/5.0 1979/
documentation/CSL 79-3 Mesa Language Manual Version 5.0 Apr79.pdf
Synopsis: Mesa was a really interesting language. It was a Modula-like
language, so very focused on modularity issues. Mesa programs consisted
of definition files specifying interfaces plus one or more program files
specifying the implementation of the procedures in the interfaces. Mesa
was a major influence on the design of other languages, such as Modula-2
and Java.

20.7 GLOSSARY

Third-party development: Development for a piece of software done by a
different group of developers than those developing that software. Third-
party development usually involves having access only to the binary form
of the software, not its source code.

Dependency injection: A collection of techniques that support importing
function/object implementations dynamically.

Plugin: (aka Addon) A software component that adds a specific set of behav-
iors into an executing application, without the need for recompilation.

20.8 EXERCISES

20.1 Another language. Implement the example program in another language,
but preserve the style.

20.2 Different extraction. Provide a third alternative to extract words.

http://www.martinfowler.com/
http://bitsavers.trailing-edge.com/

156 � Exercises in Programming Style

20.3 Close-ended. Suppose that words1.py, words2.py, frequencies1.py and
frequencies2.py are the only possible alternatives to ever be considered
in the example program. Show how you would transform the program
away from the Plugins style.

20.4 Print out alternatives. The example program hardcodes the printout of
the word frequencies at the end (lines #16–17). Transform that into the
Plugins style and provide at least two alternatives for printing out the
information at the end.

20.5 Link source code. Modify the load plugins function so that it can
also load modules with Python source code.

20.6 A different task. Write one of the tasks proposed in the Prologue using
this style.

VI
Adversity

157

http://taylorandfrancis.com

Adversity � 159

When programs execute, abnormal things may happen, either intentionally
(by malicious attacks) or unintentionally (by programmer’s overlook or unex-
pected failures in hardware). Dealing with them is perhaps one of the most
complicated activities in program design. One approach to dealing with abnor-
malities is to be oblivious to them. This can be done by either (1) assuming
that errors don’t occur or (2) not caring if they occur. For the purpose of
focusing on specific constraints without distractions, obliviousness is the style
followed in this book – except in the next five styles. The next five chapters –
Constructivist, Tantrum, Passive Aggressive, Declared Intentions and Quaran-
tine – reflect five different approaches to dealing with adversity in programs.
They are all instances of a more general style of programming known as defen-
sive programming, which is very much the opposite of the oblivious style. A
comparative analysis of the first three variations of defensive programming is
presented at the end of Chapter 23.

http://taylorandfrancis.com

CHA PT E R 21

Constructivist

21.1 CONSTRAINTS

B Every single function checks the sanity of its arguments and either
returns something sensible when the arguments are unreasonable or
assigns them reasonable values.

B All code blocks check for possible errors and escape the block when
things go wrong, setting the state to something reasonable, and contin-
uing to execute the rest of the function.

161

162 � Exercises in Programming Style

21.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string, inspect
3

4 #
5 # The functions
6 #
7 def extract_words(path_to_file):
8 if type(path_to_file) is not str or not path_to_file:
9 return []

10

11 try:
12 with open(path_to_file) as f:
13 str_data = f.read()
14 except IOError as e:
15 print("I/O error({0}) when opening {1}: {2}".format(e.

errno, path_to_file, e.strerror))
16 return []
17

18 pattern = re.compile(’[\W_]+’)
19 word_list = pattern.sub(’ ’, str_data).lower().split()
20 return word_list
21

22 def remove_stop_words(word_list):
23 if type(word_list) is not list:
24 return []
25

26 try:
27 with open(’../stop_words.txt’) as f:
28 stop_words = f.read().split(’,’)
29 except IOError as e:
30 print("I/O error({0}) when opening ../stops_words.txt: {1}

".format(e.errno, e.strerror))
31 return word_list
32

33 stop_words.extend(list(string.ascii_lowercase))
34 return [w for w in word_list if not w in stop_words]
35

36 def frequencies(word_list):
37 if type(word_list) is not list or word_list == []:
38 return {}
39

40 word_freqs = {}
41 for w in word_list:
42 if w in word_freqs:
43 word_freqs[w] += 1
44 else:
45 word_freqs[w] = 1
46 return word_freqs
47

48 def sort(word_freq):
49 if type(word_freq) is not dict or word_freq == {}:
50 return []
51

Constructivist � 163

52 return sorted(word_freq.items(), key=operator.itemgetter(1),
reverse=True)

53

54 #
55 # The main function
56 #
57 filename = sys.argv[1] if len(sys.argv) > 1 else "../input.txt"
58 word_freqs = sort(frequencies(remove_stop_words(extract_words(

filename))))
59

60 for tf in word_freqs[0:25]:
61 print(tf[0], ’-’, tf[1])

164 � Exercises in Programming Style

21.3 COMMENTARY

IN THIS STYLE, programs are mindful of possible abnormalities; they
don’t ignore them, but they take a constructivist approach to the problem:

they incorporate practical heuristics in order to fix the problems in the service
of getting the job done. They defend the code against possible errors of callers
and providers by using reasonable fallback values whenever possible so that
the program can continue.

Let’s look at the example program, starting from the bottom. In all pre-
vious examples, we are not checking whether the user gave a file name in the
command line – in true oblivious style, we assume that the file name argument
will be there, and if it’s not, the program crashes. In this program, we are now
checking whether the user has given a file name (line #57) and if they didn’t,
our program falls back to computing the term frequency of an existing test
file, input.txt.

A similar approach can be seen in other parts of this program. For example,
in the function extract words, lines #11–16, when there are errors opening
or reading the given file name, the function simply acknowledges that and
returns an empty list of words, allowing the program to continue based on
that empty list of words. And in the function remove stop words, lines
#26–31, if there are errors regarding the file that contains the stop words,
that function simply echoes back the word list that it received, effectively not
filtering for stop words.

The Constructivist style of dealing with the inconveniences of errors can
have a tremendous positive effect on user experience. However, it comes with
some perils that need to be carefully considered.

First, when the program assumes some fallback behavior without notifying
the user, the results may be puzzling. For example, running this program
without the file name:

$ python tf-21.py
mostly - 2
live - 2
africa - 1
tigers - 1
india - 1
lions - 1
wild - 1
white - 1

This produces a result that the user may not understand. Where did those
words come from? In assuming fallback values, it is important to let the user
know what is going on.

The program behaves better when the file doesn’t exist:

$ python tf-21.py
I/O error(2) when opening foo: No such file or directory

Even though the functions continue to execute on empty lists, the user is
made aware that something didn’t quite work as expected.

Constructivist � 165

The second peril has to do with the heuristics used for fallback strategies.
Some of them may be more confusing than an explicit error, or even mislead-
ing. For example, if in lines #11–16, upon encountering a file (provided by the
user) that doesn’t actually exist, we would fall back to opening input.txt,
the user would be misled to thinking that the file that they provided had the
resulting term frequencies. Clearly this is false. At the very least, if we would
decide on that fallback strategy, we would need to warn the user about the
situation (“That file doesn’t exist, but here are the results for another one”).

21.4 THIS STYLE IN SYSTEMS DESIGN

Many popular computer languages and systems take this approach to adver-
sity. The rendering of HTML pages in Web browsers, for example, is notorious
for being constructivist: even if the page has syntax errors, or inconsistencies,
the browser will try to render it as best as possible. Python itself also takes this
approach in many situations, such as when obtaining ranges of lists beyond
their length (see Bounds in page xx).

Modern user-facing software also tends to take this approach, sometimes
with the use of heavy heuristic machinery underneath. When entering key-
words in search engines, the search engines often correct spelling mistakes
and present results for the correctly spelled words, instead of taking the user
input literally.

Trying to guess the intention behind an input error is a very nice thing
to do, as long as the system is in a position to guess right most of the time.
People tend to lose trust in systems that make wrong guesses.

21.5 EXERCISES

21.1 Another language. Implement the example program in another language,
but preserve the style.

21.2 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 22

Tantrum

22.1 CONSTRAINTS

B Every single procedure and function checks the sanity of its arguments
and refuses to continue when the arguments are unreasonable.

B All code blocks check for all possible errors, possibly log context-specific
messages when errors occur, and pass the errors up the function call
chain.

167

168 � Exercises in Programming Style

22.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2

3 import sys, re, operator, string, traceback
4

5 #
6 # The functions
7 #
8 def extract_words(path_to_file):
9 assert(type(path_to_file) is str), "I need a string!"

10 assert(path_to_file), "I need a non-empty string!"
11

12 try:
13 with open(path_to_file) as f:
14 str_data = f.read()
15 except IOError as e:
16 print("I/O error({0}) when opening {1}: {2}! I quit!".

format(e.errno, path_to_file, e.strerror))
17 raise e
18

19 pattern = re.compile(’[\W_]+’)
20 word_list = pattern.sub(’ ’, str_data).lower().split()
21 return word_list
22

23 def remove_stop_words(word_list):
24 assert(type(word_list) is list), "I need a list!"
25

26 try:
27 with open(’../stop_words.txt’) as f:
28 stop_words = f.read().split(’,’)
29 except IOError as e:
30 print("I/O error({0}) when opening ../stops_words.txt:

{1}! I quit!".format(e.errno, e.strerror))
31 raise e
32

33 stop_words.extend(list(string.ascii_lowercase))
34 return [w for w in word_list if not w in stop_words]
35

36 def frequencies(word_list):
37 assert(type(word_list) is list), "I need a list!"
38 assert(word_list != []), "I need a non-empty list!"
39

40 word_freqs = {}
41 for w in word_list:
42 if w in word_freqs:
43 word_freqs[w] += 1
44 else:
45 word_freqs[w] = 1
46 return word_freqs
47

48 def sort(word_freq):
49 assert(type(word_freq) is dict), "I need a dictionary!"
50 assert(word_freq != {}), "I need a non-empty dictionary!"
51

52 try:

Tantrum � 169

53 return sorted(word_freq.items(), key=operator.itemgetter
(1), reverse=True)

54 except Exception as e:
55 print("Sorted threw {0}".format(e))
56 raise e
57

58 #
59 # The main function
60 #
61 try:
62 assert(len(sys.argv) > 1), "You idiot! I need an input file!"
63 word_freqs = sort(frequencies(remove_stop_words(extract_words(

sys.argv[1]))))
64

65 assert(type(word_freqs) is list), "OMG! This is not a list!"
66 assert(len(word_freqs) > 25), "SRSLY? Less than 25 words!"
67 for (w, c) in word_freqs[0:25]:
68 print(w, ’-’, c)
69 except Exception as e:
70 print("Something wrong: {0}".format(e))
71 traceback.print_exc()

170 � Exercises in Programming Style

22.3 COMMENTARY

THIS STYLE is as defensive as the previous one: the same possible errors
are being checked. But the way it reacts when abnormalities are detected

is quite different: the functions simply refuse to continue.
Let’s look at the example program, again starting at the bottom. In line

#62, we are not just checking that there is a file name given in the command
line, but we are asserting that it must exist, or else it throws an exception
– the assert function throws the AssertionError exception when the stated
condition is not met.

A similar approach can be seen in other parts of the program. In the func-
tion extract words, lines #9 and #10, we are asserting that the argument
meets certain conditions, or else the function throws an exception. In lines
#12–17, if the opening or reading of the file throws an exception, we are
catching it right there, printing a message about it, and passing the excep-
tion up the stack for further catching. Similar code – i.e. assertions, and local
exception handling – can be seen in all the other functions.

Stopping the program’s execution flow when abnormalities happen is one
way to ensure that those abnormalities don’t cause damage. In many cases,
it may be the only option, as fallback strategies may not always be good or
desirable.

This style has one thing in common with the Constructivist style of the
previous chapter: it is checking for errors, and handling them, in the local
context in which the errors may occur. The difference here is that the fallback
strategies of the Constructivist style are interesting parts of the program in
themselves, whereas the cleanup and exit code of the Tantrum style is not.

This kind of local error checking is particularly visible in programs written
in languages that don’t have exceptions. C is one of those languages. When
guarding against problems, C programs check locally whether errors have
occurred, and, if so, either use reasonable fallback values (Constructivist) or
escape the function in the style explained here. In languages without exception
handling, like C, the abnormal return from functions is usually flagged using
error codes in the form of negative integers, null pointers, or global variables
(e.g. errno), which are then checked in the call sites.

Dealing with abnormalities in this way can result in verbose boilerplate
code that distracts the reader from the actual goals of the functions. It is quite
common to encounter portions of the programs written in this style with one
line of functional code followed by a long sequence of conditional blocks that
check for the occurrence of various errors, each one returning an error at the
end of the block.

In order to avoid some of the verbosity of this style, advanced C pro-
grammers sometimes resort to using C’s GOTO statement. One of the main
advantages of GOTOs is the fact that they allow non-local escapes, avoiding
boilerplate, distracting code when dealing with errors, while supporting a sin-
gle exit point out of functions. GOTOs allow us to express our displeasure

Tantrum � 171

with errors in a more contained, succinct form. But GOTOs have long been
discouraged, or outright banned, from mainstream programming languages,
for all sorts of good reasons.

22.4 THIS STYLE IN SYSTEMS DESIGN

Computers are dumb machines that need to be told exactly and unambigu-
ously what to do. Computer software inherited that trait. Many software sys-
tems don’t make much effort in trying to guess the intentions behind wrong
inputs (from users or other components); it is much easier and risk-free to
simply refuse to continue. Therefore this style is seen pervasively in software.
Worse, many times the errors are flagged with incomprehensible error mes-
sages that don’t inform the offending party in any actionable way.

When being pessimistic about adversity, it is important to at least let
the other party know what was expected and why the function/component is
refusing to continue.

22.5 FURTHER READING

IBM (1957). The FORTRAN automatic coding system for the IBM 704
EDPM. Available at:
http://www.softwarepreservation.org/projects/FORTRAN/manual/
Prelim Oper Man-1957 04 07.pdf
Synopsis: The original FORTRAN manual, showing a long list of
possible error codes and what to do with them. The list mixes machine
(hardware) errors with human (software) errors. Some of the human
errors are syntactic while others are a bit more interesting. For example,
error 430 is described as “Program too complex. Simplify or do in 2
parts (too many basic blocks).”

22.6 GLOSSARY

Error code: Enumerated messages that denote faults in specific components.

22.7 EXERCISES

22.1 Another language. Implement the example program in another language,
but preserve the style.

22.2 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://www.softwarepreservation.org/

http://taylorandfrancis.com

CHA PT E R 23

Passive Aggressive

23.1 CONSTRAINTS

B Every single procedure and function checks the sanity of its arguments
and refuses to continue when the arguments are unreasonable, jumping
out of the function.

B When calling out other functions, program functions only check for
errors if they are in a position to react meaningfully.

B Exception handling occurs at higher levels of function call chains, wher-
ever it is meaningful to do so.

173

174 � Exercises in Programming Style

23.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The functions
6 #
7 def extract_words(path_to_file):
8 assert(type(path_to_file) is str), "I need a string! I quit!"
9 assert(path_to_file), "I need a non-empty string! I quit!"

10

11 with open(path_to_file) as f:
12 data = f.read()
13 pattern = re.compile(’[\W_]+’)
14 word_list = pattern.sub(’ ’, data).lower().split()
15 return word_list
16

17 def remove_stop_words(word_list):
18 assert(type(word_list) is list), "I need a list! I quit!"
19

20 with open(’../stop_words.txt’) as f:
21 stop_words = f.read().split(’,’)
22 # add single-letter words
23 stop_words.extend(list(string.ascii_lowercase))
24 return [w for w in word_list if not w in stop_words]
25

26 def frequencies(word_list):
27 assert(type(word_list) is list), "I need a list! I quit!"
28 assert(word_list != []), "I need a non-empty list! I quit!"
29

30 word_freqs = {}
31 for w in word_list:
32 if w in word_freqs:
33 word_freqs[w] += 1
34 else:
35 word_freqs[w] = 1
36 return word_freqs
37

38 def sort(word_freqs):
39 assert(type(word_freqs) is dict), "I need a dictionary! I quit

!"
40 assert(word_freqs != {}), "I need a non-empty dictionary! I

quit!"
41

42 return sorted(word_freqs.items(), key=operator.itemgetter(1),
reverse=True)

43

44 #
45 # The main function
46 #
47 try:
48 assert(len(sys.argv) > 1), "You idiot! I need an input file! I

quit!"
49 word_freqs = sort(frequencies(remove_stop_words(extract_words(

sys.argv[1]))))

Passive Aggressive � 175

50

51 assert(len(word_freqs) > 25), "OMG! Less than 25 words! I QUIT
!"

52 for tf in word_freqs[0:25]:
53 print(tf[0], ’-’, tf[1])
54 except Exception as e:
55 print("Something wrong: {0}".format(e))

176 � Exercises in Programming Style

23.3 COMMENTARY

JUST LIKE THE PREVIOUS STYLE, this style deals with caller mis-
takes (pre-conditions) and general execution errors by skipping the rest of

the execution in a call chain. However, it does it differently from the Tantrum
style: rather than scattering error handling code all over the program, as if
throwing a very vocal tantrum, error handling is contained in just one place.
But the result is still the same: any functions down the call chain aren’t exe-
cuted. Such is the Passive Aggressive behavior in the face of adversity.

Let’s look at the example program. Like the Tantrum style, the program’s
functions check for the validity of input arguments, returning an error imme-
diately if they aren’t valid – see assertions in lines #8, #9, #18, #27, #28,
#39, #40, #48, and #51. Unlike the Tantrum style, the possible errors result-
ing from calls to other functions, such as library functions, aren’t explicitly
handled at the points at which they are called. For example, the opening and
reading of the input file in lines #11–12 isn’t guarded by a try-except clause;
if an exception occurs there, it will simply break the execution of that func-
tion and pass the exception up the call chain until it reaches some exception
handler. In our case, that handler exists at the top-most level, in lines #54–55.

Certain programming languages are, by design, hostile to supporting the
Passive Aggressive style, encouraging either the Constructivist or the Tantrum
styles. C is a good example of such a language. But it is technically possible to
use this style in languages that don’t support exceptions as we have come to
know them in mainstream programming languages. Two examples: (1) Haskell
supports this style via the Exception monad, and without any special language
support for exceptions; and (2) many experienced C programmers have come
to embrace the use of GOTO for better modularization of error handling code,
which results in a more Passive Aggressive attitude to error handling.

23.4 HISTORICAL NOTES

Exceptions were first introduced in PL/I in the mid-1960s, although their use
there was a bit controversial. For example, reaching the end of the file was
considered an exception. In the early 1970s, LISP also had exception handling.

23.5 FURTHER READING

Abrahams, P. (1978). The PL/I Programming Language. Courant Mathe-
matics and Computing Laboratory, New York University. Available at:
http://www.iron-spring.com/abrahams.pdf
Synopsis: The PL/I specification. PL/I was the first language supporting
some version of exceptions.

http://www.iron-spring.com/

Passive Aggressive � 177

23.6 GLOSSARY

Exception: A situation outside the normal expectations in the program exe-
cution.

23.7 EXERCISES

23.1 Another language. Implement the example program in another language,
but preserve the style.

23.2 Abnormalities. Make abnormalities occur for this program, both the
program as a whole and the individual functions. Show how the program
behaves in the face of those abnormalities. Tip: write test cases that test
for situations that will make the program fail.

23.3 The exception master object. Write a version of the term-frequency pro-
gram that emulates exceptions using a “master object” similar to that
seen in Chapter 10. For that, there should be no try-catch block in the
main function. Instead, the master object should catch exceptions. The
master object’s role is to unfold the computation and at every step,
check if there were errors; if so, no further functions should be called.
Test it, for example, by giving an erroneous name to the stop words file.
You can either start with this chapter’s example code or with the code
in Chapter 10 (or your version of it in another language). The main
function of your resulting program should use bind to chain functions
or objects.

23.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

178 � Exercises in Programming Style

23.8 CONSTRUCTIVIST VS. TANTRUM
VS. PASSIVE AGGRESSIVE

These three styles – Constructivist, Tantrum and Passive Aggressive – reflect
three different approaches to dealing with adversity.

Exceptions were introduced as a structured, well-behaved, restrained alter-
native to GOTOs for the specific purpose of dealing with abnormalities. Excep-
tions don’t allow us to jump to arbitrary places of the program, but they allow
us to return to arbitrary functions in the call stack, avoiding unnecessary
boilerplate code. Exceptions are a more contained form of protesting against
obstacles in our way. They are the image of Passive Aggressive behavior (“I’m
not protesting now, but this is not right and I’ll protest eventually”).

But even when languages support exceptions, not all programs written
in those languages are passive aggressive with respect to abnormalities, as
demonstrated here. Two factors may play a role in this.

Often, the first instinct of relatively inexperienced programmers who start
learning about exceptions is to use the Tantrum style, because they aren’t
comfortable about letting the error go without checking it locally where it first
occurs. It takes some time to gain confidence in the exception mechanism. In
other cases, it’s the programming language that encourages tantrums. Java,
for example, imposes statically checked exceptions; this forces programmers to
have to declare those exceptions in the method signatures when they simply
wish to ignore them. Given that declaring exceptions in method signatures
can quickly become a time-consuming burden, it is often simpler to catch
the exceptions right where they may occur, resulting in code with exception
“tantrums.” It is not unusual to see Java programs that use C-style tantrums
by catching exceptions locally and returning error codes instead.

In general, when we decide to deal with abnormalities, the Passive Aggres-
sive style is preferred over the Tantrum style. One should not catch an excep-
tion (that is to say “protest”) prematurely, when it’s not clear how to recover
from it; we also shouldn’t do it just to log that it happened – the call stack is
part of the exception information, wherever it is caught. Often, it’s the caller
of our function, or even higher above, who has the right context for dealing
with the problem, so, unless there is some meaningful local processing to be
done when an abnormality happens, it’s better to let the exception go up the
call chain.

In many applications, though, the Constructivist style has several advan-
tages over the other two. By assuming reasonable fallback values to erroneous
function arguments and returning reasonable fallback values when things go
wrong within a function, we allow the program to continue, and do its best
at the task that it is supposed to do.

CHA PT E R 24

Declared Intentions

24.1 CONSTRAINTS

B Existence of a type enforcer.

B Procedures and functions declare what types of arguments they expect.

B If callers send arguments of types that aren’t expected, type errors are
raised, and the procedures/functions are not executed.

179

180 � Exercises in Programming Style

24.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string, inspect
3

4 #
5 # Decorator for enforcing types of arguments in method calls
6 #
7 class AcceptTypes():
8 def __init__(self, *args):
9 self._args = args

10

11 def __call__(self, f):
12 def wrapped_f(*args):
13 for i in range(len(self._args)):
14 if type(args[i]) != self._args[i]:
15 raise TypeError("Expecting %s got %s" % (str(

self._args[i]), str(type(args[i]))))
16 return f(*args)
17 return wrapped_f
18 #
19 # The functions
20 #
21 @AcceptTypes(str)
22 def extract_words(path_to_file):
23 with open(path_to_file) as f:
24 str_data = f.read()
25 pattern = re.compile(’[\W_]+’)
26 word_list = pattern.sub(’ ’, str_data).lower().split()
27 with open(’../stop_words.txt’) as f:
28 stop_words = f.read().split(’,’)
29 stop_words.extend(list(string.ascii_lowercase))
30 return [w for w in word_list if not w in stop_words]
31

32 @AcceptTypes(list)
33 def frequencies(word_list):
34 word_freqs = {}
35 for w in word_list:
36 if w in word_freqs:
37 word_freqs[w] += 1
38 else:
39 word_freqs[w] = 1
40 return word_freqs
41

42 @AcceptTypes(dict)
43 def sort(word_freq):
44 return sorted(word_freq.items(), key=operator.itemgetter(1),

reverse=True)
45

46 word_freqs = sort(frequencies(extract_words(sys.argv[1])))
47 for (w, c) in word_freqs[0:25]:
48 print(w, ’-’, c)

Declared Intentions � 181

24.3 COMMENTARY

THERE IS A CATEGORY of programming abnormalities that, from
very early on in the history of computers, has been known to be problem-

atic: type mismatches. That is, a function expects an argument of a certain
type, but is given a value of another type; or a function returns a value of a
certain type which is then used by the caller of the function as if it were a
value of another type. This is problematic because values of different types
usually have different memory sizes, which means that when type mismatches
occur, memory can be overwritten and made inconsistent.

Luckily, these abnormalities are relatively easy to deal with – at least in
comparison to all other abnormalities that can happen during program execu-
tion – and the issue has been largely solved for quite some time in mainstream
programming languages by means of type systems. All modern high-level pro-
gramming languages have a type system,1 and data types are checked in var-
ious points of program development and execution.

Python, too, has a type system, and a very strong one. For example, we
can index these values:

>>> [’F’, ’a’, ’l’, ’s’, ’e’][3]
’s’
>>> "False"[3]
’s’

but we get a type error if we try to index this other value:

>>> False[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: ’bool’ object has no attribute ’__getitem__’

meaning that the Python interpreter is not fooled by our attempt at indexing
the letter “s” of the Boolean value False, and refuses to do what we ask by
throwing an exception.

Python performs type checks dynamically, meaning that only when the
program runs do values get type checked. Other languages perform type check-
ing ahead of time – those are called static type checking languages. Java and
Haskell are examples of statically type checked programming languages. Java
and Haskell are also good examples of opposite approaches to static type
checking: while Java requires programmers to declare variable types explic-
itly, Haskell supports implicit type declarations thanks to its type inference
capabilities.

Although never proved empirically, many people believe that knowing the
types of values ahead of time, rather than waiting for the runtime to throw an
error, is a good software engineering practice, especially in the development

1Some type systems enforce types more than others.

182 � Exercises in Programming Style

of large, multi-person projects. This belief is the basis for the style presented
in this chapter, Declared Intentions.

Let’s look at the example program. The program uses functional abstrac-
tion like many other examples seen before, defining 3 main functions:
extract words (lines #22–30), frequencies (lines #33–40) and sort
(lines 43–44). We know that these functions will only work well if the argu-
ments that are passed to them are of certain types. For example, the function
extract words will not work if the caller passes, say, a list. So, instead of
hiding that knowledge, we can expose it to the callers.

That is exactly what the example program does via the declarations
@AcceptTypes(...) just above each of the function definitions – see lines #21,
#32 and #42. These declarations are implemented with a Python decorator.
A decorator is another reflective feature of Python that allows us to change
functions, methods or classes without changing their source code. A new dec-
orator instance is created every time a decorator is used.2 Let’s take a closer
look at this decorator.

The AcceptTypes decorator’s constructor (lines #8–9) executes in every
usage. The constructor takes a list of arguments – our string in line #21,
list in line #32 and dict in line #42 – and simply stores them. When the
decorated functions are called, the decorator’s call method (lines #11–
17) is called first. In our case, we check whether the types of the provided
arguments to the functions are the same as the ones that had been declared
at the time of the functions’ declaration (lines #13–14). If they aren’t, a type
error is raised. This way, we guarantee that our functions are not executed
when their arguments don’t match the expectation. But, more importantly,
we have stated our intentions to the callers of our functions.

At this point, we should pause over three pertinent questions about this
style and its illustration in the example program.

What is the difference between these type annotations and the exist-
ing Python type system? Our type annotations narrow down the accepted
types much more than the existing type system. Take, for example, the
frequencies function (lines #33–40). The argument word list is used
in line #35 as an iterable value. There are many kinds of iterable values in
Python: lists, dictionaries, tuples and even strings are examples of built-in
types that are iterable. Our type annotation in line #32 is saying that we
expect only a list and nothing else. Python’s approach to types is largely duck
typing : a value is what a value does (if it walks like a duck, swims like a duck
and quacks like a duck, it’s a duck). Our type annotations are nominal typing :
the names of the types are the foundation for type checking.

Are these type declarations the same as static typing? No. Type checking
in our decorator is being done at runtime rather than before runtime. In that
respect, our decorator is not giving us much more than Python’s approach

2We had a previous encounter with this language feature in one of the exercises in
Chapter 19, “Aspects.” In fact, type declarations can be seen as an aspect of the program.

Declared Intentions � 183

to type checking. Due to Python’s approach to types, it is quite difficult to
implement static type checking, although Python 3.x is coming closer to it
via the new feature of function annotations. What our type annotations do,
though, is make the expectations about the argument types explicit rather
than implicit. It serves as documentation and warning for the callers of these
functions. That is the core of this style.

What is the difference between the Declared Intentions style and the previ-
ous two styles? The Declared Intentions style applies only to one category of
abnormalities: type mismatches. The previous two example programs check
for more than just types; for example, they check whether the given arguments
are empty or have certain sizes. Those kinds of conditions are cumbersome,
although not impossible, to express in terms of types.

24.4 HISTORICAL NOTES

Types in programming languages have had a long evolution that is still unfold-
ing today. In the beginning of computers, data values had only one single
numerical type, and it was entirely up to the programmers to make sure that
the operations on those values made sense. In 1954, FORTRAN designers
introduced a distinction between integers and floating-point numbers; that
distinction was denoted by the first letter of the variables’ names. This seem-
ingly simple decision turned out to have a huge impact in the evolution of
programming languages.

A few years later, Algol 60 took that distinction one step further by intro-
ducing identifier declarations for integers, reals, and Booleans. Beyond the
simple integer vs. floating point distinction in FORTRAN, Algol 60 was the
first major language to support compile-time type checking. During the 1960s,
many languages expanded on Algol 60’s type concept. Languages like PL/I,
Pascal and Simula made significant contributions to the evolution of types in
programming languages.

By the end of the 1960s, it was clear that static type systems were gain-
ing solid ground in programming languages: Algol 68 had a type system so
complex (including procedures as first-class values, a large variety of primi-
tive types, type constructors, equivalence rules and coercion rules) that many
found it unusable. Algol went on to influence the design of almost all the major
programming languages that came after it. Static type checking was carried
along with that influence.

In parallel with that line of work, and during that same time, LISP started
with a very simple type system consisting only of lists and some primitive data
types. This simplicity came from the theoretical work on which LISP was based
– the lambda calculus. Over the years, the type system became more complex,
but the foundation was unchanged: values have types; variables don’t. This is
the foundation for dynamic typing.

In the late 1960s, Simula, the first object-oriented language, expanded the
concept of type to include classes. Instances of classes could be assigned to

184 � Exercises in Programming Style

class-valued variables. The interface provided by these class types consisted of
their declared procedures and data. All subsequent OOP languages built on
this concept.

In the 1970s, work in the functional programming language ML, influenced
by the typed version of the lambda calculus, lead to a family of type systems
that are able to statically infer the types of expressions without requiring
explicit type annotations. Haskell falls in this category.

As described in Chapter 20, Mesa, a language designed with physical mod-
ularization in mind, introduced typed interfaces separately from the imple-
mentation of modules. We see that concept now in Java and C#, for example.

The work on type systems is far from over. Some researchers believe that
all kinds of adversity in programming can be addressed with advanced static
type systems. That belief is a strong incentive to continue to devise new ways
of using types. Recent work also includes optional static type checking that
can be turned on and off.

24.5 FURTHER READING

Cardelli, L. (2004). Type systems. CR Handbook of Computer Science and
Engineering 2nd ed. Ch 97. CRC Press, Boca Raton, FL.
Synopsis: One of the best overviews of types and type systems in pro-
gramming languages.

Hanenberg, S. (2010). An experiment about static and dynamic type systems.
ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’10).
Synopsis: Much has been said over the years in the war between static
and dynamic type checking. To date, there is no strong empirical evidence
that one is better than the other. Those discussions tend to revolve around
folklore and personal preferences. This is one of the few studies so far that
tries to find scientific evidence one way or another.

24.6 GLOSSARY

Dynamic type checking: Type enforcement that is done during execution
of the programs.

Explicit types: Type declarations that are part of the language syntax.

Implicit types: Types that do not have a presence in the language syntax.

Static type checking: Type enforcement that is done before execution of
the programs.

Type coercion: The transformation of a data value from one type to
another.

Declared Intentions � 185

Type inference: The process of finding the type of an expression automat-
ically from the leaf nodes of the expression.

Type safety: The assurance that programs will not perform instructions
with type mismatches that go undetected.

24.7 EXERCISES

24.1 Another language. Implement the example program in another language,
but preserve the style.

24.2 Return. The AcceptTypes decorator of the example program works only
for the input arguments of functions. Write another decorator called
ReturnTypes that does a similar thing for the return value(s) of func-
tions. An example of its use is as follows:

@ReturnTypes(list)
@AcceptTypes(str)
def extract_words(path_to_file):
...

24.3 Static type checking. Using Python 3.x, propose a mechanism for per-
forming static type checking. Use that mechanism in some version of the
example program. Hint: use function annotations.

24.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 25

Quarantine

25.1 CONSTRAINTS

B Core program functions have no side effects of any kind, including IO.

B All IO actions must be contained in computation sequences that are
clearly separated from the pure functions.

B All sequences that have IO must be called from the main program.

187

188 � Exercises in Programming Style

25.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3

4 #
5 # The Quarantine class for this example
6 #
7 class TFQuarantine:
8 def __init__(self, func):
9 self._funcs = [func]

10

11 def bind(self, func):
12 self._funcs.append(func)
13 return self
14

15 def execute(self):
16 def guard_callable(v):
17 return v() if hasattr(v, ’__call__’) else v
18

19 value = lambda : None
20 for func in self._funcs:
21 value = func(guard_callable(value))
22 print(guard_callable(value))
23

24 #
25 # The functions
26 #
27 def get_input(arg):
28 def _f():
29 return sys.argv[1]
30 return _f
31

32 def extract_words(path_to_file):
33 def _f():
34 with open(path_to_file) as f:
35 data = f.read()
36 pattern = re.compile(’[\W_]+’)
37 word_list = pattern.sub(’ ’, data).lower().split()
38 return word_list
39 return _f
40

41 def remove_stop_words(word_list):
42 def _f():
43 with open(’../stop_words.txt’) as f:
44 stop_words = f.read().split(’,’)
45 # add single-letter words
46 stop_words.extend(list(string.ascii_lowercase))
47 return [w for w in word_list if not w in stop_words]
48 return _f
49

50 def frequencies(word_list):
51 word_freqs = {}
52 for w in word_list:
53 if w in word_freqs:
54 word_freqs[w] += 1

Quarantine � 189

55 else:
56 word_freqs[w] = 1
57 return word_freqs
58

59 def sort(word_freq):
60 return sorted(word_freq.items(), key=operator.itemgetter(1),

reverse=True)
61

62 def top25_freqs(word_freqs):
63 top25 = ""
64 for tf in word_freqs[0:25]:
65 top25 += str(tf[0]) + ’ - ’ + str(tf[1]) + ’\n’
66 return top25
67

68 #
69 # The main function
70 #
71 TFQuarantine(get_input)\
72 .bind(extract_words)\
73 .bind(remove_stop_words)\
74 .bind(frequencies)\
75 .bind(sort)\
76 .bind(top25_freqs)\
77 .execute()

190 � Exercises in Programming Style

25.3 COMMENTARY

THIS STYLE makes use of another variation of function composition. Its
constraints are very interesting, namely the first one: the core program

cannot do IO. For our term-frequency task, that reads files and outputs a
result on the screen, this constraint poses a puzzling problem: how can we do
it if the functions can’t read files such as the Pride and Prejudice text and
can’t print things on the screen? Indeed, how can one write programs these
days that don’t interact one way or another with the user, the file system, and
the network while the program is executing?

Before explaining how to do it, let’s first look into why anyone would want
to program under such seemingly unreasonable constraints. Whenever pro-
gram functions need to interact with the outside world, they lose the “purity”
of mathematical functions – they stop being just relations of inputs to outputs,
and they either get or leak data through some other means. These “impure”
functions are harder to handle, from a software engineering perspective. Take,
for example, the function extract words defined in the Passive Aggressive
style (line #34 in that example). There are absolutely no guarantees that two
different calls to that function with the exact same path to file argument
produce the exact same word list: for example, someone could replace the file
in between the two calls. Because of the unpredictability of the outside world,
“impure” functions are more difficult than “pure” functions to reason about
(to test, for example). As such, a certain philosophy of program design calls
for avoiding, or at least minimizing, IO.1 The style in this chapter is inspired
by this design philosophy and Haskell’s IO monad: it is a flat-out quarantine
of all IO operations. Here is how it works.

The core program functions, i.e. the first-order functions, cannot do IO;
they need to be “pure,” in the sense that one or more calls to them with the
same arguments should always produce the same results. However, higher-
order functions can do IO. So the overall approach is to wrap all “IO-infected”
code in higher-order functions, chain those in a contained sequence without
executing them, and execute that chain only in the main program, when we
absolutely need to do IO.

Let’s take a look at the example program. First, let’s look at the program’s
functions between lines #27 and #66. There are two kinds of functions: those
that do IO and those that don’t. The functions that do IO are: (1) get input
(lines #27–30), which reads from the command line; (2) extract words
(lines #32–39), which opens and reads a file; and (3) remove stop words
(lines #41–48), which opens and reads the stop words file. The other three
functions – frequencies, sort and top25 freqs – are “pure” in the
sense that we have used that word before: given the same inputs, they will
always produce the same outputs, without interaction with the outside world.

1Yes, one could write an essay with the title IO Considered Harmful, and someone
already has, albeit in the context of CS education.

Quarantine � 191

In order to identify the functions that do IO, and separate them from the rest,
we have abstracted the bodies of those functions into higher-order functions:

1 def func(arg):
2 def _f():
3 ...body...
4 return _f

Doing so makes the first-order program functions be “pure,” in the sense
that any calls to any of them will always return the same value (their inner
function) without any side effects. Here is what the Python interpreter will
say if we call get input:

>>> get_input(1)
<function _f at 0x01E4FC70>

>>> get_input([1, 2, 3])
<function _f at 0x01E4FC30>

>>> get_input(1)
<function _f at 0x01E4FC70>

>>> get_input([1, 2, 3])
<function _f at 0x01E4FC30>

We are quarantining the IO code so that it doesn’t get executed at the
first level of our program’s functions. At this first level, these functions are
again easy to deal with – they don’t do anything and just return a function.
Calling them is perfectly safe: nothing in the outside world will be affected,
because the inner function is not being executed [yet]. The other three “pure”
functions are written in the normal, direct way.

But if we are delaying the application of the IO-infected functions, how
can we actually compose the functions so that they read files, count words
and print characters on the screen? The first thing to notice is that this will
not work:

1 top25_freqs(sort(frequencies(remove_stop_words(extract_words(
get_input(None))))))

We need another way to define a sequence of functions. Furthermore, we
need to hold on to that sequence until the time comes to interact with the
outside world. As per constraint of this style, that time is in the main function:
IO cannot be done in arbitrary parts of the program’s execution.

The chaining is done in the main program, line #71 onward, using an
instance of the Quarantine class defined in lines #7–22. We’ve seen these
chains before in Style #9, The One. But this chain is a bit different; let’s take
a look at the TFQuarantine class.

Like the other monad-inspired classes that we have seen before, this class
also consists of a constructor, a bind method and a third method, this time
called execute, that discloses what’s inside. The idea for instances of this

192 � Exercises in Programming Style

class is to hold on to a list of functions without calling them until execute is
called. As such, bind simply appends the given function to the list of functions
(line #12), returning the instance for further bindings or for execution (line
#13). execute is where the action takes place: it iterates through the list of
functions (line #20), calling them one by one (line #21). The argument for
each call is the return value of the previous call. At the end of the iteration,
we print out the last value (line #22).

The TFQuarantine does lazy evaluation of the chain of functions: it first
stores them without calling them, and only when execute is called in main
does it call them.

In implementing execute we need to be careful, because, by voluntary
choice, we have set ourselves for having two kinds of functions: those that
return higher-order functions (the IO-infected code) and those that have nor-
mal function bodies. Since we can have both kinds of functions in these chains,
the execute method needs to know whether it needs to apply the value or
whether it simply needs to reference it (the argument in the function call
in line #21). Hence the guard callable inner function in lines #16–17:
this function calls the value or references it, depending on whether that value
is callable (functions are callable) or not (simple data types like string and
dictionaries aren’t callable).

It should be noted that the style in this chapter, as well as the particular
implementation shown to exemplify it, don’t reflect Haskell’s IO monad in
important ways. Faithful reproduction is not the goal here; we are focusing on
the most important constraints of each style. But it’s important to understand
what those differences are.

First of all, Haskell is a strongly typed language, and its implementation
and use of monads is very much tied to types. Functions that perform IO
are of certain IO types that are part of the language. That is not the case
with Python and with the implementation of the Quarantine style shown
here. Haskell provides some syntactic sugar to chain functions using the do-
notation, which makes these chains look like sequences of imperative com-
mands. We didn’t do that here either. More importantly, in Haskell this style
is not a voluntary choice on the part of the programmers; it’s part of the lan-
guage design, and it’s strongly enforced via type inference. That is, IO must
be done this way.2 For example, we cannot execute an IO monad in some arbi-
trary function; it needs to have been called from the main function. In our
example, all the choices – like, for example, deciding to flag IO functions by
having them return a higher-order function – are voluntary, and established
with the sole purpose of making the constraints of the style visible in the code.
As usual in this book, other implementation options could have been taken
that would also honor the constraints.

A final comment about whether this style really achieves its ultimate pur-
pose of minimizing IO. Clearly, it falls short. Programmers can still write

2Ignoring unsafePerformIO.

Quarantine � 193

programs with as much IO as with any other style, just as we did for term
frequency. However this style does one thing on the way to that ultimate goal:
it forces programmers to think carefully about what functions do IO and what
functions don’t do IO; by thinking about it, they may be more responsible in
separating IO code from the rest, and that can only be good.

25.4 THIS STYLE IN SYSTEMS DESIGN

The issue of IO being problematic goes well beyond designing programs at
the small scale. In fact, its problematic nature is more visible in large dis-
tributed systems, where disk access, network latency and server load can have
a tremendous effect on the user experience.

Consider, for example, a Web server that is part of a multi-user game, and
that returns an image for the following kinds of URLs:
http://example.com/images/fractal?minx=-2&maxx=1&miny=-1&maxy=1 This
fractal service can be implemented in at least 2 different ways: (1) it can
retrieve the image from a database where fractal images are stored, possi-
bly generating and storing the image first if it doesn’t exist on the database
yet; or (2) it can always generate the image on the fly without accessing the
disk. The first approach is the classical compute & cache value approach that
we see pervasively used in computing systems, and is equivalent to “impure”
functions described above. The second approach is the equivalent of “pure”
functions, and seems, at first glance, worse, because for every request with
the same parameters we are recomputing the image again, using more CPU
cycles.

In both cases, and given that the Web is designed with explicit caches in
mind, the image server can tag these images as cacheable for a very long time,
which allows Web caches on the Internet to decrease the load on the original
server. This weakens the argument about approach 2 being worse.

A second aspect to consider is the time of disk access vs. the time for
computing the image. CPUs are so fast these days, that disk accesses have
become bottlenecks in many applications. In many cases, there are substantial
performance increases when using procedural generation of data vs. retrieving
the pre-generated data from disk. In the case of our image server, that may
or may not be the case, but if responsiveness is important, this tradeoff would
need to be checked.

A third aspect to consider is the variety of images to be served and the
amount of disk that it will take to store them. Our image service can generate
an infinite amount of different fractal images, one for every combination of
parameters minx, maxx, miny, and maxy. Images usually take up a significant
number of bytes. So if we expect thousands of clients to request hundreds of
thousands of different fractal images, storing them may be a bad idea.

Finally, another aspect to consider is the consequences of changes in the
service’s specification. For example, the first implementation of this service
might generate images in the red part of the spectrum, but we may want to

http://example.com/

194 � Exercises in Programming Style

change it at some point to generate images in the blue part of the spectrum
(say, the graphic designers changed their minds about the color scheme). If
that happened using approach 1 (the database), we would need to delete these
images from the database – something that may be problematic in itself,
depending on how those images were stored and whether there were other
images stored in the same table or not. Using approach 2, this change would
be trivial to handle, since images are always generated on the fly. In either
case, if we had previously set the Web cache expiration of these images to a
future date, some clients would not see the changes, possibly for a long time
– this shows the problem with using caches in general.3

If we believe that generation on the fly, i.e. “pure” functions, is beneficial
for our image service, a third, even more radical, approach would be to send
the server-side fractal generation function to the client, and let the client do
the work, therefore unloading the server from those computations. This can
only be done if that function doesn’t do IO.

All this analysis goes to show that IO is, indeed, a non-trivial issue in
large distributed systems. Any programming techniques and styles that shine
a spotlight on this issue at the small scale are worth studying for understanding
the tradeoffs at the systems design level.

25.5 HISTORICAL NOTES

Monads were brought to programming languages in the early 1990s in the con-
text of the Haskell programming language. IO was the main reason why they
were introduced, as IO has always been a contentious issue in pure functional
languages.

25.6 FURTHER READING

Peyton-Jones, S. and Wadler, P. (1993). Imperative functional programming.
20th Symposium on Principles of Programming Languages ACM Press.
Synopsis: Another take on monads.

Wadler, P. (1997). How to declare an imperative. ACM Computing Surveys
29(3): 240–263.
Synopsis: More monads. Philip Wadler’s papers are always fun and inter-
esting to read.

25.7 GLOSSARY

Pure function: A function whose result is always the same for the same
input value(s), that does not depend on any data other than its explicit

3“There are only two hard things in Computer Science: cache invalidation and naming
things.” – quote usually attributed to Phil Karlton.

Quarantine � 195

parameters and that doesn’t have any observable effect in the external
world.

Impure function: A function that, in addition to mapping inputs to out-
puts, depends on data other than its explicit parameters and/or changes
the observable state of the external world.

Lazy evaluation: A program execution strategy which delays the evaluation
of expressions until their values are absolutely needed.

25.8 EXERCISES

25.1 Another language. Implement the example program in another language,
but preserve the style.

25.2 Bound but not committed. Find a way to demonstrate that the function
chain defined in line #71 is, indeed, just creating the chain of functions
without executing them.

25.3 Top 25. Change the top25 freqs function so that instead of accumu-
lating the output on a string, it prints the data on the screen directly, one
word-frequency pair at a time. Do this without violating the constraints
of this style.

25.4 True to the style. The goal of this style is to coerce programmers
into isolating their IO code from the rest. Two of the three IO-
infected functions in the example program, namely extract words
and remove stop words, end up doing more than just IO. Refactor
the program so that it does a better job at separating IO code from the
rest.

25.5 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

VII
Data-Centric

197

http://taylorandfrancis.com

Data-Centric � 199

When programming, the question What needs to happen? often makes us
focus on functions, procedures or objects. The emphasis on algorithms in
computer science reinforces that behavior-first approach. However, many times
it’s more beneficial to think of data first – that is, focus on the data of the
application, and add behaviors as needed. This is a very different approach
to programming, and results in different programming styles. The next three
chapters show three styles that place data first and computation later. The
first one, Persistent Tables, is the well-known relational model; the other two
fall into a category of styles known as dataflow programming.

http://taylorandfrancis.com

CHA PT E R 26

Persistent Tables

26.1 CONSTRAINTS

B The data exists beyond the execution of programs that use it, and is
meant to be used by many different programs.

B The data is stored in a way that makes it easier/faster to explore. For
example:

B The input data of the problem is modeled as one or more series of
domains, or types, of data.

B The concrete data is modeled as having components of several
domains, establishing relationships between the application’s data
and the domains identified.

B The problem is solved by issuing queries over the data.

201

202 � Exercises in Programming Style

26.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, string, sqlite3, os.path
3

4 #
5 # The relational database of this problem consists of 3 tables:
6 # documents, words, characters
7 #
8 def create_db_schema(connection):
9 c = connection.cursor()

10 c.execute(’’’CREATE TABLE documents (id INTEGER PRIMARY KEY
AUTOINCREMENT, name)’’’)

11 c.execute(’’’CREATE TABLE words (id, doc_id, value)’’’)
12 c.execute(’’’CREATE TABLE characters (id, word_id, value)’’’)
13 connection.commit()
14 c.close()
15

16 def load_file_into_database(path_to_file, connection):
17 """ Takes the path to a file and loads the contents into the

database """
18 def _extract_words(path_to_file):
19 with open(path_to_file) as f:
20 str_data = f.read()
21 pattern = re.compile(’[\W_]+’)
22 word_list = pattern.sub(’ ’, str_data).lower().split()
23 with open(’../stop_words.txt’) as f:
24 stop_words = f.read().split(’,’)
25 stop_words.extend(list(string.ascii_lowercase))
26 return [w for w in word_list if not w in stop_words]
27

28 words = _extract_words(path_to_file)
29

30 # Now let’s add data to the database
31 # Add the document itself to the database
32 c = connection.cursor()
33 c.execute("INSERT INTO documents (name) VALUES (?)", (

path_to_file,))
34 c.execute("SELECT id from documents WHERE name=?", (

path_to_file,))
35 doc_id = c.fetchone()[0]
36

37 # Add the words to the database
38 c.execute("SELECT MAX(id) FROM words")
39 row = c.fetchone()
40 word_id = row[0]
41 if word_id == None:
42 word_id = 0
43 for w in words:
44 c.execute("INSERT INTO words VALUES (?, ?, ?)", (word_id,

doc_id, w))
45 # Add the characters to the database
46 char_id = 0
47 for char in w:
48 c.execute("INSERT INTO characters VALUES (?, ?, ?)", (

char_id, word_id, char))

Persistent Tables � 203

49 char_id += 1
50 word_id += 1
51 connection.commit()
52 c.close()
53

54 #
55 # Create if it doesn’t exist
56 #
57 if not os.path.isfile(’tf.db’):
58 with sqlite3.connect(’tf.db’) as connection:
59 create_db_schema(connection)
60 load_file_into_database(sys.argv[1], connection)
61

62 # Now, let’s query
63 with sqlite3.connect(’tf.db’) as connection:
64 c = connection.cursor()
65 c.execute("SELECT value, COUNT(*) as C FROM words GROUP BY

value ORDER BY C DESC")
66 for i in range(25):
67 row = c.fetchone()
68 if row != None:
69 print(row[0], ’-’, str(row[1]))

204 � Exercises in Programming Style

26.3 COMMENTARY

IN THIS STYLE, we want to model and store the data so that it is
amenable to future retrieval in all sorts of ways. For the term-frequency

task, if it’s done several times, we might not always want to read and parse
the file in its raw form every time we want to compute the term frequency.
Also, we might want to mine for more facts about the books, not just term
frequencies. So, instead of consuming the data in its raw form, this style
encourages using alternative representations of the input data that make it
easier to mine, now and in the future. In one approach to such a goal, the
types of data (domains) that need to be stored are identified, and pieces of
concrete data are associated with those domains, forming tables. With an
unambiguous entity-relationship model in place, we can then fill in the tables
with data, to retrieve portions of it using declarative queries.

Let’s take a look at the example program, starting at the bottom. Lines
#57–60 check if the database file already exists; if it doesn’t exist, it creates
it, and fills it out with the input file’s data.

The rest of the program (from line #63 onward), which could very well
be another program, queries the database. The language used to query it is
the well-known Structured Query Language (SQL) used pervasively in the
programming world. Line #64 gets a cursor – an object that enables traversal
over records in the database (similar to an iterator in programming languages).
On that cursor we then execute an SQL statement that counts the number of
occurrences of each word in the words table, ordered by decreasing frequency.
Finally, we iterate through the first 25 rows of the retrieved data, printing out
the first column (the word) and the second one (the count). Let’s look into
each of the functions of the program.

create database schema (lines #8–14) takes the connection to the
database and creates our relational schema. We divided the data into docu-
ments, words, and characters, each on a table. A document is a tuple consisting
of an id (an integer) and a name; a word is a tuple consisting of an id, a cross
reference to the document id where it occurs, and a value; finally, a character
is a tuple consisting of an id, a cross reference to the word id where it occurs,
and a value.1

load file into database (lines #16–52) takes a path to a file and the
connection to the database and populates the tables. It first adds the document
row (line #33) using the file name as the value. Lines #34–35 retrieve the
automatically generated document id from the row we just inserted, so that
we can use it for the words. Line #38 queries the words table for its latest
word id, so that it can continue from there. Then the function proceeds to
fill in the words and the characters tables (lines #43–50). Finally, the data is
committed to the database (line #51) and the cursor is discarded (line #52).

1The design of entity-relationship models is a much-studied topic in CS; it is not the
goal here to teach how to do it.

Persistent Tables � 205

26.4 THIS STYLE IN SYSTEMS DESIGN

Databases are pervasive in the computing world, and relational databases, in
particular, are the most popular ones. Their purpose is the same as it was
back in 1955: to store data for later retrieval.

Whenever applications have this need (and they often do), there are some
alternatives to the Persistent Tables style, but often those alternatives fall
short. For starters, applications can store the data in some ad hoc manner.
For simple bulk storage and retrieval, this approach may be perfectly appro-
priate. For example, it is quite common to see applications storing data in
comma-separated value (CSV) files. However, when data is to be retrieved
from storage selectively, rather than in bulk, better data structures need to
be used. Invariably, one is led to some form of database technology, because
they tend to be mature and solid pieces of software – and fast, too.

The type of database technology used depends on the application. Rela-
tional databases are good at supporting complex queries that involve many
pieces of data. They take a conservative (Tantrum-ish) approach to adver-
sity, by aborting any partial changes that fail to commit as a whole. Because
of the ACID properties (Atomicity, Consistency, Isolation, Durability), rela-
tional databases are guaranteed to be consistent. While some applications
need these features, many others don’t, and more lightweight technologies,
such as NoSQL, can be used instead.

In applications where there is no need to store the data for later analysis,
this style of programming is, obviously, overkill.

26.5 HISTORICAL NOTES

By the early 1960s, a few companies and government laboratories were already
storing and processing relatively large amounts of data, and using comput-
ers primarily as data processors. The term database emerged in the mid-
1960s, coinciding with the availability of direct-access storage, aka disks – an
improvement over tapes. Early on, engineers realized that storing the data
in some structured manner would support faster retrieval on the new stor-
age technology. During the 1960s, the main model used was navigational. A
navigational database is one where the records, or objects, are found by follow-
ing references from one to another. Within that model, two main approaches
were being used: hierarchical databases and network databases. Hierarchical
databases decompose the data into a tree, so parents can have many children
but children have exactly only one parent (one-to-many); network databases
extend that model to a graph.

The relational database model was formulated in the late 1960s by a com-
puter scientist working for IBM, Edgar Codd. The ideas that came along with
this model were so much better than the technology of the time, that relational
databases quickly became the de facto standard for storing data.

In the 1980s, the emergence of object-oriented programming brought along
the “object-relational impedance mismatch,” the observation that the object

206 � Exercises in Programming Style

model of OOP programs and the relational data model of long-term storage
were somehow in conflict. OOP data is more like a graph, so it brought back
some of the concepts of network data models of the 1960s. This mismatch
gave rise to object and object-relational databases, which had some success,
but not as much as one would expect. Relational databases continue to be the
databases of choice these days, even when OOP languages are used.

More recently, there has been a push towards NoSQL databases, a class
of data storage systems that use highly optimized key-value pairs as the basis
for storage, still tabular in nature. NoSQL databases are intended for simple
retrieval and appending operations, rather than retrieval of complicated data
relations.

26.6 FURTHER READING

Codd, E.F. (1970). Relational model of data for large shared data banks.
Communications of the ACM 13(6): 377–387.
Synopsis: The original paper that described the relational model and that
started it all in the database field.

26.7 GLOSSARY

Entity: An N-tuple in a relational database containing data from N domains.

Relationship: An association between data and domains (a table).

26.8 EXERCISES

26.1 Another language. Implement the example program in another language,
but preserve the style.

26.2 Separate writer from readers. Starting with the example program, split
it into two programs: one that adds data to the database given a file,
and one that reads data from the database. Change your program so
that it stores the data on the file system instead of storing it in memory.

26.3 More books. Download another book from the Gutenberg collection,
e.g. http://www.gutenberg.org/files/44534/44534-0.txt. Populate your
database with both Pride and Prejudice and this second book.

26.4 More queries. Query your database to find out the answers to the follow-
ing questions, and show your queries together with your answers (ignore
stop words):

a. What are the 25 most frequently occurring words in each book?

b. How many words does each book have?

http://www.gutenberg.org/

Persistent Tables � 207

c. How many characters does each book have?

d. What is the longest word in each book?

e. What is the average number of characters per word?

f. What is the combined length of characters in the top 25 words of
each book?

26.5 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 27

Spreadsheet

27.1 CONSTRAINTS

B The problem is modeled like a spreadsheet, with columns of data and
formulas.

B Some data depends on other data according to formulas. When data
changes, the dependent data also changes automatically.

209

210 � Exercises in Programming Style

27.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, itertools, operator
3

4 #
5 # The columns. Each column is a data element and a formula.
6 # The first 2 columns are the input data, so no formulas.
7 #
8 all_words = [(), None]
9 stop_words = [(), None]

10 non_stop_words = [(), lambda : \
11 list(map(lambda w : \
12 w if w not in stop_words[0] else ’’,\
13 all_words[0]))]
14 unique_words = [(),lambda :
15 set([w for w in non_stop_words[0] if w!=’’])]
16 counts = [(), lambda :
17 list(map(lambda w, word_list : word_list.count(w),

\
18 unique_words[0], \
19 itertools.repeat(non_stop_words[0], \
20 len(unique_words[0]))))]
21 sorted_data = [(), lambda : sorted(zip(list(unique_words[0]), \
22 list(counts[0])), \
23 key=operator.itemgetter(1),
24 reverse=True)]
25

26 # The entire spreadsheet
27 all_columns = [all_words, stop_words, non_stop_words,\
28 unique_words, counts, sorted_data]
29

30 #
31 # The active procedure over the columns of data.
32 # Call this everytime the input data changes, or periodically.
33 #
34 def update():
35 global all_columns
36 # Apply the formula in each column
37 for c in all_columns:
38 if c[1] != None:
39 c[0] = c[1]()
40

41

42 # Load the fixed data into the first 2 columns
43 all_words[0] = re.findall(’[a-z]{2,}’, open(sys.argv[1]).read().

lower())
44 stop_words[0] = set(open(’../stop_words.txt’).read().split(’,’))
45 # Update the columns with formulas
46 update()
47

48 for (w, c) in sorted_data[0][:25]:
49 print(w, ’-’, c)

Spreadsheet � 211

27.3 COMMENTARY

L IKE THE PREVIOUS STYLE, this style uses tabular data, but with a
different goal in mind. Rather than storing the data and querying it later,

the goal here is to emulate the good old spreadsheets that have been used in
accounting for hundreds of years. In accounting, the data is laid out in tables;
while some columns have primitive data, other columns have compound data
that results from some combination of other columns (totals, averages, etc.).
Spreadsheets are used by everyone these days; however, not many realize that
their underlying programming model is quite powerful, and a great example
of the dataflow family of programming styles.

Let’s look at the example program. In order to understand it, it is useful
to visualize an Excel (or other program) spreadsheet. The idea, conceptually,
is to “place” all of the words of the book in one column, one per row, and the
stop words in the second column, one per row. From then on, we have more
columns that result from operations on these two columns and other columns
“to the left” of each column. The complete set of columns in our spreadsheet
is as follows:

1st all words (line #8) will be filled out with all the words from the input
file.

2nd stop words (line #9) will be filled out with the words from the stop
words file.

3rd non stop words (lines #10–13) will be filled out with all the words
(from the 1st column) that aren’t stop words (as given by the 2nd

column).

4th unique words (lines #14–15) will be filled out with the unique non-
stop words (coming from the non stop words column).

5th counts (lines #16–20) will be filled out with the number of occurrences
of each unique word (4th column) in the list of all non-stop words (3rd

column).

6th sorted data (lines #21–24) will be filled out with a tuple word-count
sorted by count, by taking the unique words (4th column) and their
counts (5th column).

Let’s look closer at what these columns really are. Each column is modeled
by a list of two elements: a list of values and a formula (a function), which may
or may not exist. When the formula exists, we use the formula to generate the
list of values. The update function (lines #34–39) iterates through a column
at a time, setting the first element of the column structure to the result of
applying the formula. This is the core update function that would need to
be called periodically, or on data changes, for a long-running spreadsheet
application. The example program executes the update function only once, in

212 � Exercises in Programming Style

line #46, just after loading the input file’s words into the first column (line
#43) and the stop words into the second (line #44).

27.4 THIS STYLE IN SYSTEMS DESIGN

The Spreadsheet programming style has not been used much beyond spread-
sheet applications – or at least its uses beyond spreadsheets have not been
recognized as such. But the style is applicable to many more data-intensive
situations.

The style is inherently declarative and reactive, meaning that it is a good
fit for data-intensive applications that need a live update loop over changing
data. This style is a good example of dataflow programming, where changes
in certain points of the data space “flow” to another part of that space.

27.5 HISTORICAL NOTES

Spreadsheets were one of the first targets of computer applications, and, like so
many other programming concepts, were invented by several people indepen-
dently. The first spreadsheet programs were batch programs on mainframes,
where the user would enter the data, press a button and wait for the rest of
the data to update. The idea of making interactive spreadsheets – i.e. having
the dependent data update automatically – came to life in the late 1960s with
a system called LANPAR (LANguage for Programming Arrays at Random).
LANPAR still used mainframes. Interactive electronic spreadsheets, this time
with a GUI, were invented again in the beginning of the personal computer era
in the late 1970s, with an application called VisiCalc (Visible Calculator) that
ran on both the Apple computer and the PC. Spreadsheet software products
have become featureful, but haven’t changed much since then.

27.6 FURTHER READING

Power, D. J. (2002). A Brief History of Spreadsheets. DSSResources.com.
Available at: http://dssresources.com/history/sshistory.html

27.7 GLOSSARY

Formula: A function that uses the data space in order to update a value
based on other values.

27.8 EXERCISES

27.1 Another language. Implement the example program in another language,
but preserve the style.

http://dssresources.com/

Spreadsheet � 213

27.2 Interactive. Make the example program interactive by allowing the user
to enter new file names that are then added to the data space, the
columns updated, and the top 25 words displayed again.

27.3 Column vs. cell. The spreadsheet in the example program uses one single
formula per column. Modify the program so that every cell can have its
own formula.

27.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 28

Lazy Rivers

28.1 CONSTRAINTS

B Data is available in streams, rather than as a complete whole.

B Functions are filters/transformers from one kind of data stream to
another.

B Data is processed from upstream on a need basis from downstream.

215

216 � Exercises in Programming Style

28.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, operator, string
3

4 def characters(filename):
5 for line in open(filename):
6 for c in line:
7 yield c
8

9 def all_words(filename):
10 start_char = True
11 for c in characters(filename):
12 if start_char == True:
13 word = ""
14 if c.isalnum():
15 # We found the start of a word
16 word = c.lower()
17 start_char = False
18 else: pass
19 else:
20 if c.isalnum():
21 word += c.lower()
22 else:
23 # We found end of word, emit it
24 start_char = True
25 yield word
26

27 def non_stop_words(filename):
28 stopwords = set(open(’../stop_words.txt’).read().split(’,’) +

list(string.ascii_lowercase))
29 for w in all_words(filename):
30 if not w in stopwords:
31 yield w
32

33 def count_and_sort(filename):
34 freqs, i = {}, 1
35 for w in non_stop_words(filename):
36 freqs[w] = 1 if w not in freqs else freqs[w]+1
37 if i % 5000 == 0:
38 yield sorted(freqs.items(), key=operator.itemgetter(1)

, reverse=True)
39 i = i+1
40 yield sorted(freqs.items(), key=operator.itemgetter(1),

reverse=True)
41 #
42 # The main function
43 #
44 for word_freqs in count_and_sort(sys.argv[1]):
45 print("-----------------------------")
46 for (w, c) in word_freqs[0:25]:
47 print(w, ’-’, c)

Lazy Rivers � 217

28.3 COMMENTARY

THIS STYLE focuses on the problem of processing data that comes into
the application continuously and may not even have an end. The same

issues are seen in processing data whose size is known, but larger than the
available memory. The style establishes a flow of data from upstream (data
sources) to downstream (data sinks), with processing units along the way.
The data flows through the stream only when the sinks need it. At any point
in time, the only data present in the stream is the one needed to produce
whatever piece of data the sinks need, therefore avoiding the problems raised
by too much data at a time.

The example program consists of 4 functions, all of them generators. Gen-
erators are simplified coroutines that allow us to iterate through sequences of
data on a need-basis. A generator is a function containing a yield statement
where a return statement might normally be found. In the example program
the data flow is established from top to bottom, textually: the top function,
characters (lines #4–7), connects to the data source (the file) while the
main instructions (lines #44–47) drive the fetching and flow of data.

Before explaining the data flow control at the bottom, let’s take a look at
each of the functions, from top to bottom.

• characters (lines #4–7) iterates through the file one line at a time
(line #5). It then iterates on the line one character at a time (line #6),
yielding each character downstream (line #7).

• all words (lines #9–25) iterates through the characters passed to it
by the function above (line #11) looking for words. The logic in this
function is related to the identification of the beginning and ending of
words. When the end of a word is detected, this function yields that
word downstream (line #25).

• non stop words (lines #27–31) iterates through the words passed to
it by the function above (line #29). For each word, it checks to see if it
is a stop word and yields it only if it is not a stop word (lines #30–31).

• count and sort (lines #33–40) iterates through the non-stop words
passed to it by the previous function (line #35) and increments the word
counts (line #36). For every 5,000 words that it processes, it yields its
current word-frequency dictionary, sorted (lines #37–38). The dictionary
is also yielded at the end (line #40), because the last batch of words
coming from upstream may not be an exact multiple of 5,000.

• The main instructions (lines #44–47) iterate through the word-
frequency dictionaries passed by the previous function (line #44), print-
ing them on the screen.

Functions that contain iterations yielding values are special: the next time
that they are called, rather than starting from the beginning, they resume

218 � Exercises in Programming Style

from where they yielded. So, for example, the iteration through characters
in line #11 doesn’t open the file (line #5) multiple times; instead, after the
first call, every subsequent request for the next character in line #11 simply
resumes the characters function from where it left off in line #7. The same
happens in all the other generators of our program.

Having seen what each generator does, let’s now look at the flow control. In
line #44, there is an iteration on a sequence of word-frequency dictionaries. In
each iteration, a dictionary is requested from the count and sort generator.
That request prompts that generator to action: it starts iterating through the
non-stop words provided to it by the non stop words generator until it gets
to 5,000 words, at which point it passes the dictionary downstream. Each
iteration that count and sort does through a non-stop word prompts the
non stop words generator to action: it fetches the next word passed to it
from upstream yielding it downstream if it is a non-stop word, or fetching
another word if the one it got was a stop word. Similarly, each time that
non stop words requests the next word from all words, it prompts the
all words generator to action: it requests characters from upstream until it
identifies a word, at which point it yields that word downstream.

The data flow control is, then, driven by the sink code at the bottom:
data is only fetched from the source, flowing through the generators in the
middle, for as long as the main instructions need it. Hence the adjective lazy
in the name of the style, in contrast to the eager form of normal functions.
For example, if instead of the iteration in line #44 we had this:

word_freqs = count_and_sort(sys.argv[1]).next()

only one word-frequency dictionary, the first, would be printed out, and only
one portion of the input file would be read, instead of the entire file.

There are many similarities between the Lazy Rivers style and the Pipeline
style described in Chapter 6. The important difference is in the way that the
data flows through the functions: in the Pipeline style, the data is one single
“blob” that passes from one function to another, all at once (e.g. the entire
list of words); in the Lazy Rivers style, the data flows, lazily, piece by piece;
it is only fetched from the source as needed by the sink.

The Lazy Rivers style is nicely expressed when programming languages
support generators. Some programming languages, e.g. Java, don’t support
generators; the Lazy Rivers style can be implemented using iterators in Java,
but the code will look ugly. When the programming language doesn’t support
generators or iterators, it is still possible to support the goals of this style, but
the expression of that intent is considerably more complicated. In the absence
of generators and iterators, the next best mechanism for implementing the
constraints underlying this style is with threads. The style presented in the
next chapter, Actors, would be a good fit for this data-centric style.

Lazy Rivers � 219

28.4 THIS STYLE IN SYSTEMS DESIGN

The Lazy Rivers style is of great value in data-intensive applications, especially
those where the data is either live-streamed, or very large, or both. Its strength
comes from the fact that only a portion of data needs to be held in memory
at any point in time, that amount being driven by the end-goal need for the
data.

Within components, language support for generators makes for elegant
programs in this style. As will be seen in Chapter 29, threads used in a special
way are a viable alternative for implementing Lazy Rivers. Threads, however,
tend to be much heavier than generators in terms of creation and context
switching.

28.5 HISTORICAL NOTES

Coroutines were first introduced in the context of a compiler for COBOL
in 1963. However, they have not always been incorporated in programming
languages since then. Several mainstream languages – most notably C/C++
and Java – lack support for any flavor of coroutines.

Generators were first described in the context of the language CLU circa
1977, where they were called iterators. These days, the word iterator is used to
denote the object-oriented flavor of the concept, i.e. an object that traverses
a container. The word generator has converged to denoting the specialized
coroutines that support iteration.

28.6 FURTHER READING

Conway, M. (1963). Design of a separable transition-diagram compiler. Com-
munications of the ACM 6(7): 396–408.
Synopsis: The description of the COBOL compiler design, presenting
coroutines.

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. (1977). Abstraction
mechanisms in CLU. Communications of the ACM 20(8): 564–576.
Synopsis: This paper describes the language CLU, which featured the
early concept of iterators.

28.7 GLOSSARY

Coroutine: Procedures that allow multiple entry and exit points for sus-
pending and resuming execution.

Generator: (aka semicoroutine) A special kind of coroutine used to control
iteration over a sequence of values. A generator always yields control back
to the caller, rather than to an arbitrary place of the program.

Iterator: An object that is used to traverse a sequence of values.

220 � Exercises in Programming Style

28.8 EXERCISES

28.1 Another language. Implement the example program in another language,
but preserve the style.

28.2 Lines vs. characters. The example program, in its eagerness to demon-
strate data flows of all kinds, ends up doing something monolithic – the
function all words (yuk!). It would be much better to use Python’s
facilities to handle words (e.g. split). Change the program, without
changing the style, so that the first generator yields an entire line, and
the second yields words from those lines using the proper library func-
tions.

28.3 Iterators. Some languages that don’t support generators support their
more verbose cousins, iterators (e.g. Java). Python supports both.
Change the example program so that it uses iterators instead of gener-
ators.

28.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

VIII
Concurrency

221

http://taylorandfrancis.com

Concurrency � 223

The styles we have seen so far apply to all applications in general. The next
four styles are specifically for applications that have concurrent units. Con-
currency comes into the picture either because the applications have multiple
concurrent sources of input, or because they consist of independent compo-
nents distributed over a network, or because they benefit from partitioning
the problem in small chunks and using the underlying multicore computers
more efficiently.

http://taylorandfrancis.com

CHA PT E R 29

Actors

Similar to the Letterbox style (Chapter 12), but where the things have
independent threads of execution.

29.1 CONSTRAINTS

B The larger problem is decomposed into things that make sense for the
problem domain.

B Each thing has a queue meant for other things to place messages in it.

B Each thing is a capsule of data that exposes only its ability to receive
messages via the queue.

B Each thing has its own thread of execution independent of the others.

225

226 � Exercises in Programming Style

29.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2

3 import sys, re, operator, string
4 from threading import Thread
5 from queue import Queue
6

7 class ActiveWFObject(Thread):
8 def __init__(self):
9 Thread.__init__(self)

10 self.name = str(type(self))
11 self.queue = Queue()
12 self._stopMe = False
13 self.start()
14

15 def run(self):
16 while not self._stopMe:
17 message = self.queue.get()
18 self._dispatch(message)
19 if message[0] == ’die’:
20 self._stopMe = True
21

22 def send(receiver, message):
23 receiver.queue.put(message)
24

25 class DataStorageManager(ActiveWFObject):
26 """ Models the contents of the file """
27 _data = ’’
28

29 def _dispatch(self, message):
30 if message[0] == ’init’:
31 self._init(message[1:])
32 elif message[0] == ’send_word_freqs’:
33 self._process_words(message[1:])
34 else:
35 # forward
36 send(self._stop_word_manager, message)
37

38 def _init(self, message):
39 path_to_file = message[0]
40 self._stop_word_manager = message[1]
41 with open(path_to_file) as f:
42 self._data = f.read()
43 pattern = re.compile(’[\W_]+’)
44 self._data = pattern.sub(’ ’, self._data).lower()
45

46 def _process_words(self, message):
47 recipient = message[0]
48 data_str = ’’.join(self._data)
49 words = data_str.split()
50 for w in words:
51 send(self._stop_word_manager, [’filter’, w])
52 send(self._stop_word_manager, [’top25’, recipient])
53

54 class StopWordManager(ActiveWFObject):

Actors � 227

55 """ Models the stop word filter """
56 _stop_words = []
57

58 def _dispatch(self, message):
59 if message[0] == ’init’:
60 self._init(message[1:])
61 elif message[0] == ’filter’:
62 return self._filter(message[1:])
63 else:
64 # forward
65 send(self._word_freqs_manager, message)
66

67 def _init(self, message):
68 with open(’../stop_words.txt’) as f:
69 self._stop_words = f.read().split(’,’)
70 self._stop_words.extend(list(string.ascii_lowercase))
71 self._word_freqs_manager = message[0]
72

73 def _filter(self, message):
74 word = message[0]
75 if word not in self._stop_words:
76 send(self._word_freqs_manager, [’word’, word])
77

78 class WordFrequencyManager(ActiveWFObject):
79 """ Keeps the word frequency data """
80 _word_freqs = {}
81

82 def _dispatch(self, message):
83 if message[0] == ’word’:
84 self._increment_count(message[1:])
85 elif message[0] == ’top25’:
86 self._top25(message[1:])
87

88 def _increment_count(self, message):
89 word = message[0]
90 if word in self._word_freqs:
91 self._word_freqs[word] += 1
92 else:
93 self._word_freqs[word] = 1
94

95 def _top25(self, message):
96 recipient = message[0]
97 freqs_sorted = sorted(self._word_freqs.items(), key=

operator.itemgetter(1), reverse=True)
98 send(recipient, [’top25’, freqs_sorted])
99

100 class WordFrequencyController(ActiveWFObject):
101

102 def _dispatch(self, message):
103 if message[0] == ’run’:
104 self._run(message[1:])
105 elif message[0] == ’top25’:
106 self._display(message[1:])
107 else:
108 raise Exception("Message not understood " + message

[0])
109

228 � Exercises in Programming Style

110 def _run(self, message):
111 self._storage_manager = message[0]
112 send(self._storage_manager, [’send_word_freqs’, self])
113

114 def _display(self, message):
115 word_freqs = message[0]
116 for (w, f) in word_freqs[0:25]:
117 print(w, ’-’, f)
118 send(self._storage_manager, [’die’])
119 self._stopMe = True
120

121 #
122 # The main function
123 #
124 word_freq_manager = WordFrequencyManager()
125

126 stop_word_manager = StopWordManager()
127 send(stop_word_manager, [’init’, word_freq_manager])
128

129 storage_manager = DataStorageManager()
130 send(storage_manager, [’init’, sys.argv[1], stop_word_manager])
131

132 wfcontroller = WordFrequencyController()
133 send(wfcontroller, [’run’, storage_manager])
134

135 # Wait for the active objects to finish
136 [t.join() for t in [word_freq_manager, stop_word_manager,

storage_manager, wfcontroller]]

Actors � 229

29.3 COMMENTARY

THIS STYLE is a direct extension of the Letterbox style, but where the
objects have their own threads. These objects are also known as active

objects or actors. Objects interact with each other by sending messages that
are placed in queues. Each active object performs a continuous loop over its
queue, processing one message at a time, and blocking if the queue is empty.

The example program starts by defining a class, ActiveWFObject (lines
#7–20), that implements generic behavior of active objects. Active objects
inherit from Thread (line #7), a Python class that supports concurrent
threads of execution. This means that their run method (lines #15–20) is
spawned concurrently when the thread’s start method is called in line #13.
Each active object has a name (line #10) and a queue (line #11). The Queue
object in Python implements a queue data type where threads that call the
get operation may be blocked if the queue is empty. The run method (lines
#15–20) runs an infinite loop that takes one message from the queue, possibly
blocking if the queue is empty, and that dispatches that message. One special
message die breaks the loop and makes the thread stop (lines #19–20). Any
active application objects inherit the behavior from ActiveWFObject.

Lines #22–23 define a function for sending a message to a receiver. In this
case, sending a message means placing it in the queue of the receiver (line
#23).

Next, we have the four active application objects. In this program, we
have followed the same design as that used in the Letterbox style (Chapter
12), so the classes and their roles are exactly the same: there is a data storage
entity (lines #25–52), a stop word entity (lines #54–76), an entity for keeping
word frequency counts (lines #78–98) and the application controller (lines
#100–119). All of these inherit from ActiveWFObject, meaning that any
instantiation of these classes spawns new threads independently running the
run method (lines #15–20).

In the main method (lines #124–136), we instantiate one object of each
class, so when the application runs, it results in 4 threads plus the main thread.
The main thread simply blocks until the active objects’ threads all stop (line
#136).

A message in our program is simply a list with any number of elements
that has the message tag in its first position. Object references can be sent
via messages. For example, the ‘init’ message that the main thread sends
to the StopWordManager object is [‘init’, word freq manager]
(line #127), where word freq manager is the reference to another active
object, an instance of WordFrequencyManager; the ‘init’ message that
the main thread sends to the DataStorageManager object is [’init’,
sys.argv[1], stop word manager].

Let’s look into each active application object in more detail, and the mes-
sages that are exchanged among them. The application starts by sending the
‘init’ message to both the stop word manager (line #127) and the data storage

230 � Exercises in Programming Style

manager (line #130). These messages are dispatched by the corresponding
active objects’ threads (line #18), which results in the execution of the cor-
responding dispatch methods – lines #58–65 and lines #29–36, respectively.
In both cases, the ‘init’ messages result in files being read, and its data pro-
cessed in some form. Next, the main thread sends the ‘run’ message to the
application controller (line #133), and this triggers the execution of the term
frequency task over the input data. Let’s see how.

Upon reception of the ‘run’ message, the word frequency controller stores
the reference for the data storage object (line #111) and sends it the message
‘send word freqs’ with a reference to itself (line #112). In turn, when the data
storage object receives ‘send word freqs’ (line #32), it starts processing the
words (lines #46–52), which results in sending each word to the stop word
manager object, along with the message ‘filter’ (lines #50–51). Upon receiving
‘filter’ messages, the stop word manager object filters the word (lines #73–76),
which results in sending the non-stop words along with the message ‘word’
to the word frequency manager (lines #75–76). In turn, the word frequency
manager object increments the counts for each word received via the message
‘word’ (lines #88–93).

When the data storage manager runs out of words, it sends the message
‘top25’ to the stop word manager, along with the reference to the recipient
(line #52) – remember the recipient is the application controller (see line
#112). The stop word manager, however, does not understand that message,
as it is not one of the expected messages in its dispatch method (lines #58–
65). Its dispatch method is implemented so that any message that is not
explicitly expected is simply forwarded to the word frequency manager object,
so the ‘top25’ message is forwarded. In turn, the word frequency manager
understands the ‘top25’ message (line #85); upon its reception, it sends the
sorted list of word frequencies to the recipient (lines #95–98) along with the
message ‘top25’. The recipient, the application controller, upon receiving the
‘top25’ message (line #105) prints the information on the screen (lines #115–
117), and sends the ‘die’ message down the chain of objects, which makes
them all stop (lines #18–19). At that point, all threads are finished, the main
thread is unblocked, and the application ends.

Unlike the Letterbox style, the Actors style is inherently asynchronous,
with blocking queues serving as the interfaces between the agents. The calling
objects place messages in queues of the callees and continue without waiting
for the dispatch of those messages.

29.4 THIS STYLE IN SYSTEMS DESIGN

This style is a natural match for large distributed systems: without distributed
shared memory, components in different nodes of a network interact by sending
messages to each other. There are a few ways of designing message-based
systems; one of them, known as point-to-point messaging, where the message
has a single, well-known receiver, maps directly to this style. The Java Message

Actors � 231

Service (JMS) framework is a popular framework that supports this style,
along with the publish-subscribe style described in the previous chapter. In
the mobile arena, the Google Cloud Messaging for Android is another example
of this style in action at planetary scale.

But this style is not just for large distributed systems. Components that
consist of a single multi-threaded process also benefit from the application of
this style – threaded objects with queues – as a way to limit the amount of
internal concurrency.

29.5 HISTORICAL NOTES

This style targets programming for concurrent and distributed applications.
The general idea is as old as the first operating systems that supported con-
currency, and it emerged in several forms during the 1970s. Message-passing
processes had been known to be a flexible way to structure operating systems;
from the beginning, this model has co-existed with the alternative shared
memory model. In the mid-1980s, Gul Agha formalized the model, giving
these processes with queues the general name of Actors.

29.6 FURTHER READING

Agha, G. (1985). Actors: A model of concurrent computation in distributed
systems. Doctoral dissertation, MIT Press.
Synopsis: This is the original work proposing the Actor model for con-
current programming.

Lauer, H. and Needham, R. (1978). On the duality of operating system struc-
tures. Second International Symposium on Operating Systems.
Synopsis: Long before concurrent programming was its own topic,
researchers and developers were well aware of the design tradeoffs con-
cerning communication between different units of execution. This paper
presents a nice overview of message-passing vs. shared memory models.

29.7 GLOSSARY

Actor: An object with its own thread of execution, or a process node on a
network. Actors have a queue to receive messages, and interact with each
other only by sending messages.

Asynchronous request: A request where the requester doesn’t wait for the
reply, and where the reply, if any, arrives at some later point in time.

Message: A data structure carrying information from a sender to a known
receiver, possibly transported via a network.

232 � Exercises in Programming Style

29.8 EXERCISES

29.1 Another language. Implement the example program in another language,
but preserve the style.

29.2 3+1 Threads. Write another version of the example program also in the
Actors style, but with only three active objects plus the main thread.

29.3 Lazy Rivers, take 2. Languages like Java don’t have the yield state-
ment explained in the Lazy Rivers style (Chapter 28). Implement the
data-centric program in that chapter without using yield, and using
the Actors style.

29.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

CHA PT E R 30

Dataspaces

30.1 CONSTRAINTS

B Existence of one or more units that execute concurrently.

B Existence of one or more data spaces where concurrent units store and
retrieve data.

B No direct data exchanges between the concurrent units, other than via
the data spaces.

233

234 � Exercises in Programming Style

30.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import re, sys, operator, queue, threading
3

4 # Two data spaces
5 word_space = queue.Queue()
6 freq_space = queue.Queue()
7

8 stopwords = set(open(’../stop_words.txt’).read().split(’,’))
9

10 # Worker function that consumes words from the word space
11 # and sends partial results to the frequency space
12 def process_words():
13 word_freqs = {}
14 while True:
15 try:
16 word = word_space.get(timeout=1)
17 except queue.Empty:
18 break
19 if not word in stopwords:
20 if word in word_freqs:
21 word_freqs[word] += 1
22 else:
23 word_freqs[word] = 1
24 freq_space.put(word_freqs)
25

26 # Let’s have this thread populate the word space
27 for word in re.findall(’[a-z]{2,}’, open(sys.argv[1]).read().lower

()):
28 word_space.put(word)
29

30 # Let’s create the workers and launch them at their jobs
31 workers = []
32 for i in range(5):
33 workers.append(threading.Thread(target = process_words))
34 [t.start() for t in workers]
35

36 # Let’s wait for the workers to finish
37 [t.join() for t in workers]
38

39 # Let’s merge the partial frequency results by consuming
40 # frequency data from the frequency space
41 word_freqs = {}
42 while not freq_space.empty():
43 freqs = freq_space.get()
44 for (k, v) in freqs.items():
45 if k in word_freqs:
46 count = sum(item[k] for item in [freqs, word_freqs])
47 else:
48 count = freqs[k]
49 word_freqs[k] = count
50

51 for (w, c) in sorted(word_freqs.items(), key=operator.itemgetter
(1), reverse=True)[:25]:

52 print(w, ’-’, c)

Dataspaces � 235

30.3 COMMENTARY

THIS STYLE applies to concurrent and distributed systems. It is a par-
ticular kind of shared-memory style: many independently executing infor-

mation processing units consume data from a common substrate and produce
data onto that, or other, substrate. These substrates are called tuple, or data,
spaces. There are three primitives for data manipulation: (1) out, or put,
which places a piece of data from inside the unit onto a data space; (2) in,
or get, which takes a piece of data from the data space and brings it into the
unit; and read, or sense, which reads a piece of data from the data space into
the unit without removing it.

Let’s look at the example program. We use two separate data spaces, one
where we place all the words (word space, line #5), and another one where
we place partial word-frequency counts (freq space, line #6). We start by
having the main thread populate the word space (lines #27–28). Then, the
main thread spawns 5 worker threads and waits for them to finish (lines #31–
37). Worker threads are given the process words function (lines #12–24)
to execute. This means that at this point of the program, 5 threads execute
that function concurrently while the main thread waits for them to finish. So,
let’s look at the process words function more closely.

The goal of the process words function (lines #12–24) is to count word
occurrences. As such, it holds on to an internal dictionary associating words
with counts (line #13), and it proceeds to a loop consisting of taking one word
from the word space (line #16) and incrementing the corresponding count for
non-stop words (lines #19–23). The loop stops when the function is unable to
get a word from the word space within 1 second (see timeout parameter in line
#16), which means that there are no more words. At that point, the function
simply places its internal dictionary in the frequency space (line #24).

Note that there are 5 worker threads executing process words concur-
rently. This means that, very likely, different worker threads will be counting
different occurrences of the same words, so each one produces only a partial
word count. Given that the words are removed from the data space, no word
occurrence is counted more than once.

Once the worker threads finish their jobs, the main thread unblocks (line
#37) and does the rest of the computation. Its job from then on is to take the
partial word counts from the frequency space and merge them into one single
dictionary (lines #41–49). Finally, the information is printed on the screen
(lines #51–52).

30.4 THIS STYLE IN SYSTEMS DESIGN

This style is particularly well suited for data-intensive parallelism, especially
when the task scales horizontally, i.e. when the problem can be partitioned
among an arbitrary number of processing units. This style can also be used
in distributed systems by implementing data spaces over the network (e.g. a

236 � Exercises in Programming Style

database). The Dataspaces style is not a good fit for applications where the
concurrent units need to address each other.

30.5 HISTORICAL NOTES

The Dataspaces style was first formulated as such within the Linda program-
ming language in the early 1980s. The model was put forward as a viable
alternative to shared memory in parallel programming systems.

30.6 FURTHER READING

Ahuja, S., Carriero, N. and Gelernter, D. (1986). Linda and friends. IEEE
Computer 19(8): 26–34.
Synopsis: The original Linda paper that proposed the concept of
tuplespaces, renamed here as dataspaces.

30.7 GLOSSARY

Tuple: Typed data object.

30.8 EXERCISES

30.1 Another language. Implement the example program in another language,
but preserve the style.

30.2 More concurrency. Change the example program so that the phase of
the program concerning the merging of word frequencies (lines #41–49)
is done concurrently by 5 threads. Hint: think of alphabet spaces.

30.3 A different task. Write one of the tasks proposed in the Prologue using
this style.

CHA PT E R 31

Map Reduce

31.1 CONSTRAINTS

B Input data is divided in blocks.

B A map function applies a given worker function to each block of data,
potentially in parallel.

B A reduce function takes the results of the many worker functions and
recombines them into a coherent output.

237

238 � Exercises in Programming Style

31.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3 from functools import reduce
4 #
5 # Functions for map reduce
6 #
7 def partition(data_str, nlines):
8 """
9 Partitions the input data_str (a big string)

10 into chunks of nlines.
11 """
12 lines = data_str.split(’\n’)
13 for i in range(0, len(lines), nlines):
14 yield ’\n’.join(lines[i:i+nlines])
15

16 def split_words(data_str):
17 """
18 Takes a string, returns a list of pairs (word, 1),
19 one for each word in the input, so
20 [(w1, 1), (w2, 1), ..., (wn, 1)]
21 """
22 def _scan(str_data):
23 pattern = re.compile(’[\W_]+’)
24 return pattern.sub(’ ’, str_data).lower().split()
25

26 def _remove_stop_words(word_list):
27 with open(’../stop_words.txt’) as f:
28 stop_words = f.read().split(’,’)
29 stop_words.extend(list(string.ascii_lowercase))
30 return [w for w in word_list if not w in stop_words]
31

32 # The actual work of splitting the input into words
33 result = []
34 words = _remove_stop_words(_scan(data_str))
35 for w in words:
36 result.append((w, 1))
37 return result
38

39 def count_words(pairs_list_1, pairs_list_2):
40 """
41 Takes two lists of pairs of the form
42 [(w1, 1), ...]
43 and returns a list of pairs [(w1, frequency), ...],
44 where frequency is the sum of all the reported occurrences
45 """
46 mapping = {}
47 for pl in [pairs_list_1, pairs_list_2]:
48 for p in pl:
49 if p[0] in mapping:
50 mapping[p[0]] += p[1]
51 else:
52 mapping[p[0]] = p[1]
53 return mapping.items()
54

Map Reduce � 239

55 #
56 # Auxiliary functions
57 #
58 def read_file(path_to_file):
59 with open(path_to_file) as f:
60 data = f.read()
61 return data
62

63 def sort(word_freq):
64 return sorted(word_freq, key=operator.itemgetter(1), reverse=

True)
65

66 #
67 # The main function
68 #
69 splits = map(split_words, partition(read_file(sys.argv[1]), 200))
70 word_freqs = sort(reduce(count_words, splits))
71

72 for (w, c) in word_freqs[0:25]:
73 print(w, ’-’, c)

240 � Exercises in Programming Style

31.3 COMMENTARY

IN THIS STYLE, the problem’s input data is divided into chunks, each
chunk is processed independently of the others, possibly in parallel, and the

results are combined at the end. The Map Reduce style, commonly known as
MapReduce, comprises two key abstractions: (1) a map function takes chunks
of data, as well as a function, as arguments, and applies that function to each
chunk independently, producing a collection of results; (2) a reduce function
takes a collection of results as well as a function, as arguments, and applies that
function to the collection of results in order to extract some global knowledge
out of that collection.

The key observation for the term frequency task is that counting words
can be done in a divide-and-conquer manner: we can count words on smaller
portions of the input file (e.g. each page of the book), and then combine those
counts. Not all problems can be done in this manner, but term frequency can.
When this is feasible, the MapReduce solution can be very effective for very
large input data, with the use of several processing units in parallel.

Let’s look at the example program, starting at the bottom, lines #68–73.
In line #68, the main block starts by reading the input file, partitioning it into
blocks of 200 lines; those blocks are given as the second parameter to Python’s
map function, which takes as first parameter a worker function split words.
The result of that map is a list of partial word counts, one from each worker
function, which we called splits. We then prepare those splits for reduction
(line #69) – more about this later. Once ready, the splits are given as the
second argument to Python’s reduce function, which takes as first argument
the worker function count words (line #70). The result of that application
is a list of pairs, each corresponding to a word and corresponding frequency.
Let’s now look into the three main functions – partition, split words
and count words – in detail.

The partition function (lines #7–14) is a generator that takes a multi-
line string and a number of lines as inputs, and generates strings with the
requested number of lines. So, for example, Pride and Prejudice has 13,426
lines, so we are dividing it into 68 blocks of 200 lines (see line #68), with
the last block having less than 200 lines. Note that the function yields,
rather than returns, blocks. As seen before, this is a lazy way of processing
input data, but it’s functionally equivalent to returning the complete list of
68 blocks.

The split words function (lines #16–37) takes a multi-line string –
one block of 200 lines, as used in line #68 – and processes that block. The
processing is similar to what we have seen before. However, this function
returns its data in a very different format than that seen in other chapters for
equivalent functions. After producing the list of non-stop words (lines #22–
34), it iterates through that list constructing a list of pairs; the first element
of each pair is a word occurrence and the second is the number 1, meaning

Map Reduce � 241

“this word, one occurrence.” For Pride and Prejudice’s first block, the first
few entries in the resulting list look like this:

[(’project’,1),(’gutenberg’,1),(’ebook’,1),
(’pride’,1),(’prejudice’,1), (’jane’,1),
(’austen’,1),(’ebook’,1),...]

This seems a rather strange data structure, but it is common for MapRe-
duce applications to make worker functions do as little computation as possi-
ble. In this case, we aren’t even counting the number of occurrences of words
in each block; we are simply transforming the block of words into a data
structure that supports a very simple counting procedure later on.

To recapitulate, line #68 results in a list of these data, one for each of the
68 blocks.

The count words function (lines #39–52) is the reducing worker used
as the first argument to reduce in line #70. In Python, reducer functions
have two arguments, which are meant to be merged in some way, and return
one single value at the end. Our function takes two of the data structures
described above: the first one is the result of the previous reduction, if any,
starting with the empty list (line #69); the second is the new split to be
merged. count words starts by producing a dictionary out of the first list of
pairs (line #46); it then iterates through the second list of pairs, incrementing
the corresponding word counts in the dictionary (lines #47–51). At the end,
it returns the dictionary as a list of key-value pairs. This return value is then
fed into the next reduction, and the process continues until there are no more
splits.

31.4 THIS STYLE IN SYSTEMS DESIGN

MapReduce is a naturally good fit for data-intensive applications where the
data can be partitioned and processed independently, and the partial results
recombined at the end. These applications benefit from the use of many com-
puting units – cores, servers – that perform the mapping and reducing func-
tions in parallel, therefore reducing the processing time by several orders of
magnitude than that of a single processor. The next chapter looks into these
variations of MapReduce in more detail.

Our example program, however, does not employ threads or concurrency.
The example is more in line with the original LISP MapReduce. Language
processors can implement the several applications of the mapped function in
parallel, but that is not what Python does.1 Nevertheless, in this book this
style is grouped with the styles for concurrent programming, because those
are the applications that gain the most from this style.

1Python 3.x includes a new module called concurrent.futures that provides a con-
current implementation of map.

242 � Exercises in Programming Style

31.5 HISTORICAL NOTES

The concept of mapping and reducing sequences, as currently used, was
included in Common LISP in the late 1970s. However, those concepts pre-
date Common LISP by at least a decade. A version of map was present in
McCarthy’s LISP system in 1960, under the name of maplist; this function
took another function as argument that was then mapped onto each successive
tail of a list argument, rather than onto each element. By the mid-1960s many
dialiects of LISP had mapcar, which maps the function onto each element.
Reduce was known to LISP programmers in the early 1970s. Both map and
reduce were present in APL for built-in scalar operations.

Several decades later, in the early 2000s, a variation of this model was
made popular by Google, who applied it at the data center scale. The model
was then adopted more widely with the emergence of open source MapReduce
frameworks such as Hadoop.

31.6 FURTHER READING

MAC LISP (1967). MIT A.I. Memo No.116A. Available at:
http://www.softwarepreservation.org/projects/LISP/MIT/
AIM-116A-White-Interim User Guide.pdf
Synopsis: This is the manual for one of the flavors of LISP, the MAC
LISP, listing the functions available in that programming system. The
map functions are featured prominently.

Steele, G. (1984). Common LISP the Language. Chapter 14.2: Concatenating,
Mapping and Reducing Sequences. Digital Press. Available at:
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/clm.html
Synopsis: Common LISP had both map and reduce operations.

31.7 GLOSSARY

Map: A function takes blocks of data, as well as a function, as arguments, and
applies that function to each block independently, producing a collection
of results.

Reduce: A function takes a collection of results as well as a function, as
arguments, and applies that function to the current merged result and
the next result in the collection in order to extract some global knowledge
from that collection.

31.8 EXERCISES

31.1 Another language. Implement the example program in another language,
but preserve the style.

http://www.softwarepreservation.org/
http://www.softwarepreservation.org/
http://www.cs.cmu.edu/

Map Reduce � 243

31.2 Partial counts. Change the example program so that split words
(lines #16–37) produces a list of partial word counts. Are there any
advantages in doing this vs. doing what the original example program
does?

31.3 Concurrency. Python’s map and reduce functions are not multi-
threaded. Write a concurrent map function that takes a function and
a list of blocks and launches a thread for each function application. Use
your function instead of map in line #68. It’s OK to make a few changes
to the program, but try to minimize those changes.

31.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

CHA PT E R 32

Double Map Reduce

Very similar to the previous style, but with an additional twist.

32.1 CONSTRAINTS

B Input data is divided in blocks.

B A map function applies a given worker function to each block of data,
potentially in parallel.

B The results of the many worker functions are reshuffled.

B The reshuffled blocks of data are given as input to a second map function
that takes a reducible function as input.

B Optional step: a reduce function takes the results of the many worker
functions and recombines them into a coherent output.

245

246 � Exercises in Programming Style

32.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, string
3 from functools import reduce
4 #
5 # Functions for map reduce
6 #
7 def partition(data_str, nlines):
8 """
9 Partitions the input data_str (a big string)

10 into chunks of nlines.
11 """
12 lines = data_str.split(’\n’)
13 for i in range(0, len(lines), nlines):
14 yield ’\n’.join(lines[i:i+nlines])
15

16 def split_words(data_str):
17 """
18 Takes a string, returns a list of pairs (word, 1),
19 one for each word in the input, so
20 [(w1, 1), (w2, 1), ..., (wn, 1)]
21 """
22 def _scan(str_data):
23 pattern = re.compile(’[\W_]+’)
24 return pattern.sub(’ ’, str_data).lower().split()
25

26 def _remove_stop_words(word_list):
27 with open(’../stop_words.txt’) as f:
28 stop_words = f.read().split(’,’)
29 stop_words.extend(list(string.ascii_lowercase))
30 return [w for w in word_list if not w in stop_words]
31

32 # The actual work of the mapper
33 result = []
34 words = _remove_stop_words(_scan(data_str))
35 for w in words:
36 result.append((w, 1))
37 return result
38

39 def regroup(pairs_list):
40 """
41 Takes a list of lists of pairs of the form
42 [[(w1, 1), (w2, 1), ..., (wn, 1)],
43 [(w1, 1), (w2, 1), ..., (wn, 1)],
44 ...]
45 and returns a dictionary mapping each unique word to the
46 corresponding list of pairs, so
47 { w1 : [(w1, 1), (w1, 1)...],
48 w2 : [(w2, 1), (w2, 1)...],
49 ...}
50 """
51 mapping = {}
52 for pairs in pairs_list:
53 for p in pairs:
54 if p[0] in mapping:

Double Map Reduce � 247

55 mapping[p[0]].append(p)
56 else:
57 mapping[p[0]] = [p]
58 return mapping
59

60 def count_words(mapping):
61 """
62 Takes a mapping of the form (word, [(word, 1), (word, 1)...)])
63 and returns a pair (word, frequency), where frequency is the
64 sum of all the reported occurrences
65 """
66 def add(x, y):
67 return x+y
68

69 return (mapping[0], reduce(add, (pair[1] for pair in mapping
[1])))

70

71 #
72 # Auxiliary functions
73 #
74 def read_file(path_to_file):
75 with open(path_to_file) as f:
76 data = f.read()
77 return data
78

79 def sort(word_freq):
80 return sorted(word_freq, key=operator.itemgetter(1), reverse=

True)
81

82 #
83 # The main function
84 #
85 splits = map(split_words, partition(read_file(sys.argv[1]), 200))
86 splits_per_word = regroup(splits)
87 word_freqs = sort(map(count_words, splits_per_word.items()))
88

89 for (w, c) in word_freqs[0:25]:
90 print(w, ’-’, c)

248 � Exercises in Programming Style

32.3 COMMENTARY

THE BASIC MAP-REDUCE STYLE presented in the previous chapter
allows for parallelization of the map step, but requires serialization of the

reduce step. Hadoop, one of the most popular map-reduce frameworks, uses a
slight variation that makes the reduce step also potentially parallelizable. The
main idea is to regroup, or reshuffle, the list of results from the map step so
that the regroupings are amenable to further mapping of a reducible function.

Let’s look at the example program and how it differs from the previous
one. The main function looks almost identical, but it is subtly different in
two key points: (1) regrouping in line #86; and (2) the second application of
map in line #87, where the previous program used reduce. Indeed, the key
difference here is the regrouping of data. Let’s look at it in detail.

The regroup function (lines #39–58) takes the output of the first map
application as its input. Here as before, that output is a list of lists of pairs,
something like this:

[[(’project’,1),(’gutenberg’,1),(’ebook’,1),...],
[(’mr’,1),(’bennet’,1),(’among’,1),...],
...

]

The purpose of the regroup function is to reorganize the data so that
the counting of words can be done in parallel. It does so by reorganizing the
data based on the words themselves, so that all pairs (wk, 1) end up in the
same list. As an internal data structure for this, it uses a dictionary (line #51)
mapping words to a list of pairs (lines #52–58). At the end, it returns that
dictionary.

Once regrouped, the words are ready to be counted (lines #60–69). Count-
ing them would be as simple as finding the size of the second element of the
argument passed to count words. The program does something slightly dif-
ferent: it uses a reduce function for counting (line #69). In this particular
case, there is no good reason for doing it this way, and we could have done
it in a more straightforward manner. However, it is important to understand
that the intention of this style at this step is to reduce a sequence of data in
some way. Reducing means taking a sequence of data as input and returning
a smaller piece of data that merges the sequence in some way. In this case,
“merging” means counting. In other cases, it could mean something else.

The important thing to note is that after regrouping (line #86), counting
can be done in parallel, because we have reorganized the data per word. As
such, we can apply a second map function for counting the words (line #87).
With this reorganization, we could have one counting thread/processor per
unique word in the file.

The style presented here is the style used by well-known MapReduce frame-
works such as Hadoop, as they try to parallelize the data-intensive problems
as much as possible. While certain data structures are not prone to parallel

Double Map Reduce � 249

processing (e.g. the splits obtained in our program line #85), there often are
transformations on that data that make it parallelizable (e.g. the regroup-
ing made in line #86). The process of parallelizing a complex data-intensive
problem can involve several layers of regrouping.

32.4 THIS STYLE IN SYSTEMS DESIGN

At the data center scale, parallelization is done by sending blocks of data to
servers that perform simple tasks. The regrouping step explained here is done
by routing data to specific servers – for example, sending words starting with
the letter ‘a’ to server sa, ‘b’ to server sb, etc.

32.5 HISTORICAL NOTES

This form of MapReduce was popularized by Google in the early 2000s. Since
then, several data center-wide MapReduce frameworks have emerged, some of
them open source. Hadoop is one of the most popular ones.

32.6 FURTHER READING

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on
Large Clusters. 6th Symposium on Operating Systems Design and Imple-
mentation (ODSI’04).
Synopsis: Google engineers embrace MapReduce and explain how to do
it at the data center scale.

32.7 EXERCISES

32.1 Another language. Implement the example program in another language,
but preserve the style.

32.2 You know you want to do it. Change the example program so that
count words (lines #60–69) simply checks the length of the second
element of its argument.

32.3 Different regrouping. Reorganizing the pairs on a per-word basis might
be a bit too much parallelism! Change the program so that the regroup
function reorganizes the words alphabetically into only five groups: a-e,
f-j, k-o, p-t, u-z. Be mindful of what this does to the counting step.

32.4 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://taylorandfrancis.com

IX
Interactivity

251

http://taylorandfrancis.com

Interactivity � 253

In all styles seen before, except the Lazy Rivers style in Chapter 28, the pro-
gram takes input in the beginning, processes that input, and shows informa-
tion on the screen at the end. Many modern applications have that characteris-
tic, but many more have a very different nature: they take input continuously,
or periodically, and update their state accordingly; there may not even be
an “end of the program” as such. These applications are called interactive.
Interaction may come from users or from other components, and it requires
additional thought on how and when to update the observable output of the
program. The next two chapters show two well-known styles for dealing with
interactivity.

http://taylorandfrancis.com

CHA PT E R 33

Trinity

33.1 CONSTRAINTS

B The application is divided into three parts: the model, the view, and the
controller:

B the model represents the application’s data;

B the view represents a specific rendition of the data;

B the controller provides for input controls, for populating/updating
the model, and for invoking the right view.

B All application entities are associated with of one of these three parts.
There should be no overlap of responsibilities.

255

256 � Exercises in Programming Style

33.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import sys, re, operator, collections
3

4 class WordFrequenciesModel:
5 """ Models the data. In this case, we’re only interested
6 in words and their frequencies as an end result """
7 freqs = {}
8 stopwords = set(open(’../stop_words.txt’).read().split(’,’))
9 def __init__(self, path_to_file):

10 self.update(path_to_file)
11

12 def update(self, path_to_file):
13 try:
14 words = re.findall(’[a-z]{2,}’, open(path_to_file).

read().lower())
15 self.freqs = collections.Counter(w for w in words if w

not in self.stopwords)
16 except IOError:
17 print("File not found")
18 self.freqs = {}
19

20 class WordFrequenciesView:
21 def __init__(self, model):
22 self._model = model
23

24 def render(self):
25 sorted_freqs = sorted(self._model.freqs.items(), key=

operator.itemgetter(1), reverse=True)
26 for (w, c) in sorted_freqs[0:25]:
27 print(w, ’-’, c)
28

29 class WordFrequencyController:
30 def __init__(self, model, view):
31 self._model, self._view = model, view
32 view.render()
33

34 def run(self):
35 while True:
36 print("Next file: ")
37 sys.stdout.flush()
38 filename = sys.stdin.readline().strip()
39 self._model.update(filename)
40 self._view.render()
41

42

43 m = WordFrequenciesModel(sys.argv[1])
44 v = WordFrequenciesView(m)
45 c = WordFrequencyController(m, v)
46 c.run()

Trinity � 257

33.3 COMMENTARY

THIS STYLE is one of the most well-known styles related to interactive
applications. Known as Model-View-Controller (MVC), this style embod-

ies a general approach to architecting applications that need to report back to
the user on a continuous basis. The idea is very simple and it is based on the
premise that different functions/objects have different roles, specifically three
roles. The application is divided into three parts, each containing one or more
functions/objects: there is a part for modeling the data (the model), another
part for presenting the data to the user (the view), and another for receiving
input from the user and updating both the model and the view according to
that input (the controller).

The main purpose of the MVC trinity is to decouple a number of appli-
cation concerns, especially the model, which is usually unique, from the view
and controller, of which there can be many.

The example program interacts with the user by asking her for another
file after having processed the previous file. Instead of tangling algorithmic
concerns with presentation concerns and user input concerns, our program
does a clean separation between these three types of concerns using MVC:

• The class WordFrequenciesModel (lines #4–18) is the knowledge
base of our application. Its main data structure is the term-frequency
dictionary (line #7), and its main method, update, fills it out after
processing the input file (lines #12–18).

• The class WordFrequenciesView (lines #20–27) is the view associ-
ated with the model. Its main method, render, gets the data from the
model and prints it on the screen. We decided that presenting a sorted
view of the model (line #25) is a presentation concern rather than a
model concern.

• The class WordFrequenciesController (lines #29–40) runs on a
loop (lines #34–40) requesting input from the user, updating the model
accordingly and rendering the view to the user again.

The example program is an instance of what is known as passive MVC, in
that the controller is the driver for both model and view updates. The passive
Trinity style assumes that the only changes to the model are those performed
by the controller. That is not always the case. Real applications often have
several controllers and views, all operating on the same model, and often with
concurrent actions.

Active MVC is an alternative to passive MVC where the view(s) are
updated automatically when the model changes.1 This can be done in a num-
ber of ways, some of them better than others. The worst way of doing it
is by coupling the model with its views at construction time – e.g. sending

1Another good name for this alternative is reactive.

258 � Exercises in Programming Style

the View(s) instance(s) as an argument to the Model constructor. Reasonable
implementations of active MVC include some version of the Hollywood style
(Chapter 15) or the Actors style (Chapter 29).

The following example program uses a version of the Actors style to keep
the user updated about the latest frequency counts as the file is being pro-
cessed.

1 #!/usr/bin/env python
2 import sys, operator, string, os, threading, re
3 from util import getch, cls, get_input
4 from time import sleep
5

6 lock = threading.Lock()
7

8 #
9 # The active view

10 #
11 class FreqObserver(threading.Thread):
12 def __init__(self, freqs):
13 threading.Thread.__init__(self)
14 self.daemon,self._end = True, False
15 # freqs is the part of the model to be observed
16 self._freqs = freqs
17 self._freqs_0 = sorted(self._freqs.items(), key=operator.

itemgetter(1), reverse=True)[:25]
18 self.start()
19

20 def run(self):
21 while not self._end:
22 self._update_view()
23 sleep(0.1)
24 self._update_view()
25

26 def stop(self):
27 self._end = True
28

29 def _update_view(self):
30 lock.acquire()
31 freqs_1 = sorted(self._freqs.items(), key=operator.

itemgetter(1), reverse=True)[:25]
32 lock.release()
33 if (freqs_1 != self._freqs_0):
34 self._update_display(freqs_1)
35 self._freqs_0 = freqs_1
36

37 def _update_display(self, tuples):
38 def refresh_screen(data):
39 # clear screen
40 cls()
41 print(data)
42 sys.stdout.flush()
43

44 data_str = ""
45 for (w, c) in tuples:
46 data_str += str(w) + ’ - ’ + str(c) + ’\n’
47 refresh_screen(data_str)

Trinity � 259

48

49 #
50 # The model
51 #
52 class WordsCounter:
53 freqs = {}
54 def count(self):
55 def non_stop_words():
56 stopwords = set(open(’../stop_words.txt’).read().split

(’,’) + list(string.ascii_lowercase))
57 for line in f:
58 yield [w for w in re.findall(’[a-z]{2,}’, line.

lower()) if w not in stopwords]
59

60 words = next(non_stop_words())
61 lock.acquire()
62 for w in words:
63 self.freqs[w] = 1 if w not in self.freqs else self.

freqs[w]+1
64 lock.release()
65

66 #
67 # The controller
68 #
69 print("Press space bar to fetch words from the file one by one")
70 print("Press ESC to switch to automatic mode")
71 model = WordsCounter()
72 view = FreqObserver(model.freqs)
73 with open(sys.argv[1]) as f:
74 while get_input():
75 try:
76 model.count()
77 except StopIteration:
78 # Let’s wait for the view thread to die gracefully
79 view.stop()
80 sleep(1)
81 break

A few points of this active MVC program are noteworthy.
First, note that the design of the program is slightly different from the

first example program. For example, the controller is now just a block of code
at the end (lines #69–81) rather than a class. This is inconsequential; rather
than using the exact same 3 classes and method names, this second program,
besides illustrating an active version of MVC, also makes the point that there
are many different implementations honoring the same constraints. When it
comes to programming styles, there are no strict laws, only constraints; it is
important to be able to recognize the higher-order bits of the design of a piece
of code independent of details.

Second, we have the view as an active object, with its own thread (line
#11). The view object gets a freqs dictionary as input to its constructor
(line #16) – this is the part of the model that it tracks. The main loop of
this active object (lines #20–24) updates the internal data (line #22), show-

260 � Exercises in Programming Style

ing the information to the user, and sleeps for 100 ms (line #23). Updating
the internal data structures (lines #29–35) means reading the tracked word-
frequencies dictionary and sorting it (line #31); it then checks whether there
were changes since the last cycle (line #33) and, if so, it updates the display.

Third, our active view is not exactly like the active objects we have seen
in Chapter 29; specifically, it is missing the all-important queue. The reason
why the queue is missing is that in this simple program no other object is
sending messages to it.

Finally, given that the view is actively polling a portion of the model every
100 ms, neither the controller nor the model need to notify the view of any
changes – there is no “view, update yourself” signal anywhere. The controller
still signals the model for updates (line #76).

33.4 THIS STYLE IN SYSTEMS DESIGN

A large number of frameworks for interactive applications use MVC, including
Apple’s iOS, countless Web frameworks, and a plethora of Graphical User
Interface (GUI) libraries. It is hard not to use MVC! This style, like so many
others, has the property of being so general that it serves as the backbone from
which many pieces of software hang, each with their own styles, purposes and
specialized roles. MVC can be applied at several scales, all the way from the
application’s architecture down to the design of individual classes.

The classification of code elements into model, view and controller parts is
not always straightforward, and there are usually many reasonable options (as
well as many unreasonable ones). Even in our trivial term-frequency example,
we had options: sorting the words could be placed in the model instead of
the presentation. In less trivial applications, the spectrum of options is even
wider. When considering MVC for Web applications, for example, there are
a number of lines by which we can divide the application’s entities. We can
approach the browsers as dumb terminals, placing the entirety of the MVC
entities on the server side; or we can use rich JavaScript clients that code the
view and at least part of the model on the client side; or we can have MVC
both on the client and the server and establish coordination between the two;
and many points in between. Whatever the division of labor between the client
and the server is, it is always useful to think in terms of the model, view and
controller roles, in order to tame some of the complexities of coordinating
what the user sees with the backend logic and data.

33.5 HISTORICAL NOTES

MVC was first devised in 1979 in the context of Smalltalk and the emergence
of GUIs.

Trinity � 261

33.6 FURTHER READING

Reenskaug, T. (1979). MODELS-VIEWS-CONTROLLERS. The Original
MVC Reports. Available at
http://heim.ifi.uio.no/ trygver/themes/mvc/mvc-index.html
Synopsis: The original writings of MVC.

33.7 GLOSSARY

Controller: A collection of entities that receives input from the user, chang-
ing the model accordingly, and presents a view to the user.

Model: A knowledge base of the application; a collection of data and logic.

View: A visual representation of a model.

33.8 EXERCISES

33.1 Another language. Implement the example program in another language,
but preserve the style.

33.2 Different interactivity. The example program interacts with the user
only after having processed an entire file. Write a version of this pro-
gram that interacts with the user every 5,000 non-stop words that have
been processed, showing the current values of the word-frequency counts,
and prompting her “More? [y/n]”. If the user answers ‘y’, the program
continues for another 5,000 words, etc.; if they answer ‘n’, the program
asks for the next file. Make sure to separate model, view and controller
code in a reasonable manner.

33.3 Active trinity. Transform the first example program (or the one you did
for the question above) into active MVC using the Hollywood style.

33.4 Use the queue. In the second example program, the active view is missing
the queue, because no other object sends messages to it.

• Transform the second example program into an Actor, with a queue.
Instead of the view polling the model every 100 ms, make the model
place a message in the view’s queue every 100 words.

• Explain the differences and similarities between your program and
the program you did in Hollywood style in the previous question.

• In which situations would you use the Actor version vs. the Holly-
wood style?

33.5 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://heim.ifi.uio.no/

http://taylorandfrancis.com

CHA PT E R 34

Restful

34.1 CONSTRAINTS

B Interactive: end-to-end between an active agent (e.g. a person) and a
backend.

B Separation between client and server. Communication between the two
is synchronous in the form of request–response.

B Statelessness communication: every request from client to server must
contain all the information necessary for the server to serve the request.
The server should not store context of ongoing interaction; session state
is on the client.

B Uniform interface: clients and servers handle resources, which have
unique identifiers. Resources are operated on with a restrictive interface
consisting of creation, modification, retrieval and deletion. The result of
a resource request is a hypermedia representation that also drives the
application state.

263

264 � Exercises in Programming Style

34.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python
2 import re, string, sys
3

4 with open("../stop_words.txt") as f:
5 stops = set(f.read().split(",")+list(string.ascii_lowercase))
6 # The "database"
7 data = {}
8

9 # Internal functions of the "server"-side application
10 def error_state():
11 return "Something wrong", ["get", "default", None]
12

13 # The "server"-side application handlers
14 def default_get_handler(args):
15 rep = "What would you like to do?"
16 rep += "\n1 - Quit" + "\n2 - Upload file"
17 links = {"1" : ["post", "execution", None], "2" : ["get",

"file_form", None]}
18 return rep, links
19

20 def quit_handler(args):
21 sys.exit("Goodbye cruel world...")
22

23 def upload_get_handler(args):
24 return "Name of file to upload?", ["post", "file"]
25

26 def upload_post_handler(args):
27 def create_data(fn):
28 if fn in data:
29 return
30 word_freqs = {}
31 with open(fn) as f:
32 for w in [x.lower() for x in re.split("[ˆa-zA-Z]+", f.

read()) if len(x) > 0 and x.lower() not in stops]:
33 word_freqs[w] = word_freqs.get(w, 0) + 1
34 wf = list(word_freqs.items())
35 data[fn] = sorted(wf,key=lambda x: x[1],reverse=True)
36

37 if args == None:
38 return error_state()
39 filename = args[0]
40 try:
41 create_data(filename)
42 except:
43 print("Unexpected error: %s" % sys.exc_info()[0])
44 return error_state()
45 return word_get_handler([filename, 0])
46

47 def word_get_handler(args):
48 def get_word(filename, word_index):
49 if word_index < len(data[filename]):
50 return data[filename][word_index]
51 else:
52 return ("no more words", 0)

Restful � 265

53

54 filename = args[0]; word_index = args[1]
55 word_info = get_word(filename, word_index)
56 rep = ’\n#{0}: {1} - {2}’.format(word_index+1, word_info[0],

word_info[1])
57 rep += "\n\nWhat would you like to do next?"
58 rep += "\n1 - Quit" + "\n2 - Upload file"
59 rep += "\n3 - See next most-frequently occurring word"
60 links = {"1" : ["post", "execution", None],
61 "2" : ["get", "file_form", None],
62 "3" : ["get", "word", [filename, word_index+1]]}
63 return rep, links
64

65 # Handler registration
66 handlers = {"post_execution" : quit_handler,
67 "get_default" : default_get_handler,
68 "get_file_form" : upload_get_handler,
69 "post_file" : upload_post_handler,
70 "get_word" : word_get_handler }
71

72 # The "server" core
73 def handle_request(verb, uri, args):
74 def handler_key(verb, uri):
75 return verb + "_" + uri
76

77 if handler_key(verb, uri) in handlers:
78 return handlers[handler_key(verb, uri)](args)
79 else:
80 return handlers[handler_key("get", "default")](args)
81

82 # A very simple client "browser"
83 def render_and_get_input(state_representation, links):
84 print(state_representation)
85 sys.stdout.flush()
86 if type(links) is dict: # many possible next states
87 input = sys.stdin.readline().strip()
88 if input in links:
89 return links[input]
90 else:
91 return ["get", "default", None]
92 elif type(links) is list: # only one possible next state
93 if links[0] == "post": # get "form" data
94 input = sys.stdin.readline().strip()
95 links.append([input]) # add the data at the end
96 return links
97 else: # get action, don’t get user input
98 return links
99 else:

100 return ["get", "default", None]
101

102 request = ["get", "default", None]
103 while True:
104 # "server"-side computation
105 state_representation, links = handle_request(*request)
106 # "client"-side computation
107 request = render_and_get_input(state_representation, links)

266 � Exercises in Programming Style

34.3 COMMENTARY

REST, REpresentational State Transfer, is an architectural style for
network-based interactive applications that explains the Web. Its con-

straints form an interesting set of decisions whose main goals are extensibility,
decentralization, interoperability, and independent component development,
rather than performance.

When learning about REST, one is invariably led to the Web. Unfortu-
nately, that approach has a few problems that hamper, rather than help, the
learning process. First, it is too easy to blur the line between the architec-
tural style (i.e. the model, a set of constraints) and the concrete Web. Second,
the examples for REST that use HTTP and Web frameworks require some
previous knowledge of the Web – and that’s a catch–22.

REST is a style – a set of constraints for writing networked applications.
This style is interesting in itself, independent of the fact that it captures the
essence of the Web. This chapter focuses on the set of constraints stated by
REST by using the same term-frequency example used throughout the book.
On purpose, this chapter doesn’t cover the parts of the style that pertain to
the network, but it covers the main constraints of REST.

Our example program interacts with the user by presenting them options
and acting on the corresponding resources. Here is an excerpt of an interaction:

$ python tf-33.py
What would you like to do?
1 - Quit
2 - Upload file

U> 2
Name of file to upload?

U> ../pride-and-prejudice.txt

#1: mr - 786

What would you like to do next?
1 - Quit
2 - Upload file
3 - See next most-frequently occurring word

U> 3

#2: elizabeth - 635

What would you like to do next?
1 - Quit
2 - Upload file
3 - See next most-frequently occurring word

Restful � 267

Lines starting with U> denote user input. The words and their frequencies
are presented one by one, on demand, by decreasing order of frequency. It’s not
hard to imagine what this interaction would look like in HTML on a browser.

Let’s look at the program, starting at the bottom. Lines #102–107 are
the main instructions. The program starts by creating a request (line #102).
Requests in our program are lists with three elements: a method name, a
resource identifier and additional data from the client (the caller) to the server
(the provider) on certain operations. The request created in line #102 invokes
the method GET on the default resource, and provides no additional data,
because GET operations retrieve, rather than post, data on the server. The
program then goes into an infinite ping-pong between the provider-side code
and the client-side code.

In line #105, the provider is asked to handle the request.1 As a result, the
provider sends back a pair of data that we might call hypermedia:

• The first element of the pair is the application’s state representation –
i.e. some representation of the view, in MVC terms.

• The second element of the pair is a collection of links. These links con-
stitute the set of possible next application states: the only possible next
states are those presented to the user via these links, and it’s the user
who drives which state the application will go to next.

On the real Web, this pair is one unit of data in the form of HTML or
XML. In our simple example, we want to avoid complicated parsing functions,
so we simply split the hypermedia into those separate parts. This is similar to
having an alternative form of HTML that would render all the information of
the page without any embedded links, and show all the possible links at the
bottom of the page.

In line #107, the client takes the hypermedia response from the server,
renders it on the user’s screen and returns another request, which embodies
an input action from the user.

Having looked at the main interaction loop, let’s now look at the provider-
side code. Lines #73–80 are the request handler function. That function checks
to see if there is a handler registered for the specific request and if so, it calls
it; otherwise it calls the get default handler.

The handlers of the application are registered in a dictionary just above
(lines #66–70). Their keys encode the operation (GET or POST) and the
resource to be operated on. As per constraint of the style, REST applications
operate on resources using a very restrictive API consisting of retrieval (GET),
creation (POST), updates (PUT) and removal (DELETE); in our case, we use
only GET and POST. Also in our case, our resources consist of:

• default, when no resource is specified.

• execution, the program itself, which can be stopped per user’s request.

1In Python, *a unpacks a list a into positional arguments.

268 � Exercises in Programming Style

• file forms, the data to be filled out for uploading a file.

• files, files.

• words, words.

Let’s look through each one of the request handlers:

• default handler (lines #14–18) This handler simply constructs the
default view and default links, and returns them (line #18). The default
view consists of two menu options – quit and upload a file (lines #15–16).
The default links are a dictionary mapping out the possible next states
of the application, of which there are two (line #17): if the user chooses
option “1” (quit), the next request will be a POST on the execution
resource with no data; if she chooses “2” (upload a file), the next request
will be a GET on the file form with no data. This already shines the
light on what hypermedia is, and how it encodes the possible next states:
the server is sending an encoding of where the application can go next.

• quit handler (lines #20–21) This handler stops the program (line
#21).

• upload get handler (lines #23–24) This handler returns a “form,”
which is just a textual question, and only one next possible state, a
POST on the file resource. Note that the link, in this case, has only two
parts instead of three. At this point, the server doesn’t know what the
user’s answer is; because this is a “form,” it will be up to the client to
add the user’s data to the request.

• upload post handler (lines #26–45) This handler first checks if
there is, indeed, an argument given (line #38), returning an error if
there isn’t (line #39). When there is an argument, it is assumed to be a
file name (line #40); the handler tries to create the data from the given
file (lines #41–44). The function for creating the data (lines #27–36)
is similar to all functions we have seen before for parsing the input file.
At the end, the words are stored on the “database,” which in this case
is just a dictionary in memory, mapping file names to words (line #7).
The handler ends by calling the word get handler for the given file
name and word number 0 (line #45). This means that after successfully
loading the file specified by the user, the upload function comes back
to the user with the “page” associated with getting words in general,
requesting the top word on the file that has just been uploaded.

• word get handler (lines #47–63) This handler gets a file name and a
word index (line #54),2 it retrieves the word from the given index of the
given file from the database (line #55), and constructs the view listing

2On the Web, this would look like http://tf.com/word?file=...&index=...

http://tf.com/

Restful � 269

the menu options (line #56–59), which in this case are: quit, upload a
file, and get the next word. The links associated with the menu options
(lines #60–62) are: POST to the execution for quit, GET the file form for
another file upload, and GET the word. This last link is very important
and it will be explained next.

In short, request handlers take eventual input data from the client, process
the request, construct a view and a collection of links, and send these back to
the client.

The link for the next word in line #62 is illustrative of one of the main con-
straints of REST. Consider the situation above, where the interaction presents
a word, say, the 10th most frequently occurring word on the file, and is meant
to be able to continue by showing the next word, word number 11. Who keeps
the counter – the provider or the client? In REST, providers are meant to be
unaware of the state of the interaction with the clients; the session state is to
be passed to the clients. We do that by encoding the index of the next word in
the link itself: [‘‘get’’, ‘‘word’’, [filename, word index+1]].
Once we do that, the provider doesn’t need to keep any state regarding past
interactions with the client; next time, the client will simply come back with
the right index.

The last part of the program is client-side code, a simple textual “browser”
defined in lines #83–100. The first thing this browser does is to render the
view on the screen (lines #84–85). Next, it interprets the links data structure.
We have seen two kinds of link structures: a dictionary, when there are many
possible next states, and a simple list, when there is only one next state (we
saw this in line #24).

• When there are many possible states, the browser requests input from
the user (line #87), checks whether it corresponds to one of the links
(line #88) and, if so, it returns the request embodied in that link (line
#89); if the link doesn’t exist, it returns the default request (line #91).

• When there is only one next state, it checks whether the link is a POST
(line #93), meaning that the data is a form. In this case, too, it requests
input from the user (i.e. the user fills out the form, line #94), then it
appends the form data to the next request (line #95) and returns the
request in that link. This is the equivalent of an HTTP POST, which
appends user-entered data (aka message body) to the request after the
request header.

34.4 THIS STYLE IN SYSTEMS DESIGN

The constraints explained above embody a significant portion of the spirit of
Web applications. Not all Web applications follow it; but most do.

One point of contention between the model and reality is how to handle
the application state. REST calls for transferring the state to the client at

270 � Exercises in Programming Style

every request, and using URLs that describe actions on the server without
any hidden information. In many cases, that turns out to be impractical –
too much information would need to be sent back and forth. In the opposite
end of the spectrum, many applications hide a session identifier in cookies,
a header which is not part of the resource identifier. The cookies identify
the user. The server can then store the state of the user’s interaction (on
the database, for example), and retrieve/update that state on the server side
at every request from the user. This makes the server-side application more
complex and potentially less responsive, because it needs to store and manage
the state of interaction with every user.

The synchronous, connectionless, request/response constraint is another
interesting constraint that goes against the practice in many distributed sys-
tems. In REST, servers do not contact clients; they simply respond to clients’
requests. This constraint shapes and limits the kinds of applications that are
a good fit for this style. For example, real-time multi-user applications are not
a good fit for REST, because they require the server to push data to clients.
People have been using the Web to build these kinds of applications, using
periodic client polls and long polls. Although it can be done, these applications
are clearly not a good fit for the style.

The simplicity of the interface between clients and servers – resource iden-
tifiers and the handful of operations on them – has been one of the major
strengths of the Web. This simplicity has enabled independent development
of components, extensibility and interoperability that wouldn’t be possible in
a system with more complex interfaces.

34.5 HISTORICAL NOTES

The Web started as an open information management system for physicists
to share documents. One of the main goals was for it to be extensible and
decentralized. The first Web servers came online in 1991, and a few browsers
were developed early on. Since then, the Web has seen an exponential growth,
to become the most important software infrastructure on the Internet. The
evolution of the Web has been an organic process driven by individuals and
corporations, and many hits and misses. With so many commercial interests at
stake, keeping the platform open and true to its original goals has sometimes
been a challenge. Over the years, several corporations have tried to add fea-
tures and optimizations that, although good in some respects, would violate
the principles of the Web.

By the late 1990s, it was clear that, even though the Web had evolved
organically and without a master plan, it had very particular architectural
characteristics that made it quite different from any other large-scale net-
worked system that had been attempted before. Many felt it was important
to formalize what those characteristics were. In 2000, Roy Fielding’s doctoral
dissertation described the architectural style that underlies the Web, which he
called REST – REpresentational State Transfer. REST is a set of constraints

Restful � 271

for writing applications that explains, to some extent, the Web. The Web
diverges from REST in some points, but, for the most part, the model is quite
accurate with respect to reality.

34.6 FURTHER READING

Fielding, R. (2000). Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California,
Irvine. Available at
http://www.ics.uci.edu/˜fielding/pubs/dissertation/top.htm
Synopsis: Fielding’s PhD dissertation explains the REST style of network
applications, alternatives to it, and the constraints that it imposes.

34.7 GLOSSARY

Resource: A thing that can be identified.

Universal resource identifier: (URI) A unique, universally accepted,
resource identifier.

Universal resource locator: (URL) A URI that encodes the location of
the resource as part of its identifier.

34.8 EXERCISES

34.1 Another language. Implement the example program in another language,
but preserve the style.

34.2 Upwards. The example program traverses the list of words always in the
same direction: in decreasing order of frequency. Add an option in the
user interaction that allows the user to see the previous word.

34.3 A different task. Write one of the tasks proposed in the Prologue using
this style.

http://www.ics.uci.edu/

http://taylorandfrancis.com

X
Neural Networks

273

http://taylorandfrancis.com

Neural Networks � 275

Tied to supervised machine learning, the popularity of neural networks has
skyrocketed in the last few years. A major factor for this was the open source
release of TensorFlow in 2017, and of simplified APIs for it, such as Keras. But
the concepts underlying neural networks are as old as computers. However,
they were not at the center of the dominant branch of computer develop-
ments and, for some time, were even discredited. Interestingly, they embody
radically different ways of thinking about computational problems, and even
about computers. The next few chapters show the several new conceptual
tools brought about by neural networks, with and without learning.

The examples here use Keras with the TensorFlow backend. Even though
Keras has considerably elevated the abstractions for neural network program-
ming, writing these programs feels like programming in assembly language for
a very strange computer, one that is more analog than digital and that does
not follow the von Neumman architecture. For that reason, and because the
concepts are really different, the example programs in this part of the book
cover the parts of the term frequency problem in separate but not the entire
problem. This separation makes the explanations easier, as solving the com-
plete term frequency problem in one neural network program would require
coverage of an extensive number of new concepts.

By the end of these next few chapters, it will become clear that everything
we’ve seen so far, up to this part, has been under a hidden but foundational
constraint: that of digital computing and its symbolic approach to problem
solving. The different styles we’ve seen so far are different ways of thinking
about manipulating discrete symbols – characters, words, counts. Once we
understand programming with neural networks, a brand new door opens up
to the old and forgotten ideas of analog computing – a world not made of 0s
and 1s, discrete functions, and Boolean logic, but made of real-valued numbers,
continuous functions, and their calculi. The concepts floating around in this
space are still closely tied to their mathematical origins, so they feel low level
and... strange. The discomfort is unavoidable and necessary.

All programs in this section share the following constraints:

B There are only numbers. All other types of data must be converted
to/from numbers.

B A program is a pure function, or a sequence of pure functions, that takes
numbers as input and produces numbers as output. There are no side
effects.

B Functions are neural networks, i.e. linear combinations between input
and certain weights, possibly shifted by a bias, and possibly thresholded.

B If they are to be automatically learned from training data, the neural
functions must be differentiable.

http://taylorandfrancis.com

CHA PT E R 35

Dense, Shallow, under
Control

35.1 CONSTRAINTS

B The neural function consists of one single layer that connects all inputs
to all outputs.

B The neural function is hardcoded by human programmers by setting the
values of the weights explicitly.

277

278 � Exercises in Programming Style

35.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense
3 import numpy as np
4 import sys, os, string
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11

12 def encode_one_hot(line):
13 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
14 for i, c in enumerate(line):
15 if c in characters:
16 index = char_indices[c]
17 else:
18 index = char_indices[’ ’]
19 x[i][index] = 1
20 return x
21

22 def decode_one_hot(x):
23 s = []
24 for onehot in x:
25 one_index = np.argmax(onehot)
26 s.append(indices_char[one_index])
27 return ’’.join(s)
28

29 def normalization_layer_set_weights(n_layer):
30 wb = []
31 w = np.zeros((INPUT_VOCAB_SIZE, INPUT_VOCAB_SIZE), dtype=np.

float32)
32 b = np.zeros((INPUT_VOCAB_SIZE), dtype=np.float32)
33 # Let lower case letters go through
34 for c in string.ascii_lowercase:
35 i = char_indices[c]
36 w[i, i] = 1
37 # Map capitals to lower case
38 for c in string.ascii_uppercase:
39 i = char_indices[c]
40 il = char_indices[c.lower()]
41 w[i, il] = 1
42 # Map all non-letters to space
43 sp_idx = char_indices[’ ’]
44 for c in [c for c in list(string.printable) if c not in list(

string.ascii_letters)]:
45 i = char_indices[c]
46 w[i, sp_idx] = 1
47

48 wb.append(w)
49 wb.append(b)
50 n_layer.set_weights(wb)
51 return n_layer
52

Dense, Shallow, under Control � 279

53 def build_model():
54 # Normalize characters using a dense layer
55 model = Sequential()
56 dense_layer = Dense(INPUT_VOCAB_SIZE,
57 input_shape=(INPUT_VOCAB_SIZE,),
58 activation=’softmax’)
59 model.add(dense_layer)
60 return model
61

62 model = build_model()
63 model.summary()
64 normalization_layer_set_weights(model.layers[0])
65

66 with open(sys.argv[1]) as f:
67 for line in f:
68 if line.isspace(): continue
69 batch = encode_one_hot(line)
70 preds = model.predict(batch)
71 normal = decode_one_hot(preds)
72 print(normal)

280 � Exercises in Programming Style

35.3 COMMENTARY

NEURAL NETWORKS (NN) are intimately associated with supervised
machine learning and, in particular, with deep learning. But these con-

cepts are orthogonal and have emerged independently, at different times. His-
torically, the first learning algorithm on NNs came more than a decade after
NNs were formulated. In this book, we also separate the concept of neural
networks from the concept of learning from input-output examples.

This first example starts with a neural network that does not learn.
Instead, it is hardcoded to behave exactly how we want it to behave. This first
example is not illustrative of the kinds of programs people write with neural
networks these days, but it is the simplest thing that works for explaining
some of the basic concepts in neural networks, and setting up the stage for
the concept of supervised learning.

The functionality here is very simple: given a sequence of characters (for
example, a line), output the normalized version of those characters, where
uppercase letters are converted to lowercase and every non-alphanumeric char-
acter is converted to a space. This is a simple filter designed to perform certain
transformations on characters. It is also the first part of the term frequency
problem.

At the center of neural networks, there is the concept of a neuron. In its
mathematical model, a neuron is the realization of a function that receives N
inputs, adds them together in a weighted manner, and activates a response
when the resulting value meets certain conditions. The response may be a
simple linear combination of the weighted inputs, but it may also be non-
linear. Pictorially, the model of a neuron is as follows:

Neural networks consist of many neurons connected in some fashion. In
deep learning, neurons are organized in layers, where neurons in the same
layer perform the same function on the same inputs, albeit with different
weights.

Before explaining the example program, it is important to note that NN
programming, at least as it is currently packaged in popular frameworks, bor-
rows many concepts from the array programming style presented in Chapter 3.
If the reader skipped that chapter, now is the time to read it. The reason why
NN programming is related to array programming is simple: deep learning
relies heavily on the linear algebra associated with neurons and, in particular,

Dense, Shallow, under Control � 281

on differentiable functions; linear algebra, in turn, relies heavily on fixed-size
data – i.e. multidimensional arrays. The word tensor in TensorFlow refers to
fixed-size multidimensional arrays that represent both data and functions over
data (i.e. the layers of neurons).

A considerable part of the effort in writing NN programs, and thinking
about problems in this space, falls on converting data to and from vector-
ized form. Data encoding (i.e. the vectorized representation of data) is central
to NN and deep learning: certain encodings make the problem easy for the
network, while others make the problem hard.

Let’s take a first look at the example program, starting in its main loop in
lines #66–72. That loop iterates over the lines of the given text file. For each
line, it first encodes it in a special way (line #69, one-hot encoding, explained
next). Then, in line #70, it puts the network to work via the model’s predict
function. Finally, it decodes the result (line #71) and prints it (line #72). The
predict function of a network model is akin to calling the function that the
network implements, for as many arguments as the number of inputs. In this
case, we send it a line-sized batch of inputs, and receive a line-sized batch of
outputs.

Neural networks implement linear algebra functions, and therefore can
only handle scalar data. Categorical data such as characters and strings must
be converted to scalar vectors before they are given as input to the network.
In this case, we need to convert the characters in the text file into vectors
of numbers. A popular representation for categorical data in NNs is one-hot
encoding. This encoding is very simple: given N different things, use a vector
of size N; each thing is then represented by an N-vector of N-1 zeros, and only
one 1; the position of the 1 determines which thing the vector encodes.

Let’s look at the one-hot encoding function in lines #12–20. This function
takes a line (a string) as input and returns a 2-dimensional array of one-hot
encodings, one per character in the line. The first dimension has the size of
the line, so that there is one entry per character; the second dimension has the
size INPUT VOCAB SIZE, which, in this case, is 100 (in Python, there are
100 printable characters). Each character is represented by a Numpy array of
size INPUT VOCAB SIZE (100). All elements of that array are zero, except
one, at the position corresponding to the ordinal number of the character in
the set of printable characters. So, for example, the encoding for the character
‘0’ is [1, 0, 0, ..., 0], for ‘1’ [0, 1, 0, ..., 0], etc. For simplification, the function
maps all non-printable characters to the space character (lines #17–18).

The decoding function in lines #22–27 performs the converse operation:
it takes a 2-dimensional array of one-hot encoded data corresponding to char-
acters of a line, and returns its string representation. In order to identify the
character, the decoder calls Numpy’s argmax function (line #25). Argmax
returns the index of the maximum value of the given array, therefore returning
the index of the single 1 in the one-hot encoded vector.

At this point, the reader might ask: why not use the ASCII or UTF-8
representation of characters, which is much shorter than 100 bits? We could

282 � Exercises in Programming Style

do that too. The problem is that the logic of the network would be consid-
erably more complicated to program than the logic for transforming one-hot
encodings into other one-hot encodings. Let’s proceed, then, to the core of the
example, the neural network, also known as the model.

The network model is built in line #62 and printed in line #63. The model
building function is defined in lines #53–60. The model is a sequence of layers
(line #55), in this case only one layer. That single layer consists of a dense
network (lines #56–58) that takes as input one one-hot encoded character and
outputs one one-hot encoded character. A dense layer is a layer that connects
every neuron in the input to every neuron in the output. The figure below
shows a dense layer with 10 input neurons and 10 output neurons, for a total
of 100 connections.

In the case of the example program, the dense layer connects 100 input
neurons to 100 output neurons, for a total of 10,000 connections. NNs with
just one layer are said to be shallow.

And now we come to the core of the example program: how to express
the character normalization we want, using the weights of the dense layer.
Normally, in NN programs, this part is learned from input-output examples
– we will see that in the next chapter. NNs are computing machines, albeit
completely different from von Neumman machines. Rather than implementing
logic operations on binary data, they implement arithmetic operations on
continuous signals. NNs would be better suited for analog computers. But like
any computing machine, including analog computers, NNs can be explicitly
programed, as long as we understand what the functions should be, and how
to express it as weights on neural connections. In this case, the function –
expressed as certain weight values of the dense layer – is relatively simple,
and is explained next.

The “program” for the dense layer is set in line #64, and defined in lines
#29–51 of the example program. The dense layer is “programmed” by setting
up two parameters: the weights (line #31) and the bias (line #32), both
initialized to zeros. These parameters correspond directly to the wi’s and

Dense, Shallow, under Control � 283

b depicted in the neuron figure shown a couple of pages back. The bias b
is zero across the layer. The weights w is where the logic stands. First of
all, it is important to understand the shape of the weights: they are a 2-
dimensional matrix mapping input characters of INPUT VOCAB SIZE to
output characters of the same size. We need to set each of these 10,000 weights
so that they perform the wanted transformations. Initially, they are all zero.

Let’s start with the identity function, which applies to lowercase let-
ters (lines #34–36): for all one-hot data corresponding to lowercase letters,
there should be a non-zero weight on the connection from the non-zero value
of the input to the exact same position on the output. For example, the
letters ‘a’ and ‘b’ correspond to the vectors [0,0,0,0,0,0,0,0,0,1,0...,0] and
[0,0,0,0,0,0,0,0,0,0,1...,0], respectively. As such, the weights from the 10th and
11th input neurons to the 10th and 11th output neurons, respectively, are set
to 1. Lines #35–36 establish this logic. With that, every time the input is
‘a’ or ‘b’, the output is also ‘a’ or ‘b’, respectively – the same happens to all
lowercase letters.

The next block (lines #38–41) implements the transformation from upper-
case letters to their lowercase counterparts. In this case, the weights that
should not be zero are the connections from the 1-valued input neurons to the
output neurons that encode the corresponding lowercase letters. For exam-
ple, the letter ‘A’ corresponds to the vector [35 zeros,1,0,...,0]. As such, there
should be a non-zero weight on the connection between the 36th input neuron
and the 10th output neuron, which represents the letter ‘a’. Lines #39–41
establish that logic. With this, every time the input is ‘A’, the output is ‘a’ –
the same happens for all other uppercase letters.

Finally, lines #43–46 map all non-letter characters to the space character.
That is established by having non-zero weights on the connection between
the encoding 1-value of each of those characters and the output neuron that
encodes the space character.

Within the 10,000 weights of the dense layer, only 100 of them are 1; the
rest are 0. Our dense layer is actually quite sparse: we could get rid of the
9,900 zero-valued connections and obtain the same behavior from the network.
This calls for two observations about dense networks:

• Reevaluating the use of one-hot encoding: had we used another encoding
scheme with smaller vectors, e.g. ASCII (8 bits), there would be less
overall weights to set (64, specifically, for ASCII); however, the logic
between input and output neurons would be a lot more complicated to
express – but still feasible to implement, and left as an exercise.

• “Programming” in NNs is expressed as combinations of input values
at each output neuron. Dense layers have an extensive surface area for
“programming.” In our case, we have 10,000 real-valued numbers at
our disposal, which would allow us to capture a very large space of
possible interdependencies between the input values for obtaining output
values. Dense layers are the Swiss army knife of NNs – they can become

284 � Exercises in Programming Style

anything, including more constrained networks with fewer connections,
by setting certain weights to zero. We will come back to this point when
analyzing networks that learn from examples.

As a final remark about the example program, the weights of the dense
layer are set in line #60.

35.4 HISTORICAL NOTES

The concept of neural networks emerged within the field of theoretical neu-
rophysiology in the 1940s. Neurophysiology studies the brain. Informed by
lab experiments and empirical data, theoreticians try to capture the empirical
knowledge of their field by making mathematical models that both explain the
empirical results and predict behaviors not yet observed. The mathematical
model of a neuron as a combinator of inputs activated by certain conditions
was first described by McCulloch and Pitts in their seminal 1943 paper “A
Logical Calculus of the Ideas Immanent in Nervous Activity.” The paper pre-
sented neural networks, called “nervous” networks, but did not include any
concept of learning. Instead, several neural networks were presented that tried
to capture logic operations such as AND, OR, NOT, etc. It would be another
decade until learning was introduced in NNs.

This connectionist model of computation, as it is now called, was quite
different from the digital/symbolic models that influenced the development
of digital computers at the time. Without their potential for learning from
examples, neural networks are, indeed, much more complicated machines to
program than digital circuits. The natural tendency, in this case, is that fol-
lowed by McCulloch and Pitts: build logical blocks out of neurons. Doing so
makes NNs no different than digital computers, and their value limited.

35.5 FURTHER READING

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. In Bulletin of Mathematical Biophysics, Vol. 5, pp.
115–133.
Synopsis: The first paper with a mathematical model of a neuron and
the concept of “nervous” networks.

35.6 GLOSSARY

Dense: A network with connections between a very large number of neurons.
In Keras, a dense layer is a total set of connections between a set of input
and a set of output neurons.

Encoding: Both a noun and a verb, it means having data in vectorized form.

Layer: Set of connections between a set of input neurons and a set of output
neurons.

Dense, Shallow, under Control � 285

Model: A network architecture that is already “programmed,” i.e. with all
of its weights in place. The closest concept to a program in the NN world.

Neuron: A combinator of inputs, activated under certain conditions
expressed by a continuous function.

One-hot: Popular encoding in NNs for categorical data, using one single 1
for each category, and the rest 0.

Predict: Model.Predict ≈ Program.Run ≈ Function.Eval.

Shallow: A neural network consisting just of a set of input neurons, a set of
output neurons, and the connections between them; no other layers.

Tensor: Multidimensional fixed-size data representing both input/output
data as well as functions (weights).

35.7 EXERCISES

35.1 Another program. Prove that the network “program” defined in the func-
tion normalization layer set weights is not the only possible
solution, by using different weights that produce the same character
transformations.

35.2 Another encoding. Implement the example program using ACII encoding
instead of one-hot encoding.

35.3 Another function. Implement an NN that transforms characters into
their LEET counterparts. Use any encoding you want and any LEET
code you want.

http://taylorandfrancis.com

CHA PT E R 36

Dense, Shallow, out of
Control

36.1 CONSTRAINTS

B The neural function consists of one single layer that connects all inputs
to all outputs.

B The neural function is learned via inferences on training data.

287

288 � Exercises in Programming Style

36.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense
3 import numpy as np
4 import sys, os, string, random
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11 BATCH_SIZE = 200
12

13 def encode_one_hot(line):
14 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
15 for i, c in enumerate(line):
16 if c in characters:
17 index = char_indices[c]
18 else:
19 index = char_indices[’ ’]
20 x[i][index] = 1
21 return x
22

23 def decode_one_hot(x):
24 s = []
25 for onehot in x:
26 one_index = np.argmax(onehot)
27 s.append(indices_char[one_index])
28 return ’’.join(s)
29

30 def build_model():
31 # Normalize characters using a dense layer
32 model = Sequential()
33 dense_layer = Dense(INPUT_VOCAB_SIZE,
34 input_shape=(INPUT_VOCAB_SIZE,),
35 activation=’softmax’)
36 model.add(dense_layer)
37 return model
38

39 def input_generator(nsamples):
40 def generate_line():
41 inline = []; outline = []
42 for _ in range(nsamples):
43 c = random.choice(characters)
44 expected = c.lower() if c in string.ascii_letters else

’ ’
45 inline.append(c); outline.append(expected)
46 return ’’.join(inline), ’’.join(outline)
47

48 while True:
49 input_data, expected = generate_line()
50 data_in = encode_one_hot(input_data)
51 data_out = encode_one_hot(expected)
52 yield data_in, data_out
53

Dense, Shallow, out of Control � 289

54 def train(model):
55 model.compile(loss=’categorical_crossentropy’,
56 optimizer=’adam’,
57 metrics=[’accuracy’])
58 input_gen = input_generator(BATCH_SIZE)
59 validation_gen = input_generator(BATCH_SIZE)
60 model.fit_generator(input_gen,
61 epochs = 50, workers=1,
62 steps_per_epoch = 20,
63 validation_data = validation_gen,
64 validation_steps = 10)
65

66 model = build_model()
67 model.summary()
68 train(model)
69

70 input("Network has been trained. Press <Enter> to run program.")
71 with open(sys.argv[1]) as f:
72 for line in f:
73 if line.isspace(): continue
74 batch = encode_one_hot(line)
75 preds = model.predict(batch)
76 normal = decode_one_hot(preds)
77 print(normal)

290 � Exercises in Programming Style

36.3 COMMENTARY

HAVING programmed a neural network explicitly in the previous chapter
by manually setting the weights of the dense layer, we now turn our atten-

tion to learning. Learning relates to the following question: can the weights
be, somehow, automatically calculated based on input-output examples? It
turns out that they can. This was the important discovery that made neural
networks a topic of interest to computer scientists over the years. And while
the first learning algorithms, as they are called, weren’t that good, and almost
brought the work on neural networks to a halt, developments in the early
1980s changed the field.

The example program in this chapter is similar to the program of the
previous chapter. The only difference is the process by which the dense layer
is “programmed.” In the previous chapter, the weights were part of the logic
of the program; in here, the weights are learned. Let’s dive in.

First, the parts that are exactly the same as the previous program are:
the one-hot encode and decode functions (lines #13–28), the model definition
function (lines #39–46), and the main block (lines #71–77).

What is different in this program is that, instead of setting the weights,
there is now a step of training the network after building it (line #68, and
function in lines #54–64). This is where the weights of the dense layer are
calculated. As a high-level API, Keras hides most of the details of how learning
works, but programmers still need to have some basic domain knowledge about
machine learning in order to use Keras effectively. In here, we explain how
learning could work in the simple network of this simple example. Note that
this is not how learning actually works in TensorFlow and all other modern
deep learning frameworks, but it’s very close to how it was first proposed in
1958, with additional simplifications coming from the nature of the problem
at hand, and the one-hot encoding that is being used. Here is a simple learning
algorithm that could work in this case:

1. Initialize the weights to 0.

2. Get one one-hot encoded character from the training set. Feed this input
to the network and get the output.

3. For each output neuron, if its value is 0 when it should have been 1,
change the weight to 1 for the [single] input that was 1.

4. Repeat steps 2–4 until there are no more mistakes.

After seeing all possible characters as input, the network will correctly
have “learned” one possible solution for the problem, which happens to be
the exact same solution of the previous chapter.

This learning algorithm is too simple to work beyond the simple transla-
tion and encoding of our problem; it will not even work for other encodings
of characters. Modern machine learning uses an algorithm called backpropa-
gation, which is a generalization of the basic idea of propagating the error

Dense, Shallow, out of Control � 291

backwards in the network over many layers, not just one. Whether to increase
or decrease the values of the weights, and by how much, is established by opti-
mization algorithms, typically variations of gradient descent. The adjustment
of the weights is done iteratively, with small changes over the training period,
rather than the big change from 0 to 1 of the simplistic algorithm outlined
above.

Let’s get back to the example program. The training function starts by
“compiling” the network (lines #55–57) for the given loss function (categorical
entropy), optimizer (adam), and success metrics (accuracy). “Compiling” here
means something very different than for the rest of the programming world:
it means setting up and configuring the network for training. During training,
the tensor backend needs to know how to optimize the parameter values given
the data, and how to measure success. Loss functions (or objective functions)
map the losses into a scalar value, so that the loss can be calculated and
assessed. Examples of loss functions include mean squared error, binary cross-
entropy, and many others. Categorical cross-entropy, used here, is appropriate
for when there are two or more label classes on the output, and the classes are
encoded using one-hot representation. That is the case here – each character is
a category, and is encoded using one-hot representation. As for the optimizer,
there are many variations for implementing gradient descent on batches of
data; the one used here (adam) converges very quickly on this data. Finally,
the last parameter, metrics, defines a set of metrics that should be used to
measure success of the learning process. In this case, we are interested in
accuracy, i.e. the distance between the true values and the predicted values
during training.

Having compiled the model, the training function proceeds to the actual
training, which is done in lines #60–64 by calling the fit generator
method on the model. fit generator is a variant of the simple fit method,
which fits the model to the given training data – that’s how learning happens;
fit generator is fit but where the training and validation data are fed
using generator functions, rather than being loaded in memory as a whole. The
parameters to the fit method also require some knowledge of machine learning.
Basically, learning happens on batches of the training data, and with multiple
passes (called epochs) over it. Our batch size is 200 samples (line #11), and
we’re training on 50 epochs. We define steps per epoch to be 20, which
means that the training set size is 20 ∗ 200 = 4, 000 samples. The following
picture illustrates the relations among all these training concepts:

292 � Exercises in Programming Style

Finally, we come to the training data. For this particular problem, we can
generate infinite amounts of training data, because we know exactly how to
implement the specified character normalization using a traditional program.
In real applications of machine learning, however, that is not the case, and
training data is typically hard to come by. In this example program, the gen-
eration of training data is done in lines #39–52. In general, training data
consists of pairs of input-output values, properly encoded for the model. In
this case, it’s batches of characters and their normalized counterparts, using
one-hot representations.

There is no strong reason for using a generator vs. a normal function that
would store the training data in memory. Typically, generators are preferred
when the training data is too big, and does not fit in memory, but that is not
the case here. The preference for the generator is that it makes it somewhat
easier to experiment with different training parameters of the fit method
(line #60) without having to change the data generation part.

At this point, the reader should have one burning question: did this net-
work learn to do character normalization in exactly the same way we did it
in the previous chapter? When we had control of the program, we set certain
weights to 1, and left all others at 0. Was that what happened here too? Not
exactly, but the learned solutions have similarities to ours. We can inspect the
weights of any connection in any network layer with this statement:

print(model.layers[n].get_weights()[0][i][j])

where n is the layer’s ordinal number, and i and j are the ordinal numbers
of an input and output neuron, respectively (get weights() returns a list
of two items: the weights and the bias; hence the index [0]). Inspecting, for
example, the weights coming out of input neuron 36 (‘A’) yields the following
values, in the case of the programmed network of the previous chapter:

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.]

The single 1 at position 10 is the programmed mapping to lowercase ‘a’,
which is character number 10. In the case of the learned network of this
chapter, the values are something like this (the exact values vary from run to
run):

[-0.72 -0.60 -0.81 -0.63 -0.91 -0.79 -0.80 -0.60 -0.74
-0.75 0.92 -1.03 -0.92 -1.07 -0.81 -0.92 -0.81 -0.90
-0.79 -0.90 -1.04 -0.82 -0.99 -0.90 -1.09 -1.07 -1.00
-0.91 -0.92 -0.90 -1.07 -0.84 -0.87 -1.08 -0.85 -1.09

Dense, Shallow, out of Control � 293

-0.68 -0.65 -0.61 -0.66 -0.90 -0.63 -0.87 -0.61 -0.85
-0.72 -0.79 -0.87 -0.78 -0.57 -0.78 -0.66 -0.64 -0.72
-0.57 -0.60 -0.83 -0.59 -0.89 -0.64 -0.73 -0.82 -0.87
-0.61 -0.85 -0.82 -0.66 -0.85 -0.58 -0.60 -0.69 -0.72
-0.65 -0.79 -0.75 -0.83 -0.72 -0.62 -0.82 -0.80 -0.69
-0.62 -0.81 -0.68 -0.66 -0.58 -0.57 -0.86 -0.61 -0.80
-0.63 -0.72 -0.81 -0.74 -0.88 -0.57 -0.66 -0.75 -0.58
-0.72]

All values are negative, except the value at position 10, which is strongly
positive. The same is true for all other cases of our programmed mappings.
So even though the network does not learn the exact solution we had, it
is able to learn equally valid solutions. As mentioned before, a dense layer
like this one, with 10,000 real-valued numbers, has an extensive surface area
for “programming.” There is a large number of possible solutions, and these
numbers also work for the character transformations at hand.

There is no question that the possibility of automatically learning pro-
grams from analyzing input-output examples is an exciting new capability
brought by neural networks that makes them more powerful than traditional
computers. The constraint that enables this new capability is the use of differ-
entiable functions – functions for which it is possible to calculate their deriva-
tives. The cost, however, at least for the time being, is the intelligibility of the
resulting programs. Expressed as multidimensional arrays of real-valued num-
bers, programs in this style, especially when learned from data, are extremely
hard to interpret, in general.

36.4 HISTORICAL NOTES

Developments in neuropsychology were relatively slow after McCulloch and
Pitts’ 1943 paper on “nervous” networks. In 1949, Donald Hebb published a
highly influential book presenting a theory for how the brain might process and
store information. This theory included the first vague ideas about learning
via adjustments at the synapses (i.e. the links between neurons).

It wasn’t until 1958 that the first learning algorithm was devised, and only
for one single neuron: the perceptron, by Frank Rosenblatt. A perceptron
is a neuron capable of learning from examples. Rosenblatt’s work built on
both McCulloch and Pitts’ neural model of logical functions and on Hebb’s
vague ideas of adjustable synapses. Mathematically, he modeled the synapses
as weights on the inputs of the neuron, and he came up with the idea of a
training dataset. His learning algorithm was very simple:

1. Start with random weights.

2. Take one input from the dataset, feed it to the perceptron, and compute
the output.

294 � Exercises in Programming Style

3. If the output does not match the expected result: (a) if it is 1 but it
should have been 0, decrease the weights that had an input of 1; (b) if it
is a 0 but should have been a 1, increase the weights that had an input
of 1.

4. Get another input from the dataset, and repeat steps 2–4, until the
perceptron shows no mistakes.

Rosenblatt not only devised this, but also built his design in custom hard-
ware, showing that it could learn to classify simple shapes correctly on 20x20
pixel-like images. This achievement is seen as the birth of machine learning as
a computational field.

It is believed that Marvin Minsky, considered the father of Artificial Intel-
ligence, had done prior work in 1951 on a neural machine called SNARC
(Stochastic Neural Analog Reinforcement Calculator). But there is no trace
of this work, other than word-of-mouth. Interestingly, Marvin Minsky was
highly skeptical of Rosenblatt’s approach to machine intelligence. Part of his
concerns were valid. The perceptron works well when there is only one neuron
and a finite set of output values, such as 0 and 1, which is a simple classifi-
cation problem. It is also possible to extend this basic algorithm to a set of
perceptrons, i.e. a layer, for solving slightly more complex problems, such as
the one presented in this chapter. But the perceptron has many limitations. In
particular, Minsky and Papert showed that it is not possible to implement the
exclusive-or (XOR) logical function with just one layer of perceptrons – that
there needs to be more than one layer of perceptrons. Rosenblatt’s algorithm
did not work for multiple layers. Not being able to do XOR, the prospects of
perceptrons as the basis for machine intelligence were deemed slim.

Partly due to Minsky’s influence, and his negative views on perceptrons,
the work on neural networks was virtually abandoned as a discredited dead-
end – until the 1980s, when the hype around rule-based AI started to deflate,
and there was space again to talk about neural networks.

36.5 FURTHER READING

Hebb, D.O. (1949). The Organization of Behavior: A Neuropsychological The-
ory. John Wiley & Sons.
Synopsis: The first vague ideas about learning in neural networks via
synaptic adjustments.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. In Psychological Review, Vol.
65(6):386–408.
Synopsis: The first learning algorithm for a single neuron.

Dense, Shallow, out of Control � 295

36.6 GLOSSARY

Batch: A subset of the training data used to update the learned weights.

Epoch: One pass at the entire training data.

Fit: Learn the set of weights that best fit the given input-output data.

Learning algorithm: Any algorithm for finding the weights of a neural net-
work that minimize the error between true values and predicted values.

Loss function: Function that maps a series of errors into one single number.

Optimizer: Concrete implementations of gradient descent.

Training: A phase in neural network programming where the weights of the
network are learned from the data.

Validation: A separate phase for testing how well the trained model performs
on unseen data.

36.7 EXERCISES

36.1 Learning algorithm. Implement the simple learning algorithm outlined
in the Commentary section of this chapter (page 290), and show that it
works correctly.

36.2 Other training parameters. Read through the Keras documentation for
the compile method, and experiment with different optimizers and
loss functions in the example program. Experiment also with different
number of epochs and steps per epoch. Turn in a report with your
findings.

36.3 Another encoding. Implement the example program using ASCII encod-
ing instead of one-hot encoding.

36.4 Another function. Implement an NN that learns to transform charac-
ters into their LEET counterparts. Use any encoding you want and any
LEET code you want.

http://taylorandfrancis.com

CHA PT E R 37

Bow Tie

37.1 CONSTRAINTS

B The shape of the network resembles a bow tie with, at least, one hidden
layer.

297

298 � Exercises in Programming Style

37.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense
3 import numpy as np
4 import sys, os, string
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11

12 def encode_one_hot(line):
13 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
14 for i, c in enumerate(line):
15 index = char_indices[c] if c in characters else

char_indices[’ ’]
16 x[i][index] = 1
17 return x
18

19 def decode_values(x):
20 s = []
21 for onehot in x:
22 # Find the index of the value closest to 1
23 one_index = (np.abs(onehot - 1.0)).argmin()
24 s.append(indices_char[one_index])
25 return ’’.join(s)
26

27 def layer0_set_weights(n_layer):
28 wb = []
29 w = np.zeros((INPUT_VOCAB_SIZE, 1), dtype=np.float32)
30 b = np.zeros((1), dtype=np.float32)
31 # Let lower case letters go through
32 for c in string.ascii_lowercase:
33 i = char_indices[c]
34 w[i, 0] = 1.0/i
35 # Map capitals to lower case
36 for c in string.ascii_uppercase:
37 i = char_indices[c]
38 il = char_indices[c.lower()]
39 w[i, 0] = 1.0/il
40 # Map all non-letters to space
41 sp_idx = char_indices[’ ’]
42 for c in [c for c in list(string.printable) if c not in list(

string.ascii_letters)]:
43 i = char_indices[c]
44 w[i, 0] = 1.0/sp_idx
45

46 wb.append(w)
47 wb.append(b)
48 n_layer.set_weights(wb)
49 return n_layer
50

51 def layer1_set_weights(n_layer):
52 wb = []

Bow Tie � 299

53 w = np.zeros((1, INPUT_VOCAB_SIZE), dtype=np.float32)
54 b = np.zeros((INPUT_VOCAB_SIZE), dtype=np.float32)
55 # Recover the lower case letters
56 for c in string.ascii_lowercase:
57 i = char_indices[c]
58 w[0, i] = i
59 # Recover the space
60 sp_idx = char_indices[’ ’]
61 w[0, sp_idx] = sp_idx
62

63 wb.append(w)
64 wb.append(b)
65 n_layer.set_weights(wb)
66 return n_layer
67

68 def build_model():
69 model = Sequential()
70 model.add(Dense(1, input_shape=(INPUT_VOCAB_SIZE,)))
71 model.add(Dense(INPUT_VOCAB_SIZE))
72 return model
73

74 model = build_model()
75 model.summary()
76 layer0_set_weights(model.layers[0])
77 layer1_set_weights(model.layers[1])
78

79 with open(sys.argv[1]) as f:
80 for line in f:
81 if line.isspace(): continue
82 batch = encode_one_hot(line)
83 preds = model.predict(batch)
84 normal = decode_values(preds)
85 print(normal)

300 � Exercises in Programming Style

37.3 COMMENTARY

THE TWO neural network programs in the previous chapters, with and
without learning, stay close to discrete symbol manipulation: the charac-

ters are converted to/from arrays of numbers, but those numbers are still 0s
and 1s. In this chapter, we are going to perform the same character transfor-
mations by taking advantage of the fact that we have the whole spectrum of
real numbers at our disposal.

Rather than having one fully connected dense layer, we are going to have
a network with a bow tie shape, like so:

In general, bow tie networks consist of several dense hidden layers, where
the first few layers map the multidimensional input into increasingly smaller
dimensions, and the last few layers do the opposite. These networks are said to
follow the encoder-decoder architecture; we’ll see why. The bow tie network in
this example program has exactly one hidden layer with exactly one neuron,
like in the figure above. The problem, then is one of encoding the input of
100 dimensions of 0s and 1s into one real number, and then decoding that real
number back to 100 dimensions that can be interpreted as characters. First,
we are going to do it by manually setting up the weights of the two layers.
Then, we will show how the weights can be learned.

Let’s take a look at the example program, starting at the bottom. The
model is defined in lines #68–72. It is exactly the network topology of the
figure above: 100 (INPUT VOCAB SIZE) neurons as input, 1 neuron in the
hidden layer – that’s the 1 in line #70, – and 100 neurons as the output. Note
that this network is very small, consisting of one pair of 100 connections, so
200 weights. Compare this to the number of weights in the previous chapters
(10,000).

The model is built and its weights are set in lines #74–77. How do we
set the weights so that they transform the characters in the right way? An
even more basic question would be: how do we set the weights so that we get
the same characters in the output, without any transformation? The identity

Bow Tie � 301

function over a bow tie network is known as auto-encoding, and it has all sorts
of interesting applications. Understanding the encoding from one-hot repre-
sentation into a real number, and the decoding from that real number back to
something that can be interpreted as a character is the key to understanding
these bow tie networks.

The code for that is in lines #27–49 (weights of the first layer) and #51–66
(weights of the second layer). There is a large number of values that can be
used, and that work equally well. The weights of the first and second layer
just need to obey a few constraints. The basic idea used in this program
is the following: given a one-hot input for character number K, where K is
a positive integer between 0 and 99 (in our case), transform it into a real
number by using some function, for example, the inverse 1/K. That is the
weight of each connection between the input and the hidden neuron. So, for
example, ‘a’ and ‘b’ are numbers 10 and 11, respectively; the weights from the
1-encoding neurons for ‘a’ and ‘b’ to the middle layer will be 0.1 and 0.0909,
respectively. That means that when the input is an ‘a’, the value of the hidden
neuron will be 0.1; when the input is a ‘b’, it will be 0.0909; etc. This part is
straightforward.

But since we want to perform some character transformations that aren’t
the identity function, we switch the weights for characters that are not lower-
case letters. In lines #36–39, the connections between all uppercase neurons
and the hidden neuron get assigned the weight of the lowercase counterpart.
And in lines #41–44, all other characters that are not letters get assigned the
weight of the space character. Again, this part is simple.

The challenge is to decode the value of the real number back into charac-
ters. One way of doing that is to set the weights of the second layer as the
inverse of the first. So, for example, the weight of the connection from the
hidden layer to the ‘a’ encoding output neuron would be 10; the weight to the
‘b’ encoding output neuron would be 11; etc. That way, an ‘a’ input produces
0.1 in the hidden neuron, and produces a 1 again in the 1-encoding neuron
for ‘a’. However, there is a problem: that same hidden value, 0.1, will flow
through all connections of the hidden neuron to the output neurons, and none
of those weights is zero. That means that the output of an ‘a’ will be exactly
1 in the ‘a’-encoding neuron, and ninety-nine non-zero values elsewhere. For
example, when the input is ‘a’, the ‘b’-encoding output neuron will be 0.1×
11 = 1.1. In other words, the output is no longer a one-hot representation of
characters.

In general, it is not possible to preserve one-hot encodings on the output
by doing the kind of compression we did, using only one decoding layer to
decompress it. The compression here destroys the independence of the input
dimensions, and it is not possible to recover that independence with just
one decoding layer. This is another manifestation of the XOR problem of
perceptrons mentioned in the previous chapter. We will come back to this
later on in the chapter, when we look at the learned version of this program.
For now, let’s accept the fact that the output is no longer one-hot.

302 � Exercises in Programming Style

In spite of the output not being one-hot, it is perfectly possible to recover
the information about which character it encodes: we should look for the
neuron whose value is closest to, or exactly, 1. That neuron is guaranteed to
encode the character that went through the right pair of encoding-decoding
transformations. All other non-1 values are side effects.

The example program has a new function for decoding the output:
decode values, in lines #19–25 (instead of decode one hot). That func-
tion looks for the index of the value that is closest to 1 – that is the index of
the character we want.

Let’s now turn our attention to learning. Can these weights be learned?
The answer is yes, they can. In fact, we can learn different things here. Let’s
start with learning the exact function implemented by the example program,
the one that takes one-hot representations as input and produces a vector of
size 100, with real numbers, where only one value is exactly 1. The following
snippet shows the most important parts of the learning counterpart to our
example program:

1 # ...initial block...
2

3 BATCH_SIZE = 200
4

5 def encode_values(line):
6 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
7 for i, c in enumerate(line):
8 index = char_indices[c] if c in characters else

char_indices[’ ’]
9 for a_c in characters:

10 if a_c == c:
11 x[i][index] = 1
12 else:
13 idx = char_indices[a_c]
14 x[i][idx] = idx/index
15 return x
16

17 def input_generator(nsamples):
18 def generate_line():
19 inline = []; outline = []
20 for _ in range(nsamples):
21 c = random.choice(characters)
22 expected = c.lower() if c in string.ascii_letters else

’ ’
23 inline.append(c); outline.append(expected)
24 return ’’.join(inline), ’’.join(outline)
25

26 while True:
27 input_data, expected = generate_line()
28 data_in = encode_one_hot(input_data)
29 data_out = encode_values(expected)
30 yield data_in, data_out
31

32 def train(model):
33 model.compile(loss=’mse’,
34 optimizer=’adam’,

Bow Tie � 303

35 metrics=[’accuracy’, ’mse’])
36 input_gen = input_generator(BATCH_SIZE)
37 validation_gen = input_generator(BATCH_SIZE)
38 model.fit_generator(input_gen,
39 epochs = 10, workers=1,
40 steps_per_epoch = 1000,
41 validation_data = validation_gen,
42 validation_steps = 10)
43

44 model = build_model()
45 model.summary()
46 train(model)
47

48 # ...main block...

In this program, the training data consists of pairs of input-output,
where the input is one-hot encoded and the output is exactly the output
of the function implemented by the hardcoded counterpart. The function
encode values (lines #5–15) does just that. The input generator (lines
#17–30) generates one-hot encoded inputs and vectors of real numbers as out-
puts (see lines #28 and #29).

Let’s look at the train function (lines #32–42). In the previous chapter,
training was done using the categorial cross-entropy loss function, because the
output was one-hot representations. But in here, the output is a vector of real
numbers. We know there is supposed to be only one 1, but that is not some-
thing we can express. We are dealing with learning an actual function from
categorical one-hot inputs to a vector of real numbers. In machine learning
terminology, the problem at hand is regression as opposed to classification.
Regression is the problem of predicting a continuous value based on values
seen before; classification is the problem of predicting a category based on val-
ues seen before. In our case, given that the output is the set of real numbers we
want to predict, we use the simple loss function mean square error (MSE) (line
#33). We also use more training data than in the previous chapter (200,000
as opposed to 4,000), because the function here is more complex, and takes a
little longer to learn.

304 � Exercises in Programming Style

Linear regression is the statistical basis upon which machine learning works,
including classification. Invented in the beginning of the 19th century, linear
regression is a family of techniques for finding the straight line that best fits
a set of data points (see figure above). Essentially, supervised machine learning
is about learning a function given a training set of examples (data points). Of
course, there is a lot more to supervised machine learning than linear regression.
Specifically, the derived function should be generalizable, in the sense that it
should work well for data points that are not part of the training set. But linear
regression is at the core of learning functions from data.

This learning program, however, is a bit disappointing. We are making
the network learn a very narrow function that transforms characters into a
strange vector representation, and then we have to decode that representa-
tion using our decode values function. And while this seemed natural in
the hardcoded version of the neural network, having to decode this strange
vector by hand in the learning version seems much ado about nothing. Can we
make the network also learn how to decode the vector into the nice one-hot
representation of characters?

Well, yes, we can. In fact, we could have also made the hardcoded network
do that, too. One approach would be thresholding by zooming in on the 1.
But thresholding does not work well with backpropagation. Another approach
is to add another dense layer that learns how to translate the strange vector
to one-hot encoded representations, like so:

1 def build_model():
2 model = Sequential()
3 model.add(Dense(1, input_shape=(INPUT_VOCAB_SIZE,)))
4 model.add(Dense(INPUT_VOCAB_SIZE))
5 model.add(Dense(INPUT_VOCAB_SIZE, activation=’softmax’))
6 return model
7

8 def train(model):
9 model.compile(loss=’categorical_crossentropy’,

10 optimizer=’adam’,
11 metrics=[’accuracy’])
12 input_gen = input_generator(BATCH_SIZE)
13 validation_gen = input_generator(BATCH_SIZE)
14 model.fit_generator(input_gen,
15 epochs = 10, workers=1,
16 steps_per_epoch = 1000,
17 validation_data = validation_gen,
18 validation_steps = 10)
19

20 def input_generator(nsamples):
21 def generate_line():
22 # ...same...
23 while True:
24 input_data, expected = generate_line()
25 data_in = encode_one_hot(input_data)
26 data_out = encode_one_hot(expected)
27 yield data_in, data_out

Bow Tie � 305

Noteworthy here is the extra layer in line #5. This is the layer that takes
the vector of real numbers and produces one-hot representations – or so we
hope. Because of this layer, we can now train the network again on one-hot
inputs to one-hot outputs, so input generator is yielding one-hot outputs
again (line #26). Finally, since we are back to using categories, training uses
the categorical cross-entropy loss function again.

In summary: the single hidden neuron preserves the information but
destroys the feature independence of the input, by transforming it into one
real-valued number; the decoding layer recovers the main coding property of
the output – the fact that only one of the neurons carries all of, and only, the
input signal; finally, the last layer is able to capture that main property and
transform it into one-hot representation. The data is recovered in categorical
format!

The drawback of this second model is that it adds 10,000 weights – a heavy
hand, considering that the original network is just 200.

37.4 HISTORICAL NOTES

The term deep learning is associated to neural networks that have more than
one hidden layer, such as the final one in this chapter. In contrast, both
the initial bow tie network in this chapter and the neural networks in the
two previous chapters are called shallow networks. While the field of neural
networks aimed, from the beginning, to tackle all sorts of neural networks, the
learning techniques originally proposed did not work for multi-layer networks.
Without multi-layer networks, the applicability of neural networks was quite
limited. This was a stumbling block for the field for several decades.

In 1986, Rumelhart, Hinton and Williams (RHW) published a short, but
highly influential paper in Nature explaining how to backpropagate errors in
multi-layer neural networks. In that paper, they showed a few applications of
their technique to solving complex classification problems. That paper marked
the beginning of modern deep learning, i.e. learning in multi-layer networks.

The RHW paper built on techniques that had been around for a few years.
Backpropagation itself was invented by multiple people in the 1960s, and had
at least one known implementation in 1970 by Seppo Linnainmaa. In his PhD
thesis in 1974, Paul Werbos showed how backpropagation could be used in
multi-layer neural networks. But due to the “AI Winter” of the 1970s – a
period of deep skepticism about AI – these works only came to light a decade
later.

37.5 FURTHER READING

Linnainmaa, S. (1970). The Representation of the Cumulative Rounding Error
of an Algorithm as a Taylor Expansion of the Local Rounding Errors.
Master’s thesis, Univ. Helsinki.
Synopsis: The first known implementation of backpropagation.

306 � Exercises in Programming Style

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning represen-
tations by back-propagating errors. Nature, 323(9):533–536.
Synopsis: Highly influential paper that popularized the concept of back-
propagation in multi-layer neural networks. The idea of backpropagation
had been around since the 1960s, and was independently discovered by
several people, in several fields, some of which were unrelated to neural
networks.

P. Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge,
MA.
Synopsis: One of the first applications of backpropagation to multi-layer
neural networks.

37.6 GLOSSARY

Backpropagation: Analytical solution to calculating the derivative of the
error as a function of the weights in neural networks.

Deep learning: Supervised learning using neural networks with more than
one hidden layer.

Gradient descent: Family of optimization algorithms for minimizing errors.
Gradient descent does not have analytical solutions, so these algorithms
are iterative.

Hidden layer: A layer that is neither the input nor the output of a neural
network.

37.7 EXERCISES

37.1 Manual. Implement the categorical version of the problem (the last code
snippet) by hardcoding the weights of the third (and last) layer.

37.2 Another encoding. Implement the example program, using a bow tie
network, using ACII encoding instead of one-hot encoding.

37.3 Another function. Implement an NN that learns to transform charac-
ters into their LEET counterparts. Use any encoding you want and any
LEET code you want.

CHA PT E R 38

Neuro-Monolithic

38.1 CONSTRAINTS

B Many conceptually different functions are implemented in one single
dense layer.

B Certain outputs that aren’t logically related to certain inputs are made
artificially related.

307

308 � Exercises in Programming Style

38.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense
3 import numpy as np
4 import sys, os, string
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11 LINE_SIZE = 80
12

13 def encode_one_hot(line):
14 x = np.zeros((1, LINE_SIZE, INPUT_VOCAB_SIZE))
15 sp_idx = char_indices[’ ’]
16 for i, c in enumerate(line):
17 index = char_indices[c] if c in characters else sp_idx
18 x[0][i][index] = 1
19 # Pad with spaces
20 for i in range(len(line), LINE_SIZE):
21 x[0][i][sp_idx] = 1
22 return x.reshape([1, LINE_SIZE*INPUT_VOCAB_SIZE])
23

24 def decode_one_hot(y):
25 s = []
26 x = y.reshape([1, LINE_SIZE, INPUT_VOCAB_SIZE])
27 for onehot in x[0]:
28 one_index = np.argmax(onehot)
29 s.append(indices_char[one_index])
30 return ’’.join(s)
31

32 def normalization_layer_set_weights(n_layer):
33 wb = []
34 w = np.zeros((LINE_SIZE*INPUT_VOCAB_SIZE, LINE_SIZE*

INPUT_VOCAB_SIZE))
35 b = np.zeros((LINE_SIZE*INPUT_VOCAB_SIZE))
36 for r in range(0, LINE_SIZE*INPUT_VOCAB_SIZE, INPUT_VOCAB_SIZE

):
37 # Let lower case letters go through
38 for c in string.ascii_lowercase:
39 i = char_indices[c]
40 w[r+i, r+i] = 1
41 # Map capitals to lower case
42 for c in string.ascii_uppercase:
43 i = char_indices[c]
44 il = char_indices[c.lower()]
45 w[r+i, r+il] = 1
46 # Map all non-letters to space
47 sp_idx = char_indices[’ ’]
48 for c in [c for c in list(string.printable) if c not in

list(string.ascii_letters)]:
49 i = char_indices[c]
50 w[r+i, r+sp_idx] = 1
51 # Map single letters to space

Neuro-Monolithic � 309

52 previous_c = r-INPUT_VOCAB_SIZE
53 next_c = r+INPUT_VOCAB_SIZE
54 for c in [c for c in list(string.printable) if c not in

list(string.ascii_letters)]:
55 i = char_indices[c]
56 if r > 0 and r < (LINE_SIZE-1)*INPUT_VOCAB_SIZE:
57 w[previous_c+i, r+sp_idx] = 0.75
58 w[next_c+i, r+sp_idx] = 0.75
59 if r == 0:
60 w[next_c+i, r+sp_idx] = 1.5
61 if r == (LINE_SIZE-1)*INPUT_VOCAB_SIZE:
62 w[previous_c+i, r+sp_idx] = 1.5
63

64 wb.append(w)
65 wb.append(b)
66 n_layer.set_weights(wb)
67 return n_layer
68

69 def build_model():
70 # Normalize characters using a dense layer
71 model = Sequential()
72 model.add(Dense(LINE_SIZE*INPUT_VOCAB_SIZE,
73 input_shape=(LINE_SIZE*INPUT_VOCAB_SIZE,),
74 activation=’sigmoid’))
75 return model
76

77 model = build_model()
78 model.summary()
79 normalization_layer_set_weights(model.layers[0])
80

81 with open(sys.argv[1]) as f:
82 for line in f:
83 if line.isspace(): continue
84 batch = encode_one_hot(line)
85 preds = model.predict(batch)
86 normal = decode_one_hot(preds)
87 print(normal)

310 � Exercises in Programming Style

38.3 COMMENTARY

THE previous two chapters focused on the first part of the term frequency
problem: normalization of the characters. Let us now turn our attention

to the second part of the problem: eliminating single-letter words. When a
single letter is between two spaces, it should be replaced by a white space,
as a form of elimination. In order to do that, we cannot look at characters
in isolation; we need to look, at least, at the characters before and after any
given character.

Capturing dependencies between a sequence of inputs in neural networks
is, perhaps, one of the most fascinating aspects of NNs, because it leads to
reevaluating our understanding of both space (i.e. storage, memory) and time
in computing. The simple feed forward neural networks we have seen so far
are stateless machines – they do not have the capability of storing information
about previous inputs. In the next few chapters, we will see how memory of
past inputs can emerge in NNs. But to start with, in here we adhere to the
strict constraint of a feed forward, stateless dense layer.

A first way of approaching the problem is to directly trade time with
space, in a one-to-one manner. That is, rather than processing one character
at a time, let’s process an entire line at a time. That way, we can “program”
not only the character transformation functions we had before, but also the
dependencies among the characters at different positions of the line. We will
have a much larger input and output, and a quadratic increase on the number
of connections.

The example program does exactly that. There are many similarities
between this program and the one in Chapter 35. Here, too, the network
is “programmed” not by learning but by manually setting the weights, just
so it is clear what the logic of character dependencies can look like in the
connectionist style. Both programs have the same functions, and very similar
implementations of them. Let’s focus on the differences.

One of the main differences is that we now need to establish the maximum
size of a line, because the dense layer processes the entire line – all input to
neural networks requires fixed-size tensors. The size of the line is defined in
line #11 LINE SIZE = 80. If the given line is less than the maximum size,
the one-hot encoding function pads it with space characters (lines #20-21).

Another size-related detail is an extra first dimension of the input – see,
for example, lines #14, #18, #21, and #22. In the previous two chapters, this
didn’t need explanation, because it corresponded naturally to the number of
characters of each line; but here it is not so obvious. Keras requires all input to
have at least 2 dimensions: units of the input data are given to the network in
fixed-size collections called batches. As such, the first dimension of the input
is always the batch. When there is always only one piece of data, such as the
case of the predictions here (line by line), then the batch dimension is 1.

The dense layer of the model (lines #72–74) now maps input of size
LINE SIZE * INPUT VOCAB SIZE = 8,000 to output of the same size. That

Neuro-Monolithic � 311

means that the number of connections is a whopping 64 million! (Compare
to 10,000 of Chapter 35.) Dense layers quickly become unscalable for large
input sizes. As in Chapter 35, the vast majority of these connections have
zero weight; only a couple of hundred are not zero.

Let’s look at our network “program” given in lines #32–67. The processing
of lowercase letters (lines #38–40), uppercase letters (lines #42–45), and non-
letter characters (lines #47–50) is exactly the same as before. Our “program”
now includes a few more connections to deal with inter-character dependencies
in lines #52–62. The idea is the following: for every character of the string,
we look at the characters before and after; for any of those characters that are
not a letter, we add a non-zero weight from their 1-position to the space index
of the output of the current character. The exact value of those weights is not
important, but it needs to obey two rules: one weight should be less than 1;
and the addition of two weights should be greater than 1. That way, when the
current character is surrounded by non-letters, it receives two weights from
the neighboring inputs, as if votes, to map it to the space character. If it only
has one non-letter as a neighbor, then it only receives one weight for the space
character, which is not enough for the output to be interpreted as the space.

Note that, just like in the bow tie example of the previous chapter, this
results in character outputs that are no longer one-hot encoded, but that
can have more than one non-zero value. This is not a problem for decoding
the vectors back into characters: our interpretation of which position the 1 is
(function decode one hot, lines #24–30) finds the position of the maximum
value, not the position of the exact value 1 (line #28).

Can this network be automatically programmed by learning on training
data? The answer is yes, it can. The following snippet transforms the example
program into its learning counterpart:

1 BATCH_SIZE = 200
2 STEPS_PER_EPOCH = 5000
3 EPOCHS = 4
4

5 # ...Encoding functions...
6

7 def input_generator(nsamples):
8 def generate_line():
9 inline = []; outline = []

10 for _ in range(LINE_SIZE):
11 c = random.choice(characters)
12 expected = c.lower() if c in string.ascii_letters else

’ ’
13 inline.append(c); outline.append(expected)
14 for i in range(LINE_SIZE):
15 if outline[i] == ’ ’: continue
16 if i > 0 and i < LINE_SIZE - 1:
17 outline[i] = ’ ’ if outline[i-1] == ’ ’ and

outline[i+1] == ’ ’ else outline[i]
18 if (i == 0 and outline[i+1] == ’ ’) or (i == LINE_SIZE

-1 and outline[i-1] == ’ ’):
19 outline[i] = ’ ’

312 � Exercises in Programming Style

20 return ’’.join(inline), ’’.join(outline)
21

22 while True:
23 data_in = np.zeros((nsamples, LINE_SIZE*INPUT_VOCAB_SIZE))
24 data_out = np.zeros((nsamples, LINE_SIZE*INPUT_VOCAB_SIZE)

)
25 for i in range(nsamples):
26 input_data, expected = generate_line()
27 data_in[i] = encode_one_hot(input_data)[0]
28 data_out[i] = encode_one_hot(expected)[0]
29 yield data_in, data_out
30

31 def train(model):
32 model.compile(loss=’binary_crossentropy’,
33 optimizer=’adam’,
34 metrics=[’accuracy’])
35 input_gen = input_generator(BATCH_SIZE)
36 validation_gen = input_generator(BATCH_SIZE)
37 model.fit_generator(input_gen,
38 epochs = EPOCHS, workers=1,
39 steps_per_epoch = STEPS_PER_EPOCH,
40 validation_data = validation_gen,
41 validation_steps = 10)
42

43 model = build_deep_model()
44 model.summary()
45 train(model)
46

47 # Main block below

Note that now the loss function (line #32) is binary, not categorical, cross-
entropy. In Chapter 36 we used categorical cross-entropy. The difference is the
following. In Chapter 36 the output was a one-hot encoded representation of a
character, and therefore, we wanted the NN to learn to distinguish the exact
“category” (i.e. the exact one-encoding neuron) from all the others. Hence
categorical cross-entropy, which takes into account a set of output neurons.
But here, the output is a set of 8,000 neurons, 80 of which are 1, the others
0. The complete set of outputs is not one-hot representation anymore. As
such, we want the NN to learn to distinguish 0s from 1s, independently, for
all output neurons. Hence, binary cross-entropy.1

However, training this massive 64M-weight network is not easy. As a rule
of thumb, the more trainable weights an NN has, the more training data it
requires to learn. The heuristics for this rule of thumb vary, because they
depend on the problem, but roughly, we need at least an amount of data close
to the same order of magnitude of the amount of weights. For the previous
character-to-character NN, we had 10,000 weights and 4,000 data samples
in the training set. With 64M weights, we need around 1M samples. The
constants in the snippet above (lines #1–3) establish that number (remember,

1In machine learning terminology, we are dealing with a multi-label classification prob-
lem.

Neuro-Monolithic � 313

size of training set = steps per epoch × batch size). With 1M samples and
64M-weights, it takes a long time to train this network – mileage may vary,
depending on whether GPUs are being used or not. The reader is encouraged
to experiment with the training parameters, especially the size of the training
set (as determined by STEPS PER EPOCH).

Our massive network in this program is an example of monolithic thinking
in the connectionist world. We just want to solve the problem without thinking
much about it, and by overloading all the logic in one single layer. This way
of thinking has some similarities with the style of Chapter 4:

From a design perspective, the main concern is to obtain the
desired output without having to think much about subdividing
the problem or how to take advantage of code that already exists.
Given that the entire problem is one single conceptual unit, the
programming task consists of defining the data and control flow
that rule this unit.

In the connectionist model, the “control flow” is embodied in the connec-
tions between neurons, and the values of the weights. In this style, we load all
of the logic in one single massive dense layer, and hope for the best.

Chapter 4 also introduced the concept of cyclomatic complexity as a proxy
metric for program understandability. Neural networks have an equivalent
metric: the number of trainable parameters, i.e. the number of connections that
can be programmed either manually or with a learning algorithm. The higher
the number of trainable parameters, the harder it will be to program/train
them. Clearly, 64 million trainable weights is a huge number, and it is totally
unjustified for this simple problem. Thinking a bit harder about the nature of
the problem, and how to represent temporal data, will lead to much smaller
and modular solutions, which will be much easier to train and understand.

38.4 GLOSSARY

Feed Forward: A neural network without cycles.

Trainable parameters: The weights and biases of a neural network that are
updated during backpropagation.

38.5 EXERCISES

38.1 Prove it. There are many other solutions to the problem at hand, with
different weights. Can you find a solution using neuro monolithic style
that preserves one-hot encoding of the output? If so, show it. If not,
prove that no solution exists that ensures one-hot encodings on the
output.

38.2 More eliminations. Change the example program so that it also trans-
forms the first and last characters of a line into some other character
(e.g. the space) if they are the same.

http://taylorandfrancis.com

CHA PT E R 39

Sliding Window

39.1 CONSTRAINTS

B The input is a sequence of items, and the output depends on certain
patterns in that sequence.

B The input is reshaped as a sequence of concatenations of N items in the
original sequence, where N is large enough to be able to capture the
pattern.

B The concatenations are created by sliding through the input sequence,
with a step of S, depending on the problem at hand.

315

316 � Exercises in Programming Style

39.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense
3 import numpy as np
4 import sys, os, string
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11 WINDOW_SIZE = 3
12

13 def encode_one_hot(line):
14 line = " " + line + " "
15 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
16 for i, c in enumerate(line):
17 index = char_indices[c] if c in characters else

char_indices[’ ’]
18 x[i][index] = 1
19 return x
20

21 def decode_one_hot(x):
22 s = []
23 for onehot in x:
24 one_index = np.argmax(onehot)
25 s.append(indices_char[one_index])
26 return ’’.join(s)
27

28 def prepare_for_window(x):
29 # All slices of size WINDOW_SIZE, sliding through x
30 ind = [np.array(np.arange(i, i+WINDOW_SIZE)) for i in range(x.

shape[0] - WINDOW_SIZE + 1)]
31 ind = np.array(ind, dtype=np.int32)
32 x_window = x[ind]
33 # Reshape it back to a 2-d tensor
34 return x_window.reshape(x_window.shape[0], x_window.shape[1]*

x_window.shape[2])
35

36 def normalization_layer_set_weights(n_layer):
37 wb = []
38 w = np.zeros((WINDOW_SIZE*INPUT_VOCAB_SIZE, INPUT_VOCAB_SIZE))
39 b = np.zeros((INPUT_VOCAB_SIZE))
40 # Let lower case letters go through
41 for c in string.ascii_lowercase:
42 i = char_indices[c]
43 w[INPUT_VOCAB_SIZE+i, i] = 1
44 # Map capitals to lower case
45 for c in string.ascii_uppercase:
46 i = char_indices[c]
47 il = char_indices[c.lower()]
48 w[INPUT_VOCAB_SIZE+i, il] = 1
49 # Map all non-letters to space
50 sp_idx = char_indices[’ ’]

Sliding Window � 317

51 non_letters = [c for c in list(characters) if c not in list(
string.ascii_letters)]

52 for c in non_letters:
53 i = char_indices[c]
54 w[INPUT_VOCAB_SIZE+i, sp_idx] = 1
55 # Map single letters to space
56 for c in non_letters:
57 i = char_indices[c]
58 w[i, sp_idx] = 0.75
59 w[INPUT_VOCAB_SIZE*2+i, sp_idx] = 0.75
60

61 wb.append(w)
62 wb.append(b)
63 n_layer.set_weights(wb)
64 return n_layer
65

66 def build_model():
67 # Normalize characters using a dense layer
68 model = Sequential()
69 model.add(Dense(INPUT_VOCAB_SIZE,
70 input_shape=(WINDOW_SIZE*INPUT_VOCAB_SIZE,),
71 activation=’softmax’))
72 return model
73

74 model = build_model()
75 model.summary()
76 normalization_layer_set_weights(model.layers[0])
77

78 with open(sys.argv[1]) as f:
79 for line in f:
80 if line.isspace(): continue
81 batch = prepare_for_window(encode_one_hot(line))
82 preds = model.predict(batch)
83 normal = decode_one_hot(preds)
84 print(normal)

318 � Exercises in Programming Style

39.3 COMMENTARY

THE PROBLEM of eliminating single-letter words from the input stream
does not require knowledge of the entire line; it can be solved by looking

at just three consecutive characters at a time. We can, therefore, design a
network that slides through the input line, 3 characters at a time, and outputs
the correct character. The example program does that. Let’s analyze it.

As before, characters are encoded using one-hot representation. Since there
are 100 printable characters, we are dealing with tensors of size 100 for each
character. With three characters as input, we have a network that receives
300 inputs (line #70) and produces one single character of size 100 (line
#69). This network is much smaller than the previous one: only 30,000 neural
connections: 300 inputs to 100 outputs. Before analyzing the input, let’s focus
on the logic of the connections.

Just like the previous chapter, the example program here manually “pro-
grams” the network by setting the weights. That function is in lines #36–
64. The logic is the same as the previous chapter. The only difference is
that the weight matrix is only 300 × 100 = 30, 000 (WINDOW SIZE ∗
INPUT V OCAB SIZE × INPUT V OCAB SIZE).

Perhaps the most important part of thinking about the problem in this
sliding-window style is the setup of the input. In fact, setting up the input
for NNs – both the encoding and the shape – is an important part of solving
the problem! More on this later. Let’s look at what the example program
does. The function for encoding characters with one-hot representation (lines
#13–19) is identical to the previous chapters, with one small difference: we
are adding an extra space to the beginning and to the end of every line (line
#14). This is the same trick done in Chapter 3 (Array Programming Style),
as it simplifies the logic for dealing with the first and last characters of the
given line.

Having added those extra spaces at the edges, the question now is how
to prepare the input for the network. Suppose, for example, that the line is
“I am a dog!” For clarity, let’s rewrite this line using a visible character as
replacement for the white space, and including the extra white space on the
edges: ^I^am^a^dog!^ A possible, but wrong, input would be: [^I^],
[am^], [a^d], [og!] [^^^]. This would be wrong for many reasons: first, we
would only be producing one output character for every three input charac-
ters; then, the network would miss the single-letter ‘a’ word. Instead, we need
a sliding window that produces the following sequence: [^I^], [I^a], [^am],
[am^], [m^a], [^a^], [a^d], [^do], [dog], [og!], [g!^]. By sliding through
every character of the line, one by one, the network produces the same num-
ber of characters on the output, while making its decision about the middle
character of each triplet, based not only on the character itself, but also on
the neighboring two characters.

To this end, the example program includes a new function in lines #28–
34, prepare for window, which reshapes the sequence of one-hot-encoded

Sliding Window � 319

characters x into the proper sequence of triplets. It does so by using array pro-
gramming style operations. In line #30, we generate all start:end indices for all
the triplets of the input, and create an array with all of them (line #31). That
array is then used to slice the input array, all at once (line #32). The slicing
operation produces a 3D tensor with the shape (len(line), WINDOW SIZE,
INPUT VOCAB SIZE); before we feed it to the network, we need to reshape
it for 2 dimensions only: one sequence of triplets. That is done in line #34.

39.4 GLOSSARY

Reshape: To rearrange the data of a multidimensional tensor so that it fits
different dimensions. For example, a 1-dimensional array of size 100 to a
2-dimensional array of size 10× 10.

39.5 EXERCISES

39.1 Train. Train the network of the example program instead of hardcoding
the weights. Note that you need to pay attention to the encoding of the
output.

39.2 More eliminations. Change the example program so that it also elimi-
nates 2-letter words.

http://taylorandfrancis.com

CHA PT E R 40

Recurrent

40.1 CONSTRAINTS

B The input is a sequence of items, and the output depends on certain
patterns in that sequence.

B The length of the output sequence is exactly the same as the length of
the input sequence.

B The input is reshaped as a sequence of frames of size N , each one captur-
ing a portion of the input sequence, large enough to be able to capture
the pattern.

B The frames are created by sliding through the input sequence, with a
step of 1.

B The neural function is defined as a single unit that is instantiated N
times and applied to all items in a frame, at the same time. Those
instances are connected in a chain where the output of one feeds as
input into the next. Each unit has, therefore, two sets of weights: one
for the items from the input sequence, the other for the output of the
previous unit in the chain.

321

322 � Exercises in Programming Style

40.2 A PROGRAM IN THIS STYLE

1 from keras.models import Sequential
2 from keras.layers import Dense, SimpleRNN
3 import numpy as np
4 import sys, os, string, random
5

6 characters = string.printable
7 char_indices = dict((c, i) for i, c in enumerate(characters))
8 indices_char = dict((i, c) for i, c in enumerate(characters))
9

10 INPUT_VOCAB_SIZE = len(characters)
11 BATCH_SIZE = 200
12 HIDDEN_SIZE = 100
13 TIME_STEPS = 3
14

15 def encode_one_hot(line):
16 x = np.zeros((len(line), INPUT_VOCAB_SIZE))
17 for i, c in enumerate(line):
18 index = char_indices[c] if c in characters else

char_indices[’ ’]
19 x[i][index] = 1
20 return x
21

22 def decode_one_hot(x):
23 s = []
24 for onehot in x:
25 one_index = np.argmax(onehot)
26 s.append(indices_char[one_index])
27 return ’’.join(s)
28

29 def prepare_for_rnn(x):
30 # All slices of size TIME_STEPS, sliding through x
31 ind = [np.array(np.arange(i, i+TIME_STEPS)) for i in range(x.

shape[0] - TIME_STEPS + 1)]
32 ind = np.array(ind, dtype=np.int32)
33 x_rnn = x[ind]
34 return x_rnn
35

36 def input_generator(nsamples):
37 def generate_line():
38 inline = [’ ’]; outline = []
39 for _ in range(nsamples):
40 c = random.choice(characters)
41 expected = c.lower() if c in string.ascii_letters else

’ ’
42 inline.append(c); outline.append(expected)
43 inline.append(’ ’);
44 for i in range(nsamples):
45 if outline[i] == ’ ’: continue
46 if i > 0 and i < nsamples-1:
47 if outline[i-1] == ’ ’ and outline[i+1] == ’ ’:
48 outline[i] = ’ ’
49 if (i == 0 and outline[1] == ’ ’) or (i == nsamples-1

and outline[nsamples-2] == ’ ’):
50 outline[i] = ’ ’

Recurrent � 323

51 return ’’.join(inline), ’’.join(outline)
52

53 while True:
54 input_data, expected = generate_line()
55 data_in = encode_one_hot(input_data)
56 data_out = encode_one_hot(expected)
57 yield prepare_for_rnn(data_in), data_out
58

59 def train(model):
60 model.compile(loss=’categorical_crossentropy’,
61 optimizer=’adam’,
62 metrics=[’accuracy’])
63 input_gen = input_generator(BATCH_SIZE)
64 validation_gen = input_generator(BATCH_SIZE)
65 model.fit_generator(input_gen,
66 epochs = 50, workers=1,
67 steps_per_epoch = 50,
68 validation_data = validation_gen,
69 validation_steps = 10)
70

71 def build_model():
72 model = Sequential()
73 model.add(SimpleRNN(HIDDEN_SIZE, input_shape=(None,

INPUT_VOCAB_SIZE)))
74 model.add(Dense(INPUT_VOCAB_SIZE, activation=’softmax’))
75 return model
76

77 model = build_model()
78 model.summary()
79 train(model)
80

81 input("Network has been trained. Press <Enter> to run program.")
82 with open(sys.argv[1]) as f:
83 for line in f:
84 if line.isspace(): continue
85 batch = prepare_for_rnn(encode_one_hot(line))
86 preds = model.predict(batch)
87 normal = decode_one_hot(preds)
88 print(normal)

324 � Exercises in Programming Style

40.3 COMMENTARY

THE SLIDING WINDOW style of the previous chapter is a special-
purpose, highly optimized solution to the problem at hand: the elimina-

tion of single-letter words. In order to capture dependencies on sequences of
inputs, in general, a special kind of neural network is typically used: a recur-
rent neural network (RNN). Conceptually, a recurrent layer is illustrated by
the figure below:

The arrows at the bottom mean that the output of this layer depends not
just on its input but also on the value of the output at an earlier time. Mapping
this concept to our problem, it means that the exact output character depends
on what characters were seen before. These kinds of circular dependencies
are the bread and butter of traditional programming, and we have developed
good conceptual tools for dealing with them – namely, iteration and recursion.
Neural networks, however, challenge what we know about this, because there
is neither control flow nor recursion. Those concepts need to be invented here,
from scratch, and they take very different forms from the ones we are used to
in traditional programming.

Before diving into the example program, let’s bring a concept from tra-
ditional programming that helps us understand recurrent networks: loop
unrolling. Loop unrolling is a technique that tries to optimize program execu-
tion by transforming loops into sequences of instruction blocks corresponding
to the body of the loop. The idea is to eliminate the instructions that control
the loop itself, such as the conditional and the increment. These optimizations
aren’t always possible, but, in certain circumstances, they can be – for exam-
ple, when we know the exact number of iterations, we can simply copy-paste
the loop block as many times, and make the necessary adjustments on the
values of variables in each block.

A similar technique is used in RNNs: because there is no control flow, we
cannot express the concept of a loop in the first place; loop unrolling is not
just an optimization here, it’s a necessity. In NNs, we can express the concept

Recurrent � 325

of a function that is applied N times, repeatedly, by adding N layers to the
model, each one doing exactly the same thing. Like so:

Although the example programs, so far, haven’t used it, there are ways of
expressing weight sharing between different layers of the network. If we hard-
code it, sharing weights is trivial – we simply apply the same weights/bias
matrices to several layers. In learning, weight sharing serves as a constraint
during training: the different layers that share weights are guaranteed to have
the same weights during backpropagation. Layers that share weights imple-
ment the exact same function.

But that is still not sufficient for expressing dependencies between differ-
ent items of the input sequence. Yes, we need repetitions, and those can be
expressed via weight sharing; but we also need access to information from
within a window of the input sequence. That is done with a touch of ingenuity
on how to think about discrete time – the sequence of inputs, to be precise –
in NNs. The core of the idea is illustrated in the following figure:

The figure is deceivingly simple, because it looks like loop unrolling in
traditional programming, so it’s easy to miss important details. Let’s analyze
it carefully. The first thing to notice is the repetition of the same unit, in this
case, 3 times; that is weight sharing. The next thing to notice is that each
unit has two sets of learnable parameters, not just one. One of the sets is the
regular input-to-output weight/bias parameters that we have already seen.

326 � Exercises in Programming Style

In the figure, it is denoted as Wx. The second set of parameters (Wt−1) is
the previous-output-to-output weight/bias parameters, i.e. the arrows at the
bottom of the first figure in this chapter. Finally, there is one more important
detail related to the input itself: a window of input items is spread along
as input to the N repetitions; in this case that window is of size 3. Only at
the end of every 3 inputs do we get one output. That is, y0 = f(x0, x1, x2),
y1 = f(x1, x2, x3), etc. The output sequence is shifted with respect to the
input sequence.

In summary, RNNs implement loops by (a) instantiating the same function
N times; (b) connecting the instances of that function in a chain via their
outputs; and (c) taking N items of the input sequence at once, and giving
each item to each instance simultaneously.

One last thing remains unclear: how do we specify N , the number of repe-
titions? This is, perhaps, one of the most obscure elements of RNNs in Keras.
Essentially, that important parameter is implicit in the shape of the input! –
we will see how in the example program.

Having described the basic concepts in RNNs, let’s finally analyze the
example program, starting with the model definition in lines #71–75. This
model consists of a SimpleRNN layer that takes input in some shape where
the last dimension is INPUT VOCAB SIZE (100), and produces output of
the same size, 100. The output of that RNN is then fed to a Dense layer
with a softmax activation. We are applying here the knowledge covered in
Chapter 37, namely the idea of applying one softmax-activated dense layer
after a regression layer, to recover the categories in one-hot representation.
The program is presented in its learning version, so the training part is there
(lines #59–69). The training configuration is the one expected for categorical
learning, so there is nothing new in this function.

The second noteworthy, and hard to understand, element of this pro-
gram is the shaping of the input, in the function prepare for rnn (lines
#29–34). The input to that function is a tensor of shape ((len(line),
INPUT VOCAB SIZE), which corresponds to the sequence of characters. The
output is a tensor of shape (len(line), TIME STEPS, INPUT VOCAB SIZE),
which corresponds to a sequence of sets of size TIME STEPS, in this case
3 characters in each time step. This means that the SimpleRNN layer will
unfold 3 times. If we wanted it to unfold more times, we would increase the
TIME STEPS. This is how the number of repetitions of an RNN is specified
in Keras – it is implicit in the shape of the input.

The final noteworthy element is the generation of the sequence of inputs-
outputs for training, in lines #36–57, in particular the inner function
generate line, which now does something a bit odd. Specifically, that
function is not just generating inputs and corresponding outputs, like before,
but is also performing a shift between the input sequence and the output
sequence. This is done in line #38, with the insertion of a space character in
the beginning of the input sequence, without the corresponding space char-
acter in beginning of the output sequence. The input sequence is shifted by

Recurrent � 327

one with respect to the output sequence. Why? Recall the figure depicting the
loop unrolling in page 325. We want to center each character xi in the middle
position so that we can decide what the output yi−1 should be. Shifting by
one accomplishes that.

40.4 HISTORICAL NOTES

One of the earliest works studying neural networks “with cycles” that were
able to store state over time was published by W. Little in 1974. A few years
later, those ideas were popularized by John Hopefield, in what is now known
as Hopefield networks. The general form of Recurrent Neural Networks was
used in Rumelhart, Hinton and Williams’ Nature paper in 1986.

40.5 FURTHER READING

Little, W.A. (1974). The existence of persistent states in the brain. Mathemat-
ical Biosciences 19(1-2): February.
Synopsis: One of the first papers exploring how state could emerge in
[recurrent] neural networks. The ideas here are known as Hopefield net-
works, after John Hopefield, who popularized them a few years later.

40.6 GLOSSARY

Loop unrolling: An optimization technique in traditional programming
whereby loops are eliminated by explicitly copy-pasting their body several
times.

Weight sharing: Weight sharing ≈ applying the same function.

40.7 EXERCISES

40.1 Under control. Implement the example program by hardcoding the
weights of the several layers.

40.2 More eliminations. Change the example program so that it also elimi-
nates 2-letter words.

40.3 Another pattern. Implement an RNN that learns to transform the pat-
tern cc (i.e. two repeated characters) into ‘xx’.

40.4 Telephone numbers. Implement an RNN that learns to anonymize tele-
phone numbers. Assume that telephone numbers are given as any
sequence of 11 digits (e.g. 9495551123), or a sequence of 11 digits with
dashes (e.g. 949-5551123, 949-555-1123). When detected, all the digits
in the pattern should be replaced by x (e.g. xxxxxxxxxx or xxx-xxxxxxx
or xxx-xxx-xxxx, respectively).

328 � Exercises in Programming Style

40.5 Stop words. Implement an RNN that learns to replace all occurrences
of stop words with spaces. Use the stop words given by the file
stop words.

Index

A

ABC, see Abstract Base Class
Abstract Base Class (ABC), 112
Abstract class, 95
Abstract data type, 115
Abstract Things, 109

AcceptTypes decorator, 114
adapter design pattern, 114
constraints, 109
decorator, 113
example program, 110–111
exercises, 115–116
historical notes, 114
register method, 112
systems design, 114
and Things style, 112

ACE, see Automatic Computing Engine
ACID properties, 205
Active objects, see Actors
Actors, 225, 231

constraints, 225
example program, 226–228
exercises, 232
historical notes, 231
and Letterbox style, 229, 230
systems design, 230–231

Adapter design pattern, 114; see also
Abstract Things

ADLs, see Architecture Description
Languages

AI Winter, 305
AOP, see Aspect-Oriented

Programming
APIs, see Application Programming

Interfaces
APL (A Programming Language),

28, 63
Application Programming Interfaces

(APIs), 11
Bluetooth APIs, 114

A Programming Language, see APL
Architectural style, 266

Architecture Description Languages
(ADLs), 154

Array, 28
programming, 280

Array programming style, 23
BASIC, 28
constraints, 23, 25
example program, 24
exercises, 28–29
historical notes, 27–28
MATLAB, 28
N -D matrix, 25
numpy, 26
systems design, 27
tokenizing, 26
vector, 25

Artificial intelligence algorithms, 54
Aspect-Oriented Programming (AOP),

146
Aspects, 143, 147

constraints, 143
example program, 144
exercises, 147
historical notes, 146
profiling, 145–146
restrained reflection, 145

Asynchronous request, 231
Automatic Computing Engine (ACE),

12, 20

B

Backpropagation, 290, 306; see also
Neural network programming

Base class, 95
Batch, 295
Behavior-first approach, 199
Big Data, 11
Bluetooth APIs, 114
Bow Tie network, 297

auto-encoding, 301
deep learning, 305
example program, 298–299

329

330 � Index

Bow Tie network (Continued)
exercises, 306
hidden layers, 300
historical notes, 305
linear regression, 304
parts of learning counterpart,

302–303
training data, 303

Bulletin Board style, 123
constraints, 123
EventManager class, 126
example program, 124–125
exercises, 128
historical notes, 127
publish-subscribe architectures,

127
systems design, 127
USENET, 127

C

Callback hell, 76, 77; see also Kick
Forward

Church, A., 54
Class, 95
CLOS, see Common LISP Object

System
Closed Maps, 103

constraints, 103
constructors, 105
example program, 104
exercises, 107
historical notes, 106
prototypes, 106
slots, 106

C/Mesa program, 154
COCOMO, see Constructive Cost

Model
Code Golf programming style, 59, 87

brevity of, 61
constraints, 59
example program, 60
exercises, 64
historical notes, 63
systems design, 62–63

Comma-separated value (CSV), 205
Common LISP Object System (CLOS),

141
Computational reflection, 139, 141, 142;

see also Reflective style

Concurrency, 223
Configuration programming, 154
Connectionist model, 313; see also

Neuro-Monolithic style
Constraints, 5
Constructive Cost Model (COCOMO), 62
Constructivist style, 161

constraints, 161
example program, 162–163
exercises, 165
extract words, 164
systems design, 165
and Tantrum style, 170
vs. Tantrum vs. Passive

Aggressive, 178
Continuation, 75, 77; see also Kick

Forward
Continuation-passing style (CPS), 67
Control flow, 39; see also Monolithic

programming style
Controller, 261
Cookbook programming style, 41

changing state over time, 45
constraints, 41
example program, 42–43
exercises, 46–47
historical notes, 45–46
idempotence, 45
procedures, 44
systems design, 45

Cookbook style, 87
CORBA, 94
Core libraries, 61
Coroutine, 219
CPS, see Continuation-passing style
CSV, see Comma-separated value
Currying, 53, 56; see also Pipeline

programming style
Cyclomatic complexity, 38–39; see also

Monolithic programming style

D

Database, 205
Data encoding, 281
Dataflow programming, 199, see Lazy

Rivers; Spreadsheet
Data-intensive parallelism, 235
Dataspaces, 233

constraints, 233

Index � 331

example program, 234
exercises, 236
historical notes, 236
process words function, 235
substrates, 235
systems design, 235–236

Declared Intentions, 179
AcceptTypes decorator’s

constructor, 182
constraints, 179
decorator, 182–183
example program, 180
exercises, 185
historical notes, 183–184
programming abnormalities, 181

Decorator, 113, 115, 182; see also
Abstract Things

Deep learning, 305, 306; see also Bow
Tie network

Delegation, 101
Dense, 284
Dependency injection, 155; see also

Plugins
Derived class, 95
Double Map Reduce, 245

constraints, 245
example program, 246–247
exercises, 249
Hadoop, 248
historical notes, 249
regroup function, 248
systems design, 249

Dynamic type checking, 184

E

Encoding, 284
Entity, 206
Epoch, 295
Error code, 171
eval, 142; see also Reflective style
Event, 128
Exception, 177
Exclusive-or (XOR), 294
Explicit types, 184
Extension, 95

F

Feed Forward, 313
Fit, 295

Formula, 212
Forth programming style, 15, 18

constraints, 15
example program, 16–18
exercises, 22
frequencies procedure, 19
heap, 18
historical notes, 20–21
indefinite loops, 20
procedures, 18
stack, 18
syntax, 18

FORTRAN, 55, 183
Framework, 122
Function, 56

G

Generators, 217, 219; see also Lazy
Rivers

Good Old Times style programs, 5
constraints, 5, 9–10
example program, 6–8
exercises, 13

Good Old Times style programs
(Continued)

historical notes, 11
memory limitations, 9
primary memory, 9
secondary memory, 9
systems design, 11
Turing Machine, 11–12
von Neumann’s architecture, 11–12

GPUs, see Graphical Processing Units
Gradient descent, 306
Graphical Processing Units (GPUs), 25
Graphical User Interface (GUI), 94, 260
GUI, see Graphical User Interface

H

Hadoop, 248
Handler, 122
Haskell, 82, 181, 192
Heap, 18, 21
Hidden layer, 306
Higher-order functions, 52
Hollywood style of programming, 117

constraints, 117
example program, 118–119
exercises, 122

332 � Index

Hollywood style of programming
(Continued)

historical notes, 121–122
systems design, 121
WordFrequencyFramework,

120–121
Hypermedia, 267

I

Idempotence, 45, 46, 52, 56; see also
Cookbook programming
style

Identifiers, 5
Identity monad, 83
Immutable variable, 56
Implicit types, 184
Impure function, 195
Infinite Mirror, 69

constraints, 69
example program, 70
exercises, 72
historical notes, 72
inductive solution, 71
recursion, 71
tail call, 71
tail recursion, 71

Inheritance, 93, 94, 95; see also Things
Input/Output (IO), 75
Instance, 96
Interactive applications, 253
Interactive electronic spreadsheets,

212
Introspection, 133, 135, 136

constraints, 133
example program, 134
exercises, 136
systems design, 136

Inversion of control, 122; see also
Hollywood style of
programming

IO, see Input/Output
Iterator, 219

J

Java, 181
frameworks, 154

Java Message Service (JMS),
230–231

JMS, see Java Message Service

K

Keras, 275
Kick Forward, 73

callback hell, 76
constraints, 73
continuation-passing style, 75
example program, 74
exercises, 77
function, 75
historical notes, 76
Pipeline style, 75
systems design, 75

Kleene’s Church-Turing thesis, 55;
see also Pipeline
programming style

L

Language processors, 241
Languages, 139
LANPAR (LANguage for Programming

Arrays at Random), 212
Layer, 284
Lazy evaluation, 195
Lazy Rivers, 215; see also Spreadsheet

characters function, 218
constraints, 215
example program, 216
exercises, 220
generators, 217
historical notes, 219
style, 253
systems design, 219

Learning algorithms, 290, 293–294, 295;
see also Neural network
programming

Letterbox, 97
constraints, 97
delegation, 100
example program, 98–99
exercises, 101
historical notes, 100–101
inheritance, 100
systems design, 100

Linear regression, 304
Lines of Code (LOC), 63; see also

Code Golf programming
style

LISP, 55, 141, 183
LOC, see Lines of Code

Index � 333

Loop unrolling, 324–327
Loss function, 295

M

Map, 242
Map Reduce, 237; see also Pipeline

programming style
abstractions, 240
constraints, 237
count words function, 241
example program, 238–239
exercises, 242–243
framework, 54
historical notes, 242
input data, 240
partition function, 240
split words function, 240
systems design, 241

MATLAB, 28
Matrix, 28; see also Array programming

style
Mean square error (MSE), 303
Memory

cell, 9
main, 12–13

Mesa, 154
Message, 231

dispatch, 101
MetaObject Protocol (MOP), 141
Metaprogramming, 131
Method, 96
Minsky, M., 294
Model, 261, 285
Model-View-Controller (MVC), 257
Monads, 82, 83; see also The One
Monolithic programming style, 35, 87

constraints, 35
cyclomatic complexity, 38–39
example program, 36
exercises, 40
goto statements, 37
spaghetti code, 37
systems design, 39
word freqs, 37

Moore, C., 18
MOP, see MetaObject Protocol
MSE, see Mean square error
Multidimensional arrays, 281
Multi-layer networks, 305

Mutable variable, 46
MVC, see Model-View-Controller

N

Natural language texts, 39
N -D matrix, 25; see also Array

programming style
Neural network programming, 277

backpropagation, 290
constraints, 277, 287
data encoding, 281
dense networks, 283
example program, 278–279,

288–289
exercises, 285, 295
historical notes, 284, 293
learning algorithms, 280, 290,

293–294
linear algebra functions, 281
network compilation, 291
neuron, 280
perceptron, 293
relations among training concepts,

291
Rosenblatt’s algorithm, 293–294
supervised learning, 280

Neural networks (NN), 275
Neuro-Monolithic style, 307

batches, 310
connectionist model, 313
constraints, 307
eliminating single-letter words,

310
example program, 308–309
exercises, 313
inter-character dependencies, 311
learning counterpart, 311–312
multi-label classification problem,

312
number of trainable parameters,

313
Neuron, 280, 284, 285; see also Neural

network programming
Neuropsychology, 293; see also Neural

network programming
NN, see Neural networks
NoSQL databases, 206
Numpy, 26; see also Array

programming style

334 � Index

O

Object, 96; see also Persistent Tables
style

abstraction, 87
-relational impedance mismatch,

205–206
Object-Oriented Programming (OOP),

92, 100; see also Things
One-hot, 285
OOP, see Object-Oriented

Programming
Optimizer, 295
Overriding, 96

P

Passive Aggressive style, 173
constraints, 173
Constructivist vs. Tantrum vs.,

178
example program, 174–175
exercises, 177
historical notes, 176
and Tantrum style, 176

Perceptron, 293; see also Neural
network programming

Persistent Tables style, 199, 201
constraints, 201
create database schema, 204
example program, 202–203
exercises, 206–207
historical notes, 205
load file into database, 204
object-relational impedance

mismatch, 205–206
systems design, 205

PhotoShop, 154
Pipeline programming style, 49

boxed functions, 53
constraints, 49
currying, 53
example program, 50–51
exercises, 57
higher-order functions, 52
historical notes, 54–55
idempotence, 52
Kleene’s Church-Turing thesis, 55
systems design, 53–54

Pipeline style, 75
program, 87

Plugins, 149, 155
constraints, 149
developing software, 152–153
example program, 150–151
exercises, 155–156
historical notes, 154–155
systems design, 153–154

PostScript, 20–21; see also Forth
programming style

Predict, 285
Primary memory, 9
Procedures, 15, 44, 46; see also Forth

programming style
Programming language, 45, 82

abstract things, 114
Self, 100, 106

Programs; see also Good Old Times
style programs

Prototypes, 106, 107; see also Closed
Maps

Publish, 128
-subscribe architectures, 127;

see also Bulletin Board style
Pure function, 194–195
Python 3. x, 241
Python, 55, 140

built-in library, 61
data collections, 25
decorator, 182
interpreter, 181
introspective functions, 135
OOP features, 92
stack, 18

Q

Quarantine, 187
constraints, 187
core program functions, 190
example program, 188–189
exercises, 195
Haskell, 192
historical notes, 194
IO code, 190–191
IO-infected code, 192
systems design, 193–194

R

RAM, see Random access memory
Random access memory (RAM), 13

Index � 335

Recurrent style, 321
constraints, 321
example program, 322–323
exercises, 327–328
historical notes, 327
layer, 324
loop unrolling, 324–327
SimpleRNN layer, 326
weight sharing, 325

Recurrent neural network (RNN),
324

Recursion, 72; see also Infinite Mirror
Reduce, 242; see also Map Reduce
Reflection, 131
Reflective style, 137

constraints, 137
example program, 138
exercises, 142
historical notes, 141
reflection, 139, 141
stringified functions, 139
systems design, 140–141

Relationship, 206
REpresentational State Transfer

(REST), 266, 270; see also
Restful

Reshape, 319
Resource, 271
REST, see REpresentational State

Transfer
Restful, 263

constraints, 263
example program, 264–265
excerpt of interaction, 266
exercises, 271
handlers of application, 267
historical notes, 270–271
hypermedia, 267
request handlers, 268–269
systems design, 269–270

RHW, see Rumelhart, Hinton and
Williams

RNN, see Recurrent neural network
Rumelhart, Hinton and Williams

(RHW), 305

S

Scheme programming language, 76
Secondary memory, 9, 13

Shallow, 285; see also Bow Tie network;
Neural network programming

networks, 305
Shape, 28
Shared-memory style, 235
Side effect, 46, 56–57
Simula, 67, 95, 183
Singleton, 96
Sliding Window, 315

constraints, 315
eliminating single-letter words,

318
example program, 316–317
exercises, 319

SLOC, see Source Lines of Code
Slots, 106
Smalltalk, 95, 100
SNARC (Stochastic Neural Analog

Reinforcement Calculator),
294

Source Lines of Code (SLOC), 62, 63;
see also Code Golf
programming style

Spreadsheet, 209; see also Lazy Rivers
columns in, 211
constraints, 209
example program, 210
exercises, 212–213
historical notes, 212
systems design, 212
tabular data, 211

SQL, see Structured Query Language
Stack, 18, 21; see also Forth

programming style
machine, 21
machine-based language, 20
overflow, 72

Standard Template Library (STL), 115
Static type checking, 184

languages, 181
STL, see Standard Template Library
Structured programming, 46
Structured Query Language (SQL), 204
Subscribe, 128
Superclass, 96
Supervised learning, 280; see also

Neural network programming
Synapses, 293; see also Neural network

programming

336 � Index

T

Tail; see also Infinite Mirror
call, 71
recursion, 71, 72

Tantrum style, 167
constraints, 167
and Constructivist style, 170
vs. Constructivist vs. Passive

Aggressive, 178
example program, 168–169
exercises, 171
GOTO statement, 170
and Passive Aggressive style, 176
systems design, 171

Tensor, 285
TensorFlow, 27, 275
TFExercise, 93
The One, 79

constraints, 79
example program, 80–81
exercises, 83–84
Haskell, 82
historical notes, 83
Identity monad, 83
monads, 82
TFTheOne instance, 82

Things, 89
constraints, 89
example problem, 90–91
exercises, 96
historical notes, 95
inheritance, 93, 94
instances, 93
OOP features, 92–93
systems design, 94–95
TFExercise, 93

Third-party development, 155; see also
Plugins

Trainable parameters, 313
Training, 295

Trinity, 255
active MVC program, 258–259
constraints, 255
example program, 256
exercises, 261
historical notes, 260
MVC trinity, 257
systems design, 260
types of concerns using MVC, 257

Tuple, 236
Turing Machine, 11–12
Type coercion, 184
Type inference, 185
Type safety, 185

U

Universal resource identifier (URI), 271
Universal resource locator (URL), 271
URI, see Universal resource identifier
URL, see Universal resource locator
USENET, 127; see also Bulletin Board

style

V

Validation, 295
Vector, 25, 28; see also Array

programming style
Vectorization, 28
View, 261
Virtual machines, 21
VisiCalc (Visible Calculator), 212
von Neumann’s architecture, 11–12

W

Warnock, J., 21
Weight sharing, 325, 327

X

XOR, see Exclusive-or

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Contents���������������
	Preface to the Second Edition������������������������������������
	Preface to the First Edition�����������������������������������
	Prologue���������������
	Author�������������
	Part I: Historical�������������������������
	Chapter 1: Good Old Times��������������������������������
	Chapter 2: Go Forth��������������������������
	Chapter 3: Arrays������������������������

	Part II: Basic Styles����������������������������
	Chapter 4: Monolithic����������������������������
	Chapter 5: Cookbook��������������������������
	Chapter 6: Pipeline��������������������������
	Chapter 7: Code Golf���������������������������

	Part III: Function Composition�������������������������������������
	Chapter 8: Infinite Mirror���������������������������������
	Chapter 9: Kick Forward������������������������������
	Chapter 10: The One��������������������������

	Part IV: Objects and Object Interaction��
	Chapter 11: Things�������������������������
	Chapter 12: Letterbox����������������������������
	Chapter 13: Closed Maps������������������������������
	Chapter 14: Abstract Things����������������������������������
	Chapter 15: Hollywood����������������������������
	Chapter 16: Bulletin Board���������������������������������

	Part V: Reflection and Metaprogramming���
	Chapter 17: Introspective��������������������������������
	Chapter 18: Reective���������������������������
	Chapter 19: Aspects��������������������������
	Chapter 20: Plugins��������������������������

	Part VI: Adversity�������������������������
	Chapter 21: Constructivist���������������������������������
	Chapter 22: Tantrum��������������������������
	Chapter 23: Passive Aggressive�������������������������������������
	Chapter 24: Declared Intentions��������������������������������������
	Chapter 25: Quarantine�����������������������������

	Part VII: Data-Centric�����������������������������
	Chapter 26: Persistent Tables������������������������������������
	Chapter 27: Spreadsheet������������������������������
	Chapter 28: Lazy Rivers������������������������������

	Part VIII: Concurrency�����������������������������
	Chapter 29: Actors�������������������������
	Chapter 30: Dataspaces�����������������������������
	Chapter 31: Map Reduce�����������������������������
	Chapter 32: Double Map Reduce������������������������������������

	Part IX: Interactivity�����������������������������
	Chapter 33: Trinity��������������������������
	Chapter 34: Restful��������������������������

	Part X: Neural Networks������������������������������
	Chapter 35: Dense������������������������
	Chapter 36: Dense������������������������
	Chapter 37: Bow Tie��������������������������
	Chapter 38: Neuro-Monolithic�����������������������������������
	Chapter 39: Sliding Window���������������������������������
	Chapter 40: Recurrent����������������������������

	Index������������

