Th
Pr ema’u’c
Ogramimers

Reactive Programming
with RxJS 5

Untangle Your
Asynchronous
JavaScript Code

Sergi Mansilla
edited by Brian MacDonald






Reactive Programming with RxJS 5

Untangle Your Asynchronous JavaScript Code

Sergi Mansilla

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-247-3

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Per a tu, Pipus. T estimo.






Contents

Acknowledgmeénts . . . . . . . . . . . v
ix

© O - -

10
15

17
17
19
24
26
29
36
36
38

39
39
44
50
68
68

69
69
71
81




Contents ® vi

Ideas for Improvements 87
87

89
89
93
95
99

101
101
102
103
110
113
116
116

117




Acknowledgments

I have so many people to thank. There are those who have helped shape the
book and those who have helped shape me as a person. I couldn’t have done
this without any of them. I would particularly like to thank the following:

The exceptional people who came up with the Reactive Extensions library in
the first place, and the ones who expanded and evangelized it. This book
would obviously not exist without you: Erik Meijer, Matt Podwysocki, Bart
De Smet, Wes Dyer, Jafar Husain, André Staltz, and many more I am
forgetting.

The folks at The Pragmatic Bookshelf. It has been a pleasure to work with
you. Special thanks to Susannah Pfalzer, who has believed in the book since
it was nothing but an idea. I was also lucky to get Rebecca Gulick and Brian
MacDonald as my editors: you have been professional, (very!) patient, and
attentive to my questions. I've been a fan of Pragmatic’s books for a long time,
and it has been a privilege to write a PragProg book myself. And, yes, both
publishers, Dave Thomas and Andy Hunt, do read and review every book!

The brilliant technical reviewers. Stefan Turalski, Tibor Simic, Martijn Reuvers,
Randall Koutnik, David Bock, Javier Collado Cabeza, Fred Daoud, Irakli
Gozalishvili, Zef Hemel, Ramaninder Singh Jhajj, Aaron Kalair, Daniel Lamb,
Brian Schau, and Stephen Wolff, as well as Pragmatic publishers Dave and
Andy: this book is infinitely better thanks to all of you. You each selflessly
put time and energy into reviewing this book, detecting complicated errors
and saving me from more than one embarrassing mistake. Any errors
remaining in the book are my own fault.

The friends who are always there, no matter the time and the distance; you
know who you are. Thanks for the laughs, the support, the love.

My parents, Narcis and Joana. You never ceased to believe in me and always
encouraged me to take on bigger challenges. You bought me my first computer
at a time when you struggled to pay the bills. That started it all, and I owe
you everything.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Acknowledgments ® viii

My two sons, Adria and Julian. You were both born while I was writing this
book (first and second editions!), and you have changed the meaning of life
for me. You've already taught me so much in such little time. It’s a privilege
to spend time with you and to witness how you grow up.

Finally, Jen, the love of my life. You were endlessly patient and supportive
while I wrote a book during one of the busiest periods of our life. You are an
inspiration to me and you make me a better human being. You are my star.

Sergi Mansilla

Barcelona, February 2018


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Preface

Reactive programming is taking the software world by storm. This book
combines the reactive programming philosophy with the possibilities of
JavaScript, and you’ll learn how to apply reactive techniques to your own
projects. We'll focus on reactive programming to manage and combine streams
of events. In fact, we’ll cover how to make entire real-world, concurrent
applications just by declaring transformations on our program’s events.

Most software today deals with data that’s available only over time: websites
load remote resources and respond to complex user interactions, servers are
distributed across multiple physical locations, and people have mobile devices
that they expect to work at all times, whether on high-speed Wi-Fi or spotty
cellular networks. Any serious application involves many moving asynchronous
parts that need to be efficiently coordinated, and that’s very hard with today’s
programming techniques. On top of that, we have what’s always been there:
servers crashing, slow networks, and software bugs we have to deal with.

We can’t afford to keep programming applications the way we always have.
It worked for a while, but now it’s time for a new approach.

New World, Old Methods

In recent years JavaScript has become the most ubiquitous language in the
world and now powers the mission-critical infrastructure of businesses such
as Walmart and Netflix,' mobile operating systems such as Firefox OS, and
complex popular applications such as Google Docs.

And yet we're still using good ol’ imperative-style programming to deal with
problems that are essentially asynchronous. This is very hard.

JavaScript developers see the language’s lack of threads as a feature, and we
usually write asynchronous code using callbacks, promises, and events. But

1. http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/, http://techblog.netflix.com/2014/06/scale-


http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
http://techblog.netflix.com/2014/06/scale-and-performance-of-large.html
http://techblog.netflix.com/2014/06/scale-and-performance-of-large.html
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Preface ® x

as we keep adding more concurrency to our applications, the code to coordi-
nate asynchronous flows becomes unwieldy. Current mechanisms all have
serious shortcomings that hinder the developer’s productivity and make for
fragile applications.

Here’s a quick rundown of the current mechanisms for handling asynchronous
operations, along with their problems.

Callback Functions

A callback is a function (A) passed as a parameter to another function (B) that
performs an asynchronous operation. When (B) is done, it calls back (A) with
the results of the operation. Callbacks are used to manage asynchronous
flows such as network 1/0, database access, or user input.

intro/callback_example.js

function B(callback) {
// Do operation that takes some time
callback('Done!"');

}

function A(message) {
console.log(message);

}

// Execute B’ with A’ as a callback
B(A);

Callbacks are easy to grasp and have become the default way of handling
asynchronous data flows in JavaScript. But this simplicity comes at a price.
Callbacks have the following drawbacks:

e Callback hell. It’s easy to end up with lots of nested callbacks when han-
dling highly asynchronous code. When that happens, code stops being
linear and becomes hard to reason about. Whole applications end up
passed around in callbacks, and they become difficult to maintain and
debug.

* Callbacks can run more than once. There’s no guarantee the same callback
will be called only once. Multiple invocations can be hard to detect and
can result in errors and general mayhem in your application.

¢ Callbacks change error semantics. Callbacks break the traditional try/catch
mechanism and rely on the programmer to check for errors and pass
them around.

e Concurrency gets increasingly complicated. Combining interdependent
results of multiple asynchronous operations becomes difficult. It requires


http://media.pragprog.com/titles/smreactjs5/code/intro/callback_example.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

New World, Old Methods ® xi

us to keep track of the state of each operation in temporal variables, and
then delegate them to the final combination operation in the proper order.

Promises

Promises came to save us from callbacks. A promise represents the result of
an asynchronous operation. In promise-based code, calling an asynchronous
function immediately returns a “promise” that will eventually be either resolved
with the result of the operation or rejected with an error. In the meantime,
the pending promise can be used as a placeholder for the final value.

Promises usually make programs more clear by being closer to synchronous
code, reducing the need for nesting blocks and keeping track of less state.

Unfortunately, promises are not a silver bullet. They're an improvement over
callbacks, but they have a major shortcoming: they only ever yield a single
value. That makes them useless for handling recurrent events such as mouse
clicks or streams of data coming from the server, because we would have to
create a promise for each separate event instead of creating a promise that
handles the stream of events as it comes.

Event Emitters

When we emit an event, event listeners that are subscribed to it will fire.
Using events is a great way to decouple functionality, and in JavaScript, event
programming is common and generally a good practice.

But, you guessed it, event listeners come with their own set of problems, too:

e Events force side effects. Event listener functions always ignore their
return values, which forces the listener to have side effects if it wants to
have any impact in the world.

e Events are not first-class values. For example, a series of click events can’t
be passed as a parameter or manipulated as the sequence it actually is.
We're limited to handling each event individually, and only after the event
happens.

e [tis easy to miss events if we start listening too late. An infamous example
of that is the first version of the streams interface in Node.js, which would
often emit its data event before listeners had time to listen to it, losing it
forever.

Since these mechanisms are what we've always used to manage concurrency,
it might be hard to think of a better way. But in this book I'll show you one:


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Preface * xii

reactive programming and RxJS try to solve all these problems with some
new concepts and mechanisms to make asynchronous programming a breeze
—and much more fun.

What Is Reactive Programming?

Reactive programming is a programming paradigm that encompasses many
concepts and techniques. In this book I'll focus particularly on creating, trans-
forming, and reacting to streams of data. Mouse clicks, network requests, arrays
of strings—all these can be expressed as streams to which we can “react” as
they publish new values, using the same interfaces regardless of their source.

Reactive programming focuses on propagating changes without our having
to explicitly specify how the propagation happens. This allows us to state
what our code should do, without having to code every step to do it. This
results in a more reliable and maintainable approach to building software.

What Is RxJS?

RxJS is a JavaScript implementation of the Reactive Extensions, or Rx.” Rx
is a reactive programming model originally created at Microsoft that allows
developers to easily compose asynchronous streams of data. It provides a
common interface to combine and transform data from wildly different sources,
such as filesystem operations, user interaction, and social-network updates.

Rx started with an implementation for .NET, but today it has a well-maintained
open source implementation in every major language (and some minor ones).
It is becoming the standard to program reactive applications, and Rx’s main
data type, the Observable, is being proposed for inclusion in ECMAScript 7
as an integral part of JavaScript.

Who This Book Is For

This book is for developers with some experience with JavaScript. You should
be comfortable with closures and higher-order functions, and you should
understand the scope rules in JavaScript. That being said, I try to explain
the most complex language concepts we go through in this book.

What’s in This Book

This book is a practical introduction to reactive programming using RxJS.
The objective is to get you to think reactively by building small real-world

2. https://rx.codeplex.com/


https://rx.codeplex.com/
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

What's in This Book ® xiii

applications, so you can learn how to introduce reactive programming in your
day-to-day programming and make your programs more robust. This is not
a theoretical book about reactive programming, and it is not an exhaustive
reference book for the RxJS API. You can find these kinds of resources online.

We'll be developing mostly for the browser, but we’ll see some examples in
Node.js, too. We'll get deep into the subject early on, and we’ll build applica-
tions along the way to keep it real. Here are the chapters:

¢ Unless you have used RxJS before, start with Chapter 1, The Reactive

data type of RxJS, which we’ll use extensively throughout the book.

e With the basics of Observables established, we move on to Chapter 2,

ming it’s all about sequences of events. We visit some important sequence
operators and we build our first application, a real-time earthquake
visualizer.

* In Chapter 3, Building Concurrent Programs, on page 39, we look at how
to write concurrent code with minimal side effects. After covering the
Observable pipeline, we build a cool spaceship video game in about 200

lines of code and with almost no global state.

* In Chapter 4, Building a Complete Web Application, on page 69, we get
deeper into reactive app development and enhance the earthquake
application we made previously in Chapter 2 on page 17 by making a

server part in Node.js that shows tweets related to earthquakes happening
right now.

e We get into some more advanced concepts of RxJS with Chapter 5,

concept RxJS provides to handle concurrency at a more fine-grained level:
Schedulers.

e With the knowledge of Schedulers under our hats, we explore how they
help us with testing. We’'ll see how to simulate time in our tests to accu-
rately test asynchronous programs.

e Finally, in Chapter 6, Reactive Web Applications with Cycle.js, on page

simple application. Cycle.js draws concepts from modern frameworks
such as React.js to create a reactive framework that uses the advantages
of Observables to help us create fast user interfaces in a simple and reli-
able way.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Preface ® xiv

Running the Code Examples

The code examples in this book are made for either the browser or Node.js.
The context of the code should clarify in what environment to run the code.

Running RxJS Code in the Browser

Although we could include a minified RxJS library directly in an HTML page
by using a <script> tag and it would work for simple code, it would eventually
complicate things when we start using ES6 in our code, which RxJS5
encourages. This is because we can’t count on all browsers to understand
the complete ES6 syntax, especially when we import modules. If you still want
to simply import RxJS directly in an HTML page, it is advised that you use a
CDN like unpkg,’ in which you can import the entire RxJS library already
minified.

The easiest way to run RxJS 5 code for the browser is by using a module
bundler like Webpack that takes our ES6 source code and compiles it into
compatible JavaScript, using the modules we require in the code. That also
provides us with a rapid development environment in which any changes in
the code are immediately reflected in the running application.

Learning how to configure a module bundler such as Webpack is beyond the
scope of this book, but if you want to just start coding without worrying about
module bundlers, you can use the Webpack boilerplate project I made from
my GitHub repository.*

Running RxJS Code in Node.js

Running code examples in Node.js is easy. Just make sure you install the
RxJS dependency in your project using npm:

$ npm install rxjs
+ rxjs@s.4.2
added 2 packages in 2.674s

After that, you can import the RxJS library in your JavaScript files:
const Rx = require('rxjs/Rx');

Rx.0bservable.of(1,2,3).subscribe(value => {
console.log(value);
b

3. https://unpkg.com/rxjs/bundles/Rx.min.js

4. https://github.com/sergi/rxjs-minimal-boilerplate


https://unpkg.com/rxjs/bundles/Rx.min.js
https://github.com/sergi/rxjs-minimal-boilerplate
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Resources ® xv

The preceding code would import the whole Rx library. If don’t need all the
bells and whistles the library provides, you could import only the necessary
code to use the Observable.of operator for our example:

const Observable = require('rxjs/Observable').0Observable;

Observable.of(1,2,3).subscribe(value => {
console.log(value);
1)

And you can run it by simply invoking node and the name of the file:

$ node test.js

1
2
3

RxJS Version

At the time of writing, the current RxJS version is 5.5.0. All the examples in
this book are made for RxJS 5.x.

Resources

RxJS is gaining adoption very quickly, and there are more and more resources
about it every day. At times it might be hard to find resources about it online,
though. Here are some good ones:

» RxJS5 official source code repository”

e ReactiveX, a collection of resources and documentation related to the
Reactive Extensions, in several programming languages6

e RxMarbles, an interactive tool to visualize Observables’

e RxVisualizer, an animated playground for Rx Observables®

Download Sample Code

This book’s website has links to an interactive discussion forum as well as a
place to submit errata.® You'll also find the source code for all the projects
we build. Readers of the ebook can interact with the box above each code
snippet to view that snippet directly.

https://github.com/ReactiveX/Rx]S

© N>



https://github.com/ReactiveX/RxJS
http://reactivex.io
http://rxmarbles.com/
https://rxviz.com/
http://pragprog.com/titles/smreactjs
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER 1

The Reactive Way

The real world is pretty messy: events happen in random order, applications
crash, and networks fail. Few applications are completely synchronous, and
writing asynchronous code is necessary to keep applications responsive. Most
of the time it’s downright painful, but it really doesn’t have to be.

Modern applications need super-fast responses and the ability to process
data from different sources at the same time without missing a beat. Current
techniques won’t get us there because they don’t scale—code becomes expo-
nentially more complex as we add concurrency and application state. They
get the job done only at the expense of a considerable mental load on the
developer, and that leads to bugs and complexity in our code.

This chapter introduces you to reactive programming, a natural, easier way
to think about asynchronous code. I'll show you how streams of events—
which we call Observables—are a beautiful way to handle asynchronous code.
Then we’ll create an Observable and see how reactive thinking and RxJS
dramatically improve on existing techniques and make you a happier, more
productive programmer.

What's Reactive?

Let’s start by looking at a little program. This program retrieves data from
different sources with the click of a button. It has the following requirements:

e It must unify data from two different locations that use different JSON
structures.

e The final result should not contain any duplicates.

¢ The user should not be able to click the button more than once every
second, to avoid requesting data too many times.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way © 2

Using RxJS, we would write something like this:

import { Observable } from "rxjs";

const button = document.getElementById("retrieveDataBtn");
const sourcel = Observable.ajax.getJSON("/resourcel") .pluck("name");
const source2 = Observable.ajax.getJSON("/resource2").pluck("props", "name");

const getResults = amount =>
sourcel
.merge(source2)
.pluck("names")
.flatMap(array => Observable.from(array))
.distinct()
.take(amount);

const clicks = Observable.fromEvent(button, "click");

clicks

.debounceTime(1000)

.flatMap(getResults(5))

.subscribe(
value => console.log("Received value", value),
err => console.error(err)
() => console.log("All values retrieved!")

)

Don’t worry about understanding what's going on here; let’s focus on the

10,000-foot view for now. The first thing you see is that we express a lot with
very few lines of code. We accomplish this by using Observables.

An Observable represents a stream of data. Programs can be expressed
largely as streams of data. In the preceding example, both remote sources
are Observables, and so are the mouse clicks from the user. In fact, our pro-
gram is essentially a single Observable made from a button’s click event that
we transform to get the results we want.

Reactive programming is expressive. Take, for instance, throttling mouse
clicks in our example. Imagine how complex it would be to do that using
callbacks or promises: we’'d need to reset a timer every second and keep state
of whether a second has passed since the last time the user clicked the button.
It’s a lot of complexity for such little functionality, and the code needed for it
is not even related to the program’s actual functionality. In bigger applications,
these complexities add up very quickly to make for a tangled code base.

With the reactive approach, we use the method debounce to throttle the stream
of clicks. This ensures that there is at least a second between each click, and
discards any clicks in between. We don’t care how this happens internally;
we just express what we want our code to do, and not how to do it.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

What's Reactive? ¢ 3

It gets much more interesting. Next you'll see how reactive programming can
help us make our programs more efficient and expressive.

Spreadsheets Are Reactive

Let’s start by considering the quintessential example of a reactive system:
the spreadsheet. We all have used them, but we rarely stop and think how
shockingly intuitive they are. Let's say we have a value in cell Al of the
spreadsheet. We can then reference it in other cells in the spreadsheet, and
whenever we change Al, every cell depending on Al will automatically update
its own value.

Bl v & L = =Al/S
A B C
1 w0 20 500

That behavior feels natural to us. We didn’t have to tell the computer to update
cells that depend on Al or how to do it; these cells just reacted to the change.
In a spreadsheet, we simply declare our problem, and we don’t worry about
how the computer calculates the results.

This is what reactive programming aims for. We declare relationships between
entities, and the program evolves as these entities change.

The Mouse as a Stream of Values

To understand how to see events as streams of values, let’s revisit the program
from the beginning of this chapter. There we used mouse clicks as an infinite
sequence of values generated in real time as the user clicks. This is an idea
proposed by Erik Meijer—the inventor of RxJS—in his paper “Your Mouse Is
a Database.”’

In reactive programming, we see mouse clicks as a continuous stream of
values that we can query and manipulate. Thinking about a stream of values
instead of discrete values opens up a whole new way to program, one in which
we can manipulate entire sequences of values that haven’t been created yet.

Let that thought sink in for a moment. This is different from what we’re used
to, which is having values stored somewhere such as a database or an array,
and waiting for them to be available before we use them. If they are not
available yet (for instance, a network request), we wait for them and use them
only when they become available.

1. http://queue.acm.org/detail.cfm?id=2169076


http://queue.acm.org/detail.cfm?id=2169076
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way * 4

T fEE gHE

time >

We can think of our stream as an array in which elements are separated by
time instead of by memory. With either time or memory, we have a sequence

of elements:
FanE : Fant  SaE

time >

Seeing your program as sequences of data is key to understanding RxJS
programming. It takes a bit of practice, but it is not hard. In fact, most data
we use in any application can be expressed as a sequence. We'll look at
sequences in more depth in Chapter 2, Deep in the Sequence, on page 17.

Querying the Sequence

Let’s implement a simple version of that mouse stream using traditional event
listeners in JavaScript. To log the x- and y-coordinates of mouse clicks, we
could write something like this:

ch1/thinking_sequences.js
const registerClicks = e => {
console.log(e.clientX, e.clientY);
}
document.body.addEventListener("click", registerClicks);
This code will print the x- and y-coordinates of every mouse click in order.
The output looks like this:

252 183
211 232
153 323

Looks like a sequence, doesn’t it? The problem, of course, is that manipulating
events is not as easy as manipulating arrays. For example, if we want to
change the preceding code so it logs only the first 10 clicks that happen on
the right side of the screen (quite a random goal, but bear with me here), we
would write something like this:


http://media.pragprog.com/titles/smreactjs5/code/ch1/thinking_sequences.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

What's Reactive? ¢ 5

let clicks = 0;
document.addEventListener("click", e => {
if (clicks < 10) {
if (e.clientX > window.innerWidth / 2) {
console.log(e.clientX, e.clientY);
clicks += 1;
}
} else {
document.removeEventListener("click", registerClicks);
}
1)

To meet our requirements, we introduced external state through a global
variable clicks that counts clicks made so far. We also need to check for two
different conditions and use nested conditional blocks. And when we’re done,
we have to tidy up and unregister the event to not leak memory.

If an action has impact outside of the scope where it happens, we call this a side
effect. Changing a variable external to our function, printing to the console, or
updating a value in a database are examples of side effects.

For example, changing the value of a variable that exists inside our function is safe.
But if that variable is outside the scope of our function then other functions can
change its value. That means our function is not in control anymore and it can’t
assume that external variable contains the value we expect. We’d need to track it and
add checks to ensure its value is what we expect. At that point we’d be adding code
that is not relevant to our program, making it more complex and error prone.

Although side effects are necessary to build any interesting program, we should strive
for having as few as possible in our code. That's especially important in reactive
programs, where we have many moving pieces that change over time. Throughout
this book, we’ll pursue an approach that avoids external state and side effects. In
fact, in Chapter 3, Building Concurrent Programs, on page 39, we'll build an entire

video game with no side effects.

We managed to meet our easy requirements, but ended up with pretty com-
plicated code for such a simple goal. The code is not obvious for a developer
who looks at it for the first time. More importantly, we made it easier to
introduce subtle bugs in the future because we need to keep state.

If we think about it, all we want to do is to query a “database” of clicks. If we
were dealing with a relational database, we’d use the declarative language
SQL to write something similar to this:

SELECT x, y FROM clicks LIMIT 10

report erratum -« discuss


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way * 6

What if we treated that stream of click values as a database that can be
queried? After all, it’s no different from a database, one that emits values in
real time. All we need is a data type that abstracts the concept for us.

Enter RxJS and its Observable data type:

Observable. fromEvent(document, "click")
.filter(c => c.clientX > window.innerWidth / 2)
.take(10)
.subscribe(c => console.log(c.clientX, c.clientY));

This code does the same as the code on page 5, and it reads like this:

Create an Observable of click events and filter out the clicks that happen on the
left side of the screen. Then print the coordinates of only the first 10 clicks to the
console as they happen.

Notice how the code is easy to read even if you're not familiar with it. Also,
there’s no need to create external variables to keep state, which makes the
code self-contained and makes it harder to introduce bugs. There’s no need
to clean up after yourself either, so no chance of introducing memory leaks
by forgetting about unregistering event handlers.

In the preceding code we created an Observable from a DOM event. An
Observable provides us with a stream of values that we can manipulate as a
whole instead of handling a single isolated event each time. Dealing with
sequences gives us enormous power; we can merge, transform, or pass around
Observables easily. We've turned events we can’t get a handle on into a tan-
gible data structure that’s as easy to use as an array, but much more flexible.

In the next section we’ll see the principles that make Observables such a
great tool.

Observers and Iterators

To understand where Observables come from we need to look at their founda-
tions: the Observer and Iterator software patterns. In this section we’ll take
a quick look at them, and then we’ll see how Observables combine concepts
of both in a simple but powerful way.

The Observer Pattern

For a software developer, it’s hard to hear about Observables and not think
of the venerable Observer pattern. In it we have an object called Producer that
keeps an internal list of Listeners subscribed to it. Listeners are notified—by
calling their update method—whenever the state of the Producer changes. (In


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Observers and Iterators ® 7

most explanations of the Observer pattern, this entity is called Subject, but
to avoid confusion with RxJS’s own Subject type, we call it Producer.)

It’s easy to implement a rudimentary version of the pattern in a few lines:

ch1/observer_pattern.js
class Producer {
constructor() {
this.listeners = [];

}

add(listener) {
this.listeners.push(listener);

}

remove(listener) {
const index = this.listeners.index0f(listener);
this.listeners.splice(index, 1);

}

notify(message) {
this.listeners.forEach(listener => {

listener.update(message);

s
}

}

The Producer object keeps a list of Listeners in the instance’s listeners array
that will all be updated whenever the Producer calls its notify method. In the
following code we create two objects that listen to notifier, an instance of Producer:

ch1/observer_pattern.js
// Any object with an 'update' method would work.
const listenerl = {
update: message => {
console.log("Listener 1 received:", message);
}
}i

const listener2 = {
update: message => {
console.log("Listener 2 received:", message);
}
+i

const notifier = new Producer();
notifier.add(listenerl);
notifier.add(listener2);
notifier.notify("Hello there!");

When we run the program

Listener 1 received: Hello there!
Listener 2 received: Hello there!


http://media.pragprog.com/titles/smreactjs5/code/ch1/observer_pattern.js
http://media.pragprog.com/titles/smreactjs5/code/ch1/observer_pattern.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way ¢ 8

listenerl and listener2 are notified whenever the Producer notifier updates its
internal state, without us having to check for it.

Our implementation is simple, but it illustrates how the Observer pattern allows
decoupling between the events and the listener objects that react to them.

The Iterator Pattern

The other piece in the Observable puzzle comes from the Iterator pattern. An
Iterator is an object that provides a consumer with an easy way to traverse
its contents, hiding the implementation from the consumer.

The Iterator interface is simple. It requires only two methods: next() to get the
next item in the sequence, and hasNext() to check if there are items left in the
sequence.

Here’s how we’'d write an iterator that operates on an array of numbers and
yields only elements that are multiples of the divisor parameter:

ch1/iterator.js
class Multiplelterator {
constructor(arr, divisor = 1) {
this.cursor = 0;
this.array = arr;
this.divisor = divisor;

}

next() {
while (this.cursor < this.array.length) {
const value = this.array[this.cursor++];

if (value % this.divisor === 0) {
return value;
}
}
}
hasNext () {
let cur = this.cursor;
while (cur < this.array.length) {
if (this.array[cur++] % this.divisor === 0) {
return true;
}
}
return false;


http://media.pragprog.com/titles/smreactjs5/code/ch1/iterator.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

The Rx Pattern and the Observable ¢ 9

We can use this iterator like this:

ch1/iterator.js

const consumer = new iterateOnMultiples(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
3

);

console.log(consumer.next(), consumer.hasNext()); // 3 true
console.log(consumer.next(), consumer.hasNext()); // 6 true
console.log(consumer.next(), consumer.hasNext()); // 9 false

Iterators offer a great way to encapsulate traversing logic for any kind of data
structure. As we saw in the preceding example, iterators get interesting when
made generic to handle different types of data, or when they can be configured
in runtime, like we did in our example with the divisor parameter.

The Rx Pattern and the Observable

While the Observer and the Iterator patterns are powerful in their own right,
the combination of both is even better. We call this the Rx pattern, named
after the Reactive Extensions libraries.”> We'll be using this pattern for the
rest of the book.

The Observable sequence, or simply Observable is central to the Rx pattern.
An Observable emits its values in order—like an iterator—but instead of its
consumers requesting the next value, the Observable “pushes” values to
consumers as they become available. It has a similar role to the Producer’s
in the Observer pattern: emitting values and pushing them to its listeners.

In programming, push-based behavior means that the server component of an appli-
cation sends updates to its clients instead of the clients having to poll the server for
these updates. It’s like the saying, “Don’t call us; we’ll call you."

RxJS is push-based, so the source of events (the Observable) will push new values
to the consumer (the Subscriber), without the consumer requesting the next value.

Put more simply, an Observable is a sequence whose items become available
over time. The consumers of Observables, Subscriptions, are the equivalent
of listeners in the Observer pattern. When a Subscription subscribes to an
Observable, it receives the values in the sequence as they become available,
without having to request them.

2.  https://rx.codeplex.com/

report erratum -« discuss


http://media.pragprog.com/titles/smreactjs5/code/ch1/iterator.js
https://rx.codeplex.com/
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way ¢ 10

So far it doesn’t seem very different from the traditional Observer pattern.
But actually there are two essential differences:

e An Observable doesn’t start streaming items until it has at least one
Observer subscribed to it.

e Like iterators, an Observable can signal when the sequence is completed.

Using Observables, we can declare how to react to the sequence of elements,
instead of reacting to individual items. We can efficiently copy, transform,
and query the sequence, and these operations will apply to all the elements
of the sequence.

Creating Observables

There are several ways to create Observables, the create operator being the
most obvious one. The create operator in the Rx.Observable object takes a callback
that accepts an Observer as a parameter. That function defines how the

Observable will emit values. Here’s how we create a simple Observable:
const observable = Observable.create(observer => {
observer.next("Simon");
observer.next("Jen");
observer.next("Sergi");

observer.complete(); // We are done
b

When we subscribe to this Observable, it emits three strings by calling the
next method on its listeners. It then calls complete to signal that the sequence
is finished. But how exactly do we subscribe to an Observable? We use
Observers.

The Observer Interface

Whenever an event happens in an Observable, it calls the related method in
all of its Subscribers. Subscribers have to implement the Observer interface.

The Observer interface contains three methods: next, complete, and error:

next The equivalent of Update in the Observer pattern. It is called when the
Observable emits a new value. Notice how the name reflects the fact that
we’re subscribed to sequences, not only to discrete values.

complete Signals that there is no more data available. After complete is called,
further calls to next will have no effect.

error Called when an error occurs in the Observable. After it is called, further
calls to next will have no effect.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Creating Observables ® 11

Here’s how we create a basic Observer from scratch:

const subscriber = Subscriber.create(
value => console.log( Next: ${value}’),
error => console.log( 'Error: ${error}’),
() => console.log("Completed")

);

The create method in the Rx.Subscriber class takes functions for the next, complete,
and error cases and returns a Subscriber instance. These three functions are
optional, and you can decide which ones to include. For example, if we are
subscribing to an infinite sequence such as clicks on a button (the user could
keep clicking forever), the complete handler will never be called. If we're confi-
dent that the sequence can’t error (for example, by making an Observable
from an array of numbers), we don’t need the error method.

Making Ajax Calls with an Observable

We haven't done anything really useful with Observables yet. How about
creating an Observable that retrieves remote content? To do this, we’ll wrap
the XMLHttpRequest object using Rx.Observable.create:

function get(url) {
return Observable.create(subscriber => {
// Make a traditional Ajax request
const req = new XMLHttpRequest();
req.open("GET", url);

reqg.onload = () => {
if (req.status === 200) {
// If the status is 200, meaning there have been no problems,
// yield the result to listeners and complete the sequence
subscriber.next(req.response);
subscriber.complete();
} else {
// Otherwise, signal to listeners that there has been an error
subscriber.error(new Error(req.statusText));
}
+

req.onerror = () => {
subscriber.error(new Error("Unknown Error"));

}

req.send();
b
}

// Create an Ajax Observable
const test = get("/api/contents.json");


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way ¢ 12

In the preceding code, the get function uses create to wrap XMLHttpRequest. If the
HTTP GET request is successful, we emit its contents and complete the
sequence (our Observable will only ever emit one result). Otherwise, we emit
an error. On the last line we call the function with a particular URL to retrieve.
This will create the Observable, but it won't make any request yet. This is
important: Observables don’t do anything until at least one Observer sub-
scribes to them. So let’s take care of that:

// Subscribe an Observer to it

test.subscribe(
value => console.log( Result: ${value}’),
error => console.log( Error: ${error}’),
() => console.log("Completed")

);

The first thing to notice is that we’re not explicitly creating a Subscriber like
we did in the _(;.(.)__(;1.?__9"1’_1_ R_aﬂggﬂl_ﬂlﬂ. Most of the time we’ll use this shorter version,

in which we call the subscribe operator in the Observable with the three func-
tions mandated by the Observer interface: next, complete, and error.

subscribe then sets everything in motion. Before the subscription, we had
merely declared how the Observable and Subscriber duo will interact. It is
only when we call subscribe that the gears start turning.

There Is (Almost) Always an Operator

In RxJS, methods that transform or query sequences are called operators.
Operators are found in the static Rx.Observable object and in Observable
instances. In our example, create is one such operator.

create is a good choice when we have to create a very specific Observable, but
RxJS provides plenty of other operators that make it easy to create Observables
for common sources.

Let’s look again at our previous example. For such a common operation as
an Ajax request there is often an operator ready for us to use. Since we're
doing a GET request, we can use the default form of the Rx.Observable.ajax
operator, and our code then becomes this:

Observable.ajax("/api/contents.json").subscribe(
data => console.log(data.response),
err => console.error(err)

)

This bit of code does exactly the same as our previous one, but we don’t have
to create a wrapper around XMLHttpRequest; it’s already there. Notice also that
this time we omitted the complete callback, because we don’t plan to react


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Creating Observables ¢ 13

when the Observable is done. We know that it will yield only one result, and
we are already using it in the next callback.

We’'ll use plenty of convenience operators like this throughout this book. RxJS
comes with “batteries included.” In fact, that is one of its main strengths.

In an RxJS program, we should strive to have all data in Observables, not just data
that comes from asynchronous sources. Doing that makes it easy to combine data
from different origins, like an existing array with the result of a callback, or the result
of an XMLHttpRequest with some event triggered by the user.

For example, if we have an array whose items need to be used in combination with
data from somewhere else, it’s better to make this array into an Observable. (Obviously,
if the array is just an intermediate variable that doesn’t need to be combined, there
is no need to do that.) Throughout the book, you'll learn in which situations it’s worth
transforming data types into Observables.

RxJS provides operators to create Observables from most JavaScript data
types. Let’s go over the most common ones, which you’ll be using all the time:
arrays, events, and callbacks.

Creating Observables from Arrays

We can make any array-like or iterable object into an Observable by using
the versatile from operator. from takes an array as a parameter and returns an
Observable that emits each of its elements:

Observable.from(["Adria", "Julian", "Jen", "Sergi"]).subscribe(
x => console.log( Next: ${x}"),
err => console.log("Error:", err),
() => console.log("Completed")

)i

from is, along with fromEvent, one of the most convenient and frequently used
operators in RxJS code.

Creating Observables from JavaScript Events

When we transform an event into an Observable, it becomes a first-class
value that can be combined and passed around. For example, here’s an
Observable that emits the coordinates of the mouse pointer whenever it moves:

const allMoves$ = Observable.fromEvent(document, "mousemove");
allMoves$.subscribe(e => console.log(e.clientX, e.clientY));

report erratum -« discuss


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 1. The Reactive Way * 14

Transforming an event into an Observable unleashes the event from its natural
constraints. More importantly, we can create new Observables based on the
original ones. The new ones are independent and can be used for different tasks:

const movesOnTheRight$ = allMoves$.filter(
e => e.clientX > window.innerWidth / 2

)

const movesOnTheLeft$ = allMoves$.filter(
e => e.clientX < window.innerWidth / 2

);

movesOnTheRight$.subscribe(e => {

console.log("Mouse is on the right:", e.clientX);
1)
movesOnTheLeft$.subscribe(e => {
console.log("Mouse is on the left:", e.clientX);
1)

In the preceding code, we create two Observables from the original allMoves$
one. These specialized Observables contain only filtered items from the original
one: movesOnTheRight$ contains mouse events that happen on the right side of
the screen, and movesOnTheleft$ contains mouse events that happen on the left
side. Neither of them modify the original Observable: allMoves$ will keep emitting
all mouse moves. Observables are immutable, and every operator applied to
them creates a new Observable.

Creating Observables from Callback Functions

Chances are you will have to interact with callback-based code if you use
third-party JavaScript libraries. We can transform our callbacks into
Observables using two functions, bindCallback and bindNodeCallback. Node.js follows
the convention of always invoking the callback function with an error argument
first to signal to the callback function that there was a problem. We then use
bindNodeCallback to create Observables specifically from Node.js-style callbacks:

const Rx = require("rxjs"); // Load RxJS
const fs = require("fs"); // Load Node.js Filesystem module

const Observable = Rx.Observable;
// Create an Observable from the readdir method
const readdir$ = Observable.bindNodeCallback(fs.readdir);

const source$ = readdir$("/Users/sergi"); // Send a delayed message

const subscription = source$.subscribe(
res => console.log( List of directories: ${res}’),
error => console.log( Error: ${error}’),
() => console.log("Done!")

);


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Wrapping Up ¢ 15

In the preceding code, we make an Observable readdir$ out of Node.js’s fs.readdir
method. fs.readdir accepts a directory path and a callback function that runs
once the directory contents are retrieved.

We use readdir$ with the same arguments we’d pass to the original fs.readdir,
minus the callback function. This returns an Observable that will properly
use next, error, and complete when we subscribe an Observer to it.

Wrapping Up

In this chapter we explored the reactive approach to programming and saw
how RxJS can solve the problems of other methods, such as callbacks or
promises, through Observables. Now you understand why Observables are
powerful, and you know how to create them. Armed with this foundation, we
can now go on to create more interesting reactive programs. The next chapter
shows you how to create and compose sequence-based programs that provide
a more “Observable” approach to some common scenarios in web development.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER 2

Deep in the Sequence

I have childhood memories of playing a puzzle video game in which you had
to guide a falling stream of water across the screen using all kinds of tricks.
You could split the stream, merge it back later, or use a tilted plank of wood
to change their direction. You had to be creative to make the water reach its
final goal.

I find a lot of similarities between that game and working with Observable
sequences. Observables are just streams of events that we transform, combine,
and query. It doesn’t matter whether we’re dealing with simple Ajax callbacks
or processing gigabytes of data in Node.js. The way we declare our flows is
the same. Once we think in streams, our programs become simpler.

In this chapter we focus on how to effectively use sequences in our programs.
So far we've covered how to create Observables and do simple operations with
them. To unleash their power, we have to know to translate our program
inputs and outputs into sequences that carry our program flow.

Before we get our hands dirty, we’ll meet some of the basic operators that will
help us start to manipulate sequences. Then we’ll implement a real application
that shows earthquakes happening in (almost) real time. Let’s get to it!

Visualizing Observables

You're about to learn some of the operators that we’ll use most frequently in
our RxJS programs. Talking about what operators do to a sequence can feel
abstract. To help developers understand operators in an easy way, we’ll use
a standard visual representation for sequences, called marble diagrams. They
visually represent data streams, and you will find them in almost every
resource for RxJS.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence ¢ 18

Let’s start with the range operator, which returns an Observable that emits
all integers within a specified range: Rx.Observable.range(1, 3);

The marble diagram for it looks like this:

onNext() onNext() onCompleted()
e

—O—O—O—
< d

The long arrow represents the Observable, and the x-axis represents time.
Each circle represents a value the Observable emits by internally calling next().
After generating the third value, range calls complete, represented in the diagram
by a vertical line.

\

Let’s now look at an example that involves several Observables. The merge
operator takes two different Observables and returns a new one with the
merged values. The interval operator returns an Observable that yields incre-
mental numbers at a given interval of time, expressed in milliseconds.

In the following code we’ll merge two different Observables that use interval to
produce values at different intervals:

const a$ = Observable.interval(200).map(i => "A${i}");
const b$ = Observable.interval(100).map(i => 'B${i});

Observable.merge(a$, b$).subscribe(x => {
console.log(x);
1)

< BO, A®, Bl, B2, Al, B3, B4...

The marble diagram for the merge operator looks like this:

200ms

A

100ms
B /(-)\ . — 1 2 3
\V/ \V/ N4
merge
T T T T

Y N
—0—0@0O0—0—0O

Here, the dotted arrows along the y-axis point to the final result of the
transformation applied to each element in sequences A and B. The resulting
Observable is represented by C, which contains the merged elements of A



http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Basic Sequence Operators ® 19

and B. If elements of different Observables are emitted at the same time, the
order of these elements in the merged sequence is random.

Basic Sequence Operators

Among the dozens of operators that transform Observables in RxJS, the most
used are those that any language with decent collection-processing abilities
also have: map, filter, and reduce. In JavaScript, you can find these operators
in Array instances.

RxJS follows JavaScript conventions, so you'll find that the syntax for the
following operators is almost the same as for array operators. In fact, we’ll
show the implementation using both arrays and Observables to show how
similar the two APIs are.

map

map is probably the most used operator. It takes an Observable and a function
and applies that function to each of the values in the source Observable. It
returns a new Observable with the transformed values.

I

|
Y Y Y v v

Map {O—A}
T T T T T
1 1 1 1 1
AN A A N
2N—74N—7/6Xx—78X /Z(}\ N >
JS Arrays Observables

const src = [1, 2, 3, 4, 5]; const src = Observable.range(1l, 5);
const upper = src.map(name => name * 2); const upper = src.map(name => name * 2);

upper.forEach(logValue); upper.subscribe(logValue);
In both cases, src doesn’t mutate.
This code, and the code that follows, uses this definition of logValue:

function logValue(val) {
console.log(val);

}

It could be that the function we pass to map does some asynchronous compu-
tation to transform the value. In that case, map would not work as expected.
For these cases, it would be better to use flatMap, on page 22.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence * 20

filter

filter takes an Observable and a function and tests each element in the
Observable using that function. It returns an Observable sequence of all the
elements for which the function returned true.

A A A SN

v Y v v v
filter { isEven(Q) }

O—C——
\2/ &

I "

JS Arrays Observables
const isEven = val => val % 2 === 0;
const src = [1, 2, 3, 4, 5]; const src = Observable.range(1l, 5);
const even = src.filter(isEven); const even = src.filter(isEven);
even.forEach(logValue); even.subscribe(logValue);

reduce

reduce (also known as fold) takes an Observable and returns a new one that
always contains a single item, which is the result of applying a function over
each element. That function receives the current element and the result of
the function’s previous invocation.

OOOOO—
IO A A

reduce {x,y —» x+Vy}

AL

/15\ | o
JS Arrays Observables
const src = [1, 2, 3, 4, 5]; const src = Observable.range(l, 5);

const sum = src.reduce((a, b) == a + b); const sum = src.reduce((acc, x) => acc + x);

console.log(sum); sum.subscribe(logValue);


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Basic Sequence Operators ® 21

reduce is a crucial operator. It is, in fact, the base implementation for a whole
subset of methods called aggregate operators.

Aggregate Operators

Aggregate operators process an entire sequence and return a single value.
For example, Rx.Observable.first takes an Observable and an optional predicate
function and returns the first element that satisfies the condition in the
predicate. If there is no predicate function, it just returns the first element
in the Observable.

Every aggregate operator can be implemented by using only reduce. Let’s take
averaging the values of a sequence, for example. RxJS provides the average
operator, but for the sake of this section, we want to see how to implement
it using reduce:

ch2/1_marble.js
const average$ = Observable
.range(0, 5)
.reduce(
(previous, current) => {
return {
sum: previous.sum + current,
count: previous.count + 1
+
+

{ sum: 0, count: 0 }
)
.map(result => result.sum / result.count);

average$.subscribe(x => console.log("Average is: ", x));
Average is: 2

In this code we use reduce to add each new value to the previous one. Because
reduce doesn’t provide us with the total number of elements in the sequence,
we need to keep count of them. We call reduce with an initial value consisting
of an object with two fields, sum and count, where we’ll store the sum and total
count of elements so far. Every new element will return the same object with
updated values.

When the sequence ends, reduce will call next with the object containing the
final sum and the final count. We then use map to return the result of dividing
the sum by the count.


http://media.pragprog.com/titles/smreactjs5/code/ch2/1_marble.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence ® 22

flatMap

What can you do if you have an Observable whose emitted items are more
Observables? Most of the time you'd want to merge items in those nested
Observables in a single sequence. That’s exactly what flatMap does.

The flatMap operator takes an Observable A whose elements are also Observ-
ables, and returns an Observable with the flattened values of A’s child
Observables. Let’s visualize it with a graph:

\/

R Y N
O— 00—

{

\/

e
R

FlatMap

1 T 1
1 | 1

Flat A T\'/7 /\V BVamVine

We can see that each of the elements in A (A;, Ay, Ag) are also Observable
sequences. Once we apply flatMap to A with a transformation function, we get
an Observable with all the elements in the different children of A.

¢ — 4 - -4 - -
I
I

flatMap is a powerful operator, but it can be harder to understand than the
operators we've seen so far. Think of it as a concatAll() for Observables.

concatAll is a function that takes an array of arrays and returns a “flattened”
single array containing the values of all the sub-arrays, instead of the sub-
arrays themselves. We can use reduce to make such a function:

function concatAll(source) {
return source.reduce((a, b) => a.concat(b));

}
We would use it like this:

concatAll([[o, 1, 2], [3, 4, 5], [6, 7, 81]);
// [0, 1, 2, 3, 4, 5, 6, 7, 8]

flatMap does the same thing, but it flattens Observables instead of arrays. It
takes a source Observable and a function that returns a new Observable and


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Basic Sequence Operators ® 23

Imagine we're writing a program that gives users their average speed while they walk.
Even if the user hasn’t finished walking, we need to be able to make a calculation
using the speed values we know so far. We basically want to log the average of an
infinite sequence at any given point. The problem is that if the sequence never ends,
an aggregate operator like reduce will never call its Subscribers’ next operator.

Luckily for us, the RxJS team has thought of this kind of scenario and provided us
with the scan operator, which acts like reduce but emits each intermediate result:

const average$ = Observable.interval(1000)
.scan(
(previous, current) => {
return {
sum: previous.sum + current,
count: previous.count + 1
e
1
{ sum: 0, count: 0 }
)

.map(result => result.sum / result.count);

This way, we can aggregate sequences that take a long time to complete or that are
infinite. In the preceding example, we generated an incremental integer every second
using the interval and substituted the previous reduce call for scan. We now get the
average of the values generated so far, every second.

applies that function to each element in the source Observable, like map does.
If the process stopped here, we would end up getting an Observable that emits
Observables. But flatMap emits to the main sequence the values emitted by
each new Observable, “flattening” all Observables into one, the main sequence.
In the end, we obtain a single Observable.

This is how we would do the same as concatAll with flatMap:

ch2/3_flatmap.js

import { Observable } from 'rxjs';

const values$ = Observable.from([
Observable.of (1, 2, 3),
Observable.of (4, 5, 6),

Observable.of (7, 8, 9)

1);

// values$ is an Observable that emits three Observables

values$.flatMap(v => v).subscribe(v => console.log(v));

report erratum -« discuss


http://media.pragprog.com/titles/smreactjs5/code/ch2/3_flatmap.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence © 24

But as it often happens, RxJS already has an operator for that very purpose
named—drum roll, please—concatAll, and makes our code a bit more succinct
than flatMap:

ch2/4_concatall.js

import { Observable } from "rxjs";

const values$ = Observable.from([
Observable.of (1, 2, 3),
Observable.of (4, 5, 6),

Observable.of (7, 8, 9)

1);

values$.concatAll().subscribe(v => console.log(v));

Canceling Sequences

In RxJS we can cancel a running Observable. This is an advantage over other
asynchronous forms of communication, such as callbacks and promises,
which can’t be directly canceled once they’re called (some promise implemen-
tations support cancellation, though).

There are two main ways we can cancel an Observable: explicitly and implicitly.

Explicit Cancellation

Observables themselves don’t have a method to get canceled. Instead, when-
ever we subscribe to an Observable we get a Subscription. We can then call the
method unsubscribe on the Subscription, and it will stop receiving notifications
from the Observable.

In the following example, we subscribe two Observers to the counter Observable,
which emits an increasing integer every second. After two seconds, we cancel
the second subscription and we can see that its output stops but the first
subscriber’s output keeps going:

ch2/5_disposable.js

import { Observable } from 'rxjs';

const counter$ = Observable.interval(1000);

const subscriptionl = counter$.subscribe(i => {

console.log('Subscription 1:', 1i);

1}

const subscription2 = counter$.subscribe(i => {
console.log('Subscription 2:', 1i);

b


http://media.pragprog.com/titles/smreactjs5/code/ch2/4_concatall.js
http://media.pragprog.com/titles/smreactjs5/code/ch2/5_disposable.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Canceling Sequences ® 25

setTimeout (
() =>{
console.log('Canceling subscription2!');
subscription2.unsubscribe();
i
2000
);

Subscription
Subscription
Subscription
Subscription
Canceling subscr
Subscription 1: 2
Subscription 1: 3
Subscription 1: 4

N~ N B
== oo

[

ption2!

Implicit Cancellation

Often, operators will cancel subscriptions for you. Operators such as range or take
will cancel the subscription when the sequence finishes or when the operator
conditions are met. Advanced operators such as withLatestFrom or switchMap will
create and destroy subscriptions as needed, since they handle several Observables
in motion. In short, don’t worry about canceling most subscriptions yourself.

Observables That Wrap External APIs

When you're using Observables that wrap external APIs that don’t provide
cancellation, the Observable will still stop emitting notifications when canceled,
but the underlying API will not necessarily be canceled. For example, if you're
using an Observable that wraps a promise, the Observable will stop emitting
when canceled, but the underlying promise will not be canceled.

In the following code, we attempt to cancel a subscription to an Observable
that wraps a promise p, and at the same time we set an action in the tradi-
tional way for when the promise is resolved. The promise should resolve in
five seconds, but we cancel the subscription immediately after creating it:
const p = new Promise((resolve, reject) => {

window.setTimeout(resolve, 5000);
1)

p.then(() => console.log('Potential side effect!'));

const subscription = Observable
.fromPromise(p)
.subscribe(msg => console.log('Observable resolved!'));

subscription.unsubscribe();


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence ® 26

After five seconds, we see:

Potential side effect!

If we cancel the subscription to the Observable it effectively stops it from
receiving the notification. But the promise’s then method still runs, showing
that canceling the Observable doesn’t cancel the underlying promise.

It’s important to know the details of external APIs that we use in Observables.
You might think you've canceled a sequence, but the underlying API keeps
running and causes some side effects in your program. These errors can be
really hard to catch.

Handling Errors

Remember when we talked about the three methods we can call on an
Observer? (If you need a refresher, refer back to The Observer Interface, on

it is the key to effectively handling errors in Observable sequences.

To see how it works, we’ll write a simple function to take an array of JSON
strings and return an Observable that emits the objects parsed from those
strings, using JSON.parse:

import { Observable } from "rxjs";
function getJSON(arr) {
return Observable.from(arr).map(JSON.parse);

}

We'll pass an array with three JSON strings to getJSON, in which the second
string in the array contains a syntax error, so JSON.parse won’t be able to parse
it. Then we’ll subscribe to the result, providing handlers for next and error:

getJSON([
{1t 1, "2t 2},
'{"success: true}', // Invalid JSON string
'‘{"enabled": true}'

1) .subscribe(
json => console.log("Parsed JSON: ", json),
err => console.log(err.message)

);

Parsed JSON: { 1: 1, 2: 2}
JSON.parse: unterminated string at line 1 column 8 of the JSON data

The Observable emits the parsed JSON for the first result but throws an
exception when trying to parse the second. The error handler catches this and


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Handling Errors ® 27

prints it out. The default behavior is that whenever an error happens, the
Observable stops emitting items, and complete is not called.

Catching Errors

So far we've seen how to detect that an error has happened and do something
with that information, but we haven’t been able to react to it and continue
with whatever we were doing. Observable instances have the catch operator,
which allows us to react to an error in the Observable and continue with
another Observable.

catch takes either an Observable or a function that receives the error as a
parameter and returns another Observable. In our scenario, we want the
Observable to emit a JSON object containing an error property if there were
errors in the original Observable:

function getJSON(arr) {
return Observable.from(arr).map(JSON.parse);

}

const caught$ = getJSON(['{"1": 1, "2": 2}', '{"1: 1}']).catch(
Observable.of ({
error: "There was an error parsing JSON"
1}
)

caught$.subscribe(
json => console.log("Parsed JSON: ", json),
err => console.log(err.message)

);

In the preceding code, we create a new Observable, caught, that uses the catch
operator to catch errors in the original Observable. If there’s an error it will
continue the sequence with an Observable that emits only one item, with an
error property describing the error. This is the output:

Parsed JSON: Object { 1: 1, 2: 2 }
Parsed JSON: Object { error: "There was an error parsing JSON" }

You can see the marble diagram for the catch operator in the figure on page 28.

Notice the X to indicate that the sequence experienced an error. The different
shape of the Observable values—triangles in this case—means that they are
values coming from another Observable. Here, that’s the Observable we return
in case of an error.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence © 28

\/

N\ /_N\/
Yoy

caught ry\ A é7 é7
Vv Vv

catch is useful for reacting to errors in a sequence, and it behaves much like
the traditional try/catch block. In some cases, though, it would be very conve-
nient to ignore an error that happens with an item in the Observable and let
the sequence continue. In those cases, we can use the retry operator.

Retrying Sequences

Sometimes errors just happen and there’s not much we can do about it. For
example, there could be a timeout requesting remote data because the user
has a spotty Internet connection, or a remote server we're querying could
crash. In these cases it would be great if we could keep requesting the data
we need until we succeed. The retry operator does exactly that:

ch2/6_error_handling.js
// This will try to retrieve the remote URL up to five times.
Observable.ajax("/products")
.retry(5)
.subscribe(
xhr => console.log(xhr),
err => console.error("ERROR: ", err)
)

In the preceding code, we create a function that returns an Observable that
retrieves contents from a URL. Because our connection might be a bit spotty,

we add retry(5) before subscribing to it, ensuring that in case of an error, it
will try up to five times before giving up and showing an error.

There are two important things to know when using retry. First, if we don’t
pass any parameters, it will retry indefinitely until the sequence is finished
with no errors. This is dangerous for performance if the Observable keeps
producing errors. If we're using synchronous Observables, it would have the
same effect as an infinite loop.


http://media.pragprog.com/titles/smreactjs5/code/ch2/6_error_handling.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Making a Real-Time Earthquake Visualizer ® 29

Second, retry will always retry the whole Observable sequence again, even if some
of the items didn’t error. This is important in case you're causing any side effects
when processing items, since they will be reapplied with every retry.

Making a Real-Time Earthquake Visualizer

Using the concepts that we’ve covered so far in this chapter, we’ll build a web
application that uses RxJS to show us where earthquakes are happening in
real time. We'll start by building a functional but naive reactive implementa-
tion, and we’ll improve it as we go. The final result will look like this:

Santa Maria O Barstow,

Victorville

Preparing Our Environment

We'll use the USGS (U.S. Geological Survey) earthquake database,’ which
offers a real-time earthquake dataset in several formats. We will get our data
from the weekly dataset in JSONP format.

We'll also use Leaflet, a JavaScript library, to render interactive maps.” We
can add it to our project using NPM:

$ npm install leaflet --save

Let’s see how our initialization code looks, and go over the important points:

1. http://earthquake.usgs.gov/earthquakes/feed/v1.0/

2. http://leafletjs.com


http://earthquake.usgs.gov/earthquakes/feed/v1.0/
http://leafletjs.com
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence * 30

ch2/earthquake-visualizer/src/index.js
import { Observable } from "rxjs";
import L from "leaflet";

const QUAKE URL = ‘“http://earthquake.usgs.gov/earthquakes/
feed/v1.0/summary/all day.geojsonp’;

function loadJSONP(url) {
const script = document.createElement("script");
script.type = "text/javascript";
script.src = url;

const head = document.getElementsByTagName("head")[0];
head.appendChild(script);

}
const mapContainer = document.createElement("div");
mapContainer.id = "map";

document.body.appendChild(mapContainer);

const map = L.map("map").setView([33.858631, -118.279602]1, 7);
L.tileLayer("http://{s}.tile.osm.org/{z}/{x}/{y}.png") .addTo(map);

©® That’s a helper function we use to load JSONP content. It creates a script
element with its URL property pointing to a particular JavaScript script.
Once we append it to <head>, the contents of the script will be executed.

® This is the placeholder div element that Leaflet will use to render our map.

© We initialize the Leaflet map by setting the coordinates to the center of
Los Angeles (plenty of earthquakes there!) with a reasonable zoom level.

O We tell Leaflet to set the default tile set for our map. The tile set is just a
“theme” for our map.

Retrieving Earthquake Locations

Now that our initialization code is ready, we can write the logic for our appli-
cation. First we need to know what kind of data we get and what data we
need to represent earthquakes on a map.

The JSONP data that the USGS site gives us back looks like this:

eqfeed_callback({
"type": "FeatureCollection",
"metadata": {
"generated": 1408030886000,
"url": "http://earthquake.usgs.gov/earthquakes/...",
"title": "USGS All Earthquakes, Past Day",
"status": 200, "api": "1.0.13", "count": 134


http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Making a Real-Time Earthquake Visualizer ¢ 31

"features": [
{

"type": "Feature",

"properties": {
"mag": 0.82,
"title": "M 0.8 - 3km WSW of Idyllwild-Pine Cove, California",
"place": "3km WSW of Idyllwild-Pine Cove, California",
"time": 1408030368460,

1
"geometry": {
"type": "Point",
"coordinates": [ -116.7636667, 33.7303333, 17.33 ]

3
"id": "cil15538377"

]
1

The features array contains an object with the data for every earthquake that
happened today. That’s a truckload of data! It's amazing (and terrifying) how
many earthquakes happen in a single day. For our program we’ll need only
the coordinates, title, and magnitude for each earthquake.

We first want to create an Observable that retrieves the dataset and emits
single earthquakes. Here’s a first version:

ch2/earthquake-visualizer/src/index.js
const quakes$ = Observable.create(observer => {
window.eqfeed callback = response => {
response.features.forEach(observer.next);
+i
loadJSONP (QUAKE_URL) ;
1)

quakes$.subscribe(quake => {
const coords = quake.geometry.coordinates;
const size = quake.properties.mag * 10000;

L.circle([coords[1l], coords[0@]], size).addTo(map);

1)

Wait, what is that blatant global function window.egfeed_callback doing in our
code? It turns out that JSONP URLSs often provide a way—by adding a query
string in the URL—to specify the function name to handle the response, but
the USGS site doesn’t allow that, so we need to create a global function with
the name they decided we must use, which is eqfeed_callback.


http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence ® 32

JSONP—or JSON with padding—is a sneaky technique that web developers came up
with to work around the browser restrictions when requesting data from third-party
domains.?

It bypasses these restrictions by loading external content using script tags instead of
the usual XMLHttpRequest. Adding a script tag to the DOM loads and executes its content
directly, and the security restrictions are not applied.

The remote request’s content is then normal JSON wrapped in a function call (the P
in JSONP). It looks like this:

callbackFn({ a: 1, b: 2, c: 3})

JSONP URLs usually accept a query string parameter so that the caller can specify
the name of the callback. The developer then has to define a function in her code
that has the same name as the callback in the server response, and when the script
tag is added to the document, that function will be called with the JSON data as the
first parameter.

Libraries like jQuery automate this process by internally creating the global function
to handle the JSONP call, and tidying up afterward to avoid polluting the global
namespace.

a. http://en.wikipedia.org/wiki/Same-origin_policy

"
Our Observable emits all earthquakes in order. We have an earthquake gen-
erator now! We don’t have to care about asynchronous flows or about having
to put all of our logic in the same function. As long as we subscribe to the
Observable, earthquakes will just come to us.

By having the earthquake retrieval “blackboxed” in the quakes$ Observable,
we can now subscribe to it and process each earthquake. Then we’ll draw a
circle for each earthquake with a size proportional to its magnitude.

Going Deeper

Can we do better? You bet! In the preceding code, we're still managing flow
by traversing the array and calling next to yield each earthquake, even if we
isolated it inside the Observable. So much for reactiveness!

This is a perfect situation for flatMap. We'll retrieve the data and make an
Observable out of the features array using Rx.Observable.from. Then we’ll merge that
Observable back in the main Observable. Here’s how the quakes$ variable changes:

report erratum -« discuss


http://en.wikipedia.org/wiki/Same-origin_policy
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

(Y-

Making a Real-Time Earthquake Visualizer ® 33

ch2/earthquake-visualizer/src/index.js
const quakes$ = Observable.create(observer => {
window.eqfeed callback = response => {
observer.next(response);
observer.complete();
}i

loadJSONP (QUAKE_URL) ;
}).flatMap(dataset => {
return Observable.from(dataset.features);

1)

We're not manually managing the flow anymore. There are no loops or condi-
tionals to extract the individual earthquake objects and pass them around.
Here’s what’s happening;:

O next only happens once, and it yields the whole JSON response.
© Since we’ll yield only one time, we signal completion after next.

© We're chaining the flatMap call to the result of create, so flatMap will take each
result from the Observable (in this case only one) and transform the
Observable into one that yields every item of the dataset.features property
by using Rx.Observable.from, which creates an Observable from any given
iterable type, an array in our case.

O Here we take the features array containing all the earthquakes and create
an Observable from it. Because of flatMap, this will become the actual
Observable that the quakes$ variable will contain.

Creating Our Own loadJSONP

A good exercise at this point is to convert the helper load/SONP function to
Observable form, and make our flow completely stream-based. This implemen-
tation will be sightly more verbose than our previous simplistic function
because it will add some functionality like error handling. Here it is:

ch2/earthquake-visualizer/src/index.js
function loadJSONP(settings) {
const url = settings.url;
const callbackName = settings.callbackName;

const script = document.createElement("script");
script.type = "text/javascript";
script.src = url;

window[callbackName] = data => {
window[callbackName].data = data;
}


http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence * 34

return Observable.create(observer => {
const handler = e => {
const status = e.type === "error" 7 400 : 200;
const response = window[callbackName].data;

if (status === 200) {
observer.next({
status,
responseType: "jsonp",
response,
originalEvent: e

1)

observer.complete();
} else {
observer.error({
type: "error",
status,
originalEvent: e
s
}
b
script.onload = script.onreadystatechanged = script.onerror = handler;
const head = window.document.getElementsByTagName("head")[0];

head.insertBefore(script, head.firstChild);
1)

© 0ad)SONP gets a settings parameter that contains the url and callbackName.

© Here we create a global function in the browser window object with the
name of the JSONP callback. When the JSONP script is loaded, it will
store the JSON in the data property of that function.

© Our Observable is quite specific, so we use the create operator to have total
freedom to write our logic.

O The handler function receives an event as a parameter. This event is emitted
when our JSONP script has been loaded (see below).

@ If there are no errors loading the script, we call observer.next with an object
that contains some metadata and a property response, which contains our
JSON. After that, we call Rx.Observable.complete to signal that this observable
yielded its one and only value and it’s finished.

0 If for any reason the remote JSONP script could not be loaded, we call
Rx.Observable.error to signal an error in the sequence. We call error with an
object that contains some useful metadata for debugging.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Making a Real-Time Earthquake Visualizer ¢ 35

@ Finally, we assign our handler function to event listeners that listen for
remote script events like loading status and errors.

Making It Real Time

Our reactive version of the earthquake application doesn’t update the map
of earthquakes in real time. To implement that, we’ll use the interval operator
(which we saw earlier in this chapter) and the tiber-useful distinct operator.
Let me show you the final code and then we’ll go through the changes:

ch2/earthquake-visualizer/src/index.js
const quakes$ = Observable.interval(5000)
flatMap(() => {
return loadJSONP({
url: QUAKE URL,
callbackName: "eqfeed callback"
}).retry(3);

1)
.flatMap(result => Observable.from(result.response.features))
.distinct(quake => quake.properties.code);

quakes$.subscribe(quake => {
const coords = quake.geometry.coordinates;
const size = quake.properties.mag * 10000;

L.circle([coords[1l], coords[@]], size).addTo(map);
1)

In the preceding code, we abuse interval to make new requests and process
them at regular intervals of five seconds. interval creates an Observable that
emits an incrementing number every five seconds. We don’t do anything with
those numbers; instead, we use flatMap to retrieve the data of the jsonpRequest.
Notice also how we use retry to try again in case there are problems retrieving
the list at first.

The last operator we apply is distinct, which emits only elements that haven’t
been emitted before. It takes a function that returns the property to check
for equality. This way we never redraw earthquakes that are already drawn.

In less than 20 lines (without counting our load)SONP implementation), we've
written an application that regularly polls an external JSONP URL, extracts
concrete data from its contents, and then filters out earthquakes that have
already been imported. After that, we represent the earthquakes on a map,
with a size proportional to their magnitude—all written in a self-contained,
clear, and concise way, without relying on external state. Not bad at all! That
shows how expressive Observables can be.


http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence ® 36

Ideas for Improvements

Here are a couple of ideas to put your newly acquired RxJS skills to use and
make this little application a bit more interesting:

e When the user hovers the mouse over an earthquake, offer a pop-up that
shows more information about that particular earthquake. One way to do
that would be to create a new Observable from the quakes$ one with just the
properties you want to show, and dynamically filter it upon hovering.

e Implement a counter at the top of the page that shows the number of
earthquakes so far today and resets every day.

Operator Rundown

This chapter presented you with a few new operators, so here’s a recap of
them, along with some scenarios for ways we can use them in our applications
(remember, you can always find the complete API documentation for operators
on the RxJS GitHub site®):

¢ Rx.Observable.from
Default behavior: Synchronous

Since many of the data sources you use in your applications will come
from arrays or iterables, it makes sense to have an operator that creates
Observables out of them. from is one of the operators you’ll use the most.

With from we can create Observables from arrays, array-like objects (for
instance, the arguments object or DOM Nodelists), and even types that
implement the iterable protocol, such as String, Map, and Set.*

e Rx.Observable.range
Default behavior: Synchronous

The range operator generates finite Observables that emit integers in a
particular range. It is extremely versatile and can be used in many sce-
narios. For example, you could use range to generate the initial squares
on the board of a game like Minesweeper.

w

https://github.com/ReactiveX/rxjs/blob/master/doc/operators.md


https://github.com/ReactiveX/rxjs/blob/master/doc/operators.md
https://developer.mozilla.org/ca/docs/Web/JavaScript/Reference/Iteration_protocols
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Operator Rundown ¢ 37

¢ Rx.Observable.interval
Default behavior: Asynchronous

Each time you need to generate values spaced in time, you’ll probably
start with an interval operator as the generator. Since interval emits
sequential integers every x milliseconds (where x is a parameter we pass),
we just need to transform the values to whatever we want. Our game in
Chapter 3, Building Concurrent Programs, on page 39, is heavily based on

that technique.
¢ Rx.Observable.distinct
Default behavior: Same as the Observable it filters

distinct is one of these simple operators that saves a ton of work. It filters
out of the sequence any value that has already been emitted. That keeps
us from writing time and again that error-prone boilerplate code that uses
a dictionary somewhere with the emitted results, against which we com-
pare incoming results. You know what kind of code I'm talking about.
Yuck. That’s gone with distinct.

A 4 \ 4 A 4 A 4 v A 4 v
distinct()

T

1

o066

distinct lets us use a function that specifies the comparison method. Addi-
tionally, we can pass no arguments and it will use strict comparison to
compare primitives such as numbers or strings, and run deep comparisons

 /

in case of more complex objects.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 2. Deep in the Sequence © 38

Wrapping Up

In this chapter we covered how to visually represent and understand
Observable flows using marble diagrams. We've covered the most common
operators to transform Observables, and, more importantly, we've built a real-
world application using only Observable sequences, avoiding setting any
external state, loops, or conditional branches. We expressed our whole program
in a declarative way, without having to encode every step to accomplish the
task at hand.

In the next chapter we’ll continue to explore Observable sequences, this time
taking a look at more advanced operators that allow you to control and bend
flows and data in your program like you've never imagined possible with
procedural code!


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER 3

Building Concurrent Programs

Concurrency is the art of doing several things at the same time, correctly and
efficiently. To accomplish this, we structure our programs to take advantage
of time so that tasks run together in the most efficient way. Examples of
everyday concurrency in applications include keeping the user interface
responsive while other activities are happening, and processing hundreds of
customers’ orders effectively.

In this chapter we’ll explore concurrency and pure functions in RxJS by
making a shoot-’em-up spaceship game for the browser. We'll first introduce
the Observable pipeline, a technique to chain Observable operators and pass
state between them. Then I'll show you how to use the pipeline to build pro-
grams without relying on external state or side effects, by encapsulating all
your logic and state inside the Observables themselves.

Video games are computer programs that need to keep a lot of state, but we’ll
write our game with no external state whatsoever, using the power of the
Observable pipeline and some great RxJS operators.

Purity and the Observable Pipeline

An Observable pipeline is a group of operators chained together, where each
one takes an Observable as input and returns an Observable as output. We've
been using pipelines in this book; they are ubiquitous when programming
with RxJS. Here’s a simple one:
ch3/pipeline.js
Observable

.from([1, 2, 3, 4, 5, 6, 7, 8])

.filter(val => val % 2)

.map(val => val * 10);


http://media.pragprog.com/titles/smreactjs5/code/ch3/pipeline.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 40

Pipelines are self-contained. All state flows from one operator to the next
without the need for any external variables. This way we avoid external state
(we talked about external state in Side Effects and External State, on page

5). We accomplish this by using pure functions.

Pure functions always return the same output given the same input. It's
easier to design programs with high concurrency when we can guarantee that
a function in the program can’t modify state other functions rely on.

Avoiding External State

In the following example we count the even numbers that interval has yielded
so far. We do that by creating an Observable from interval ticks and increasing
evenTicks when the tick we receive is an even number:

ch3/state.js
let evenTicks = 0;

function updateDistance(i) {
if (i %2 === 0) {
evenTicks += 1;

}

return evenTicks;

}

const ticksObservable = Observable.interval(1000).map(updateDistance);

ticksObservable.subscribe(() => {
console.log( Subscriber 1 - evenTicks: ${evenTicks} so far’);
1)

This is the output we get after the program has been running for four seconds:

Subscriber 1 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far

Now, just for kicks, let’s add another subscriber to ticksObservable:

ch3/state.js
let evenTicks = 0;

function updateDistance(i) {
if (i %2 === 0) {
evenTicks += 1;
}
return evenTicks;

}


http://media.pragprog.com/titles/smreactjs5/code/ch3/state.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/state.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Purity and the Observable Pipeline ¢ 41

const ticksObservable = Observable.interval(1000).map(updateDistance);

ticksObservable.subscribe(() => {
console.log( 'Subscriber 1 - evenTicks: ${evenTicks} so far’);
1)

ticksObservable.subscribe(() => {
console.log( "Subscriber 2 - evenTicks: ${evenTicks} so far’);

1)

The output is now the following:

Subscriber 1 - evenTicks: 1 so far
Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 3 so far
Subscriber 2 - evenTicks: 4 so far
Subscriber 1 - evenTicks: 4 so far
Subscriber 2 - evenTicks: 4 so far

Hold on a second—the evenTicks count on Subscriber 2 is completely off! It
should always contain the same evenTicks count as Subscriber 1. The reason,
as you might have guessed, is that the Observable pipeline will run once for
each subscriber, increasing evenTicks twice.

Problems caused by sharing external state are often more subtle than this
example. In complex applications, opening the door to changing state outside
of the pipeline leads to code becoming complicated, and bugs soon start to
show up. The solution is to encapsulate as much information as we can inside
the pipeline. Here’s a way we could refactor the preceding code to avoid
external state:

ch3/state.js
function updateDistance(acc, i) {
if (i % 2 === 0) {
acc += 1;
}
return acc;
}

const ticksObservable = Observable.interval(1000).scan(updateDistance, 0);

ticksObservable.subscribe(evenTicks => {
console.log( Subscriber 1 - evenTicks: ${evenTicks} so far’);
1)

ticksObservable.subscribe(evenTicks => {
console.log( "Subscriber 2 - evenTicks: ${evenTicks} so far’);

1)


http://media.pragprog.com/titles/smreactjs5/code/ch3/state.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

o000

Chapter 3. Building Concurrent Programs ® 42

And the expected output:

Subscriber 1 - evenTicks: 1 so far
Subscriber 2 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 1 so far
Subscriber 2 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far

Using scan, we avoid external state altogether. We pass the accumulated count
of even ticks to updateDistance instead of relying on an external variable to keep
the accumulated value.

Most of the time we can avoid relying on external state. Common scenarios
for using it are caching values or keeping track of changing values in the
program. But, as you'll see in Spaceship Reactive!, on page 50, these scenarios
can be handled in several otherways Forexamplewhenwe need to cache
values, RxJS's Subject Class, on page 44, can help a lot, and when we need

to keep track of previous states of the game, we can use methods like
Rx.Observable.scan.

Pipelines Are Efficient

The first time I chained a bunch of operators into a pipeline to transform a
sequence, my gut feeling was that it couldn’t possibly be efficient. I knew
transforming arrays in JavaScript by chaining operators is expensive. Yet in
this book I'm telling you to design your program by transforming sequences
into new ones. Isn’t that terribly inefficient?

Chaining looks similar in Observables and in arrays; there are even methods
like filter and map that are present in both types. But there’s a crucial difference:
array methods create a new array as a result of each operation, which is tra-
versed entirely by the next operation. Observable pipelines, on the other hand,
don’t create intermediate Observables and apply all operations to each element
in one go. The Observable is thus traversed only once, which makes chaining
Observables efficient. Check out the following example:

ch3/array_chain.js

stringArray // Represents an array of 1,000 strings
.map(str => str.toUpperCase())
.filter(/"~[A-Z]+$/ .test)
.forEach(str => console.log(str));

Let’s suppose stringArray is an array with 1,000 strings that we want to convert
to uppercase and then filter out the ones that contain anything other than


http://media.pragprog.com/titles/smreactjs5/code/ch3/array_chain.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

o000

Purity and the Observable Pipeline ¢ 43

alphabet characters (or no letters at all). Then we want to print each string
of the resulting array to the console.

This is what happens behind the scenes:
© Iterate through the array and create a new array with all items uppercase.

@ Iterate through the uppercase array, creating another array with 1,000
elements.

© Iterate through the filtered array and log each result to the console.

In the process of transforming the array, we've iterated arrays three times
and created two completely new big arrays. This is far from efficient! You
shouldn’t program this way if you're concerned about performance or you're
dealing with big sequences of items.

This is what the same operation would look like using Observables:

ch3/array_chain.js

stringObservable$ // Represents an observable emitting 1,000 strings
.map(str => str.toUpperCase())
.filter(/~[A-Z]+$/ .test)
.subscribe(str => console.log(str));

Observable pipelines look extremely similar to array chains, but their similar-
ities end here. In an Observable, nothing ever happens until we subscribe to
it, no matter how many queries and transformations we apply to it. When we
chain a transformation like map, we're composing a single function that will
operate on every item of the array once. So, in the preceding code, this is
what will happen:

©® Create an uppercase function that will be applied to each item of the
Observable and return an Observable that will emit these new items,
whenever an Observer subscribes to it.

©® Compose a filter function with the previous uppercase function, and
return an Observable that will emit the new items, uppercased and filtered,
but only when we subscribe to it.

© Trigger the Observable to emit items, going through all of them only once
and applying the transformations we defined once per item.

With Observables, we’ll go through our list only once, and we’ll apply the
transformations only if absolutely required. For example, let’s say we added
a take operator to our previous example:


http://media.pragprog.com/titles/smreactjs5/code/ch3/array_chain.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 44

ch3/array_chain.js
stringObservable$
.map(str => str.toUpperCase())
filter(/~[A-Z]+$/ .test)
.take(5)
.subscribe(str => console.log(str));

take makes the Observable emit only the first n items we specify. In our case,
n is five, so out of the thousand strings, we’ll receive only the first five. The
cool part is that our code will never traverse all the items; it will apply our
transformations to only the first five.

This makes the developer’s life much easier. You can rest assured that when
manipulating sequences, RxJS will do only as much work as necessary. This
way of operating is called lazy evaluation, and it is very common in functional
languages such as Haskell and Miranda.

RxJS’s Subject Class

A Subiject is a type that implements both Observer and Observable types. As
an Observer, it can subscribe to Observables, and as an Observable it can
produce values and have Observers subscribe to it.

In some scenarios a single Subject can do the work of a combination of
Observers and Observables. For example, for making a proxy object between
a data source and the Subject’s listeners, we could use this:

ch3/subjects.js
import { Subject, Observable } from 'rxjs/Observable';

const subject$ = new Subject();
const source$ = Observable

.interval(300)
.map(v => ‘Interval message #${v}")
.take(5);

source$.subscribe(subject$);

subject$.subscribe(
next => console.log( Next: ${next}’),
error => console.log( Error: ${error.message}’),
() => console.log('Completed!")

);

subject$.next('Our message #1');
subject$.next('Our message #2');

setTimeout(subject$.complete, 1000);


http://media.pragprog.com/titles/smreactjs5/code/ch3/array_chain.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/subjects.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

RxJS’s Subject Class ® 45

Output:

onNext: Our message #1
onNext: Our message #2
onNext: Interval message #0
onNext: Interval message #1
onNext: Interval message #2
onCompleted

In the preceding example we create a new Subject and a source Observable
that emits an integer every 300 milliseconds. Then we subscribe the Subject
to the Observable. After that, we subscribe an Observer to the Subject itself.
The Subject now behaves as an Observable.

Next we make the Subject emit values of its own (messagel and message2). In
the final result, we get the Subject’s own messages and then the proxied values
from the source Observable. The values from the Observable come later
because they are asynchronous, whereas we made the Subject’s own values
immediate. Notice that even if we tell the source Observable to take the first
five values, the output shows only the first three. That’s because after one
second we call onCompleted on the Subject. This finishes the notifications to all
subscriptions and overrides the take operator in this case.

The Subject class provides the base for creating more specialized Subjects. In
fact, RxJS comes with some interesting ones: AsyncSubject, BehaviorSubject, and
ReplaySubject.

AsyncSubject

AsyncSubject emits the last value of a sequence only if the sequence completes.
This value is then cached forever, and any Observer that subscribes after the
value has been emitted will receive it right away. AsyncSubject is convenient for
asynchronous operations that return a single value, such as Ajax requests.

Let’s see a simple example of an AsyncSubject subscribing to a range:

ch3/subjects.js
import { AsyncSubject, Observable } from 'rxjs/Observable';

const delayedRange$ = Observable.range(0, 5).delay(1000);
const subject$ = new AsyncSubject();

delayedRange$.subscribe(subject$);

subject$.subscribe(
next => console.log('Value:', next),
error => console.log('Error:', error),
() => console.log('Completed.")

);


http://media.pragprog.com/titles/smreactjs5/code/ch3/subjects.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 46

In that example, delayedRange emits the values O to 4 after a delay of a second.
Then we create a new AsyncSubject subject and subscribe it to delayedRange. The
output is the following:

< value: 4
Completed.

As expected, we get only the last value that the Observer emits. Let’s now use
AsyncSubject for a more realistic scenario. We'll retrieve some remote content:

ch3/subjects.js
import { AsyncSubject, Observable } from 'rxjs/Observable';

function getProducts(url) {
let subject$;

return Observable.create(observer$ => {

(1]
if (!subject$) {
subject$ = new AsyncSubject();
(2] Observable.ajax(url).subscribe(subject$);
}
(3] return subject$.subscribe(observer$);
b
}

O const products$ = getProducts('/products');
// Will trigger request and receive the response when read
products$
©®  .subscribe(
next => console.log('Result 1:', next.response),
error => console.log('ERROR', error)

);

// Will receive the result immediately because it's cached
setTimeout (
() =>{

products$.subscribe(
next => console.log('Result 2:', next.response),
error => console.log('ERROR', error)
);
+
5000
)

In this code, when getProducts is called with a URL, it returns an Observer that
emits the result of the HTTP GET request. Here’s how it breaks down:

© getProducts returns an Observable sequence. We create it here.


http://media.pragprog.com/titles/smreactjs5/code/ch3/subjects.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

RxJS’s Subject Class ® 47

© If we haven’t created an AsyncSubject yet, we create it and subscribe it to
the Observable that Rx.DOM.Request.get(url) returns.

©® We subscribe the Observer to the AsyncSubject. Every time an Observer
subscribes to the Observable, it will actually be subscribed to the AsyncSub-
ject, which is acting as a proxy between the Observable retrieving the URL
and the Observers.

O We create the Observable that retrieves the URL “products” and store it
in the products variable.

© This is the first subscription and will kick off the URL retrieval and log
the results when the URL is retrieved.

0O This is the second subscription, which runs five seconds after the first
one. Since at that time the URL has already been retrieved, there’s no
need for another network request. It will receive the result of the request
immediately because it is already stored in the AsyncSubject subject.

The interesting bit is that we're using an AsyncSubject that subscribes to the
Rx.DOM.Request.get Observable. Because AsyncSubject caches the last result, any
subsequent subscription to products will receive the result right away, without
causing another network request. We can use AsyncSubject whenever we expect
a single result and want to hold onto it.

BehaviorSubject

When an Observer subscribes to a BehaviorSubject, it receives the last emitted
value and then all the subsequent values. BehaviorSubject requires that we pro-
vide a starting value, so that all Observers will always receive a value when
they subscribe to a BehaviorSubject. Imagine we want to retrieve a remote file
and print its contents on an HTML page, but we want placeholder text while
we wait for the contents. We can use a BehaviorSubject for this:

ch3/behavior_subject.js
import { Observable, BehaviorSubject } from "rxjs";

const subject$ = new BehaviorSubject('Waiting for content');

subject$.subscribe(

next => {
document.body.textContent = next.response || next;
1
error => {
document.body.textContent = 'There was an error retrieving content';
}

);

Observable.ajax('/remote/content').subscribe(subject$);


http://media.pragprog.com/titles/smreactjs5/code/ch3/behavior_subject.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 48

In the code, we initialize a new BehaviorSubject with our placeholder content.
Then we subscribe to it and change the HTML body content in both onNext
and onError, depending on the result.

Now the HTML body contains our placeholder text, and it will stay that way
until the Subject emits a new value. Finally, we request the resource we want
and we subscribe our Subject to the resulting Observer.

BehaviorSubject guarantees that there will always be at least one value emitted,
because we provide a default value in its constructor. Once the BehaviorSubject
completes it won't emit any more values, freeing the memory used by the
cached value.

ReplaySubject

A ReplaySubject caches its values and re-emits them to any Observer that sub-
scribes late to it. Unlike with AsyncSubject, the sequence doesn’t need to be
completed for this to happen.

Subject ReplaySubject
const subject$ = new Rx.Subject(); const subject$ = new Rx.ReplaySubject();
subject$.next(1l); subject$.next(1);
subject$.subscribe(n => { subject$.subscribe(n => {
console.log('Received value:', n); console.log('Received value:', n);
1) 1)
subject$.next(2); subject$.next(2);
subject$.next(3); subject$.next(3);
Received value: 2 { Received value: 1
Received value: 3 Received value: 2

Received value: 3

ReplaySubject is useful to make sure that Observers get all the values emitted
by an Observable from the start. It spares us from writing messy code that
caches previous values, saving us from nasty concurrency-related bugs.

Of course, to accomplish that behavior ReplaySubject caches all values in
memory. To prevent it from using too much memory, we can limit the amount
of data it stores by buffer size or window of time, or by passing particular
parameters to the constructor.

The first parameter to the constructor of ReplaySubject takes a number that
represents how many values we want to buffer:


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

RxJS’s Subject Class ® 49

Indeed.

AsyncSubject represents the result of an asynchronous action, and you can use it as a
substitute for a promise. The difference internally is that a promise will only ever
process a single value, whereas AsyncSubject processes all values in a sequence, only
ever emitting (and caching) the last one.

Being able to so easily simulate promises shows the flexibility of the RxJS model.
(Even without AsyncSubject, it would be pretty easy to simulate a promise using
Observables.)

const subject$ = new Rx.ReplaySubject(2); // Buffer size of 2

subject$.next(1);

subject$.next(2);

subject$.next(3);
subject$.subscribe(n => {
console.log('Received value:', n);
1)

Received value: 2
Received value: 3

The second parameter takes a number that represents the time in milliseconds
during which we want to buffer values:

const subject$ = new Rx.ReplaySubject(null, 200); // Buffer size of 200ms

setTimeout(() => subject$.next(1l), 100);
setTimeout(() => subject$.next(2), 200);
setTimeout(() => subject$.next(3), 300);

setTimeout (

() = {

subject$.subscribe(n => {
console.log('Received value:', n);

b
subject$.next(4);

+

350

);

In this example we set a buffer based on time, instead of the number of values.
Our ReplaySubject will cache values that were emitted up to 200 milliseconds
ago. We emit three values, each separated by 100 milliseconds, and after 350

report erratum « discuss


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ¢ 50

milliseconds we subscribe an Observer and we emit yet another value. At the
moment of the subscription the items cached are 2 and 3, because 1 happened
too long ago (around 250 milliseconds ago), so it is no longer cached.

Subjects are a powerful tool that can save you a lot of time. They provide
great solutions to common scenarios like caching and repeating. And since
at their core they are just Observables and Observers, you don’t need to learn
anything new.

Spaceship Reactive!

To show how we can keep an application pure, we’ll build a video game in
which our hero fights endless hordes of enemy spaceships. We’ll make heavy
use of Observable pipelines, and I'll point out along the way when it might
be tempting to store state outside the pipeline and how to avoid it.

Video games notoriously keep a lot of external state—scores, screen coordi-
nates for the characters, timers, and so on. Our plan is to build the whole
game without relying on a single external variable that keeps state.

In our game, the player will move the spaceship horizontally using the mouse,
and will shoot by clicking the mouse or tapping the spacebar. It will have four
main actors: the moving star field in the background, the player’s spaceship,
the enemies, and the shots from both the player and the enemies.

It will look like this:



http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ¢ 51

In the screenshot, the red triangle is our spaceship and the green ones are
the enemies. The tiny, yellow triangles are the fired shots.

Let’s start by setting the stage; this will be our HTML file:

ch3/spaceship.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Spaceship Reactive!</title>
<script src="https://unpkg.com/rxjs@5.5.0/bundles/Rx.min.js"></script>
<style>
html, body {
margin: 0;
padding: 0;
}
</style>
</head>
<body>
<script src="spaceship.js"></script>
</body>
</html>

It’s just a simple HTML file that loads the JavaScript file we’ll be working with
for the rest of the chapter. In that JavaScript file, we start by setting up a
canvas element where we’ll render our game:

const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
document.body.appendChild(canvas);

canvas.width = window.innerWidth;

canvas.height = window.innerHeight;

With this in place we can start describing our game’s components. First let’s
draw our starry background.

Creating the Star Field

Our game is set in space, so we need stars: lots of them! We'll create a star
field that scrolls down to give the feeling of traveling through space. For this,
we’ll first generate the stars using the range operator:

ch3/starfield_1.js

const SPEED = 40;

const STAR_NUMBER = 250;

const StarStream$ = Observable


http://media.pragprog.com/titles/smreactjs5/code/ch3/spaceship.html
http://media.pragprog.com/titles/smreactjs5/code/ch3/starfield_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 52

.range(1, STAR NUMBER)

.map(() => ({
x: parseInt(Math.random() * canvas.width, 10),
y: parselInt(Math.random() * canvas.height, 10),
size: Math.random() * 3 + 1

)

Each star will be represented by an object that contains random coordinates
and a size between 1 and 4. This code will give us a stream that generates
250 “stars.”

We want these stars to keep moving. A way to do that is to increase the y-coor-
dinate every few milliseconds for all stars. Welll transform the StarStream
Observable into a single array using toArray, which will contain all the star objects.
Then we can use flatMap to transform the Observable into a timer that emits every
few milliseconds using interval. Every time the interval emits, we’ll increase the
y-coordinate in each star in the original array. We can even get a nice parallax
effect for free by moving each star a distance the same as its size:

ch3/starfield_1.js
const SPEED = 40;
const STAR NUMBER = 250;
const StarStream$ = Observable
.range(1l, STAR NUMBER)
map(() => ({
x: parselnt(Math.random() * canvas.width, 10),
y: parseInt(Math.random() * canvas.height, 10),
size: Math.random() * 3 + 1
)
.toArray()
.flatMap(starArray => Observable.interval(SPEED).map(() => {
starArray.forEach(star => {
if (star.y >= canvas.height) {
star.y = 0; // Reset star to top of the screen
}
star.y += star.size; // Move star

1)

return starArray;

1)

Inside map we check if the star y-coordinate is already outside the screen, and
in this case we reset it to 0. By changing the coordinates in every star object
we can keep using the same array of stars all the time.

Now we need a helper function that “paints” an array of stars on our canvas:


http://media.pragprog.com/titles/smreactjs5/code/ch3/starfield_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ¢ 53

ch3/starfield_1.js
function paintStars(stars) {
ctx.fillStyle = '#000000';
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#ffffff';
stars.forEach(star => {
ctx.fillRect(star.x, star.y, star.size, star.size);
1)
}

paintStars paints a black background and draws the stars on the canvas. The
only thing left to achieve a moving star field is to subscribe to the Observable
and call paintStars with the resulting array. Here’s the final code:

ch3/starfield_1.js
function paintStars(stars) {
ctx.fillStyle = '#000000';
ctx.fillRect (0, 0, canvas.width, canvas.height);
ctx.fillStyle = "#ffffff';
stars.forEach(star => {
ctx.fillRect(star.x, star.y, star.size, star.size);
b
}

const SPEED = 40;
const STAR NUMBER = 250;
const StarStream$ = Observable
.range(1, STAR NUMBER)
.map(() => ({
x: parseInt(Math.random() * canvas.width, 10),
y: parselnt(Math.random() * canvas.height, 10),
size: Math.random() * 3 + 1
)
.toArray()
.flatMap(starArray => Observable.interval(SPEED).map(() => {
starArray.forEach(star => {
if (star.y >= canvas.height) {
star.y = 0; // Reset star to top of the screen

}

star.y += star.size; // Move star

1)

return starArray;

)
.subscribe(paintStars);

The stage is set; it’s time for our hero to make an appearance.


http://media.pragprog.com/titles/smreactjs5/code/ch3/starfield_1.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/starfield_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 54

Adding the Player’s Spaceship

Now that we have our beautiful starry background, we're ready to program
the hero’s spaceship. Even though it’s the most important object in the game,
our spaceship is deceptively simple. It's an Observer of mouse moves that
emits the current mouse x-coordinate and a constant y-coordinate (the player
only moves horizontally, so we never change the y-coordinate):

ch3/hero_1.js
const HERO_Y = canvas.height - 30;
const mouseMove = Observable.fromEvent(canvas, 'mousemove');
const SpaceShip = mouseMove
.map(event => ({
x: event.clientX,
y: HERO Y
)
.startWith({
Xx: canvas.width / 2,
y: HERO Y
1)

Notice that I used startWith(). This sets the first value in the Observable, and I
set it to a position in the middle of the screen. Without startWith our Observable
would start emitting only when the player moves the mouse.

Let’s render our hero on the screen. In this game all the characters are trian-
gles (that’s all my graphic-design skills can manage), so we’ll define a helper
function to render triangles on the canvas, given the coordinates, size, and
color, and the direction they’re facing:

ch3/hero_1.js
function drawTriangle(x, y, width, color, direction) {
ctx.fillStyle = color;
ctx.beginPath();
ctx.moveTo(x - width, y);
ctx.lineTo(x, direction === 'up' ? y - width : y + width);
ctx.lineTo(x + width, y);
ctx.lineTo(x - width, y);
ctx.fill();
}

We'll also define paintSpaceShip, which uses the helper function:

ch3/hero_1.js

function paintSpaceShip(x, y) {
drawTriangle(x, y, 20, '#ff0000', 'up');

}


http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_1.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_1.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ® 55

But we're facing a problem now. If we subscribe to the SpaceShip Observable
and call drawTriangle in the subscription, our spaceship would be visible only
when we move the mouse, and for just an instant. This is because starStream
is updating the canvas many times per second, erasing our spaceship if we
don’t move the mouse. And because the starStream doesn’t have direct access
to the spaceship, we can’t render the spaceship in the starStream subscription.
We could save the latest spaceship coordinates to a variable that the starStream
can access, but then we would be breaking our rule of not modifying external
state. What to do?

As is usually the case, RxJS has a very convenient operator we can use to
solve our problem.

Rx.Observable.combinelLatest is a handy operator. It takes two or more Observables
and emits the last result of each Observable whenever any of them emits a
new value. Knowing that starStream emits a new item (the array of stars) so
frequently, we can remove the starStream subscription and use combineLatest to
combine both the starStream and SpaceShip Observables and update them as
soon as any of them emits a new item:

ch3/hero_1.js

function renderScene(actors) {
paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);

}

const Game = Observable.combinelLatest(StarStream, SpaceShip, (
stars,
spaceship
) = ({
stars,
spaceship
D)

Game.subscribe(renderScene);

We're now using a function renderScene to paint everything on the screen, so
you can remove the following subscription code for StarStream:

.subscribe(function(starArray) {
paintStars(starArray);
1)

With this, we’ll paint the starry background and the spaceship every time
any Observable emits a new item. We now have a spaceship flying through
space, and we can move it at will using our mouse. Not bad for so little code!
But our hero’s spaceship is too lonely in the vastness of space. What about
giving it some company?


http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 56

Generating Enemies

It would be a very boring game if we didn’t have any enemies to gun down.
So let’s create an infinite stream of them! We want to create a new enemy
every second and a half to not overwhelm our hero. Let’s look at the code for
the Enemies Observable and then go through it:

ch3/enemy_1.js
const ENEMY FREQ = 1500;
const Enemies = Observable.interval(ENEMY FREQ).scan(enemyArray => {
const enemy = {
x: parselInt(Math.random() * canvas.width, 10),
y: -30
+
enemyArray.push(enemy);

return enemyArray;

o0

const Game = Observable.combinelLatest(
StarStream,
SpaceShip,
Enemies,
(stars, spaceship, enemies) => ({
stars,
spaceship,
enemies
b
)

Game.subscribe(renderScene);

To create enemies, we use an interval operator to run every 1,500 milliseconds,
and then we use the scan operator to create an array of enemies.

We briefly saw the scan operator in Can We Aggregate Infinite Observables?,

and emits each intermediate result. In the Enemies Observable we start with
an empty array as scan’s first parameter and we push a new object to it in
every iteration. The object contains a random x-coordinate, and a fixed y-
coordinate outside the visible screen. With this, Enemies will emit an array with
all the current enemies every 1,500 milliseconds.

The only thing left to render enemies is a helper function to paint each of
them on the canvas. This function will also be the one updating the coordi-
nates of each item in the enemies array:


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ¢ 57

ch3/enemy_1.js
// Helper function to get a random integer
function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;

}

function paintEnemies(enemies) {
enemies.forEach(enemy => {
enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

drawTriangle(enemy.x, enemy.y, 20, "#00ff00", "down");
1)
}

You can see in paintEnemies that we are also changing the x-coordinate randomly
so that enemies move a bit unpredictably to the sides. Now we need to update
the function renderScene to include a call to paintEnemies.

You might have noticed a strange effect while playing the game we have so
far: if you move the mouse, the enemies go faster toward you! That could be
a nice feature in the game, but we definitely didn’t intend to do that. Can you
guess what causes this bug?

If you guessed that it was related to the paintEnemies function, you're right on
the money. combinelatest renders our scene whenever any of the Observables
yields a value. If we don’t move the mouse, the fastest emitter will always be
starStream because it has an interval of 40 milliseconds (the Enemies Observable
emits only every 1,500 milliseconds). When we move the mouse, though,
SpaceShip will emit faster than starStream (your mouse emits coordinates many
times per second), and paintEnemies will then execute that many times,
increasing the enemies’ coordinates much faster.

To avoid this scenario and similar problems in the future, we need to normalize
the game’s speed so that no Observable can emit values faster than our chosen
speed for the game.

And yes, as you may have guessed, RxJS has an operator for that.

Avoid Drinking from the Firehose

There is such a thing as receiving data too fast. Most of the time we want all
the speed we can get, but depending on the frequency at which the Observable
streams values, we might want to drop some of the values we receive. We're
now in one of these scenarios. The speed at which we render things onscreen
is proportional to the speed of the fastest Observable we have. It turns out


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_1.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 58

that our fastest Observable is too fast for us, and we need to establish a
constant update speed in the game.

sample is a method in Observable instances that, given a time parameter in
milliseconds, returns an Observable that emits the last value emitted by the
parent Observable in each time interval.

6 >
1 1 1 1 1 1

v \ 4 \ \ 4 \ 4 \ 4
sample(300)

Notice how sample drops any values before the last value at the moment of the
interval. It’s important to consider whether you want this behavior. In our
case, we don’t care about dropping values because we just want to render
the current state of each element every 40 milliseconds. If all the values are
important to you, you might want to consider the buffer operator:

ch3/enemy_2.js
Observable
.combinelLatest(StarStream, SpaceShip, Enemies, (
stars,
spaceship,
enemies
) => ({ stars, spaceship, enemies }))
.sampleTime (SPEED)
.subscribe(renderScene);

By calling sample after combinelLatest we make sure that combinelatest will never
yield any value faster than 40 milliseconds after the previous one (our constant
SPEED is set to 40).

Shooting

It’s a bit scary seeing the hordes of enemies coming at us; all we can do about
it is move out of the way and hope they don’t see us. How about we give our
hero the ability to shoot at the evil alien spaceships?


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ® 59

We want our spaceship to shoot whenever we click the mouse or press the
spacebar, so we’ll create an Observable for each event and merge them into
a single Observable called playerShots. Notice that we filter the keydown
Observable by the key code of the spacebar, 32:

ch3/hero_shots.js
const playerFiring = Observable

.merge (
Observable. fromEvent(canvas, 'click'),
Observable
.fromEvent(document, 'keydown')
.filter(evt => evt.keycode === 32)

)

Now that we know about sample, we can use it to spice up the game and limit
the shooting frequency of our spaceship. Otherwise, the player could shoot
at high speed and destroy all enemies too easily. We’ll make it so that the
player can shoot only every 200 milliseconds at most:

ch3/hero_shots.js
const playerFiring = Observable

.merge(
Observable. fromEvent(canvas, 'click'),
Observable
.fromEvent (document, 'keydown')
.filter(evt => evt.keycode === 32)

)

.startWith({})
.sampleTime (200)
.timestamp();

We've also added a timestamp operator, which sets a property timestamp in every
value our Observable emits, with the exact time it is emitted. We’ll use it later.
Also, we use startWith to start with an initial shot so that we have an initial shot
value for when we combine shots with the spaceship’s position below.

Finally, to fire shots from our spaceship we need to know the x-coordinate of
the spaceship at the firing moment. This is so we can render the shot at the
correct x-coordinate. It may be tempting to set an external variable from the
SpaceShip Observable that always contains the last x-coordinate emitted, but that
would be breaking our unwritten agreement to never mutate external state!

Instead we’ll accomplish this by using our good friend combinelatest again:


http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_shots.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_shots.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ¢ 60

ch3/hero_shots.js
const HeroShots = Observable
.combinelLatest(playerFiring, SpaceShip, (
shotEvents,
spaceShip
) = ({
x: spaceShip.x
1)
.scan(
(shotArray, shot) => {
shotArray.push({
x: shot.x,
y: HERO Y
1)
return shotArray;
+
[1
);

We now get the updated values from SpaceShip and playerfiring, so we can get
the x-coordinate we want. We use scan in the same way we used it for our
Enemy Observable, creating an array of current coordinates for each of our
shots. With that we should be ready to draw our shots on the screen. We use
a helper function to draw every shot in the array of shots:

ch3/hero_shots.js
const SHOOTING SPEED = 15;
function paintHeroShots(heroShots) {

heroShots.forEach(shot => {

shot.y -= SHOOTING SPEED;

drawTriangle(shot.x, shot.y, 5, '#ffffoo', 'up');
1)
}

Then we call paintHeroShots from our main combinelatest operation:

Observable
.combinelLatest(StarStream, SpaceShip, Enemies, HeroShots, (
stars,
spaceship,
enemies,
heroShots
) = ({
stars,
spaceship,
enemies,

heroShots

)
.sampleTime (SPEED)
.subscribe(renderScene);


http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_shots.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_shots.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ¢ 61

And we add a call to paintHeroShots inside renderScene:

function renderScene(actors) {
paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);
paintEnemies(actors.enemies);
paintHeroShots(actors.heroShots);

}

Now when you run the game you’ll notice that every time you move the mouse,
our spaceship fires an insane number of shots. Not bad for a visual effect,
but that’s not what we wanted! Let’s look at the HeroShots Observable again.
In it, we're using combinelatest so that we have values from playerfiring and
SpaceShip. This looks similar to the problem we had before. combinelatest in
HeroShots is emitting values every time the mouse moves, and this translates
into shots being fired. Throttling won't help in this case, because we want
the user to shoot whenever she wants, and throttling would limit the number
of shots and drop many of them.

combinelatest emits the last value that each Observable emitted, whenever an
Observable emits a new value. We can use this to our advantage. Whenever
the mouse moves, combinelLatest emits the new SpaceShip position and the last
emitted value of playerfiring, which will be unchanged unless we fire a new shot.
We can then emit a value only when the emitted shot is different from the
previous one. The distinctUntilChanged operator does the dirty work for us as
shown in the figures on page 62.

The operators distinct and distinctUntilChanged allow us to filter out results that
an Observable has already emitted. distinct filters out any result previously
emitted and distinctUntilChanged filters out identical results unless a different
one is emitted in between. We only need to make sure that the new shot is
different from the previous one, so distinctUntiiChanged is enough for us. (It also
saves us from the higher memory usage of distinct; distinct needs to keep all the
previous results in memory.)

We modify heroShots so it only emits new shots, based on their timestamp:

ch3/hero_shots2.js
const HeroShots = Observable
.combinelLatest(playerFiring, SpaceShip, (
shotEvents,
spaceShip
) = ({
timestamp: shotEvents.timestamp,
X: spaceShip.x
)


http://media.pragprog.com/titles/smreactjs5/code/ch3/hero_shots2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 62

©
©
©
X

O -0
O
O

\

©
©
©
- g@

distinctUntilChanged

& -0
o
O

\

.distinctUntilChanged(shot => shot.timestamp)
.scan(
(shotArray, shot) => {
shotArray.push({
x: shot.x,
y: HERO Y
s
return shotArray;
}
[1
);

If everything went well, we're now able to shoot at enemies from our spaceship!


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ® 63

Enemy Shots

We should allow enemies to shoot as well; otherwise it’s a pretty unfair uni-
verse. And a boring one! For enemy shots, we’ll do the following:

e Each enemy will keep an updated array of its own shots.
e Each enemy will shoot at a given frequency.

For this, we’ll use an interval operator to store new shots in the enemy value.
We'll also introduce a new helper function, isVisible, that helps filter out ele-
ments whose coordinates are outside the visible screen. This is how the Enemy
Observable looks now:

ch3/enemy_shots.js
function isVisible(obj) {
return obj.x > -40 &&
obj.x < canvas.width + 40 &&
obj.y > -40 &&
obj.y < canvas.height + 40;
}

const ENEMY FREQ = 1500;
const ENEMY SHOOTING FREQ = 750;
const Enemies = Observable.interval(ENEMY_ FREQ).scan(enemyArray => {
const enemy = {
x: parselInt(Math.random() * canvas.width),
y: -30,
shots: [1]
+
Observable.interval (ENEMY SHOOTING FREQ).subscribe(() => {
enemy.shots.push({ x: enemy.x, y: enemy.y });
enemy.shots = enemy.shots.filter(isVisible);
1)

enemyArray.push(enemy);
return enemyArray.filter(isVisible);

Y, 0D;

In that code we create an interval every time we create a new enemy. This
interval will keep adding shots to the enemy array of shots, and then it will
filter out the ones outside the screen. We can use isVisible to filter out enemies
that are outside the screen, too, as we do in the return statement.

We need to update paintEnemies so that it renders enemy shots and updates their
y-coordinates. Then we use our handy drawTriangle function to draw the shots:


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

YYVYY

Yvy

Chapter 3. Building Concurrent Programs ® 64

ch3/enemy_shots.js
function paintEnemies(enemies) {
enemies.forEach(enemy => {
enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

drawTriangle(enemy.x, enemy.y, 20, '#00ff00', 'down');

enemy.shots.forEach(shot => {
shot.y += SHOOTING SPEED;
drawTriangle(shot.x, shot.y, 5, '#0O0ffff', 'down');
s
b
}

With this in place everybody is now shooting everybody else, but nobody is
being destroyed! They simply glide past the enemies and our spaceship
because we haven’t defined what happens when shots collide with spaceships.

Managing Collisions

When a shot hits an enemy, we want both the shot and the enemy to disap-
pear. Let’s define a helper function to detect whether two targets have collided:

ch3/enemy_shots2.js
function collision(targetl, target2) {
return (
targetl.x > target2.x - 20 &&
targetl.x < target2.x + 20 &&
(targetl.y > target2.y - 20 && targetl.y < target2.y + 20)
);
}

Now let’s modify the helper function paintHeroShots to check whether each shot
hits an enemy. For cases where a hit occurs, we'll set a property isDead to true on
the enemy that has been hit, and we’ll set the coordinates of the shot to outside
the screen. The shot will eventually be filtered out because it’s outside the screen:

ch3/enemy_shots2.js
function paintEnemies(enemies) {
enemies.forEach(enemy => {
enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

if (!enemy.isDead) {
drawTriangle(enemy.x, enemy.y, 20, "#00ff00", "down");
}

enemy.shots.forEach(shot => {

shot.y += SHOOTING SPEED;
drawTriangle(shot.x, shot.y, 5, "#0Offff", "down");
1


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots2.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

YYYVYY

YVYY

>

}

co
fu

}

Spaceship Reactive! ® 65

1)

nst SHOOTING SPEED = 15;
nction paintHeroShots(heroShots, enemies) {
heroShots.forEach((shot, i) => {
for (const 1 = 0; 1 < enemies.length; 1++) {
const enemy = enemies[1];
if (!enemy.isDead && collision(shot, enemy)) {
enemy.isDead = true;
shot.x = shot.y = -100;
break;
}
}

shot.y -= SHOOTING SPEED;
drawTriangle(shot.x, shot.y, 5, "#ffffoo", "up");
b

Next let’s get rid of any enemies that have the property isDead set to true. The
only caveat is that we need to wait for all the shots from that particular enemy
to disappear; otherwise, when we hit an enemy all its shots disappear along
with it, which would be weird. So we check for the length of its shots and filter
out the enemy object only when it has no shots left:

ch3/enemy_shots2.js
const Enemies = Observable.interval(ENEMY FREQ).scan(enemyArray => {

}I

const enemy = {
x: parseInt(Math.random() * canvas.width, 10),
y: -30,
shots: []

+

Observable.interval (ENEMY SHOOTING FREQ).subscribe(() => {
if (!enemy.isDead) {
enemy.shots.push({ x: enemy.x, y: enemy.y });
}

enemy.shots = enemy.shots.filter(isVisible);

1)

enemyArray.push(enemy);
return enemyArray
.filter(isVisible)
.filter(enemy => !(enemy.isDead && enemy.shots.length === 0));
[1);

To check if the player’s ship has been hit, we create a function gameOver:


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 66

ch3/enemy_shots2.js
function gameOver(ship, enemies) {
return enemies.some(enemy => {
if (collision(ship, enemy)) {
return true;

}

return enemy.shots.some(shot => collision(ship, shot));
1
}

This function returns true if an enemy or a shot from an enemy hits the player’s
spaceship.

Before moving on, let’s get to know a useful operator: takeWhile. When we call
takeWhile on an existing Observable, that Observable will keep emitting values
until the function passed as a parameter to takeWhile returns false.

We can use takeWhile to tell our main combinelatest Observable to keep taking
values until gameOver returns true:

ch3/enemy_shots2.js
Observable.combinelLatest(
StarStream,
SpaceShip,
Enemies,
HeroShots,
(stars, spaceship, enemies, heroShots) => ({
stars,
spaceship,
enemies,
heroShots
b

.sampleTime (SPEED)
.takeWhile(actors => gameOver(actors.spaceship, actors.enemies) === false)
.subscribe(renderScene);

When gameOver returns true, combinelatest will stop emitting values, effectively
stopping the game.
One Last Thing: Keeping Score

What kind of game would it be if we couldn’t brag to friends about our results?
We obviously need a way to keep track of how well we did. We need a score.

Let’s make a helper function to draw the score to the upper left of the screen:


http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots2.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/enemy_shots2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Spaceship Reactive! ® 67

ch3/score.js

function paintScore(score) {
ctx.fillStyle = "#ffffff';
ctx.font = 'bold 26px sans-serif';
ctx.fillText( 'Score: ${score}’, 40, 43);

}

To keep score we’ll use a BehaviorSubject with a starting value of 0. We can eas-
ily use it in our combinelatest-based main game loop as if it were just another
Observable, and we can push values to it whenever we want:

ch3/score.js
const ScoreSubject = new Rx.BehaviorSubject(0);
const score = ScoreSubject.scan((prev, cur) => prev + cur, 0);

In that code we use our friend the scan operator to sum each new value to the
total aggregate result.

Now we just have to push the score to our Subject whenever we hit an enemy;
that happens in paintHeroShots:

ch3/score.js
const SCORE_INCREASE = 10;
function paintHeroShots(heroShots, enemies) {
heroShots.forkEach((shot, i) => {
for (let 1 = 0; 1 < enemies.length; 1++) {
const enemy = enemies[1];
if (!enemy.isDead && collision(shot, enemy)) {
ScoreSubject.next (SCORE_INCREASE);
enemy.isDead = true;
shot.x = shot.y = -100;
break;
}
}

shot.y -= SHOOTING SPEED;

drawTriangle(shot.x, shot.y, 5, '#ffffo0', 'up');
i
}

And of course, we add paintScore to renderScene so the score appears onscreen:

ch3/score.js

function renderScene(actors) {
paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);
paintEnemies(actors.enemies);
paintHeroShots(actors.heroShots, actors.enemies);
paintScore(actors.score);


http://media.pragprog.com/titles/smreactjs5/code/ch3/score.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/score.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/score.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/score.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 3. Building Concurrent Programs ® 68

That completes our Spaceship Reactive game. With about 200 lines we've
managed to code an entire game in the browser, avoiding changing any
external state through the power of Observable pipelines.

Ideas for Improvements

I'm sure you already have some ideas for making the game even more exciting,
but let me offer some suggestions that will improve the game and sharpen
your RxJS skills at the same time:

¢ Add a second (or third!) star field that moves at a different speed to create
a parallax effect. This could be done in several different ways. Try to reuse
existing code and to do it as declaratively as you can.

e Increase the intensity of the game by getting the enemies to act more
unpredictably—for example, by making them fire at random intervals
instead of the fixed one specified in ENEMY SHOOTING FREQ. Extra points if
you can get them to fire more quickly as the player’s score gets higher!

e Allow the player to get more points by hitting several enemies in a short
amount of time.

Wrapping Up

We've built an entire game for the browser using only Observables, and along
the way we’'ve seen several extremely convenient methods to handle concur-
rency and to compose and transform Observables. This is one of the strengths
of RxJS: there is always a method to help with the problem you're trying to
tackle. Feel free to explore them in the RxJS documentation.’

Reactive programming makes it easy to write concurrent programs. The
Observable abstraction and the powerful RxJS methods make it natural for
different parts of a program to interact efficiently. Programming without
relying on external state might take some getting used to, but it has enormous
benefits. We can encapsulate entire behaviors in a single Observable pipeline,
making our program more solid and reliable.

In the next chapter we’ll pick up our earthquake visualizer application from
where we left it and add a Node.js server part that shows tweets related to
the earthquakes. We’'ll also improve its user interface to make it look like a
real earthquake dashboard.

1.  https://github.com/Reactive-Extensions/Rx|S/blob/master/doc/api/core/observable.md


https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER4

Building a Complete Web Application

In this chapter we’ll build a typical web application, using RxJS in the front
end and back end. We'll transform the Document Object Model (DOM) and
do client-server communication using WebSockets in a Node.js server.

For the server back-end, we’ll use two well-established node libraries and
wrap some of their APIs with Observables to use them in our application.

After this chapter, you'll be able to use RxJS to build user interfaces in a
declarative way, using the techniques we've seen so far and applying them
to the DOM. You'll also be ready to use RxJS in any Node.js project and able
to use reactive programming and RxJS in any project.

Building a Real-Time Earthquake Dashboard

We'll be creating both server and client parts for an earthquake dashboard
application, building on the application we started in Making a Real-Time

improve our application to make it more interactive and informative.

The screenshot on page 70 shows how the dashboard will look when we’re

finished.

Our starting point will be the code from Making a Real-Time Earthqualke

ch2/earthquake-visualizer/src/index.js
const quakes$ = Observable.interval(5000)
.flatMap(() => {
return loadJSONP({
url: QUAKE URL,
callbackName: "eqfeed callback"
}).retry(3);
1)


http://media.pragprog.com/titles/smreactjs5/code/ch2/earthquake-visualizer/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ¢ 70

 HATROM R 224

COH: (N EEAROT)
oty In I O et B e
o AP

21172015 5:42:53 PM
'USGS reports a M1.9
61km NNW of
Nikiski, Alaska on 2/11/15 @
16:17:29 UTC
hitpi/itco/j6LkOwWGYYB Aquake
1112015 5:42:02 PM

USGS reparts 4 M19

e

S0km W of
|, Alaskn on 2/11/15 @
16:25:36 UTC
hitpi/it.co/d2/TNTIlq #quake
WL VHRTHT Y 7 - New
forec .

21112015 5:42:02 PM
s for Japan

mﬂ.‘mm‘&ﬂ

RT @carthquakejapan: # L 117
*=77 T\ HEORH®D

21172015 5:41:11 PM

AAP I i @t st difgar
AR, TARN TS
| it co/GeDWANDFhg Sal
! Salute revolution! e

2/11/2015 5:40:53 PM

Salldings with ‘rckizg’
. ehriagy ekt oo e
qugmmm
‘hitp:/ft.coiwX34311IMw
Location Magnitude | Time 21112015 5:40:49 PM
6km WNW of The Geysers, California 1.06 ‘Wed Feb 11 2015 17:18:01 GMT+0100 (CET) [EXBR] Bl 7 76k

WROFERE BORE. B

WHERIEK - MSNERE= 2 —
2 hitp:iit.cofUINsOxdn #HLHE #7856
Fearthquake

8km N of Anza, California ‘Wed Feb 11 2015 17:11:34 GMT+0100 (CET)

12km SE of Big Bear City, California ‘Wed Feb 11 2015 17:09:52 GMT+0100 (CET)

V1015 5:40:22PM .

.flatMap(result
.distinct(quake

=> Observable.from(result.response.features))
=> quake.properties.code);

quakes$.subscribe(quake => {
const coords = quake.geometry.coordinates;
const size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);

1)

This code already has one potential bug: it could be executed before the DOM
is ready, throwing errors whenever we try to use the DOM in our code. We
want to load our code after the DOMContentLoaded event is fired, which signals
that the browser is aware of all the elements on the page.

We can use the Rx.Observable.fromEvent operator to listen to the DOMContentlLoaded
event and run our code only when the DOM is ready:

ch4/earthquake-visualizer/src/1_domready.js
import { Observable } from "rxjs/Observable";
import L from "leaflet";

const QUAKE URL = ‘“http://earthquake.usgs.gov/earthquakes/
feed/v1.0/summary/all day.geojson’;

report erratum

« discuss


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/1_domready.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Adding a List of Earthquakes ¢ 71

function initialize() {
const quakes$ = Observable
.interval(5000)
.flatMap(() => {
return loadJSONP({
url: QUAKE URL,
callbackName: "eqfeed callback"
}).retry(3);
1)
.flatMap(result => Observable.from(result.response.features))
.distinct(quake => quake.properties.code);

quakes$.subscribe(quake => {
const coords = quake.geometry.coordinates;
const size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);
b
}

Observable. fromEvent(document, "DOMContentLoaded").subscribe(initialize);

Next, we’ll add an empty table to our HTML template, which is where we’ll
populate earthquake data in the next section:

<table>
<thead>
<tr>
<th>Location</th>
<th>Magnitude</th>
<th>Time</th>
</tr>
</thead>
<tbody id="quakes info">
</tbody>
</table>

With this, we're ready to start writing new code for our dashboard.

Adding a List of Earthquakes

The first feature is to display a real-time list of earthquakes, including infor-
mation about their locations, magnitudes, and dates. The data for this list is
the same as for the map, which comes from the USGS website. We'll first
create a function that returns a row element given a props object parameter:

ch4/earthquake-visualizer/src/2_rows.js

function makeRow(props) {
const row = document.createElement("tr");
row.id = props.net + props.code;


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/2_rows.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 72

const time = new Date(props.time).toString();

[props.place, props.mag, time].forEach(text => {
const cell = document.createElement("td");
cell.textContent = text;
row.appendChild(cell);

1)

return row;

}

The props parameter is the same as the properties property in the JSON that we
retrieve from the USGS site.

To generate the rows, we’ll make another subscription to the quakes$ Observ-
able. This subscription creates a row in the table for each new earthquake
received. We add the code at the end of the initialize function:

ch4/earthquake-visualizer/src/2_rows.js
const table = document.getElementById("quakes info");
quakes$.pluck("properties").map(makeRow) .subscribe(table.appendChild);

The pluck operator extracts the value of properties from each earthquake object,
because it contains all the info we need for makeRow. Then we map each earth-
quake object to makeRow to transform it into a populated HTML tr element.
Finally, in the subscription we append every emitted row to our table.

This should give us a nicely populated table whenever we receive the earth-
quake data.

Looks good, and it was easy enough! Still, we can make some improvements.
First, though, we need to explore an important concept in RxJS: hot and cold
Observables.

Hot and Cold Observables

The concepts “hot” and “cold” when applied to Observables are often a topic
of confusion in the Rx world, but they are actually easy to grasp. “Hot”
Observables emit values regardless of having any Subscribers. On the other
hand, “cold” Observables emit the entire sequence of values from the start to
every Subscriber.

Hot Observables

Any Subscriber subscribed to a hot Observable will receive values emitted
only from the exact moment it subscribes to it. Every other Subscriber sub-
scribed at that moment will receive the exact same values. This is similar to
how JavaScript events work.


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/2_rows.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Adding a List of Earthquakes ® 73

Mouse events and a stock-exchange ticker are examples of hot Observables.
In both cases the Observable emits values regardless of whether it has Sub-
scribers, and could already be producing values before any Subscriber is lis-
tening. Here’s an example:

const onMove = Observable.fromEvent(document, "mousemove");
onMove.subscribe(e => {

console.log( Subscription 1: ${e.clientX} ${e.clientY}");
1)
onMove.subscribe(e => {

console.log( "Subscription 2: ${e.clientX} ${e.clientY}");

b

// Result:

// Subscription 1: 23 24
// Subscription 2: 23 24
// Subscription 1: 34 37
// Subscription 2: 34 37
// Subscription 1: 46 49
// Subscription 2: 46 49

/..

In the example, both Subscribers receive the same values from the Observable
as they are emitted. To JavaScript programmers, that behavior feels natural
because it resembles how JavaScript events work.

Now let’s see how cold Observables work.

Cold Observables

A cold Observable emits values only when Subscribers subscribe to it.

For example, Rx.Observable.range returns a cold Observable. Every new Subscriber
that subscribes to it will receive the whole range:

function printValue(value) {
console.log(value);

}

const rangeToFive = Observable.range(l, 5);
const obsl = rangeToFive.subscribe(printvalue); // 1, 2, 3, 4, 5
const obs2 = Observable.of().delay(2000).flatMap(() => {

// Creates an empty Observable

return rangeToFive.subscribe(printvalue); // 1, 2, 3, 4, 5
1)

Understanding when we're dealing with hot or cold Observables is essential
to avoid subtle and sneaky bugs. For example, Rx.Observable.interval returns an
Observable that produces an increasing integer value at regular intervals of


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 74

time. Imagine we want to use it to push the same values to several Sub-
scribers. We could implement it like this:

const source = Observable.interval(2000);
source.subscribe(x => {
console.log( "Subscription 1, next value: ${x}");

b

source.subscribe(x => {
console.log( Subscription 2: next value: ${x}');
1)

Output:

Subscription 1, next value:
Subscription 2: next value:
Subscription 1, next value:
Subscription 2: next value:

[l ol o)

That seems to work. But now imagine that we need the second Subscriber to
join three seconds after the first one:

const source = Observable.interval(1000);
source.subscribe(x => {

console.log( Subscription 1: ${x}");
1)

setTimeout(() => {
source.subscribe(x => {
console.log( "Subscription 2: ${x}");

1

}, 3000);

Output:

Subscription 1: 0
Subscription 1: 1
Subscription 1: 2
Subscription 1: 3
Subscription 2: 0
Subscription 1: 4
Subscription 2: 1

Now we see that something is really off. When subscribing three seconds later,
the second subscription receives all the values that the source already pushed,
instead of starting with the current value and continuing from there, because
Rx.Observable.interval is a cold Observable. If the difference between hot and cold
Observables is not clear, scenarios like this can be surprising.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Adding a List of Earthquakes ¢ 75

If we have several Subscribers listening to a cold Observable, they will receive
copies of the same sequence of values. So strictly speaking, although the
Subscribers are sharing the same Observable, they are not sharing the same
exact sequence of values. If we want the Subscribers to share the same
sequence, we need a hot Observable.

From Cold to Hot Using publish

We can turn a cold Observable into a hot one using publish. Calling publish cre-
ates a new Observable that acts as a proxy to the original one. It does that
by subscribing itself to the original and pushing the values it receives to its
Subscribers.

A published Observable is actually a ConnectableObservable, which has an extra
method called connect that we call to start receiving values. This allows us to
subscribe to it before it starts running:

// Create an Observable that yields a value every second
const source = Observable.interval(1000);
const publisher = source.publish();

// Even if we are subscribing, no values are pushed yet.
publisher.subscribe(x => {

console.log( 'Subscription 1: ${x}");
1)

// publisher connects and starts publishing values
publisher.connect();

setTimeout(() => {
// Five seconds later, we subscribe to it and start receiving
// current values, not the whole sequence.
publisher.subscribe(x => {
console.log( "Subscription 2: ${x}");

b
}, 5000);

Sharing a Cold Observable

Let’s get back to our earthquake example. The code we have so far looks
reasonable; we have an Observable quakes$ with two subscriptions: one that
paints earthquakes on the map, and one that lists them in the table.

But we can make our code much more efficient. By having two Subscribers
to quakes$ were, in fact, requesting the data twice. You can check that by
putting a console.log inside the flatMap operator in quakes$.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 76

This happens because quakes$ is a cold Observable, and it will re-emit all its
values to each new Subscriber, so a new subscription means a new JSONP
request. This impacts our application performance by requesting the same
resources twice over the network.

For the next example we’ll use the share operator, which automatically creates
a subscription to the Observable when the number of Subscribers goes from
zero to one. This spares us from calling connect:

ch4/earthquake-visualizer/src/2_rows.js
const quakes$ = Observable.interval(5000)
.flatMap(() => {
return loadJSONP({
url: QUAKE URL,
callbackName: "eqfeed callback"
}).retry(3);
1)
.flatMap(result => Observable.from(result.response.features))
.distinct(quake => quake.properties.code)
.share();

Now quakes$ behaves like a hot Observable, and we don’t have to worry about
how many Subscribers we connect to it, since they will all receive the exact
same data.

Buffering Values

Our preceding code works well, but notice that we insert a tr node every time
we receive information about an earthquake. That’s inefficient, because with
each insertion we're modifying the DOM and causing a repaint of the page,
making the browser do unnecessary work to calculate the new layout. This
can cause noticeable performance drop.

Ideally, we would batch several incoming earthquake objects and insert each
batch every few seconds. That would be tricky to implement by hand because
we’d have to keep counters and element buffers, and we would have to
remember to reset them with every batch. But with RxJS we can just use one
of the buffer-based RxJS operators, like bufferTime.

With bufferTime we can buffer incoming values and release them as an array
every x period of time:

ch4/earthquake-visualizer/src/code3.bufferWithTime.js
const table = document.getElementById("quakes info");

quakes$
.pluck("properties")
.map (makeRow)

.bufferTime(500)


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/2_rows.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/code3.bufferWithTime.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Adding a List of Earthquakes ¢ 77

.filter(rows => rows.length > 0) // )
.map(rows => {
const fragment = document.createDocumentFragment();
rows.forEach(row => {
fragment.appendChild(row);
b

return fragment;
1)
.subscribe(fragment => {
table.appendChild(fragment);
1)

This is what’s going on in the new code:

O Bulffer every incoming value and release the batch of values every 500
milliseconds.

© bufferTime executes every 500ms no matter what, and if there have been
no incoming values, it will yield an empty array. We'll filter those.

©® We insert every row into a document fragment, which is a document
without a parent. This means it’s not in the DOM, and modifying its
contents is very fast and efficient.

O Finally, we append the fragment to the DOM. An advantage of appending
a fragment is that it counts as a single operation, causing just one redraw.
It also appends the fragment’s children to the same element to which
we're appending the fragment itself.

Using buffers and fragments, we manage to keep row insertion performant
while keeping the real-time nature of our application (with a maximum delay
of half a second). Now we're ready to add the next feature to our dashboard:
interactivity!

Adding Interaction

We now have earthquakes on the map and in a list, but no interaction between
both representations yet. It would be nice, for example, to center an earth-
quake on the map whenever we click it on the list, and to highlight an
earthquake with a circle on the map when we move the mouse over its row.
Let’s get to it.

We can use the Leaflet library introduced in Chapter 2 to draw on a map, and
put drawings in their own layers so you can manipulate them individually. Let’s
create a group of layers called quakeLayer where we’ll store all the earthquake
circles. Each circle will be a layer inside the group. We'll also create an object


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

vy

(2]
©

Chapter 4. Building a Complete Web Application ® 78

codeLayers where we’ll store the correlation between an earthquake code and the
internal layer ID, so that we can refer to circles by the earthquake ID:

ch4/earthquake-visualizer/src/3_draw.js
const codelLayers = {};
const quakeLayer = L.layerGroup([]).addTo(map);

And now in the subscription for the quakes$ Observable inside initialize, we’ll
add each circle to the layer group and store its ID in codelayers (if this seems
a bit intricate, it's because that’s the only way Leaflet allows us to refer to
drawings in a map):

ch4/earthquake-visualizer/src/3_draw.js

quakes$.subscribe(quake => {

const coords = quake.geometry.coordinates;
const size = quake.properties.mag * 10000;

const circle = L.circle([coords[1l], coords[@]], size).addTo(map);
quakelLayer.addLayer(circle);

codelLayers[quake.id] = quakelLayer.getlLayerId(circle);

b

Let’s now create the hovering effect. We’ll write a new function, isHovering,
which returns an Observable that emits a Boolean value for whether the
mouse is over a particular earthquake circle at any given moment:

ch4/earthquake-visualizer/src/3_draw.js
const identity = x => x;

function isHovering(element) {
const over = Observable.fromEvent(element, "mouseover").map(identity(true));
const out = Observable.fromEvent(element, "mouseout").map(identity(false));

return over.merge(out);

}
© This is the identity function. Given a parameter x, it returns x.

© over is an Observable that emits true when the user hovers the mouse over
the element.

© out is an Observable that emits false when the user moves the mouse out-
side of the element.

O isHovering merges both over and out, returning an Observable that emits true
when the mouse is over an element, and false when it leaves it.

With isHovering in place we can modify the subscription that creates the rows,
so that we subscribe to events in each row as it is created:


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/3_draw.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/3_draw.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/3_draw.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Adding a List of Earthquakes ¢ 79

ch4/earthquake-visualizer/src/3_draw.js
const table = document.getElementById("quakes info");
quakes$
.pluck("properties")
.map (makeRow)
.bufferTime (500)
.filter(rows => rows.length > 0)
.map(rows => {
const fragment = document.createDocumentFragment();
rows.forEach(row => {
const circle = quakelLayer.getlLayer(codelLayers[row.1id]);

isHovering(row).subscribe(hovering => {
circle.setStyle({
color: hovering ? "#ff0000" : "#OOOOff"
1)
1)

Observable. fromEvent(row, "click").subscribe(() => {
map.panTo(circle.getLatlLng());
b

fragment.appendChild(row);
b

return fragment;
1)
.subscribe(fragment => {
table.appendChild(fragment);
1)

@ We get the circle element for the earthquake on the map using the ID we
get from the row element. With that, codelLayers gives us the corresponding
internal ID, which gets us the circle element using quakelayer.getLayer.

©® We call isHovering with the current row and we subscribe to the resulting
Observable. If the hovering argument is true, we’ll paint the circle red; oth-
erwise, it will be blue.

© We subscribe to the Observable created from the click event in the current
row. When the row in the list is clicked, the map will be centered on the
corresponding circle in the map.

Making It Efficient

Experienced front-end developers know that creating many events on a page
is a recipe for bad performance. In our previous example, we created three
events for each row. If we get 100 earthquakes on the list, we would have 300
events floating around the page just to do some light highlighting work! That
is terrible for performance, and we can do better.


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/3_draw.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

o0

Chapter 4. Building a Complete Web Application ® 80

Events in the DOM always bubble up (from children to parent elements), so
a technique to avoid attaching events to elements individually is attaching
them to their parent element instead. Once the event is fired on the parent,
we can use the event’s target property to find the child element that was the
actual target.

Because we’ll need similar functionality for the events click and mouseover, we’ll
create a function getRowFromEvent:

ch4/earthquake-visualizer/src/code3.pairwise.js
function getRowFromEvent(event) {
return Observable
.fromEvent(table, event)

.filter({target} => {
return target.tagName === "TD" && target.parentNode.id.length;
1)
.pluck("target", "parentNode")
.distinctUntilChanged();
}

getRowFromEvent gives us the table row in which the event has happened. Here
are the details:

©® We make sure that we get events happening in a table cell, and we check
that the parent of that cell is a row with an ID attribute. These rows are
the ones we tagged with the earthquake ID.

©® The pluck operator extracts the nested property parentNode inside the ele-
ment’s target property.

© This prevents getting the same element more than once. That would
happen a lot with the mouseover event, for example.

In the previous section we attached the events mouseover and mouseout on each
row to change the earthquake circle color each time the mouse entered or
exited the row. Now, we’ll use only the mouseover event on the table, combined
with the convenient pairwise operator:

ch4/earthquake-visualizer/src/code3.pairwise.js

getRowFromEvent ("mouseover") .pairwise().subscribe(rows => {
const prevCircle = quakelLayer.getLayer(codeLayers[rows[0].id]);
const currCircle = quakelLayer.getLayer(codelLayers[rows[1].id]);

prevCircle.setStyle({ color: "#000Off" });
currCircle.setStyle({ color: "#ff0000" });
1)


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/code3.pairwise.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/code3.pairwise.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Getting Real-Time Updates from Twitter ® 81

pairwise groups each emitted value with the previously emitted value in an
array. Because we're always getting distinct rows, pairwise will always yield the
row that the mouse just left and the row where the mouse is hovering now.
With this information, it is easy to color each earthquake circle accordingly.

Handling the click event is even simpler:

ch4/earthquake-visualizer/src/code3.pairwise.js
getRowFromEvent("click").subscribe(row => {

const circle = quakelLayer.getlLayer(codeLayers[row.id]);
map.panTo(circle.getlLatlLng());

3
And we can go back to just subscribing to quakes$ to generate the rows:

ch4/earthquake-visualizer/src/code3.pairwise.js
gquakes$
.pluck("properties")
.map (makeRow)
.subscribe(table.appendChild);

Our code is now much more clean and idiomatic, and it doesn’t depend on the
rows being there. If there are no rows, getRowFromEvent won't try to yield any.

What’s more important, our code now is very efficient. Regardless of the
amount of earthquake information we retrieve, we’ll always have just a single
mouseover event and a single click event, instead of hundreds of events.

Getting Real-Time Updates from Twitter

The second part of our plan to make a real-time dashboard for earthquakes
is to add reports and information from Twitter related to the different earth-
quakes happening on the planet. For this, we’ll create a small Node.js program
that will fetch the stream of tweets related to the earthquakes.

Setting Up Our Node.js Environment

Let’s configure our Node.js application. Besides RxJS, we will be using two
venerable third-party modules to make our life easier: ws and twit." Any similar
modules should work with minimal changes to the code.

First, let’s create a folder for our application and install the modules that we’ll
use (note that the output of the npm command may vary depending on the
current versions of the packages):

1.  https://github.com/websockets/ws and https://github.com/ttezel/twit


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/code3.pairwise.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/code3.pairwise.js
https://github.com/websockets/ws
https://github.com/ttezel/twit
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 82

~$ mkdir tweet_stream

~$ cd tweet_stream

~/tweet_stream$ npm install ws twit rxjs
code@l1.0.0 /Users/sergi/code/tweet stream
F— rxjs@5.2.0
| L— symbol-observable@l.0.4
r twit@2.2.5
| — bluebirde3.5.0
| L— request@2.80.0

L+ ws@2.2.0

L— ultron@l.1.0

Client-Server Communication

Now we're ready to start building our application. Let’s create a new file called
index.js inside the tweet stream folder to load the modules we’ll use:

ch4/tweet_stream/index.js

const WebSocket = require("ws");
const Twit = require("twit");
const Rx = require("rxjs");

const Observable = Rx.Observable;

To use the Twitter API, you need to request a consumer key and an access
token from the Twitter website. Once you have that, create a new Twit object
with a configuration object, like this:

ch4/tweet_stream/index.js
const T = new Twit({
// Substitute the following properties by the ones provided by Twitter
consumer_key: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
consumer_secret: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
access token: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
access token secret: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

1)

Now we can create a function, onConnect, that will do all the work of searching
tweets and communicating with the client in the future, and we can initiate
a WebSocket server that will call onConnect once the WebSocket is connected
and ready:

ch4/tweet_stream/index.js
function onConnect(ws) {
console.log('Client connected on localhost:8080"');

}

const Server = new WebSocketServer({ port: 8080 });
Observable. fromEvent(Server, 'connection').subscribe(onConnect);


http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Getting Real-Time Updates from Twitter ¢ 83

We can now launch our application, and it should start a WebSocket connec-
tion on port 8080:

~/tweet_stream$ node index.js

The message about a client connection is not printed yet because we haven’'t
connected any browser to this server. Let’s now switch to the code for our
dashboard and do that. We’ll use the webSocket:

ch4/earthquake-visualizer/src/4_websocket.js
function initialize() {
const socket$ = Observable.webSocket("ws://127.0.0.1:8080");

In the preceding code, webSocket creates a Subject that serves as the sender
and receiver of messages to the WebSocket server. By calling socket$.onNext
we’ll be able to send messages to the server, and by subscribing to socket$
we'll receive any messages the server sends us.

We can now send the server messages with the earthquake data we receive:

ch4/earthquake-visualizer/src/4_websocket.js
quakes$.bufferCount(100) .subscribe(quakes => {
const quakesData = quakes.map(quake => ({
id: quake.properties.net + quake.properties.code,
lat: quake.geometry.coordinates[1],
1ng: quake.geometry.coordinates[0],
mag: quake.properties.mag

)
socket$.next(JSON.stringify({ quakes: quakesData }));

3
And we can set up a Subscriber for messages coming from the server:

ch4/earthquake-visualizer/src/4_websocket.js
socket$.subscribe(message => {
console.log(JSON.parse(message.data));
b

Now when we reload the browser, the client message should appear in the
terminal:

~/tweet_stream$ node index.js
Client connected on localhost:8080

Fantastic! The browser should be sending commands to the server as soon
as it starts receiving earthquakes from the remote JSONP resource. For now,
the server completely ignores those messages, though. Time to go back to our
tweet stream code and do something with them.


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/4_websocket.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/4_websocket.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/4_websocket.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 84

First we’ll connect to the message events that arrive to the server from the
browser client. Whenever the client sends a message, the WebSocket server
emits a message event with the contents of the message. In our case, the con-
tents are a stringified object.

We can write the following code in our onConnect function:

ch4/tweet_stream/index.js
const onMessage = Observable.fromEvent(ws, 'message')
.subscribe(quake => {
quake = JSON.parse(quake);
console.log(quake);
b

If we restart the server (Ctrl-C in the terminal) and reload the browser, we
should see the earthquake details being printed in the terminal as they come
in. That’s perfect. Now we're ready to start looking for tweets related to our
earthquakes.

Retrieving and Sending Tweets

We're using the streaming Twitter client for Node.js twit to connect to Twitter
and search tweets. All the code in the server from now on will happen inside
the onConnect function because it assumes that a connection to a WebSocket
is already established. Let’s initialize the stream of tweets:

ch4/tweet_stream/index.js

const stream = T.stream("statuses/filter", {
track: "earthquake",
locations: []

1)

This tells our Twit instance T to start streaming Twitter statuses, filtered by
the keyword earthquake. This is, of course, very generic and not that directly
related to the earthquakes happening right now. But notice the empty locations
array. This is an array of latitude and longitude boundaries that we can use
to filter tweets by their geographic location, along with the word earthqualke.
That’s much more specific! Alright, let’s subscribe to this stream and start
sending tweets to the browser:

ch4/tweet_stream/index.js
Observable.fromEvent(stream, "tweet").subscribe(tweetObject => {
ws.send(JSON.stringify(tweetObject), err => {
if (err) {
console.log("There was an error sending the message");


http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Getting Real-Time Updates from Twitter ¢ 85

If we restart the server and reload the browser, we should receive tweets in
the browser, and the console in the development panel should be printing
the tweets.

These tweets are not filtered by earthquake location yet. To do that, we need
to do the following things with each piece of earthquake information we receive:

e Take the longitude and latitude pair of epicenter coordinates of each
earthquake and create a bounding box that delimits the geographical area
of the tweets that we consider related to the earthquake.

e Accumulate all the boundary coordinates so that tweets sent to the client
keep being relevant to the earthquakes on the map.

¢ Update the twit stream with the new coordinates every time we receive the
message for a new earthquake.

Here’s a way to do it:

ch4/tweet_stream/index.js
Observable.fromEvent(ws, "message")
.flatMap(quakesObj => {
guakesObj = JSON.parse(quakesObj);
return Observable.from(quakesObj.quakes);
1)
.scan([], (boundsArray, quake) => {
const bounds = [
quake.lng - 0.3,
quake.lat - 0.15,
quake.lng + 0.3,
quake.lat + 0.15
1.map(
coordinate => coordinate.toString().match(/\-?2\d+(\.\-?\d{2})?/)[0]
);
const finalBounds = boundsArray.concat(bounds);

return finalBounds.slice(Math.max(finalBounds.length - 50, 0));
1)
.subscribe(boundsArray => {

stream.stop();

stream.params.locations = boundsArray;

stream.start();

3
And here is the step-by-step of what is happening in the preceding code:

©® We meet our old friend scan again. Any time we need to accumulate results
and yield each intermediate result, scan is our friend. In this case, we'll
keep accumulating earthquake coordinates in the boundsArray array.


http://media.pragprog.com/titles/smreactjs5/code/ch4/tweet_stream/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 86

© From the single latitude/longitude pair of coordinates of the epicenter of
the earthquake, we create an array that contains an area determined by
a north-west coordinate and a south-east one. The numbers used to
approximate the bounds create a rectangle the size of a large city.

After creating the array, we use a regular expression to limit the decimal
precision of each coordinate to two decimals, to comply with the Twitter
API requirements.

©® We concatenate the generated boundaries to boundsArray, which contains
every previous earthquake’s boundaries. Then we take the last 25 pairs
of boundaries (50 items in the array), since that is the limit of the
Twitter API.

O Finally, we subscribe to the Observable, and in the onNext function we
restart the current twit stream to reload the updated locations to filter by
with our new accumulated array of locations, converted to a string.

After restarting the server and reloading the browser, we should be receiving
relevant tweets in our browser application. For now, we can only see the raw
objects displayed in the developer console, though. In the next section we
generate the HTML to display the tweets in our dashboard.

Showing Tweets on the Dashboard

Now that we're receiving tweets from the server, the only thing left to do is
show them nicely on the screen. For this, we’ll create a new HTML element
in the template where we append incoming tweets:

ch4/earthquake-visualizer/template.html
<div id="tweet container"></div>

We will also update our socket Observable subscription to process the
incoming tweet objects and append them to the tweet _container element that we
just created:

ch4/earthquake-visualizer/src/5_show_tweets.js
socket
.map (message => {
console.log(message.data);
JSON.parse(message.data);
b
.subscribe(data => {
const container = document.getElementById("tweet container");
container.insertBefore(makeTweetElement(data), container.firstChild);

1)


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/template.html
http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/5_show_tweets.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Ideas for Improvements © 87

Any new tweets will appear at the top of the list, and they will be created by
makeTweetElement, a simple function that creates a tweet element and populates
it with the data we pass as a parameter:

ch4/earthquake-visualizer/src/5_show_tweets.js

function makeTweetElement (tweetObj) {
const tweetEl = document.createElement("div");
tweetEl.className = "tweet";

const time = new Date(tweetObj.created at);
const timeText = "${time.tolLocaleDateString()} ${time.toLocaleTimeString()}";

tweetEl.innerHTML = °
<img src="${tweetObj.user.profile image url}" class="avatar" />
<div class="content">${tweetObj.text}</div>
<div class="time">${timeText}</div>";

return tweetEl;

}

And with this we finally have a sidebar with relevant, geolocated tweets that
can give us more insight about the areas affected by the earthquakes.

Ideas for Improvements

This dashboard is already functional, but there are many improvements that
could be done. Some ideas to make it better:

e Add more earthquake databases. USGS is a fantastic resource, but it
mainly focuses on earthquakes happening in the United States. It would
be interesting to merge in earthquake reports from around the world, not
just the United States, and present them all together in the map. To do
this, you could utilize merge and mergeAll, and use distinct with a selector
function to avoid duplicates.

e Whenever the user clicks on a tweet, center the map on the related
earthquake. This would involve grouping the tweets by earthquake on the
server, and you'd probably want to use the groupBy operator to group tweets
to a particular geographical area.

Wrapping Up

In this chapter we've used RxJS to create a reactive user interface that allows
us to see different kinds of data about earthquakes happening on the planet
in real time. We've used RxJS both in the browser client and in the Node.js
server, showing how easy it is to use Observables to manage different areas
of an application.


http://media.pragprog.com/titles/smreactjs5/code/ch4/earthquake-visualizer/src/5_show_tweets.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 4. Building a Complete Web Application ® 88

More importantly, we’'ve seen that we can use RxJS in the same way on the
client and on the server, bringing the Observable sequence abstraction
everywhere in our application. And not only that. We could actually use RxJS
concepts and operators across other programming languages, since RxJS is
supported in many of them.

Next we’ll look at Schedulers, a more advanced object type in RxJS that allows
us to control time and concurrency with more precision, and provides a great
help with testing our code.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER 5

Bending Time with Schedulers

As soon as I discovered RxJS, I started using it in my projects. For a while I
thought I knew how to use it effectively, but there was a nagging question:
how do I know whether the operator I'm using is synchronous or asyn-
chronous? In other words, when exactly do operators emit notifications? This
seemed a crucial part of using RxJS correctly, but it felt a bit blurry to me.

The interval operator, I thought, is clearly asynchronous, so it must use
something like setTimeout internally to emit items. But what if I'm using range?
Does it emit asynchronously as well? Does it block the event loop? What about
from? I was using these operators everywhere, but I didn’t know much about
their internal concurrency model.

Then I learned about Schedulers.

Schedulers are a powerful mechanism to precisely manage concurrency in
your applications. They give you fine-grained control over how an Observable
emits notifications by allowing you to change their concurrency model as you
go. In this chapter you’ll learn how to use Schedulers and apply them in
common scenarios. We'll focus on testing, where Schedulers are especially
useful, and you’ll learn how to make your own Schedulers.

Using Schedulers

A Scheduler is a mechanism to “schedule” an action to happen in the future.
Each operator in RxJS uses one Scheduler internally, selected to provide the
best performance in the most likely scenario.

Let’s see how we can change the Scheduler in operators and the consequences
of doing so. First let’s create an array with 1,000 integers in it:


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 5. Bending Time with Schedulers ¢ 90

const itemArray = [];
for (let 1 = 0; i < 1000; i++) {
itemArray.push(i);

}

Then, we create an Observable from arr and force it to emit all the notifications
by subscribing to it. In the code we also measure the amount of time it takes
to emit all the notifications:
const timeStart = Date.now();
Observable.from(itemArray).subscribe(null, null, () => {

console.log( Total time: ${Date.now() - timeStart}ms’);

b

”

"Total time: 1ms

One millisecond—not bad! Unlike RxJS 4, RxJS 5 doesn’t use any Scheduler
by default, so this code processes all the notifications synchronously.

Now let’s change the Scheduler to Rx.Scheduler.asap:

const timeStart = Date.now();

Observable.from(itemArray, Scheduler.asap).subscribe(null, null, () => {
console.log( Total time: ${Date.now() - timeStart}ms’);

1)

"Total time: 169ms”

Wow, our code runs more than a hundred times slower than with no Sched-
uler. That’s because the asap Scheduler runs each notification asynchronously.
We can verify this by adding a simple log statement after the subscription.

Using no Scheduler:

Rx.0Observable.from(arr).subscribe( ... );
console.log('Hi there!');

"Total time: 1ms"
"Hi there!"

Using the asap Scheduler:

Rx.Observable.from(arr, Rx.Scheduler.asap).subscribe( ... );
console.log('Hi there!');

"Hi there!"
"Total time: 169ms"

When using no Scheduler, the console.log statement happens only when the
Observable has emitted all of its notifications, because they happen syn-
chronously. But when Rx.Schedulerasap is used, console.log runs first, whereas


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Using Schedulers ¢ 91

our Observer’s notifications run asynchronously, so they appear after the
console.log statement.

So, Schedulers have a big impact on how our Observables work. In our case
here, performance suffered from asynchronously processing a big, already-
available array. But we can use Schedulers to improve performance. For
example, we can switch the Scheduler on the fly before doing expensive
operations on an Observable:

Observable.from(itemArray)
.groupBy(value => value % 2 === 0)
.map(value => value.observeOn(Scheduler.asap))
.map (groupedObservable => expensiveOperation(groupedObservable));

In the preceding code we group all the values in the array into two groups:
even and uneven values. groupBy returns an Observable that emits an
Observable for each group created. And here’s the cool part: just before run-
ning an expensive operation on the items in each grouped Observable, we
use observeOn to switch the Scheduler to the asap one, so that the expensive
operation will be executed asynchronously, not blocking the event loop.

observeOn and subscribeOn

In the previous section, we used the observeOn operator to change the Scheduler
in some Observables. observeOn and subscribeOn are instance operators that
return a copy of the Observable instance, but that use the Scheduler we pass
as a parameter.

observeOn takes a Scheduler and returns a new Observable that uses that
Scheduler. It will make every next call run in the new Scheduler.

subscribeOn forces the subscription and un-subscription work (not the notifica-
tions) of an Observable to run on a particular Scheduler. Like observeOn, it
accepts a Scheduler as a parameter. subscribeOn is useful when, for example,
we’re running in the browser and doing significant work in the subscribe call
but we don’t want to block the UI thread with it.

Basic Rx Schedulers

Let’s look a bit more in depth at the Schedulers that we just used. The ones
RxJS’s operators use the most are asap and queue. There are other, more spe-
cialized Schedulers like the animationframe scheduler, which we wll see later in
the chapter.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 5. Bending Time with Schedulers ¢ 92

The asap Scheduler

The asap Scheduler runs actions asynchronously. You can think of it as a
rough equivalent of setTimeout with zero milliseconds delay that keeps the order
in the sequence. It uses the most efficient asynchronous implementation
available on the platform it runs (for example, process.nextTick in Node.js or set-
Timeout in the browser).

Let’s take the previous example with range and make it run on the asap
Scheduler. For this, we’ll use the observeOn operator:

console.log("Before subscription");
Observable.range(1l, 5)
.do(value => {
console.log("Processing value", value);
b
.observeOn(Scheduler.asap)
.map(value => value * value)
.subscribe(value => {
console.log("Emitted", value);
1)

console.log("After subscription");

Before subscription
Processing value 1
Processing value 2
Processing value 3
Processing value 4
Processing value 5
After subscription
Emitted 1

Emitted 4

Emitted 9

Emitted 16

Emitted 25

There are significant differences in the output this time. Our console.log state-
ment runs immediately for every value, but we make the Observable run on
the asap Scheduler, which yields each value asynchronously. That means our
log statements in the do operator are processed before the squared values.

When to Use It

The asap Scheduler never blocks the event loop, so it’s ideal for operations
that involve time, like asynchronous requests. It can also be used in Observ-
ables that never complete, because it doesn’t block the program while waiting
for new notifications that may never happen.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Scheduling for Animations ® 93

The queue Scheduler

The queue Scheduler is synchronous like the immediate Scheduler. The differ-
ence is that if we use recursive operators, it enqueues the actions to execute
instead of executing them right away. A recursive operator is an operator that
itself schedules another operator. A good example is repeat. The repeat operator
—if given no parameters—keeps repeating the previous Observable sequence
in the chain indefinitely.

When to Use It

As a rule of thumb, the queue Scheduler should be used for large sequences
and operations that involve recursive operators like repeat, and in general for
iterations that contain nested operators.

Scheduling for Animations

For fast visual updates such as canvas or DOM animations, we can either
use the interval operator with a extremely low millisecond value or we can
make a Scheduler that uses a function like setTimeout internally to schedule
notifications.

But neither approach is ideal. In both of them we’re throwing all these updates
at the browser, which may not be able to process them quickly enough. That
happens because the browser is trying to render a frame and then it receives
instructions to render the next one, so it drops the current frame to keep up
the speed. The result is choppy animations—and there are already enough
of those on the web as it is.

Browsers have a native way to handle animations, and they provide an API
to use it called requestAnimationFrame. requestAnimationframe allows the browser to
optimize performance by lining up animations at the most appropriate time
and helping us achieve smoother animations.

There’s a Scheduler for That

RxJS comes with some extra Schedulers, one of which is the animationframe
Scheduler.

Yes, you guessed it. We can use this Scheduler to improve our spaceship
video game. In it, we established a refresh speed of 40ms—roughly 25 frames
per second—by creating an interval Observable at that speed and then using
combinelatest to update the whole game scene at the speed set by interval (because
it is the fastest-updating Observable). But who knows how many frames the


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 5. Bending Time with Schedulers ¢ 94

browser is dropping by using this technique! We would get much better per-
formance by using requestAnimationFrame.

Let’s create an Observable that uses Rx.Scheduler.animationFrame as its Scheduler.
Notice that it works similarly to how the interval operator works:

ch5/starfield_raf.js
function animationLoop() {
return Observable.generate(
0,
() => true,
X = x + 1,
X = X,
Scheduler.animationFrame
); // Schedule to requestAnimationFrame

}

Now, instead of using interval to animate graphics at 25 FPS, we can just use
our animationLoop function. So our Observable to paint stars, which looked like
this before:

ch3/spaceship.js
const StarStream = Observable.range(1l, 250)
.map(() => ({
x: parseInt(Math.random() * canvas.width, 10),
y: parselnt(Math.random() * canvas.height, 10),
size: Math.random() * 3 + 1
)
.toArray()
.flatMap(arr =>
Observable.interval(SPEED).map(() =>
arr.map(star => {
if (star.y >= canvas.height) {
star.y = 0;
}
star.y += star.size;
return star;
b
)
)

Becomes this:

ch5/starfield_raf.js
const StarStream = Observable
.range(1, 250)
map(() => ({
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

)


http://media.pragprog.com/titles/smreactjs5/code/ch5/starfield_raf.js
http://media.pragprog.com/titles/smreactjs5/code/ch3/spaceship.js
http://media.pragprog.com/titles/smreactjs5/code/ch5/starfield_raf.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

>

Testing with Schedulers ® 95

.toArray()
.flatMap(arr => animationLoop().map(() =>
arr.map(star => {

if (star.y >= canvas.height) {

star.y = 0;
}
star.y += 3;
return star;

)

Which gives us a much smoother animation. As a bonus, the code is also
cleaner!

Testing with Schedulers

Testing is perhaps one of the most compelling scenarios where we can use
Schedulers. So far in this book we've been coding our hearts out without
thinking much about the consequences. But in a real-world software project,
we would be writing tests to make sure our code works as we intend.

Testing asynchronous code is hard. We usually run into one of these problems:

e Simulating asynchronous events is complicated and error prone. The
whole point of having tests is to avoid bugs and errors, but if your tests
themselves have errors, they're not helping.

» If we want to accurately test time-based functionality, automated testing
becomes really slow. For example, if we need to accurately test that an
error is called after four seconds of trying to retrieve a remote file, each
test will take at least that much time to run. If we run our test suite
continuously, that impacts our development time.

Marble Testing

Marble testing is a new feature in RxJS 5 that allows us to test asynchronous
operations in a synchronous and reliable way. The main highlight is that it
comes with its own marble-diagram-based domain language that makes it much
easier than before to test Observables as shown in the figure on page 96.

Setting It Up

Setting up the tests to be able to use marble testing is a bit cumbersome
because the marble testing helpers don’t come included in the default distri-
bution of RxJS. Because the original source code is in TypeScript, we can’t
directly download the helpers file either.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 5. Bending Time with Schedulers ¢ 96

filter { isEven(Q) }

AN AN
_/

An example marble diagram for the filter operator

The way we do it is by first getting the current RxJS distribution:

$ git clone https://github.com/ReactiveX/rxjs.git

Cloning into 'rxjs'...

remote: Counting objects: 30499, done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 30499 (delta 11), reused 4 (delta 4), pack-reused 30474
Receiving objects: 100% (30499/30499), 73.89 MiB | 8.75 MiB/s, done.
Resolving deltas: 100% (23828/23828), done.

$ cd rxjs
$ npm install

$ npm run build_all && npm run build_spec

When this process is finished, you'll find a file named spec-js/helpers/marble-testing.js
in the root directory of the project. That’s the file we’ll import in our tests in
order to work with marble syntax.

Using Marble Syntax to Simulate Sequences

Throughout the book we have used marble diagrams to visually represent
Observable sequences. Translating those into “marble syntax” is pretty easy.
Each sequence is represented by a string of events happening over “time.”
The first character of any sequence represents the “zero frame.” A “frame” is
analogous to a virtual millisecond.

The rest of the syntax, from the RxJS source documentation, is shown in
table on page 97.

Knowing this syntax, we could write a very simple test in Mocha comparing
two Observables that are equal:


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

©06 000

Symbol Meaning

- Time

| Complete

# Error

a Any character

() Sync groupings

A Subscription
point

ch5/marble-testing/src/test.js

Testing with Schedulers ® 97

Explanation

10 “frames” of time passage

The successful completion of an observable. This is
the observable producer signaling complete().

An error terminating the observable. This is the
observable producer signaling error().

All other characters represent a value being emitted
by the producers signaling next().

When many events need to signal in the same frame
synchronously, you can use parentheses to group

them. The position of the initial parenthesis deter-
mines when it emits its values.

Shows the point at which the tested observables will
be subscribed to the hot observable. This is the “zero
rame” for that observable, every frame before the » will
be negative (this is relevant only to hot observables).

it("Same marble sequence should pass", () => {
const testScheduler = new TestScheduler(assert.deepEqual.bind(assert));
const sequence = "--a--b--|";
const source = testScheduler.createHotObservable(sequence);
testScheduler.expectObservable(source).toBe(sequence);
testScheduler. flush();

1)

As you can see, we “draw” our Observable streams by using strings. The
Observable featured here, for example, emits two items, a and b before ending
the Observable. Let’s see what happens step by step:

©® We create a new TestScheduler that compares using Node’s assert.deepEqual
method. That's because observers generated from TestScheduler are

Objects with metadata in them, so we want to do a deep equal instead of

just naively comparing them.

© The sequence variable is the string representation of the Observable we
want to test. It lets two units of time pass, then emits item a, lets two
more units of time pass, then emits b, lets two more units of time pass,
and then ends the Observable.


http://media.pragprog.com/titles/smreactjs5/code/ch5/marble-testing/src/test.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 5. Bending Time with Schedulers ¢ 98

© We create a “hot” observable by passing sequence to the createHotObservable
of the Test Scheduler.

O This is the actual test. Using the Test Scheduler expectObservable and toBe
methods we can compare the Observable sequence to its string represen-
tation. This method will fail if they differ.

© We force the testScheduler to execute all the queued actions.

That was a simple example, but hopefully enough to whet your appetite to
see how to use this little marble diagram DSL to test more complex scenarios.

A More Realistic Test

Let’s make a more realistic test. We will keep our earthquake theme and
test whether earthquakes from different sources are merged properly. Here’s
the code:

ch5/marble-testing/src/test.js

it("Should properly merge and exclude earthquakes with magnitude 0", () => {
const testScheduler = new TestScheduler(assert.deepEqual.bind(assert));
const quakeMarblesl "--b---c--e";
const quakeMarbles2 "go----- d--";

const quakel$ = testScheduler.createHotObservable(quakeMarblesl);
const quake2$ = testScheduler.createHotObservable(quakeMarbles2);

const expectedValues = {
a: { richterScale: 2.6 },
b: { richterScale: 3.4 },
c: { richterScale: 1.3 },
d: { richterScale: 0 },
e: { richterScale: 6.2 }
+
const expected = "a-b---c--e";

const mergedQuakes$ = Observable.merge(quakel$, quake2$)
.filter(q => g.richterScale && q.richterScale > 0);

testScheduler
.expectObservable(mergedQuakes$)
.toBe(expected, expectedValues);

testScheduler.flush();
1)

© In this test we handle two Observable sequences, which we represent here
using marble syntax.

©® Just like with the basic test, we create two hot Observables, quakel$ and
quake2$, from the Observables expressed in marble syntax.


http://media.pragprog.com/titles/smreactjs5/code/ch5/marble-testing/src/test.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Wrapping Up ® 99

© expectedValues is an object that maps the names of the items emitted by the
Observables to their actual values. In our case, the value for each emitted
item is an object with a property richterScale, which indicates the magnitude
of the Earthquake on the Richter scale. We'll use it in the last step.

O This test verifies that both Observable sequences will be merged in the
right order, discarding any value of richterScale that is not greater than O.
The expected string is the marble syntax representation of the expected
Observable.

© Here is where we do the actual merge and filter operations and store it into
mergedQuakes$.

0O Our final step is the same as with our basic test from before: we use the
expectObservable and toBe methods in testScheduler. There is only one essential
difference: in this case, the second argument of toBe is expectedValues.

When we do operations on Observables created from marble syntax strings,
we get a single-character string with the name of the emitted item (for
example, a, b, ¢, and so on). In order to map these to the actual values we
want to test, we have to create an object (expectedValues) with the names as
keys and the desired values. toBe will take care of mapping them properly.

Using marble syntax to test RxJS code is extremely convenient. It saves us
a lot of tedious work to set up each Observable sequence, which can be
essential when writing complex tests, keeping us from making mistakes when
typing the “mock” Observable sequences.

Wrapping Up

Schedulers are an essential part of RxJS. Even if you can go a long way
without explicitly using them, they are the advanced concept that will give
you the edge to fine-tune concurrency in your programs. The concept of vir-
tual time is unique to RxJS and is incredibly useful for tasks such as testing
asynchronous code.

In the next chapter we’ll use Cycle.js, a reactive way to create amazing web
apps, based on a concept called unidirectional dataflow. With it, we’ll create
a fast web application using modern techniques that improve dramatically
on the traditional way of making web apps.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

CHAPTER 6

Reactive Web Applications with Cycle,js

With the advent of single-page apps, websites are suddenly expected to do
much more—even compete against (gasp!) “native” apps. While trying to make
web applications faster, developers realized that particular areas were bottle-
necks keeping web applications from being as fast and robust as their native
counterparts.

Spearheaded by Facebook React,' several web frameworks are coming up
with new techniques to make faster web applications while keeping the code
simple and declarative.

Web applications such as the Virtual DOM are here to stay, and in this
chapter we’ll cover some new techniques for developing them. We’ll be using
Cycle.js, a modern, simple, and beautiful framework that uses RxJS internally
and applies reactive programming concepts to front-end programming.

Cycle.js

Cycle.js is a small framework on top of RxJS for creating responsive user
interfaces. It offers the features present in modern frameworks like React,
such as the Virtual DOM and unidirectional dataflow.

Cycle.js is designed in a reactive way, and all the building blocks in Cycle.js
are Observables, which gives us enormous advantages. It is also simpler to
grasp than other frameworks because there are far fewer concepts to under-
stand and memorize. For example, all operations related to state are out of
the way, encapsulated in functions called drivers, and we rarely need to create
Nnew ones.

1. https://facebook.github.io/react/


https://facebook.github.io/react/
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 102

The Document Object Model (DOM) defines the tree structure of elements in an HTML
document. Every HTML element is a node in the DOM, and each node can be
manipulated using methods on the node.

The DOM was originally created to represent static documents, not the super-
dynamic websites that we have today. As a consequence, it was not designed to have
good performance when the elements in a DOM tree were updated frequently. That's
why there’s a performance hit when we make changes to the DOM.

The Virtual DOM is a representation of the DOM made in JavaScript. Every time we
change state in a component, we recompute a new Virtual DOM tree for the component
and compare it with the previous tree. If there are differences, we render only those
differences. This approach is extremely fast, because comparing JavaScript objects
is fast and we make only the absolutely necessary changes to the “real” DOM.

That approach means we can write code as if we generated the whole app UI for every
change. We don’t have to keep track of state in the DOM. Behind the scenes, Cycle.js
will check if there is anything different for every update and take care of rendering
our app efficiently.

Installing Cycle.js

We could use Cycle.js by including it in an HTML page using <script></script>
tags, but that would not be the best way to use it because Cycle.js is designed
in an extremely modular way. Every module tries to be as self-sufficient as
possible, and including several modules as scripts could easily load tons of
duplicated code, causing unnecessary downloads and longer start-up times
for our applications.

Fortunately, the Cycle.js authors have put considerable effort into making
good tooling. We are going to depart from our usual configuration and use
create-cycle-app, a command-line tool that allows you to create Cycle.js apps
without having to worry about build configurations, package installations,
and the like.

We install create-cycle-app globally using npm:
$ npm install -g create-cycle-app

And then we use it to create the scaffolding for our application—a Wikipedia
Search application:

report erratum -« discuss


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Our Project: Wikipedia Search ¢ 103

{ $ create-cycle-app wikipedia-search
Creating a new Cycle.js app in ~/rxjs-book/wikipedia-search.
Installing packages. This might take a couple minutes.

This will install a bunch of packages and create a basic configuration for the
project. When it’s finished, it will present some handy tips about how to run
your application, bundle it for production, test it, and so on.

To start the app simply run:

¢ $ npm start

> wikipedia-search@0.1.0 start ~/code/smreactjs5/Book/code/cycle/wikipedia-search
> cycle-scripts start

Build completed in 2.138s
App is running at http://localhost:8000

webpack: Compiled successfully

This will start the development server and let you know where to find the app.
In our case it is http://localhost:8000. For now, there is not much to see
there, but we’ll change this in the next section!

Our Project: Wikipedia Search

In this section we will build an application that searches Wikipedia as the
user types.

Wikipedia Search

reactive

Reactive

Reactive armour

Reactive dye

Reactive intermediate

Reactive lymphocyte

Reactive attachment disorder
Reactive angjoendotheliomatosis
Reactive dye printing

RxJS already makes retrieving and processing the remote data easy, but as
you saw in Chapter 4, Building a Complete Web Application, on page 69, we

still need to jump through some hoops to make our DOM operations efficient.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 104

One of the objectives of Cycle.js is to completely eliminate DOM manipulation
from our code. Let’s look at the generated application code we have so far in
src/index.js:

cycle/wikipedia-search/src/index.js

import { run } from "@cycle/run";

import { makeDOMDriver, div } from "@cycle/dom";
import { Observable } from 'rxjs'

const main = sources => {
const vtree$ = Observable.of(
div('My Awesome Cycle.js app')
)
const sinks = {
DOM: vtree$
}

return sinks

};

const drivers = {
DOM: makeDOMDriver("#app")
}

run(main, drivers);

This code just shows the text My Awesome Cycle.js app onscreen, but there’s
already quite a lot going on. Let’s go through the steps:

©® We start by requiring the functions we’ll use. We’ll always need run to start
a Cycle.js app, and then we require makeDOMDriver and div from the
cycle/dom package. We'll explain what these do momentarily, when we
use them in the code.

© Most likely you didn’t have this line in your file, but one that imported
xstream instead of RxJS. xstream is an alternative Observable library
that was made with Cycle.js in mind, with less operators and targeted to
applications that don’t use subscribe often. RxJS5 is more complete and
entirely “swappable” for xstream to use it with Cycle.js.

© The main function returns an object containing a sink for each object key.
Sinks are sequences of Observables that are sent to drivers. In our example,
we only have one driver, DOM, specified below in the drivers constant.

O The vtree$ Observable emits just one item, a div DOM element with the text
'My Awesome Cycle.js app', created by the helper function div we imported at
the top. That div will be the only content in our web page.

O This is the sinks object that contains our only sink: DOM. This will be picked
up by the DOM driver below.


http://media.pragprog.com/titles/smreactjs5/code/cycle/wikipedia-search/src/index.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Our Project: Wikipedia Search ¢ 105

O The drivers object contains a driver for each key. These drivers will listen
to the sinks returned by main, matching them by object key.

@ We finally start the application by calling run and passing our main function
and our drivers.

Cycle.js Drivers

Cycle.js drivers are functions we use to cause side effects. Nowhere else in
our programs should we be modifying state in any way. Drivers take an
Observable that emits data from our application, and they return another
Observable that causes the side effects.

We won't be creating drivers very often—only when we need side effects like
modifying the DOM, reading and writing from other interfaces (for example,
Local Storage), or making requests. In most applications we’ll need only the
DOM driver (which renders web pages) and the HTTP driver (which we can
use to make HTTP requests). In this example, we’ll use yet another one, the
JSONP driver.

The User Interface

We need actual content for our page, not just a single div. Let’s make a function
that creates the virtual tree that represents our page:

cycle/wikipedia-search/src/index2.js
function vtreeElements(results) {
return div([
hl("Wikipedia Search "),
input({
className: "search-field",
attributes: { type: "text" }
b,
hr(),
div(
results.map(result =>
div([a({ href: WIKI URL + result.title }, result.title)l])
)

1);
}

vtreeElements takes an array of objects, results, and returns a virtual tree that
represents the simple Ul for our app. It renders an input field and a listing
of links made from the objects in results, which eventually will contain
Wikipedia’s search results. We'll use vtreeElements to render our application.


http://media.pragprog.com/titles/smreactjs5/code/cycle/wikipedia-search/src/index2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 106

Using JSX

Instead of using functions like div or hl to compose our DOM, we could write
our UI using JSX, an XML-like syntax extension that makes writing Virtual
DOM structures easier and more readable. Our vtreeElements function would
look like this:

cycle/wikipedia-search/src/index2.js
function vtreeElementsJSX(results) {
results = results.map(result => {
var link = WIKI URL + result.title;
return (
<div>
<a href={link}>{result.title}</a>
</div>
)
1)

return (
<div>
<hl>Wikipedia Search</h1>
<input className="search-field" type="text" />
<hr />
<div>{results}</div>
</div>
);
}
Doesn’t it look nicer? JSX looks more familiar to developers because it
resembles HTML, but we can write it alongside JavaScript code, with the
added advantage that we can treat it as a JavaScript type. For example, notice
how we iterate the results array and we return a <div> element directly, using
the value of link and result.title in the element itself. (JavaScript values can be
inlined by putting them inside curly brackets.)

Setting Up JSX in Our Project
In order to use JSX in our project we need to install the modules babel-plugin-
transform-react-jsx and snabbdom-jsx:

npm install --save babel-plugin-transform-react-jsx snabbdom-jsx

When the packages are installed, we need to edit the package.json file at the
root of our project’s folder and add a "plugins” section to the "babel” property,
so that it looks like this:

"plugins": [

"syntax-jsx",

["transform-react-jsx", {"pragma": "html"}]
]


http://media.pragprog.com/titles/smreactjs5/code/cycle/wikipedia-search/src/index2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Our Project: Wikipedia Search ¢ 107

Next, we can just import Snabbdom JSX in any file using JSX and we’ll be set:

import {html} from 'snabbdom-jsx';

Getting the Search Term from the User

We need a function that returns an Observable of URLs that query Wikipedia’s
API using search terms entered by the user:

cycle/wikipedia-search/src/index2.js

const MAIN URL = "https://en.wikipedia.org";

const WIKI URL = “${MAIN URL}/wiki/";

const API URL = "${MAIN URL}/w/api.php?’ +
‘action=query&list=search&format=json&srsearch=";

function searchRequest(responses) {

return responses.DOM
.map(".search-field")
.events("input")
.debounceTime(300)
.map(e => e.target.value)
.filter(value => value.length > 2)
.map(search => API URL + search);

}

First we declare some URLs our application will use to query Wikipedia. In the
function searchRequest we take a responses object that contains all the drivers in
our application, and we use the get method in the DOM driver. select(ele-
ment).event(type) behaves similarly to fromEvent: it takes a selector for a DOM element
and the type of event to listen to and returns an Observable that emits events.

From that moment on, the rest of the code should look familiar to you, since
it consists of transforming an Observable’s values through our usual operators:

©® Throttle results to receive one every 300 milliseconds at most.
©® Extract the value of the input box.

© Take only text longer than two characters.

O Append the final value to Wikipedia’s API URL.

Great! So far we have the function to generate our Ul and the function to
retrieve user input from that Ul. We now need to add the functionality that
will get the information from Wikipedia.

Revising Our main Function

You may have noticed in the code on page 104 that the main function takes a

parameter, sources, that we’re not using. These are the messages that come


http://media.pragprog.com/titles/smreactjs5/code/cycle/wikipedia-search/src/index2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 108

from drivers in the run function. The drivers and the main function form a cycle
(hence the name of the framework): the output of main is the input of the
drivers, and the output of the drivers is the input for main. And remember,
inputs and outputs are always Observables.

We use JSONP to query Wikipedia, as we did in Chapter 2, Deep in the

to run this example on our local computer, since retrieving data from a differ-
ent domain using HTTP causes some browsers to block those requests for
security reasons. In almost any other situation, especially in production code,
use HTTP to retrieve remote data.

In any case, using JSONP doesn’t affect the point of this chapter. Cycle has
an experimental module for JSONP, and we can install it using npm:

npm install @cycle/jsonp
Then we use it in our application like this:

cycle/wikipedia-search/src/step2.js

import { run } from "@cycle/run";

import { makeDOMDriver, div, hl, input, hr, a } from "@cycle/dom";
import { Observable } from "rxjs";

import makelSONPDriver from "@cycle/jsonp";

const MAIN URL = "https://en.wikipedia.org";
const WIKI URL = “${MAIN URL}/wiki/';
const API URL = "${MAIN URL}/w/api.php?action=query&list=search&format=json&srsearch=";

function searchRequest(responses) {

return responses.DOM
.map(".search-field")
.events("input")
.debounceTime(300)
.map(e => e.target.value)
.filter(value => value.length > 2)
.map(search => API URL + search);

}

function vtreeElements(results) {
results = results.map(result => {
const link = WIKI _URL + result.title;
return (
<div>
<a href={link}>{result.title}</a>
</div>
);
1)

return (
<div>


http://media.pragprog.com/titles/smreactjs5/code/cycle/wikipedia-search/src/step2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

>

>

¥

Our Project: Wikipedia Search ¢ 109

<hl>Wikipedia Search</h1>
<input className="search-field" type="text" />
<hr />
<div>{results}</div>
</div>

);

const main = sources => {
const vtree$ = Observable.of(div("My Awesome Cycle.js app"));
const sinks = {

DOM: vtree$,
JSONP: searchRequest(sources)

};

return sinks;

const drivers = {
DOM: makeDOMDriver("#app"),
JSONP: makeJSONPDriver()

run(main, drivers);

We want to plug the result of searchRequest into the JSONP driver, so that as
soon as the user types a search term, we query Wikipedia with the term.

To do that, we create a new JSONP driver using CycleJSONPmakeJSONPDriver, which
will receive whatever we put in the property JSONP in the return object from main.
After doing that, we should already be querying Wikipedia when we introduce
a search term in the input box, but since we’re not connecting the JSONP output
to anything, we don’t see any changes on the page. Let’s change that:
cycle/step3.js

function main(responses) {
var vtree$ = responses.JSONP

.filter(res$ => res$.request.index0f(API URL) === 0)
.mergeAll()

.pluck('query', 'search')

.startWith([])

.map(vtreeElements);

return {

DOM: vtree$,
JSONP: searchRequest(responses)

main receives the output of all drivers through its responses parameter. We can
get the result of the JSON calls in sources.JSONP, an Observable of all the JSONP


http://media.pragprog.com/titles/smreactjs5/code/cycle/step3.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 110

responses in our application. Once we have that, we can transform the
Observable to get the search results in the form we want:

@ sources.JSONP emits all JSONP responses in the application. We start by fil-
tering by the ones that contain the API URL of Wikipedia in its request,
to make sure that we're processing the relevant responses.

© sources.JSONP is an Observable of Observables. For each source there is an
Observable. In this line we flatten them all out, so we deal with the sources
themselves from now on, instead of their Observables.

The sources are JSON objects, and the information we're interested in is
in the query.search property. We use the pluck operator to extract it.

©® We don’'t know if we’ll have any results, so at the very least we ensure
we’ll have an empty array.

O Finally, we apply our vtreeElements function to every result from Wikipedia.
This will update our UI.

© Notice the S sign at the end of the variable’s name. In this chapter I'm
adopting a naming convention used in Cycle.js code that adds S to the
name of a variable to mean that it is an Observable. I found that it makes
it much easier to understand Observable-based code!

The most important takeaway from the preceding code is that in the last step
we seem to be repainting the whole Ul for every single result that we receive.
But here’s where the Virtual DOM shines. No matter how many times we re-
render the page, the Virtual DOM will always ensure that only the differences
are rendered, making it very efficient. If there are no changes to the Virtual
DOM, no changes will be rendered in the page.

This way we don’t have to worry about adding or removing elements. We just
render the whole application every time, and we let the Virtual DOM figure
out what to actually update under the hood.

Model-View-Intent

The architectural approach we used to build the Wikipedia real-time search
is not just another framework’s random approach to programming UI. There’s
a design pattern behind structuring code like we did: Model-View-Intent (MVI).

Model-View-Intent is a term coined by the creator of Cycle.js, André Staltz,
for an architecture inspired by the Model-View-Controller (MVC) pattern.” In

2. https://en.wikipedia.org/wiki/Model-view-controller


https://en.wikipedia.org/wiki/Model�view�controller
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Model-View-Intent ® 111

MVC we separate the functionality of an application into three components:
the model, the view, and the controller. In MVI, the three components are the
model, the view, and the intent. MVI is designed to fit the Reactive model of
programming like a glove.

MVI being reactive means that each component observes its dependencies
and reacts to the dependencies’ changes. This is different from MVC, in which
a component knows its dependents and modifies them directly. A component
(C) declares which other components influence it, instead of other components
updating (C) explicitly.

The three components in MVI are represented by Observables, the output of
each being the input of another component.

The model represents the current application state. It takes processed user
input from the intent and it outputs events about data changes that are con-
sumed by the view.

The view is a visual representation of our model. It takes an Observable with
the model state, and it outputs all the potential DOM events and the virtual
tree of the page.

The intent is the new component in MVI. An intent takes input from the user
and translates it to actions in our model.

We can make the three kinds of components more clear in our application if
we reshuffle and rename our code a bit:

cycle/index-mvi.js
function intent(JSONP) {
return JSONP.filter(res$ => res$.request.indexOf(API URL) === 0)
.concatAll()
.pluck("query", "search");

}

function model(actions) {
return actions.startWith([]);

}


http://media.pragprog.com/titles/smreactjs5/code/cycle/index-mvi.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 112

function view(state) {
return state.map(linkArray =>

h("diV", [
h("h1l", "Wikipedia Search "),
h("input", {

className: "search-field",
attributes: { type: "text" }

"diV" )
linkArray.map(link =>
h("div", [h("a", { href: WIKI URL + link.title }, link.title)l])

function userIntent(DOM) {
return DOM.map(".search-field")
.events("input")
.debounceTime (300)
.map(e => e.target.value)
.filter(value => value.length > 2)
.map(search => API URL + search);

}

function main(responses) {

return {
DOM: view(model(intent(responses.JSONP))),
JSONP: userIntent(responses.DOM)
b
}

run(main, {

DOM: makeDOMDriver("#container"),
JSONP: makeJSONPDriver()
1)

By splitting the model, view, and intent into separate functions, we make the
code much clearer. (The other intent, userintent, is the input for the JSONP
driver.) Most of the appplication logic is expressed as a composition of these
three functions in the property we pass to the DOM driver in the main function:

function main(responses) {
return {
> DOM: view(model(intent(responses.JSONP))),
JSONP: userIntent(responses.DOM)
i
}


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Creating Reusable Widgets ® 113

It doesn’t get much more functional than that!

Creating Reusable Widgets

As we make more complex applications, we’ll want to reuse some of their Ul
components. Our Wikipedia Search application is tiny for the sake of example,
but it already has a couple of components that could be reused in other
applications. Take the search input box, for example. We can definitely make
this into its own widget.

The objective is to encapsulate our widget in its own component so that we
use it as any other DOM element. We should also be able to parameterize the
component with any properties we want. Then we’ll use it in our applications
like this:

var wpSearchBox = searchBox({
props$: Rx.0Observable.just({
apiUrl: API URL

1)

3

We'll build our widget using a concept also introduced by Cycle.js, called

nested dialogues. A nested dialogue, or dialogue, is a function (like everything

in Cycle.js) that takes an Observable of events as input, and outputs an

Observable—with the result of applying these inputs to its internal logic.

Let’s start building the search-box component. We first create a function that
takes a responses parameter where we’ll pass it any properties we want from
the main application:

cycle/searchbox.js
import { h } from "@cycle/dom";
import { Observable } from "rxjs";

function searchBox(responses) {
const props$ = responses.props$;
const apiUrl$ = props$.map(props => props["apiUrl"]).first();

Every parameter searchBox receives is an Observable. In this case props$ is an
Observable that emits a single JavaScript object containing the configuration
parameters for our Wikipedia search box.

After retrieving the properties, we define the virtual tree for our widget. In our
case, it is a very simple one that contains just an input field:

cycle/searchbox.js
const vtree$ = Observable.of(

h("div", { className: "search-field" }, [h("input", { type: "text" })I1)
);


http://media.pragprog.com/titles/smreactjs5/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs5/code/cycle/searchbox.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 114

We want everything to be an Observable, so we wrapped the virtual tree in an
of Observable, which returns an Observable that emits the value we pass it.

Now we need the search box to query the Wikipedia API whenever the user
types a search term in the input field. We reuse the code in the function
userintent from our previous section:

cycle/searchbox.js
const searchQuery$ = apiUrl$.flatMap(apiUrl =>
responses.DOM
.map(".search-field")
.events("input")
.debounceTime(300)
.map(e => e.target.value)
.filter(value => value.length > 3)
.map(searchTerm => apilUrl + searchTerm)
);

We still need to connect the output of searchQuery to the input of the JSON
driver. We do that just like we do it in the normal Cycle application:

cycle/searchbox.js

return {

DOMTree: vtree$,
JSONPQuery: searchQuery$
}i

And finally, we shouldn’t forget to export the searchBox widget:

cycle/searchbox.js
module.exports = searchBox; // Export it as a module

Now we're ready to use the searchBox widget in our application. The main method
will now look like this:

cycle/index-mvi2.js
const SearchBox = require("./searchbox");

function main(responses) {
const wpSearchBox = SearchBox({

DOM: responses.DOM,
props$: Observable.of({
apiUrl: API_URL
1)
1)

const searchDOM$ = wpSearchBox.DOMTree;
const searchResults$ = responses.JSONP
.filter(res$ => res$.request.index0f(API URL) === 0)
.concatAll()
.pluck("query", "search")
.startWith([]);


http://media.pragprog.com/titles/smreactjs5/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs5/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs5/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs5/code/cycle/index-mvi2.js
http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Creating Reusable Widgets ® 115

return {
(4] JSONP: wpSearchBox.JSONPQuery,
DOM: Observable.combinelLatest(searchDOM$, searchResults$, (
tree,
(5 ) links
) =>
h("div", [
h("hl", "Wikipedia Search "),
tree,
h("hr"),
h(
"div",
links.map(link =>
h("div", [h("a", { href: WIKI URL + link.title }, link.title)l])
)
)
1)
)
}
}
run(main, {
DOM: makeDOMDriver("#container"),
JSONP: makeJSONPDriver()

3

Now we delegate the responsibility of handling user input and rendering the
search box to the wpSearchBox widget, which we could easily reuse in another
application that requires a search box that queries URL APIs. These are the
main changes:

@ Import the searchBox widget we just created.

© Create an instance of SearchBox, passing the DOM driver and the properties
we want for our search widget.

© Our wpSearchBox will eventually emit items from its DOMTree Observable. We
assign it here to use them later when we render the actual DOM.

0 We send the Wikipedia query URLs to the JSONP driver so that it retrieves
its results. When those are available, it will emit them in response.JSONP,
which we refine in searchResults.

O To render the final DOM tree, we use combinelatest with searchDOM and
searchResults. Each of them causes the layout to change, so we’ll re-render
the DOM tree whenever one of these two Observables emits an item.

With the final code in hand, we can see the greatest point of Cycle.js. There
are no different classes, special types, or “magic” happening in the framework.


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

Chapter 6. Reactive Web Applications with Cycle.js ® 116

It’'s all side effect—free functions that accept Observables and output more
Observables. With only that, we have a concise web application framework
that is clear, reactive, and fun to use. And it avoids side effects at all costs,
making our web applications more robust.

Ideas for Improvements

Besides being in urgent need of a better graphical design, our application
could use some features to be more than a quick redirect to Wikipedia results:

¢ Let the user bookmark particular results. You could add a little star next
to every result in the list so that when the user clicks, it saves that result
as a favorite. You could make the star into its own widget. Extra points
if you use some persistent API (reactively!), such as Local Storage or
IndexedDB.

e Show a “preview” of a result on the right side of the screen if the user
clicks the link, with a synopsis and some meta information about it. If
the user wants to go to the actual Wikipedia result, you can have a “Read
More” link in it. Implement it as a widget.

Wrapping Up

Now you know how to develop web applications that use modern techniques
without abandoning the reactive philosophy. This chapter provided an idea
of how to use Observables and RxJS as the internal engine of other frameworks
or applications. By standing on the shoulders of Observables and the reactive
way of life, we can enormously simplify web applications and reduce state to
its minimum expression, making our web applications less fragile and more
maintainable.

Thank you for reading this book. I hope it helped you rethink the way you
develop JavaScript applications, and challenged some of your existing concepts
about programming. Here’s to fast, robust, and reactive software!


http://pragprog.com/titles/smreactjs5/errata/add
http://forums.pragprog.com/forums/smreactjs5

SYMBOLS

# (octothorp) in marble syn-
tax, 96

$ (dollar sign), Cycle.js name
suffix, 110

() (parentheses) in marble
syntax, 96

- (hyphen) in marble syntax,
96

~ (caret) in marble syntax, 96

{} (curly brackets), inlining
JavaScript values, 106

| (pipe operator) in marble
syntax, 96

A

a (any character) in marble
syntax, 96

aggregate operators, 21, 23

Ajax calls with Observables,
11-13

animationframe Scheduler, 93—
95

animations, scheduling, 93—
95

APIs, canceling wrapped se-
quences, 25

arrays

chaining, 42-43

scheduling example, 89—
91

transforming Observables
into, 52

transforming to Observ-
ables, 13, 36

asap Scheduler, 90, 92

asynchronous code, see al-
so Schedulers
JavaScript mechanisms,
ix—xii
testing, 95-99
AsyncSubject class, 45-47, 49
average, 21

B

babel-plugin-transform-react-jsx, 106
BehaviorSubject class, 45, 47, 67
bindCallback, 14
bindNodeCallback, 14
boundsArray, 85
browsers
running RxJS code in, xiv
scheduling animations,
93-95
buffer, 58
bufferTime, 76
buffering
with buffer, 58
with bufferTime, 76
earthquake app, 76
ReplaySubject, 48
spaceship game, 58

C

caching
AsyncSubject, 47
BehaviorSubject, 48
ReplaySubject, 48
values and external state,

42
callback hell, x

callbacks
defined, x

Index

drawbacks, x
transforming to Observ-
ables, 14
canceling sequences, 24-26
caret (") in marble syntax, 96
catch, 27
caught, 27
chaining operators, 42-44
code
for this book, xv
loading code after loading
DOM, 70
running in Node.js, xiv
running in browser, xiv
cold Observables, 72-76
combineLatest
about, 55
normalizing speed, 57
spaceship game, 55, 57,
59-62, 66
Wikipedia Search app,
115
complete, 10
concatAll, 22
concurrency, see also Sched-
ulers
callbacks and, x
defined, 39
JavaScript mechanisms,
ix—xii
pipelines and, 39-44
Subject class, 44-50
connect, 75
ConnectableObservable, 75
create, 10-12
create-cycle-app, 102
createHotObservable, 98



curly brackets ({}), inlining
JavaScript values, 106
Cycle.js, 101-116
about, 101, 115
drivers, 101, 104-105,
107-110, 115
installing, 102
Model-View-Intent pat-
tern, 110-113
$ name suffix, 110
nested dialogues, 113
reusable widgets, 113-
116
state in, 101
Wikipedia Search app,
102-116

D

data
normalizing data speed,
57
transforming into Observ-
ables, 13, 36
debounce, 2
decimal precision, limiting,
86
deepEqual, 97
dependencies in Model-View-
Intent pattern, 111
dialogues, nested, 113
distinct
about, 35, 37
earthquake visualizer
app, 35, 87
spaceship game, 61
distinctUntilChanged, 61
div, 104
document fragments, 77
Document Object Model,
see DOM
dollar sign ($), Cycle.js name
suffix, 110
DOM, see also Virtual DOM
appending document
fragments, 77
attaching child events to
parent events, 79-81
defined, 102
loading code after loading
DOM, 70
Model-View-Intent pat-
tern, 110-113
performance, 79-81, 102
search box widget, 113—
116

DOMContentLoaded, 70

drivers, Cycle.js, 101, 104-
105, 107-110, 115

E

earthquake application
adding interaction, 77-81
adding list of earth-
quakes, 71-76
basic visualizer, 29-37
dashboard user interface,
69-88
performance, 79-81
sharing cold Observables,
75
showing tweets on dash-
board, 86
testing, 98
Twitter updates, 81-87
ECMAScript 6, xiv
ECMAScript 7, xii
error
defined, 10
using, 26-29
errors
callbacks and error se-
mantics, x
handling, 26-29
in marble syntax, 96
metadata, 34
Observables setup, 10
promises, xi
retrying sequences, 28
event emitters, drawbacks, xi

events
attaching child events to
parent events, 79-81
event listeners querying
sequence, 4-6
transforming to Observ-
ables, 13
expectObservable, 98
expectedValues, 99
explicit cancellation, 24
external state
avoiding with pipelines,
40-44
caching values, 42
querying sequence in
JavaScript example, 5
side effects, 5
video games, 50

Index ® 118

F
Facebook React framework,
101
filter
about, 19-20
earthquake app, 99
marble diagram, 96
Wikipedia Search app,
110
filtering
about, 19-20
with distinct, 35, 37, 61
with distinctUntilChanged, 61
earthquake app, 85-86,
99

with isVisible, 63
Wikipedia Search app,
110
first, 21
flatMap
earthquake visualizer
app, 32, 35
vs. map, 19
spaceship game, 52
using, 22-23
fold, 20-21
fragments, document, 77
frame, zero, 96
frameworks, see Cycle.js
from operator, 13, 36
fromEvent, 13

G
get, 107
groupBy, 87

H

hasNext(), Iterator pattern, 8
hot Observables, 72, 98

HTML
DOM and, 102
running RxJS code direct-
ly in browser, xiv
showing tweets on earth-
quake app dashboard,
86
HTTP
example of making Ajax
calls with Observables,
11-13
vs. JSONP, 108
hyphen (-) in marble syntax,
96



I

implicit cancellation, 25

installing
Cycle.js, 102
JSX, 106
RxJS dependency in
Node.js, xiv
intent in Model-View-Intent
pattern, 110-113
interval
about, 37
animations with, 93
cold Observables, 73
earthquake visualizer
app, 35
marble diagram, 18
spaceship game, 56, 63
isVisible, 63
Iterator pattern, 6, 8

J

JavaScript, see also Cycle.js;
Node.js; RxJS; Virtual DOM
about, ix
asynchronous code
mechanisms, ix-xii
inlining values with curly
brackets ({}), 106
querying sequence exam-
ple, 5
spaceship game, 51
transforming JavaScript
events to Observables,
13
transforming callbacks to
Observables, 14
JSON, parsing, 26-29, see
also JSONP
JSONP
defined, 32
driver (Cycle.js), 105,
109, 115
earthquake visualizer
app, 29-37
vs. HTTP, 108
query strings in URLSs,
31-32
Wikipedia Search app,
105, 108-110, 115

JSX, 106
L

lazy evaluation, 44
Leaflet, 29, 77

Listeners, in Observer pat-
tern, 6

loadJSONP, 30, 33

locations, array in Twitter exam-
ple, 84-86

M

main, 104, 109, 114

makeDOMDriver, 104

map
defined, 19
earthquake app, 72
spaceship game, 52

maps, rendering with Leaflet,
29

marble diagrams
marble testing, 95-99
resources, Xv
visualization with, 17-24
marble testing, 95-99
Meijer, Eric, 3
memory
BehaviorSubject, 48
distinct, 61
ReplaySubject, 48
merge
earthquake app, 87, 99
marble diagram, 18
mergeAll, 87, 110
merging
earthquake app, 87, 98
Observables, 18
sequences, 99
testing, 98
Wikipedia Search app,
110
Model-View-Controller (MVC)
pattern, 110
Model-View-Intent (MVI) pat-
tern, 110-113
mouse events
earthquake app, 36, 78—
81
as hot Observables, 73
hovering, 36, 78-81
spaceship game, 50, 54—
55, 57-62
as stream of values, 3-6
throttling, 1-2, 57

N

naming conventions, Observ-
ables in Cycle.js, 110

nested dialogues, 113
nested operators, 93
next operator, 10

next(), Iterator pattern, 8

Index ® 119

Node.js
running RxJS code in, xiv
transforming callbacks to
Observables, 14
Twitter updates for
earthquake app, 81-87
notifications, see Schedulers
notify, Observer pattern, 7

npm (Node Package Manager),
81

(@)

Observables, see also Ob-
servers; sequences; Sub-
scribers; Subscriptions

advantages, 6

Ajax calls with, 11-13

canceling, 24-26

cold, 72-76

combining, 55

creating, 10-15, 36, 98

Cycle.js name conven-
tions, 110

defined, 2, 9

hot, 72, 98

as immutable, 14

importing code for, xv

inclusion in ECMAScript
7, xii

marble diagrams, 17-24

merging, 18

nested, 22-23

normalizing data speed,
57

pipelines and, 39-44

published, 75

as push-based, 9

resources, Xv

Rx pattern, 9

sharing, 75

Subject class and, 44

throttling value streams,
2,57

transforming data into,
13, 36

transforming into arrays,
52

wrapping virtual tree,
114

observeOn, 91
Observer interface, 10
Observer pattern, 6-9

Observers
AsyncSubject, 47
BehaviorSubject, 47
Observer pattern, 6-9
ReplaySubject, 48



in Rx pattern, 10
Subject class and, 44

octothorp (#) in marble syn-
tax, 96

of operator, xv, 114

operators
aggregate, 21, 23
basic, 19-24, 36
chaining, 42-44
defined, 12
marble diagrams, 17-24
nested, 93
recursive, 93
resources, 36
order
callbacks, x
merging, 18, 99

P
pairwise, 80
parallax effect, 52, 68

parentheses () in marble syn-
tax, 96
parse, 26
performance
animations, 93-95
attaching child events to
parent events, 79-81
buffering values and, 76
DOM, 79-81, 102
duplication with cold Ob-
servables, 76
earthquake app, 79-81
retrying sequences, 28
Schedulers, 91
pipe operator (|) in marble
syntax, 96
pipelines
chaining operators, 42—
44
defined, 39
understanding, 39-44
pluck, 72, 80, 110
Producers, in Observer pat-
tern, 6
promises
canceling Observables
that wrap external
APIs, 25
defined, xi
simulating with AsyncSub-
ject, 49
props, 71
props$, 113
publish, 75

published Observables, 75

pull-based behavior vs. push-
based, 9

pure functions, 40

push-based behavior vs. pull-
based, 9

Q
querying
JavaScript example, 5
query strings in JSONP
URLs, 31-32

queue Scheduler, 93
R

range
with asap Scheduler, 92
canceling subscriptions,
25
cold Observables, 73
defined, 36
marble diagram, 18
spaceship game, 51
React framework, 101
Reactive Extensions

about, xii
resources, Xv
Rx pattern, 9

reactive programming, see al-
so Reactive Extensions;
RxJS
about, ix
basics, 1-6
defined, xii
Model-View-Intent pat-
tern, 110-113
ReactiveX, xv
recursive operators, 93
reduce, 19-21
repeat, 93
ReplaySubject class, 45, 48
requestAnimationframe, 93-95
resources
Observables, xv
operators, 36
RxJS, xv, 36, 68
retry, 28, 35
run, 104
Rx, see Reactive Extensions;
RxJS
Rx pattern, 9
RxJS, see also Cycle.js; Ob-
servables; Schedulers; se-
quences
about, xii

Index ® 120

basics, 1-15
installing dependency in
Node.js, xiv

as push-based, 9
resources, 36, 68
syntax, 19
version, xv

RxMarbles, xv

RxVisualizer, xv

S
same-origin policy, 32
sample, 57
scan
aggregating infinite Ob-
servables, 23
avoiding external state
with, 42
earthquake app, 85
spaceship game, 56, 60,
67
Schedulers, 89-99
animationframe, 93-95
animations, 93-95
asap, 90, 92
defined, 89
queue, 93
testing with, 95-99
using, 89-91
script tags, JSONP and, 32
search box widget, 113-116
searchDOM, 115
searchQuery, 114
searchRequest, 107, 109
searchResults, 115
select, 107
sequence variable, 97

sequences
basic operators, 19-24,
36
canceling, 24-26
chaining operators, 42—
44
events and data as, 3
infinite, 23
marble diagrams, 17-24
merging, 99
querying, 4-6
retrying, 28, 35
simulating with marble
syntax, 96
servers
client-server communica-
tion in earthquake app,
82-84
restarting, 84



share, 76
side effects
with Cycle.js, 105
defined, 5
event listeners and, xi
retrying sequences, 29
sinks, 104
snabbdom-jsx, 106

spaceship game, 50-68
adding player’s space-
ship, 54-55
generating enemies, 56—
57
improving animations,
93-95
keeping score, 66
managing collisions, 64—
66
normalizing speed, 57
setup, 50-53
shooting, 58-66, 68
speed, normalizing data
speed, 57
spreadsheets as reactive, 3
Staltz, André, 110
startWith, 54, 59
state, see also external state
Cycle.js, 101
Virtual DOM, 102
streams, see also Observables
mouse events as stream
of values, 3-6
in reactive programming,
xii
strings
query strings in JSSONP
URLs, 31-32
sequences in marble
testing, 97-99
Subject class, 44-50, 67, 83

Subjects in Observer pattern,
see Producers
subscribe, 12
subscribeOn, 91
Subscribers, see also Sub-
scriptions
adding, 10-12
cold Observables, 72-76
creating, 12
hot Observables, 72

Observer interface and,
10

published Observables,
75

Subscriptions, see also Sub-
scribers

AsyncSubject, 47

avoiding multiple, 75

BehaviorSubject, 47

cold Observables, 72-76

in Rx pattern, 9

subscribeOn, 91

unsubscribing, 24

WebSocket connections,
83

switchMap, 25
T

tables, creating for earth-
quake app, 71-76

take, 25, 43
takeWhile, 66

testing with Schedulers, 95—
99

timestamp, 59
toArray, 52
toBe, 98

traversing logic in Iterator
pattern, 8

twit, 81, 84-86
Twitter
consumer key and access
token, 82
earthquake app updates,
81-87
U

U.S. Geological Survey earth-
quake database, 29, 71

unidirectional dataflow, 101,
111

unpkg, xiv
unsubscribe, 24
update, 6

URLSs, query strings in JSONP
URLs, 31-32

userintent, 112, 114
Vv

values
BehaviorSubject, 48

Index ® 121

buffering, 48, 58, 76
caching and external
state, 42
cold Observables, 72-76
expectedValues, 99
grouping with pairwise, 80
hot Observables, 72
inlining JavaScript values
with curly brackets ({}),
106
mouse events as stream
of, 3-6
ReplaySubject, 48
streams vs. discrete, 3
video game, see spaceship
game
views in Model-View-Intent
pattern, 110-113
Virtual DOM
about, 101-102
advantages, 110
JSX and, 106
search box widget, 113-
116
Wikipedia Search app,
104-110, 113-116
virtual tree, 104-105, 110,
113
vtree$, 104

vtreeElements, 105, 110
W

webpack, xiv
webSocket operator, 83
WebSockets, 81-84

widgets, reusable widgets
with Cycle.js, 113-116

Wikipedia Search application,
102-116

withLatestFrom, 25
ws, 81-84

X

xstream, 104

Y

“Your Mouse Is a Database”,
3

Z

zero frame, 96



Thank you!

How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to

on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,
Andy Hunt, Publisher

Pracmatic SAVE 30%!
-_%\ §ookshelf Use coupon code
— BUYANOTHER2017



https://pragprog.com

The Modern Web

Get up to speed on the latest HTML, CSS, and JavaScript techniques, and secure your Node
applications.

HTML5 and CSS3 (2nd edition)

HTML5 and CSS3 are more than just buzzwords -
they're the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements

and CSS3 features you can use right now in your cur- g};%i{,i and CSS3
rent projects, with backwards compatible solutions Level Up with Today's

that ensure that you don’t leave users of older browsers Web Technologies

behind. This new edition covers even more new fea- F \ }
tures, including CSS animations, IndexedDB, and #
|

client-side validations.

Brian P. Hogan ij
(314 pages) ISBN: 9781937785598. $38 Brian P. Hogan
https://pragprog.com/book/bhh52e PR

Secure Your Node.js Web Application

Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’'ll

o
protect your users. L = ¥

Karl Duitina
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

Karl Diitina



https://pragprog.com/book/bhh52e
https://pragprog.com/book/kdnodesec

Level Up

From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms

If you last saw algorithms in a university course or at
a job interview, you're missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

Design It!

Don't engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

A Common-Sense Guide to
Data Structures and Algorithms

Level Up Your Core
Programming Skills

Jay Wengrow
edited by Brian MacDonald

The.
Dgrammers

Design It!

From Programmer
to Software Architect

\

||

Michael Keelin

Foreword by George Fairbanks
Edited by Susannah Davidson Pfalzer



https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

Data Science and Python

For data science and basic science, for you and anyone else on your team.

Data Science Essentials in Python

Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

Practical Programming, Third Edition

Classroom-tested by tens of thousands of students,
this new edition of the best-selling intro to program-
ming book is for anyone who wants to understand
computer science. Learn about design, algorithms,
testing, and debugging. Discover the fundamentals of
programming with Python 3.6—a language that’s used
in millions of devices. Write programs to solve real-
world problems, and come away with everything you
need to produce quality code. This edition has been
updated to use the new language features in Python
3.6.

Paul Gries, Jennifer Campbell, Jason Montojo
(410 pages) ISBN: 9781680502688. $49.95
https://pragprog.com/book/gwpy3

The
Pragmatic
‘ogrammers

Data Science
Essentials

in Python
Collect >

Organize >

Explore >

Predict >
Value

Dmitry Zinoviev
edited by Katharine Dvorak

Practical Programming
Third Edition ‘An Introduction to
Computer Science

Using Python 3.6


https://pragprog.com/book/dzpyds
https://pragprog.com/book/gwpy3

Explore Testing

Explore the uncharted waters of exploratory testing and delve deeper into web testing.

Explore |t!

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

The Way of the Web Tester

This book is for everyone who needs to test the web.
As a tester, you'll automate your tests. As a developer,
you’ll build more robust solutions. And as a team,
you’'ll gain a vocabulary and a means to coordinate
how to write and organize automated tests for the web.
Follow the testing pyramid and level up your skills in
user interface testing, integration testing, and unit
testing. Your new skills will free you up to do other,
more important things while letting the computer do
the one thing it’s really good at: quickly running
thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834. $29
https://pragprog.com/book/jrtest

Hltn

Explore It!
Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson
Edited by Jacquelyn Carter

The Way of the
Web Tester

A Beginner's Guide to
‘Automating Tests WY

Jonathan Rasmusson
edited by Susannah Pfalzer


https://pragprog.com/book/ehxta
https://pragprog.com/book/jrtest

Seven in Seven

From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks

Whether you need a new tool or just inspiration, Seven TR mer

Web Frameworks in Seven Weeks explores modern

options, giving you a taste of each with ideas that will Seven Web Frameworks
help you create better apps. You'll see frameworks that in Seven Weeks
leverage modern programming languages, employ Adventures in Better Web Apps
unique architectures, live client-side instead of server- £Z0% o J.
side, or embrace type systems. You'll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38 and Fred Daoud

Sertes editor: Bruce A. Tate

https://pragprog.com/book/7web Deslopment cator: Jaequelyn Carter

Jack Moffitt

Seven Concurrency Models in Seven Weeks

The

Your software needs to leverage multiple cores, handle RS roers
thousands of users and terabytes of data, and continue
working in the face of both hardware and software Seven Concurrency Models
failure. Concurrency and parallelism are the keys, and in Seven Weeks

Seven Concurrency Models in Seven Weeks equips you When Threads Unravel

for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con


https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/smreactjs5
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/smreactjs5

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764


https://pragprog.com/book/smreactjs5
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/smreactjs5
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	New World, Old Methods
	What Is Reactive Programming?
	What Is RxJS?
	Who This Book Is For
	What's in This Book
	Running the Code Examples
	Resources
	Download Sample Code

	1. The Reactive Way
	What's Reactive?
	Observers and Iterators
	The Rx Pattern and the Observable
	Creating Observables
	Wrapping Up

	2. Deep in the Sequence
	Visualizing Observables
	Basic Sequence Operators
	Canceling Sequences
	Handling Errors
	Making a Real-Time Earthquake Visualizer
	Ideas for Improvements
	Operator Rundown
	Wrapping Up

	3. Building Concurrent Programs
	Purity and the Observable Pipeline
	RxJS's Subject Class
	Spaceship Reactive!
	Ideas for Improvements
	Wrapping Up

	4. Building a Complete Web Application
	Building a Real-Time Earthquake Dashboard
	Adding a List of Earthquakes
	Getting Real-Time Updates from Twitter
	Ideas for Improvements
	Wrapping Up

	5. Bending Time with Schedulers
	Using Schedulers
	Scheduling for Animations
	Testing with Schedulers
	Wrapping Up

	6. Reactive Web Applications with Cycle.js
	Cycle.js
	Installing Cycle.js
	Our Project: Wikipedia Search
	Model-View-Intent
	Creating Reusable Widgets
	Ideas for Improvements
	Wrapping Up

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –


