
Migrating ASP.NET
Microservices to
ASP.NET Core

By Example
—
Iris Classon

Migrating ASP.NET
Microservices

to ASP.NET Core
By Example

Iris Classon

Migrating ASP.NET Microservices to ASP.NET Core: By Example

ISBN-13 (pbk): 978-1-4842-4326-8 ISBN-13 (electronic): 978-1-4842-4327-5
https://doi.org/10.1007/978-1-4842-4327-5

Copyright © 2019 by Iris Classon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484243268. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Iris Classon
29 Gothenburg, Sweden

https://doi.org/10.1007/978-1-4842-4327-5

To the .NET community, my second home
and whose never- failing encouragement helped

keep my fire burning when I second-guessed myself.

v

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

Table of Contents

Chapter 1: The SaaS System in Question ��1

Installation Requirements ���2

Multitenant Software as a Service (SaaS) ��3

What the System Does ��4

Architecture ��4

Example System Used in This Book ��7

Pipeline ���10

Summary���11

Chapter 2: Should We Migrate? ��13

The Benefits ��14

Performance ��14

Built-In Dependency Injection and Logging ���15

Flexible Deployment ��16

Modular ���17

Open Source and Community Driven ���18

Perfect for Containers ���19

Cross-Platform ��20

vi

The Challenges ���21

Lack of Resources and Documentation ���21

A Lot to Learn ��22

Versions and Changes ���23

Summary���26

Chapter 3: Phase 1: Analysis ��27

Preparing the Projects ��31

Retargeting ��31

Removing Unused Types and Members ���35

Removing Unused References ���39

Portability Summary ��45

Details Tab ���49

Summarizing the Work Required for Migrating Konstrukt�BL�Main
and Its Dependencies ��50

Analyzing with ICanHasDot�Net ���51

Analyzing the Rest of the Solution ���52

A Note on the Cost ���53

Summary ���54

Chapter 4: Phase 2: Planning the Architecture ����������������������������������55

Available Resources ��55

What to Migrate ��56

Migrating Everything ���56

Gradual Migration and a Mixed System ���57

How to Migrate��57

Migrate Whole Services ���58

Break Out Logical Parts to New Services ��58

Self-Contained Deployment or Framework Dependent ���������������������������������������59

Table of ConTenTsTable of ConTenTs

vii

Architecture and Conventions ���60

Summary���62

Chapter 5: Phase 3: Migration ��63

Full Migration ��63

Partial Migration ��65

Partial Migration Walkthrough ���66

Migrating Contracts ���69

Search and Replace ���75

Using ReSharper to Remove and Import Namespaces ����������������������������������76

Missing Type: ConfigurationManager ��81

Rewriting to Avoid Unnecessary Dependencies ��82

Missing Type: HttpContext�Current ��83

Dependency Options: New vs� Old MemoryCache ���86

Replacing Dependencies: Logging ��88

Migrating Unit Tests ���89

Conditional Compilation ��94

Konstrukt�Tenancy ��97

Migrating to Entity Framework Core ���97

Scaffolding a Database Context ��99

Migrating from ASP�NET to ASP�NET Core ��102

Service Startup ��102

Summary���121

Chapter 6: Phase 4: Upgrading the Deployment Pipeline �����������������123

Konstrukt Continuous Integration and Deployment Pipeline �����������������������������124

Create Version ���125

Build and Pack ��126

Table of ConTenTsTable of ConTenTs

viii

Run Unit Tests and Run Integration Tests ��126

Push ��126

Deployment Flow ��126

Pipeline Modifications ���128

Two Solutions ��128

CLI First ���128

Creating NuGet Packages ���129

Running Tests ��129

Deploying ��130

Summary���130

Chapter 7: Maintenance and Resources ���133

Framework Changes ���134

Announcements and Roadmaps ���135

Documentation ��137

Align Architecture with New Conventions ���138

� NET Standard ���138

Test, Test, and Then Test Some More ��138

Community Resources and Tools ��139

Dotnet Templates ���139

Portability Analyzer ��139

Windows Compatibility Pack ���140

� NET Core Test Explorer for Visual Studio Code ���140

C# for Visual Studio Code ��140

Crowdsourced Tools and Frameworks���140

Crowdsourced �NET Core Global Tools ���140

Table of ConTenTsTable of ConTenTs

ix

Stay Up to Date ���141

Microsoft Blogs��141

Podcast ��141

Live StandUps ��141

Twitter ���142

Forums ��142

Videos (General) ��142

Video Training ��142

Summary���143

Index ���145

Table of ConTenTsTable of ConTenTs

xi

About the Author

Iris Classon is a force of nature. Her unique

and engaging methods of teaching complex

topics have garnered her considerable

respect from the developer community and

a great deal of media attention – Channel

9, Hanselminutes, Computer Sweden, and

Developer Magazine – just to name a few.

She is a Microsoft MVP and holds multiple

certifications. Currently a freelance developer with her company, In Love

With Code LTD, Iris can be found consulting for large enterprises and

working on backend systems and operations for startups. She often speaks

at conferences such as TechDays and NDC and at user groups. Her passion

for teaching code extends to her tweets @IrisClasson, her popular blog,

StackOverflow, MSDN, and a myriad of other social media sites.

xiii

About the Technical Reviewer

Sean Whitesell is a software developer in

Tulsa, Oklahoma, and has been the president

of the Tulsa .NET User Group since 2009.

He is a frequent speaker at user groups and

conferences. Sean has more than 18 years

of experience in various aspects of software

development ranging from Azure, Kubernetes,

client-server, ASP.NET, Angular, embedded,

and electronics development. His passions are in solving problems

programmatically, coding craftsmanship, and teaching programming and

martial arts.

https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=PPGZkMqosR-Lo8_ewvlQejfXCwkdFBfcyZ75k46al74&s=K6yiUsKvTccbVpEsZDy73OwaTM0MwkeFQnIcW98LPOY&e=#_blank

xv

Acknowledgments

I have to start by thanking my editors Jill Balzano and Joan Murray for their

patience and support in writing this book. I had an exciting year with a

move, travelling, belly growing, and childbirth, and Joan and Jill gave me

flexibility when I needed it, focus and guidance when required, and most

importantly, helped me stay on track so I could deliver this book.

My place of work, Konstrukt, has been vital for this book – not only by

trusting me with publishing vital parts of our code but also by letting me

share our journey.

But as cheesy as it might sound, the biggest thank you goes to my

partner Emanuel Olsson. Dealing with a stressed programmer is one

thing, but a pregnant and stressed programmer is a whole new ball game!

Whenever I felt my motivation and energy drop, I could always turn to him

for support.

Lastly, I want to thank my son, Loke Tiberiu, for keeping me

company – kicking and rolling in my belly, burping and farting once out

(and maybe a tiny bit of crying) – while writing this book. I couldn’t have

asked for better company!

xvii

Introduction

I remember when I was straight out of school how excited I was whenever

I came across something new – a new language, framework, or tool – it

was always fun and exciting to play around with it. After many years as a

programmer, I still get excited, but I am also increasingly skeptical and

hesitant to invest time in new things as I’ve seen so many come and go and

not survive the test of time. This also goes for migrating existing systems.

I used to want to rewrite everything, and I probably still do, but I’ve also

seen how expensive this can get without necessarily yielding a better code

base or system.

When .NET Core was first announced, I was enthusiastic but

skeptical – even a bit cynical. I had jumped on the portable class library

train early on and had my share of fun with that, and therefore the promise

of .NET Core wasn’t something I was going to believe until I could see

it delivered. ASP.NET Core was the first framework to make use of .NET

Core, and although I could see many benefits early on (often a result

of getting to rewrite something that has collected technical debt over

time), I wanted to wait and see where this would go. As the adoption rate

increased, along with the contribution rate to this open source framework,

we started discussing at work if ASP.NET Core could be something for us.

The problems I came across while trying to answer that question were that

information on ASP.NET Core was lacking, was referring to older versions,

was scattered, inconsistent, and most importantly lacked real-world

examples of doing large-scale migrations. If you, like me, are a natural

skeptic, I can imagine that you would lean more toward a no in terms of

migrating, even more so if you get lost in the information and opinion

jungle, we spend most our time in. My aim with this book is to foremost

xviii

show a real-world example, with actual code from our

system, of a migration from ASP.NET to ASP.NET Core neatly organized

in easy- to- follow steps. While the book won’t be an authoritative guide

on ASP.NET Core (there are plenty of excellent books that cover ASP.

NET Core), it will cover what you need to know to make a decision on

whether or not to migrate. It will cover your migration options, how to do

an analysis, and prepare, migrate, and maintain your web services. The

book also has an extensive list of resources and tools that can come in

handy, as well as plenty of examples of both problems and solutions

that you might come across. This book has all the information that I was

struggling to find, and my hope is that this book will answer the majority

of your questions and let you focus on building awesome software be that

with ASP.NET Core or not.

 A Bit of Background Material
When I first wrote the outline for this book, I didn’t plan on spending too

much time explaining ASP.NET Core. I would assume a certain level of

understanding from you, the reader, and we’d hit the ground running. But,

often as developers, we are pressed for time and decisions are made when

we start implementing, with good intentions to at some point take the

time to dive deep in a new technology, but as we all can attest, sometimes

we never get around to it. Therefore, I want to take a little of your time

in the beginning of this book to share my insights and cover some of the

more valuable aspects of ASP.NET Core that you might not be aware of.

Hopefully, this will allow us to create a solid base for the migration that lies

ahead of us in this book.

Besides understanding .NET Core, .NET Standard, as well as ASP.

NET Core, I also want you to have an insight into the history behind the

Microsoft web development stack and how we ended up with ASP.NET

Core. And an important part of that is covering the difference between ASP.

InTroduCTIonInTroduCTIon

xix

NET Web Forms, ASP.NET Web API, and ASP.NET Core. Not to mention

the difference between the two project types: ASP.NET Core (.NET Core)

and ASP.NET Core (.NET Framework).

 Web Development Stack Timeline
Let’s see if I can condense the history of ASP.NET Core and how we got

here. If you have been around for a while, you know it’s a long story that

can be tracked back to when Classic ASP (Active Server Pages) was a

thing, and maybe even further back to one of Microsoft’s first inter-process

communication methods, DDE (Dynamic Data Exchange), in the late

1980s. Classic ASP was a revolutionizing way of dynamically rendering

server-side pages with baked-in logic, and later evolved to ASP 1.0,

followed by ASP.NET and Web Forms in 2001. In 2009, ASP.NET MVC was

released as a (much-needed) alternative to Web Forms. Simultaneously,

communication methods evolved from DDE to DCOM, to .NET

Remoting, to ASP Web Services in early 2000. In 2006, WCF (Windows

Communication Foundation) was released, tying together the different

options and supporting a variety of communication standards. WCF was

intended to be a unified programming model for building service-oriented

applications that had explicit support for service-oriented development.

However, WCF had some limitations in regard to REST (Representational

State Transfer) support. The WCF Web API project was intended to fill

the gaps and eventually evolved and became what we today know as Web

API. Web API was quickly embraced, partly because it tied in nicely with

the ASP.NET MVC style of programming. Not so surprisingly, when ASP.

NET Core was written, as a rewrite of ASP.NET, the two were combined

(Web API and MVC). But how exactly do .NET Core, .NET Standard, and

ASP.NET Core fit in?

InTroduCTIonInTroduCTIon

xx

 Core and More
As I see it, there were two major driving forces that led to what we today

know as .NET Core. Firstly, there was an increasing need for cross- platform

compatibility to stay relevant, and secondly, we had gotten to a place where

we had too many subsets of the .NET Framework, which was causing all

sorts of problems as the subsets were created and maintained by different

teams. 2014 was the year many exciting announcements were made by

Microsoft. ASP.NET vNext was announced in April, and .NET Core in

November the same year. .NET Core was a fork and open source rewrite of

.NET, and likewise ASP.NET vNext was a complete rewrite of ASP.NET. It

was later known as ASP.NET 5 (and by some as project K), until Microsoft

realized the name was confusing and renamed it to ASP.NET Core.

In 2016, the .NET Standard was introduced to us, as a way to bring

everything together. .NET Standard is a specification; it defines a set of

available .NET APIs. You can think of it as interfaces and the frameworks

that support the (or version of) .NET Standard as implementations. If you

ever had the pleasure of working with Portable Class Libraries (PCL) and

the framework union model they used, you’ll be pleased to hear that .NET

Standard will replace PCLs.

To sum up, ASP.NET Core is the next step in the web development

evolution, an evolution that goes back more than 30 years. During that time a

lot has happened; tools and frameworks have been developed and matured.

The goal has always been to make it easier for us as developers to create

performant, flexible, yet sturdy services that allow freedom in terms of how

we communicate over the network and serve our content. ASP.NET Core puts

together some of the last missing pieces in terms of combining the power of

other frameworks while giving us the flexibility to choose the operating system

best suited for our service and optimal performance all while encouraging

best practices. You might not decide to migrate after reading this book or

doing the suggested analysis, but the information will be valuable nonetheless

as ASP.NET Core is the future of web development with the Microsoft stack.

InTroduCTIonInTroduCTIon

1© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_1

CHAPTER 1

The SaaS System
in Question
I never pictured myself working at a startup. For as long as I’ve been

working as a developer, it has mostly been consulting gigs, and to me a

startup meant unreasonable working hours, low pay, a bunch of hipsters

arguing over what toys and games to stock in the conference room, plus

little to no stability. But, never say never, especially in the tech world.

One evening, I joined a friend of mine for a late-night coding session

with his business partner Johan (also a developer). They were battling

performance problems and bugs into the wee hours of the morning.

One evening turned into several weekends in a row, complete with the pick

and mix candy (a Swedish specialty), more caffeine than anyone should

consume, and raucous music pouring out from the speakers.

We coded tirelessly in that office overlooking the city center, and I ended

up offering to help profile the services they were experiencing problems

with. The services were ASP.NET services with significant performance

and memory use problems. At that time, the answer to the problem was

to create a local, on-prem solution for each customer. Each customer had

a local installation, not a big deal, as there were only two customers. But,

understanding that their client list was growing, I think we all recognized

the value of taking the system to the cloud to make a multitenant solution.

The partners chose Azure, an excellent choice I thought, as I had a decent

amount of experience with Azure and had been impressed. Then the

2

elephant entered the room, how do we make the shift from on-prem to

multitenant? Doesn’t this mean a lot of rewriting and reworking of code?

What about all the features and bug fixes we had promised our current and

prospective clients? I could see this was daunting to all involved, but I also

recognized it as a great opportunity. In no time, I found myself working

full days with complete access and rights to all their Azure accounts and

servers. Long story short, I signed a contract and was now officially part of

a startup.

You might be wondering why I’m telling you all this. The backstory

ends at the point when we started migrating, a great starting point to share

with you my experience, advice, shortcuts, and hard-earned lessons. So,

let’s get started.

We will begin our journey by learning what the system does, its parts,

and how it all comes together. Throughout this book, I will use a ton of

example code. I want to keep everything as authentic as possible, and

therefore the services and code you will see will be actual working code

from our system (with minor modifications to protect the innocent) and

yes, the good, the bad, and the ugly. My goal is to provide you with a

realistic scenario to work from, and something transferable and relevant to

what you are working on.

 Installation Requirements
Although you can run ASP.NET Core on Linux and use, for example, Visual

Studio Code as your editor, I’ve chosen to use Visual Studio Community

Edition (free) on Windows to leverage some additional tools and

extensions that will simplify the migration. These tools only simplify the

migration, and the vital steps of the migration are not dependent upon the

tools, and alternative ways will be covered in this book.

Chapter 1 the SaaS SyStem in QueStion

3

Requirements for a migration using the steps described in the book:

• Windows 10

• Visual Studio Community Edition 2017 (free)

• .NET Core SDK (latest or the version you are targeting)

Additional requirements for running the examples in the book:

• IIS 7 or later

• Git and Git Bash

• SQL Server Express 2016

 Multitenant Software as a Service (SaaS)
The system itself is, as I mentioned, a multitenant solution. It’s a SaaS

system (Software as a Service), which means it has a cloud computing

service model where the system is centrally hosted. The clients, whom we

refer to as tenants, do not have to manage or control the infrastructure.

That is unless they choose, or rather insist on, an on-premise installation

(we have some government institutions that for legal reasons cannot use

the cloud solution). The tenants are merely consumers of the applications,

and while it feels like they have each their own dedicated cloud installation

of our system, they are using the same applications and services. We get

the benefit of not having to manage x-number of infrastructure setups

and discuss hardware and software requirements and licenses, support

becomes more manageable, and we can roll out patches and updates

as we please. There is also a significant financial gain to this, which is

another important factor. But, the challenges are plenty. Data security

is an obvious challenge, and so is uptime. We have SLAs (Service Level

Agreements) toward our tenants, but we also have SLAs with our cloud

vendor and the services we use there. One of our biggest challenges, and

Chapter 1 the SaaS SyStem in QueStion

4

a very common one for SaaS solutions, is load, latency, and performance.

Load is uncertain and very difficult to predict. And the performance issues

we were seeing in the on-premise implementations significantly increased

when we adopted the cloud model. Why? We work with data, a lot of it.

 What the System Does
Konstrukt is a planning platform designed to handle different types of

planning scenarios for all kind of organizations.

Any quantitative planning and data consolidation, simple or complex,

can be managed in a secure and user-friendly way, replacing the misuse

of Excel in many organizations. The system is flexible and covers a wide

range of planning scenarios such as strategic planning, rolling forecasting,

data-driven budgeting, workforce capacity planning, compensation and

equity planning, and so on. It probably doesn’t come as a surprise that the

system has a great deal of complexity, and a reoccurring challenge we have

is performance. I’ll get back to this in the next chapter where we discuss

the pros and cons of doing a migration.

 Architecture
Konstrukt consists of nine ASP.NET Web API services and one stateless

and decoupled client written in JavaScript, HTML, and CSS (Figure 1-1).

Each tenant has their own database, and we currently only use SQL Server

for our databases. The majority of the services share the same databases

on the same server cluster, some separated by schemas, and we also have

NoSQL databases (MongoDB) used by some services. Deceptively this

makes it look like we have a true microservice architecture, but we don’t.

We have a mix of microservices and what I often refer to as a distributed

monolith. A distributed monolith is a system deployed as several

small services that resemble microservices that are fairly well scoped

Chapter 1 the SaaS SyStem in QueStion

5

and small, but rely on the same datastore and are not failure resistant.

Some developers still refer to services like these as microservices, while

some would disagree. While the title of the book talks about migrating

microservices, we will migrate services with various degrees of decoupling

and failure resistance to give you a realistic picture of how it is to migrate

an existing complex system, legacy or not. If you have a monolith, in other

words, a single-tier application, don’t worry. Some of our services are

more or less monoliths, and I’ll make sure to cover migration examples

including those.

Figure 1-1. The system we are migrating

Chapter 1 the SaaS SyStem in QueStion

6

I’m only going to use some services as an example for the migration,

but in case you wonder how the system looks like, these are the main

services and what they do:

Authentication

Manages authentication. We support several

authentication methods, such as

• Internal database login

• ADFS

• SAML2

• And a few more

After the initial authentication, a JWT (JSON Web

Token) is provided as an authentication header. This

token is saved on the client and used for subsequent

requests.

Administration

Manages all the logic that is available for system

admins, such as setting access rights and importing

users.

Main

This service is mainly concerned with actions that

are driven by actions in the client. Two examples

would be when a user sends in a budget for approval

and when a user adds a comment on a budget.

AggregationEngine

Writes and reads budget data to the user budget line

tables.

Chapter 1 the SaaS SyStem in QueStion

7

CalculationEngine

Queues and processes calculations that generate

data for the different plans and budgets.

NotificationService

Manages notifications, currently WebSocket

notifications. Notifications can be messages in the

chat or user notifications when a budget has been

submitted for approval. We use SignalR for our

notifications, a popular library for working with real-

time web communication.

 Example System Used in This Book
As you probably have concluded, the system is of considerable size. It’s not

colossal, but large nonetheless. For the purpose of this book, I’ve trimmed

the solution, and I have some particular services in mind that will receive

more attention in this book as shown in Figure 1-2.

Chapter 1 the SaaS SyStem in QueStion

8

This book focuses on migrating the Konstrukt.SL.Main service and its

dependencies (shown in Figure 1-3) while making sure that the solution

libraries it depends on can also be used by services that are not migrated.

This means that while the service will target .NET Core, it’s solution

dependencies will be migrated to .NET Standard. Konstrukt.SL.Main

was the starting point for Konstrukt and has subsequently accumulated

Figure 1-2. The trimmed down version of Konstrukt that I’m using as
an example in this book

Chapter 1 the SaaS SyStem in QueStion

9

a fair bit of spaghetti code over the years. As we are moving toward a

microservice architecture, we have broken out areas of responsibilities to

separate services, and Konstrukt.SL.Main was an excellent candidate for

that. I’ll get back to this later in the book.

I also want to mention the notification service, which at the moment

manages WebSocket notifications using SignalR. This is a lightweight

service with just a few dependencies that are popular libraries – which

makes it a good candidate for a full migration. However, Asp.NET Core

SignalR differs significantly from SignalR, and a migration would require

a separate book on the topic, and therefore I’ve omitted the code for the

service.

Figure 1-3. The dependency graph for the example code

Chapter 1 the SaaS SyStem in QueStion

10

 Pipeline
Later in the book we will also take a look at how we have to modify the

pipeline as we migrate our services and libraries. Our current pipeline

looks like this.

We use Git as our version control system, and we use GitHub for our

repository. We have a build server that runs TeamCity – TeamCity is a build

server service. It runs the following build steps sequentially – and if one

step fails, the other steps won’t run:

 1. Build backend (builds the backend code, and

packages each service as a NuGet package)

 2. Run backend unit tests (runs our unit tests)

 3. Build client (builds our client, minifies and bundles

resources)

 4. Run client tests (runs the client tests in a headless

browser)

 5. Promote to EDGE (pushes our packages to our

EDGE server environment and verifies that all the

services can start and run without any issues)

On the build server, we also run a service called Octopus Deploy.

Octopus Deploy is an automated release management tool for Windows.

You can automate and manage deployments on remote machines

from a central place, and this is done by installing something referred

to as “tentacles” on the receiving machines. The tentacles create

communication channels that we can push our packages through. The

machines are organized in groups tagged as an environment. We have

different number of machines depending on the environment. Our EDGE

environment is just one virtual machine, because we only want to have

a first place to deploy to and make sure everything runs fine. Our second

Chapter 1 the SaaS SyStem in QueStion

11

environment is our QA (quality assurance) environment. This is where we

do our testing, and we have the services spread out on two machines. Our

AT environment (acceptance testing) has four machines and is identical

to the production environment as it is the final stop before deploying to

production. Acceptance testing is the final testing that we do, and we have

both certain customers and implementation consultants (consultants that

help the tenant configure their data and calculations) testing in AT. The

final environment, also with four virtual machines, is PROD – production.

Ideally, we would have each service run on a single virtual machine so

we would have proper isolation, but unfortunately that would be too

expensive for us. That is also one of the reasons that we would like to

migrate our services, and I’m going to talk about that a whole lot more in

the next chapter.

 Summary
In this chapter we’ve taken a look at the Konstrukt architecture and what

the system does. The system consists of nine services, various tools, and a

SQL server for storage. Konstrukt does numeric planning for enterprises

and manages performance-sensitive operations tied to the planning and

data consolidation. Throughout the book we will use a slice of the system

to guide you through a step-by-step migration, including changes to the

deployment pipeline.

In the next chapter, we will discuss the pros and cons of migrating.

Chapter 1 the SaaS SyStem in QueStion

13© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_2

CHAPTER 2

Should We Migrate?
This is by far the most popular question I get when I tell people about

our migration or when I do a conference session on the topic. There is no

straightforward answer, as most decisions in tech – it depends.

We were in Hungary for a weeklong kickoff with work when we

first started discussing migrating to .NET Core. The kickoff was a yearly

tradition where we set aside a whole week to learn new things without

the pressure of having to reply to customers, deliver new features, or do

other typical work. .NET Core was new and sexy, and it had come up in

conversation several times.

I had a new colleague, Tobias, and he had gone through our solution

and removed all the assemblies we weren’t using*. Furthermore, we

decided to see if we could migrate to .NET Core without too much trouble.

We spent the week looking into that, as well as discussing the pros and

cons. Knowing the general pros and cons might give you a quick idea if

there is something to gain from a migration. Here is an overview of the

pros and cons.

* ReSharper, a commercial Visual Studio extension, has a feature that
lets you discover and remove unused assemblies. There is also a free
extension, ResolveUR, that does the same. Take your time, remove
one at the time, and don’t forget to test in between. We will look at
this in a later chapter.

14

 The Benefits
Here is an overview of what many consider as main benefits of migrating –

or improvements to ASP.NET Core. Some of these vary depending on the

version of ASP.NET Core, and some also depend on whether or not you are

targeting .NET Core (compared to targeting the full .NET Framework). The

items are not listed in order of importance.

 Performance
The expected performance gains would be very important for us as we

have a system that does heavy work, a lot of calculations, and would also

need to be able to handle many concurrent requests. Performance in

ASP.NET Core has improved in many ways (Figures 2-1 and 2-2) – the

library itself has been improved during the rewrite, and so has the .NET

Core framework. Additionally, other big changes such as modularity and

independent hosting have also contributed to improved performance.

ASP.NET Core is between 6 and 23 times faster than ASP.NET, faster

than Node.js, and could by the second version handle over 1.5 million

requests per second. In ASP.NET Core 2.2 the performance has improved

further. If you want to learn more about the benchmarking, visit the

repository at https://github.com/aspnet/benchmarks.

Figure 2-1. Benchmarking results for plain text responses per second
for ASP.NET Core, Node.js and ASP.NET Mono

ChapTeR 2 ShoUld We MigRaTe?

https://github.com/aspnet/benchmarks

15

 Built-In Dependency Injection and Logging
As with any rewrite, the Microsoft team, together with the community, set

out to write a much better version and to encourage good practices right

from the start. Two noticeable new improvements are built-in dependency

injection (DI) and logging. If you already make heavy use of dependency

injection, this might not be a big deal – but ASP.NET Core lets you easily

plug in your preferred container resolver, and from there on everything

just works. Integrating DI in a library is not revolutionary, but what is a

noticeable difference from before is how the DI now naturally blends in

with ASP.NET Core. For example, reading and working with configuration

files also use DI, and you can map a settings section to a concrete class

of the abstract type IOptions<MySettings> and work with strongly typed

accessors to your settings. We already had set up our own version of this,

but this certainly makes everything cleaner.

ASP.NET Core encourages better practices – and with better practices

you can expect more pliable code that is easier to test and maintain. If you

have a system that undergoes a lot of changes you’ve experienced locking

yourself in on bad solutions, this might be an important benefit.

Figure 2-2. Benchmarking results for responses per second at 20
queries per request for ASP.NET Core, Node.js and ASP.NET Mono

ChapTeR 2 ShoUld We MigRaTe?

16

dependency injection is when you map a concrete type to an
abstraction such as an interface and inject the interface (for example)
in the constructor of another class instead of creating a new concrete
instance in that class. The abstraction and implementation are usually
mapped and resolved from a container. This allows for loose coupling,
easier testing and mocking, and lets you resolve your dependencies
in different ways – as singletons, per request or per resolution.

 Flexible Deployment
By flexible deployment I’m referring to the fact that you can choose

HTTP server, and you can choose deployment mode – self-contained or

framework dependent.

By default, ASP.NET Core ships with two server implementations,

Kestrel (cross-platform) and HTTP.sys (Windows), but you could use

another web server as long as it is compatible. A reverse proxy server is

still recommended, for example, IIS, NGINX, or Apache. Not being tied to

a specific web server allows us to be flexible and is also in part what lets us

deploy to different operating systems. ASP.NET was heavily tied to IIS which

made portability impossible. It also had heavy dependencies that would be

pulled in regardless of them being used or not, with slow request pipelines

that had unnecessary hurdles. OWIN, Open Web Interface for .NET, is a

specification that aims to decouple the web server from the web application,

and project Katana in ASP.NET (now retired) was an OWIN implementation

by Microsoft. ASP.NET Core took over and fully complies with the OWIN

specification. If you want to build a custom web server, you can as ASP.NET

Core fully supports OWIN. If you think about it, ASP.NET Core applications

are just .NET Core applications that process incoming HTTP requests.

Let’s talk more about deployment. When you deploy you can choose to

deploy the application or service as self-contained application – this means

all the DLLs it needs are packaged with it and you are not dependent on a

ChapTeR 2 ShoUld We MigRaTe?

17

system-wide installation of the libraries (pertaining to ASP.NET Core and

.NET Core) the application is dependent on. The finished package is larger,

but you have everything you need and this can simplify deployment – in

particular, when you want to just zip everything up and have it work on any

machine. The downside is that you become responsible for managing the

version, and you need to think about the target framework or frameworks

before you publish and pack. The other option is the one that we are more

familiar with from ASP.NET, framework- dependent deployment. The libraries

have to be installed system wide; in other words, the system you deploy to

has to be prepared and maintained. I’ll get back to this later as there are some

caveats with both options. The important takeaway is that you have options

that you don’t have with ASP.NET, options that let you tweak and customize

the deployment to better suit your scenario and requirements.

 Modular
One thing I didn’t mention in the preceding section is the modular HTTP

request pipeline, a result of implementing the OWIN specification. This is

available in ASP.NET with Katana, but comes more naturally in ASP.NET

Core. To explain this in simple terms, you can very easily plug in your own

middleware that interacts with the requests and responses on their way

in and out. We use this to modify our requests, custom logging, and a few

more things. It lets us return or redirect early in the request processing.

This modularity is a theme that you see throughout ASP.NET Core. For

example, everything is a NuGet package. You don’t add references, you

add NuGet packages. And there are many packages, because the big ASP.

NET Framework has been completely rewritten in ASP.NET Core to consist

of many smaller libraries. The upside is that Microsoft can release more

often, the downside is of course version alignment and dependencies.

This has been sorted with metapackages, a package that references other

packages. It includes all supported packages by the ASP.NET Core team

and the Entity Framework team. We’ll talk more about this later.

ChapTeR 2 ShoUld We MigRaTe?

18

 Open Source and Community Driven
I mentioned earlier that ASP.NET Core is open source, and this is fantastic.

There are many good things that come with that, and transparency is the

biggest one I would say. I can see the roadmap and join in on the discussion if

I want to; I can see issues and breaking changes, suggestions, and discussions.

And an active community is doing the same and keeps pushing the projects

forward all while making sure that best practices are followed and possible

future issues are considered. There are currently over 147 repositories

(including Entity Framework Core repositories) and growing! (Figure 2-3).

Figure 2-3. The ASP.NET GitHub page

You can contribute, and it’s easier than you think! For example, I’ve

submitted issues, joined the discussions, and helped other developers

with workarounds. The access to the code means that debugging is much

ChapTeR 2 ShoUld We MigRaTe?

19

easier, and you can familiarize yourself with the code and see the history

of the code. Very useful when classes suddenly disappear or an issue is

solved and you want to know how. Of course, you can decompile any

library in .NET, but there might be legal limitations depending on the user

agreement and your country of residence. Regardless, you wouldn’t have

the history and the issues and discussions tied to a particular line of code.

 Perfect for Containers
By nature, .NET Core is lightweight and modular, which makes it much

easier to use with containers. Container is the concept of virtualization

at the operating system level. From the inside of a container, it is a

self-contained machine. It thinks it has its own operating system and

everything that comes with it. For the services running inside the container

(virtual boundaries), it feels like they run on a dedicated machine. In

reality, they share the same machine as other containers using the same

host and can only access resources within the container or explicitly made

available. It feels like a virtual machine, but you don’t have the overhead

of a guest operating system, startup time, and more. The operating system

is reused, and instead virtual boundaries let us work with containers as

if they were separate machines. You basically bundle your application

with everything it needs, and you get consistency, portability, flexibility,

testability, and isolation in one package.

Containers have been around for a long time in the Linux world, but

security and isolation concerns impeded the container movement on

Windows. Thankfully we have seen massive changes the last few years,

and now containers are first-class citizen even on Windows and in Visual

Studio. As a matter of fact, you can run your applications in containers

straight from the IDE. It’s either just a checkbox you need to tick when

you create a new project or you can add that functionality to an existing

project. Visual Studio will create the container files (called Docker files)

ChapTeR 2 ShoUld We MigRaTe?

20

as well as Compose files – files that use Docker Compose to run several

containers that can communicate with each other.

Server applications that run in the background are a good fit for

containers, and ASP.NET Core applications are great candidates as they are

lightweight, a good “cultural fit.” Let’s cover some other benefits.

 Cross-Platform
.NET Core can also run in a Linux environment – and that also goes for

ASP.NET Core targeting the .NET Core framework. That means we can

have lighter containers – and also a host that doesn’t necessarily require

a license. As a result, we can increase the concurrent services density.

Moreover, this allows us to expand our isolated testing environment to

several environments such as Quality Assurance (QA) and Acceptance

Testing (AT) without the cost or hardware overhead. However, if you can’t

target the .NET Core framework and you have some services that have to

target the full .NET Framework, you can still benefit from both containers

and the cross- platform ability. Something called “hybrid swarm” (a swarm

is a cluster of containers) lets us run mixed environment containers – in

other words, we can run Windows and Linux applications in one cluster.

A s a startup, cost has been an issue for us straight from the start and

also been something that has hindered our deployment pipeline as we

have crammed several services on one machine to save money. With better

isolation comes easier scaling, debugging, and deploying.

Besides these, there are also other benefits to running on other

platforms – and for us that is the access to mature and well-maintained tools.

While most Linux tools have a Windows equivalent, there are still some tools

that have a higher maturity level on Linux that we would love to leverage.

If you want to learn more about the tools available to you on the Linux

platform to manage multiple services, I would highly recommend one of

my favorite books on the topic, DevOps 2.0.

ChapTeR 2 ShoUld We MigRaTe?

21

 The Challenges
Now that we have covered the main selling points, it’s important that we

also take a look at the downsides so we can take these into account when

we make our decisions.

 Lack of Resources and Documentation
Many of the downsides to ASP.NET Core has to do with the lack of maturity

compared to ASP.NET. There is less help available online when it comes

to forums, articles, and documentation. If we compare questions asked

on StackOverflow with the ASP.NET Core tag vs. the ASP.NET tag, we see a

significant difference. ASP.NET has had the time to collect resources and

has been adopted by many developers (Figure 2-4).

Figure 2-4. Questions asked with the ASP.NET Core vs. ASP.NET tags
on StackOverflow at the time of writing

ChapTeR 2 ShoUld We MigRaTe?

22

This will change over time, and it’s worth keeping in mind that it can also

be a challenge to sort through the many different ways of solving ASP.NET-

related problems as that framework also changed over time. Nonetheless,

one of the biggest downsides of migrating to ASP.NET Core is that there are

less resources available although ASP.NET Core is catching up. Knowing

where to look helps, and the top five places I would recommend are

• Documentation

• GitHub repository

• Microsoft blogs

• Forums such as MSDN and StackOverflow

• Developer blogs such as those by Microsoft MVPs

You can also reach out to the team on social media such as Twitter and

support forums and by submitting or commenting on issues on GitHub.

Don’t hesitate to ask questions; you are most likely not alone.

 A Lot to Learn
There are two parts to this challenge – the first one is that you and the rest

of the team have to relearn a framework, and the second part is that finding

new teammates requires that they either already know ASP.NET Core or

are willing to learn. While neither of the two might seem an unreasonable

requirement, it’s still important to take into account – in particular when

you do estimates.

Fortunately, there are many excellent resources for learning ASP.NET

Core; here are some of my favorites:

• ASP.NET Core documentation has very good articles

on how to get started as well as solving particular

problems. Start by looking there as the documentation

is maintained by the community and is kept up to date.

ChapTeR 2 ShoUld We MigRaTe?

23

• Apress has several books you can choose from. Make

sure you get the latest edition and for the right ASP.NET

Core version.

• Microsoft Virtual Academy offers free training with

hands-on examples, and you might also be able to find

some free books by Microsoft press.

• Online video learning by, for example, Pluralsight.

The majority of these sites have free trials. There are

also YouTube videos, but they don’t go through the

same review process. You can also find videos from

conferences that are free to watch and download.

• Channel 9 hosts videos from Microsoft conferences

such as BUILD (conference where changes and new

products are announced) as well as Microsoft produced

educational videos and recorded streams by the ASP.

NET Core team.

• Other large conferences such as NDC and .NET Conf

also publish their conference recordings for free.

 Versions and Changes
While Microsoft together with the community is trying their best to

avoid breaking changes, there will always be some – in particular in the

beginning. The first few versions of ASP.NET Core had several unpopular

breaking changes, such as going back to csproj project format instead of

using JSON.

ChapTeR 2 ShoUld We MigRaTe?

24

Navigating between versions, information and documentation on

versions can be a pain. Not to mention migrating between versions, or

deploying different versions (deployment has been simplified and I’d say

deploying different versions is less painful than dealing with ASP.NET

version deployments if you are targeting ASP.NET Core 2.0 and up).

The reason why there are breaking changes is in large part due to

the fact that ASP.NET Core was new and hadn’t found its identity in

the beginning. It is also open source and there is a big push from the

community to implement the best possible solutions, even if that means

going back on a previous decision. I recommend that keep an eye on issues

tagged with breaking-changes in the ASP.NET Core repository (Figure 2-5).

Additionally, always double check that you are using the right version of

the documentation when browsing the documentation (Figure 2-6).

Figure 2-5. Make sure you keep an eye on issues tagged with
“Breaking change”

ChapTeR 2 ShoUld We MigRaTe?

25

Figure 2-6. Make sure to pick the right version when you read the
documentation

ASP.NET Core is maturing, the adoption rate is great, and the

community is very engaged. This means that it has become more stable,

there is more pressure to avoid breaking change, and there are less big

changes as the foundation has been built.

I always recommend developers to keep an eye on the frameworks that

they use – in particular the larger ones such as ASP.NET Core.

ChapTeR 2 ShoUld We MigRaTe?

26

There are two ways to do that, and I recommend both:

• Subscribe to the repository and enable email

notifications.

• Subscribe to the Microsoft ASP.NET and ASP.NET Core

blogs and announcements.

 Summary
We’ve now taken a detailed look at the pros and cons of migrating to

ASP.NET Core. On the upside we have a modular, performant, cross-

platform framework rewritten with best practices in mind. The downsides

are lack of maturity, frequent changes, and of course a lot to learn. In the

next chapter, we will do an extensive analysis to find out how much work is

involved, and do we have any deal breakers?

ChapTeR 2 ShoUld We MigRaTe?

27© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_3

CHAPTER 3

Phase 1: Analysis
It was early summer of 2016 and the team was in Hungary for a week of

workshops and fun. Every year we would take a week somewhere remote

and spend the days learning new, but relevant, skills and the afternoons

and evenings building a good company culture and exchange knowledge.

Our team had recently hired another backend developer, Tobias, and

he was just as eager as me to explore .NET Core. We had spent 2 days

penetration testing and had finished a security evaluation of the system.

While sitting at a lovely café, we started discussing ASP.NET Core and

if that was something we should consider. Naturally, we started talking

about dependencies and what could be migrated – and if we had any

deal breakers. I pulled up my laptop, and we started going through our

packages and references one by one.

That was the start of our journey migrating to ASP.NET Core. Although

we didn’t do a full analysis or even attempt a migration that summer, it

created a starting point. We were in the midst of moving to a new cloud

provider and had our hands full with the move, but we had explored

the pros and cons of migrating, and we had started analyzing our

solution. Regardless of how you and your team decide to go about this, I

recommend that you set aside a few days, without the pressure to produce

results or joggle stories. With proper groundwork you can get a good

analysis done, as well as make the migration easier.

Therefore, in this chapter, I will walk you through a deep analysis using

a real-world example (that has been trimmed down for readability). We are

going to prepare, analyze, and plan. Let’s get started. I’m going to use the

28

Main project and its dependencies as an example in this chapter as well as

briefly covering the other services at the end of the chapter.

This is how the Main service is layered (Figure 3-1):

• SL.Main: The service layer (endpoints and web service)

• BL.Main: Business logic layer

• DAL.Main: Data access layer

The projects have the following dependencies in the solution

(Figure 3- 2):

• “Konstrukt.Share”: Contains plain objects, extensions,

and utility classes

• “Konstrukt.Contracts”: Interfaces used in several

projects, usually defining infrastructure logic

• “Konstrukt.Tenancy”: Library that makes the services

multitenant. It queries a main database for tenant

connection strings that are dynamically decrypted and

changed per request

• “Konstrukt.Entities”: The entity objects and the EF

context model

• “Konstrukt.Logging”: Library that manages logging to

different sources

Relevant test projects:

• “Konstrukt.Main.Tests”: Unit tests

• “Konstrukt.Tests.Common”: Base classes, helpers, and

mocks for unit tests

Integration tests are excluded for Konstrukt.Main in this example.

Chapter 3 phase 1: analysis

29

Figure 3-1. Project structure

Chapter 3 phase 1: analysis

30

Figure 3-2. SL.Main dependency diagram

Chapter 3 phase 1: analysis

31

 Preparing the Projects
When we do an analysis, we want to have as little noise as possible. We

also certainly don’t want to do any pointless analysis and planning for

dependencies that we aren’t using. Therefore, we are going to remove unused

members, types, and references. But before we go ahead and do that, we will

first upgrade the projects and target a newer version of the .NET Framework.

 Retargeting
You might have to update Visual Studio to target a newer framework. If

you don’t see the framework version you want to target as an option under

Properties ➤ Application ➤ Target Framework, then check for Visual

Studio updates, run through them, and then bring up the Visual Studio

Installer and make sure that the target framework is installed.

You can retarget by right-clicking a project node in Solution Explorer

and selecting Properties. Under the Application tab, you can change the

target framework as shown in Figure 3-3.

Figure 3-3. Properties for the Konstrukt.Contracts library

Chapter 3 phase 1: analysis

32

You can also do this by unloading the project and changing the

TargetFrameWorkVersion in the csproj file. A tiny detail about ASP.NET

Core that I like is that as with other .NET Core projects, you don’t have

to unload the project first to edit the project file – you can simply open it.

You will also notice that the project file is much cleaner – and thus easier

to work with. Changing every project can be a lot of work depending on

how many you have, and I’d like to recommend an extension that you can

use to retarget all in one go. I would prefer to target the latest framework

version, but if that is not an option for you, then at least target 6.2.

To retarget the projects, we are going to use the Target Framework

Migrator by Pavel Samokha. Close Visual Studio and download

the extension from https://marketplace.visualstudio.com/

items?itemName=PavelSamokha.TargetFrameworkMigrator.

Select the target framework, and the projects you want to retarget, and

give it a few minutes. If the target framework is missing from the drop-down

menu, you can add it manually to the frameworks.xml file that the extension

uses. The file can be found under extensions in the user AppData/Local

folder (Figure 3-4). For example, here is my path: %LocalAppData%\

Microsoft\VisualStudio\15.0_3eebc2a9\Extensions\0uwpe4cg.cv5

Figure 3-4. Where the extension is located

Chapter 3 phase 1: analysis

https://marketplace.visualstudio.com/items?itemName=PavelSamokha.TargetFrameworkMigrator
https://marketplace.visualstudio.com/items?itemName=PavelSamokha.TargetFrameworkMigrator

33

Modify the XML file and add the target framework as shown in Figure 3-5.

Figure 3-5. You can add frameworks by adding the Name and Id

Select all the projects and click Migrate. You can follow the progress as

the project files are edited (Figure 3-6).

Figure 3-6. Target Framework Migrator window in Visual Studio

Chapter 3 phase 1: analysis

34

Compile and run your tests (Figure 3-7), making sure that everything

compiles and runs as expected. Our unit tests use NUnit and therefore

requires the NUnit Test Adapter. Due to a regression bug after a Visual

Studio update, I also need to disable the following extension: Dotnet

Extensions for Test Explorer. At the time of writing, this issue has been

yet to be resolved, and the recommended solution is to disable Dotnet

Extensions for Test Explorer. An alternative is to use the unit test runner

from ReSharper – an extension we will be using for the analysis.

Figure 3-7. Running the unit tests

Our next step is to remove unused types, members, and references. We

will use the ReSharper extension we installed in the previous chapter, and

as I mentioned, just grab the 30-day trial if you don’t have a license.

Chapter 3 phase 1: analysis

35

Note please make sure that you have created a separate branch
to do the analysis if you use Git for version control, or at least use a
copy of the solution. preferably do a commit after each major step so
you can undo if something goes wrong.

 Removing Unused Types and Members
Technically you don’t really have to do this step, but it doesn’t take long

and can simplify things later. This is something we should do from time to

time anyway, and this is a perfect opportunity. With legacy applications

and libraries over time, you often end up with types or members that aren’t

used, so it’s worth doing a quick check first. These might in turn reference

assemblies, and we want to only analyze how much work this migration is

going to take based on assemblies, types, and members we are using.

Tip there is another benefit to doing this cleanup – the
maintainability index is probably going to be better, as dependencies
often add complexity and problems with versions and upgrades.

If you right-click a project (or the solution) and select Analyze

➤ Calculate Code Metrics (Figure 3-8), you will get the project

maintainability index as well as other indicators such as cyclomatic

dependency, depth of inheritance, class coupling, and lines of code

(Figure 3-9).

Chapter 3 phase 1: analysis

36

Figure 3-8. Calculate Code Metrics can be found in the context menu
for a project

Figure 3-9. Code Metrics Results for Konstrukt.BL.Main

As a fun add-on for the analysis step, why not go ahead and get the

code metrics and export them to Excel. After tiding up the references, you

can then run it again and compare.

Note the maintainability index was introduced by Oman and
hagemeister in 1991. the metric is heavily criticized and there are
numerous papers and articles discussing the value of the metric,
many of them highlighting that other maintainability indicators are
not taken into account such as naming, comments for documentation

Chapter 3 phase 1: analysis

37

purpose, necessary complexity, how lambdas are resolved by the
compiler, and other factors. this is how the maintainability index is
calculated:

Maintainability index = MaX(0,(171 - 5.2 * log(halstead Volume) -
0.23 * (Cyclomatic Complexity) - 16.2 * log(lines of Code))*100 / 171)

With ReSharper installed and activated, select in the main menu

Resharper ➤ Inspect ➤ Code Issues in Current Project (or select solution if

your solution is smaller) (Figure 3-10).

Figure 3-10. Code Issues can be found in the ReSharper menu

Group by Issue Type, and scroll down to “Type or member is never

used” as shown in Figure 3-11. Figure 3-12 shows the result with the filter

applied.

Chapter 3 phase 1: analysis

38

Figure 3-11. The issues can be grouped by Issue Type

Figure 3-12. Example results

Chapter 3 phase 1: analysis

39

If I navigate to the ClearCache method, ReSharper suggests that I

remove the ClearCache method which will remove the method from the

interface as well. I can also select to comment out the unused method –

I’m personally not a big fan of that, and since we have source control, I’ll

just remove it instead. In total 176 types and members are never used in

the example solution – and they might hold on to references to assemblies

that are not compatible for our migration. Careful with removing unused

classes if you use dependency injection and assembly scanning for

autowiring as you might get false positives with the Inspect tool.

Once we’ve done that, we can proceed with analyzing the reference

assemblies in a similar fashion.

 Removing Unused References
To avoid false positives when doing the assembly analysis, let’s go ahead

and remove unused references. This is just as easily done as mentioned

earlier – unless you dynamically load assemblies. ReSharper might

accidentally remove assemblies that are being used – so tests are going to

be important to make sure that we don’t remove significant references. If

you know that you are loading assemblies dynamically, or you are unsure,

be careful with removing assemblies. Make a copy, or better, as suggested

earlier, use source control and make commits between changes.

Since we need fine-grained control, we are going to do this one project

at a time, centered around the Main project and its dependencies. In the

following examples, I’m going to use the BL.Main project.

Select a project and select ReSharper ➤ Find ➤ Optimize References

or press Ctrl+Alt+Y (Figure 3-13).

Chapter 3 phase 1: analysis

40

The result will show different groups depending on the result. For

example (Figure 3-14):

• Unused references

• Used references

• Implicit used references

• Unused packages with used dependencies

Figure 3-13. Optimize References can be found in the ReSharper
menu

Chapter 3 phase 1: analysis

41

We are going to remove the unused references by selecting Remove

unused references icon in the menu in the Analyze References window.

When they are removed, ReSharper will also delete redundant namespace

import directives in the project.

Let’s take a look at another project. The Shared project (Figure 3-15).

Figure 3-14. Example results for the data layer project

Chapter 3 phase 1: analysis

42

In the used references tab, we are going to see if there are any

assemblies that aren’t used much and can be easily removed.

For this project there is a library Dynamitey (I will get back to this

one later) that is used only once – might be worth looking at the usage

and decide if we need the library. I’ll leave it for now. If you have an

assembly that says “showing 0 of X usages,” you can take a look at the code

dependent on that assembly by using ReSharper. Locate the project in

Solution Explorer, and under References find the reference in question

and select Find Code Dependent on the Module (Figure 3-16). Example

result is shown in Figure 3-17.

Figure 3-15. Example results for the Shared project

Chapter 3 phase 1: analysis

43

The information can help you figure out if the assembly is important,

can be replaced, or be removed.

Repeat the preceding steps for all the projects, making sure to clean

and build the solution, and run the tests again after each modification.

Take notes, and organize them by project and/or namespace. We are going

to need the notes for the next part when we run the Portability Analyzer.

We can finally run the .NET Portability Analyzer tool. There is

an extension for Visual Studio as well as a separate command-line tool

that you can use. The latter isn’t up to date at the time of writing and has

some bugs, and although we could pull down the GitHub repository and

Figure 3-16. Find Code Dependent on Module can be found in the
project context menu if you have ReSharper installed

Figure 3-17. Example results

Chapter 3 phase 1: analysis

44

build an updated version, we’ll use the extension instead. The extension

can be downloaded here: https://marketplace.visualstudio.com/

items?itemName=ConnieYau.NETPortabilityAnalyzer

Close Visual Studio and install the extension, and open Visual Studio

again. Select a project and bring up the context menu (right-click). Select

Portability Analyzer Settings as shown in Figure 3-18.

Figure 3-18. Portability Analyzer options can be found in the context
menu for a project or solution

As we are interested in .NET, .NET Core (2.1) as well as .NET Standard

2.0, we are going to select those. Close the settings window, and bring up

the menu again and this time select Analyze Project Portability (with

project references) for the SL.Main project. The reason why we are

selecting with project references is we want to analyze the portability for

the project as a whole – including the dependencies it has – and the service

layer is highest up in the tree as we saw in the dependency diagram earlier

in this chapter. The analysis should be fairly quick and yield a result Excel

sheet as well as quite a few new lines in the Error List window. We are

going to use both the sheet and the messages in the Error List window

(Figure 3-19).

Chapter 3 phase 1: analysis

https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer
https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer

45

Let’s start with the Excel sheet. The Excel sheet consists of three tabs:

• Portability Summary

• Details

• Missing Assemblies

 Portability Summary
In the first tab, we get a high-level overview (Figure 3-20).

Figure 3-19. Example results

Figure 3-20. Summary tab in the analysis Excel file

Chapter 3 phase 1: analysis

46

It looks like we have good news for the business layer for the Main

service. Only a few dependencies lack some portability for .NET Core: the

Konstrukt.Logging library, Konstrukt.Share, Konstrukt.Logging, and

Konstrukt.Tenancy.

Konstrukt.Tenancy seems to be less compatible with .NET Standard

than .NET Core, which is suspicious considering the result for .NET Core.

The Portability Analyzer isn’t perfect, and if it can’t resolve dependencies,

they won’t be analyzed and can yield false negatives. Therefore, let’s go

straight to the Missing Assemblies tab and have a look. The missing

assemblies for Konstrukt.BL.Main and the reference libraries are

• Autofac

• Dynamitey

• EntityFramework

• Log4Net

• Microsoft.ApplicationInsights

• Microsoft.Practices.EnterpriseLibrary.

TransientFaultHandling.Data

“Used By” is empty, but we can find which project it is by using Search

in Solution Explorer, and afterward “Find Code Dependent on Module”

like we did earlier.

The TransientFaultHandling is used in the project that maps tenants

against the right database, Konstrukt.Tenancy. I wrote that library, and I

know that it’s the ReliableSQLConnection type that is used. It shouldn’t

be a lot of work to write the retry policy ourselves. There is also, as an

example, open source libraries that we could use instead such as Polly

which supports .NET Standard 1.1. Polly can be downloaded here:

https://github.com/App-vNext/Polly

Let’s go through the rest of them one by one.

Chapter 3 phase 1: analysis

https://github.com/App-vNext/Polly

47

 Autofac

Autofac is a dependency injection library, and after a quick search I can

confirm that it works fine with .NET Core.

 Dynamitey

This is an old open source library for working with dynamic objects. It has

been quiet on GitHub lately, and we really should remove the dependency

on it anyway. Do you remember it from earlier? It was used only once in

one project. Let’s look at that again, to gage the amount of work to write

out the dependency on the Dynamitey library. Here is an example usage:

 public static void SetFieldName(this IList<dynamic>

data, string fieldName, string fieldValue)

 {

 if (data.Count==0) return;

 foreach (var dataItem in data)

 {

 Dynamic.InvokeSet(dataItem, fieldName,

fieldValue);

 }

 }

We seem to mainly use the InvokeSet and InvokeGet on the Dynamic

type. These two members dynamically invoke the set and get member

using the Dynamic Language Runtime (DLR). And we can do that

ourselves. We will need some tests as well, so a little bit of work is required.

 EntityFramework

EntityFramework(EF), a popular ORM .NET mapper, is a completely

different story – we use it heavily and even if we wanted to remove it, we

wouldn’t be able to do so without a significant rewrite. There is .NET Core

version of EF – but EF Core is a complete rewrite of EF, and there are many

Chapter 3 phase 1: analysis

48

significant differences between the two. It should not be considered an

upgrade. And if you have been using an EDMX model, like we have, then

there is even more work. Besides the migration itself, you should expect

a lot of time spent testing. The behavior is different, and you might not

discover problems until you test all aspects.

To summarize, you have three options in regard to Entity Framework:

• Migrate to EF Core

• Use a different ORM (we have used Dapper in some of

our new .NET Core services)

• Migrate to ASP.NET Core but target the full framework

As long as you target the full framework, you can also do a side by side,

and run both versions: EF Core and EF6.

Tip take a look at the feature comparison chart on MsDn as well
as the roadmap on Github that is kept up to date. you can find them
here: https://docs.microsoft.com/en-us/ef/efcore-and-
ef6/index and https://docs.microsoft.com/en-us/ef/
core/what-is-new/roadmap

After discussing it we agreed on an approach where some services

will target the full .NET Framework until we can migrate to EF Core and

replace EF with a slimmer option such as Dapper in services where we

don’t really use EF for more than object mapping.

 Log4Net

At the time of writing, it doesn’t implement .NET Standard 2.0, and judging

by previous issues, it seems like only file logging would work with earlier

versions. NLog on the other hand would be an excellent replacement – and as

we have abstracted away the logging, we shouldn’t have to do too much work.

Chapter 3 phase 1: analysis

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index
https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap
https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap

49

 Microsoft.ApplicationInsights

Application Insights is a service that Azure provides for application

monitoring. It consists of powerful analytics tools and a query

language known as Kusto. We use it for performance monitoring,

host diagnostics, error monitoring, and more. We want to keep using

this Application Performance Management (APM) tool as we haven’t

found any alternatives that do what we want. Thankfully Microsoft.

ApplicationInsights has a .NET Core version found on NuGet: Microsoft.

ApplicationInsights.AspNetCore.

 Details Tab

Figure 3-21. The Details tab in the Excel analysis file

Let’s move on to the Details tab as shown in Figure 3-21. This will give us

detailed information. For any given assembly, you’ll be able to see which

type and/or member isn’t supported. And in Visual Studio in the Error

List window, as an information line under Messages, you can get even

more details – and go directly to the file and location in question.

Chapter 3 phase 1: analysis

50

The list is long, but if we take a closer look, it’s not as daunting. The

main types of issues on the list are

• MemoryCache

• HttpContext

• SQLClient (some unsupported members)

• ExceptionHandlerContext

After some investigation we can conclude the following.

Caching is going to require some rewriting. For .NET Standard there

is Microsoft.Extensions.Caching.Memory, but the members are quite

different and we will have to rewrite our cache management. It requires

some work, but doable. ASP.NET Core MemoryCache is different from the

MemoryCache object in the .NET assembly. There are fewer members

available, and you cannot iterate over the cache items. We could explore

other options, but at the moment Microsoft.Extensions.Caching.Memory

seems like a good enough replacement.

The HttpContext isn’t directly accessible anymore in ASP.NET Core.

Instead we will inject the context by using dependency injection. This

doesn’t require much work at all and is an easy fix that improves our code.

SQLClient has some members that are unsupported, but the Microsoft

team has been actively working on this issue, and with some temporary

workarounds, we should be able to make this work without too much trouble.

For global exception handling in ASP.NET Core, we will need to

implement a middleware. Not much work, but it requires some testing.

 Summarizing the Work Required for Migrating
Konstrukt.BL.Main and Its Dependencies
Konstrukt.BL.Main and its dependencies have overall a compatibility

with .NET Standard 2.0 as well as .NET Core 2.0. There is some work

required such as replacing the logging library, removing the Dynamitey

Chapter 3 phase 1: analysis

https://github.com/dotnet/corefx/issues/17126

51

library and replacing with our own library, possibly migrating to EF

Core or other ORM libraries, rewriting and abstracting our caching logic,

modifying exception handling, and injecting the HTTP context instead of

using it directly. If I had to guestimate, I would say that it would take two

developers 2–3 days to implement the changes and test thoroughly, and an

additional day or two for the data access logic that uses EF.

My colleague Jonas always tells me to then multiply my estimates

by pi. I’m not convinced that’s the best way to get an estimate – but he is

right that developers tend to underestimate the amount of work (often

forgetting to take into account the time it takes to debug regression bugs,

random Windows and Visual Studio updates, etc.). The integration and

deployment pipeline also need to be updated – and that can take time.

Obviously, I’ve already done the work and can tell you how much work it

actually took. As an example, it took me a week to migrate the Main service

(excluding migrating EF). Modifying the pipeline for all the new changes

took 2–3 days.

 Analyzing with ICanHasDot.Net
ICanHasDot.Net is a web service by the Octopus Deploy. You provide a

packages file and the service then recursively looks up all the packages

and figures out all the dependencies, direct as well as transitive (indirect).

Then it checks for assembly compatibility against .NET Standard or

PCL (Portable Class Libraries). It gives a clean overview and a pretty

visualization as demonstrated by Figure 3-22. The result summary suggests

replacement libraries and is color coded for easier use.

Chapter 3 phase 1: analysis

https://icanhasdot.net/

52

The GitHub repo has been quiet lately though, so I’ve started using the

tool by the core team instead as my main tool for analyzing the portability

of a project. Give the projects a quick go with the tool, but I would

recommend that you rely on the tool by the core team as your main source

for compatibility information.

 Analyzing the Rest of the Solution
For simplicity I’m not going to give you the summarized result from

analyzing the rest of the projects as the results are similar to those we got

earlier – with a few exceptions.

We have two services that are going to be difficult to migrate. One of

them is our Hangfire service which is not included in the example solution.

Hangfire is a queue manager for Windows – it lets you set up queues and

Figure 3-22. Analysis of Konstrukt.SL.Main

Chapter 3 phase 1: analysis

53

queue fire and forget tasks for CPU or I/O intensive tasks that are short-

or long running. Hangfire does not support .NET Standard, but we have

some options nonetheless. One option is to keep the Hangfire service

as is, and not migrate the service. Another option is to replace Hangfire

with something else. The way we use Hangfire is by using it to schedule

API calls to other services that will start tasks such as calculations and

aggregation of data. For our scenario we could replace Hangfire with a

message bus and some infrastructure code – and since we are planning on

adding a message bus to our system, we will probably do that. But for now,

we have decided to leave the service as is and focus on the other services.

Hangfire migration is not something I’m going to cover in this book.

The second challenge, and a bigger one than Hangfire, is our

notification service. Our notification service doesn’t do a lot, but the few

things it does are important. The service uses SignalR to initiate WebSocket

connections to update and notify the client of changes and the other way

around. SignalR is not compatible with ASP.NET Core. I’ve seen attempts

to get it to work with ASP.NET Core with the full framework, but the

SignalR team discourages that. SignalR has been completely rewritten to

ASP.NET Core SignalR (not to be confused with SignalR Core which is a

part of SignalR for the full .NET Framework). SignalR has both a client and

a server, and you would need to replace both, which means we also need

to change our client significantly. This book won’t cover the migration of

the SignalR service as that topic deserves its own book.

 A Note on the Cost
Before you decide to migrate, it is wise to think about the cost of the

migration – and depending on the size and setup of your team, this might

include the CTO, project manager, and possibly even investors. You should

be leery of something called “resume-driven development.”

“Resume-driven development” is when developers and/or architects

select tech stacks, architecture, methodologies, and protocols based on

Chapter 3 phase 1: analysis

54

what looks good on the resume. Often this is not necessarily done with

the resume in mind, but we get bored and naturally we like what is new

and sexy, and it’s tempting to jump on the next new shiny stack, library, or

methodology. Information should drive the decision, and unfortunately, I

cannot tell you whether or not it is worth it as it depends on several factors.

I have however done my best to highlight the factors and provide you with

the information and tools to gather the information that you need. One

thing remains to discuss before you make that final decision, and that is

how to do the migration if you migrate. Partial or full? A partial migration

can be less painful and let you test the waters, but at the same time, it adds

complexity. In the next chapter, we are going to start planning, and see if

the plan holds water.

 Summary
In this chapter we did an in-depth analysis and collected data on the work

required to do a migration. We have concluded that a migration is doable,

but we have yet to decide how before we have a definitive yes or no. We

know that we have some services that are going to be harder to migrate

and that we will need to redo parts of our data access layer if we want to

run ASP.NET Core on .NET Core. At this point we have a fairly good idea

of the work required, and in the next chapter we can start planning our

migration.

Chapter 3 phase 1: analysis

55© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_4

CHAPTER 4

Phase 2: Planning
the Architecture
Before we start migrating, it’s worth spending some time planning the

migration based on what we learned from the analysis we did. Having a

plan will save us time, and pain. You certainly don’t want to embark on

a large migration only to realize halfway through that the approach was

wrong and that it’s not going to work. Based on my experience, I almost

always recommend a gradual migration, but there are cases where a full

migration might work. In this chapter we are going to go through the

decisions we need to make early on, before migrating.

 Available Resources
I work at a startup, and we have a small team that is constantly changing in

size (scaling up and down depending on season and outside investment).

We have to balance new features to keep our customers and investors

happy, with maintenance and managing unintended features (bugs). If

we do any sort of rewrite or migration, we have to manage that at the same

time as we are doing everything else, and we cannot afford more than a

couple of fulltime human resources on a migration or rewrite. Besides

the number of available developer hours, you also have to think about

knowledge resources. We talked about this earlier, and it’s important to

56

remember that development will slow down for a while until everybody

catches up knowledge wise. You could aim for a few developers that have

in-depth knowledge and can help and guide the other developers, or you

could get everybody up to date. How and what you and your team choose

depend on the size of the team and how work is divided, as well as what

the long-term goals are.

 What to Migrate
Deciding to migrate is one thing, deciding what to migrate is a different

story. You can migrate everything at once, or do a gradual migration which

means that you will run ASP.NET Core side by side with ASP.NET services.

Decide early on what platforms you want to target, particularly if you want

to target cross-platform – or at least have the possibility to do so further

down the line. Obviously, if you target cross-platform or a non-Windows

platform, you won’t be able to use ASP.NET Core targeting the full .NET

platform. But you could mix, if you have a distributed system that has

different platforms available. Let’s talk more about what to migrate.

 Migrating Everything
If you have a system that is smaller in size or complexity, or has few

dependencies that are not supported, then this option could be for

you. Your options are to either target .NET Core directly or target .NET

Standard in your libraries and use ASP.NET Core targeting .NET Core

for your services. If you want to run ASP.NET Core on the .NET platform

instead of .NET Core, you can still use the .NET Standard libraries. I would

recommend targeting .NET Standard, as this gives you more flexibility –

and you might find out later on that you have to use the libraries in non-.

NET Core services or libraries.

For us a full migration was not an option due to the lack of resources

and some services that are difficult to migrate.

Chapter 4 phase 2: planning the arChiteCture

57

 Gradual Migration and a Mixed System
If you on the other hand, like us, have a large system with intertwined

services and/or complex system, then a gradual migration or a mixed- mode

system could be a better option. The upside of doing a gradual migration is

that it lets you evaluate the expected benefits and distribute resources more

evenly. It can also give you an idea how long it takes, although this will vary

between services based on size, complexity, and dependencies.

If you are going to maintain a mixed system, you need to decide if you

are going to maintain a shared library that targets .NET Standard, or if you

want to maintain separate libraries. Sharing libraries is usually preferred if

a lot of the code can be shared, and code that differs can be managed with

conditional compilation and preprocessor symbols or by using the adapter

design pattern.

 How to Migrate
Regardless of whether you are migrating the system as a whole or not,

you will still need to decide if you are going to migrate the services and

the libraries as is or break out logical parts to new services. It makes sense

to choose ASP.NET Core, targeting .NET Core or the .NET Framework,

for new services unless you have dependencies that won’t mix. We have

expanded our authentication options this year and added two new

services, one for authenticating with SAML2 and one for OpenIdConnect

authentication. When we wrote the SAML2 authentication service, we had

dependencies that didn’t jell well with ASP.NET Core, and therefore we

decided to use ASP.NET (hoping to migrate later) for the time being. Our

OpenIdConnect service on the other hand is an ASP.NET Core service,

targeting .NET Core. It does get confusing, unfortunately, and one way

we have tried to solve the confusion is by using different solution files

depending on the type of service. I’ll get back to this when we talk about

the deployment pipeline later in the book.

Chapter 4 phase 2: planning the arChiteCture

58

 Migrate Whole Services
We have some services that are fairly well scoped and easy to migrate,

such as our Notification service. Besides the bootstrap code and

infrastructure code, the classes and libraries could be easily migrated. On

the other side, the majority of our services were quite complex and needed

more work, and it made sense to try to break out some logical parts to new

services.

 Break Out Logical Parts to New Services
ASP.NET Core is a good fit for a microservice architecture as it is

fast, lightweight, and modular. Ideally your service would be scoped

accordingly, but in the real world, services are often parts of a distributed

monolith and do a lot of different things. A great example would be our

Main service. You can guess just from the name that it does quite a few

things. Besides managing user accounts, it also manages user actions

such as sharing an App or Plan, logging from the client, and a lot of things

I’d rather not share with you as it could potentially give you nightmares.

The Main was where the system originated, and somehow everything has

ended up there when we didn’t know where to put things or were too lazy

to create separate services.

The solution for us has been to slowly break out parts to new services,

such as our Account services that manage user accounts. Our aim is to

have many small, independent services, microservices. I’m not going to

go into the details of microservices – that topic deserves a book or ten on

its own. In short, I’ll mention that many companies have experienced

certain problems with monolith systems such as difficulty to scale, long

release cycles, difficult to evolve and maintain, as well as long time to add

new features. The idea with microservices is that each service does one

thing and does that well. Spotify (a music streaming service) is an extreme

example, with over 800 active services! Amazon and Walmart are two other

Chapter 4 phase 2: planning the arChiteCture

59

excellent examples, and you can find many free articles and videos that

they’ve shared.

 Self-Contained Deployment or Framework
Dependent
Since we discussed self-contained deployment earlier in the book, I’m

going to keep this section short.

When you publish ASP.NET Core services, you can choose between

framework-dependent deployment and self-contained deployment. As

a quick refresher, self-contained means that your published package

will have everything you need to run the service, while the framework-

dependent publish will require you to prepare the environment

beforehand and install the frameworks. Which one you choose depends

on how you manage the environments the service gets deployed to, your

user base, as well as whether or not you have size restrictions on your

deployment packages.

In short, here are some pros and cons to consider:

Cons

• Need to decide platform and architecture beforehand

• Larger packages

• Publishing can take longer

Pros

• Environment needs less preparation and maintenance

• Ready-to-run packages

• Side-by-side installments

Chapter 4 phase 2: planning the arChiteCture

60

Note in previous versions of asp.net Core and Visual studio, there
were some bugs when creating self-contained packages. if you
come across these issues, make sure you have all the Visual studio
updates and are running the latest .net Core sDK (or runtimes if you
don’t need the full sDK).

 Architecture and Conventions
Lastly, let’s not forget the many smaller decisions you need to make in

regard to the opinionated framework, ASP.NET Core, such as dependency

injection and the logging abstractions. Besides that, there are many other

differences that you should keep in mind when planning. Here is an

incomplete list of things that differ in ASP.NET Core, some of which caught

us by surprise:

• The project file has been simplified and can be opened

and edited in Visual Studio without first unloading the

project.

• The apps have a different bootstrap mechanism, and

Global.asax doesn’t exist anymore. The majority of

the bootstrapping code is found in the Startup.cs class

instead.

• The startup class is loaded through the Main method

(similar as in a console app) in the Program.cs file.

• Static files are stored in wwwroot, but can be

configured to be stored in a different directory.

Chapter 4 phase 2: planning the arChiteCture

61

• Configuration data can be stored in different

file formats, such as JSON files. Instead of the

ConfigurationManager.AppSettings, you use the

Configuration class that implements IConfiguration to

get a section with GetSection. You can also provide a

class to map configuration items by using the built-in

dependency injection.

• ASP.NET Core has built-in dependency injection, but

you can provide your own container resolver (I’ll show

you how to use Autofac).

• ASP.NET Core has also built-in logging providers, but

you can provide your own.

• File access is done through File Providers, and these are

used for everything from exposing the content root to

locating pages and views (when using Razor Pages).

• App localization is simplified with IStringLocalizer

which used the ResourceManager and ResourceReader

to manage the culture.

• HttpContext is accessed through IHttpContextAccessor

instead of referencing HttpContext.Current directly

(I will show you how to inject the context in third-

party libraries that are dependent on the HttpContext

object).

• ASP.NET Core supports OWIN and utilizes middleware

heavily, and it’s easy to plug in your own middleware

(at a slight performance cost) .

Chapter 4 phase 2: planning the arChiteCture

62

 Summary
In this chapter we’ve taken a look at the migration options that we have

and made some decisions in regard to the system we are migrating. We are

going to do a partial migration, targeting .NET Core, and opt out of doing a

self-contained deployment. There are also smaller decisions that we need

to make concerning the architecture and conventions, but we will save that

for the next chapter and cover them as we do the migration.

Chapter 4 phase 2: planning the arChiteCture

63© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_5

CHAPTER 5

Phase 3: Migration
I’ve taken part in many different types of migrations and rewrites – it

seems like most developers will encounter a similar situation sooner or

later. User expectations are quickly changing as technology is evolving,

and as programming is becoming more popular, the pool of libraries

and platforms to choose between is growing. Not only is it tempting to

migrate so we can try new solutions, it is often necessary to keep up with

expectations and the growing technology stack. I’ve seen some migrations

go really bad, and what they often had in common was lack of planning

and unclear end goals. Fortunately for us we have done an extensive

analysis and planned the migration. This helps us create a roadmap that

we can refer to so we know where we are and where we are going.

These are the migration steps I recommend, based on your end goal.

 Full Migration
Create the ASP.NET Core projects as well as libraries you might have (not

third party). If you are targeting the full .NET Framework or if you want to

consume the libraries by .NET Framework libraries, then I would target

.NET Standard. .NET Standard gives you more freedom, but also more work.

Create the unit and integration test projects. As mentioned earlier, if

you plan on consuming parts of the system by .NET Framework libraries

(as well as .NET Core), then you will have to test against all the platforms

that you support. Methods and types not supported on a particular

64

platform will throw a PlatformNotSupportedException which will help you

discover issues early on. I’ll cover in detail how this can be done later in

this chapter.

Given a simple setup with one web service, a library, and a unit test

library, you would aim for the following end result (Figure 5-1).

Figure 5-1. What to aim for in a full migration with a simple setup

If you have several ASP.NET services, I would start with just one

of them, migrate own dependencies, and then resolve third-party

dependencies. There is no particular order I would recommend, but if your

application is database driven, a good place to start would be with the data

access layer. Otherwise start with the libraries with the least amount of

third-party dependencies.

Chapter 5 phase 3: Migration

65

Afterward I would proceed with migrating the test projects that test

the logic in the libraries you migrated, followed by migrating the ASP.NET

service and tests that test the logic in the ASP.NET service.

Note Use a dependency graph (see Figure 5-3 for an example)
to visualize the dependencies so you know what the dependencies
are. resharper, for example, adds an option in the solution explorer
context menu to display a project dependency graph.

Rinse and repeat for other services and dependencies that they have.

 Partial Migration
The main difference between doing a full and partial migration is that

you need to make sure that dependencies you migrate that are used by

other libraries or services that are not migrated can still be used and work

as expected. You might also choose to break out parts of a service or a

library and only migrate that part, and you will have to run tests for all the

targeted platforms. With a partial migration, you also have to maintain a

mixed continuous integration and deployment pipeline. The migration

I’m going to walk you through (Figure 5-2) is a partial migration as it is

more challenging. Everything we are doing also applies to a full migration,

minus extra considerations.

Chapter 5 phase 3: Migration

66

Figure 5-2. Example of a partial migration

 Partial Migration Walkthrough
Let’s recap what we are going to migrate and what we want to achieve. At

the moment the solution has three services, five libraries (our own), some

unit test libraries, and a helper library for test libraries as shown to the left

in Figure 5-3. The end goal can be seen on the right (Figure 5-3).

Chapter 5 phase 3: Migration

67

In this walkthrough we are going to migrate the Main service, which

has dependencies on libraries that are used by other services that we won’t

be migrating.

I always recommend looking at a dependency graph to better

understand how things are connected. Sometimes it’s not obvious what

dependencies a service has, as a graph can be quite deep. A dependency

graph also helps us locate a good place to start – often at the outer edges

of the graph. Figure 5-4 shows us the dependency graph for the Konstrukt.

SL.Main service. You can get a dependency graph by right-clicking a

project in Solution Explorer in Visual Studio, if you have the ReSharper

plugin installed.

Figure 5-3. Starting point for the example solution is shown on the
left, compared to the migrated result shown on the right

Chapter 5 phase 3: Migration

68

Based on the dependency graph, we are going to do this migration

by starting with one of the outer dependencies with the least third-party

dependencies and then work our way toward the ASP.NET service itself

including the unit tests.

High-level overview:

Every library is migrated to a new .NET Standard (except the service

itself) library. The references to the old library are then updated to the new

Figure 5-4. Konstrukt.SL.Main dependency graph

Chapter 5 phase 3: Migration

69

library, and after verifying that everything compiles and the tests are green,

the old library is deleted. For each section we do a Git commit so we can

easily revert a change if something went wrong. We only push to origin

once we can verify that the solution compiles and the tests are green.

Steps:

Migrate Konstrukt.Contracts

Migrate Konstrukt.Share

Migrate Konstrukt.Logging

Migrate Test.Common

Run old tests with new Test.Common library

Delete old Test.Common library

Attempt to migrate Test library

Migrate Konstrukt.Tenancy

Migrate Konstrukt.Entities (including migrating

Entity Framework to Entity Framework Core)

Migrate Konstrukt.DAL.Main

Migrate Konstrukt.BL.Main

Migrate Test library

Migrate Konstrukt.SL.Main

 Migrating Contracts
The Contracts library is the first one to be migrated. We need to make an

important decision before we begin, and that is how to organize the code.

We can keep the projects in a separate solution, or in the same solution.

For this example, we will keep them in the same solution as we migrate,

but we are going to discuss the pros and cons of using several solution

Chapter 5 phase 3: Migration

70

files later in this book. The second thing we need to decide on is naming

conventions. Somehow, we need to separate the new libraries from the

old ones, and as we will have two similar libraries side by side until we can

verify everything was migrated correctly, we won’t be able to use the same

names anyway. As you know, on Windows, a path can get too long, so if the

project resides in a nested folder, you can get problems down the line. With

.NET Core and .NET Standard projects, you might get mysterious errors in

regard to restoring packages such as “Operation failed as details for project

could not be loaded,” when the problem is the path.

For this migration, as an example, we will be creating a solution folder

for .NET Standard libraries and prefix the libraries with “Standard”. You can

see in the earlier side-by-side comparison of the solution before and after

how the libraries and services are organized. Let’s get started!

Create a new project targeting .NET Standard under a folder called

Libraries.Standard as shown in Figure 5-5. All the projects will be .NET

Standard projects as we have other .NET libraries and services dependent

on them. The exception is the ASP.NET Core service that will target .NET

Core and the Unit Test library that will target both the .NET platform and

.NET Core.

Chapter 5 phase 3: Migration

71

Delete the Class1.cs file and copy over the files from the old Contracts

project. You can copy over just a folder, or a few files, or all. It’s really

up to you, and you might want to weigh the size of the project and how

dependent on each other the files are. Contracts is a small library, so we

will copy over all the files and folders.

Open up a random file, set the marker on the namespace that should

have a blue squiggly line underlining the namespace, and bring up the

ReSharper helper (Alt+Enter). Select Move to, and use arrow to select

Adjust namespaces in project (Figure 5-6). If it suggests opening all the

files so it can be undone, select No (Figure 5-7).

Figure 5-5. Creating a new .NET Standard library

Chapter 5 phase 3: Migration

72

Figure 5-6. Shortcut to adjusting all the namespaces in the project

Figure 5-7. Opening all the edited files might leave Visual Studio
unresponsive

If there are many files, Visual Studio might crash. Do instead a Git

commit before and after, as you can always revert the latest commit if

something goes wrong.

Next step is to fix everything that generates an error, such as missing

references, and in this example it’s fairly straightforward. Open the Error List

window, and filter for “Current Project,” and use the list as a guide (Figure 5-8).

Chapter 5 phase 3: Migration

73

Figure 5-8. The Error List window has filtering options such as filter
for current project

The keyboard shortcut F8 will take you to the next error in the list, and

Shift+F8 will go to the previous.

If you land on a red reference, Alt+Enter at that location should bring

up the ReSharper helper. Among the suggestions, you’ll see “Find this type

on nuget.org” (Figure 5-9). This works, sometimes, and if you want to give

it a try, select that option and scroll through the list.

Figure 5-9. ReSharper provides a shortcut menu for NuGet searches

Chapter 5 phase 3: Migration

74

Once you find the package in the list, expand information by clicking

the + icon, and make sure that .NET Standard is supported (Figure 5-10).

If it does, click the download icon and download the package. Another

option is to do a manual search using the package manager.

Figure 5-10. The package summary often specifies the platforms
supported

Import the namespace to sort out the reference error, and if we had

more errors, we would proceed to the next one. One important thing you

should know is that ReSharper likes to add references to libraries in a

solution, instead of importing NuGet packages. This means that in your

project file, you will have a hard dependency on a library that another

library uses, linked by the physical path.

Konstrukt.Contracts is an example of a very easy migration. It had no

unsupported types or dependencies, and we only had to move the code

and rename namespaces.

With Konstrukt.Standard.Contracts compiling fine, we will now unload

the Konstrukt.Contracts project (instead of deleting it) by right-clicking

that project and selecting “Unload project.” This should result in many

 errors, from the projects that have a dependency on it. We will view the

Error List as our to-do list.

Chapter 5 phase 3: Migration

75

Konstrukt.Share is one of the projects that has a dependency on

Konstrukt.Contracts. We can see that the imported namespaces are red as

the dependency can’t be resolved.

For the project, select References and remove Konstrukt.Contracts and

add Konstrukt.Standard.Contracts instead. The errors are still there as the

previous namespace doesn’t correspond to the new one. We can sort this

out in two ways. One is by using “Search and Replace,” the second is by

using ReSharper.

 Search and Replace
Bring up Search and Replace (Ctrl+F, then expand the window), set it to

“Current Project,” and do a search and replace for Konstrukt.Contracts to

Konstrukt.Standard.Contracts (Figure 5-11).

Figure 5-11. Search and Replace can help speed up the migration to
new namespaces

Enabling undo can cause Visual Studio to crash, and if we do a Git

commit instead, we can skip enabling undo and risk Visual Studio not

responding for a while (Figure 5-12).

Chapter 5 phase 3: Migration

76

 Using ReSharper to Remove and Import
Namespaces
The second way of sorting out the namespaces is by using ReSharper. Set

the marker on the red reference, bring up the helper, and select “Remove

unused directives in project” (Figure 5-13).

Figure 5-12. Opening all the edited files can cause performance
problems for Visual Studio

Chapter 5 phase 3: Migration

77

If you go to a missing type that is marked red, you can import missing

references in project (Figure 5-14). I would caution you to only use this

after making sure that you have a reference to that project or a NuGet

package for that namespace.

Figure 5-13. ReSharper has a shortcut menu for removing unused
namespaces

Figure 5-14. There is also a shortcut for importing missing
namespaces

Chapter 5 phase 3: Migration

78

Do a rebuild and verify everything is alright. Run the unit tests, and if

possible, run the service as well and do some test calls, and do another Git

commit.

The next step is to replace the library everywhere in the solution –

unless you have decided to maintain both libraries going forward (not

something I would recommend), where the old version was used. If

you right- click the Konstrukt.Contracts project and select “Find Code

Dependent on Module” in the right-click menu, you’ll get a list of all the

references. Use the Group by “Project Structure” to get a good overview

(Figure 5-15).

Figure 5-15. Grouping by project structure

We have four more projects to make changes to:

• Konstrukt.BL.Main

• Konstrukt.DAL.Main

• Konstrukt.SL.Main

• Konstrukt.SL.SignalR

Chapter 5 phase 3: Migration

79

We will have to repeat the preceding steps, going one project at a time,

and doing a Git commit between each. Build, verify no errors, run the tests,

and run the services. Obviously, this means a lot of clicking around, and

therefore I would recommend that you assign a keyboard shortcut for Add

Reference.

In the main menu, go to Tools ➤ Options ➤ Environment ➤ Keyboard

as shown in Figure 5-16.

Set command type to AddReference and select a combination. I used

Ctrl+Shift+Alt+R. Assign, and you are good to go.

Figure 5-16. You can create your own shortcuts in the Keyboard
section

Chapter 5 phase 3: Migration

80

You could also manually edit the project files, if you prefer that. But do

not forget to build and test between changes, and do frequent commits.

Verify that Konstrukt.Contracts is not referenced anywhere, and

delete it. Open up File Explorer and make sure the project truly is deleted.

Deleting from Visual Studio usually only removed it from the solution file,

but the folder and the project are still there and will be checked in next

time you do a Git push. Save all, build and run tests, and if everything is

fine, do a commit.

The Contracts library was easy to migrate as it didn’t have any

unsupported dependencies or types, but usually you’ll come across

more challenges. Therefore, we are going to take a look at some specific

challenges by using the other libraries as an example. I won’t go through

the step-by- step migration since we just did that, and the steps are the

same. If you want to see all the steps, you can take a look at my commits

in the repository. While migrating the rest, we came across several

challenges; here are some that I’ll cover:

• Resolving unsupported types (example with

ConfigurationManager and HttpContext.Current)

• Removing unnecessary dependencies

• Resolving unsupported libraries (example with

Log4Net and NLog)

• Choosing between dependency options (example with

MemoryCache)

Once we have migrated the libraries, we will move on to migrating the

tests, then the data access layer and our object relation mapper (Entity

Framework), before we finally migrate the ASP.NET service itself.

Chapter 5 phase 3: Migration

81

 Missing Type: ConfigurationManager
The heading is a little bit misleading, as the type is not missing anymore.

But it was missing until .NET Standard 2.0. I wanted to include this

example as we have several options in regard to how we deal with

accessing configuration settings. In earlier versions of .NET Core and

Standard, this type was not available. The team encouraged the use of

dependency injection to access configuration settings.

This is done by creating a class that maps to the settings

you want to access, and the settings are then accessed by using

IOptions<MyCustomSettings>. If you decide on using JSON files for

settings in your services, the dependency injection is a better option

(generally I would recommend that over specific types that pull in

dependencies). Otherwise you could also use the IConfiguration interface

and the GetSection method if you don’t want to use a mapping class. In

Konstrukt.Standard.Shared we have a Settings class that is used to access

settings in configuration files. This class could be rewritten for .NET Core

using the two preceding options. However, as we want to support several

platforms, we need a generic solution. Prior to .NET Standard 2.0, two ways

of dealing with this would have been to either use conditional compilation

or dependency injection. But the luck is on our side, and there is now a

NuGet package that we can use, so we are going to use that for now.

We can always go back at a later point and refactor away that

dependency and transient dependencies. As you can see, there are a few.

Remember that you have to choose your battles, and sometimes a less

than ideal option is the best as there are other issues pressing that will

take a lot of time. At the same time, you don’t want to have to maintain

unnecessary dependencies.

Chapter 5 phase 3: Migration

82

 Rewriting to Avoid Unnecessary
Dependencies
The Shared library has an extension method, ToDynamicObject, that uses

a library that until recently didn’t support .NET Standard – Dynamitey. The

support was added a year ago, but it hadn’t been maintained for several

years prior to that. I’d rather not have a dependency on a library if we only

use a very small part of it, and it’s something we can do ourselves. There

is an interesting story about a Node.js package called Pad-Left. It was only

a few lines of JavaScript, and all it did was – you guess it – pad left. It was

used everywhere, and when the author removed the package from the

NPM, the Internet was broken for a day. Pulling in a library for something

very simple is now something I refer to as doing a “pad-left.” The less

dependencies you have, the easier the migration, and also, you might

avoid sudden breaking changes when doing an update.

In our case the InvokeSet is only used for creating a dynamic object

from a dictionary and can be rewritten from

 public static dynamic ToDynamicObject(this

Dictionary<string, object> data)

 {

 dynamic dynamicData = new ExpandoObject();

 foreach (var kvp in data)

 {

 Dynamic.InvokeSet(dynamicData, kvp.Key,

kvp.Value);

 }

 return dynamicData;

 }

to

Chapter 5 phase 3: Migration

83

 public static dynamic ToDynamicObject2(this

Dictionary<string, object> data)

 {

 IDictionary<string, object> dynamicData = new

ExpandoObject();

 foreach (var kvp in data)

 {

 dynamicData.Add(kvp);

 }

 return dynamicData;

 }

Don’t be afraid to rewrite, but do make sure that you have plenty of

tests! And as I mentioned before – pick your battles wisely.

 Missing Type: HttpContext.Current
We got in a bad habit of passing around the HTTP context in our libraries.

It created hard dependencies, could cause additional issues if we worked

with several threads and lost the original thread context, and many other

issues.

Accessing the HttpContext from other libraries is not an ideal thing

to do; the HTTP context should really be scoped to the service itself, and

passing it around in external libraries creates a messy architecture. This is

why you won’t find this type in ASP.NET Core. The HTTP context is instead

accessed through the HttpContextAccessor type, by using dependency

injection and the interface IHttpContextAccessor. You can find some ugly

workarounds so you can keep using HttpContext.Current (sort of), but

Chapter 5 phase 3: Migration

84

let me show you how easy it is to solve our problem with dependency

injection. This is the class we need to refactor:

public class CurrentRequest : ICurrentRequest

{

 readonly Regex _subDomainRegex = new Regex(@"^(htt

ps?:\/\/)?([^\.]+)", RegexOptions.Compiled);

 public string Origin =>

 HttpContext.Current.Request.Headers["X-Origin"] ??

 HttpContext.Current.Request.Headers["Origin"] ??

 HttpContext.Current.Request.Headers["Referer"];

 public string Authorization =>

 HttpContext.Current.Request.Headers["Authorization"];

 public string HttpMethod =>

 HttpContext.Current.Request.HttpMethod;

 public string SubDomain =>

 _subDomainRegex.Match(Origin).Groups[2].Value;

}

We can create an interface called IRequest:

public interface IRequest

{

 NameValueCollection Headers();

 string HttpMethod { get; }

}

Which will then be injected in the CurrentRequest constructor:

public class CurrentRequest : ICurrentRequest

{

 private readonly IRequest _request;

Chapter 5 phase 3: Migration

85

 public CurrentRequest(IRequest request)

 {

 _request = request;

 }

 readonly Regex _subDomainRegex = new Regex(@"^

(https?:\/\/)?([^\.]+)", RegexOptions.Compiled);

 public string Origin =>

 _request.Headers()["X-Origin"] ??

 _request.Headers()["Origin"] ??

 _request.Headers()["Referer"];

 public string Authorization =>

 _request.Headers()["Authorization"];

 public string HttpMethod

 => _request.HttpMethod;

 public string SubDomain =>

 _subDomainRegex.Match(Origin).Groups[2].Value;

}

When we use this, we only have to have a custom type that implements

that interface, and for a standard ASP.NET application, we can do the

following:

public class SlimRequest : IRequest

{

 public NameValueCollection Headers() => HttpContext.

Current.Request.Headers;

 public string HttpMethod => HttpContext.Current.Request.

HttpMethod;

}

Chapter 5 phase 3: Migration

86

For an ASP.NET Core application:

public class SlimRequest : IRequest

{

 private readonly IHttpContextAccessor _httpContextAccessor;

 public SlimRequest(IHttpContextAccessor

httpContextAccessor)=>

 _httpContextAccessor = httpContextAccessor;

 public NameValueCollection Headers()

 {

 var collection = new NameValueCollection();

 foreach (var item in _httpContextAccessor.HttpContext.

Request.Headers)

 collection.Add(item.Key, item.Value);

 return collection;

 }

 public string HttpMethod => _httpContextAccessor.

HttpContext.Request.Method;

}

 Dependency Options: New vs. Old MemoryCache
MemoryCache was one of those types that weren’t supported until later in

.NET Core and .NET Standard. The library System.Runtime.Caching has

a MemoryCache object that we are used to using in ASP.NET. In ASP.NET

Core caching is better integrated and is done by using an IMemoryCache

service. Different caches are supported with the most basic one being the

IMemoryCache which supports any object value. The object returned by

the service resides in the Microsoft.Extensions.Caching.Memory assembly.

Chapter 5 phase 3: Migration

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/

87

The MemoryCache object there differs significantly from the one we are

used to from the System.Runtime.Caching assembly.

While the Microsoft.Extensions.Caching.Memory.MemoryCache

is recommended over the other one as it is better integrated with ASP.

NET Core, System.Runtime.Caching.MemoryCache might be better for

compatibility reasons when you are migrating. Both of them are compatible

with .NET Standard 2.0 – which means that you can use either in a .NET

Standard 2.0 (and up) library such as the ones we are migrating to. You can

read more about the two options here: https://github.com/aspnet/Docs/

blob/master/aspnetcore/performance/caching/memory.md

In the Shared library, we have a class called MemoryCacheExtensions.

It has one method that iterates through a MemoryCache object and

outputs the keys.

public static CacheStatistics Statistics(this MemoryCache

cache)

{

 return new CacheStatistics

 {

 Name = cache.Name,

 NumberOfObjects = cache.GetCount(),

 Items = cache.Select(s =>

 {

 var info = s.Key;

 var list = s.Value as IEnumerable;

 if (list != null)

 info += ", Count: " + Count(list);

 return info;

 })

 };

}

Chapter 5 phase 3: Migration

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/memory.md
https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/memory.md

88

The Microsoft.Extensions.Caching.Memory.MemoryCache doesn’t

let you iterate through the keys (something that some developers disagree

with, but the team has decided to not allow this nonetheless) as the keys

might have changed. It makes sense from a usage perspective, but we have

been using the Statistics extension for diagnostic reasons as we often have

problems with our cache(s). There are hacks you could use to work around

this limitation if you want to iterate through the keys, but since we also

make use of other members not supported (such as .Contains()) in our

cache handlers, we will use the System.Runtime.Caching.MemoryCache

which is recommended when porting or migrating from legacy to core.

 Replacing Dependencies: Logging
To finish migrating the Shared library, we need to have a logger. The

logging has been managed by a separate library, called Konstrukt.Logging.

The logging adapter we used was Log4Net, a popular open source library

that has been around for ages. The library is however a little bit slow to

adapt and adopt changes and, at the time of writing, has yet to support

database logging if you use .NET Core. Therefore, we are going to replace

Log4Net with NLog, a very similar library that is quite performant and

supports .NET Standard 1.6 and up.

The only thing I had to do was create a new project, Konstrukt.Share.

Logging, add a reference to NLog, and set up the code and configuration.

I also made sure that the log messages follow the same pattern in the

database as Log4Net, so we can use the existing database. I added a

temporary class that wraps the global exception handler as a workaround

until we’ve migrated the service.

Although the configuration is in the logging library, I made sure to set

the database at startup in Global.asax.cs and renamed the connection

string from Log4Net to NLog and removed Log4Net references. We are

going to change this later for our ASP.NET Core service.

Chapter 5 phase 3: Migration

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/

89

 LogManager.Configuration.Variables["configurationDb"]

= ConfigurationManager.ConnectionStrings["NLog"].

ConnectionString;

The ApplicationInsights reference is updated for one that supports

.NET Standard (Microsoft.ApplicationInsights), and no rewrite is needed.

 Static Logging Instance vs. Dependency Injection

For various reasons we chose to go with a static logger instance, although

using dependency injection is also a popular way of accessing a logging

object. As a matter of fact, that is the recommended way in ASP.NET

Core. However, so we won’t have to rewrite large parts of our code and

start injecting our logger instead of using a static instance, we are going

to migrate the logging as is for now. Later in the migrating process, I’m

going to show you how to use dependency injection with the logger. As I’ve

mentioned before, our logging is not done to a file, but to a database, and

therefore we don’t have to worry as much about concurrency.

 Migrating Unit Tests
.NET Standard is, as we discussed earlier, a specification and not a

platform. Therefore, if we want to write tests, we need to target the

platforms that we want our test projects to support. If we only targeted

.NET Core, then we could have created .NET Core test libraries, but since

we have shared libraries, we want to make sure we are testing for the right

platforms.

Our first step is migrating any helper libraries the test libraries might

have. We have, for example, Test.Common. This library sets up our

dependency mocker. Migrating this library to .NET Standard is easy, as

all the third-party libraries it depends on are supported. After replacing

references to the old Test.Common library, we can verify that all the tests

Chapter 5 phase 3: Migration

90

run without problems, with the expected results. If you have unit test

projects that only test code in libraries that are already ported, and have no

dependencies on platform-specific libraries, then you can migrate those

tests. You create a .NET Standard library (we will be changing this later)

and plug in the references that you need, including the Test.Common

library.

If you at any point get the error shown in Figure 5-17, you need to run a

package restore.

Figure 5-17. CS0246: The type or namespace name System could not
be found

Open the NuGet Package Manager Console and run “dotnet restore.”

Here is a very simple example with a project called Test.Example. The

project tests the LoggedInUserRetriever in Shared. The project has the

following dependencies:

• NUnit

• Moq

• Konstrukt.Test.Standard.Common

• Konstrukt.Standard.Shared

Chapter 5 phase 3: Migration

91

The “ArrangeBase” base class sets up the mocks, other configurations,

as well as the subject tested (LoggedInUserRetriever):

namespace Test.Example.Given_LoggedInUserRetriever

{

 public class Arrange : ArrangeBase<LoggedInUserRetriever>

 {

 protected virtual string UserName => "SomeUser";

 [SetUp]

 public void Init()

 {

 DependencyMocker.MockOf<IPrincipal>().SetupGet

(x => x.Identity.Name).Returns(UserName);

 }

 }

}

This base class setup is shared across the unit tests in the Given_

LoggedInUserRetriever folder, but the virtual members can be overridden

in the classes that inherit from this class.

The ArrangeBase.cs resides in Test.Standard.Common and is a base

class that automagically mocks injected dependencies for the given type

through the type DependencyMocker. The type defined is set as the

Subject of the unit tests. In the Init() method, we set up specific mocks,

and in this example we want the IPrincipal that is injected in the class we

are testing to have the username “SomeUser”. When_User_Is_Logged_

In.cs has just one test that asserts that the result from acting on the

GetLoggedInUserId() method on the Subject (LoggedInUserRetriever)

returns the expected username, in this case “SomeUser”.

The example is simple, it’s just to have a test to run – and to show more

complex unit test setup as most systems have complex setups for their

tests and mocks. At this point we can’t actually run the tests. We created

Chapter 5 phase 3: Migration

92

the project as a .NET Standard library, and therefore NUnit can’t know

which platform to run the test on. We need to change that. This is done in

the project file. The new csproj file is easier to work with than it used to be

with .NET projects. Instead of having to unload the project to edit the file,

we can simply edit it directly. You’ll see a section called TargetFramework,

and the section is set to netstandard2.0. Since we want to support two

platforms, .NET Core 2.0 and .NET4.7.1, we add those instead, separated

by a semicolon, and change the element to plural – TargetFrameworks.

<TargetFrameworks>netcoreapp2.0;net472</TargetFrameworks>

You also need to add two other NuGet packages, the

NUnit3TestAdapter and the Microsoft.NET.Test.SDK. Do this through the

package manager or by using a PackageReference in the project file:

 <ItemGroup>

 <PackageReference Include="nunit" Version="3.10.1" />

 <PackageReference Include="NUnit3TestAdapter"

Version="3.10.0" />

 <PackageReference Include="Microsoft.NET.Test.Sdk"

Version="15.7.2" />

 </ItemGroup>

You should now be able to run the tests, and they will be run for both

target platforms (Figure 5-18).

Chapter 5 phase 3: Migration

93

For some odd reason, the Test Explorer thinks that the Arrange class

has a test; it doesn’t so just ignore it if you get an extra test when you use a

base class. As long as the number for All Tests and Passed Tests matches,

you should be good. Unfortunately, there are still a few bugs with the Test

Explorer and the ReSharper extension.

Projects that target a specific platform should have tests that test

against that specific platform. This means that you’ll most likely end up

with several test projects, some that target several platforms as they test

Figure 5-18. Running unit tests for a project that targets several
platforms

Chapter 5 phase 3: Migration

94

code in a .NET Standard library, and test projects that only test code for

specific platforms.

Here is what you could do:

Project targets .NET Standard: Test for multiple

platforms

Project targets .NET Core: Test for .NET Core

Project targets .NET: Test for .NET

 Conditional Compilation
Another alternative, popular with open source projects targeting several

platforms, is to use something called conditional compilation and

preprocessor symbols. You can also use this when you have to use a

different implementation depending on the target framework. If you target

several platforms, you can use conditional compilation to only compile

a section of code for a specific platform. This is done by using something

called compilation symbols. These can be used with any code, including

when importing namespaces.

#if NET472

using Konstrukt.BL.Main;

#else

using Konstrukt.Standard.BL.Main;

#endif

You could even have more complicated logic. Here is a typical example

from the popular Newtonsoft library:

#if !(NET20 || NET35 || PORTABLE40 || PORTABLE) ||

NETSTANDARD1_3 || NETSTANDARD2_0

using System.Numerics;

#endif

Chapter 5 phase 3: Migration

95

The target frameworks and symbols can be found here:

https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/preprocessor-directives/preprocessor-if

You could use conditional compilation directly in your tests, and even

wrap whole tests so they are only run for certain platforms. This does

 however mean that code coverage will differ, and it’s not very obvious by

just looking at the tests – not to mention that this can get really messy.

If you decide to go this route, make sure that you have thought this

thoroughly and considered other options. Don’t use this as a quick fix, as it

will come back and bite you.

Adding conditional project references is done in the csproj file like this:

<ItemGroup Condition=" '$(TargetFramework)' == 'net472' ">

 <Reference Include="System.Net" />

 <ProjectReference Include="Konstrukt.BL.Main" />

</ItemGroup>

When you are working in a file, you can select the platform you want

IntelliSense for from the left drop-down for the file (Figure 5-19).

Chapter 5 phase 3: Migration

96

At the time of writing, this is still very buggy and the issue is still open:

https://github.com/dotnet/project-system/issues/2733.

In my experience working with conditional compilation can be very

messy and frustrating, and I would personally only use this when I had no

other choice. And if I had to, I would try to separate the code that differs

in different projects, or files, and only use conditional compilation at

namespace and reference level.

In an ideal world, your code is scoped to the point where your tests

can be migrated a chunk at a time – but we had an intertwined system

where even the simplest unit test would need references to all three layers

of a service, in addition to the supporting libraries. Therefore, before

we migrate the rest of the tests, we would need to sort out the rest of the

projects that would be a part of the migration. An alternative, besides

conditional compilation (which I’ve already deemed not a good fit for

us), would be to break out tests to separate test projects. As we have some

Figure 5-19. Selecting platform for IntelliSense

Chapter 5 phase 3: Migration

https://github.com/dotnet/project-system/issues/2733

97

degree of separation, at least per service, we won’t have to do that. What we

have to do is migrate the rest of the libraries pertaining to the Main service.

 Konstrukt.Tenancy
Konstrukt.Tenancy was easy to migrate, only two bigger changes were

needed. One of them was replacing the third-party library used for the

retry policy for SQL calls with one that supported .NET Standard, Polly.

This code was omitted from the source code for brevity as we have already

covered how to replace libraries.

The second change was to the classes that used the DbContext type.

DbContext creates a dependency on Entity Framework, and besides

not wanting to pull in that dependency for just a few methods, we also

would have to decide if we want to use Entity Framework Core or Entity

Framework .NET. Earlier in the book, I talked about targeting the full

framework with ASP.NET Core and how that would allow you to use, for

example, Entity Framework .NET. The problem is that according to the

ASP.NET Core roadmap, this won’t be supported after 3.0. Nonetheless, we

don’t want EF dependencies in the library that manages the multitenancy

logic, and therefore we simply abstract away the context. The ASP.NET

Core roadmap can be found here:

https://github.com/aspnet/AspNetCore/wiki/roadmap

Instead we now inject an IDataStoreContext object that can be used to

change the connection string or catalog for the right tenant, while the mapping

to a concrete implementation is done in the library that uses it. In Konstrukt.

SL.Main we now map IDataStoreContext to a DataStoreContext object.

 Migrating to Entity Framework Core
Konstrukt.Entities has to be migrated. Either we migrate to .NET Core, and

have all the services use Entity Framework Core, or we can run both side

by side – but that can quickly get very messy so we don’t want to do that.

Chapter 5 phase 3: Migration

https://github.com/aspnet/AspNetCore/wiki/roadmap

98

Just so you know, you can use Entity Framework Core in .NET libraries, as

long as the target framework is newer than 4.61.

We have an additional challenge, besides migrating to EF Core. We

are using database first which is not supported, and therefore we need

to change this to model first. This means no more EDMX model and

scaffolding pain, but some extra pain to get our models set up as they have

until this point been scaffolded for us for free.

In the Konstrukt.Entities project, we have our EDMX model and the

scaffolded entities (Figure 5-20).

Figure 5-20. The EDMX model and the scaffolded entities

Chapter 5 phase 3: Migration

99

EF Core does not support the EDMX model, and there is no plan for

supporting this in the future. The model is used to render the designer

(Entity Designer) and is used for a database-first approach – an approach

that isn’t recommended anymore. Instead the model-first approach

is recommended, where the model classes you create dictate how the

database looks like and behaves. You can however scaffold the entity

classes based on an existing database by using the Scaffold-DbContext

PowerShell cmdlet. This is how we are going to migrate to EF Core from

the database- first approach we currently have.

 Scaffolding a Database Context
We start off by creating a new .NET Standard project, and we install the EF

tools package and our provider:

Install-Package Microsoft.EntityFrameworkCore.Tools

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Temporarily change the TargetFramework in the csproj to

netcoreapp2.0, as the PowerShell cmdlet needs an executable to be able to

do the scaffolding.

Set the project as startup project.

Run the following in the Package Manager Console (making sure that

you first have navigated to the project).

Scaffold-DbContext "Server=AspCoreVM\SQLEXPRESS;;Database=Tena

ntX;Integrated Security=true;" Microsoft.EntityFrameworkCore.

SqlServer -OutputDir Models

We should now have the entities scaffolded in the Models folder as

shown in Figure 5-21.

Chapter 5 phase 3: Migration

100

Be aware that the connection string is going to be added to the

OnConfiguring method – obviously we don’t want this. There are

a few ways to solve this; you could pull the connection string from

a configuration file or use dependency injection. Our solution is a

multitenant solution where each tenant has their own database, but

for simplicity we are going to pretend like we are only dealing with one

database and pull the connection string from a configuration file.

Add the System.Configuration.ConfigurationManager package, a

configuration file, and a connection string to the project.

protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

 var connectionString = ConfigurationManager.Connection

Strings["KonstruktEntities"].ConnectionString;

Figure 5-21. Scaffolded entities in the Models folder

Chapter 5 phase 3: Migration

101

 optionsBuilder.UseSqlServer(connectionString);

 }

}

The next step is to update the references in the other projects. Make

sure to remove references to Entity Framework .NET and add the right

NuGet package in projects where Entity Framework .NET is used. One

such example is Konstrukt.DAL.Main as we are referencing the DbContext

type in our repository base class. In addition, some other minor fixes are

required, such as updating the connection string in the config files from

an EF connection string to a plain SQL connection string and changing the

way we are retrieving the connection string from the EF context.

From:

_context.Database.Connection.ConnectionString

To:

_context.Database.GetDbConnection().ConnectionString;

After verifying that everything builds, the Main service runs, and tests

are green, we are ready for the final steps. Migrating the Konstrukt.SL.Main

layers, the DAL (data access layer), and the BL (business layer) is done

the same way we did with the previous libraries. You might notice that the

more libraries you migrate while working your way down the dependency

chain, the less work is required. This is the case with the DAL and the BL,

and with them migrated it’s just as easy to migrate the unit test project as

all the references the project has are .NET Standard references.

We are now ready for the final step, and the grand finale – migrating

the ASP.NET service Konstrukt.SL.Main to ASP.NET Core.

Chapter 5 phase 3: Migration

102

 Migrating from ASP.NET to ASP.NET Core
Create a new ASP.NET Core project targeting .NET Core. As mentioned

before, you can target the full .NET Framework, but this will not be

supported in the future so we might as well go all the way. We’ll break the

migration down piece by piece, highlighting common differences.

 Service Startup
In ASP.NET Core there is no App_Start folder or Global.asax file as the

Startup.cs class manages the startup of the service. All the code pertaining

to app service configuration is done in the Startup.cs class, or the Program.

cs class (which is executed before the Startup class).

 Routing Configuration

In our old project, we mapped the routing in the WebApiConfig class in

App_Start by using HttpConfiguration.MapHttpAttributeRoutes. The app.

UseMVC() method in the Startup.cs class wires this up for us in ASP.NET Core.

 Enabling CORS

Enabling CORS was also done in the WebApiConfig class; this code is

moved to the Startup class.

This can be done in two ways. The first way is declaring a CORS policy

and then referencing it in a controller by using an attribute:

Startup.cs

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(o => o.AddPolicy("CORSPolicy", builder =>

 {

Chapter 5 phase 3: Migration

103

 builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader();

 }));

 services.AddMvc().SetCompatibilityVersion(Compatibility

Version.Version_2_1);

}

SomeController.cs

[EnableCors("CORSPolicy")]

[HttpGet]

public ActionResult<IEnumerable<string>> Get()

{

 return new string[] { "value1", "value2" };

}

Or by applying it globally:

public void Configure(IApplicationBuilder app,

IHostingEnvironment env)

{

 app.UseCors("CORSPolicy");

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 else

 {

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseMvc();

}

Chapter 5 phase 3: Migration

104

Make sure that you add this before app.UseMVC if you add it globally!

 Dependency Injection

Dependency injection is at the core of ASP.NET Core (pun intended).

While this is a common practice that has been around for a long time,

it hasn’t been adopted by everybody, although it’s accepted as a good

practice. I won’t go into details as to why, but it helps with maintainability

and testability and gives flexibility.

The built-in dependency injection is great, but you can use your own

dependency resolver – and we want to keep using Autofac to simplify the

migration.

First, we copy over the IOC folder from Konstrukt.SL.Main – which

contains the type registration and building of the container. Let’s also

remember to create the SlimRequest we talked about earlier (when we

resolved the missing HttpContext by passing in an abstraction instead),

and make sure we wire up all the types we need. That brings up some

errors, as we haven’t installed Autofac.

Install the Autofac NuGet package as well as the extensions:

Install-Package Autofac

Install-Package Autofac.Extensions.DependencyInjection

Second, change the ConfigureServices in Startup.cs to return an

IServiceProvider, and return from the method an AutofacServiceProvider

with a built container passed to its constructor.

We also wire up the context entities:

services.AddDbContext<KonstruktEntities>(options =>

options.UseSqlServer(Configuration.GetConnectionString

("Configurations")));

Chapter 5 phase 3: Migration

105

This should be the end result:

public IServiceProvider ConfigureServices(IServiceCollection

services)

{

 services.AddCors(o => o.AddPolicy("CORSPolicy", builder =>

 {

 builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader();

 }));

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersi

on.Version_2_1);

services.AddDbContext<KonstruktEntities>(options =>

options.UseSqlServer(Configuration.GetConnectionString

("Configurations")));

 var containerBuilder = new ContainerBuilderFactory().

Create();

 containerBuilder.Populate(services);

 // Register internal types

 containerBuilder.RegisterType<HttpContextAccessor>().

As<IHttpContextAccessor>();

 return new AutofacServiceProvider(containerBuilder.

Build());

}

Chapter 5 phase 3: Migration

106

 Reading Configuration Files

The last bit of code in the WebApiConfig file we need to migrate is the line

of code that sets the logging connection string. The connection string is

fetched from the Web.config file:

LogManager.Configuration.Variables["configurationDb"] =

ConfigurationManager.ConnectionStrings["Configurations"].

ConnectionString;

As I mentioned earlier, there is a ConfigurationManager NuGet

package that lets you read config files in Core projects, but there is also

a new way of working with settings files in ASP.NET Core that is better.

Since we used the ConfigurationManager last time, we will look at using a

JSON file instead. ASP.NET Core supports different types of configuration

providers as seen in Table 5-1.

Table 5-1. ASP.NET Core Supports Different Types of Configuration

Providers

Provider Provides Configuration from…

azure Key Vault Configuration provider (Security
topics)

azure Key Vault

Command-Line Configuration provider Command-line parameters

Custom Configuration provider Custom source

environment Variables Configuration provider environment variables

File Configuration provider Files (ini, Json, XML)

Key-per-File Configuration provider Directory files

Memory Configuration provider in-memory collections

User secrets (secret Manager) (Security topics) File in the user profile directory

Chapter 5 phase 3: Migration

https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-2.1

107

The providers are configured in the CreateWebHostBuilder method in

Program.cs – which is the very first class and method to be executed. The

providers are configured in the ConfigureAppConfiguration method:

public static IWebHostBuilder CreateWebHostBuilder(string[]

args) =>

 WebHost.CreateDefaultBuilder(args)

 .ConfigureAppConfiguration(config =>

 {

 config.AddJsonFile("appsettings.json", optional:

false, reloadOnChange: false);

 config.AddXmlFile("Web.config", optional: true,

reloadOnChange: false);

 })

 .UseStartup<Startup>();

The appsettings.json file is read in by default, so if it’s the

only configuration file you have, you don’t need to call the

ConfigureAppConfiguration method and pass in the provider for that file.

Since this method is called before ConfigureServices in Startup.cs, you

can access the data read with the providers there. This can be done a few

ways; one of them is by defining a ConnectionStrings node in the JSON file,

with connection string objects.

 "AllowedHosts": "∗",
 "ConnectionStrings": {

 "Configurations": "db connection"

 },

In the Configure method in Startup.cs, you can then access the

 settings:

var dbConnectionString = Configuration.GetConnectionString

("Configurations");

Chapter 5 phase 3: Migration

108

You can also use the Options Pattern, and map a settings section to a

plain object:

 "ImportantSettings": {

 "SettingA": "important"

 }

In Startup.cs:

var settings = Configuration.GetSection(nameof(Important

Settings)).Get<ImportantSettings>();

You can configure this permanently by registering the mapping in the

services collection in the ConfigureServices method in Startup.cs:

 services.Configure<ImportantSettings>(Configuration.GetSection

(nameof(ImportantSettings)));

This means that we can access the settings through dependency

injection by passing an IOptions<> object in the constructor of a class that

needs them:

IOptions<ImportantSettings> settings

Sounds familiar? We are actually doing a manual version of this in

Konstrukt, with the ISettings (implemented as Settings and using the

ConfigurationManager to read the settings).

To summarize this section, the following code

LogManager.Configuration.Variables["configurationDb"] =

ConfigurationManager.ConnectionStrings["Configurations"].

ConnectionString;

can be replaced by

LogManager.Configuration.Variables["configurationDb"] =

Configuration.GetConnectionString("Configurations");

Chapter 5 phase 3: Migration

109

Make sure to add the NLog.Web.AspNetCore package to the project as

well as NLog.

Let’s talk more about logging now that we are done with moving the

startup code from the old project to the new one.

 Logging

ASP.NET Core has made logging a priority, and I could write a smaller

book on that topic. But we’ll keep it simple here. Logging is integrated in

ASP.NET Core, and it’s configured in a similar way to the configuration

objects.

There is a variety of providers, and these are configured in the

ConfigureLogging method for the WebHostBuilder. By default, these are

added:

• Console

• Debug

• EventSource (starting with ASP.NET Core 2.2)

There are many third-party log providers that you can plug in as well.

They usually provide an extension method to plug in that provider, and you

can do the logging by using dependency injection and the ILoggerFactory.

Previously in this chapter, we used a static instance of our logger in

the Logging library to write to the log, but as promised we will now look at

using dependency injection instead in our ASP.NET Core app.

We have to do the following things:

 1. Add the dependencies.

 2. Create a configuration file for NLog.

 3. Enable NLog.

Chapter 5 phase 3: Migration

110

 Add Dependencies

The two dependencies we need were installed in the previous step:

<PackageReference Include="NLog.Web.AspNetCore" Version="4.5.4" />

<PackageReference Include="NLog" Version="4.5.4" />

 Add NLog Config File

We’ll just copy over the NLog config file from the Logging project and make

sure that Build Action is set to Content and Copy to Output Directory to

Copy always as shown in Figure 5-22.

Figure 5-22. You can set the Copy to Output Directory to Copy
always in the Properties window for the file

 Enable NLog

With the configuration file in place, we can enable NLog through the

extension method the NLog library provides for the WebHostBuilder in the

Program.cs class:

Chapter 5 phase 3: Migration

111

public static IWebHostBuilder CreateWebHostBuilder(string[]

args) =>

 WebHost.CreateDefaultBuilder(args)

 .ConfigureAppConfiguration(config =>

 {

 config.AddJsonFile("appsettings.json", optional:

false, reloadOnChange: false);

 config.AddXmlFile("Web.config", optional: true,

reloadOnChange: false);

 })

 .UseNLog()

 .UseStartup<Startup>();

And we can also go ahead and remove the code that sets the

connection string for NLog from the Startup class, assuming that we now

instead have the connection string in the NLog configuration file:

LogManager.Configuration.Variables["configurationDb"] =

Configuration.GetConnectionString("Configurations");

By default, the logging level is set in the appsettings.json file, so make

sure the level is the right one. The default logging level when you create a

new project is Warning.

Using the logger is done by passing in ILogger<T> in the constructor

of the class that will make use of the logger. Here is an example using the

ValuesController that is created when you use the default project template

for ASP.NET Core:

[Route("api/[controller]")]

[ApiController]

public class ValuesController : ControllerBase

{

 private readonly ILogger<ValuesController> _logger;

Chapter 5 phase 3: Migration

112

 public ValuesController(ILogger<ValuesController> logger)

 {

 _logger = logger;

 }

 [HttpGet]

 public ActionResult<IEnumerable<string>> Get()

 {

 _logger.LogInformation("GET values called");

 return new string[] { "value1", "value2" };

 }

}

 Authentication

One thing we haven’t talked much about in this book is authentication.

The authentication service and the code for authenticating users in the

services have been omitted from the sample code on purpose as we

would rather not expose that. I do want to talk about authentication and

authorization, and how it differs when you migrate, as you’ll probably need

some help one way or another with that.

First of all, it’s important to know that authentication is managed in

the Startup.cs class, in the Configure services method. This is where you

register your identity system configuration by using

Services.AddDefaultIdentity

Previous versions of ASP.NET Core used: Services.AddIdentity

The difference between the two is that they use different APIs, but they

are quite similar, except one difference. AddDefaultIdentity does not add

Roles functionality by default. This can be added by calling AddRoles after

AddDefaultIdentity.

Chapter 5 phase 3: Migration

113

 Example with OpenIdConnect

When you configure services for authentication, you can configure several

types, and in our system, we support a variety of ways to authenticate.

One of them is OpenIdConnect. Here is an example showing how easy it

is to set this up (assuming that you are only using one authority such as

Google):

public void ConfigureServices(IServiceCollection services)

{

 services.AddAuthentication().AddOpenIdConnect(options =>

 {

 options.ClientId = Configuration["ClientId"];

 options.ClientSecret = Configuration["ClientSecret"];

 options.Authority = Configuration["Authority"];

 options.ResponseType = OpenIdConnectResponseType.Code;

 options.GetClaimsFromUserInfoEndpoint = true;

 });

 services.AddMvc().SetCompatibilityVersion(Compatibility

Version.Version_2_1);

}

appsettings.json:

{

 "Logging": {

 "LogLevel": {

 "Default": "Warning"

 }

 },

 "AllowedHosts": "∗",
 "ClientId": "",

 "ClientSecret": "",

Chapter 5 phase 3: Migration

114

 "Authority": ""

}

There are many ways to authenticate a user, and covering all the

different ways is beyond the scope of this book. But before we move on to

the next section, I want to talk about migrating to ASP.NET Core Identity,

which unfortunately isn’t a straightforward process. We are not using

Identity, or Membership, in our system, but I want to highlight some issues

that you will come across and how they are best solved. Please refer to the

ASP.NET Core documentation for details, as things in this area are going to

change in the future.

 ASP.NET Core Identity

While there are some similarities between ASP.NET Identity and ASP.NET

Core Identity, there are also some significant differences which means that

some extra work is required when migrating. You will have to migrate to

the new schema, and the recommended way is to migrate the users. For

example, there are new columns, and more importantly, the password

criteria and hashing have changed.

Here is the same password hashed using ASP.NET Identity:

AOstUiMCRZkeV7mQqj4ZygJGtZuKQXxp9Ir+5vQQBikFfGScUcCVYks/

N9E/5zC9Xg==

And hashed in ASP.NET Core Identity

AQAAAAEAACcQAAAAEAYCHwW5Nf0nVU84CAhX7xnMEDrXTqq6X0/d7kIv1+HTlcP

felFEgu5mtKEq+LT61A==

Microsoft recommends that you leave the password empty after

migrating the users to the new schema, and prompt the user to change the

password.

Chapter 5 phase 3: Migration

115

Figure 5-23 shows a high-level comparison of the Identity tables

created with ASP.NET and ASP.NET Core. There are even differences on

column level.

Figure 5-23. The Identity tables of ASP.NET Core and ASP.NET differ

 Current User

Another change you should be aware of is that there is no ClaimsPrincipal

anymore. It represented static state, and that’s not something you want.

Instead, to access the current user, you can use HttpContext.User (just

don’t pass around the context! Abstract away the user instead and use

dependency injection) or ControllerBase.User in MVC controllers.

 Authorization

If you have been using custom authorization attributes in your services,

you will need to migrate those as well. In ASP.NET Core the policy pattern,

similar to the way you configure CORS policies, is encouraged.

Chapter 5 phase 3: Migration

116

You define a requirement for your policy, implement a handler, register

the policy, and then use it.

Here is a simple example from one of our third-party authentication

services:

public class HandshakeTokenRequirement :

IAuthorizationRequirement

{}

public class HandshakeTokenHandler : AuthorizationHandler

<HandshakeTokenRequirement>

{

 private readonly IHttpContextAccessor _httpContextAccessor;

 private readonly IJwtParser _jwtParser;

 public HandshakeTokenHandler(IHttpContextAccessor

httpContextAccessor, IJwtParser jwtParser)

 {

 _httpContextAccessor = httpContextAccessor;

 _jwtParser = jwtParser;

 }

 protected override Task HandleRequirementAsync

(AuthorizationHandlerContext context,

 HandshakeTokenRequirement requirement)

 {

 var httpContext = _httpContextAccessor.HttpContext;

 if (httpContext.Request.Query.

TryGetValue("handshaketoken", out var handshakeToken)

&& !String.IsNullOrEmpty(handshakeToken))

 {

 if(!_jwtParser.IsValid(handshakeToken))

 context.Fail();

Chapter 5 phase 3: Migration

117

 // DO stuff, for example - get identity claim

 httpContext.User.AddIdentity(identity);

 context.Succeed(requirement);

 }

 }

 else

 {

 // Log error

 context.Fail();

 }

 return Task.CompletedTask;

 }

}

public class Startup

{

 ...

 public void ConfigureServices(IServiceCollection services)

 {

 ConfigureIoC(services);

 services.AddAuthorization(options =>

 {

 options.AddPolicy(nameof(HandshakeTokenRequirement),

policy =>

 policy.Requirements.Add(new

HandshakeTokenRequirement()));

 });

...

[Route("api/[controller]")]

[ApiController]

Chapter 5 phase 3: Migration

118

public class OauthController : ControllerBase

{

 [HttpGet]

 [Authorize(Policy = nameof(HandshakeTokenRequirement))]

 [Authorize]

 public ActionResult<string> Get(string handshaketoken,

string redirect_uri)

 {

...

 Migrating Controllers

After setting up our configuration, authentication, and authorization, we

only have the controllers left. There is a neat little shim package that we

can use to make the migration a little bit easier, the WebApiCompatShim.

This shim is only recommended for ASP.NET Core versions up to 3.0. In 3.0

it won’t be supported anymore. If you choose to use it nonetheless, install

the package:

Install-Package Microsoft.AspNetCore.Mvc.WebApiCompatShim

Register the shim in Startup.cs:

services.AddMvc()

 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1)

 .AddWebApiConventions();

Copy over the controllers, update the namespace, and sort out any

leftover errors such as fixing references.

RoutePrefix doesn’t exist anymore, as the Route attribute acts a route

prefix. A Search and Replace as shown in Figure 5-24 takes care of that.

Chapter 5 phase 3: Migration

119

Import the Route type for all the controllers (Controllers folder) as

shown in Figure 5-25.

Figure 5-24. Search and Replace for RoutePrefix

Figure 5-25. With the help of ReSharper, we can easily fix missing
types

IHttpActionResult is now IActionresult, so another search and replace

to fix that.

[EnableCors(origins: "∗", headers: "∗", methods: "∗")]

The EnableCors attribute is replaced by specifying the CORS policy we

registered at startup.

We have now migrated the Main service in full (Figure 5-26)!

Chapter 5 phase 3: Migration

120

Figure 5-26. Final result after migrating the Main service

 Static Files

We don’t have any static files that we are serving up, but it’s not

uncommon, and this is how it is done in ASP.NET Core.

Invoke the UseStaticFiles method in Startup.Configuration:

public void Configure(IApplicationBuilder app)

{

 app.UseStaticFiles();

}

Chapter 5 phase 3: Migration

121

By default, the service will look for static files in the wwwroot folder,

but you can change this by configuring where the files reside:

public void Configure(IApplicationBuilder app)

{

 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions

 {

 FileProvider = new PhysicalFileProvider(

 Path.Combine(Directory.GetCurrentDirectory(),

"Resources")),

 RequestPath = "/Files"

 });

}

There is more to this; you can set cache headers, set MIME types,

enable directory browsing, and more. Refer to the documentation for

details. But please make sure you don’t expose content you don’t want to

expose, such as your configuration files!

 Summary
Whether you’re doing a partial or full migration, a good way to start is by

migrating the leaves of the dependency graph for a service. The leaves

often have less third-party dependencies and therefore theoretically

should be easier to migrate. As soon as one library has been migrated, you

simply replace the references to the new migrated library and work your

way through the dependency graph until everything has been migrated.

Since there are no official tools to automagically migrate the code, it has

to be done manually. For me, the first few projects took a while to migrate,

but honestly, after you have migrated a few projects, you get into the flow

and it gets easier. As suggested in this book, make sure that you automate

Chapter 5 phase 3: Migration

122

what you can automate by using tools such as ReSharper, built-in Visual

Studio tooling, extensions, and simple editor features such as search and

replace. Also, one thing that I learned the hard way is to make frequent

commits when you do a migration, and to make sure to constantly run the

unit tests. There are tools that will run the unit test in the background as

soon as anything has changed that affects the tests in question. We decided

a while back to not make use of that type of tooling as the performance at

the time was horrible, and the tools were unreliable. Visual Studio actually

has a feature that will automatically run the unit tests, but we have not

used it as we have too many unit tests and therefore cannot use the feature.

Regardless of how you decide on doing the migration, make sure you

scope out an area to migrate first, and then do the migration one step at

a time. My advice is to be organized and meticulous, and document what

you are doing. An excellent way to document is by using frequent source

control commits with descriptive messages.

Besides the preceding advice, an equally important thing to consider

is the integration and deployment pipeline. Therefore, in the upcoming

chapter, we’ll take a look at some of the changes we had to make in our

pipeline. Most likely your pipeline is going to differ; therefore the purpose

of the next chapter is not to give you a blueprint for a pipeline, but rather to

prepare you for some of the challenges you might encounter.

Chapter 5 phase 3: Migration

123© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_6

CHAPTER 6

Phase 4: Upgrading
the Deployment
Pipeline
We learned many lessons when we migrated to ASP.NET Core, and one

of them was that you might have to make significant changes to your

deployment pipeline. If you have a mixed solution, it can get tricky,

depending on how the pipeline is set up. In this chapter I want to highlight

some changes and challenges that we had.

This chapter is not a guide on how to set up a continuous integration

and deployment pipeline. There are many ways to do that and a variety

of tools and services to choose between. But one thing I’m sure of is that

you will need to change your pipeline when you migrate. And if you have

a mixed solution, like we do, you will have additional challenges that you

need to solve. In my experience the time and effort that goes into setting

up and patching a pipeline is often forgotten when a team is estimating

time and effort for migrations. And it can be a lot of work, particularly if

you are not prepared. I hope that this chapter will give you some pointers

to what sort of challenges you can come across and hopefully some

solutions as well.

124

 Konstrukt Continuous Integration
and Deployment Pipeline
When I first set up our pipeline, we were hosting all our services in Azure.

We were using something called cloud services for our web services, and

virtual machines tied together under a virtual IP. When we moved to a

local cloud provider, we changed the setup, but we kept the pipeline –

including the tools and steps. The pipeline works like this (Figure 6-1).

Figure 6-1. The Konstrukt continuous integration and deployment
pipeline works

The source code is hosted on GitHub (several repositories), and we

use Git for our version control. Our development branch is our master

branch, and we branch out releases in two-week cycles. For major patches

and features, we use temporary branches, but we try to avoid unnecessary

branching. Each developer works on their own local copy, committing and

pushing changes frequently to the remote repository. Our build machine

uses a build service called TeamCity, and the build service listens for

Chapter 6 phase 4: Upgrading the deployment pipeline

125

changes in the repository. When a commit has been made, it pulls the

latest version and goes through a series of build configurations as shown

in Figure 6-2, each configuration containing several steps. A build agent is

what executes a build configuration, and we have several agents that run in

parallel.

Figure 6-2. Konstrukt build configurations before pushing the
packages to the deployment service

I won’t go into the details of the configurations, but this is the process.

Our solution is built and run as three separate parts: the client, the web

API services, and tools. They all go through the following configurations,

and the next configuration is only run if the previous one was successful.

 Create Version
We use the build service to set the version number. If the commit was

made on a release branch, the version is attached to the end of the version

number. This is later parsed and used when we deploy the packages.

Chapter 6 phase 4: Upgrading the deployment pipeline

126

 Build and Pack
In this step packages are restored, projects are built, and the deployment

packages are created (NuGet packages).

 Run Unit Tests and Run Integration Tests
The two test types are run as separate configurations as the integration

tests rely on a physical database.

 Push
Since we deploy all our services at the same time, we need to sync

packages, as frontend and backend services are created by different agents.

Therefore, in the final step, we make sure that everything was successful

and that all the packages created are for the same version. The packages

are then pushed to our NuGet server and deployed to either the EDGE

server NuGet server or AT (acceptance testing server) – depending on

whether this is a release or not.

 Deployment Flow
Once the previous steps are finished, Octopus Deploy takes over. Octopus

Deploy is our deployment service that manages the deployment to

the various environments. Once a package is deployed to the EDGE

environment successfully and we can ping all the services, the same

packages are then deployed to the QA (quality assurance) environment

for manual testing (done by both developers and our testers). Once

everything is tested, a release is created by branching out a release branch;

the packages are tested in the AT (acceptance testing) environment by

Chapter 6 phase 4: Upgrading the deployment pipeline

127

testers and early adopters, before being released to production (PROD

environment).

The deployment itself of the services is fairly straightforward as seen in

Figure 6-3. After some cleanup we deploy the services as IIS web services,

with just some minor differences for the ASP.NET Core services.

Figure 6-3. Some of the Octopus Deploy deployment steps for
Konstrukt

Chapter 6 phase 4: Upgrading the deployment pipeline

128

 Pipeline Modifications
As I’ve mentioned before, we’ve had to make a few changes to our pipeline.

The modifications you’ll need to make depend on your current setup –

and you might end up changing it a few times like we did. When we first

started migrating some of the services, we decided to separate the projects

by using a separate solution file. Solution files are generally used to group

projects that are related, usually to simplify development (you can open

related projects in the same Visual Studio instance) and deployment

(you can run commands such as build on solution level). Our CI/CD

setup before the migration was dependent on the solution file, and we

were making use of the built-in steps for restoring packages and building

a solution by adding a path to the solution itself. Out of the box it works

really well, until you add .NET Core and .NET Standard projects to the mix.

 Two Solutions
We had three ways we could deal with this. The first one would be to

add a second solution file for .NET Core and .NET Standard projects and

create separate steps for restoring and building. The second one would

be to have everything in one solution file, but change the existing steps

to use command-line tools instead of plugins or TeamCity features. The

third way would be to drop the solution file and script everything as in the

second option. Unfortunately, our system is still somewhat of a distributed

monolith, and therefore the third option isn’t an option for us (yet). We

decided on multiple solution files.

 CLI First
.NET Core has a command-line-first approach, with excellent CLI tooling.

TeamCity recommends that you use their .NET Core plugin for restoring

packages and building and creating deployment packages. At the time

Chapter 6 phase 4: Upgrading the deployment pipeline

129

the plugin had several issues; one of them was that it didn’t support

wildcard selection of multiple projects for restoring packages and building

the assemblies. Adding a separate step for each build would be a pain to

maintain, and it didn’t work with mixed projects in a solution if you targeted

the solution file. With separate solution files, we could run the restore or

build command targeting Konstrukt.Core.sln. Moving forward we started

consolidating the steps and moved away from built-in features and favored

scripting the steps instead (by using native CLI tools instead of plugins).

 Creating NuGet Packages
Our deployment packages are NuGet packages that are created as a part

of the build process by using a NuGet package from Octopus Deploy that

creates the packages upon build by using NuGet.exe behind the scenes.

We’ve had this setup since the beginning, but unfortunately this tool

does not support .NET Core projects. As we had two separate solutions,

we decided to keep the build step for Konstrukt.sln (.NET) with the “Run

OctoPack” option enabled. For Konstrukt.Core.sln we used a PowerShell

script to create the packages by using octo.exe. You can create packages

automagically upon build, by simply adding GeneratePackageOnBuild set

to true in the project file. We needed additional tweaks and opted out of

that option and instead wrote our own script.

 Running Tests
We ran into problems with our tests as well. All our tests (for the back end)

use NUnit, and we had been using the NUnit Console Runner – which

unfortunately does not currently support .NET Core. At the time of writing,

they are considering a separate runner, but it is still in the planning stages.

Therefore, we used the “dotnet test” command instead, which in earlier

versions of .NET Core SDK had a bug when you targeted the solution

Chapter 6 phase 4: Upgrading the deployment pipeline

130

file and would yield errors instead of skipping projects that were not test

projects. This has fortunately been fixed now.

The takeaway is that you will most likely need to maintain separate

steps, and the easiest way to consolidate similar steps is by scripting the

steps instead of relying on plugins and built-in features. I’m sure this

depends on the build service that you are using, but generally I’ve found

that GUI-driven tools and services are slower to adopt changes and can be

very limiting.

 Deploying
Deploying required the least amount of work for us. We decided on not

creating self-contained packages as we don’t need to run multiple versions

side by side, and we would rather keep the deployment packages small.

We are also using IIS for our services and will continue to do so until we

deploy to a different operating system. The changes we had to make were

to make sure we had the IIS module installed (.NET Core Hosting Bundle)

and set the .NET CLR version to No Managed Code. We created two

separate templates in Octopus Deploy, one for our “old” services and one

for ASP.NET Core services. If you deploy self-contained packages and use

the in-process hosting model, you will need to disable the app pool for

32- bit (x86) processes. Don’t forget to make sure that the identity used

for the process has the required permissions. We have a separate account

for all our deployment services and have set up our deployment steps in

Octopus Deploy to use that identity.

 Summary
One of the lessons we learned the hard way is that you can spend

significant amount of time adjusting the pipeline for a mixed deployment

or a new deployment pipeline. The amount of time required depends on

Chapter 6 phase 4: Upgrading the deployment pipeline

131

several factors, such as the flexibility of the tools and services you use, the

size of the solution, and rigidness of the setup, among other things. Keep

this in mind as you prepare a migration, and adjust the pipeline as soon as

you have something that builds so you can run your build process early on

to avoid the common “it builds on my machine” problem, not to mention

the disappointing surprise that you might have to spend a fair bit of time

fixing a broken pipe.

Chapter 6 phase 4: Upgrading the deployment pipeline

133© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_7

CHAPTER 7

Maintenance
and Resources
When we migrated, we did so enthusiastically and naively. Future

technical debt in our ASP.NET Core services wasn’t on our mind (they

were brand new after all!), and we certainly didn’t spend a lot of energy

thinking and planning maintenance. Then a new version on ASP.NET Core

came out, and suddenly we had a lot of work to do if we wanted to stay up

to date. We lagged behind two versions when we did the second migration,

and there were several breaking changes that had been announced well in

advance – that we could have been prepared for.

A poorly planned and unmanaged migration can cause problems with

technical debt in the future. This goes for all code we write, not only when

we migrate to something new and juicy. However, in my experience, the

excitement and challenge of migrating to something new make it easy to

forget to plan ahead. In the next few pages, I’d like to give some advice, and

some resources, that can reduce future technical debt, and hopefully make

this journey a smoother ride.

134

 Framework Changes
I mentioned in one of the first chapters that one of the possible downsides

of open source frameworks is that they frequently change – and breaking

changes aren’t unheard of. You probably use some team collaboration

software to communicate with the team, and be that Slack or Teams (or

other), I recommend that you set up alerts and notifications for the Core

repositories.

Slack has a plugin that lets you easily subscribe to a repository, but

there is always the option of using web hooks (custom callbacks to a

URL based on a trigger). This is supported by most collaboration tools,

including Microsoft Teams: https://docs.microsoft.com/en-us/

microsoftteams/platform/concepts/connectors/connectors-using

Read more about Slack integration here: https://github.com/

integrations/slack

The web hooks support a variety of triggers: https://developer.

github.com/webhooks/

You can also subscribe by email, and you can also only subscribe to

new releases as shown in Figure 7-1. If you use an unfiltered subscribe

expect a lot of noise – and consider applying a filter.

Chapter 7 MaintenanCe and resourCes

https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using
https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using
https://github.com/integrations/slack
https://github.com/integrations/slack
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/

135

You might also want to take a look at the support policy for the different

versions of the framework if you’re using an older version. You can find the

support policy here: https://dotnet.microsoft.com/platform/support/

policy

 Announcements and Roadmaps
In the previous section, I mentioned subscribing to repositories, and the

ASP.NET team has made it even easier for us to stay up to date by creating

an announcement repository (Figure 7-2). If you subscribe to it, you will be

notified on all issues and surrounding discussions. The issues have tags for

Figure 7-1. GitHub lets you subscribe to a repository for all
notifications or releases only

Chapter 7 MaintenanCe and resourCes

https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy

136

“Announcement”, “Breaching change”, and the version numbers for easy

searching.

Figure 7-2. The Announcements repository is where you can find
announcements and breaking changes

In the ASP.NET Core repository, you can find the roadmap in the Wiki

(Figure 7-3). Although slim, it should be fairly up to date. Besides a high-

level overview, it also contains links for more information.

Chapter 7 MaintenanCe and resourCes

137

Entity Framework Core roadmap is located in the documentation –

and not under the Wiki for the repo. The Wiki does however have the link

to the roadmap and other useful links. The roadmap can be found here:

https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap

 Documentation
Before I move on to the next piece of advice, I’d like to add a side note

on documentation. Although the Microsoft documentation is sourced

from different places, not just GitHub, you’ll find a lot of the relevant

documentation on GitHub. You could in theory subscribe to the repository

and be notified of changes – but bear in mind that not everything is going

to be relevant and it might instead create a lot of noise. You can find the

documentation repository here: https://github.com/aspnet/Docs

Figure 7-3. The ASP.NET Core roadmap can be found on GitHub

Chapter 7 MaintenanCe and resourCes

https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap
https://github.com/aspnet/Docs

138

 Align Architecture with New Conventions
Throughout the book we’ve talked about conventions. Moving forward

I would recommend that you and your team try as much as possible to

align your architecture with the new conventions that you decide to take

on board. There are different ways to do this, but usually some sort of

analyzer/linting tool can be helpful. There are numerous Roslyn Code

Analyzers that integrate directly with the compiler, for example, the

Microsoft.ASPNETCore.MVC.APi.Analyzers (included in ASP.NET Core 2.2)

that yields warnings when an API doesn’t follow a recommended set of

rules. It was introduced with ASP.NET Core 2.2, but works with 2.1 as well.

I won’t go into details, but have a read here if you want to learn more:

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/

analyzers

 .NET Standard
As the system grows and you add new projects for services, tools, and

libraries, target .NET Standard as much as possible to ensure future

compatibility. Unless you need something really obscure, there really isn’t

any reason as to why you wouldn’t want to make a new library a .NET

Standard library. By making it a .NET Standard library, you keep your

options open.

 Test, Test, and Then Test Some More
With test-friendly conventions such as dependency injection and modular

architecture, ASP.NET Core is unit and integration test-friendly. In the 2.1

release, Microsoft also released a testing package, Microsoft.AspNetCore.

Mvc.Testing. It lets you host the full web stack in memory while providing a

test client. This includes a database. You don’t have to worry about network

Chapter 7 MaintenanCe and resourCes

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/analyzers
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/analyzers
https://blogs.msdn.microsoft.com/webdev/2018/03/05/asp-net-core-2-1-0-preview1-functional-testing-of-mvc-applications
https://blogs.msdn.microsoft.com/webdev/2018/03/05/asp-net-core-2-1-0-preview1-functional-testing-of-mvc-applications

139

or database setups (which have been a pain for us to be honest!), and you

can test the full application stack. Besides the testing package, you can

also find that ASP.NET Core has introduced several objects that simplify

unit testing, not just integration testing. For example, tests involving a

HttpContext is easily mocked with the DefaultHttpContext object.

 Community Resources and Tools
.NET Core is command-line oriented which has made it easier for the

community to create tooling that fits with the .NET Core SDK. Here are

some of my favorite tools, and packages, that can make our life easier.

Some of them have been mentioned earlier in the book.

 Dotnet Templates
You can find useful (and timesaving) dotnet templates at https://

dotnetnew.azurewebsites.net/. I’ve used the NUnit test templates

(before creating my own) and various ASP.NET Core SPA templates.

Creating your own templates for .NET Core is not hard and can be very

useful particularly in a team where not everybody is comfortable starting

from scratch. This documentation guides you through the few steps

needed to create a custom template: https://docs.microsoft.com/en-

us/dotnet/core/tutorials/create-custom-template

 Portability Analyzer
The Portability Analyzer analyzes a project’s portability to .NET Core

and Standard. You can find the tool and more information here:

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/

portability-analyzer

Chapter 7 MaintenanCe and resourCes

https://dotnetnew.azurewebsites.net/
https://dotnetnew.azurewebsites.net/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer

140

Windows Compatibility Pack
If you need a shim for .NET Framework–only APIs so you can port code

to a .NET Standard library and still be able to compile, you can use the

NuGet package Windows Compatibility Pack: www.nuget.org/packages/

Microsoft.Windows.Compatibility

 .NET Core Test Explorer for Visual Studio Code
If you would like a Test Explorer similar to the one in Visual Studio, but

for Visual Studio Code, you can use the .NET Core Test Explorer:

https://marketplace.visualstudio.com/items?itemName=formulahendry.

dotnet-test-explorer

 C# for Visual Studio Code
For C# editing support, lightweight development, and debugging tools for

.NET Core, you can use the popular C# extension: https://marketplace.

visualstudio.com/items?itemName=ms-vscode.csharp

 Crowdsourced Tools and Frameworks
Thang Chung maintains a popular crowdsourced list of awesome tools and

frameworks for .NET Core: https://github.com/thangchung/awesome-

dotnet-core

 Crowdsourced .NET Core Global Tools
Nate McMaster has a repository that contains a list of .NET Core Global

Tools, such as tools for creating dacpac files, managing certificates,

cleaning a solution, command-line HTTP servers, and more:

https://github.com/natemcmaster/dotnet-tools

Chapter 7 MaintenanCe and resourCes

https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer
https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer
https://dotnet.github.io/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://github.com/thangchung/awesome-dotnet-core
https://github.com/thangchung/awesome-dotnet-core
https://github.com/natemcmaster/dotnet-tools

141

If you are interested in building your own .NET Core Global Tool, have

a read here: https://docs.microsoft.com/en-us/dotnet/core/tools/

global-tools

 Stay Up to Date
At this point you might have noticed that a lot of the advice here is to

combat the downsides listed early in the book. One of them was that it can

get overwhelming for developers to stay up date. Here are some additional

resources for staying up to date.

 Microsoft Blogs
Web development: https://blogs.msdn.microsoft.com/webdev/

Dotnet: https://blogs.msdn.microsoft.com/dotnet/

Developer tools: https://blogs.msdn.microsoft.com/developer-

tools/

Not official Microsoft blogs, but relevant nonetheless:

Hanselman (mixed Microsoft content): www.hanselman.com/blog/

Dotnet Foundation: www.dotnetfoundation.org/blog

 Podcast
OnDotnet: https://channel9.msdn.com/Shows/On-NET

The .NET Core Podcast (not Microsoft): https://dotnetcore.show/

 Live StandUps
.NET Community StandUps: www.twitch.tv/events/

RNn48aCNTZ6w0SQET48uOg

ASP.NET Community StandUp: https://live.asp.net/

Chapter 7 MaintenanCe and resourCes

https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://blogs.msdn.microsoft.com/webdev/
https://blogs.msdn.microsoft.com/dotnet/
https://blogs.msdn.microsoft.com/developer-tools/
https://blogs.msdn.microsoft.com/developer-tools/
http://www.hanselman.com/blog/
http://www.dotnetfoundation.org/blog
https://channel9.msdn.com/Shows/On-NET
https://dotnetcore.show/
http://www.twitch.tv/events/RNn48aCNTZ6w0SQET48uOg
http://www.twitch.tv/events/RNn48aCNTZ6w0SQET48uOg
https://live.asp.net/

142

 Twitter
ASP.NET: https://twitter.com/aspnet

.NET: https://twitter.com/DotNet

.NET Foundation: https://twitter.com/dotnetfdn

The accounts can also be found on Facebook.

 Forums
Dotnet Foundation: https://forums.dotnetfoundation.org/

ASP.NET Forum: https://forums.asp.net/

Gitter ASP.NET: https://gitter.im/aspnet/Home

Gitter Dotnet community: https://gitter.im/dotnet/community

Note Gitter is a messaging and collaboration forum centered
around Github projects.

 Videos (General)
MS Build and Ignite videos are great resources. You can find them on

Channel 9 under events: https://channel9.msdn.com/Events/Build

 Video Training
If you want or need to do some technical training, you can find many

official resources. Although there are many technical training providers, I

would still recommend taking a look at what Microsoft has to offer first, as

they are often a step ahead with new content. Besides the documentation,

which contains tutorials for most frameworks and tools, there is Microsoft

Chapter 7 MaintenanCe and resourCes

https://twitter.com/aspnet
https://twitter.com/DotNet
https://twitter.com/dotnetfdn
https://forums.dotnetfoundation.org/
https://forums.asp.net/
https://gitter.im/aspnet/Home
https://gitter.im/dotnet/community
https://channel9.msdn.com/Events/Build

143

Learn – which among other things incorporates what used to be called

Microsoft Virtual Academy. You’ll find plenty of hands-on tutorials there

and other resources.

 Summary
Maintenance and technical debt are not easy topics. Being a startup, we

struggle balancing new features for investors and clients with managing

our growing system in such a way that we don’t accumulate technical debt

faster than we can manage it. Besides the advice I’ve given in this chapter,

we’ve also done a few other things that aren’t platform or framework

specific. We are an agile team and work in sprints, and we alternate our

sprints with sprints that are feature heavy and hot fixes and sprints where

the focus is on technical depth, refactoring, and bugs. Our product is in

perpetual beta, which essentially means that the production version is

always in an open beta and the clients participate in testing and giving

feedback. Our developers are involved with support, first-, second-, and

third-line support. We have biweekly architectural discussions and do full-

day retrospectives after each sprint. Although we aren’t doing a lot of pair

programming, we do have a rotating schedule for doing code reviews (so

we alternate who is reviewing who), and we get everybody involved in the

issues for the sprint. The daily standups help us stay connected, even when

some of us work from home or work a different schedule. However, these

things alone are not enough.

The work you put in before accumulating the debt matters a lot.

Therefore, when you’re doing a migration, use the opportunity to embrace

a more flexible and maintainable architecture as the one ASP.NET Core

promotes, stay up to date and engaged, test thoroughly, and use the

available tools and resources.

Chapter 7 MaintenanCe and resourCes

144

I’ve done my very best to share with you the lessons I learned from

migrating. When we started migrating, there was very little information

about the topic, and even as I’m wrapping up this book years later, I cannot

find any real-world migration examples documented. I understand that

your situation is going to differ, and that everything I recommend might

not work for you, but I sincerely hope that this book has made it easier for

you and answered the majority of your questions. If you have questions left

unanswered, do reach out to me, and I’ll make sure to find some answers

for you. I would also like to remind you that the Microsoft teams behind

ASP.NET Core and .NET Core are not unreachable, and in my experience,

they have been very helpful and accommodating when I’ve had questions.

ASP.NET Core and .NET are here to stay so make sure that you stay

engaged with the community and the team. For many of us, programming

is more than just a job – it’s a passion that spans beyond our workday as

evidenced by the busy repositories on GitHub. Community user groups,

such as those found on MeetUp, www.meetup.com/, can be a great place to

meet like-minded people or to learn new things.

Chapter 7 MaintenanCe and resourCes

https://www.meetup.com/

145© Iris Classon 2019
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5

Index

A, B

Acceptance testing (AT), 11, 20, 126
Administration service, 6
AggregationEngine, 6
Analysis, projects preparation

cost of migration, 53, 54
details tab, 49, 50
ICanHasDot.Net, 51, 52
Konstrukt.BL.Main, 50, 51
portability summary

Autofac, 47
dynamitey library, 47
EF, 47, 48
Log4Net, 48
Microsoft.

ApplicationInsights, 49
retargeting, 31–34
SL.Main dependency

diagram, 30
unused references,

removing, 39–45
unused types and members,

removing, 35–39
Application Performance

Management (APM) tool, 49
Architecture alignment, 138

Architecture, Konstrukt
administration, 6
AggregationEngine, 6
authentication, 6
CalculationEngine, 7
decoupling and failure

resistance, 5
microservices, 4
NoSQL databases, 4
NotificationService, 7

Architecture plan
conventions, 60, 61
migrate

ASP.NET Core, 56
ASP.NET services, 56
logical parts to new

services, 58, 59
.NET Standard, 56
OpenIdConnect

authentication, 57
SAML authentication, 57
whole services, 58

resources, 55, 56
ASP.NET Core vs. ASP.NET tag, 21
ASP.NET Identity, 114
Authentication service, 6, 112
Autofac, 47, 104

https://doi.org/10.1007/978-1-4842-4327-5

146

C
CalculationEngine, 7
Command-line-first approach, 128
Compilation symbols, 94
Conditional compilation, 94, 95, 97
ConfigurationManager, 81, 106
Contracts library, 31, 69, 80

D
Data consolidation, 4
Data-driven budgeting, 4
DbContext, 97, 101
Dependency graph, 65, 67
Dependency injection (DI), 15,

104, 105, 138
Deployment pipeline

build and pack, 126
deployment, 126, 130
EDGE server, 126
integration test, 126
NuGet server, 126
running tests, 129
solutions, 128
steps for Konstrukt, 127
unit test, 126
version number, 125

Docker files, 19
Documentation, 137
Dotnet templates, 139
Dynamic Language Runtime (DLR), 47

E
Entity Framework Core

EDMX model and
scaffolded entities, 98

.NET libraries, 98
scaffolding, database

context, 99–101
EntityFramework (EF), 47, 48

F
Forums, 142
Framework changes, 134, 135
Framework dependent/

self- contained
deployment, 59

Full migration
contracts

error list window, 73
Konstrukt.Contracts, 74
Libraries.Standard, 70
namespaces, 72
package summary, 74
ReSharper, 73

dependencies, 64
partial (see Partial migration)
remove and import

namespaces,
ReSharper, 76–80

search and replace, 75, 76
setup, 64

INDEX

147

G
GetLoggedInUserId() method, 91
GetSection method, 81
Gradual migration, 56, 57

H
Hangfire, 53
HttpContext, 61, 83
HttpContextAccessor type, 83
hybrid swarm, 20

I, J
ICanHasDot.Net, 51, 52
IConfiguration interface, 81
Ignite videos, 142
IHttpContextAccessor, 61, 83
Init() method, 91
Installation requirements, 2, 3
Integration tests, 28
IOptions<MyCustomSettings>, 81

K
Konstrukt continuous

integration, 124, 125
Konstrukt.Contracts, 28, 31, 74
Konstrukt.Entities, 28, 97
Konstrukt.Logging, 28, 88
Konstrukt.Shared, 75
Konstrukt.Shared.Logging, 88
Konstrukt.Standard.Contracts, 74
Konstrukt.Tenancy, 28, 97

L
Live StandUps, 141
Log4Net, 48, 80, 88

M
MemoryCache, 86, 88
MemoryCacheExtensions, 87
Microservices, 5, 58
Microsoft.ApplicationInsights.

AspNetCore, 49
Microsoft blogs, 141
Microsoft.Extensions.Caching.

Memory.MemoryCache, 87
Migrate, benefits

containers, 19, 20
cross-platform, 20
DI, 15, 16
flexible deployment, 16
logging, 15, 16
modular, 17
open source and community

driven, 18, 19
performance, 14, 15

Migrate, challenges
favorites, 22, 23
resources and

documentation, 21, 22
versions, 23, 24, 26

Mixed system, 57
Modular architecture, 138
MS Build videos, 142

Index

148

N
Naming conventions, 70
.NET core global tools, 140, 141
.NET core test explorer, 140
.NET standard, 71, 138
NLog config file, 110
Notification service, 7, 53
NuGet packages, 17, 74, 81, 129
NuGet searches, 73

O
Octopus Deploy, 10, 51
OpenIdConnect, 113, 114

P
Partial migration

continuous integration and
deployment pipeline, 65

dependency graph, 67, 68
unit test libraries, 66

Pipeline, 10, 11
modifications, 128

Podcast, 141

Q
Quality assurance (QA), 11, 20, 126
Quantitative planning, 4

R
ReSharper, 73–75

code issues, 37

NuGet searches, 73
optimize references, 40
remove and import

namespaces, 76–80
Retargeting

extension uses, 32
properties, Konstrukt.Contracts

library, 31
target framework, 33
unit tests, running, 34

Rewriting
HttpContext.Current, 83–86
InvokeSet, 82
logging, 88
MemoryCache, 86, 88
static logging instance vs.

dependency injection, 89
unit tests migration, 89, 91–94

Roadmaps, 135–137
Rolling forecasting, 4
RoutePrefix, 119

S
Self-contained deployment, 59
Service startup, ASP.NET Core

authentication, 112
configuration files, 106–109
configuration providers, 106, 107
controllers, 118, 120
current user, 115
custom authorization

attributes, 115–118
dependencies, 110

INDEX

149

dependency injection, 104, 105
enable NLog, 110, 111
enable CORS, 102, 104
identity tables, 114, 115
logging, 109
NLog config file, 110
OpenIdConnect, 113, 114
static files, 120, 121

Shared library, 82, 87, 88
Software as a Service (SaaS), 3, 4
Static logging instance vs.

dependency injection, 89
Strategic planning, 4
System.Runtime.Caching.

MemoryCache, 88

T, U, V
Tools

C#, 140
Dotnet templates, 139
.NET core global, 140, 141
.NET core test explorer, 140
portability analyzer, 139
windows compatibility pack, 140

Twitter, 142

W, X, Y, Z
WebApiConfig file, 106
WebSocket notifications, 7, 9
Workforce capacity planning, 4

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The SaaS System in Question
	Installation Requirements
	Multitenant Software as a Service (SaaS)
	What the System Does
	Architecture
	Example System Used in This Book
	Pipeline
	Summary

	Chapter 2: Should We Migrate?
	The Benefits
	Performance
	Built-In Dependency Injection and Logging
	Flexible Deployment
	Modular
	Open Source and Community Driven
	Perfect for Containers
	Cross-Platform

	The Challenges
	Lack of Resources and Documentation
	A Lot to Learn
	Versions and Changes

	Summary

	Chapter 3: Phase 1: Analysis
	Preparing the Projects
	Retargeting
	Removing Unused Types and Members
	Removing Unused References
	Portability Summary
	Autofac
	Dynamitey
	EntityFramework
	Log4Net
	Microsoft.ApplicationInsights

	Details Tab
	Summarizing the Work Required for Migrating Konstrukt.BL.Main and Its Dependencies
	Analyzing with ICanHasDot.Net
	Analyzing the Rest of the Solution
	A Note on the Cost
	Summary

	Chapter 4: Phase 2: Planning the Architecture
	Available Resources
	What to Migrate
	Migrating Everything
	Gradual Migration and a Mixed System

	How to Migrate
	Migrate Whole Services
	Break Out Logical Parts to New Services

	Self-Contained Deployment or Framework Dependent
	Architecture and Conventions
	Summary

	Chapter 5: Phase 3: Migration
	Full Migration
	Partial Migration
	Partial Migration Walkthrough
	Migrating Contracts
	Search and Replace
	Using ReSharper to Remove and Import Namespaces

	Missing Type: ConfigurationManager
	Rewriting to Avoid Unnecessary Dependencies
	Missing Type: HttpContext.Current
	Dependency Options: New vs. Old MemoryCache
	Replacing Dependencies: Logging
	Static Logging Instance vs. Dependency Injection

	Migrating Unit Tests

	Conditional Compilation
	Konstrukt.Tenancy
	Migrating to Entity Framework Core
	Scaffolding a Database Context

	Migrating from ASP.NET to ASP.NET Core
	Service Startup
	Routing Configuration
	Enabling CORS
	Dependency Injection
	Reading Configuration Files
	Logging
	Add Dependencies
	Add NLog Config File
	Enable NLog
	Authentication
	Example with OpenIdConnect
	ASP.NET Core Identity
	Current User
	Authorization
	Migrating Controllers
	Static Files

	Summary

	Chapter 6: Phase 4: Upgrading the Deployment Pipeline
	Konstrukt Continuous Integration and Deployment Pipeline
	Create Version
	Build and Pack
	Run Unit Tests and Run Integration Tests
	Push
	Deployment Flow
	Pipeline Modifications
	Two Solutions
	CLI First
	Creating NuGet Packages
	Running Tests
	Deploying
	Summary

	Chapter 7: Maintenance and Resources
	Framework Changes
	Announcements and Roadmaps
	Documentation
	Align Architecture with New Conventions
	.NET Standard
	Test, Test, and Then Test Some More
	Community Resources and Tools
	Dotnet Templates
	Portability Analyzer
	Windows Compatibility Pack
	.NET Core Test Explorer for Visual Studio Code
	C# for Visual Studio Code
	Crowdsourced Tools and Frameworks
	Crowdsourced .NET Core Global Tools

	Stay Up to Date
	Microsoft Blogs
	Podcast
	Live StandUps
	Twitter
	Forums
	Videos (General)
	Video Training

	Summary

	Index

