B\
Migrating ASPNET
Microservices to
ASPNET Core

By Example

Iris Classon

ApPress’

Migrating ASPNET
Microservices
to ASPNET Core

Iris Classon

Apress’

Migrating ASP.NET Microservices to ASP.NET Core: By Example

Iris Classon
29 Gothenburg, Sweden

ISBN-13 (pbk): 978-1-4842-4326-8 ISBN-13 (electronic): 978-1-4842-4327-5
https://doi.org/10.1007/978-1-4842-4327-5

Copyright © 2019 by Iris Classon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484243268. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4327-5

To the .NET community, my second home
and whose never-failing encouragement helped
keep my fire burning when I second-guessed myself.

Table of Contents

About the AUtNOF ... ———————— Xi
About the Technical REVIEWErccussseensrsssssnnsssssssssssssssssssssssssnnnsssss Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Introduction.........cociiieememmnnnninnsssss s —————————— Xvii
Chapter 1: The SaaS System in Question........occceeermrrrssssssssssssnsnneesssnes 1
Installation ReqUIreMentsccovvevienmnese s 2
Multitenant Software as a Service (SaaS)cocvvvvrernrnrnine s 3
What the SYStem DOES.......ccvcrrerererieriererrreresers s s s e e s sssssssessees 4
Vo 111 T S 4
Example System Used in ThiS BOOK...........cccoreermrenmrnncrenscrenesese s 7
PIPEIING ..ot e 10
R 111 1T o SRS 11
Chapter 2: Should We Migrate?........cccusesmsssnnmsssnnssssnsssssnsssssnsssssnnsssns 13
THE BENETIS ...civiecricriree s 14
PErfOrMANCE......ccvieirceree e s 14
Built-In Dependency Injection and LOGGiNg.......cccvveverreriererenrersersessesensensenas 15
Flexible Deployment.........ccccevvriererensenieresesessese s se e s saesesesaesaes 16
1100 1] - T SRS 17
Open Source and Community DAVEN.......c.ccovvrinennsenseniene e sesesse s 18
Perfect for CONTAINErScccvevvenerese s 19
CroSS-Platformccccevceinesrc e s 20

TABLE OF CONTENTS

L 1= 11 T=T o T 21
Lack of Resources and Documentationc.ccoveenrnnnnninennsennncsensnesnnnes 21
FAN 0L (0 = 1 22
Versions ant ChANGESccevveververerererreresessssessessessesessessesssssssessessesssssnsessens 23
1] 4= 7 26
Chapter 3: Phase 1: ANalYSiS....cccussemrrssssnnsssssssnsssssssssssssssssnnssssssnnnnss 27
Preparing the Projectsccvorerrencnncreresee e 31
Retargeting.......ccoveeerenereeererese s s 31
Removing Unused Types and MemDBErS...........coeerrrerenrenerenerensesenesessesesennes 35
Removing Unused References...........ocoverererencrnscsesesesesesessesesese e 39
Portability SUMMANYccorereererr e 45
(D123 2T S = o 49
Summarizing the Work Required for Migrating Konstrukt.BL.Main
and Its DePendenCiescccucverrinsnenie s 50
Analyzing with ICanHasDOL.Net ... 51
Analyzing the Rest of the Solution.........c.cccvivnininnsncr s 52
A NOtE 0N the COSL......covreereerieereree e 53
10T 011 T O 54
Chapter 4: Phase 2: Planning the Architecturecccccccrniinnseennnnnnnns 55
AVailaDIE RESOUICES.....covveeerreerrneresesessesessssesessesesseseses e sessssssss e sss s sessssssssnessnses 55
What t0 MIgratecccueeernrennisinnsensse s sr e 56
Migrating EVErythingccoveevmenninnnessesessse s sessesessnnes 56
Gradual Migration and a Mixed SyStem.........ccccerrenrinsnnnennesesssesese e 57
HOW 10 MIQIate.....cccerevieercere st a e sae s s e saesnens 57
Migrate WHoIE SErVICES........couvrreririnniniererie s se s s sesse s sassessesaesaes 58
Break Out Logical Parts t0 NEW SErviCes.........ccvrvrrrriererensensessessesessensenens 58
Self-Contained Deployment or Framework Dependent...........ccccooevverrevenersenennen 59

TABLE OF CONTENTS

Architecture and CONVENLIONS.........ccoucenerernnnssse s ssssesens 60
11T 111 T o O 62
Chapter 5: Phase 3: Migration.........ccccusmmmsssmsmsssssmsssssssssssssssssssssssssssas 63
LT T U0 S 63
Partial Migration..........cccoeerrenrerererc s 65
Partial Migration Walkthrough ... 66
Migrating CoNtracts.......c.ccovrrninieninnn e 69
Search and Replace..........cccvrrninnnnn e 75
Using ReSharper to Remove and Import Namespaces...........ccccvverreereerierienns 76
Missing Type: ConfigurationManagerccccorerernneresenereseresseseseses e sessesenns 81
Rewriting to Avoid Unnecessary Dependencies..........couerenerensesesesessenersnsesenns 82
Missing Type: HttpConteXt.Currentccoveeeveeernsesnnesesesess e 83
Dependency Options: New vs. Old MemoryCache........c..ccovvvrvrierenensenienne, 86
Replacing Dependencies: LOGgiNgc.oueverererrenerrnsesessensssesessssesessesessssessnnes 88
Migrating Unit TESES......ccoveerrrerrnnnerrese s sese s sennes 89
Conditional CoMPilationcccvveernrernesern e 94
KONSTIUKETENANCYcoveirirciece s s s 97
Migrating to Entity Framework COreccccvvevivrerrerseressssensessessesessessessessssessessens 97
Scaffolding a Database Contextccvvvvrrcrienn s 99
Migrating from ASP.NET t0 ASP.INET COre.......cccevrverrernrerserseresensessessesessessessenes 102
LT YT L £ o 102
SUMMANY..c..citiciiire e e e e s b e s e s R r e e e aenne s 121
Chapter 6: Phase 4: Upgrading the Deployment Pipeline 123
Konstrukt Continuous Integration and Deployment Pipeline.........cccvvviernae. 124
Create VErSioN..........covnmnnisssssse e s 125
BUIld @nd PACKcoeruriririirne e 126

vii

TABLE OF CONTENTS

Run Unit Tests and Run Integration TeStS.........ccccvvrvnrenininnn s sesenaens 126
PUSH . 126
DepIoYyMENt FIOW ..o s 126
Pipeline Modifications........c.ccoouvrvnininnnn s 128
TWO SOIUTIONS.....vcereeerrrcsere e sn e 128
(0L T] ST 128
Creating NUGET PACKAGEScovverrererrererrererrersssesessessssessessessessssessessesssssssessenes 129
T] 0T S 129
DEPIOYING .o e e 130
SUMMANY ..o s n s e ne s ne s 130
Chapter 7: Maintenance and ReSOUICeSuusmsmsmssssssssssssnsssnsnsnsnans 133
Framework ChangesS........ouuverenernmsenessssse s s s ssanes 134
Announcements and ROadmapsccccucrrvnerininninnenessessse s sesenns 135
DOCUMENTALION.......ccereicrirce s 137
Align Architecture with New Conventions..........cccoovevnnnnnsnnnenennnsesssesenienens 138
1= I T o o S 138
Test, Test, and Then Test SOME MOYEcocvveererierverreenererser e sesesseessessesenns 138
Community Resources and TOOISccoueevmenmreserrssesesesssssessssessssesessssesessesenns 139
Dotnet Templates.......cccveercrinien s 139
Portability ANAIYZETcoeeeerenernserinesere s se e 139
Windows Compatibility Packcccecvvinininenninsn s sessensens 140
.NET Core Test Explorer for Visual Studio Codecccvrervrrrrrierierensensenaens 140

C# for Visual StUdio COUEc.vvvrerrererrnsmreseserese s sesese s ssssesessesessssesenns 140
Crowdsourced Tools and Frameworks...........cuoueereserensesessssessssesessessssesessnnes 140
Crowdsourced .NET Core GIODa@l TOOIS........ccorrererrnserensesessesessssesessesessenessnnes 140

viii

TABLE OF CONTENTS

Stay UP t0 DAL ..ccvevveceecerere vt re e s e e s se s e s saesn e e nneenens 141
MiICroSOft BIOGS.....cccerverreereririerrie e s sa e 141
POACAST.......ceiiiireer e 141
Live STANAUPS.....uevererererieserrere e ses e sse s ssssessessessesessessessesssssssessesasssssessesaes 141
L 142
FOTUMS ...t s 142
VideO0S (GENEIAI) ...evverrerreerierere s s sre s s e sse e s e s sse s s e ssessesaessssessesnens 142
Vide0 TraiNiNg ..cvecerererresersereresessessesessesessessessessesessessessessssessessesasssssessessens 142

SUMMAIY.c.veitetrereereseesere e ssesese s sressesessesseseesessesaesaessesensessesassessessesasssssensessens 143

1T - 145

ix

About the Author

Iris Classon is a force of nature. Her unique
and engaging methods of teaching complex
topics have garnered her considerable
respect from the developer community and

a great deal of media attention - Channel

9, Hanselminutes, Computer Sweden, and
Developer Magazine - just to name a few.
She is a Microsoft MVP and holds multiple
certifications. Currently a freelance developer with her company, In Love

With Code LTD, Iris can be found consulting for large enterprises and
working on backend systems and operations for startups. She often speaks
at conferences such as TechDays and NDC and at user groups. Her passion
for teaching code extends to her tweets @IrisClasson, her popular blog,
StackOverflow, MSDN, and a myriad of other social media sites.

About the Technical Reviewer

Sean Whitesell is a software developer in
Tulsa, Oklahoma, and has been the president
of the Tulsa .NET User Group since 2009.

He is a frequent speaker at user groups and
conferences. Sean has more than 18 years

of experience in various aspects of software
development ranging from Azure, Kubernetes,
client-server, ASP.NET, Angular, embedded,

and electronics development. His passions are in solving problems

programmatically, coding craftsmanship, and teaching programming and
martial arts.

xiii

https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=PPGZkMqosR-Lo8_ewvlQejfXCwkdFBfcyZ75k46al74&s=K6yiUsKvTccbVpEsZDy73OwaTM0MwkeFQnIcW98LPOY&e=#_blank

Acknowledgments

I have to start by thanking my editors Jill Balzano and Joan Murray for their
patience and support in writing this book. I had an exciting year with a
move, travelling, belly growing, and childbirth, and Joan and Jill gave me
flexibility when I needed it, focus and guidance when required, and most
importantly, helped me stay on track so I could deliver this book.

My place of work, Konstrukt, has been vital for this book - not only by
trusting me with publishing vital parts of our code but also by letting me
share our journey.

But as cheesy as it might sound, the biggest thank you goes to my
partner Emanuel Olsson. Dealing with a stressed programmer is one
thing, but a pregnant and stressed programmer is a whole new ball game!
Whenever I felt my motivation and energy drop, I could always turn to him
for support.

Lastly, I want to thank my son, Loke Tiberiu, for keeping me
company - kicking and rolling in my belly, burping and farting once out
(and maybe a tiny bit of crying) - while writing this book. I couldn’t have
asked for better company!

Introduction

Iremember when I was straight out of school how excited I was whenever
I came across something new - a new language, framework, or tool - it
was always fun and exciting to play around with it. After many years as a
programmer, I still get excited, but I am also increasingly skeptical and
hesitant to invest time in new things as I've seen so many come and go and
not survive the test of time. This also goes for migrating existing systems.
I used to want to rewrite everything, and I probably still do, but I've also
seen how expensive this can get without necessarily yielding a better code
base or system.

When .NET Core was first announced, I was enthusiastic but
skeptical - even a bit cynical. I had jumped on the portable class library
train early on and had my share of fun with that, and therefore the promise
of .NET Core wasn’t something I was going to believe until I could see
it delivered. ASP.NET Core was the first framework to make use of .NET
Core, and although I could see many benefits early on (often a result
of getting to rewrite something that has collected technical debt over
time), I wanted to wait and see where this would go. As the adoption rate
increased, along with the contribution rate to this open source framework,
we started discussing at work if ASP.NET Core could be something for us.
The problems I came across while trying to answer that question were that
information on ASP.NET Core was lacking, was referring to older versions,
was scattered, inconsistent, and most importantly lacked real-world
examples of doing large-scale migrations. If you, like me, are a natural
skeptic, I can imagine that you would lean more toward a no in terms of
migrating, even more so if you get lost in the information and opinion

jungle, we spend most our time in. My aim with this book is to foremost

xvii

INTRODUCTION

show a real-world example, with actual code from our

system, of a migration from ASP.NET to ASP.NET Core neatly organized
in easy-to-follow steps. While the book won’t be an authoritative guide
on ASP.NET Core (there are plenty of excellent books that cover ASP.
NET Core), it will cover what you need to know to make a decision on
whether or not to migrate. It will cover your migration options, how to do
an analysis, and prepare, migrate, and maintain your web services. The
book also has an extensive list of resources and tools that can come in
handy, as well as plenty of examples of both problems and solutions

that you might come across. This book has all the information that I was
struggling to find, and my hope is that this book will answer the majority
of your questions and let you focus on building awesome software be that
with ASP.NET Core or not.

A Bit of Background Material

When I first wrote the outline for this book, I didn’t plan on spending too
much time explaining ASP.NET Core. I would assume a certain level of
understanding from you, the reader, and we’d hit the ground running. But,
often as developers, we are pressed for time and decisions are made when
we start implementing, with good intentions to at some point take the
time to dive deep in a new technology, but as we all can attest, sometimes
we never get around to it. Therefore, I want to take a little of your time
in the beginning of this book to share my insights and cover some of the
more valuable aspects of ASP.NET Core that you might not be aware of.
Hopefully, this will allow us to create a solid base for the migration that lies
ahead of us in this book.

Besides understanding .NET Core, .NET Standard, as well as ASP.
NET Core, I also want you to have an insight into the history behind the
Microsoft web development stack and how we ended up with ASP.NET
Core. And an important part of that is covering the difference between ASP.

xviii

INTRODUCTION

NET Web Forms, ASP.NET Web API, and ASP.NET Core. Not to mention
the difference between the two project types: ASP.NET Core (.NET Core)
and ASP.NET Core (.NET Framework).

Web Development Stack Timeline

Let’s see if I can condense the history of ASP.NET Core and how we got
here. If you have been around for a while, you know it’s a long story that
can be tracked back to when Classic ASP (Active Server Pages) was a
thing, and maybe even further back to one of Microsoft’s first inter-process
communication methods, DDE (Dynamic Data Exchange), in the late
1980s. Classic ASP was a revolutionizing way of dynamically rendering
server-side pages with baked-in logic, and later evolved to ASP 1.0,
followed by ASP.NET and Web Forms in 2001. In 2009, ASP.NET MVC was
released as a (much-needed) alternative to Web Forms. Simultaneously,
communication methods evolved from DDE to DCOM, to .NET
Remoting, to ASP Web Services in early 2000. In 2006, WCF (Windows
Communication Foundation) was released, tying together the different
options and supporting a variety of communication standards. WCF was
intended to be a unified programming model for building service-oriented
applications that had explicit support for service-oriented development.
However, WCF had some limitations in regard to REST (Representational
State Transfer) support. The WCF Web API project was intended to fill
the gaps and eventually evolved and became what we today know as Web
API. Web API was quickly embraced, partly because it tied in nicely with
the ASP.NET MVC style of programming. Not so surprisingly, when ASP.
NET Core was written, as a rewrite of ASP.NET, the two were combined
(Web API and MVC). But how exactly do .NET Core, .NET Standard, and
ASP.NET Core fitin?

Xix

INTRODUCTION

Core and More

As T see it, there were two major driving forces that led to what we today
know as .NET Core. Firstly, there was an increasing need for cross-platform
compatibility to stay relevant, and secondly, we had gotten to a place where
we had too many subsets of the .NET Framework, which was causing all
sorts of problems as the subsets were created and maintained by different
teams. 2014 was the year many exciting announcements were made by
Microsoft. ASP.NET vNext was announced in April, and .NET Core in
November the same year. .NET Core was a fork and open source rewrite of
.NET, and likewise ASP.NET vNext was a complete rewrite of ASP.NET. It
was later known as ASP.NET 5 (and by some as project K), until Microsoft
realized the name was confusing and renamed it to ASP.NET Core.

In 2016, the .NET Standard was introduced to us, as a way to bring
everything together. .NET Standard is a specification; it defines a set of
available .NET APIs. You can think of it as interfaces and the frameworks
that support the (or version of) .NET Standard as implementations. If you
ever had the pleasure of working with Portable Class Libraries (PCL) and
the framework union model they used, you'll be pleased to hear that .NET
Standard will replace PCLs.

To sum up, ASP.NET Core is the next step in the web development
evolution, an evolution that goes back more than 30 years. During that time a
lot has happened; tools and frameworks have been developed and matured.
The goal has always been to make it easier for us as developers to create
performant, flexible, yet sturdy services that allow freedom in terms of how
we communicate over the network and serve our content. ASP.NET Core puts
together some of the last missing pieces in terms of combining the power of
other frameworks while giving us the flexibility to choose the operating system
best suited for our service and optimal performance all while encouraging
best practices. You might not decide to migrate after reading this book or
doing the suggested analysis, but the information will be valuable nonetheless
as ASP.NET Core is the future of web development with the Microsoft stack.

CHAPTER 1

The SaaS System
in Question

I never pictured myself working at a startup. For as long as I've been
working as a developer, it has mostly been consulting gigs, and to me a
startup meant unreasonable working hours, low pay, a bunch of hipsters
arguing over what toys and games to stock in the conference room, plus
little to no stability. But, never say never, especially in the tech world.

One evening, I joined a friend of mine for a late-night coding session
with his business partner Johan (also a developer). They were battling
performance problems and bugs into the wee hours of the morning.

One evening turned into several weekends in a row, complete with the pick
and mix candy (a Swedish specialty), more caffeine than anyone should
consume, and raucous music pouring out from the speakers.

We coded tirelessly in that office overlooking the city center, and I ended
up offering to help profile the services they were experiencing problems
with. The services were ASP.NET services with significant performance
and memory use problems. At that time, the answer to the problem was

to create a local, on-prem solution for each customer. Each customer had
a local installation, not a big deal, as there were only two customers. But,
understanding that their client list was growing, I think we all recognized
the value of taking the system to the cloud to make a multitenant solution.
The partners chose Azure, an excellent choice I thought, as had a decent
amount of experience with Azure and had been impressed. Then the

© Iris Classon 2019 1

I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_1

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

elephant entered the room, how do we make the shift from on-prem to
multitenant? Doesn’t this mean a lot of rewriting and reworking of code?
What about all the features and bug fixes we had promised our current and
prospective clients? I could see this was daunting to all involved, but I also
recognized it as a great opportunity. In no time, I found myself working
full days with complete access and rights to all their Azure accounts and
servers. Long story short, I signed a contract and was now officially part of
a startup.

You might be wondering why I'm telling you all this. The backstory
ends at the point when we started migrating, a great starting point to share
with you my experience, advice, shortcuts, and hard-earned lessons. So,
let’s get started.

We will begin our journey by learning what the system does, its parts,
and how it all comes together. Throughout this book, I will use a ton of
example code. I want to keep everything as authentic as possible, and
therefore the services and code you will see will be actual working code
from our system (with minor modifications to protect the innocent) and
yes, the good, the bad, and the ugly. My goal is to provide you with a
realistic scenario to work from, and something transferable and relevant to
what you are working on.

Installation Requirements

Although you can run ASP.NET Core on Linux and use, for example, Visual
Studio Code as your editor, I've chosen to use Visual Studio Community
Edition (free) on Windows to leverage some additional tools and
extensions that will simplify the migration. These tools only simplify the
migration, and the vital steps of the migration are not dependent upon the
tools, and alternative ways will be covered in this book.

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

Requirements for a migration using the steps described in the book:
e Windows 10
e Visual Studio Community Edition 2017 (free)
o .NET Core SDK (latest or the version you are targeting)
Additional requirements for running the examples in the book:
o IIS7orlater
e Gitand Git Bash

e SQL Server Express 2016

Multitenant Software as a Service (SaaS)

The system itself is, as I mentioned, a multitenant solution. It’s a SaaS
system (Software as a Service), which means it has a cloud computing
service model where the system is centrally hosted. The clients, whom we
refer to as tenants, do not have to manage or control the infrastructure.
That is unless they choose, or rather insist on, an on-premise installation
(we have some government institutions that for legal reasons cannot use
the cloud solution). The tenants are merely consumers of the applications,
and while it feels like they have each their own dedicated cloud installation
of our system, they are using the same applications and services. We get
the benefit of not having to manage x-number of infrastructure setups

and discuss hardware and software requirements and licenses, support
becomes more manageable, and we can roll out patches and updates

as we please. There is also a significant financial gain to this, which is
another important factor. But, the challenges are plenty. Data security

is an obvious challenge, and so is uptime. We have SLAs (Service Level
Agreements) toward our tenants, but we also have SLAs with our cloud
vendor and the services we use there. One of our biggest challenges, and

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

a very common one for Saa$ solutions, is load, latency, and performance.
Load is uncertain and very difficult to predict. And the performance issues
we were seeing in the on-premise implementations significantly increased
when we adopted the cloud model. Why? We work with data, a lot of it.

What the System Does

Konstrukt is a planning platform designed to handle different types of
planning scenarios for all kind of organizations.

Any quantitative planning and data consolidation, simple or complex,
can be managed in a secure and user-friendly way, replacing the misuse
of Excel in many organizations. The system is flexible and covers a wide
range of planning scenarios such as strategic planning, rolling forecasting,
data-driven budgeting, workforce capacity planning, compensation and
equity planning, and so on. It probably doesn’t come as a surprise that the
system has a great deal of complexity, and a reoccurring challenge we have
is performance. I'll get back to this in the next chapter where we discuss
the pros and cons of doing a migration.

Architecture

Konstrukt consists of nine ASP.NET Web API services and one stateless
and decoupled client written in JavaScript, HTML, and CSS (Figure 1-1).
Each tenant has their own database, and we currently only use SQL Server
for our databases. The majority of the services share the same databases
on the same server cluster, some separated by schemas, and we also have
NoSQL databases (MongoDB) used by some services. Deceptively this
makes it look like we have a true microservice architecture, but we don’t.
We have a mix of microservices and what I often refer to as a distributed
monolith. A distributed monolith is a system deployed as several

small services that resemble microservices that are fairly well scoped

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

and small, but rely on the same datastore and are not failure resistant.
Some developers still refer to services like these as microservices, while
some would disagree. While the title of the book talks about migrating
microservices, we will migrate services with various degrees of decoupling
and failure resistance to give you a realistic picture of how it is to migrate
an existing complex system, legacy or not. If you have a monolith, in other
words, a single-tier application, don’t worry. Some of our services are
more or less monoliths, and I'll make sure to cover migration examples

including those.
Konstrukt Services VM2 P :
& Konstrukt Services VM2
Client

Konstrukt Services VM1

Figure 1-1. The system we are migrating

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

I'm only going to use some services as an example for the migration,
but in case you wonder how the system looks like, these are the main
services and what they do:

Authentication

Manages authentication. We support several
authentication methods, such as

o Internal database login
o ADES

¢ SAML2

e And afew more

After the initial authentication, a JWT (JSON Web
Token) is provided as an authentication header. This
token is saved on the client and used for subsequent
requests.

Administration

Manages all the logic that is available for system
admins, such as setting access rights and importing
users.

Main

This service is mainly concerned with actions that
are driven by actions in the client. Two examples
would be when a user sends in a budget for approval
and when a user adds a comment on a budget.

AggregationEngine

Writes and reads budget data to the user budget line
tables.

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

CalculationEngine

Queues and processes calculations that generate
data for the different plans and budgets.

NotificationService

Manages notifications, currently WebSocket
notifications. Notifications can be messages in the
chat or user notifications when a budget has been
submitted for approval. We use SignalR for our
notifications, a popular library for working with real-

time web communication.

Example System Used in This Book

As you probably have concluded, the system is of considerable size. It’s not
colossal, but large nonetheless. For the purpose of this book, I've trimmed
the solution, and I have some particular services in mind that will receive
more attention in this book as shown in Figure 1-2.

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

Solution Explorer
co@Bl-|o-548|p=
Search Solution Explorer (Ctrl+;)

akgJ Solution 'KonstruktDemo' (13 projects)
4 Libraries
a[cs] Konstrukt.Contracts
a[c#] Konstrukt.Entities
al[c#] Konstrukt.Logging
alc#] Konstrukt.Shared
b a[c#] Konstrukt.Tenancy
Konstrukt.CalculationEngine
4 Konstrukt.Main
P &lc#] Konstrukt.BL.Main
b &[c#] Konstrukt.DAL.Main
b a@] Konstrukt.SL.Main

b~ A - g - £ -

4 Konstrukt.Notification
b a@] Konstrukt.SL.SignalR
4 Tests
b Integration
b Unit

b &[c#] Konstrukt.Test.Common

Figure 1-2. The trimmed down version of Konstrukt that I'm using as
an example in this book

This book focuses on migrating the Konstrukt.SL.Main service and its
dependencies (shown in Figure 1-3) while making sure that the solution
libraries it depends on can also be used by services that are not migrated.
This means that while the service will target .NET Core, it’s solution
dependencies will be migrated to .NET Standard. Konstrukt.SL.Main
was the starting point for Konstrukt and has subsequently accumulated

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

a fair bit of spaghetti code over the years. As we are moving toward a
microservice architecture, we have broken out areas of responsibilities to
separate services, and Konstrukt.SL.Main was an excellent candidate for
that. I'll get back to this later in the book.

I also want to mention the notification service, which at the moment
manages WebSocket notifications using SignalR. This is a lightweight
service with just a few dependencies that are popular libraries - which
makes it a good candidate for a full migration. However, Asp.NET Core
SignalR differs significantly from SignalR, and a migration would require
a separate book on the topic, and therefore I've omitted the code for the
service.

- ntegration -] 111 Unit

Figure 1-3. The dependency graph for the example code

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

Pipeline

Later in the book we will also take a look at how we have to modify the
pipeline as we migrate our services and libraries. Our current pipeline
looks like this.

We use Git as our version control system, and we use GitHub for our
repository. We have a build server that runs TeamCity - TeamCity is a build
server service. It runs the following build steps sequentially - and if one
step fails, the other steps won’t run:

1. Build backend (builds the backend code, and
packages each service as a NuGet package)

2. Run backend unit tests (runs our unit tests)

3. Build client (builds our client, minifies and bundles
resources)

4. Run client tests (runs the client tests in a headless

browser)

5. Promote to EDGE (pushes our packages to our
EDGE server environment and verifies that all the

services can start and run without any issues)

On the build server, we also run a service called Octopus Deploy.
Octopus Deploy is an automated release management tool for Windows.
You can automate and manage deployments on remote machines
from a central place, and this is done by installing something referred
to as “tentacles” on the receiving machines. The tentacles create
communication channels that we can push our packages through. The
machines are organized in groups tagged as an environment. We have
different number of machines depending on the environment. Our EDGE
environment is just one virtual machine, because we only want to have
a first place to deploy to and make sure everything runs fine. Our second

10

CHAPTER 1 THE SAAS SYSTEM IN QUESTION

environment is our QA (quality assurance) environment. This is where we
do our testing, and we have the services spread out on two machines. Our
AT environment (acceptance testing) has four machines and is identical
to the production environment as it is the final stop before deploying to
production. Acceptance testing is the final testing that we do, and we have
both certain customers and implementation consultants (consultants that
help the tenant configure their data and calculations) testing in AT. The
final environment, also with four virtual machines, is PROD - production.
Ideally, we would have each service run on a single virtual machine so

we would have proper isolation, but unfortunately that would be too
expensive for us. That is also one of the reasons that we would like to
migrate our services, and I'm going to talk about that a whole lot more in
the next chapter.

Summary

In this chapter we've taken a look at the Konstrukt architecture and what
the system does. The system consists of nine services, various tools, and a
SQL server for storage. Konstrukt does numeric planning for enterprises
and manages performance-sensitive operations tied to the planning and
data consolidation. Throughout the book we will use a slice of the system
to guide you through a step-by-step migration, including changes to the
deployment pipeline.

In the next chapter, we will discuss the pros and cons of migrating.

11

CHAPTER 2

Should We Migrate?

This is by far the most popular question I get when I tell people about
our migration or when I do a conference session on the topic. There is no
straightforward answer, as most decisions in tech - it depends.

We were in Hungary for a weeklong kickoff with work when we
first started discussing migrating to .NET Core. The kickoff was a yearly
tradition where we set aside a whole week to learn new things without
the pressure of having to reply to customers, deliver new features, or do
other typical work. .NET Core was new and sexy, and it had come up in
conversation several times.

I had a new colleague, Tobias, and he had gone through our solution
and removed all the assemblies we weren’t using*. Furthermore, we
decided to see if we could migrate to .NET Core without too much trouble.
We spent the week looking into that, as well as discussing the pros and
cons. Knowing the general pros and cons might give you a quick idea if
there is something to gain from a migration. Here is an overview of the
pros and cons.

* ReSharper, a commercial Visual Studio extension, has a feature that
lets you discover and remove unused assemblies. There is also a free
extension, ResolveUR, that does the same. Take your time, remove
one at the time, and don’t forget to test in between. We will look at
this in a later chapter.

© Iris Classon 2019 13
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_2

CHAPTER 2 SHOULD WE MIGRATE?

The Benefits

Here is an overview of what many consider as main benefits of migrating -
or improvements to ASP.NET Core. Some of these vary depending on the

version of ASP.NET Core, and some also depend on whether or not you are
targeting .NET Core (compared to targeting the full NET Framework). The

items are not listed in order of importance.

Performance

The expected performance gains would be very important for us as we
have a system that does heavy work, a lot of calculations, and would also
need to be able to handle many concurrent requests. Performance in
ASP.NET Core has improved in many ways (Figures 2-1 and 2-2) - the
library itself has been improved during the rewrite, and so has the .NET
Core framework. Additionally, other big changes such as modularity and
independent hosting have also contributed to improved performance.

ASP.NET Core is between 6 and 23 times faster than ASP.NET, faster
than Node.js, and could by the second version handle over 1.5 million
requests per second. In ASP.NET Core 2.2 the performance has improved
further. If you want to learn more about the benchmarking, visit the
repository at https://github.com/aspnet/benchmarks.

Best plaintext responses per second, Dell R440 Xeon Gold + 10 GbE (11 tests)

Rk Framework Best performance (higher is better) Cls Lng Plt FE Aos |A Ei
1 W aspeore 6,970,937 | 100.0% (99.0%) Pit €2 NE kes Lin Rea
! W aspcore-mw 2,969,533 [42 .5% (42.7%) Mo €8 NE kes Lin Rea
5 M aspcore-mvc 1,032,068 | 14.8% (14.7%) Ful C# HE kes Lin Rea
4 M aspcore-mono BED,263 | 12.5% Pt C# MNE kes Lin Rea
5 W nodejs 826,111 DN 11.9% (11.7% Pit IS njs MNon Lin Rea
o M aspcore-mono-mw 461,127 I 5.6% (6.5%) Mr Cf ME kes Lin Rea
' W aspcore-mono-mve 281,549 M 4.0% (40%) Ful C€# NE kes Lin Rea i
4 W nancy-netcore 215,608 M3.1% (3.1%) Mo €2 NE kes Lin Rea
7 W nancy-mono £,394 10.1% (0.1%) Mcr €2 NE kes Lin Rea
10 ® aspnet-mong-ngx 5,513 10.1% (0.1%) Pit Cf MNE ngx Lin Rea
11 M sailsjs 0 10.0% (0.0%) Ful 5 njs Mon LUin Res

Figure 2-1. Benchmarking results for plain text responses per second
for ASP.NET Core, Node.js and ASPNET Mono

14

https://github.com/aspnet/benchmarks

CHAPTER 2 SHOULD WE MIGRATE?

Responses per second at 20 queries per request, Dell R440 Xeon Gold + 10 GbE (29 tests)

Fnk Framework Performance (higher is better) Cls Lng Plt FE Aos DB Dos Orm |A
1 W aspcore-mw-ado-pg 20,650 [N 100.0% (47.5%) Mer CF NE kes Lin Py Lin Rew Rea
1 M aspcore-mw-dap-pg 20,506 | 99,3% (474%) 2 Mer Cf NE kes Un Py Lin Mo Rea
i W aspcore-mve-dap-pg 18,256 | GG 4% (42.0%) Ful Cf ME kes Ln Pg Ln Max Rea
4 W aspcore-mve-ado-pg 16,388 | 79 4% (37.9%) Ful Cf NE kes LUn Py Ln Raw Rea

m aspcore-mw-ef-pg 14,479 | 70.1% (%5 5%) Mcr €2 MNE kes Ln Py LUn Ful Rea

& W aspcore-mvc-ef-pg 11,895 | 5 7.6 % (175%) Ful Cf ME kes Lin Py LUn Ful Rea
7 W nodejs-mongedb-raw 11,121 [N 53.9% (15.7%) Fit)5 njs Non Lin Mo LUn Raw Rea

W aspcore-mw-ado-my 10,735 | 5 2.0% (74.8%) Mcr €2 NE kes Ln My LUn Raw Rea
9 W aspcore-mve-ado-my 9,821 | 476 % (21.7%) FuL €& NE kes Lin My LUn Raw Rea

10 W asprore-mw-dap-mmy 9,510 | 46.1% (21.0%) Mcr CF ME kes Ln My LUn Mo Rea
11 W aspcore-mve-dap-my 9349 | T 45.3% Ful Cf NE kes Lin My Ln Mo Rea
17 W nancy-netcore 8,775 | 41.5% | Mer Cf ME kes LUn My Un Mo Rea
15 W nodejs 8,500 | 41.2% (1] Pt J5 njs MNon Lin My Lin Raw Rea
14 m nodejs-mysql 8,477 | 41.1% (19.6%) Pit JS njs Mon Lin My Lin Ful Rea
T aadaie.anerarn ae A YAC N N TR oo Piv s nit Mon Lin Po Un Ful Rea

Figure 2-2. Benchmarking results for responses per second at 20
queries per request for ASP.NET Core, Node.js and ASP.NET Mono

Built-In Dependency Injection and Logging

As with any rewrite, the Microsoft team, together with the community, set
out to write a much better version and to encourage good practices right
from the start. Two noticeable new improvements are built-in dependency
injection (DI) and logging. If you already make heavy use of dependency
injection, this might not be a big deal - but ASP.NET Core lets you easily
plug in your preferred container resolver, and from there on everything
just works. Integrating DI in a library is not revolutionary, but what is a
noticeable difference from before is how the DI now naturally blends in
with ASP.NET Core. For example, reading and working with configuration
files also use DI, and you can map a settings section to a concrete class

of the abstract type IOptions<MySettings> and work with strongly typed
accessors to your settings. We already had set up our own version of this,
but this certainly makes everything cleaner.

ASP.NET Core encourages better practices - and with better practices
you can expect more pliable code that is easier to test and maintain. If you
have a system that undergoes a lot of changes you've experienced locking
yourself in on bad solutions, this might be an important benefit.

15

CHAPTER 2 SHOULD WE MIGRATE?

Dependency injection is when you map a concrete type to an
abstraction such as an interface and inject the interface (for example)
in the constructor of another class instead of creating a new concrete
instance in that class. The abstraction and implementation are usually
mapped and resolved from a container. This allows for loose coupling,
easier testing and mocking, and lets you resolve your dependencies
in different ways — as singletons, per request or per resolution.

Flexible Deployment

By flexible deployment I'm referring to the fact that you can choose
HTTP server, and you can choose deployment mode - self-contained or
framework dependent.

By default, ASP.NET Core ships with two server implementations,
Kestrel (cross-platform) and HTTP.sys (Windows), but you could use
another web server as long as it is compatible. A reverse proxy server is
still recommended, for example, IIS, NGINX, or Apache. Not being tied to
a specific web server allows us to be flexible and is also in part what lets us
deploy to different operating systems. ASP.NET was heavily tied to IIS which
made portability impossible. It also had heavy dependencies that would be
pulled in regardless of them being used or not, with slow request pipelines
that had unnecessary hurdles. OWIN, Open Web Interface for .NET, is a
specification that aims to decouple the web server from the web application,
and project Katana in ASP.NET (now retired) was an OWIN implementation
by Microsoft. ASP.NET Core took over and fully complies with the OWIN
specification. If you want to build a custom web server, you can as ASP.NET
Core fully supports OWIN. If you think about it, ASP.NET Core applications
are just .NET Core applications that process incoming HTTP requests.

Let’s talk more about deployment. When you deploy you can choose to
deploy the application or service as self-contained application - this means
all the DLLs it needs are packaged with it and you are not dependent on a

16

CHAPTER 2 SHOULD WE MIGRATE?

system-wide installation of the libraries (pertaining to ASP.NET Core and
.NET Core) the application is dependent on. The finished package is larger,
but you have everything you need and this can simplify deployment - in
particular, when you want to just zip everything up and have it work on any
machine. The downside is that you become responsible for managing the
version, and you need to think about the target framework or frameworks
before you publish and pack. The other option is the one that we are more
familiar with from ASP.NET, framework-dependent deployment. The libraries
have to be installed system wide; in other words, the system you deploy to
has to be prepared and maintained. I'll get back to this later as there are some
caveats with both options. The important takeaway is that you have options
that you don’t have with ASP.NET, options that let you tweak and customize
the deployment to better suit your scenario and requirements.

Modular

One thing I didn’t mention in the preceding section is the modular HTTP
request pipeline, a result of implementing the OWIN specification. This is
available in ASP.NET with Katana, but comes more naturally in ASP.NET
Core. To explain this in simple terms, you can very easily plug in your own
middleware that interacts with the requests and responses on their way

in and out. We use this to modify our requests, custom logging, and a few
more things. It lets us return or redirect early in the request processing.
This modularity is a theme that you see throughout ASP.NET Core. For
example, everything is a NuGet package. You don’t add references, you
add NuGet packages. And there are many packages, because the big ASP.
NET Framework has been completely rewritten in ASP.NET Core to consist
of many smaller libraries. The upside is that Microsoft can release more
often, the downside is of course version alignment and dependencies.
This has been sorted with metapackages, a package that references other
packages. It includes all supported packages by the ASP.NET Core team
and the Entity Framework team. We’ll talk more about this later.

17

CHAPTER 2 SHOULD WE MIGRATE?

Open Source and Community Driven

I mentioned earlier that ASP.NET Core is open source, and this is fantastic.
There are many good things that come with that, and transparency is the
biggest one I would say. I can see the roadmap and join in on the discussion if
I'want to; I can see issues and breaking changes, suggestions, and discussions.
And an active community is doing the same and keeps pushing the projects
forward all while making sure that best practices are followed and possible
future issues are considered. There are currently over 147 repositories
(including Entity Framework Core repositories) and growing! (Figure 2-3).

Y Microsoft ASP.NET ¢
AS PN ET ASP.NET and Entity Framework

Redmond, WA https://www.asp.net/

] Repositories 147 People 95 Projects 0

Pinned repositories

Home EntityFrameworkCore

The Home repository is the starting point for people Entity Framework Core is a ligl

to learn about ASP.NET Core. version of the popular Entity F
technology

w73k ¥isk @c: o3k Y17k

Figure 2-3. The ASP.NET GitHub page

You can contribute, and it’s easier than you think! For example, I've
submitted issues, joined the discussions, and helped other developers
with workarounds. The access to the code means that debugging is much

18

CHAPTER 2 SHOULD WE MIGRATE?

easier, and you can familiarize yourself with the code and see the history
of the code. Very useful when classes suddenly disappear or an issue is
solved and you want to know how. Of course, you can decompile any
library in .NET, but there might be legal limitations depending on the user
agreement and your country of residence. Regardless, you wouldn’t have
the history and the issues and discussions tied to a particular line of code.

Perfect for Containers

By nature, .NET Core is lightweight and modular, which makes it much
easier to use with containers. Container is the concept of virtualization

at the operating system level. From the inside of a container, it is a
self-contained machine. It thinks it has its own operating system and
everything that comes with it. For the services running inside the container
(virtual boundaries), it feels like they run on a dedicated machine. In
reality, they share the same machine as other containers using the same
host and can only access resources within the container or explicitly made
available. It feels like a virtual machine, but you don’t have the overhead
of a guest operating system, startup time, and more. The operating system
isreused, and instead virtual boundaries let us work with containers as

if they were separate machines. You basically bundle your application
with everything it needs, and you get consistency, portability, flexibility,
testability, and isolation in one package.

Containers have been around for a long time in the Linux world, but
security and isolation concerns impeded the container movement on
Windows. Thankfully we have seen massive changes the last few years,
and now containers are first-class citizen even on Windows and in Visual
Studio. As a matter of fact, you can run your applications in containers
straight from the IDE. It’s either just a checkbox you need to tick when
you create a new project or you can add that functionality to an existing
project. Visual Studio will create the container files (called Docker files)

19

CHAPTER 2 SHOULD WE MIGRATE?

as well as Compose files - files that use Docker Compose to run several
containers that can communicate with each other.

Server applications that run in the background are a good fit for
containers, and ASP.NET Core applications are great candidates as they are
lightweight, a good “cultural fit” Let’s cover some other benefits.

Cross-Platform

.NET Core can also run in a Linux environment - and that also goes for
ASP.NET Core targeting the .NET Core framework. That means we can
have lighter containers - and also a host that doesn’t necessarily require
alicense. As a result, we can increase the concurrent services density.
Moreover, this allows us to expand our isolated testing environment to
several environments such as Quality Assurance (QA) and Acceptance
Testing (AT) without the cost or hardware overhead. However, if you can’t
target the .NET Core framework and you have some services that have to
target the full .NET Framework, you can still benefit from both containers
and the cross-platform ability. Something called “hybrid swarm” (a swarm
is a cluster of containers) lets us run mixed environment containers - in
other words, we can run Windows and Linux applications in one cluster.

A s a startup, cost has been an issue for us straight from the start and
also been something that has hindered our deployment pipeline as we
have crammed several services on one machine to save money. With better
isolation comes easier scaling, debugging, and deploying.

Besides these, there are also other benefits to running on other
platforms - and for us that is the access to mature and well-maintained tools.
While most Linux tools have a Windows equivalent, there are still some tools
that have a higher maturity level on Linux that we would love to leverage.

If you want to learn more about the tools available to you on the Linux
platform to manage multiple services, I would highly recommend one of
my favorite books on the topic, DevOps 2.0.

20

CHAPTER 2 SHOULD WE MIGRATE?

The Challenges

Now that we have covered the main selling points, it’s important that we
also take a look at the downsides so we can take these into account when
we make our decisions.

Lack of Resources and Documentation

Many of the downsides to ASP.NET Core has to do with the lack of maturity
compared to ASP.NET. There is less help available online when it comes

to forumes, articles, and documentation. If we compare questions asked

on StackOverflow with the ASP.NET Core tag vs. the ASP.NET tag, we see a
significant difference. ASP.NET has had the time to collect resources and
has been adopted by many developers (Figure 2-4).

All Questions

Tagged with aspnet or aspnet-mvc or asp.net-web-api

497,616 questions

Tagged with asp.net-core or asp.net-core-mvc Or asp.net-core-web-api

25,502 questions

Figure 2-4. Questions asked with the ASPNET Core vs. ASP.NET tags
on StackOverflow at the time of writing

21

CHAPTER 2 SHOULD WE MIGRATE?

This will change over time, and it’s worth keeping in mind that it can also
be a challenge to sort through the many different ways of solving ASP.NET-
related problems as that framework also changed over time. Nonetheless,
one of the biggest downsides of migrating to ASP.NET Core is that there are
less resources available although ASP.NET Core is catching up. Knowing
where to look helps, and the top five places I would recommend are

e Documentation

e GitHub repository

e Microsoft blogs

e Forums such as MSDN and StackOverflow

o Developer blogs such as those by Microsoft MVPs

You can also reach out to the team on social media such as Twitter and
support forums and by submitting or commenting on issues on GitHub.
Don’t hesitate to ask questions; you are most likely not alone.

A Lot to Learn

There are two parts to this challenge - the first one is that you and the rest
of the team have to relearn a framework, and the second part is that finding
new teammates requires that they either already know ASP.NET Core or
are willing to learn. While neither of the two might seem an unreasonable
requirement, it’s still important to take into account - in particular when
you do estimates.

Fortunately, there are many excellent resources for learning ASP.NET
Core; here are some of my favorites:

e ASP.NET Core documentation has very good articles
on how to get started as well as solving particular
problems. Start by looking there as the documentation
is maintained by the community and is kept up to date.

22

CHAPTER 2 SHOULD WE MIGRATE?

Apress has several books you can choose from. Make
sure you get the latest edition and for the right ASP.NET
Core version.

Microsoft Virtual Academy offers free training with
hands-on examples, and you might also be able to find
some free books by Microsoft press.

Online video learning by, for example, Pluralsight.
The majority of these sites have free trials. There are
also YouTube videos, but they don’t go through the
same review process. You can also find videos from
conferences that are free to watch and download.

Channel 9 hosts videos from Microsoft conferences
such as BUILD (conference where changes and new
products are announced) as well as Microsoft produced
educational videos and recorded streams by the ASP.
NET Core team.

Other large conferences such as NDC and .NET Conf
also publish their conference recordings for free.

Versions and Changes

While Microsoft together with the community is trying their best to

avoid breaking changes, there will always be some - in particular in the

beginning. The first few versions of ASP.NET Core had several unpopular

breaking changes, such as going back to csproj project format instead of
using JSON.

23

CHAPTER 2 SHOULD WE MIGRATE?

Navigating between versions, information and documentation on
versions can be a pain. Not to mention migrating between versions, or
deploying different versions (deployment has been simplified and I'd say
deploying different versions is less painful than dealing with ASP.NET
version deployments if you are targeting ASP.NET Core 2.0 and up).

The reason why there are breaking changes is in large part due to
the fact that ASP.NET Core was new and hadn’t found its identity in
the beginning. It is also open source and there is a big push from the
community to implement the best possible solutions, even if that means
going back on a previous decision. I recommend that keep an eye on issues
tagged with breaking-changes in the ASP.NET Core repository (Figure 2-5).
Additionally, always double check that you are using the right version of
the documentation when browsing the documentation (Figure 2-6).

Filters = iszissue is:open label:"Breaking change” Labels Milestones

B3 clear current search query, filters, and sorts

(@ 191 0pen v 6 Closed Author = Labels ~ Projects = Mileston

@ 3.0: Deprecating MvcPrecompilation tool 300 /Announcement

#315 opened 5 days 2go by pranavkm

® 3.0: deprecating Microsoft.AspNetCore.All 300 |Announcement

#3114 opened 18 days ago by natemcmaster

@ CorsMiddleware must be explicitly configured to specify all allowed headers 220 Announcement

#313 opened 26 days ago by pranavkm

@ Razor compilation APIs exposing Roslyn types being obsoleted in 2.2.0 and removed in 3.0.0 220
Aonouncen

#312 opened 28 days ago by danroth27 220

Figure 2-5. Make sure you keep an eye on issues tagged with
“Breaking change”

24

CHAPTER 2 SHOULD WE MIGRATE?

=. Microsoft | Docs Wwindows Microsof
Docs / ASP.NET / ASP.NET Core
ASP.NET Core 2.1 v

Version

2.2 Preview 1

2.1 =

2.0

I

1.0 3
vices)

Figure 2-6. Make sure to pick the right version when you read the
documentation

ASP.NET Core is maturing, the adoption rate is great, and the
community is very engaged. This means that it has become more stable,
there is more pressure to avoid breaking change, and there are less big
changes as the foundation has been built.

I always recommend developers to keep an eye on the frameworks that
they use - in particular the larger ones such as ASP.NET Core.

25

CHAPTER 2 SHOULD WE MIGRATE?

There are two ways to do that, and I recommend both:

e Subscribe to the repository and enable email
notifications.

e Subscribe to the Microsoft ASP.NET and ASP.NET Core
blogs and announcements.

Summary

We've now taken a detailed look at the pros and cons of migrating to
ASP.NET Core. On the upside we have a modular, performant, cross-
platform framework rewritten with best practices in mind. The downsides
are lack of maturity, frequent changes, and of course a lot to learn. In the
next chapter, we will do an extensive analysis to find out how much work is
involved, and do we have any deal breakers?

26

CHAPTER 3

Phase 1: Analysis

It was early summer of 2016 and the team was in Hungary for a week of
workshops and fun. Every year we would take a week somewhere remote
and spend the days learning new, but relevant, skills and the afternoons
and evenings building a good company culture and exchange knowledge.
Our team had recently hired another backend developer, Tobias, and

he was just as eager as me to explore .NET Core. We had spent 2 days
penetration testing and had finished a security evaluation of the system.
While sitting at a lovely café, we started discussing ASP.NET Core and

if that was something we should consider. Naturally, we started talking
about dependencies and what could be migrated - and if we had any
deal breakers. I pulled up my laptop, and we started going through our
packages and references one by one.

That was the start of our journey migrating to ASP.NET Core. Although
we didn’t do a full analysis or even attempt a migration that summer, it
created a starting point. We were in the midst of moving to a new cloud
provider and had our hands full with the move, but we had explored
the pros and cons of migrating, and we had started analyzing our
solution. Regardless of how you and your team decide to go about this, I
recommend that you set aside a few days, without the pressure to produce
results or joggle stories. With proper groundwork you can get a good
analysis done, as well as make the migration easier.

Therefore, in this chapter, I will walk you through a deep analysis using
a real-world example (that has been trimmed down for readability). We are
going to prepare, analyze, and plan. Let’s get started. I'm going to use the
© Iris Classon 2019 27

I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_3

CHAPTER 3 PHASE 1: ANALYSIS

Main project and its dependencies as an example in this chapter as well as
briefly covering the other services at the end of the chapter.
This is how the Main service is layered (Figure 3-1):

e SL.Main: The service layer (endpoints and web service)
e BL.Main: Business logic layer
e DAL.Main: Data access layer

The projects have the following dependencies in the solution
(Figure 3-2):

“Konstrukt.Share”: Contains plain objects, extensions,
and utility classes

e “Konstrukt.Contracts”: Interfaces used in several
projects, usually defining infrastructure logic

e “Konstrukt.Tenancy”: Library that makes the services
multitenant. It queries a main database for tenant
connection strings that are dynamically decrypted and
changed per request

e “Konstrukt.Entities”: The entity objects and the EF
context model

¢ “Konstrukt.Logging”: Library that manages logging to
different sources
Relevant test projects:

o “Konstrukt.Main.Tests”: Unit tests

o “Konstrukt.Tests.Common”: Base classes, helpers, and
mocks for unit tests

Integration tests are excluded for Konstrukt.Main in this example.

28

CHAPTER 3 PHASE 1: ANALYSIS

Solution Explorer v X
COoORE-|o-5 & pf-
Search Solution Explorer (Ctrl+") P~

alg] Solution 'KonstruktDemo' (13 projects)
4 . Llibraries
a[c#] Konstrukt.Contracts
a[c®] Konstrukt.Entities
a[c®] Konstrukt.Logging
&[] Konstrukt.Shared
a[c#] Konstrukt.Tenancy
4 . Services
I Konstrukt.CalculationEngine
b a[c#] Konstrukt.BL.Main
b a[c#] Konstrukt.DAL.Main
b &%) Konstrukt.SL.Main
P Konstrukt.Notification

vVvVvwew

4 o Tests
P 1 Integration
4 o Unit

b a&] Konstrukt.BL.CalculationEngine.Test
b &) Konstrukt.BL.Main.Test
b a[c#] Konstrukt.Test.Common

Figure 3-1. Project structure

29

CHAPTER 3 PHASE 1: ANALYSIS

Figure 3-2. SL.Main dependency diagram

30

CHAPTER 3 PHASE 1: ANALYSIS

Preparing the Projects

When we do an analysis, we want to have as little noise as possible. We

also certainly don’t want to do any pointless analysis and planning for
dependencies that we aren’t using. Therefore, we are going to remove unused
members, types, and references. But before we go ahead and do that, we will
first upgrade the projects and target a newer version of the NET Framework.

Retargeting

You might have to update Visual Studio to target a newer framework. If
you don’t see the framework version you want to target as an option under
Properties » Application » Target Framework, then check for Visual
Studio updates, run through them, and then bring up the Visual Studio
Installer and make sure that the target framework is installed.

You can retarget by right-clicking a project node in Solution Explorer
and selecting Properties. Under the Application tab, you can change the
target framework as shown in Figure 3-3.

Konstrukt.Contracts # X

Build

Build Events Assembly name: Default namespace:

Debug [Konstruke. Contracts Konstrukt.Contracts

Resources Target framework: Output type:

Services NET Framework 4.5.2 v Class Library 7
Settings Startup object:

Reference Paths (Not set) v Assembly Information...
Signing

Code Analysis focurces

Specify how application resources will be managed:

@ lcon and manifest
A manifest determines specific settings for an application. To embed 2 custom manifest, first add it to
your project and then select it from the list below.
lcon:
_(Defaun lcon) ~| | Brow

Embed manifest with default settings

Figure 3-3. Properties for the Konstrukt.Contracts library
31

CHAPTER 3 PHASE 1: ANALYSIS

You can also do this by unloading the project and changing the
TargetFrameWorkVersion in the csproj file. A tiny detail about ASP.NET
Core that I like is that as with other .NET Core projects, you don’t have
to unload the project first to edit the project file - you can simply open it.
You will also notice that the project file is much cleaner - and thus easier
to work with. Changing every project can be a lot of work depending on
how many you have, and I'd like to recommend an extension that you can
use to retarget all in one go. I would prefer to target the latest framework
version, but if that is not an option for you, then at least target 6.2.

To retarget the projects, we are going to use the Target Framework
Migrator by Pavel Samokha. Close Visual Studio and download
the extension from https://marketplace.visualstudio.com/
items?itemName=PavelSamokha.TargetFrameworkMigrator.

Select the target framework, and the projects you want to retarget, and
give it a few minutes. If the target framework is missing from the drop-down
menu, you can add it manually to the frameworks.xml file that the extension
uses. The file can be found under extensions in the user AppData/Local
folder (Figure 3-4). For example, here is my path: %LocalAppData%\
Microsoft\VisualStudio\15.0_3eebc2a9\Extensions\Ouwpe4cg.cvs

Duwpedcg.cvs = O X
Share View G
al\Microsoft\VisualStudio\ 15.0_3eebc2a%\Extensions\Ouwpedcg.cvSIEd KV] Search Quwpedcg.cvs 2
N Name Type Size

L3 5| 27-01-2013 19-03-27 PNG File 33 KB
+ + 1359311863_stock_update-fields PNG File 4KB

LT catalog JSON File 1KB
extension.vsixmanifest Extension Manifest 2KB
2| Frameworks XML Document 1KB

i IT manifest JSON File 2K8

%] TargetFrameworkMigrator.dll Application extens... 41KB
b TargetFrameworkMigrator.pkgdef Package Definitio... 2KB

Figure 3-4. Where the extension is located

32

https://marketplace.visualstudio.com/items?itemName=PavelSamokha.TargetFrameworkMigrator
https://marketplace.visualstudio.com/items?itemName=PavelSamokha.TargetFrameworkMigrator

CHAPTER 3 PHASE 1: ANALYSIS
Modify the XML file and add the target framework as shown in Figure 3-5.

Frameworksaml® & X

1 «?xml version="1.8" encoding="utf-8" 2>

2 Fi<Frameworks>

3 <Framework Id="262663" Name=“.NETFramework,Version=u4.?.2"/)|

4

5 <Framework Id="262151" Name="_.NETFramework,Version=v4.7"/>

6 <Framework Id="262662" Name=".NETFramework,Version=v4.6.2"/>

7 <Framework Id="262406" Name=".NETFramework,Version=v4.6.1"/>

8 <Framework Id="262150" Name=".NETFramework,Version=v4.6"/>

9 <Framework Id="262661" Name=".NETFramework,Version=v4.5.2"/>
10 <Framework Id="262405" Name=".NETFramework,Version=v4.5.1"/>
11 <Framework Id="262149" Name=".NETFramework,Version=v4.5"/>
12 <Framework Id="262144" Name=".NETFramework,Version=v4.0"/>
13 <Framework Id="262144" Name=".NETFramework,Version=v4.0,Profile=Client"/>
14 <Framework Id="196613" Name=".NETFramework,Version=v3.5"/>
15 <Framework Id="196613" Name=".NETFramework,Version=v3.5,Profile=Client"/>
16 <Framework Id="196608" Name=".NETFramework,Version=v3.0"/>
17 <Framework Id="131072" Name=".NETFramework,Version=v2.0"/>
18 </Frameworks>
19

Figure 3-5. You can add frameworks by adding the Name and Id

Select all the projects and click Migrate. You can follow the progress as
the project files are edited (Figure 3-6).

+=+ Target Framework Migrator -— [m] X
NETFramework Version=v4.7.2 v
Migrate
SelectNone | | Reload Projects List
Update Project Name Curmrent Framework Lol
v IEER st Test Common | NETFramework Version=v4.6.1 |
= Konstukt BL CalculationEngine Test | NETFramework Version=v4 6.1
& |KonstnktBLManTest | NETFramework Verson=v4 6.1
= | Konstrukt SL Notification Integration Test | NETFrameworke Version=v4 6.1
=) [Konstrukt DAL Main | NETFramework. Version=v4.6.1
2 | Konstrukt BL Main | NETFramework Version=v4 6.1
[~ | Konstrukt SL Main | NETFramework Version=v4.6.1
=] | Konstrukt SL SignalR | NETFramework Version=v4.6.1
2 [Konstrukt Contracts | NETFramework Version=v4 6.1
[Konstrukt. Logging NETFramework.Version=v4.6.1
M | Konstnia Entties | NETFramenwork Version=vé 6.1
2 | Konstrukd.Shared | NETR fc Version=v4 6.1 |v

Figure 3-6. Target Framework Migrator window in Visual Studio

33

CHAPTER 3 PHASE 1: ANALYSIS

Compile and run your tests (Figure 3-7), making sure that everything
compiles and runs as expected. Our unit tests use NUnit and therefore
requires the NUnit Test Adapter. Due to a regression bug after a Visual
Studio update, I also need to disable the following extension: Dotnet
Extensions for Test Explorer. At the time of writing, this issue has been
yet to be resolved, and the recommended solution is to disable Dotnet
Extensions for Test Explorer. An alternative is to use the unit test runner
from ReSharper - an extension we will be using for the analysis.

4 o &g Tests (11 tests) Success

4 o & Unit (11 tests) Success
4 +f B Konstrukt.BL.Main.Test (11 tests) Success
4 f {) Konstrukt.BL (17 tests) Success

4 o) Main.Test.Access.Given_SubordinateUser (7 test) Success

4 o When_GetUserSubordinates_with_data_that_is_circular (7 test) Success

o/ Should_throw_recursive_exception_to_prevent_stackoverflow Success

4 o]) Test.Access (10 tests) Success

4 / ® Given_LoggedinUserlsAdmin (2 tests) Success

b o/ When_User_Is_Admin (7 test) Success

P o/ When_User_ls_Not_Admin (7 test) Success

4 o/ {) Given_SubordinateUser (3 tests) Success

b of When_GetUserSubordinates_with_three_levels_deep (7 test) Success

b o/ When_GetUserSubordinates_with_two_levels_deep (7 test) Success

b o/ When_GetUserSubordinates_with_two_subordinates_one_level (1 test) Success

4 of () Given_SuperiorUser (5 tests) Success

b o/ When_GetSuperiorUsersRecursively_for_standalone_user (7 test) Success

p o/ When_GetSuperiorUsersRecursively for_userl (2 tests) Success

b of When_GetSuperiorUsersRecursively_for_user2 (2 tests) Success

Figure 3-7. Running the unit tests

Our next step is to remove unused types, members, and references. We
will use the ReSharper extension we installed in the previous chapter, and
as I mentioned, just grab the 30-day trial if you don’t have a license.

34

CHAPTER 3 PHASE 1: ANALYSIS

Note Please make sure that you have created a separate branch
to do the analysis if you use Git for version control, or at least use a
copy of the solution. Preferably do a commit after each major step so
you can undo if something goes wrong.

Removing Unused Types and Members

Technically you don’t really have to do this step, but it doesn’t take long
and can simplify things later. This is something we should do from time to
time anyway, and this is a perfect opportunity. With legacy applications
and libraries over time, you often end up with types or members that aren’t
used, so it’s worth doing a quick check first. These might in turn reference
assemblies, and we want to only analyze how much work this migration is
going to take based on assemblies, types, and members we are using.

Tip There is another benefit to doing this cleanup — the
maintainability index is probably going to be better, as dependencies
often add complexity and problems with versions and upgrades.

If you right-click a project (or the solution) and select Analyze
» Calculate Code Metrics (Figure 3-8), you will get the project
maintainability index as well as other indicators such as cyclomatic
dependency, depth of inheritance, class coupling, and lines of code
(Figure 3-9).

35

CHAPTER 3 PHASE 1: ANALYSIS

g Build
Rebuild
Clean
Analyze L Run Code Analysis
Scope to This Calculate Code Metrics

B! New Solution Explorer View

Build Dependencies »
Add »
8 Manage NuGet Packages...
£ Set as StartUp Project

Debug 4
Initialize Interactive with Project

Source Control »

Figure 3-8. Calculate Code Metrics can be found in the context menu
for a project

Code Metncs Results -9 Xx

& Filter None - M Max [~] b - |

Hierarchy Maintsinability In... Cyclomatic Com... Depth of Inherita. Class Coupling Lines of Code

+ [Services\Konstrukt Man\Konstrukt BL Masn (Deb v : |
b () Konstrukt BLMain a w0 4 1 L]
b () Konstrukt BL Man Access a -] a3 2 26 ¥
P () Konstrukt BL.Man App F) 9 3 1 4 5
b () Konstrukt BLMainAppConfig a g 7 1 1" 1%
b () Konstrukt BL Man User a 85 % 1 R
P () KonstruktBLMan. Ut o L] R 1 5 [~

Figure 3-9. Code Metrics Results for Konstrukt.BL.Main

As a fun add-on for the analysis step, why not go ahead and get the
code metrics and export them to Excel. After tiding up the references, you
can then run it again and compare.

Note The maintainability index was introduced by Oman and
Hagemeister in 1991. The metric is heavily criticized and there are
numerous papers and articles discussing the value of the metric,
many of them highlighting that other maintainability indicators are
not taken into account such as naming, comments for documentation

36

CHAPTER 3 PHASE 1: ANALYSIS

purpose, necessary complexity, how lambdas are resolved by the
compiler, and other factors. This is how the maintainability index is
calculated:

Maintainability Index = MAX(0,(171 - 5.2 * log(Halstead Volume) -
0.23 * (Cyclomatic Complexity) - 16.2 * log(Lines of Code))*100 / 171)

With ReSharper installed and activated, select in the main menu
Resharper » Inspect » Code Issues in Current Project (or select solution if
your solution is smaller) (Figure 3-10).

ReSharper Analyze Window Help

Navigate 4
Find »
Edit »
Refactor »
Inspect * & InspectThis.. Ctrl+Shift+ Alt+A
Archifecture 4 Show Project Hierarchy
Unit Tests " ¥ Show Type Dependency Diagram
Tools - Code Issues in Solution
Options... Code Issues in Current Project
Manage Options... Load Saved Issues Report...

W2 Extension Manager...
Windows b
Help »

A Solution Errors

Figure 3-10. Code Issues can be found in the ReSharper menu

Group by Issue Type, and scroll down to “Type or member is never
used” as shown in Figure 3-11. Figure 3-12 shows the result with the filter
applied.

37

CHAPTER 3 PHASE 1: ANALYSIS

W B8 + 4 -~ M ¢ Groupby: Issue Category and File I

ype to searc None
Displaying 424 of 905 found issues File
b gl Code Style (4 items) Directory and File
> g8 Common Practices and Code Improvements [Project Structure
b §% Compiler Warnings (4 items) Issue Category
> 08 Constints Vit 50t 7S —
P §¥ Language Usage Opportunities (20 iterns) [s.su.e C“ateé;.(.]-r.y"a-r:l.cl- lssue Type -------
b §¥ Potential Code Quality Issues (66 items) Issue Category and File
P ¥ Redundanciesin Code (214 items) Issue Category and Project Structure
b g Redundancies in Symbol Declarations (70 item |ssye Type and File
Issue Category, Issue Type and File
Issue Category and Issue Severity
Issue Category, Issue Severity and File
Inspection Results Code Metrics Results Output Issue Severity

Figure 3-11. The issues can be grouped by Issue Type

Code Issues in KonstruktDALMain' = % [N
@l R e S E- B'I] gGroupby: Issue Type ~

Displaying 19 of 24 found issues
b 8l Inconsistent Naming (7 item)
D o8l Make constructor in abstract class protected (7 item)
b onl Namespace does not correspond to file location (7 item)
b o8 Non-accessed field (2 items)
> o8l Redundant using directive (6 items)
4 51| Type or member is never used (7 item)

£\ Method 'ClearCache’ is never used

b o8l Typo in identifier (6 items)

Figure 3-12. Example results

38

CHAPTER 3 PHASE 1: ANALYSIS

If I navigate to the ClearCache method, ReSharper suggests that I
remove the ClearCache method which will remove the method from the
interface as well. I can also select to comment out the unused method -
I'm personally not a big fan of that, and since we have source control, I'll
just remove it instead. In total 176 types and members are never used in
the example solution - and they might hold on to references to assemblies
that are not compatible for our migration. Careful with removing unused
classes if you use dependency injection and assembly scanning for
autowiring as you might get false positives with the Inspect tool.

Once we've done that, we can proceed with analyzing the reference

assemblies in a similar fashion.

Removing Unused References

To avoid false positives when doing the assembly analysis, let’s go ahead
and remove unused references. This is just as easily done as mentioned
earlier - unless you dynamically load assemblies. ReSharper might
accidentally remove assemblies that are being used - so tests are going to
be important to make sure that we don’t remove significant references. If
you know that you are loading assemblies dynamically, or you are unsure,
be careful with removing assemblies. Make a copy, or better, as suggested
earlier, use source control and make commits between changes.

Since we need fine-grained control, we are going to do this one project
at a time, centered around the Main project and its dependencies. In the
following examples, I'm going to use the BL.Main project.

Select a project and select ReSharper » Find » Optimize References
or press Ctr1+Alt+Y (Figure 3-13).

39

CHAPTER 3 PHASE 1: ANALYSIS

ReSharper Analyze Window Help

Navigate b B =
Find ’ Find Usages Shift+F12
Edit L Find Usages Advanced... Ctrl+Shift+Alt+F12
Refactor " S Find Code Dependent on Module
Inspect " | £E Find Symbols External to Scope
Architecture & [£S5 Optimize References... Ctrl+Alt+Y
Unit Tests " B Search with Pattern...
Tools ’ P
Options...
Manage Options...
B2 Exension Manager...
Windows »
Help ’

Figure 3-13. Optimize References can be found in the ReSharper
menu

The result will show different groups depending on the result. For
example (Figure 3-14):

e Unused references
e Used references
o Implicit used references

e Unused packages with used dependencies

40

CHAPTER 3 PHASE 1: ANALYSIS

Analyze references - Code Referenced in Konstrukt.DAL. Main

Code Referenced in Konstrukt Shared Code Referenced in Konstrukt DAL Main & X QeSO AV FR et n i s i i TP

® | EI EI L & ¥ m‘ | it | E ﬁ AT | Group by: Modules, Namespaces and Types ~

3 unused references
) Konstrukt.Shared
System.Data.DataSetExtensions (referenced in: Konstrukt.Contracts, Konstrukt.Entities, Konstrukt.Shared)
1 System.Net.Http (referenced in: Konstrukt.Contracts, Kenstrukt.Entities, Kenstrukt.Shared)
8 used references
b 5 Konstrukt.Contracts (3 of 6 usages shown)
3 E Kenstrukt.Entities (30 of 48 usages shown)
b -8 mscorlib (29 of 113 usages shown)
b 3 System (2 of 11 usages shown)
P -8 System.Core (16 of 95 usages shown)
5 implicit used references
<3 Microsoft.CSharp (referenced in: EntityFramework, EntityFramework.5qlServer, Konstrukt.Contracts, Konstrukt.Entities, Konstrukt.Shared)
«0 System.ComponentModel. DataAnnotations (referenced in: EntityFramework, Konstrukt.Entities)
o) System.Data (referenced in: EntityFramework, EntityFramework.5qlServer, Konstrukt.Contracts, Konstrukt.Entities, Konstrukt.Shared, Systen

o System Xml (referenced in: EntityFramework, EntityFramework.SqlServer, Konstrukt.Contracts, Konstrukt.Entities, Konstrukt.Shared, System
«0) System.Xml.Ling (referenced in: EntityFramework, K kt.Contracts, Konstrukt.Entities, K kt.Shared)

Figure 3-14. Example results for the data layer project

We are going to remove the unused references by selecting Remove
unused references icon in the menu in the Analyze References window.
When they are removed, ReSharper will also delete redundant namespace
import directives in the project.

Let’s take a look at another project. The Shared project (Figure 3-15).

41

CHAPTER 3 PHASE 1: ANALYSIS

Analyze references - Code Referenced in Konstrukt.Shared

Code Referenced in Konstrukt.Shared + X Je6% VDT Y B G G« AT R Y ETT

RIED e SE-F- 7|8 R Y - | Groupby: Modules, Names;

1 unused reference
) System.Data.DataSetExtensions (referenced in: Konstrukt.Contracts, Konstrukt.Log
1 unused package with used dependencies
D Hangfire (used dependency: Newtonsoft.Json)
16 used references

4 <) Dynamitey (1 of 1 usages shown)
4 {) Dynamitey (1 item)
4 %7 Dynamic (1 item)
C] (15,17) Dynamic.InvokeSet(dynamicData, kvp.Key, kvp.Value);

b B Newtonsoft.Json
[a Konstrukt.Contracts (14 of 21 usages shown)
b &1 Konstrukt.Logging (All 8 usages shown)

¢ Microsoft.CSharp (0 of 1 usages shown)

—_ [T

Figure 3-15. Example results for the Shared project

In the used references tab, we are going to see if there are any
assemblies that aren’t used much and can be easily removed.

For this project there is a library Dynamitey (I will get back to this
one later) that is used only once - might be worth looking at the usage
and decide if we need the library. I'll leave it for now. If you have an
assembly that says “showing 0 of X usages,” you can take a look at the code
dependent on that assembly by using ReSharper. Locate the project in
Solution Explorer, and under References find the reference in question
and select Find Code Dependent on the Module (Figure 3-16). Example
result is shown in Figure 3-17.

42

CHAPTER 3 PHASE 1: ANALYSIS

4 [c%] Konstrukt.BL.Main

b S Properties
4 =B References
& Analyzers
=8 Autofac
=8 Dynamitey
¢ View in Object Browser ts
View in Assembly Explorer in
X Remove Del P
]
. ¥ Show Usages On Diagram
_I '-O[E Find Code Dependent on Meodule I
Safe Delete... Alt+Del
ﬁ Properties Alt+Enter

ion

Figure 3-16. Find Code Dependent on Module can be found in the
project context menu if you have ReSharper installed

Found 2 usages in EntityF k ref ed modul
4 *3 Konstrukt.BL.Main.App.AppContent (2 items)

4 © SetAppContentAsync(string appld, int budgetld, string appContent):Task (2 items)
(31,28) _appRepository.Context = _budgetAppRepository.Context; //Share context for unit of work
(31,59) _appRepository.Context = _budgetAppRepository.Context; //Share context for unit of work

Figure 3-17. Example results

The information can help you figure out if the assembly is important,
can be replaced, or be removed.

Repeat the preceding steps for all the projects, making sure to clean
and build the solution, and run the tests again after each modification.
Take notes, and organize them by project and/or namespace. We are going
to need the notes for the next part when we run the Portability Analyzer.

We can finally run the .NET Portability Analyzer tool. There is
an extension for Visual Studio as well as a separate command-line tool
that you can use. The latter isn’t up to date at the time of writing and has
some bugs, and although we could pull down the GitHub repository and

43

CHAPTER 3 PHASE 1: ANALYSIS

build an updated version, we’ll use the extension instead. The extension
can be downloaded here: https://marketplace.visualstudio.com/
items?itemName=ConnieYau.NETPortabilityAnalyzer

Close Visual Studio and install the extension, and open Visual Studio
again. Select a project and bring up the context menu (right-click). Select
Portability Analyzer Settings asshown in Figure 3-18.

Initialize Interactive with Project

Source Control »

Analyze Project Portability

Y v

Analyze Project Portability (with project references)
Portability Analyzer Settings
3 Cut Ctrl+X

Figure 3-18. Portability Analyzer options can be found in the context
menu for a project or solution

As we are interested in .NET, .NET Core (2.1) as well as .NET Standard
2.0, we are going to select those. Close the settings window, and bring up
the menu again and this time select Analyze Project Portability (with
project references) for the SL.Main project. The reason why we are
selecting with project references is we want to analyze the portability for
the project as a whole - including the dependencies it has - and the service
layer is highest up in the tree as we saw in the dependency diagram earlier
in this chapter. The analysis should be fairly quick and yield a result Excel
sheet as well as quite a few new lines in the Exrror List window. We are
going to use both the sheet and the messages in the Exror List window
(Figure 3-19).

44

https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer
https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer

Error List
Entire Solution

Code
- v

|[0 0Ermors ||[.4 0Warmings ||[@ 109 Messages || - | Build + IntetiSense

Project
v o

Eﬂu\snong.‘.!rsmn \.2 U— NE‘I Snnd.lrd.\b’emon—vlﬂ
Systern Runtime.Caching. ObjectCache.get_Name
Not supported on NET Core, Version=v2,1; NET
Standard Version=v2.0

Konstrukt.Shared

System.Runtime.Caching. DbjectCache.GetCount{System.String)
MNet supported on NET Core Versien=v2.1; MET

Standard Version=v2.0

Systern.Config ion.Confi i et_AppSetts

Mot supported on NET Cor:,\f«uon-v’] NE‘I’
Sundmi,\krsnunz w20

Konstruke.Shared

Konstrukt. Shared

priate for your applh
model For portable Frmewolk Componeﬂli.,‘a:po;e APl for
cenfiguration on type.
System Configuration Confi A get_AppS
Mot supported on NET Core Versionzv2.1; NET
Sundm’.\krslomvz 0

Konstrukt.Shared

wr
model For portable Frammo!k Compomﬂu upose 2R for
configuration on type.

CHAPTER 3 PHASE 1: ANALYSIS

*OXx
P~
Line SuppressionSt. ¥ =

- Search Errr List

File
gy

MemonyCacheBxtensions.cs 12

MemoryCacheExtensions.cs 12

Settings.cs n

Settings.cs 2

Figure 3-19. Example results

Let’s start with the Excel sheet. The Excel sheet consists of three tabs:

Portability Summary
Details

Missing Assemblies

Portability Summary

In the first tab, we get a high-level overview (Figure 3-20).

Description
Targets

Figure 3-20.

Submission Id

Header for assembly name entries

Konstrukt.Tenancy

94162ce2-6aca-4ccd-b769-2cdc1bb0as04

.NET Core,.NET Framework,.NET Standard + Platform Extensions,.NET Standard

B rarget Framework

Konstrukt.BL.Main .NETFramework, Version=v4.7.2
Konstrukt.Contracts .NETFramework,Version=vd.7.2
Konstrukt.DALMain .NETFramework,Version=v4.7.2
Konstrukt.Entities .NETFramework, Version=vd.7.2
Konstrukt.Logging .NETFramework,Version=v4.7.2
Konstrukt.Shared .NETFramework,Version=v4.7.2
Konstrukt.SL.Main .NETFramework,Version=v4.7.2

.NETFramework, vVersion=v4.7.2

B .NET Core

- NET lram?wtﬂ NET \tantfauﬂ

S ...
95.55 99.39 98.18
84.35 89.12 87.07
8245 98.94

Summary tab in the analysis Excel file

45

CHAPTER 3 PHASE 1: ANALYSIS

Itlooks like we have good news for the business layer for the Main
service. Only a few dependencies lack some portability for .NET Core: the
Konstrukt.Logging library, Konstrukt.Share, Konstrukt.Logging, and
Konstrukt.Tenancy.

Konstrukt.Tenancy seems to be less compatible with .NET Standard
than .NET Core, which is suspicious considering the result for .NET Core.
The Portability Analyzer isn’t perfect, and if it can’t resolve dependencies,
they won’t be analyzed and can yield false negatives. Therefore, let’s go
straight to the Missing Assemblies tab and have a look. The missing
assemblies for Konstrukt.BL.Main and the reference libraries are

e Autofac

e Dynamitey

o EntityFramework

o Log4Net

e Microsoft.ApplicationInsights

e Microsoft.Practices.EnterpriseLibrary.
TransientFaultHandling.Data

“Used By” is empty, but we can find which project it is by using Search
in Solution Explorer, and afterward “Find Code Dependent on Module”
like we did earlier.

The TransientFaultHandling is used in the project that maps tenants
against the right database, Konstrukt.Tenancy. I wrote that library, and I
know that it’s the ReliableSQLConnection type that is used. It shouldn’t
be a lot of work to write the retry policy ourselves. There is also, as an
example, open source libraries that we could use instead such as Polly
which supports .NET Standard 1.1. Polly can be downloaded here:
https://github.com/App-vNext/Polly

Let’s go through the rest of them one by one.

46

https://github.com/App-vNext/Polly

CHAPTER 3 PHASE 1: ANALYSIS

Autofac

Autofac is a dependency injection library, and after a quick search I can
confirm that it works fine with .NET Core.

Dynamitey

This is an old open source library for working with dynamic objects. It has
been quiet on GitHub lately, and we really should remove the dependency
on it anyway. Do you remember it from earlier? It was used only once in
one project. Let’s look at that again, to gage the amount of work to write
out the dependency on the Dynamitey library. Here is an example usage:

public static void SetFieldName(this IList<dynamic>
data, string fieldName, string fieldValue)

{
if (data.Count==0) return;
foreach (var dataltem in data)
{
Dynamic.InvokeSet(dataItem, fieldName,
fieldvalue);
}
}

We seem to mainly use the InvokeSet and InvokeGet on the Dynamic
type. These two members dynamically invoke the set and get member
using the Dynamic Language Runtime (DLR). And we can do that
ourselves. We will need some tests as well, so a little bit of work is required.

EntityFramework

EntityFramework(EF), a popular ORM .NET mapper, is a completely
different story - we use it heavily and even if we wanted to remove it, we
wouldn’t be able to do so without a significant rewrite. There is .NET Core
version of EF - but EF Core is a complete rewrite of EF, and there are many

47

CHAPTER 3 PHASE 1: ANALYSIS

significant differences between the two. It should not be considered an
upgrade. And if you have been using an EDMX mode], like we have, then
there is even more work. Besides the migration itself, you should expect
a lot of time spent testing. The behavior is different, and you might not
discover problems until you test all aspects.

To summarize, you have three options in regard to Entity Framework:

o Migrate to EF Core

e Use adifferent ORM (we have used Dapper in some of
our new .NET Core services)

e Migrate to ASP.NET Core but target the full framework

As long as you target the full framework, you can also do a side by side,
and run both versions: EF Core and EF6.

Tip Take a look at the feature comparison chart on MSDN as well
as the roadmap on GitHub that is kept up to date. You can find them
here: https://docs.microsoft.com/en-us/ef/efcore-and-
ef6/index and https://docs.microsoft.com/en-us/ef/
core/what-is-new/roadmap

After discussing it we agreed on an approach where some services
will target the full .NET Framework until we can migrate to EF Core and
replace EF with a slimmer option such as Dapper in services where we
don’t really use EF for more than object mapping.

Log4Net

At the time of writing, it doesn’t implement .NET Standard 2.0, and judging
by previous issues, it seems like only file logging would work with earlier
versions. NLog on the other hand would be an excellent replacement - and as
we have abstracted away the logging, we shouldn’t have to do too much work.

48

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/index
https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap
https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap

CHAPTER 3 PHASE 1: ANALYSIS

Microsoft.Applicationinsights

Application Insights is a service that Azure provides for application
monitoring. It consists of powerful analytics tools and a query

language known as Kusto. We use it for performance monitoring,

host diagnostics, error monitoring, and more. We want to keep using
this Application Performance Management (APM) tool as we haven’t
found any alternatives that do what we want. Thankfully Microsoft.
ApplicationInsights has a .NET Core version found on NuGet: Microsoft.
ApplicationInsights.AspNetCore.

Details Tab

Target typ B Torget member B Header for assembly name entrifll NET Core [l NET Framewo]ll NET Standard

T:System. Reflection.Emit.TypeBuild T:System.Reflection.Emit I kt.Shared Supported: 2.0+ Supported: 1.0+ Supported: L6+
TiSystem. Emit. [hT Emit. Shared 2.0+ 1.0+ Mot

T:Systermn. Reflection Emit. i ¥ ian.Emit. TypeBuilder. Def) wkt.Shared Supported: 2.0+ Supported: 1.0+ Supported: L6+
T:System, Emit. id Emit. fi kLShared 2.0+ Supp d: 1.0+ d: LE+
TSystem. Reflection.Emit. ¥ A Emit. f .Shared Supported: 2.0+ Supported: 1.0+ Supported: L6+
T:System.Configuration.Config @ T:System.Configurati f i @ Tenancy 3.0¢ Supps 2,00 Sup 204
T:Systern.Confl Config T:System.Confl s ukLLogging Supported: 3.0+ Supported: 2.0+ Supported: 2.0+
T:System.Config Config g T:System.Config Config " Shared 3.0+ 2.0+ 204
T:Systern.Configy Config Config Config wkt.Shared Supported: 3.0+ Supported: 2.0+ Supported: 2.0+
T:System.Config Config s Config Config Shared 3.0+ 2.0+ 20+
T:System.C g Contig: g C Config: ukt.Tenancy Supported: 3.0+ Supported: 2.0+ Supported: 2.0+
T:System.Configuration.Configurati g M:Sy Config Config " Logging P 3.0+ Supp 2.0+ Supp 20+
T:System. Web. HitpRequest T:System. Web. Konstrukt.Shared Notsupported Supported: 1.0+ Not supported
T:System. Web.HitpRequest IT:system.web KonstruktLogging Mot sup 1.0+ Not

T:System. Web. HitpRequest ¥ Web quest.get_Headers ukt.Logging Not supported Supported: 1.0+ Not supported
T:System. Web.HttpRequest Web get_Headers Shared Not 1.0+ Mot

T:System, Web. HitpRequest Web get_| kt.Shared Mot supported Supported: 1.0+ Not supported
T:System, Reflection.Emit.Label T:System.Reflection.Emit.Label Shared P 2.0¢ Supp 1.0+ Supp L6+
T:System,Runtime.Caching.ObjectCache T:System.Runtime.Caching.ObjectCache Konstrukt.BLMain Supported: 3.0+ Supported: 4.0+ Supported: 2.0+
T:System.fRuntime.Caching.ObjectCache T:System.Runtime.Caching.ObjectCache Shared 3.0+ Supp 0 20+
T:System. Runtime.Caching.ObjectCache T:System.Runtime.Caching.ObjectCache Konstrukt. Tenancy Supported: 3.0+ Supported: 4.0+ Supported: 2.0+
T:System.Auntime.Caching.ObjectCache M:System. Runtime.Caching.ObjectCache.A BLMain 3.0+ Supp 0 2.0+
T:System,Runtime.Caching.ObjectCache M:System. Runtime.Caching.ObjectCache. Adt Konstrukt. Tenancy Supported: 3.0+ Supported: 4.0+ Supported: 2.0+
T:System.Runtime.Caching.ObjectCache M:System. Runtime. Caching.ObjectCache.Cor kt.Tenancy 3.0+ Supp 4.0+ 20+
T:System.Runtime.Caching.ObjectCache M:System. Runtime.Caching.ObjectCache.Get Konstrukt.BLMain Supported: 3.0+ Supported: 4.0+ Supported: 2.0+

Figure 3-21. The Details tab in the Excel analysis file

Let’s move on to the Details tab as shown in Figure 3-21. This will give us
detailed information. For any given assembly, you’ll be able to see which
type and/or member isn’t supported. And in Visual Studio in the Exror
List window, as an information line under Messages, you can get even
more details - and go directly to the file and location in question.

49

CHAPTER 3 PHASE 1: ANALYSIS

The list is long, but if we take a closer look, it’s not as daunting. The
main types of issues on the list are

¢ MemoryCache

o HttpContext

e SQLClient (some unsupported members)
e ExceptionHandlerContext

After some investigation we can conclude the following.

Caching is going to require some rewriting. For NET Standard there
isMicrosoft.Extensions.Caching.Memory, but the members are quite
different and we will have to rewrite our cache management. It requires
some work, but doable. ASP.NET Core MemoryCache is different from the
MemoryCache object in the .NET assembly. There are fewer members
available, and you cannot iterate over the cache items. We could explore
other options, but at the moment Microsoft.Extensions.Caching.Memory
seems like a good enough replacement.

The HttpContext isn’t directly accessible anymore in ASP.NET Core.
Instead we will inject the context by using dependency injection. This
doesn’t require much work at all and is an easy fix that improves our code.

SQLClient has some members that are unsupported, but the Microsoft
team has been actively working on this issue, and with some temporary
workarounds, we should be able to make this work without too much trouble.

For global exception handling in ASP.NET Core, we will need to
implement a middleware. Not much work, but it requires some testing.

Summarizing the Work Required for Migrating
Konstrukt.BL.Main and Its Dependencies

Konstrukt.BL.Main and its dependencies have overall a compatibility
with .NET Standard 2.0 as well as .NET Core 2.0. There is some work
required such as replacing the logging library, removing the Dynamitey

50

https://github.com/dotnet/corefx/issues/17126

CHAPTER 3 PHASE 1: ANALYSIS

library and replacing with our own library, possibly migrating to EF
Core or other ORM libraries, rewriting and abstracting our caching logic,
modifying exception handling, and injecting the HTTP context instead of
using it directly. If I had to guestimate, I would say that it would take two
developers 2-3 days to implement the changes and test thoroughly, and an
additional day or two for the data access logic that uses EE.

My colleague Jonas always tells me to then multiply my estimates
by pi. I'm not convinced that’s the best way to get an estimate - but he is
right that developers tend to underestimate the amount of work (often
forgetting to take into account the time it takes to debug regression bugs,
random Windows and Visual Studio updates, etc.). The integration and
deployment pipeline also need to be updated - and that can take time.
Obviously, I've already done the work and can tell you how much work it
actually took. As an example, it took me a week to migrate the Main service
(excluding migrating EF). Modifying the pipeline for all the new changes
took 2-3 days.

Analyzing with ICanHasDot.Net

ICanHasDot.Net is a web service by the Octopus Deploy. You provide a
packages file and the service then recursively looks up all the packages
and figures out all the dependencies, direct as well as transitive (indirect).
Then it checks for assembly compatibility against .NET Standard or

PCL (Portable Class Libraries). It gives a clean overview and a pretty
visualization as demonstrated by Figure 3-22. The result summary suggests
replacement libraries and is color coded for easier use.

51

https://icanhasdot.net/

CHAPTER 3 PHASE 1: ANALYSIS

@ | Can Has .NET Core Home Demo Console FAQ Knowledge Stz

Microsoft CodeDom. Providers DotNetCompderPlatform | e,
s ¢\ T 7 v - popper js
) ()

(Mogemer :
== _* N\ || R
——)
B,
Microsoft Asphet WebApi Core

¥

e J | Microsen)

. . =
dons PlatiormA)

(Microsolt £

Figure 3-22. Analysis of Konstrukt.SL.Main

The GitHub repo has been quiet lately though, so I've started using the
tool by the core team instead as my main tool for analyzing the portability
of a project. Give the projects a quick go with the tool, but I would
recommend that you rely on the tool by the core team as your main source
for compatibility information.

Analyzing the Rest of the Solution

For simplicity I'm not going to give you the summarized result from
analyzing the rest of the projects as the results are similar to those we got
earlier - with a few exceptions.

We have two services that are going to be difficult to migrate. One of
them is our Hangfire service which is not included in the example solution.
Hangfire is a queue manager for Windows - it lets you set up queues and

52

CHAPTER 3 PHASE 1: ANALYSIS

queue fire and forget tasks for CPU or I/0 intensive tasks that are short-

or long running. Hangfire does not support .NET Standard, but we have
some options nonetheless. One option is to keep the Hangfire service

as is, and not migrate the service. Another option is to replace Hangfire
with something else. The way we use Hangfire is by using it to schedule
API calls to other services that will start tasks such as calculations and
aggregation of data. For our scenario we could replace Hangfire with a
message bus and some infrastructure code - and since we are planning on
adding a message bus to our system, we will probably do that. But for now,
we have decided to leave the service as is and focus on the other services.
Hangfire migration is not something I'm going to cover in this book.

The second challenge, and a bigger one than Hangfire, is our
notification service. Our notification service doesn’t do a lot, but the few
things it does are important. The service uses SignalR to initiate WebSocket
connections to update and notify the client of changes and the other way
around. SignalR is not compatible with ASP.NET Core. I've seen attempts
to get it to work with ASP.NET Core with the full framework, but the
SignalR team discourages that. SignalR has been completely rewritten to
ASP.NET Core SignalR (not to be confused with SignalR Core which is a
part of SignalR for the full NET Framework). SignalR has both a client and
a server, and you would need to replace both, which means we also need
to change our client significantly. This book won’t cover the migration of
the SignalR service as that topic deserves its own book.

A Note on the Cost

Before you decide to migrate, it is wise to think about the cost of the
migration - and depending on the size and setup of your team, this might
include the CTO, project manager, and possibly even investors. You should
be leery of something called “resume-driven development.”
“Resume-driven development” is when developers and/or architects
select tech stacks, architecture, methodologies, and protocols based on

53

CHAPTER 3 PHASE 1: ANALYSIS

what looks good on the resume. Often this is not necessarily done with

the resume in mind, but we get bored and naturally we like what is new
and sexy, and it’s tempting to jump on the next new shiny stack, library, or
methodology. Information should drive the decision, and unfortunately, I
cannot tell you whether or not it is worth it as it depends on several factors.
I have however done my best to highlight the factors and provide you with
the information and tools to gather the information that you need. One
thing remains to discuss before you make that final decision, and that is
how to do the migration if you migrate. Partial or full? A partial migration
can be less painful and let you test the waters, but at the same time, it adds
complexity. In the next chapter, we are going to start planning, and see if
the plan holds water.

Summary

In this chapter we did an in-depth analysis and collected data on the work
required to do a migration. We have concluded that a migration is doable,
but we have yet to decide how before we have a definitive yes or no. We
know that we have some services that are going to be harder to migrate
and that we will need to redo parts of our data access layer if we want to
run ASP.NET Core on .NET Core. At this point we have a fairly good idea
of the work required, and in the next chapter we can start planning our
migration.

54

CHAPTER 4

Phase 2: Planning
the Architecture

Before we start migrating, it's worth spending some time planning the
migration based on what we learned from the analysis we did. Having a
plan will save us time, and pain. You certainly don’t want to embark on
a large migration only to realize halfway through that the approach was
wrong and that it’s not going to work. Based on my experience, I almost
always recommend a gradual migration, but there are cases where a full
migration might work. In this chapter we are going to go through the
decisions we need to make early on, before migrating.

Available Resources

I'work at a startup, and we have a small team that is constantly changing in
size (scaling up and down depending on season and outside investment).
We have to balance new features to keep our customers and investors
happy, with maintenance and managing unintended features (bugs). If
we do any sort of rewrite or migration, we have to manage that at the same
time as we are doing everything else, and we cannot afford more than a
couple of fulltime human resources on a migration or rewrite. Besides

the number of available developer hours, you also have to think about
knowledge resources. We talked about this earlier, and it’s important to

© Iris Classon 2019 55
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_4

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

remember that development will slow down for a while until everybody
catches up knowledge wise. You could aim for a few developers that have
in-depth knowledge and can help and guide the other developers, or you
could get everybody up to date. How and what you and your team choose
depend on the size of the team and how work is divided, as well as what
the long-term goals are.

What to Migrate

Deciding to migrate is one thing, deciding what to migrate is a different
story. You can migrate everything at once, or do a gradual migration which
means that you will run ASP.NET Core side by side with ASP.NET services.
Decide early on what platforms you want to target, particularly if you want
to target cross-platform - or at least have the possibility to do so further
down the line. Obviously, if you target cross-platform or a non-Windows
platform, you won'’t be able to use ASP.NET Core targeting the full .NET
platform. But you could mix, if you have a distributed system that has
different platforms available. Let’s talk more about what to migrate.

Migrating Everything

If you have a system that is smaller in size or complexity, or has few
dependencies that are not supported, then this option could be for
you. Your options are to either target .NET Core directly or target NET
Standard in your libraries and use ASP.NET Core targeting .NET Core
for your services. If you want to run ASP.NET Core on the .NET platform
instead of .NET Core, you can still use the .NET Standard libraries. I would
recommend targeting .NET Standard, as this gives you more flexibility -
and you might find out later on that you have to use the libraries in non-.
NET Core services or libraries.

For us a full migration was not an option due to the lack of resources
and some services that are difficult to migrate.

56

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

Gradual Migration and a Mixed System

If you on the other hand, like us, have a large system with intertwined
services and/or complex system, then a gradual migration or a mixed-mode
system could be a better option. The upside of doing a gradual migration is
that it lets you evaluate the expected benefits and distribute resources more
evenly. It can also give you an idea how long it takes, although this will vary
between services based on size, complexity, and dependencies.

If you are going to maintain a mixed system, you need to decide if you
are going to maintain a shared library that targets .NET Standard, or if you
want to maintain separate libraries. Sharing libraries is usually preferred if
alot of the code can be shared, and code that differs can be managed with
conditional compilation and preprocessor symbols or by using the adapter
design pattern.

How to Migrate

Regardless of whether you are migrating the system as a whole or not,
you will still need to decide if you are going to migrate the services and
the libraries as is or break out logical parts to new services. It makes sense
to choose ASP.NET Core, targeting .NET Core or the .NET Framework,

for new services unless you have dependencies that won’t mix. We have
expanded our authentication options this year and added two new
services, one for authenticating with SAML2 and one for OpenldConnect
authentication. When we wrote the SAML2 authentication service, we had
dependencies that didn’t jell well with ASP.NET Core, and therefore we
decided to use ASP.NET (hoping to migrate later) for the time being. Our
OpenldConnect service on the other hand is an ASP.NET Core service,
targeting .NET Core. It does get confusing, unfortunately, and one way
we have tried to solve the confusion is by using different solution files
depending on the type of service. I'll get back to this when we talk about
the deployment pipeline later in the book.

57

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

Migrate Whole Services

We have some services that are fairly well scoped and easy to migrate,
such as our Notification service. Besides the bootstrap code and
infrastructure code, the classes and libraries could be easily migrated. On
the other side, the majority of our services were quite complex and needed
more work, and it made sense to try to break out some logical parts to new
services.

Break Out Logical Parts to New Services

ASP.NET Core is a good fit for a microservice architecture as it is

fast, lightweight, and modular. Ideally your service would be scoped
accordingly, but in the real world, services are often parts of a distributed
monolith and do a lot of different things. A great example would be our
Main service. You can guess just from the name that it does quite a few
things. Besides managing user accounts, it also manages user actions
such as sharing an App or Plan, logging from the client, and a lot of things
I'd rather not share with you as it could potentially give you nightmares.
The Main was where the system originated, and somehow everything has
ended up there when we didn’t know where to put things or were too lazy
to create separate services.

The solution for us has been to slowly break out parts to new services,
such as our Account services that manage user accounts. Our aim is to
have many small, independent services, microservices. I'm not going to
go into the details of microservices - that topic deserves a book or ten on
its own. In short, I'll mention that many companies have experienced
certain problems with monolith systems such as difficulty to scale, long
release cycles, difficult to evolve and maintain, as well as long time to add
new features. The idea with microservices is that each service does one
thing and does that well. Spotify (a music streaming service) is an extreme
example, with over 800 active services! Amazon and Walmart are two other

58

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

excellent examples, and you can find many free articles and videos that
they’ve shared.

Self-Contained Deployment or Framework
Dependent

Since we discussed self-contained deployment earlier in the book, I'm
going to keep this section short.

When you publish ASP.NET Core services, you can choose between
framework-dependent deployment and self-contained deployment. As
a quick refresher, self-contained means that your published package
will have everything you need to run the service, while the framework-
dependent publish will require you to prepare the environment
beforehand and install the frameworks. Which one you choose depends
on how you manage the environments the service gets deployed to, your
user base, as well as whether or not you have size restrictions on your
deployment packages.

In short, here are some pros and cons to consider:

Cons

e Need to decide platform and architecture beforehand
o Larger packages

o Publishing can take longer

o Environment needs less preparation and maintenance
e Ready-to-run packages

e Side-by-side installments

59

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

Note In previous versions of ASP.NET Core and Visual Studio, there
were some bugs when creating self-contained packages. If you
come across these issues, make sure you have all the Visual Studio
updates and are running the latest .NET Core SDK (or runtimes if you
don’t need the full SDK).

Architecture and Conventions

Lastly, let’s not forget the many smaller decisions you need to make in
regard to the opinionated framework, ASP.NET Core, such as dependency
injection and the logging abstractions. Besides that, there are many other
differences that you should keep in mind when planning. Here is an
incomplete list of things that differ in ASP.NET Core, some of which caught
us by surprise:

o The project file has been simplified and can be opened
and edited in Visual Studio without first unloading the
project.

o The apps have a different bootstrap mechanism, and
Global.asax doesn’t exist anymore. The majority of
the bootstrapping code is found in the Startup.cs class
instead.

o The startup class is loaded through the Main method
(similar as in a console app) in the Program.cs file.

o Static files are stored in wwwroot, but can be
configured to be stored in a different directory.

60

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

Configuration data can be stored in different

file formats, such as JSON files. Instead of the
ConfigurationManager.AppSettings, you use the
Configuration class that implements IConfiguration to
get a section with GetSection. You can also provide a
class to map configuration items by using the built-in
dependency injection.

ASP.NET Core has built-in dependency injection, but
you can provide your own container resolver (I'll show
you how to use Autofac).

ASP.NET Core has also built-in logging providers, but
you can provide your own.

File access is done through File Providers, and these are
used for everything from exposing the content root to
locating pages and views (when using Razor Pages).

App localization is simplified with IStringLocalizer
which used the ResourceManager and ResourceReader
to manage the culture.

HttpContext is accessed through IHttpContextAccessor
instead of referencing HttpContext.Current directly
(Iwill show you how to inject the context in third-
party libraries that are dependent on the HttpContext
object).

ASP.NET Core supports OWIN and utilizes middleware
heavily, and it’s easy to plug in your own middleware
(at a slight performance cost) .

61

CHAPTER 4 PHASE 2: PLANNING THE ARCHITECTURE

Summary

In this chapter we’ve taken a look at the migration options that we have
and made some decisions in regard to the system we are migrating. We are
going to do a partial migration, targeting .NET Core, and opt out of doing a
self-contained deployment. There are also smaller decisions that we need
to make concerning the architecture and conventions, but we will save that
for the next chapter and cover them as we do the migration.

62

CHAPTER 5

Phase 3: Migration

I've taken part in many different types of migrations and rewrites - it
seems like most developers will encounter a similar situation sooner or
later. User expectations are quickly changing as technology is evolving,
and as programming is becoming more popular, the pool of libraries
and platforms to choose between is growing. Not only is it tempting to
migrate so we can try new solutions, it is often necessary to keep up with
expectations and the growing technology stack. I've seen some migrations
go really bad, and what they often had in common was lack of planning
and unclear end goals. Fortunately for us we have done an extensive
analysis and planned the migration. This helps us create a roadmap that
we can refer to so we know where we are and where we are going.

These are the migration steps I recommend, based on your end goal.

Full Migration

Create the ASP.NET Core projects as well as libraries you might have (not
third party). If you are targeting the full .NET Framework or if you want to
consume the libraries by .NET Framework libraries, then I would target
.NET Standard. .NET Standard gives you more freedom, but also more work.

Create the unit and integration test projects. As mentioned earlier, if
you plan on consuming parts of the system by .NET Framework libraries
(as well as .NET Core), then you will have to test against all the platforms
that you support. Methods and types not supported on a particular

© Iris Classon 2019 63
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_5

CHAPTER 5 PHASE 3: MIGRATION

platform will throw a PlatformNotSupportedException which will help you
discover issues early on. I'll cover in detail how this can be done later in
this chapter.

Given a simple setup with one web service, a library, and a unit test

library, you would aim for the following end result (Figure 5-1).

O - &

ASP.NET service ASP.NET Core service

.NET library .NET Core or Standard library
V' — V —
v — v —
.NET test library .NET Core or multi-target

test library

v ¥

Figure 5-1. What to aim for in a full migration with a simple setup

If you have several ASP.NET services, I would start with just one
of them, migrate own dependencies, and then resolve third-party
dependencies. There is no particular order I would recommend, but if your
application is database driven, a good place to start would be with the data
access layer. Otherwise start with the libraries with the least amount of
third-party dependencies.

64

CHAPTER 5 PHASE 3: MIGRATION

Afterward I would proceed with migrating the test projects that test
the logic in the libraries you migrated, followed by migrating the ASP.NET
service and tests that test the logic in the ASP.NET service.

Note Use a dependency graph (see Figure 5-3 for an example)

to visualize the dependencies so you know what the dependencies
are. ReSharper, for example, adds an option in the Solution Explorer
context menu to display a project dependency graph.

Rinse and repeat for other services and dependencies that they have.

Partial Migration

The main difference between doing a full and partial migration is that

you need to make sure that dependencies you migrate that are used by
other libraries or services that are not migrated can still be used and work
as expected. You might also choose to break out parts of a service or a
library and only migrate that part, and you will have to run tests for all the
targeted platforms. With a partial migration, you also have to maintain a
mixed continuous integration and deployment pipeline. The migration
I'm going to walk you through (Figure 5-2) is a partial migration as it is
more challenging. Everything we are doing also applies to a full migration,
minus extra considerations.

65

CHAPTER 5 PHASE 3: MIGRATION

&

ASP.NET service ASP.NET service

&

ASP.NET service ASP.NET Core service

.NET library NET Standard library
v E——

v= =

=

.NET test library Multi-target
test library

Figure 5-2. Example of a partial migration

Partial Migration Walkthrough

Let’s recap what we are going to migrate and what we want to achieve. At
the moment the solution has three services, five libraries (our own), some
unit test libraries, and a helper library for test libraries as shown to the left
in Figure 5-3. The end goal can be seen on the right (Figure 5-3).

66

CHAPTER 5 PHASE 3: MIGRATION

Sluton Elres
coQs-b-5¢ QF@U"E co@dh-lB-58B ._p_.
Search Solution Explorer (Ctrl+;) Search Solution Explorer (Ctrl+")

afal Selution 'KonstruktDemo' (13 projects) +[a] Solution ‘KenstruktDemo' (12 projects)

4 Libraries 4 Libraries.Standard

b afc#] Konstrukt.Contracts

b afcs] Konstrukt.Standard,Contract
P &[] Konstrukt.Entities b &[] Konstrukt.Standard.Entities
b &[e9] Konstrukt.Logging b &[] Konstrukt.Standard.Logging
P &lc] Konstrukt.Shared b a[cs] Konstrukt.Standard.Shared
b &[s] Konstrukt.Tenancy b &= Konstrukt.Standard.Tenancy
4 Services 4 Services
Konstrukt.CalculationEngine Kenstrukt.CalculationEngine
Fl Konstrukt.Main b Konstrukt.Notification

b &[c%] Konstrukt.BL.Main 4 Kenstrukt.Standard Main
b afce] Konstrukt.DAL.Main b &) Konstrukt.Core.SL.Main

b 45 Konstrukt Standard.BLMain

4 Konstrukt.Notification b <= Konstrukt.Standard.DAL.Main
b &) Konstrukt.SL.SignalR 4 Tests.Standard
4 Tests Integration
4 Integration 4 Unit
b &l Konstrukt.SL.Notification.IntegrationTest b a@] Konstrukt.Standard.BL.Main.Test
4 Unit

b alce] Konstrukt.Test.Standard.Common

b aE] Konstrukt.BL.CalculationEngine.Test b] TestExample

b &E] Konstrukt.BL.Main.Test
b &[] Konstrukt.Test.Commen

Figure 5-3. Starting point for the example solution is shown on the
left, compared to the migrated result shown on the right

In this walkthrough we are going to migrate the Main service, which
has dependencies on libraries that are used by other services that we won'’t
be migrating.

I always recommend looking at a dependency graph to better
understand how things are connected. Sometimes it’s not obvious what
dependencies a service has, as a graph can be quite deep. A dependency
graph also helps us locate a good place to start - often at the outer edges
of the graph. Figure 5-4 shows us the dependency graph for the Konstrukt.
SL.Main service. You can get a dependency graph by right-clicking a

project in Solution Explorer in Visual Studio, if you have the ReSharper
plugin installed.

67

CHAPTER 5 PHASE 3: MIGRATION

i Libraries

v Services

v KonstruktiMain

Figure 5-4. Konstrukt.SL.Main dependency graph

Based on the dependency graph, we are going to do this migration
by starting with one of the outer dependencies with the least third-party
dependencies and then work our way toward the ASP.NET service itself
including the unit tests.

High-level overview:

Every library is migrated to a new .NET Standard (except the service
itself) library. The references to the old library are then updated to the new

68

CHAPTER 5 PHASE 3: MIGRATION

library, and after verifying that everything compiles and the tests are green,

the old library is deleted. For each section we do a Git commit so we can

easily revert a change if something went wrong. We only push to origin

once we can verify that the solution compiles and the tests are green.

Steps:

Migrate Konstrukt.Contracts

Migrate Konstrukt.Share

Migrate Konstrukt.Logging

Migrate Test. Common

Run old tests with new Test. Common library
Delete old Test. Common library

Attempt to migrate Test library

Migrate Konstrukt.Tenancy

Migrate Konstrukt.Entities (including migrating
Entity Framework to Entity Framework Core)

Migrate Konstrukt. DAL.Main
Migrate Konstrukt.BL.Main
Migrate Test library

Migrate Konstrukt.SL.Main

Migrating Contracts

The Contracts library is the first one to be migrated. We need to make an

important decision before we begin, and that is how to organize the code.

We can keep the projects in a separate solution, or in the same solution.

For this example, we will keep them in the same solution as we migrate,

but we are going to discuss the pros and cons of using several solution

69

CHAPTER 5 PHASE 3: MIGRATION

files later in this book. The second thing we need to decide on is naming
conventions. Somehow, we need to separate the new libraries from the

old ones, and as we will have two similar libraries side by side until we can
verify everything was migrated correctly, we won'’t be able to use the same
names anyway. As you know, on Windows, a path can get too long, so if the
project resides in a nested folder, you can get problems down the line. With
.NET Core and .NET Standard projects, you might get mysterious errors in
regard to restoring packages such as “Operation failed as details for project
could not be loaded,” when the problem is the path.

For this migration, as an example, we will be creating a solution folder
for .NET Standard libraries and prefix the libraries with “Standard” You can
see in the earlier side-by-side comparison of the solution before and after
how the libraries and services are organized. Let’s get started!

Create a new project targeting .NET Standard under a folder called
Libraries.Standard as shown in Figure 5-5. All the projects will be .NET
Standard projects as we have other .NET libraries and services dependent
on them. The exception is the ASP.NET Core service that will target NET
Core and the Unit Test library that will target both the .NET platform and
.NET Core.

70

Add New Project
b Recent Sert by: | Default -
4 Installed
-Ia“ Console App (NET Core) Vigual C=
4 Visusl C®
oo
Get Started Bl console app (NET Framewark) Visual C2
Windows Desktop -
b Web E}f. Class Library (NET Standard) Visual C#
NET Core 3 =
NET Standard 2‘! Class Library [NET Framework) Visual C=
Cloud et
Extensibility @ ASP.NET Core Web Application Visual C7
Test
WCF @ ASP.NET Web Application (NET Framework) Visual G2
b Visual Basic
feval F3 =3
b Visusl F2 EJ Shared Project Visual C=
SOL Server s
i (Portabh
b Online FL.!U Class Library (Legacy Portable) Visual C=
o
WCF Service Application Visual C=
7> Azure Functions Visual C#
em Azure Weblob (NET Framework) Visusl C&
Mot finding what you are locking for?
Open Visual Studio Installer
Mame: [Kenstrukt.Standard Contract]

Location:

| CA\Usershins.classon\Documents\C ode | ASPCore_Migration\KanstrultDemo

Figure 5-5. Creating a new .NET Standard library

PHASE 3: MIGRATION

rch (Ctrl+E
Type: Visual C#

A project for ereating a class library that
targets MET Standard.

Browze...

Ok Cancel

Delete the Classl.cs file and copy over the files from the old Contracts

project. You can copy over just a folder, or a few files, or all. It’s really

up to you, and you might want to weigh the size of the project and how

dependent on each other the files are. Contracts is a small library, so we

will copy over all the files and folders.

Open up a random file, set the marker on the namespace that should

have a blue squiggly line underlining the namespace, and bring up the

ReSharper helper (Alt+Enter). Select Move to, and use arrow to select

Adjust namespaces in project (Figure 5-6). If it suggests opening all the

files so it can be undone, select No (Figure 5-7).

71

CHAPTER 5 PHASE 3: MIGRATION

=) Konstrukt.Standard.Contracts) - 1’[: Konstrukt.Contracts.Cache.CacheStatistics -
1 using System.Collections.Generic;
2
v 3 [namespace Konstrukt.Contracts.Cache

& Move to 'Konstrukt.Standard. Contracts.Cache’ namespace ¥ |y Adjust namespaces in folder

Q Inspection: “Namespace does not correspond to file location” » I w Adjust namespaces in project

6 . { "y Adjust namespaces in solution

7

Figure 5-6. Shortcut to adjusting all the namespaces in the project

| g ReSharper Ultimate — Exe

Cancel

ReSharper Ultimate X

ReSharper Ultimate is about to open 27 files to make undo operation
available. Opening so many file may cause severe performance penalty.
Open anyway?

Figure 5-7. Opening all the edited files might leave Visual Studio
unresponsive

If there are many files, Visual Studio might crash. Do instead a Git
commit before and after, as you can always revert the latest commit if
something goes wrong.

Next step is to fix everything that generates an error, such as missing
references, and in this example it’s fairly straightforward. Open the Error List
window, and filter for “Current Project,” and use the list as a guide (Figure 5-8).

72

CHAPTER 5 PHASE 3: MIGRATION

———— .|

{Current Project -]:[Q 1of 1 Errors | I 1. 0of 2 Warnings | © 0of 36 Messages | Build + IntelliSense = | | Search Error List P -
" " Cede Description Project File Line SuppressionSt.. Y

Th: type or namespace name 'Cont ﬂlnrrEu Ider'

() €50246 could not be found (are you m Konstrukt Standard.Contr._. IContainerBuilderFactory.cs 5
durem /& of an assembly re‘:n.-m.a?l

Figure 5-8. The Error List window has filtering options such as filter
for current project

The keyboard shortcut F8 will take you to the next error in the list, and
Shift+F8 will go to the previous.

If you land on a red reference, Alt+Enter at that location should bring
up the ReSharper helper. Among the suggestions, you'll see “Find this type
on nuget.org” (Figure 5-9). This works, sometimes, and if you want to give
it a try, select that option and scroll through the list.

= 1
3 =4 public interface IContainerBuilderFactory
4 I {

v > | | ContainerBuilder Create();

% Reference Autofal: and use ‘Autofac.ContainerBuilder'

Create type 'ContainerBuilder'

@

Y Create type parameter 'ContainerBuilder' in method 'Create’
\§ Create type parameter ‘ContainerBuilder' in interface 'IContainerBuilderFactory’
¥ Change all 'ContainerBuilder’
T Find this type on nuget.org... |
My Generate class ‘ContainerBuilder' in new file T
¥ Generate class 'ContainerBuilder’ »
¥ Generate pew type...
|} Change "ContainerBuilder' to 'IContainerBuilderFactory’. »
¥ Replace 'Create' with property »

Figure 5-9. ReSharper provides a shortcut menu for NuGet searches

73

CHAPTER 5 PHASE 3: MIGRATION

Once you find the package in the list, expand information by clicking
the + icon, and make sure that .NET Standard is supported (Figure 5-10).
If it does, click the download icon and download the package. Another
option is to do a manual search using the package manager.

NuGet browser - Lookup for "ContainerBuilder' M 4

Lookup for ‘Contamertuicer = |
{} Namespace | S Case sensitive /i) Prerelease @Mymsion

ContainerSuilder ©

“ Autofac

Core assembly for the Autofac Inversion of Control container.
#9031 Autofac is an loC container for Microsaft NET. It manages the dependencies between classes so that applications stay easy to
change as they grow in size and complexity.
Created by: Autofac
Package id: Autofac
Published: 11/3/2016
License: Visw
Project i fon: View
Platforms: NET Framework x‘..l, NET Standard 1.1 |
Tags: autofac, di, ioc, dependencyinjection
Dep NETStan Library [1.6.0,), System.Comp Model [4.0.1,)
Each itern above may have sub-dependencies subject to additional license it

Figure 5-10. The package summary often specifies the platforms
supported

Import the namespace to sort out the reference error, and if we had
more errors, we would proceed to the next one. One important thing you
should know is that ReSharper likes to add references to libraries in a
solution, instead of importing NuGet packages. This means that in your
project file, you will have a hard dependency on a library that another
library uses, linked by the physical path.

Konstrukt.Contracts is an example of a very easy migration. It had no
unsupported types or dependencies, and we only had to move the code
and rename namespaces.

With Konstrukt.Standard.Contracts compiling fine, we will now unload
the Konstrukt.Contracts project (instead of deleting it) by right-clicking
that project and selecting “Unload project.” This should result in many
errors, from the projects that have a dependency on it. We will view the
Error List as our to-do list.

74

CHAPTER 5 PHASE 3: MIGRATION

Konstrukt.Share is one of the projects that has a dependency on
Konstrukt.Contracts. We can see that the imported namespaces are red as
the dependency can’t be resolved.

For the project, select References and remove Konstrukt.Contracts and
add Konstrukt.Standard.Contracts instead. The errors are still there as the
previous namespace doesn’t correspond to the new one. We can sort this
out in two ways. One is by using “Search and Replace,” the second is by
using ReSharper.

Search and Replace

Bring up Search and Replace (Ctrl+F then expand the window), set it to
“Current Project,” and do a search and replace for Konstrukt.Contracts to
Konstrukt.Standard.Contracts (Figure 5-11).

CacheManagercs = < [ETJEC el
=] Konstrukd. Shared «] *0 Konstrukt Shared Cache ICacheService | @ ClearkiCache
—using System.Collections.Generic;
using System.Ling;
using System.Threading.Tasks; Konstrukt.Standard.Contracts
using Konstrukt.Contracts.Configuration;
using Konstrukt.Contracts.Net; ks
6 |using Konstrukt.logging;

~ Konstrukt.Contracts i

1<)

L O T

Aa Ed & Current Project

& =namespace Konstrukt.Shared.Cache
9 |{

% -

Figure 5-11. Search and Replace can help speed up the migration to
new namespaces

Enabling undo can cause Visual Studio to crash, and if we do a Git
commit instead, we can skip enabling undo and risk Visual Studio not
responding for a while (Figure 5-12).

75

CHAPTER 5 PHASE 3: MIGRATION

Replace All X

Caution: To enable Undo, all files where a match is found must be opened
for editing. You can then Save or Undo the changes in each file.

To enable Undo, select the following option:

[C]Replace All will open all files with changes for editing.

Do you want to continue with Replace All?

No

Always show this message

Figure 5-12. Opening all the edited files can cause performance
problems for Visual Studio

Using ReSharper to Remove and Import
Namespaces

The second way of sorting out the namespaces is by using ReSharper. Set
the marker on the red reference, bring up the helper, and select “Remove
unused directives in project” (Figure 5-13).

76

CHAPTER 5 PHASE 3: MIGRATION

1 ~using System.Collections.Generic;
2 | using System.Ling;

3 | using System.Threading.Tasks;

: 4 | using Konstrukt.Contracts.Net;

% Change all 'Contracts'

@ |

| 1 Find this namespace on nuget.org... Eﬂm%bf

Remove unused directives in file » |y Removeunused directives in folder

]
| €4 Inspection: “Redundant using directive” » | \y Remove unused directives in project

v o > = .
\ Remove unused directives in solution

10 |!: E Task: Cleari® oicsiss

5 | 1 E Task<Dictionary<string, bool>> ClearReg
12 | : void RegisterCacheController(string nan
13 [}

14 |

Figure 5-13. ReSharper has a shortcut menu for removing unused
namespaces

If you go to a missing type that is marked red, you can import missing
references in project (Figure 5-14). I would caution you to only use this
after making sure that you have a reference to that project or a NuGet
package for that namespace.

i o1 B ! I
12 | i
13 & public class CacheService : ICacheService
B 34 |} { @ Import 'Konstrukt.Standard.Contracts.Net.|ApiHttpClient' and othe
o 15 | : readonly IApiHttpClient _apiHttpClient;
4 Import missing references in file * | % Import missing references in folder
¥ Import type 'Konstrukt.Standard.Contracts.Net.IApiHttpClient' » | (' Import missing references in project L
\% Create interface ‘| ApiHttpClient’ . % Import missing references in solution
@ Create nested interface 'IApiHttpClient ' '

Create type parameter 'IApiHttpClient' in class ‘CacheService' !'v}‘it:'\‘tfeg"lvlv% I'JE apilittpClient, ¥

Change all '|ApiHttpClient’

@

iHttpClient;

Figure 5-14. There is also a shortcut for importing missing
namespaces

77

CHAPTER 5 PHASE 3: MIGRATION

Do arebuild and verify everything is alright. Run the unit tests, and if
possible, run the service as well and do some test calls, and do another Git
commit.

The next step is to replace the library everywhere in the solution -
unless you have decided to maintain both libraries going forward (not
something I would recommend), where the old version was used. If
you right-click the Konstrukt.Contracts project and select “Find Code
Dependent on Module” in the right-click menu, you'll get a list of all the
references. Use the Group by “Project Structure” to get a good overview
(Figure 5-15).

Find Results - Code Dependent On Project 'Konstrukt.Contracts'
Code Dependent On Project ‘Konstrukt.Contracts' ® X
B &E e S ~ [¥~ | ¥ | Group byd Project Structure ~

Search Target
&1 <Libraries>\<Konstrukt.Contracts>
Found 53 usages in referenced modules: modules referenced on Konstrukt.Contracts
4 &l <Services> (53 items
4 & <Konstrukt.Main> (30 items)
b &1 <Konstrukt.BL.Main> (10 jtems
P 5 <Konstrukt.DAL.Main> (8 items)
b <Konstrukt.SL.Main> (712 items)

4 31 <Konstrukt.Notification> {]
b &1 <Konstrukt.SL.SignalR> (22 itemns)

Figure 5-15. Grouping by project structure

We have four more projects to make changes to:
o Konstrukt.BL.Main
o Konstrukt. DAL.Main
e Konstrukt.SL.Main
o Konstrukt.SL.SignalR
78

CHAPTER 5 PHASE 3: MIGRATION

We will have to repeat the preceding steps, going one project at a time,
and doing a Git commit between each. Build, verify no errors, run the tests,
and run the services. Obviously, this means a lot of clicking around, and
therefore I would recommend that you assign a keyboard shortcut for Add
Reference.

In the main menu, go to Tools » Options » Environment » Keyboard
as shown in Figure 5-16.

Set command type to AddReference and select a combination. I used
Ctrl+Shift+Alt+R. Assign, and you are good to go.

Options

? x
Keyb x Apply the following additional keyboard mapping scheme:
[A Enviloﬂment] {D{fﬂu“] it P\m
Keyboard Show gommands containing:

| AddReference |

Project AddReference |
ProjectandSolutionContextMenus.Project.Add. AddReference
ProjectandSolutionContexth Ref es AddRef i

| ProjectandSolutionContextMenus. WebProjectFolder.AddReference
| ReSharper_AddReference

ReSharper_AddReferenced

View.ObjectBrowserAddReference

Shortcuts for selected command:

Ctri+Shift+ Alt+R (Global) ~ Remove

Use new shortcut in: Press shortcut keys:

Global v | [Ctrleshifte Alt | | | Assign |
Shortcut currently used by:

Project.AddReference (Ctrl+ Shift+Alt+R (Global))

OK Cancel

Figure 5-16. You can create your own shortcuts in the Keyboard
section

79

CHAPTER 5 PHASE 3: MIGRATION

You could also manually edit the project files, if you prefer that. But do
not forget to build and test between changes, and do frequent commits.

Verify that Konstrukt.Contracts is not referenced anywhere, and
delete it. Open up File Explorer and make sure the project truly is deleted.
Deleting from Visual Studio usually only removed it from the solution file,
but the folder and the project are still there and will be checked in next
time you do a Git push. Save all, build and run tests, and if everything is
fine, do a commit.

The Contracts library was easy to migrate as it didn’t have any
unsupported dependencies or types, but usually you’ll come across
more challenges. Therefore, we are going to take a look at some specific
challenges by using the other libraries as an example. I won’t go through
the step-by-step migration since we just did that, and the steps are the
same. If you want to see all the steps, you can take a look at my commits
in the repository. While migrating the rest, we came across several
challenges; here are some that I'll cover:

o Resolving unsupported types (example with
ConfigurationManager and HttpContext.Current)

o Removing unnecessary dependencies

e Resolving unsupported libraries (example with
Log4Net and NLog)

e Choosing between dependency options (example with
MemoryCache)

Once we have migrated the libraries, we will move on to migrating the
tests, then the data access layer and our object relation mapper (Entity
Framework), before we finally migrate the ASP.NET service itself.

80

CHAPTER 5 PHASE 3: MIGRATION

Missing Type: ConfigurationManager

The heading is a little bit misleading, as the type is not missing anymore.
But it was missing until .NET Standard 2.0. I wanted to include this
example as we have several options in regard to how we deal with
accessing configuration settings. In earlier versions of .NET Core and
Standard, this type was not available. The team encouraged the use of
dependency injection to access configuration settings.

This is done by creating a class that maps to the settings
you want to access, and the settings are then accessed by using
I0ptions<MyCustomSettings>. If you decide on using JSON files for
settings in your services, the dependency injection is a better option
(generally I would recommend that over specific types that pull in
dependencies). Otherwise you could also use the IConfiguration interface
and the GetSection method if you don’t want to use a mapping class. In
Konstrukt.Standard.Shared we have a Settings class that is used to access
settings in configuration files. This class could be rewritten for .NET Core
using the two preceding options. However, as we want to support several
platforms, we need a generic solution. Prior to .NET Standard 2.0, two ways
of dealing with this would have been to either use conditional compilation
or dependency injection. But the luck is on our side, and there is now a
NuGet package that we can use, so we are going to use that for now.

We can always go back at a later point and refactor away that
dependency and transient dependencies. As you can see, there are a few.

Remember that you have to choose your battles, and sometimes a less
than ideal option is the best as there are other issues pressing that will
take a lot of time. At the same time, you don’t want to have to maintain
unnecessary dependencies.

81

CHAPTER 5 PHASE 3: MIGRATION

Rewriting to Avoid Unnecessary
Dependencies

The Shared library has an extension method, ToDynamicObject, that uses
a library that until recently didn’t support .NET Standard - Dynamitey. The
support was added a year ago, but it hadn’t been maintained for several
years prior to that. I'd rather not have a dependency on a library if we only
use a very small part of it, and it’s something we can do ourselves. There
is an interesting story about a Node.js package called Pad-Left. It was only
a few lines of JavaScript, and all it did was - you guess it - pad left. It was
used everywhere, and when the author removed the package from the
NPM, the Internet was broken for a day. Pulling in a library for something
very simple is now something I refer to as doing a “pad-left” The less
dependencies you have, the easier the migration, and also, you might
avoid sudden breaking changes when doing an update.

In our case the InvokeSet is only used for creating a dynamic object
from a dictionary and can be rewritten from

public static dynamic ToDynamicObject(this
Dictionary<string, object> data)

{
dynamic dynamicData = new ExpandoObject();
foreach (var kvp in data)
{
Dynamic.InvokeSet(dynamicData, kvp.Key,
kvp.Value);
}
return dynamicData;
}

to

82

CHAPTER 5 PHASE 3: MIGRATION

public static dynamic ToDynamicObject2(this
Dictionary<string, object> data)
{
IDictionary<string, object> dynamicData = new
ExpandoObject();
foreach (var kvp in data)

{
dynamicData.Add(kvp);

}

return dynamicData;

}

Don'’t be afraid to rewrite, but do make sure that you have plenty of
tests! And as I mentioned before - pick your battles wisely.

Missing Type: HitpContext.Current

We got in a bad habit of passing around the HTTP context in our libraries.
It created hard dependencies, could cause additional issues if we worked
with several threads and lost the original thread context, and many other
issues.

Accessing the HttpContext from other libraries is not an ideal thing
to do; the HTTP context should really be scoped to the service itself, and
passing it around in external libraries creates a messy architecture. This is
why you won't find this type in ASP.NET Core. The HTTP context is instead
accessed through the HttpContextAccessor type, by using dependency
injection and the interface IHttpContextAccessor. You can find some ugly
workarounds so you can keep using HttpContext.Current (sort of), but

83

CHAPTER 5 PHASE 3: MIGRATION

let me show you how easy it is to solve our problem with dependency
injection. This is the class we need to refactor:

public class CurrentRequest : ICurrentRequest

{

readonly Regex _subDomainRegex = new Regex(@"~(htt

ps?:\/\/)?2([*\.]+)", RegexOptions.Compiled);

public string Origin =>
HttpContext.Current.Request.Headers["X-Origin"] ??

HttpContext.Current.Request.Headers["Origin"] ??
HttpContext.Current.Request.Headers["Referer"];

public string Authorization =>
HttpContext.Current.Request.Headers["Authorization"];

public string HttpMethod =>
HttpContext.Current.Request.HttpMethod;

public string SubDomain =>
_subDomainRegex.Match(Origin).Groups[2].Value;

We can create an interface called IRequest:

public interface IRequest

{

NameValueCollection Headers();
string HttpMethod { get; }

Which will then be injected in the CurrentRequest constructor:

public class CurrentRequest : ICurrentRequest

{

private readonly IRequest _request;

84

CHAPTER 5 PHASE 3: MIGRATION

public CurrentRequest(IRequest request)
{
_request = request;
}
readonly Regex _subDomainRegex = new Regex(@""
(https?:\/\/)2([*\.]+)", RegexOptions.Compiled);

public string Origin =>
_request.Headers()["X-Origin"] ??
_request.Headers()["Origin"] ??
_request.Headers()["Referer"];

public string Authorization =>
_request.Headers()["Authorization"];

public string HttpMethod
=> _request.HttpMethod;

public string SubDomain =>
_subDomainRegex.Match(Origin).Groups[2].Value;

When we use this, we only have to have a custom type that implements
that interface, and for a standard ASP.NET application, we can do the
following:

public class SlimRequest : IRequest
{

public NameValueCollection Headers() => HttpContext.
Current.Request.Headers;

public string HttpMethod => HttpContext.Current.Request.
HttpMethod;

}

85

CHAPTER 5 PHASE 3: MIGRATION
For an ASP.NET Core application:

public class SlimRequest : IRequest
{

private readonly IHttpContextAccessor _httpContextAccessor;

public SlimRequest(IHttpContextAccessor
httpContextAccessor)=>
_httpContextAccessor = httpContextAccessor;

public NameValueCollection Headers()

{
var collection = new NameValueCollection();
foreach (var item in _httpContextAccessor.HttpContext.
Request.Headers)
collection.Add(item.Key, item.Value);
return collection;
}

public string HttpMethod => _httpContextAccessor.
HttpContext.Request.Method;

}

Dependency Options: New vs. 0ld MemoryCache

MemoryCache was one of those types that weren’t supported until later in
.NET Core and .NET Standard. The library System.Runtime.Caching has

a MemoryCache object that we are used to using in ASP.NET. In ASP.NET
Core caching is better integrated and is done by using an IMemoryCache
service. Different caches are supported with the most basic one being the
IMemoryCache which supports any object value. The object returned by
the service resides in the Microsoft.Extensions.Caching. Memory assembly.

86

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/

CHAPTER 5 PHASE 3: MIGRATION

The MemoryCache object there differs significantly from the one we are
used to from the System.Runtime.Caching assembly.

While the Microsoft.Extensions.Caching.Memory.MemoryCache
is recommended over the other one as it is better integrated with ASP.
NET Core, System.Runtime.Caching.MemoryCache might be better for
compatibility reasons when you are migrating. Both of them are compatible
with .NET Standard 2.0 - which means that you can use either in a .NET
Standard 2.0 (and up) library such as the ones we are migrating to. You can
read more about the two options here: https://github.com/aspnet/Docs/
blob/master/aspnetcore/performance/caching/memory.md

In the Shared library, we have a class called MemoryCacheExtensions.
It has one method that iterates through a MemoryCache object and
outputs the keys.

public static CacheStatistics Statistics(this MemoryCache
cache)

{
return new CacheStatistics
{
Name = cache.Name,
NumberOfObjects = cache.GetCount(),
Items = cache.Select(s =>
{
var info = s.Key;
var list = s.Value as IEnumerable;
if (list != null)
info += ", Count: " + Count(list);
return info;
1)
b
}

87

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/memory.md
https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/memory.md

CHAPTER 5 PHASE 3: MIGRATION

The Microsoft.Extensions.Caching.Memory.MemoryCache doesn’t
let you iterate through the keys (something that some developers disagree
with, but the team has decided to not allow this nonetheless) as the keys
might have changed. It makes sense from a usage perspective, but we have
been using the Statistics extension for diagnostic reasons as we often have
problems with our cache(s). There are hacks you could use to work around
this limitation if you want to iterate through the keys, but since we also
make use of other members not supported (such as .Contains()) in our
cache handlers, we will use the System.Runtime.Caching.MemoryCache
which is recommended when porting or migrating from legacy to core.

Replacing Dependencies: Logging

To finish migrating the Shared library, we need to have a logger. The
logging has been managed by a separate library, called Konstrukt.Logging.
The logging adapter we used was Log4Net, a popular open source library
that has been around for ages. The library is however a little bit slow to
adapt and adopt changes and, at the time of writing, has yet to support
database logging if you use .NET Core. Therefore, we are going to replace
Log4Net with NLog, a very similar library that is quite performant and
supports .NET Standard 1.6 and up.

The only thing I had to do was create a new project, Konstrukt.Share.
Logging, add a reference to NLog, and set up the code and configuration.
I also made sure that the log messages follow the same pattern in the
database as Log4Net, so we can use the existing database. I added a
temporary class that wraps the global exception handler as a workaround
until we’ve migrated the service.

Although the configuration is in the logging library, I made sure to set
the database at startup in Global.asax.cs and renamed the connection
string from Log4Net to NLog and removed Log4Net references. We are
going to change this later for our ASP.NET Core service.

88

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/

CHAPTER 5 PHASE 3: MIGRATION

LogManager .Configuration.Variables["configurationDb"]
= ConfigurationManager.ConnectionStrings["NLog"].
ConnectionString;

The ApplicationInsights reference is updated for one that supports
.NET Standard (Microsoft.ApplicationInsights), and no rewrite is needed.

Static Logging Instance vs. Dependency Injection

For various reasons we chose to go with a static logger instance, although
using dependency injection is also a popular way of accessing a logging
object. As a matter of fact, that is the recommended way in ASP.NET

Core. However, so we won't have to rewrite large parts of our code and
start injecting our logger instead of using a static instance, we are going

to migrate the logging as is for now. Later in the migrating process, I'm
going to show you how to use dependency injection with the logger. As I've
mentioned before, our logging is not done to a file, but to a database, and
therefore we don’t have to worry as much about concurrency.

Migrating Unit Tests

.NET Standard is, as we discussed earlier, a specification and not a
platform. Therefore, if we want to write tests, we need to target the
platforms that we want our test projects to support. If we only targeted
.NET Core, then we could have created .NET Core test libraries, but since
we have shared libraries, we want to make sure we are testing for the right
platforms.

Our first step is migrating any helper libraries the test libraries might
have. We have, for example, Test. Common. This library sets up our
dependency mocker. Migrating this library to .NET Standard is easy, as
all the third-party libraries it depends on are supported. After replacing
references to the old Test. Common library, we can verify that all the tests

89

CHAPTER 5 PHASE 3: MIGRATION

run without problems, with the expected results. If you have unit test
projects that only test code in libraries that are already ported, and have no
dependencies on platform-specific libraries, then you can migrate those
tests. You create a .NET Standard library (we will be changing this later)
and plug in the references that you need, including the Test. Common
library.

If you at any point get the error shown in Figure 5-17, you need to run a
package restore.

* Entire Solution -/ |[@ Z5Erors || [0o 11 Warrings ||[0 of 200 Messages || K] Buitd « intelisense - Search Error List
Code Description Project = Y File Line Suppress
ur THe type or namespace name ‘System’ could not be found (are you missing a using) o :
[x Wikl et o6 b acsachbl pefecance’] Keonstrukt BL Main Test St NETStandard Version=v2.... 2 Active
© sz e type ornamespace name ‘System' could not be found (are you missing ausing b o sin Test St NETStanderdVersionav2.. 3 Active
directive or an assembly reference?)
S The type or namespace name ‘System’ could not be found in the global " i :
[Nath] ivecpou Tare ok LISy on ssearbl Tl alencat] Kenstrukt BL Main Test St NETStandard, Versionsvl.... 4 Active
) C50512 Predefined type 'System.String’ is not defined or imported Konstrukt.BL.Main, Test.5t.. .METStandard, Version=vZ.... 4 Active
.. Thetypeor name 'F KD could not be found (are 2
024 v i - c
© csoase you missing a using dwective or an assembly reference?) e Artne
3 C50512 Predefined type 'System.String’ is not defined or imported Konstrukt. BL.Main Test.Se.. METStandard, Version=vZ.... 4 Active
e Thetype ar namespace name ‘System’ could not be found (are you missing a using =
0 csone dReEod s nsatcrbli v esincea Kaonstrukt,BL Main. Test St.. Classlcs 1 Active
€) CS0518 Predefined type 'System.Object’ is not defined or imported Konstrukt.BL Main Test.St.. Classles 5 Bctive
. Thetype or namespace name "System’ could not be found (are you missing a using - . <
0 csoade directive or an assembly reference?) Kenstrukt.BL.Main.Test.5t... Konstrukt.BL.Main.Test.5t.. 11 Active
© csos The type or namespace name ‘System’ could net be found (are you missing 2 using BUMainTast St BLMainTetst. 12 Active

directive or an assembly reference?)

Tha b ae neansrnias aeans Corhass! sndel med b Frssmd fons o sl 5 isdan

Figure 5-17. CS0246: The type or namespace name System could not
be found

Open the NuGet Package Manager Console and run “dotnet restore.”

Here is a very simple example with a project called Test.Example. The
project tests the LoggedInUserRetriever in Shared. The project has the
following dependencies:

e NUnit
¢ Moq
¢ KonstruktTest.Standard. Common

¢ Konstrukt.Standard.Shared

90

CHAPTER 5 PHASE 3: MIGRATION

The “ArrangeBase” base class sets up the mocks, other configurations,
as well as the subject tested (LoggedInUserRetriever):

namespace Test.Example.Given LoggedInUserRetriever

{

public class Arrange : ArrangeBase<lLoggedInUserRetriever>

{

protected virtual string UserName => "SomeUser";

[SetUp]

public void Init()

{
DependencyMocker .MockOf<IPrincipal>().SetupGet
(x => x.Identity.Name).Returns(UserName);

This base class setup is shared across the unit tests in the Given_
LoggedInUserRetriever folder, but the virtual members can be overridden
in the classes that inherit from this class.

The ArrangeBase.cs resides in Test.Standard.Common and is a base
class that automagically mocks injected dependencies for the given type
through the type DependencyMocker. The type defined is set as the
Subject of the unit tests. In the Init() method, we set up specific mocks,
and in this example we want the IPrincipal that is injected in the class we
are testing to have the username “SomeUser” When_User_Is_Logged_
In.cs has just one test that asserts that the result from acting on the
GetLoggedInUserId() method on the Subject (LoggedInUserRetriever)
returns the expected username, in this case “SomeUser”.

The example is simple, it’s just to have a test to run - and to show more
complex unit test setup as most systems have complex setups for their
tests and mocks. At this point we can’t actually run the tests. We created

91

CHAPTER 5 PHASE 3: MIGRATION

the project as a .NET Standard library, and therefore NUnit can’t know
which platform to run the test on. We need to change that. This is done in
the project file. The new csproj file is easier to work with than it used to be
with .NET projects. Instead of having to unload the project to edit the file,
we can simply edit it directly. You'll see a section called TargetFramework,
and the section is set to netstandard2.0. Since we want to support two
platforms, .NET Core 2.0 and .NET4.7.1, we add those instead, separated
by a semicolon, and change the element to plural - TargetFrameworks.

<TargetFrameworks>netcoreapp2.0;net472</TargetFrameworks>

You also need to add two other NuGet packages, the
NUnit3TestAdapter and the Microsoft. NET.Test.SDK. Do this through the
package manager or by using a PackageReference in the project file:

<ItemGroup>
<PackageReference Include="nunit" Version="3.10.1" />
<PackageReference Include="NUnit3TestAdapter"
Version="3.10.0" />
<PackageReference Include="Microsoft.NET.Test.Sdk"
Version="15.7.2" />
</ItemGroup>

You should now be able to run the tests, and they will be run for both
target platforms (Figure 5-18).

92

CHAPTER 5 PHASE 3: MIGRATION

Unit Test Sessions - All tests from <Tests>\<Unit>

pr—— |

DR P-iE BEXBED ¢ & E- A~ options~ | §
P2 |v2 Q@0 &0 @0

4 v <O NETCoreApp,Version=v2.0 (1 test) Success

4 o &l Tests.Standard (7 test) Success
4 J@Test.Example (1 test) Success
4 J {) TestExample.Given_LoggedinUserRetriever (7 test) Success
4/ When_User_Is_Logged_In (7 test) Success
o/ Should_Return_True Success
4 +f <O NETFramework Version=v4.7.2 (2 tests) Success
4 of & Tests.Standard (2 tests) Success
4 o 5] Test.Example (2 tests) Success
4 f) TestExample.Given_LoggedinUserRetriever (2 tests) Success
@ Arrange

4 +J/ When_User_ls_Logged_In (1 test) Success
+/ Should_Return_True Success

Figure 5-18. Running unit tests for a project that targets several
platforms

For some odd reason, the Test Explorer thinks that the Arrange class
has a test; it doesn’t so just ignore it if you get an extra test when you use a
base class. As long as the number for All Tests and Passed Tests matches,
you should be good. Unfortunately, there are still a few bugs with the Test
Explorer and the ReSharper extension.

Projects that target a specific platform should have tests that test
against that specific platform. This means that you'll most likely end up
with several test projects, some that target several platforms as they test

93

CHAPTER 5 PHASE 3: MIGRATION

code in a .NET Standard library, and test projects that only test code for
specific platforms.
Here is what you could do:

Project targets .NET Standard: Test for multiple
platforms

Project targets .NET Core: Test for NET Core

Project targets .NET: Test for .NET

Conditional Compilation

Another alternative, popular with open source projects targeting several
platforms, is to use something called conditional compilation and
preprocessor symbols. You can also use this when you have to use a
different implementation depending on the target framework. If you target
several platforms, you can use conditional compilation to only compile

a section of code for a specific platform. This is done by using something
called compilation symbols. These can be used with any code, including
when importing namespaces.

#if NET472

using Konstrukt.BL.Main;

#else

using Konstrukt.Standard.BL.Main;
#endif

You could even have more complicated logic. Here is a typical example
from the popular Newtonsoft library:

#if 1 (NET20 || NET35 || PORTABLE40 || PORTABLE) ||
NETSTANDARD1 3 || NETSTANDARD2 O

using System.Numerics;

#endif

94

CHAPTER 5 PHASE 3: MIGRATION
The target frameworks and symbols can be found here:

https://docs.microsoft.com/en-us/dotnet/csharp/language-
reference/preprocessor-directives/preprocessor-if

You could use conditional compilation directly in your tests, and even
wrap whole tests so they are only run for certain platforms. This does
however mean that code coverage will differ, and it’s not very obvious by
just looking at the tests - not to mention that this can get really messy.

If you decide to go this route, make sure that you have thought this
thoroughly and considered other options. Don’t use this as a quick fix, as it
will come back and bite you.

Adding conditional project references is done in the csproj file like this:

<ItemGroup Condition=" '$(TargetFramework)' == 'net472' ">
<Reference Include="System.Net" />
<ProjectReference Include="Konstrukt.BL.Main" />
</ItemGroup>

When you are working in a file, you can select the platform you want
IntelliSense for from the left drop-down for the file (Figure 5-19).

95

CHAPTER 5 PHASE 3: MIGRATION

1‘J KonstruktDemoe - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS Ti

-1 ‘lﬁ"’ WM « (' «| Debug ~ AnyCPU

When_User_Is_Logged_In.cs + X

& Test.Example(net472)
Test.Example(netcoreapp2.0)

110)dx3 1anuag

3 -namespace Test.Example.Giv

x0q|oo}

[TestFixture]
public class When User

N NNV

(e) SRRV y I -3

ojdx3 159)

Figure 5-19. Selecting platform for IntelliSense

At the time of writing, this is still very buggy and the issue is still open:
https://github.com/dotnet/project-system/issues/2733.

In my experience working with conditional compilation can be very
messy and frustrating, and I would personally only use this when I had no
other choice. And if I had to, I would try to separate the code that differs
in different projects, or files, and only use conditional compilation at
namespace and reference level.

In an ideal world, your code is scoped to the point where your tests
can be migrated a chunk at a time - but we had an intertwined system
where even the simplest unit test would need references to all three layers
of a service, in addition to the supporting libraries. Therefore, before
we migrate the rest of the tests, we would need to sort out the rest of the
projects that would be a part of the migration. An alternative, besides
conditional compilation (which I've already deemed not a good fit for
us), would be to break out tests to separate test projects. As we have some

96

https://github.com/dotnet/project-system/issues/2733

CHAPTER 5 PHASE 3: MIGRATION

degree of separation, at least per service, we won’t have to do that. What we
have to do is migrate the rest of the libraries pertaining to the Main service.

Konstrukt.Tenancy

Konstrukt.Tenancy was easy to migrate, only two bigger changes were
needed. One of them was replacing the third-party library used for the
retry policy for SQL calls with one that supported .NET Standard, Polly.
This code was omitted from the source code for brevity as we have already
covered how to replace libraries.

The second change was to the classes that used the DbContext type.
DbContext creates a dependency on Entity Framework, and besides
not wanting to pull in that dependency for just a few methods, we also
would have to decide if we want to use Entity Framework Core or Entity
Framework .NET. Earlier in the book, I talked about targeting the full
framework with ASP.NET Core and how that would allow you to use, for
example, Entity Framework .NET. The problem is that according to the
ASP.NET Core roadmap, this won'’t be supported after 3.0. Nonetheless, we
don’t want EF dependencies in the library that manages the multitenancy
logic, and therefore we simply abstract away the context. The ASP.NET
Core roadmap can be found here:

https://github.com/aspnet/AspNetCore/wiki/roadmap

Instead we now inject an IDataStoreContext object that can be used to
change the connection string or catalog for the right tenant, while the mapping
to a concrete implementation is done in the library that uses it. In Konstrukt.
SL.Main we now map IDataStoreContext to a DataStoreContext object.

Migrating to Entity Framework Core

Konstrukt.Entities has to be migrated. Either we migrate to .NET Core, and
have all the services use Entity Framework Core, or we can run both side
by side - but that can quickly get very messy so we don’t want to do that.

97

https://github.com/aspnet/AspNetCore/wiki/roadmap

CHAPTER 5 PHASE 3: MIGRATION

Just so you know, you can use Entity Framework Core in .NET libraries, as
long as the target framework is newer than 4.61.

We have an additional challenge, besides migrating to EF Core. We
are using database first which is not supported, and therefore we need
to change this to model first. This means no more EDMX model and
scaffolding pain, but some extra pain to get our models set up as they have
until this point been scaffolded for us for free.

In the Konstrukt.Entities project, we have our EDMX model and the

scaffolded entities (Figure 5-20).

Solution Explorer v+ o X

co@b-o-SCcam| &=

Search Solution Explorer (Ctrl+;) L

Konstrukt.Entities

b &M Properties
b =-m References
ay) App.Config
4 549 KonstruktEntities.edmx
P &) KonstruktEntities.Context.tt
a7 KonstruktEntities.Designer.cs
a7 KonstruktEntities.edmx.diagram
4 5 KonstruktEntities.tt
b a7 AccessGroup.cs
b &) App.cs
a1y KonstruktEntities.cs
b &) SuperiorUser.cs
b &) User.cs
a¢) packages.config

Figure 5-20. The EDMX model and the scaffolded entities

98

CHAPTER 5 PHASE 3: MIGRATION

EF Core does not support the EDMX model, and there is no plan for
supporting this in the future. The model is used to render the designer
(Entity Designer) and is used for a database-first approach - an approach
that isn’t recommended anymore. Instead the model-first approach
is recommended, where the model classes you create dictate how the
database looks like and behaves. You can however scaffold the entity
classes based on an existing database by using the Scaffold-DbContext
PowerShell cmdlet. This is how we are going to migrate to EF Core from
the database-first approach we currently have.

Scaffolding a Database Context

We start off by creating a new .NET Standard project, and we install the EF
tools package and our provider:

Install-Package Microsoft.EntityFrameworkCore.Tools
Install-Package Microsoft.EntityFrameworkCore.SqlServer

Temporarily change the TargetFramework in the csproj to
netcoreapp?2.0, as the PowerShell cmdlet needs an executable to be able to
do the scaffolding.

Set the project as startup project.

Run the following in the Package Manager Console (making sure that
you first have navigated to the project).

Scaffold-DbContext "Server=AspCoreVM\SQLEXPRESS;;Database=Tena
ntX;Integrated Security=true;" Microsoft.EntityFrameworkCore.
SqlServer -OutputDir Models

We should now have the entities scaffolded in the Models folder as
shown in Figure 5-21.

99

CHAPTER 5 PHASE 3: MIGRATION

Solution Explorer
o @B~ o-5S @, -
Search Solution Explorer (Ctrl+;)
¢{&) Konstrukt.Standard.Entities
b ' Dependencies
4 Models

c* AccessGroup.cs

+C* App.cs

+C* TenantXContext.cs

b
p
b +c#* SuperiorUser.cs
b
P +c* User.cs

Figure 5-21. Scaffolded entities in the Models folder

Be aware that the connection string is going to be added to the
OnConfiguring method - obviously we don’t want this. There are
a few ways to solve this; you could pull the connection string from
a configuration file or use dependency injection. Our solution is a
multitenant solution where each tenant has their own database, but
for simplicity we are going to pretend like we are only dealing with one
database and pull the connection string from a configuration file.

Add the System.Configuration.ConfigurationManager package, a
configuration file, and a connection string to the project.

protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)

{
if (loptionsBuilder.IsConfigured)

{

var connectionString = ConfigurationManager.Connection
Strings["KonstruktEntities"].ConnectionString;

100

CHAPTER 5 PHASE 3: MIGRATION

optionsBuilder.UseSqlServer(connectionString);

The next step is to update the references in the other projects. Make
sure to remove references to Entity Framework .NET and add the right
NuGet package in projects where Entity Framework .NET is used. One
such example is Konstrukt.DAL.Main as we are referencing the DbContext
type in our repository base class. In addition, some other minor fixes are
required, such as updating the connection string in the config files from
an EF connection string to a plain SQL connection string and changing the
way we are retrieving the connection string from the EF context.

From:

_context.Database.Connection.ConnectionString
To:
_context.Database.GetDbConnection().ConnectionString;

After verifying that everything builds, the Main service runs, and tests
are green, we are ready for the final steps. Migrating the Konstrukt.SL.Main
layers, the DAL (data access layer), and the BL (business layer) is done
the same way we did with the previous libraries. You might notice that the
more libraries you migrate while working your way down the dependency
chain, the less work is required. This is the case with the DAL and the BL,
and with them migrated it’s just as easy to migrate the unit test project as
all the references the project has are .NET Standard references.

We are now ready for the final step, and the grand finale - migrating
the ASP.NET service Konstrukt.SL.Main to ASP.NET Core.

101

CHAPTER 5 PHASE 3: MIGRATION

Migrating from ASP.NET to ASP.NET Core

Create a new ASP.NET Core project targeting .NET Core. As mentioned
before, you can target the full . NET Framework, but this will not be
supported in the future so we might as well go all the way. We’ll break the
migration down piece by piece, highlighting common differences.

Service Startup

In ASP.NET Core there is no App_Start folder or Global.asax file as the
Startup.cs class manages the startup of the service. All the code pertaining
to app service configuration is done in the Startup.cs class, or the Program.
cs class (which is executed before the Startup class).

Routing Configuration

In our old project, we mapped the routing in the WebApiConfig class in
App_Start by using HttpConfiguration.MapHttpAttributeRoutes. The app.
UseMVC() method in the Startup.cs class wires this up for us in ASP.NET Core.

Enabling CORS

Enabling CORS was also done in the WebApiConfig class; this code is
moved to the Startup class.

This can be done in two ways. The first way is declaring a CORS policy
and then referencing it in a controller by using an attribute:

Startup.cs

public void ConfigureServices(IServiceCollection services)

{
services.AddCors(o => o.AddPolicy("CORSPolicy", builder =»

{

102

CHAPTER 5 PHASE 3: MIGRATION

builder.AllowAnyOrigin()
.AllowAnyMethod()
.AllowAnyHeader();

1);
services.AddMvc().SetCompatibilityVersion(Compatibility

Version.Version 2 1);

SomeController.cs

[EnableCors("CORSPolicy")]
[HttpGet]
public ActionResult<IEnumerable<string>> Get()

{

return new string[] { "value1", "value2" };

Or by applying it globally:

public void Configure(IApplicationBuilder app,
IHostingEnvironment env)

{
app.UseCors("CORSPolicy");
if (env.IsDevelopment())
{
app.UseDeveloperExceptionPage();
}
else
{
app.UseHsts();
}
app.UseHttpsRedirection();
app.UseMvc();
}

103

CHAPTER 5 PHASE 3: MIGRATION

Make sure that you add this before app.UseMVC if you add it globally!

Dependency Injection

Dependency injection is at the core of ASP.NET Core (pun intended).
While this is a common practice that has been around for a long time,

it hasn’t been adopted by everybody, although it’s accepted as a good
practice. I won’t go into details as to why, but it helps with maintainability
and testability and gives flexibility.

The built-in dependency injection is great, but you can use your own
dependency resolver - and we want to keep using Autofac to simplify the
migration.

First, we copy over the IOC folder from Konstrukt.SL.Main - which
contains the type registration and building of the container. Let’s also
remember to create the SlimRequest we talked about earlier (when we
resolved the missing HttpContext by passing in an abstraction instead),
and make sure we wire up all the types we need. That brings up some
errors, as we haven'’t installed Autofac.

Install the Autofac NuGet package as well as the extensions:

Install-Package Autofac
Install-Package Autofac.Extensions.DependencyInjection

Second, change the ConfigureServices in Startup.cs to return an
IServiceProvider, and return from the method an AutofacServiceProvider
with a built container passed to its constructor.

We also wire up the context entities:

services.AddDbContext<KonstruktEntities>(options =>
options.UseSqlServer(Configuration.GetConnectionString
("Configurations™)));

104

CHAPTER 5 PHASE 3: MIGRATION
This should be the end result:

public IServiceProvider ConfigureServices(IServiceCollection
services)
{
services.AddCors(o => o.AddPolicy("CORSPolicy", builder =>
{
builder.AllowAnyOrigin()
.AllowAnyMethod()
.AllowAnyHeader();

1)

services.AddMvc().SetCompatibilityVersion(CompatibilityVersi
on.Version 2 1);
services.AddDbContext<KonstruktEntities>(options =>
options.UseSqlServer(Configuration.GetConnectionString
("Configurations™)));
var containerBuilder = new ContainerBuilderFactory().
Create();
containerBuilder.Populate(services);
// Register internal types
containerBuilder.RegisterType<HttpContextAccessor>().
As<IHttpContextAccessor>();
return new AutofacServiceProvider(containerBuilder.
Build());

105

CHAPTER 5 PHASE 3: MIGRATION

Reading Configuration Files

The last bit of code in the WebApiConfig file we need to migrate is the line
of code that sets the logging connection string. The connection string is
fetched from the Web.config file:

LogManager.Configuration.Variables["configurationDb"] =
ConfigurationManager.ConnectionStrings["Configurations”].
ConnectionString;

As I mentioned earlier, there is a ConfigurationManager NuGet
package that lets you read config files in Core projects, but there is also
a new way of working with settings files in ASP.NET Core that is better.
Since we used the ConfigurationManager last time, we will look at using a
JSON file instead. ASP.NET Core supports different types of configuration
providers as seen in Table 5-1.

Table 5-1. ASP.NET Core Supports Different Types of Configuration
Providers

Provider Provides Configuration from...

Azure Key Vault Configuration Provider (Security ~ Azure Key Vault
Topics)

Command-Line Configuration Provider Command-line parameters
Custom Configuration Provider Custom source

Environment Variables Configuration Provider Environment variables

File Configuration Provider Files (INI, JSON, XML)
Key-Per-File Configuration Provider Directory files
Memory Configuration Provider In-memory collections

User Secrets (Secret Manager) (Security Topics) File in the user profile directory

106

https://docs.microsoft.com/en-us/aspnet/core/security/key-vault-configuration?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-2.1

CHAPTER 5 PHASE 3: MIGRATION

The providers are configured in the CreateWebHostBuilder method in
Program.cs - which is the very first class and method to be executed. The
providers are configured in the ConfigureAppConfiguration method:

public static IWebHostBuilder CreateWebHostBuilder(string|]
args) =>
WebHost.CreateDefaultBuilder(args)
.ConfigureAppConfiguration(config =>

{
config.AddJsonFile("appsettings.json", optional:
false, reloadOnChange: false);
config.AddXmlFile("Web.config", optional: true,
reloadOnChange: false);

1)

.UseStartup<Startup>();

The appsettings.json file is read in by default, so if it’s the
only configuration file you have, you don’t need to call the
ConfigureAppConfiguration method and pass in the provider for that file.
Since this method is called before ConfigureServices in Startup.cs, you
can access the data read with the providers there. This can be done a few
ways; one of them is by defining a ConnectionStrings node in the JSON file,
with connection string objects.

"AllowedHosts": "x",
"ConnectionStrings": {
"Configurations": "db connection”

b

In the Configure method in Startup.cs, you can then access the
settings:

var dbConnectionString = Configuration.GetConnectionString
("Configurations");

107

CHAPTER 5 PHASE 3: MIGRATION

You can also use the Options Pattern, and map a settings section to a
plain object:

"ImportantSettings": {
"SettingA": "important”
}

In Startup.cs:

var settings = Configuration.GetSection(nameof(Important
Settings)).CGet<ImportantSettings>();

You can configure this permanently by registering the mapping in the
services collection in the ConfigureServices method in Startup.cs:

services.Configure<ImportantSettings>(Configuration.GetSection
(nameof(ImportantSettings)));

This means that we can access the settings through dependency
injection by passing an IOptions<> object in the constructor of a class that
needs them:

IOptions<ImportantSettings> settings

Sounds familiar? We are actually doing a manual version of this in
Konstrukt, with the ISettings (implemented as Settings and using the
ConfigurationManager to read the settings).

To summarize this section, the following code

LogManager.Configuration.Variables["configurationDb"]
ConfigurationManager.ConnectionStrings["Configurations”].
ConnectionString;

can be replaced by

LogManager.Configuration.Variables["configurationDb"]

Configuration.GetConnectionString("Configurations™);

108

CHAPTER 5 PHASE 3: MIGRATION

Make sure to add the NLog.Web.AspNetCore package to the project as
well as NLog.

Let’s talk more about logging now that we are done with moving the
startup code from the old project to the new one.

Logging

ASP.NET Core has made logging a priority, and I could write a smaller
book on that topic. But we'll keep it simple here. Logging is integrated in
ASP.NET Core, and it’s configured in a similar way to the configuration
objects.

There is a variety of providers, and these are configured in the
ConfigureLogging method for the WebHostBuilder. By default, these are
added:

¢ Console
e Debug
o EventSource (starting with ASP.NET Core 2.2)

There are many third-party log providers that you can plug in as well.
They usually provide an extension method to plug in that provider, and you
can do the logging by using dependency injection and the ILoggerFactory.

Previously in this chapter, we used a static instance of our logger in
the Logging library to write to the log, but as promised we will now look at
using dependency injection instead in our ASP.NET Core app.

We have to do the following things:

1. Add the dependencies.
2. Create a configuration file for NLog.

3. Enable NLog.

109

CHAPTER 5 PHASE 3: MIGRATION

Add Dependencies

The two dependencies we need were installed in the previous step:

<PackageReference Include="NLog.Web.AspNetCore" Version="4.5.4" />
<PackageReference Include="NLog" Version="4.5.4" />

Add NLog Config File

We'll just copy over the NLog config file from the Logging project and make
sure that Build Action is set to Content and Copy to Output Directory to
Copy always as shown in Figure 5-22.

Properties vy fX
nlog.config File Properties v
oc |24 | M
E Advanced

Build Action Content

Copy to Output Dire Copy always
B Misc

File Name nlog.config

Full Path C:\src\ASPCore_Migration\Kon

Figure 5-22. You can set the Copy to Output Directory to Copy
always in the Properties window for the file

Enable NLog

With the configuration file in place, we can enable NLog through the
extension method the NLog library provides for the WebHostBuilder in the
Program.cs class:

110

CHAPTER 5 PHASE 3: MIGRATION

public static IWebHostBuilder CreateWebHostBuilder(string]]
args) =>
WebHost.CreateDefaultBuilder(args)
.ConfigureAppConfiguration(config =>

{
config.AddJsonFile("appsettings.json”, optional:
false, reloadOnChange: false);
config.AddXmlFile("Web.config", optional: true,
reloadOnChange: false);

1)

.UseNLog()

.UseStartup<Startup>();

And we can also go ahead and remove the code that sets the
connection string for NLog from the Startup class, assuming that we now
instead have the connection string in the NLog configuration file:

LogManager.Configuration.Variables["configurationDb"] =
Configuration.GetConnectionString("Configurations");

By default, the logging level is set in the appsettings.json file, so make
sure the level is the right one. The default logging level when you create a
new project is Warning.

Using the logger is done by passing in ILogger<T> in the constructor
of the class that will make use of the logger. Here is an example using the
ValuesController that is created when you use the default project template
for ASP.NET Core:

[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase

{

private readonly ILogger<ValuesController> logger;

111

CHAPTER 5 PHASE 3: MIGRATION

public ValuesController(ILogger<ValuesController> logger)
{

_logger = logger;
}

[HttpGet]
public ActionResult<IEnumerable<string>> Get()

{
_logger.LogInformation("GET values called");

return new string[] { "value1", "value2" };

}

Authentication

One thing we haven’t talked much about in this book is authentication.
The authentication service and the code for authenticating users in the
services have been omitted from the sample code on purpose as we
would rather not expose that. I do want to talk about authentication and
authorization, and how it differs when you migrate, as you'll probably need
some help one way or another with that.

First of all, it’s important to know that authentication is managed in
the Startup.cs class, in the Configure services method. This is where you
register your identity system configuration by using

Services.AddDefaultIdentity
Previous versions of ASP.NET Core used: Services.AddIdentity

The difference between the two is that they use different APIs, but they
are quite similar, except one difference. AddDefaultIdentity does not add
Roles functionality by default. This can be added by calling AddRoles after
AddDefaultldentity.

112

CHAPTER 5 PHASE 3: MIGRATION

Example with OpenldConnect

When you configure services for authentication, you can configure several
types, and in our system, we support a variety of ways to authenticate.
One of them is OpenIdConnect. Here is an example showing how easy it
is to set this up (assuming that you are only using one authority such as
Google):

public void ConfigureServices(IServiceCollection services)

{
services.AddAuthentication().AddOpenIdConnect(options =>

{
options.ClientId = Configuration["ClientId"];
options.ClientSecret = Configuration["ClientSecret"];
options.Authority = Configuration["Authority"];
options.ResponseType = OpenIdConnectResponseType.Code;
options.GetClaimsFromUserInfoEndpoint = true;

1;
services.AddMvc().SetCompatibilityVersion(Compatibility

Version.Version 2 1);

}

appsettings.json:

{
"Logging": {
"LoglLevel": {
"Default": "Warning'
}

b
"AllowedHosts": "x",

"ClientId": "",
"ClientSecret": "",

113

CHAPTER 5 PHASE 3: MIGRATION

"Authority": ""
}

There are many ways to authenticate a user, and covering all the
different ways is beyond the scope of this book. But before we move on to
the next section, I want to talk about migrating to ASP.NET Core Identity,
which unfortunately isn’t a straightforward process. We are not using
Identity, or Membership, in our system, but I want to highlight some issues
that you will come across and how they are best solved. Please refer to the
ASP.NET Core documentation for details, as things in this area are going to
change in the future.

ASP.NET Core Identity

While there are some similarities between ASP.NET Identity and ASP.NET
Core Identity, there are also some significant differences which means that
some extra work is required when migrating. You will have to migrate to
the new schema, and the recommended way is to migrate the users. For
example, there are new columns, and more importantly, the password
criteria and hashing have changed.

Here is the same password hashed using ASP.NET Identity:

AOstUiMCRZkeV7mQqj4ZygIGtZuKQXxp9Ir+5vQQBikFfGScUcCVYks/
N9E/5zC9Xg==

And hashed in ASP.NET Core Identity
AQAAAAEAACCQAAAAEAYCHWIWSNTONVU84CAhX7xnMEDIXTqq6X0/d7kIvi+HT1cP
felFEgusmtKEQ+LT61A==

Microsoft recommends that you leave the password empty after
migrating the users to the new schema, and prompt the user to change the
password.

114

CHAPTER 5 PHASE 3: MIGRATION

Figure 5-23 shows a high-level comparison of the Identity tables
created with ASP.NET and ASP.NET Core. There are even differences on
column level.

= W ASP.NET = W ASP.NET_Core

=] Tables] Tables

& System Tables @ System Tables

@ FileTables @ FileTables

External Tables # External Tables
& Graph Tables

® Graph Tables *

+

@ BB dbo._MigrationHistory @ EH dbo._EFMigrationsHistory
@ BB dbo.AspNetRoles @ BH dbo.AspNetRoleClaims

@ BB dbo.AspNetUserClaims @ B dbo.AspNetRoles

@ HH dbo.AspNetUserLogins # BB dbo.AspNetUserClaims

@ BB dbo.AspNetUserRoles @ BB dbo.AspNetUserLogins

@ BB dbo.AspNetUsers @ B dbo.AspNetUserRoles

BB dbo.AspNetUsers
@ BB dbo.AspNetUserTokens

Figure 5-23. The Identity tables of ASP.NET Core and ASP.NET differ

Current User

Another change you should be aware of is that there is no ClaimsPrincipal
anymore. It represented static state, and that’s not something you want.
Instead, to access the current user, you can use HttpContext.User (just
don’t pass around the context! Abstract away the user instead and use
dependency injection) or ControllerBase.User in MVC controllers.

Authorization

If you have been using custom authorization attributes in your services,
you will need to migrate those as well. In ASP.NET Core the policy pattern,
similar to the way you configure CORS policies, is encouraged.

115

CHAPTER 5 PHASE 3: MIGRATION

You define a requirement for your policy, implement a handler, register
the policy, and then use it.

Here is a simple example from one of our third-party authentication
services:

public class HandshakeTokenRequirement :
TAuthorizationRequirement

{}

public class HandshakeTokenHandler : AuthorizationHandler
<HandshakeTokenRequirement>
{
private readonly IHttpContextAccessor _httpContextAccessor;
private readonly IJwtParser jwtParser;

public HandshakeTokenHandler (IHttpContextAccessor

httpContextAccessor, IJwtParser jwtParser)

{
_httpContextAccessor = httpContextAccessor;
_jwtParser = jwtParser;

}

protected override Task HandleRequirementAsync

(AuthorizationHandlerContext context,
HandshakeTokenRequirement requirement)

var httpContext = httpContextAccessor.HttpContext;

if (httpContext.Request.Query.
TryGetValue("handshaketoken", out var handshakeToken)
88 !String.IsNullOrEmpty(handshakeToken))
{
if(! jwtParser.IsValid(handshakeToken))
context.Fail();

116

CHAPTER 5 PHASE 3: MIGRATION

// DO stuff, for example - get identity claim
httpContext.User.AddIdentity(identity);

context.Succeed(requirement);

}
}
else
{
// Log error
context.Fail();
}
return Task.CompletedTask;
}
}
public class Startup
{

public void ConfigureServices(IServiceCollection services)

{

ConfigureIoC(services);

services.AddAuthorization(options =>

{
options.AddPolicy(nameof(HandshakeTokenRequirement),
policy =>
policy.Requirements.Add(new
HandshakeTokenRequirement()));
1;

[Route("api/[controller]")]
[ApiController]

117

CHAPTER 5 PHASE 3: MIGRATION

public class OauthController : ControllerBase
{
[HttpGet]
[Authorize(Policy = nameof(HandshakeTokenRequirement))]
[Authorize]
public ActionResult<string> Get(string handshaketoken,
string redirect uri)

{

Migrating Controllers

After setting up our configuration, authentication, and authorization, we
only have the controllers left. There is a neat little shim package that we
can use to make the migration a little bit easier, the WebApiCompatShim.
This shim is only recommended for ASP.NET Core versions up to 3.0. In 3.0
it won’t be supported anymore. If you choose to use it nonetheless, install
the package:

Install-Package Microsoft.AspNetCore.Mvc.WebApiCompatShim
Register the shim in Startup.cs:

services.AddMvc()
.SetCompatibilityVersion(CompatibilityVersion.Version 2 1)
.AddWebApiConventions();

Copy over the controllers, update the namespace, and sort out any
leftover errors such as fixing references.

RoutePrefix doesn’t exist anymore, as the Route attribute acts a route
prefix. A Search and Replace as shown in Figure 5-24 takes care of that.

118

CHAPTER 5 PHASE 3: MIGRATION

i_@ Get(string appld)

A [RoutePrefix X v = v X
[Route | & &
Aa Ab & Current Project v

Figure 5-24. Search and Replace for RoutePrefix

Import the Route type for all the controllers (Controllers folder) as
shown in Figure 5-25.

] 6 |+ [Route("api/main/cache")]
1A e Vo Vata bl =
¢ Import missing references in file » ApiCont roller
% Import type ‘Microsoft.AspNetCore.Mvc.RouteAttribute’ b |y Import type ‘RouteAttribute’ in file

Reference 'System Web.Http' and use ‘System.Web.Http.RouteAttribute’ Import type ‘RouteAttribute’ in folder

Reference 'System.Web.Mvc' and use ‘System.Web.Mvc.RouteAttribute'

[
<

Import type 'RouteAttribute’ in project

5
@

Create type 'RouteAttribute’ Import type 'RouteAttribute’ in solution -

Create nested type ‘RouteAttribute’

&=
[}

0@

Chanas all ‘Reoarts’

Figure 5-25. With the help of ReSharper, we can easily fix missing
types

IHttpActionResult is now [Actionresult, so another search and replace

to fix that.

[EnableCors(origins: "«", headers: "«", methods: "x")]

The EnableCors attribute is replaced by specifying the CORS policy we
registered at startup.
We have now migrated the Main service in full (Figure 5-26)!

119

CHAPTER 5 PHASE 3: MIGRATION

Solution Explorer * O X

o0 G.'] Al

-5 B[u-| -

Search Solution Explorer (Ctrl+") P~

fa] Solution 'KonstruktDemo' (12 projects)

4

Libraries.Standard
a[c®] Konstrukt.Standard.Contracts
a[c#] Konstrukt.Standard.Entities
a[c#) Konstrukt.Standard.Logging
a[c#] Konstrukt.Standard.Shared
a[c# Konstrukt.Standard.Tenancy
Services
Konstrukt.CalculationEngine
Konstrukt.Notification
4 Konstrukt.Standard.Main
b +%] Konstrukt.Core.SL.Main
P &lc#] Konstrukt.Standard.BL.Main
b &[cs] Konstrukt.Standard.DAL.Main
Tests.Standard
Integration
4 Unit
b a1 Konstrukt.Standard.BL.Main.Test
b a[c#] Konstrukt.Test.Standard.Common
b sE] Test.Example

v vV vVvw

Figure 5-26. Final result after migrating the Main service

Static Files

We don’t have any static files that we are serving up, but it’s not

unc

ommon, and this is how it is done in ASP.NET Core.
Invoke the UseStaticFiles method in Startup.Configuration:

public void Configure(IApplicationBuilder app)

{

120

app.UseStaticFiles();

CHAPTER 5 PHASE 3: MIGRATION

By default, the service will look for static files in the wwwroot folder,
but you can change this by configuring where the files reside:

public void Configure(IApplicationBuilder app)

{
app.UseStaticFiles(); // For the wwwroot folder

app.UseStaticFiles(new StaticFileOptions
{
FileProvider = new PhysicalFileProvider(
Path.Combine(Directory.GetCurrentDirectory(),
"Resources")),
RequestPath = "/Files"

};

There is more to this; you can set cache headers, set MIME types,
enable directory browsing, and more. Refer to the documentation for
details. But please make sure you don’t expose content you don’t want to
expose, such as your configuration files!

Summary

Whether you're doing a partial or full migration, a good way to start is by
migrating the leaves of the dependency graph for a service. The leaves
often have less third-party dependencies and therefore theoretically
should be easier to migrate. As soon as one library has been migrated, you
simply replace the references to the new migrated library and work your
way through the dependency graph until everything has been migrated.
Since there are no official tools to automagically migrate the code, it has
to be done manually. For me, the first few projects took a while to migrate,
but honestly, after you have migrated a few projects, you get into the flow
and it gets easier. As suggested in this book, make sure that you automate

121

CHAPTER 5 PHASE 3: MIGRATION

what you can automate by using tools such as ReSharper, built-in Visual
Studio tooling, extensions, and simple editor features such as search and
replace. Also, one thing that I learned the hard way is to make frequent
commits when you do a migration, and to make sure to constantly run the
unit tests. There are tools that will run the unit test in the background as
soon as anything has changed that affects the tests in question. We decided
a while back to not make use of that type of tooling as the performance at
the time was horrible, and the tools were unreliable. Visual Studio actually
has a feature that will automatically run the unit tests, but we have not
used it as we have too many unit tests and therefore cannot use the feature.

Regardless of how you decide on doing the migration, make sure you
scope out an area to migrate first, and then do the migration one step at
a time. My advice is to be organized and meticulous, and document what
you are doing. An excellent way to document is by using frequent source
control commits with descriptive messages.

Besides the preceding advice, an equally important thing to consider
is the integration and deployment pipeline. Therefore, in the upcoming
chapter, we'll take a look at some of the changes we had to make in our
pipeline. Most likely your pipeline is going to differ; therefore the purpose
of the next chapter is not to give you a blueprint for a pipeline, but rather to
prepare you for some of the challenges you might encounter.

122

CHAPTER 6

Phase 4: Upgrading
the Deployment
Pipeline

We learned many lessons when we migrated to ASP.NET Core, and one
of them was that you might have to make significant changes to your
deployment pipeline. If you have a mixed solution, it can get tricky,
depending on how the pipeline is set up. In this chapter I want to highlight
some changes and challenges that we had.

This chapter is not a guide on how to set up a continuous integration
and deployment pipeline. There are many ways to do that and a variety
of tools and services to choose between. But one thing I'm sure of is that
you will need to change your pipeline when you migrate. And if you have
a mixed solution, like we do, you will have additional challenges that you
need to solve. In my experience the time and effort that goes into setting
up and patching a pipeline is often forgotten when a team is estimating
time and effort for migrations. And it can be a lot of work, particularly if
you are not prepared. I hope that this chapter will give you some pointers
to what sort of challenges you can come across and hopefully some
solutions as well.

© Iris Classon 2019 123
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_6

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

Konstrukt Continuous Integration
and Deployment Pipeline

When I first set up our pipeline, we were hosting all our services in Azure.
We were using something called cloud services for our web services, and
virtual machines tied together under a virtual IP. When we moved to a
local cloud provider, we changed the setup, but we kept the pipeline -
including the tools and steps. The pipeline works like this (Figure 6-1).

o O '—(,, TeamCity

] /" GitHub
Build Octopus
e VM Deploy
Dev1 / \
Edge QA AT Prod

Figure 6-1. The Konstrukt continuous integration and deployment
pipeline works

The source code is hosted on GitHub (several repositories), and we
use Git for our version control. Our development branch is our master
branch, and we branch out releases in two-week cycles. For major patches
and features, we use temporary branches, but we try to avoid unnecessary
branching. Each developer works on their own local copy, committing and
pushing changes frequently to the remote repository. Our build machine
uses a build service called TeamCity, and the build service listens for

124

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

changes in the repository. When a commit has been made, it pulls the
latest version and goes through a series of build configurations as shown
in Figure 6-2, each configuration containing several steps. A build agent is
what executes a build configuration, and we have several agents that run in

parallel.
B Feoect Kons iy = o
€3 C 0w sy £
Overview Changelog Swatistics Current Problems Investigations Muted Problems Buld Chains Flaky Tests 0
* O Version
development #1.7.0.90 @ Success 40 artitacts | = anas (1) 4 days ago (1
» O BUILD backend Run
#7090 @ Success Artifacts nas (1) 4 cays ago
*» ® RUN backend unit tests e | Run
» ® RUN integration tests Kie | Run
* O BUILD client Mie | Run
» O RUN client unit tests ide | Run
* O PUSH and PROMOTE to Edge Pending (1) Aun
develonment #7089 @ Success fays ago
! PUSH and PROMOTE to AT R 5 3y ending (1000+) i@ | Run

Figure 6-2. Konstrukt build configurations before pushing the
packages to the deployment service

Iwon’t go into the details of the configurations, but this is the process.
Our solution is built and run as three separate parts: the client, the web
API services, and tools. They all go through the following configurations,
and the next configuration is only run if the previous one was successful.

Create Version

We use the build service to set the version number. If the commit was
made on a release branch, the version is attached to the end of the version
number. This is later parsed and used when we deploy the packages.

125

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

Build and Pack

In this step packages are restored, projects are built, and the deployment
packages are created (NuGet packages).

Run Unit Tests and Run Integration Tests

The two test types are run as separate configurations as the integration
tests rely on a physical database.

Push

Since we deploy all our services at the same time, we need to sync
packages, as frontend and backend services are created by different agents.
Therefore, in the final step, we make sure that everything was successful
and that all the packages created are for the same version. The packages
are then pushed to our NuGet server and deployed to either the EDGE
server NuGet server or AT (acceptance testing server) - depending on
whether this is a release or not.

Deployment Flow

Once the previous steps are finished, Octopus Deploy takes over. Octopus
Deploy is our deployment service that manages the deployment to

the various environments. Once a package is deployed to the EDGE
environment successfully and we can ping all the services, the same
packages are then deployed to the QA (quality assurance) environment
for manual testing (done by both developers and our testers). Once
everything is tested, a release is created by branching out a release branch;
the packages are tested in the AT (acceptance testing) environment by

126

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

testers and early adopters, before being released to production (PROD
environment).

The deployment itself of the services is fairly straightforward as seen in
Figure 6-3. After some cleanup we deploy the services as IIS web services,
with just some minor differences for the ASP.NET Core services.

Overview Variables Triggers Channels Releases Seftings

Deployment process

_, 1. File System - Clean ASP.NET Temp Files -
I Run a script across targets in roles: [FEEENNTY " p—"—" p—e—
sy | acmiisration | incgration | main | saz | signake | hang | cer

oy EEIEIED
For tenants taggec: [

2. Konstrukt Hangfire
Deploy package Konstrukt. SLHangFire from Octopus Server (built-in) to machines
in roles

3. Konstrukt Authentication
Deploy package Konstrukt SLAuthentication from Octopus Server (built-in) 1o

machines in roles:

4. Konstrukt.Calculation
Deploy package Konstrukt.SLCalculationEngine from Octopus Server (built-in) to
machines in roles:

5. Konstrukt.Aggregation
Deploy package Konstrukt.SLAggregationEngine from Octopus Server (built-in)
to machines in roles

n

6. Konstrukt. Administration
Deploy package Konstrukt.SLAdministration from Octopus Server (built-in) to
machines in roles:

7. Konstrukt.Main
Deploy package Konstrukt.SL.Main from Octopus Server (bullt-in) to machines in
rles: [

Figure 6-3. Some of the Octopus Deploy deployment steps for
Konstrukt

127

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

Pipeline Modifications

As I've mentioned before, we've had to make a few changes to our pipeline.
The modifications you'll need to make depend on your current setup -
and you might end up changing it a few times like we did. When we first
started migrating some of the services, we decided to separate the projects
by using a separate solution file. Solution files are generally used to group
projects that are related, usually to simplify development (you can open
related projects in the same Visual Studio instance) and deployment

(you can run commands such as build on solution level). Our CI/CD

setup before the migration was dependent on the solution file, and we
were making use of the built-in steps for restoring packages and building

a solution by adding a path to the solution itself. Out of the box it works
really well, until you add .NET Core and .NET Standard projects to the mix.

Two Solutions

We had three ways we could deal with this. The first one would be to

add a second solution file for .NET Core and .NET Standard projects and
create separate steps for restoring and building. The second one would

be to have everything in one solution file, but change the existing steps

to use command-line tools instead of plugins or TeamCity features. The
third way would be to drop the solution file and script everything as in the
second option. Unfortunately, our system is still somewhat of a distributed
monolith, and therefore the third option isn’t an option for us (yet). We
decided on multiple solution files.

CLI First

.NET Core has a command-line-first approach, with excellent CLI tooling.
TeamCity recommends that you use their .NET Core plugin for restoring
packages and building and creating deployment packages. At the time

128

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

the plugin had several issues; one of them was that it didn’t support
wildcard selection of multiple projects for restoring packages and building
the assemblies. Adding a separate step for each build would be a pain to
maintain, and it didn’t work with mixed projects in a solution if you targeted
the solution file. With separate solution files, we could run the restore or
build command targeting Konstrukt.Core.sln. Moving forward we started
consolidating the steps and moved away from built-in features and favored
scripting the steps instead (by using native CLI tools instead of plugins).

Creating NuGet Packages

Our deployment packages are NuGet packages that are created as a part
of the build process by using a NuGet package from Octopus Deploy that
creates the packages upon build by using NuGet.exe behind the scenes.
We've had this setup since the beginning, but unfortunately this tool
does not support .NET Core projects. As we had two separate solutions,
we decided to keep the build step for Konstrukt.sln (.NET) with the “Run
OctoPack” option enabled. For Konstrukt.Core.sln we used a PowerShell
script to create the packages by using octo.exe. You can create packages
automagically upon build, by simply adding GeneratePackageOnBuild set
to true in the project file. We needed additional tweaks and opted out of
that option and instead wrote our own script.

Running Tests

We ran into problems with our tests as well. All our tests (for the back end)
use NUnit, and we had been using the NUnit Console Runner - which
unfortunately does not currently support .NET Core. At the time of writing,
they are considering a separate runner, but it is still in the planning stages.
Therefore, we used the “dotnet test” command instead, which in earlier
versions of .NET Core SDK had a bug when you targeted the solution

129

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

file and would yield errors instead of skipping projects that were not test
projects. This has fortunately been fixed now.

The takeaway is that you will most likely need to maintain separate
steps, and the easiest way to consolidate similar steps is by scripting the
steps instead of relying on plugins and built-in features. I'm sure this
depends on the build service that you are using, but generally I've found
that GUI-driven tools and services are slower to adopt changes and can be
very limiting.

Deploying

Deploying required the least amount of work for us. We decided on not
creating self-contained packages as we don’t need to run multiple versions
side by side, and we would rather keep the deployment packages small.
We are also using IIS for our services and will continue to do so until we
deploy to a different operating system. The changes we had to make were
to make sure we had the IIS module installed (.NET Core Hosting Bundle)
and set the .NET CLR version to No Managed Code. We created two
separate templates in Octopus Deploy, one for our “old” services and one
for ASP.NET Core services. If you deploy self-contained packages and use
the in-process hosting model, you will need to disable the app pool for
32-bit (x86) processes. Don’t forget to make sure that the identity used

for the process has the required permissions. We have a separate account
for all our deployment services and have set up our deployment steps in
Octopus Deploy to use that identity.

Summary

One of the lessons we learned the hard way is that you can spend
significant amount of time adjusting the pipeline for a mixed deployment
or a new deployment pipeline. The amount of time required depends on

130

CHAPTER 6 PHASE 4: UPGRADING THE DEPLOYMENT PIPELINE

several factors, such as the flexibility of the tools and services you use, the
size of the solution, and rigidness of the setup, among other things. Keep
this in mind as you prepare a migration, and adjust the pipeline as soon as
you have something that builds so you can run your build process early on
to avoid the common “it builds on my machine” problem, not to mention
the disappointing surprise that you might have to spend a fair bit of time
fixing a broken pipe.

131

CHAPTER 7

Maintenance
and Resources

When we migrated, we did so enthusiastically and naively. Future
technical debt in our ASP.NET Core services wasn’t on our mind (they
were brand new after all!), and we certainly didn’t spend a lot of energy
thinking and planning maintenance. Then a new version on ASP.NET Core
came out, and suddenly we had a lot of work to do if we wanted to stay up
to date. We lagged behind two versions when we did the second migration,
and there were several breaking changes that had been announced well in
advance - that we could have been prepared for.

A poorly planned and unmanaged migration can cause problems with
technical debt in the future. This goes for all code we write, not only when
we migrate to something new and juicy. However, in my experience, the
excitement and challenge of migrating to something new make it easy to
forget to plan ahead. In the next few pages, I'd like to give some advice, and
some resources, that can reduce future technical debt, and hopefully make
this journey a smoother ride.

© Iris Classon 2019 133
I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5_7

CHAPTER 7 MAINTENANCE AND RESOURCES

Framework Changes

I mentioned in one of the first chapters that one of the possible downsides
of open source frameworks is that they frequently change - and breaking
changes aren’t unheard of. You probably use some team collaboration
software to communicate with the team, and be that Slack or Teams (or
other), I recommend that you set up alerts and notifications for the Core
repositories.

Slack has a plugin that lets you easily subscribe to a repository, but
there is always the option of using web hooks (custom callbacks to a
URL based on a trigger). This is supported by most collaboration tools,
including Microsoft Teams: https://docs.microsoft.com/en-us/
microsoftteams/platform/concepts/connectors/connectors-using

Read more about Slack integration here: https://github.com/
integrations/slack

The web hooks support a variety of triggers: https://developer.
github.com/webhooks/

You can also subscribe by email, and you can also only subscribe to
new releases as shown in Figure 7-1. If you use an unfiltered subscribe
expect a lot of noise - and consider applying a filter.

134

https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using
https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using
https://github.com/integrations/slack
https://github.com/integrations/slack
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/

CHAPTER 7 MAINTENANCE AND RESOURCES

- @ Unwatch~ | 6 W% Unstar 2 YFork | 0

Notifications
sights
Not watching
Be notified only when participating or
@mentioned. Edit

Releases only

Be notified of new releases, and when

2 releas participating or @mentioned.
| =i}
v Watching
Create n¢ Be notified of all conversations. m
Ignorin
9 9 _ iago
Never be notified.
14 days ago

Figure 7-1. GitHub lets you subscribe to a repository for all
notifications or releases only

You might also want to take a look at the support policy for the different
versions of the framework if you're using an older version. You can find the
support policy here: https://dotnet.microsoft.com/platform/support/
policy

Announcements and Roadmaps

In the previous section, I mentioned subscribing to repositories, and the
ASP.NET team has made it even easier for us to stay up to date by creating
an announcement repository (Figure 7-2). If you subscribe to it, you will be
notified on all issues and surrounding discussions. The issues have tags for

135

https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy

CHAPTER 7 MAINTENANCE AND RESOURCES

“Announcement’, “Breaching change’, and the version numbers for easy
searching.

I aspnet / Announcements ©Watch~ | 4207 WSar 130 YFk 48

Code (D lssues 294 Pull requests 0 Projects 0 Wiki I Insights

£Y Want to submit an issue to aspnet/Announcements? Dismiss

If you have a bug or an idea. read the contributing guidelines before opening an issue.

Filters ~ SISSUC 15.0pen Labels Milestones

© 294 Open + 41 Closed Author =

Projects = Labels = Milestones = Assignes = Sort =
@ Newtonsoft Json types replaced in Microsoft. AspNetCore. Authentication APls 300 Anncuncement
#341 opened 3 days ago by Tratcher " 300
@ MemoryCache: obsolete APl 1 din 3.0 300
£340 opened 4 days ago by lunTsolue " 300
@ AspN

d from Wind Hosting Bundle

2339 opened 10 days

Figure 7-2. The Announcements repository is where you can find
announcements and breaking changes

In the ASP.NET Core repository, you can find the roadmap in the Wiki
(Figure 7-3). Although slim, it should be fairly up to date. Besides a high-
level overview, it also contains links for more information.

136

CHAPTER 7 MAINTENANCE AND RESOURCES

[aspnet / AspNetCore @ Watch =
Code Issues 1,857 Pull requests 64 Projects 2 ER Wiki i Insights

Damian Edwards edited this page on Jun 26, 2018 - 33 revisions

ASP.NET Core Schedule and Roadmap

12

Below is the schedule and roadmap for ASP.NET Core. Please note that these dates and feature plans

are all subject to change. As with any project of this size it is difficult to predict exactly when things

will land. Even so, we think it's important to be as open and transparent as possible about our plans

so that our users can have the right expectations and create their plans accordingly.

Schedule
Figure 7-3. The ASP.NET Core roadmap can be found on GitHub

Entity Framework Core roadmap is located in the documentation -

and not under the Wiki for the repo. The Wiki does however have the link

to the roadmap and other useful links. The roadmap can be found here:
https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap

Documentation

Before I move on to the next piece of advice, I'd like to add a side note
on documentation. Although the Microsoft documentation is sourced
from different places, not just GitHub, you'll find a lot of the relevant

documentation on GitHub. You could in theory subscribe to the repository

and be notified of changes - but bear in mind that not everything is going

to be relevant and it might instead create a lot of noise. You can find the
documentation repository here: https://github.com/aspnet/Docs

137

https://docs.microsoft.com/en-us/ef/core/what-is-new/roadmap
https://github.com/aspnet/Docs

CHAPTER 7 MAINTENANCE AND RESOURCES

Align Architecture with New Conventions

Throughout the book we've talked about conventions. Moving forward

I would recommend that you and your team try as much as possible to
align your architecture with the new conventions that you decide to take
on board. There are different ways to do this, but usually some sort of
analyzer/linting tool can be helpful. There are numerous Roslyn Code
Analyzers that integrate directly with the compiler, for example, the
Microsoft. ASPNETCore.MVC.APi.Analyzers (included in ASP.NET Core 2.2)
that yields warnings when an API doesn’t follow a recommended set of
rules. It was introduced with ASP.NET Core 2.2, but works with 2.1 as well.
Iwon’t go into details, but have a read here if you want to learn more:
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/
analyzers

.NET Standard

As the system grows and you add new projects for services, tools, and
libraries, target .NET Standard as much as possible to ensure future
compatibility. Unless you need something really obscure, there really isn’t
any reason as to why you wouldn’t want to make a new library a .NET
Standard library. By making it a .NET Standard library, you keep your
options open.

Test, Test, and Then Test Some More

With test-friendly conventions such as dependency injection and modular
architecture, ASP.NET Core is unit and integration test-friendly. In the 2.1
release, Microsoft also released a testing package, Microsoft.AspNetCore.
Mvc.Testing. It lets you host the full web stack in memory while providing a
test client. This includes a database. You don’t have to worry about network

138

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/analyzers
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/analyzers
https://blogs.msdn.microsoft.com/webdev/2018/03/05/asp-net-core-2-1-0-preview1-functional-testing-of-mvc-applications
https://blogs.msdn.microsoft.com/webdev/2018/03/05/asp-net-core-2-1-0-preview1-functional-testing-of-mvc-applications

CHAPTER 7 MAINTENANCE AND RESOURCES

or database setups (which have been a pain for us to be honest!), and you
can test the full application stack. Besides the testing package, you can
also find that ASP.NET Core has introduced several objects that simplify
unit testing, not just integration testing. For example, tests involving a
HttpContext is easily mocked with the DefaultHttpContext object.

Community Resources and Tools

.NET Core is command-line oriented which has made it easier for the
community to create tooling that fits with the .NET Core SDK. Here are
some of my favorite tools, and packages, that can make our life easier.
Some of them have been mentioned earlier in the book.

Dotnet Templates

You can find useful (and timesaving) dotnet templates at https://
dotnetnew.azurewebsites.net/.'ve used the NUnit test templates
(before creating my own) and various ASP.NET Core SPA templates.
Creating your own templates for .NET Core is not hard and can be very
useful particularly in a team where not everybody is comfortable starting
from scratch. This documentation guides you through the few steps
needed to create a custom template: https://docs.microsoft.com/en-
us/dotnet/core/tutorials/create-custom-template

Portability Analyzer

The Portability Analyzer analyzes a project’s portability to .NET Core
and Standard. You can find the tool and more information here:
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/
portability-analyzer

139

https://dotnetnew.azurewebsites.net/
https://dotnetnew.azurewebsites.net/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer

CHAPTER 7 MAINTENANCE AND RESOURCES

Windows Compatibility Pack

If you need a shim for .NET Framework-only APIs so you can port code
to a .NET Standard library and still be able to compile, you can use the
NuGet package Windows Compatibility Pack: www.nuget.org/packages/
Microsoft.Windows.Compatibility

.NET Core Test Explorer for Visual Studio Code

If you would like a Test Explorer similar to the one in Visual Studio, but

for Visual Studio Code, you can use the .NET Core Test Explorer:
https://marketplace.visualstudio.com/items?itemName=formulahendry.
dotnet-test-explorer

C# for Visual Studio Code

For C# editing support, lightweight development, and debugging tools for
.NET Core, you can use the popular C# extension: https://marketplace.
visualstudio.com/items?itemName=ms-vscode.csharp

Crowdsourced Tools and Frameworks

Thang Chung maintains a popular crowdsourced list of awesome tools and
frameworks for .NET Core: https://github.com/thangchung/awesome-
dotnet-core

Crowdsourced .NET Core Global Tools

Nate McMaster has a repository that contains a list of .NET Core Global
Tools, such as tools for creating dacpac files, managing certificates,
cleaning a solution, command-line HTTP servers, and more:
https://github.com/natemcmaster/dotnet-tools

140

https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer
https://marketplace.visualstudio.com/items?itemName=formulahendry.dotnet-test-explorer
https://dotnet.github.io/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://github.com/thangchung/awesome-dotnet-core
https://github.com/thangchung/awesome-dotnet-core
https://github.com/natemcmaster/dotnet-tools

CHAPTER 7 MAINTENANCE AND RESOURCES

Ifyou are interested in building your own .NET Core Global Tool, have
aread here: https://docs.microsoft.com/en-us/dotnet/core/tools/
global-tools

Stay Up to Date

At this point you might have noticed that a lot of the advice here is to
combat the downsides listed early in the book. One of them was that it can
get overwhelming for developers to stay up date. Here are some additional
resources for staying up to date.

Microsoft Blogs

Web development: https://blogs.msdn.microsoft.com/webdev/
Dotnet: https://blogs.msdn.microsoft.com/dotnet/
Developer tools: https://blogs.msdn.microsoft.com/developer-
tools/
Not official Microsoft blogs, but relevant nonetheless:
Hanselman (mixed Microsoft content): www.hanselman.com/blog/
Dotnet Foundation: www.dotnetfoundation.org/blog

Podcast

OnDotnet: https://channel9.msdn.com/Shows/0On-NET
The .NET Core Podcast (not Microsoft): https://dotnetcore.show/

Live StandUps

.NET Community StandUps: www. twitch.tv/events/
RNn48aCNTZ6w0SQET48u0g
ASP.NET Community StandUp: https://live.asp.net/

141

https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://blogs.msdn.microsoft.com/webdev/
https://blogs.msdn.microsoft.com/dotnet/
https://blogs.msdn.microsoft.com/developer-tools/
https://blogs.msdn.microsoft.com/developer-tools/
http://www.hanselman.com/blog/
http://www.dotnetfoundation.org/blog
https://channel9.msdn.com/Shows/On-NET
https://dotnetcore.show/
http://www.twitch.tv/events/RNn48aCNTZ6w0SQET48uOg
http://www.twitch.tv/events/RNn48aCNTZ6w0SQET48uOg
https://live.asp.net/

CHAPTER 7 MAINTENANCE AND RESOURCES

Twitter

ASP.NET: https://twitter.com/aspnet
NET: https://twitter.com/DotNet
.NET Foundation: https://twitter.com/dotnetfdn
The accounts can also be found on Facebook.

Forums

Dotnet Foundation: https://forums.dotnetfoundation.org/
ASP.NET Forum: https://forums.asp.net/
Gitter ASPNET: https://gitter.im/aspnet/Home
Gitter Dotnet community: https://gitter.im/dotnet/community

Note Gitter is a messaging and collaboration forum centered
around GitHub projects.

Videos (General)

MS Build and Ignite videos are great resources. You can find them on
Channel 9 under events: https://channel9.msdn.com/Events/Build

Video Training

If you want or need to do some technical training, you can find many
official resources. Although there are many technical training providers, I
would still recommend taking a look at what Microsoft has to offer first, as
they are often a step ahead with new content. Besides the documentation,
which contains tutorials for most frameworks and tools, there is Microsoft

142

https://twitter.com/aspnet
https://twitter.com/DotNet
https://twitter.com/dotnetfdn
https://forums.dotnetfoundation.org/
https://forums.asp.net/
https://gitter.im/aspnet/Home
https://gitter.im/dotnet/community
https://channel9.msdn.com/Events/Build

CHAPTER 7 MAINTENANCE AND RESOURCES

Learn - which among other things incorporates what used to be called
Microsoft Virtual Academy. You'll find plenty of hands-on tutorials there
and other resources.

Summary

Maintenance and technical debt are not easy topics. Being a startup, we
struggle balancing new features for investors and clients with managing
our growing system in such a way that we don’t accumulate technical debt
faster than we can manage it. Besides the advice I've given in this chapter,
we've also done a few other things that aren’t platform or framework
specific. We are an agile team and work in sprints, and we alternate our
sprints with sprints that are feature heavy and hot fixes and sprints where
the focus is on technical depth, refactoring, and bugs. Our product is in
perpetual beta, which essentially means that the production version is
always in an open beta and the clients participate in testing and giving
feedback. Our developers are involved with support, first-, second-, and
third-line support. We have biweekly architectural discussions and do full-
day retrospectives after each sprint. Although we aren’t doing a lot of pair
programming, we do have a rotating schedule for doing code reviews (so
we alternate who is reviewing who), and we get everybody involved in the
issues for the sprint. The daily standups help us stay connected, even when
some of us work from home or work a different schedule. However, these
things alone are not enough.

The work you put in before accumulating the debt matters a lot.
Therefore, when you're doing a migration, use the opportunity to embrace
a more flexible and maintainable architecture as the one ASP.NET Core
promotes, stay up to date and engaged, test thoroughly, and use the
available tools and resources.

143

CHAPTER 7 MAINTENANCE AND RESOURCES

I've done my very best to share with you the lessons I learned from
migrating. When we started migrating, there was very little information
about the topic, and even as I'm wrapping up this book years later, I cannot
find any real-world migration examples documented. I understand that
your situation is going to differ, and that everything I reccommend might
not work for you, but I sincerely hope that this book has made it easier for
you and answered the majority of your questions. If you have questions left
unanswered, do reach out to me, and I'll make sure to find some answers
for you. I would also like to remind you that the Microsoft teams behind
ASP.NET Core and .NET Core are not unreachable, and in my experience,
they have been very helpful and accommodating when I've had questions.

ASP.NET Core and .NET are here to stay so make sure that you stay
engaged with the community and the team. For many of us, programming
is more than just a job - it’s a passion that spans beyond our workday as
evidenced by the busy repositories on GitHub. Community user groups,
such as those found on MeetUp, www.meetup.com/, can be a great place to
meet like-minded people or to learn new things.

144

https://www.meetup.com/

Index

A, B Architecture, Konstrukt
administration, 6
Acceptance testing (AT), 11, 20, 126 AggregationEngine, 6
Administration service, 6 authentication, 6
AggregationEngine, 6 CalculationEngine, 7
Analysis, projects preparation decoupling and failure
cost of migration, 53, 54 resistance, 5
details tab, 49, 50 microservices, 4
ICanHasDot.Net, 51, 52 NoSQL databases, 4
Konstrukt.BL.Main, 50, 51 NotificationService, 7
portability summary Architecture plan
Autofac, 47 conventions, 60, 61
dynamitey library, 47 migrate
EE 47, 48 ASP.NET Core, 56
Log4Net, 48 ASP.NET services, 56
Microsoft. logical parts to new
ApplicationInsights, 49 services, 58, 59
retargeting, 31-34 .NET Standard, 56
SL.Main dependency OpenldConnect
diagram, 30 authentication, 57
unused references, SAML authentication, 57
removing, 39-45 whole services, 58
unused types and members, resources, 55, 56
removing, 35-39 ASP.NET Core vs. ASP.NET tag, 21
Application Performance ASP.NET Identity, 114
Management (APM) tool, 49 Authentication service, 6, 112
Architecture alignment, 138 Autofac, 47, 104
© Iris Classon 2019 145

I. Classon, Migrating ASP.NET Microservices to ASP.NET Core,
https://doi.org/10.1007/978-1-4842-4327-5

https://doi.org/10.1007/978-1-4842-4327-5

INDEX

C

CalculationEngine, 7

Command-line-first approach, 128

Compilation symbols, 94

Conditional compilation, 94, 95, 97

ConfigurationManager, 81, 106
Contracts library, 31, 69, 80

D

Data consolidation, 4
Data-driven budgeting, 4
DbContext, 97, 101
Dependency graph, 65, 67
Dependency injection (DI), 15,
104, 105, 138
Deployment pipeline
build and pack, 126
deployment, 126, 130
EDGE server, 126
integration test, 126
NuGet server, 126
running tests, 129
solutions, 128
steps for Konstrukt, 127
unit test, 126
version number, 125
Docker files, 19
Documentation, 137
Dotnet templates, 139

Dynamic Language Runtime (DLR), 47

146

E

Entity Framework Core
EDMX model and
scaffolded entities, 98
.NET libraries, 98
scaffolding, database
context, 99-101
EntityFramework (EF), 47, 48

F

Forums, 142
Framework changes, 134, 135
Framework dependent/
self-contained
deployment, 59
Full migration
contracts
error list window, 73
Konstrukt.Contracts, 74
Libraries.Standard, 70
namespaces, 72
package summary, 74
ReSharper, 73
dependencies, 64
partial (see Partial migration)
remove and import
namespaces,
ReSharper, 76-80
search and replace, 75, 76
setup, 64

G

GetLoggedInUserId() method, 91
GetSection method, 81
Gradual migration, 56, 57

H

Hangfire, 53

HttpContext, 61, 83
HttpContextAccessor type, 83
hybrid swarm, 20

|, J

ICanHasDot.Net, 51, 52
IConfiguration interface, 81
Ignite videos, 142
[HttpContextAccessor, 61, 83
Init() method, 91

Installation requirements, 2, 3
Integration tests, 28
IOptions<MyCustomSettings>, 81

K

Konstrukt continuous
integration, 124, 125
Konstrukt.Contracts, 28, 31, 74
Konstrukt.Entities, 28, 97
Konstrukt.Logging, 28, 88
Konstrukt.Shared, 75
Konstrukt.Shared.Logging, 88
Konstrukt.Standard.Contracts, 74
Konstrukt.Tenancy, 28, 97

INDEX

L

Live StandUps, 141
Log4Net, 48, 80, 88

MemoryCache, 86, 88
MemoryCacheExtensions, 87
Microservices, 5, 58
Microsoft.ApplicationInsights.
AspNetCore, 49
Microsoft blogs, 141
Microsoft.Extensions.Caching.
Memory.MemoryCache, 87
Migrate, benefits
containers, 19, 20
cross-platform, 20
DI, 15, 16
flexible deployment, 16
logging, 15, 16
modular, 17
open source and community
driven, 18, 19
performance, 14, 15
Migrate, challenges
favorites, 22, 23
resources and
documentation, 21, 22
versions, 23, 24, 26
Mixed system, 57
Modular architecture, 138
MS Build videos, 142

147

INDEX

N NuGet searches, 73
optimize references, 40
remove and import
namespaces, 76-80
Retargeting
extension uses, 32
properties, Konstrukt.Contracts
library, 31
target framework, 33
unit tests, running, 34

Naming conventions, 70

.NET core global tools, 140, 141
.NET core test explorer, 140
.NET standard, 71, 138

NLog config file, 110
Notification service, 7, 53
NuGet packages, 17, 74, 81, 129
NuGet searches, 73

Rewriting
O HttpContext.Current, 83-86
Octopus Deploy, 10, 51 InvokeSet, 82
OpenldConnect, 113, 114 logging, 88
MemoryCache, 86, 88
P static logging instance vs.

dependency injection, 89
unit tests migration, 89, 91-94
Roadmaps, 135-137
Rolling forecasting, 4
RoutePrefix, 119

Partial migration
continuous integration and
deployment pipeline, 65
dependency graph, 67, 68
unit test libraries, 66
Pipeline, 10, 11

modifications, 128 S
Podcast, 141 Self-contained deployment, 59
Service startup, ASP.NET Core
Q authentication, 112

configuration files, 106-109
configuration providers, 106, 107
controllers, 118, 120

current user, 115

Quality assurance (QA), 11, 20, 126
Quantitative planning, 4

R custom authorization
ReSharper, 73-75 attributes, 115-118
code issues, 37 dependencies, 110

148

dependency injection, 104, 105
enable NLog, 110, 111
enable CORS, 102, 104
identity tables, 114, 115
logging, 109
NLog config file, 110
OpenldConnect, 113, 114
static files, 120, 121
Shared library, 82, 87, 88
Software as a Service (SaaS), 3, 4
Static logging instance vs.
dependency injection, 89
Strategic planning, 4
System.Runtime.Caching.
MemoryCache, 88

INDEX

UV
Tools
C#, 140
Dotnet templates, 139
.NET core global, 140, 141
.NET core test explorer, 140
portability analyzer, 139
windows compatibility pack, 140
Twitter, 142

W XY, Z

WebApiConfig file, 106
WebSocket notifications, 7, 9
Workforce capacity planning, 4

149

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The SaaS System in Question
	Installation Requirements
	Multitenant Software as a Service (SaaS)
	What the System Does
	Architecture
	Example System Used in This Book
	Pipeline
	Summary

	Chapter 2: Should We Migrate?
	The Benefits
	Performance
	Built-In Dependency Injection and Logging
	Flexible Deployment
	Modular
	Open Source and Community Driven
	Perfect for Containers
	Cross-Platform

	The Challenges
	Lack of Resources and Documentation
	A Lot to Learn
	Versions and Changes

	Summary

	Chapter 3: Phase 1: Analysis
	Preparing the Projects
	Retargeting
	Removing Unused Types and Members
	Removing Unused References
	Portability Summary
	Autofac
	Dynamitey
	EntityFramework
	Log4Net
	Microsoft.ApplicationInsights

	Details Tab
	Summarizing the Work Required for Migrating Konstrukt.BL.Main and Its Dependencies
	Analyzing with ICanHasDot.Net
	Analyzing the Rest of the Solution
	A Note on the Cost
	Summary

	Chapter 4: Phase 2: Planning the Architecture
	Available Resources
	What to Migrate
	Migrating Everything
	Gradual Migration and a Mixed System

	How to Migrate
	Migrate Whole Services
	Break Out Logical Parts to New Services

	Self-Contained Deployment or Framework Dependent
	Architecture and Conventions
	Summary

	Chapter 5: Phase 3: Migration
	Full Migration
	Partial Migration
	Partial Migration Walkthrough
	Migrating Contracts
	Search and Replace
	Using ReSharper to Remove and Import Namespaces

	Missing Type: ConfigurationManager
	Rewriting to Avoid Unnecessary Dependencies
	Missing Type: HttpContext.Current
	Dependency Options: New vs. Old MemoryCache
	Replacing Dependencies: Logging
	Static Logging Instance vs. Dependency Injection

	Migrating Unit Tests

	Conditional Compilation
	Konstrukt.Tenancy
	Migrating to Entity Framework Core
	Scaffolding a Database Context

	Migrating from ASP.NET to ASP.NET Core
	Service Startup
	Routing Configuration
	Enabling CORS
	Dependency Injection
	Reading Configuration Files
	Logging
	Add Dependencies
	Add NLog Config File
	Enable NLog
	Authentication
	Example with OpenIdConnect
	ASP.NET Core Identity
	Current User
	Authorization
	Migrating Controllers
	Static Files

	Summary

	Chapter 6: Phase 4: Upgrading the Deployment Pipeline
	Konstrukt Continuous Integration and Deployment Pipeline
	Create Version
	Build and Pack
	Run Unit Tests and Run Integration Tests
	Push
	Deployment Flow
	Pipeline Modifications
	Two Solutions
	CLI First
	Creating NuGet Packages
	Running Tests
	Deploying
	Summary

	Chapter 7: Maintenance and Resources
	Framework Changes
	Announcements and Roadmaps
	Documentation
	Align Architecture with New Conventions
	.NET Standard
	Test, Test, and Then Test Some More
	Community Resources and Tools
	Dotnet Templates
	Portability Analyzer
	Windows Compatibility Pack
	.NET Core Test Explorer for Visual Studio Code
	C# for Visual Studio Code
	Crowdsourced Tools and Frameworks
	Crowdsourced .NET Core Global Tools

	Stay Up to Date
	Microsoft Blogs
	Podcast
	Live StandUps
	Twitter
	Forums
	Videos (General)
	Video Training

	Summary

	Index

