

Contents
1.	 Cover	Page

2.	 Title	Page

3.	 Copyright	Page

4.	 Contents	at	a	Glance

5.	 Contents

6.	 About	the	Author

7.	 Introduction

8.	 Who	should	read	this	book ​

1.	 Assumptions

2.	 This	might	not	be	for	you	if

9.	 Organization	of	this	book

10.	 System	requirements

11.	 Downloads:	Code	samples

12.	 Errata,	updates,	&	book	support

13.	 Stay	in	touch

14.	 PART	I	THE	NEW	ASP.NET	AT	A	GLANCE ​

1.	 Chapter	1	Why	Another	ASP.NET? ​

1.	 The	Current	.NET	Platform ​

1.	 Highlights	of	the	.NET	Platform

2.	 The	.NET	Framework

3.	 The	ASP.NET	Framework

4.	 The	Web	API	Framework

5.	 The	Need	for	Super-Simple	Web	Services

2.	 .NET	Fifteen	Years	Later ​

1.	 A	More	Compact	.NET	Framework

2.	 Decoupling	ASP.NET	from	the	Host

3.	 The	New	ASP.NET	Core

3.	 .NET	Core	Command-line	Tools ​

1.	 Installing	CLI	Tools

2.	 The	dotnet	Driver	Tool

3.	 Predefined	dotnet	Commands

4.	 Summary

2.	 Chapter	2	The	First	ASP.NET	Core	Project ​

1.	 Anatomy	of	an	ASP.NET	Core	Project ​

1.	 Structure	of	the	Project

2.	 Interacting	with	the	Runtime

Environment

2.	 The	Dependency	Injection	Subsystem ​

1.	 Dependency	Injection	at	a	Glance

2.	 Dependency	Injection	in	ASP.NET	Core

3.	 Integrating	with	External	DI	Libraries

3.	 Building	a	Mini	Website ​

1.	 Creating	a	Single	Endpoint	Website

2.	 Accessing	Files	on	the	Web	Server

4.	 Summary

15.	 PART	II	THE	ASP.NET	MVC	APPLICATION	MODEL ​

1.	 Chapter	3	Bootstrapping	ASP.NET	MVC ​

1.	 Enabling	the	MVC	Application	Model ​

1.	 Registering	the	MVC	Service

2.	 Enabling	Conventional	Routing

2.	 Configuring	the	Routing	Table ​

1.	 Anatomy	of	a	Route

2.	 Advanced	Aspects	of	Routing

3.	 Map	of	ASP.NET	MVC	Machinery ​

1.	 The	Action	Invoker

2.	 Processing	Action	Results

3.	 Action	Filters

4.	 Summary

2.	 Chapter	4	ASP.NET	MVC	Controllers ​

1.	 Controller	Classes ​

1.	 Discovering	the	Controller	Name

2.	 Inherited	Controllers

3.	 POCO	Controllers

2.	 Controller	Actions ​

1.	 Mapping	Actions	to	Methods

2.	 Attribute-based	Routing

3.	 Implementation	of	Action	Methods ​

1.	 Basic	Data	Retrieval

2.	 Model	Binding

3.	 Action	Results

4.	 Action	Filters ​

1.	 Anatomy	of	Action	Filters

2.	 Little	Gallery	of	Action	Filters

5.	 Summary

3.	 Chapter	5	ASP.NET	MVC	Views ​

1.	 Serving	HTML	Content ​

1.	 Serving	HTML	from	Terminating

Middleware

2.	 Serving	HTML	from	Controllers

3.	 Serving	HTML	from	Razor	Pages

2.	 The	View	Engine ​

1.	 Invoking	the	View	Engine

2.	 The	Razor	View	Engine

3.	 Adding	a	Custom	View	Engine

4.	 Structure	of	a	Razor	View

3.	 Passing	Data	to	a	View ​

1.	 Built-in	Dictionaries

2.	 Strongly	Typed	View	Models

3.	 Injecting	Data	through	the	DI	System

4.	 Razor	Pages ​

1.	 Discovering	the	Rationale	behind	Razor

Pages

2.	 Implementation	of	Razor	Pages

3.	 Posting	Data	from	a	Razor	Page

5.	 Summary

4.	 Chapter	6	The	Razor	Syntax ​

1.	 Elements	of	the	Syntax ​

1.	 Processing	Code	Expressions

2.	 Layout	Templates

3.	 Partial	Views

2.	 Razor	Tag	Helpers ​

1.	 Using	Tag	Helpers

2.	 Built-in	Tag	Helpers

3.	 Writing	Custom	Tag	Helpers

3.	 Razor	View	Components ​

1.	 Writing	a	View	Component

2.	 The	Composition	UI	Pattern

4.	 Summary

16.	 PART	III	CROSS-CUTTING	CONCERNS ​

1.	 Chapter	7	Design	Considerations ​

1.	 The	Dependency	Injection	Infrastructure ​

1.	 Refactoring	to	Isolate	Dependencies

2.	 Generalities	of	the	ASP.NET	Core	DI

System

3.	 Aspects	of	the	DI	Container

4.	 Injecting	Data	and	Services	in	Layers

2.	 Collecting	Configuration	Data ​

1.	 Supported	Data	Providers

2.	 Building	a	Configuration	Document

Object	Model

3.	 Passing	Configuration	Data	Around

3.	 The	Layered	Architecture ​

1.	 The	Presentation	Layer

2.	 The	Application	Layer

3.	 The	Domain	Layer

4.	 The	Infrastructure	Layer

4.	 Dealing	with	Exceptions ​

1.	 Exception	Handling	Middleware

2.	 Exception	Filters

3.	 Logging	Exceptions

5.	 Summary

2.	 Chapter	8	Securing	the	Application ​

1.	 Infrastructure	for	Web	Security ​

1.	 The	HTTPS	Protocol

2.	 Dealing	with	Security	Certificates

3.	 Applying	Encryption	to	HTTPS

2.	 Authentication	in	ASP.NET	Core ​

1.	 Cookie-based	Authentication

2.	 Dealing	with	Multiple	Authentication

Schemes

3.	 Modeling	the	User	Identity

4.	 External	Authentication

3.	 Authenticating	Users	via	ASP.NET	Identity ​

1.	 Generalities	of	ASP.NET	Identity

2.	 Working	with	the	User	Manager

4.	 Authorization	Policies ​

1.	 Role-based	Authorization

2.	 Policy-based	Authorization

5.	 Summary

3.	 Chapter	9	Access	to	Application	Data ​

1.	 Toward	a	Relatively	Generic	Application	back	end ​

1.	 Monolithic	Applications

2.	 The	CQRS	Approach

3.	 Inside	the	Infrastructure	Layer

2.	 Data	Access	in	.NET	Core ​

1.	 Entity	Framework	6.x

2.	 ADO.NET	Adapters

3.	 Using	Micro	O/RM	Frameworks

4.	 Using	NoSQL	Stores

3.	 EF	Core	Common	Tasks ​

1.	 Modeling	a	Database

2.	 Working	with	Table	Data

3.	 Dealing	with	Transactions

4.	 A	Word	on	Async	Data	Processing

4.	 Summary

17.	 PART	IV	FRONTEND ​

1.	 Chapter	10	Designing	a	Web	API ​

1.	 Building	a	Web	API	with	ASP.NET	Core ​

1.	 Exposing	HTTP	Endpoints

2.	 File	Servers

2.	 Designing	a	RESTful	Interface ​

1.	 REST	at	a	Glance

2.	 REST	in	ASP.NET	Core

3.	 Securing	a	Web	API ​

1.	 Planning	Just	the	Security	You	Really

Need

2.	 Simpler	Access	Control	Methods

3.	 Using	an	Identity	Management	Server

4.	 Summary

2.	 Chapter	11	Posting	Data	from	the	Client	Side ​

1.	 Organizing	HTML	Forms ​

1.	 Defining	an	HTML	Form

2.	 The	Post-Redirect-Get	Pattern

2.	 Posting	Forms	Via	JavaScript ​

1.	 Uploading	the	Form	Content

2.	 Refreshing	Portions	of	the	Current	Screen

3.	 Uploading	Files	to	a	Web	Server

3.	 Summary

3.	 Chapter	12	Client-side	Data	Binding ​

1.	 Refreshing	the	View	via	HTML ​

1.	 Preparing	the	Ground

2.	 Defining	Refreshable	Areas

3.	 Putting	It	All	Together

2.	 Refreshing	the	View	via	JSON ​

1.	 Introducing	the	Mustache.JS	Library

2.	 Introducing	the	KnockoutJS	Library

3.	 The	Angular	Way	to	Building	Web	Apps

4.	 Summary

4.	 Chapter	13	Building	Device-friendly	Views ​

1.	 Adapting	Views	to	the	Actual	Device ​

1.	 The	Best	of	HTML5	for	Device	Scenarios

2.	 Feature	Detection

3.	 Client-side	Device	Detection

4.	 Client	Hints	Coming	Soon

2.	Device-friendly	Images ​

1.	 The	PICTURE	Element

2.	 The	ImageEngine	Platform

3.	 Resizing	Images	Automatically

3.	 Device-oriented	Development	Strategies ​

1.	 Client-centric	Strategies

2.	 Server-centric	Strategies

4.	 Summary

18.	 PART	V	THE	ASP.NET	CORE	ECOSYSTEM ​

1.	 Chapter	14	The	ASP.NET	Core	Runtime	Environment ​

1.	 The	ASP.NET	Core	Host ​

1.	 The	WebHost	Class

2.	 Custom	Hosting	Settings

2.	 The	Embedded	HTTP	Server ​

1.	 Selection	of	the	HTTP	Server

2.	 Configuring	a	Reverse	Proxy

3.	 Kestrel	Configuration	Parameters

3.	 The	ASP.NET	Core	Middleware ​

1.	 Pipeline	Architecture

2.	 Writing	Middleware	Components

3.	 Packaging	Middleware	Components

4.	 Summary

2.	 Chapter	15	Deploying	an	ASP.NET	Core	Application ​

1.	 Publishing	the	Application ​

1.	 Publishing	from	within	Visual	Studio

2.	 Publishing	Using	CLI	Tools

2.	 Deploying	the	Application ​

1.	 Deploying	to	IIS

2.	 Deploying	to	Microsoft	Azure

3.	 Deploying	to	Linux

3.	 Docker	Containers ​

1.	 Containers	vs.	Virtual	Machines

2.	 From	Containers	to	Microservice

Architecture

3.	 Docker	and	Visual	Studio	2017

4.	 Summary

3.	 Chapter	16	Migration	and	Adoption	Strategies ​

1.	 In	Search	of	Business	Value ​

1.	 Looking	for	Benefits

2.	 Brownfield	Development

3.	 Greenfield	Development

2.	Outlining	a	Yellowfield	Strategy ​

1.	 Dealing	with	Missing	Dependencies

2.	 The	.NET	Portability	Analyzer

3.	 The	Windows	Compatibility	Pack

4.	 Postponing	the	Cross-platform	Challenge

5.	 Moving	Towards	a	Microservice

Architecture

3.	 Summary

19.	 Index

20.	 Code	Snippets

1.	 i

2.	 ii

3.	 iii

4.	 iv

5.	 v

6.	 vi

7.	 vii

8.	 viii

9.	 ix

10.	 x

11.	 xi

12.	 xii

13.	 xiii

14.	 xiv

15.	 xv

16.	 xvi

17.	 xvii

18.	 xviii

19.	 1

20.	 2

21.	 3

22.	 4

23.	 5

24.	 6

25.	 7

26.	 8

27.	 9

28.	 10

29.	 11

30.	 12

31.	 13

32.	 14

33.	 15

34.	 16

35.	 17

36.	 18

37.	 19

38.	 20

39.	 21

40.	 22

41.	 23

42.	 24

43.	 25

44.	 26

45.	 27

46.	 28

47.	 29

48.	 30

49.	 31

50.	 32

51.	 33

52.	 34

53.	 35

54.	 36

55.	 37

56.	 38

57.	 39

58.	 40

59.	 41

60.	 42

61.	 43

62.	 44

63.	 45

64.	 46

65.	 47

66.	 48

67.	 49

68.	 50

69.	 51

70.	 52

71.	 53

72.	 54

73.	 55

74.	 56

75.	 57

76.	 58

77.	 59

78.	 60

79.	 61

80.	 62

81.	 63

82.	 64

83.	 65

84.	 66

85.	 67

86.	 68

87.	 69

88.	 70

89.	 71

90.	 72

91.	 73

92.	 74

93.	 75

94.	 76

95.	 77

96.	 78

97.	 79

98.	 80

99.	 81

100.	 82

101.	 83

102.	 84

103.	 85

104.	 86

105.	 87

106.	 88

107.	 89

108.	 90

109.	 91

110.	 92

111.	 93

112.	 94

113.	 95

114.	 96

115.	 97

116.	 98

117.	 99

118.	 100

119.	 101

120.	 102

121.	 103

122.	 104

123.	 105

124.	 106

125.	 107

126.	 108

127.	 109

128.	 110

129.	 111

130.	 112

131.	 113

132.	 114

133.	 115

134.	 116

135.	 117

136.	 118

137.	 119

138.	 120

139.	 121

140.	 122

141.	 123

142.	 124

143.	 125

144.	 126

145.	 127

146.	 128

147.	 129

148.	 130

149.	 131

150.	 132

151.	 133

152.	 134

153.	 135

154.	 136

155.	 137

156.	 138

157.	 139

158.	 140

159.	 141

160.	 142

161.	 143

162.	 144

163.	 145

164.	 146

165.	 147

166.	 148

167.	 149

168.	 150

169.	 151

170.	 152

171.	 153

172.	 154

173.	 155

174.	 156

175.	 157

176.	 158

177.	 159

178.	 160

179.	 161

180.	 162

181.	 163

182.	 164

183.	 165

184.	 166

185.	 167

186.	 168

187.	 169

188.	 170

189.	 171

190.	 172

191.	 173

192.	 174

193.	 175

194.	 176

195.	 177

196.	 178

197.	 179

198.	 180

199.	 181

200.	 182

201.	 183

202.	 184

203.	 185

204.	 186

205.	 187

206.	 188

207.	 189

208.	 190

209.	 191

210.	 192

211.	 193

212.	 194

213.	 195

214.	 196

215.	 197

216.	 198

217.	 199

218.	 200

219.	 201

220.	 202

221.	 203

222.	 204

223.	 205

224.	 206

225.	 207

226.	 208

227.	 209

228.	 210

229.	 211

230.	 212

231.	 213

232.	 214

233.	 215

234.	 216

235.	 217

236.	 218

237.	 219

238.	 220

239.	 221

240.	 222

241.	 223

242.	 224

243.	 225

244.	 226

245.	 227

246.	 228

247.	 229

248.	 230

249.	 231

250.	 232

251.	 233

252.	 234

253.	 235

254.	 236

255.	 237

256.	 238

257.	 239

258.	 240

259.	 241

260.	 242

261.	 243

262.	 244

263.	 245

264.	 246

265.	 247

266.	 248

267.	 249

268.	 250

269.	 251

270.	 252

271.	 253

272.	 254

273.	 255

274.	 256

275.	 257

276.	 258

277.	 259

278.	 260

279.	 261

280.	 262

281.	 263

282.	 264

283.	 265

284.	 266

285.	 267

286.	 268

287.	 269

288.	 270

289.	 271

290.	 272

291.	 273

292.	 274

293.	 275

294.	 276

295.	 277

296.	 278

297.	 279

298.	 280

299.	 281

300.	 282

301.	 283

302.	 284

303.	 285

304.	 286

305.	 287

306.	 288

307.	 289

308.	 290

309.	 291

310.	 292

311.	 293

312.	 294

313.	 295

314.	 296

315.	 297

316.	 298

317.	 299

318.	 300

319.	 301

320.	 302

321.	 303

322.	 304

323.	 305

324.	 306

325.	 307

326.	 308

327.	 309

328.	 310

329.	 311

330.	 312

331.	 313

332.	 314

333.	 315

334.	 316

335.	 317

336.	 318

337.	 319

338.	 320

339.	 321

340.	 322

341.	 323

342.	 324

343.	 325

344.	 326

345.	 327

346.	 328

347.	 329

348.	 330

349.	 331

350.	 332

351.	 333

352.	 334

353.	 335

354.	 336

355.	 337

356.	 338

357.	 339

358.	 340

359.	 341

360.	 342

361.	 343

362.	 344

363.	 345

364.	 346

365.	 347

366.	 348

367.	 349

368.	 350

369.	 351

370.	 352

371.	 353

372.	 354

373.	 355

374.	 356

375.	 357

376.	 358

377.	 359

378.	 360

379.	 361

380.	 362

381.	 363

382.	 364

383.	 365

384.	 366

385.	 367

386.	 368

387.	 369

388.	 370

389.	 371

390.	 372

391.	 373

392.	 374

393.	 375

394.	 376

395.	 377

396.	 378

397.	 379

398.	 380

399.	 381

400.	 382

401.	 383

402.	 384

403.	 385

404.	 386

405.	 387

406.	 388

407.	 389

408.	 390

409.	 391

410.	 392

411.	 393

412.	 394

413.	 395

414.	 396

415.	 397

416.	 398

Programming	ASP.NET	Core
Dino	Esposito

Programming	ASP.NET	Core

Published	with	the	authorization

of	Microsoft	Corporation	by:

Pearson	Education,	Inc.

Copyright	©	2018	by	Pearson

Education,	Inc.

All	rights	reserved.	Printed	in	the

United	States	of	America.	This

publication	is	protected	by	copyright,

and	permission	must	be	obtained

from	the	publisher	prior	to	any

prohibited	reproduction,	storage	in	a

retrieval	system,	or	transmission	in

any	form	or	by	any	means,	electronic,

mechanical,	photocopying,	recording,

or	likewise.	For	information	regarding

permissions,	request	forms,	and	the

appropriate	contacts	within	the

Pearson	Education	Global	Rights	&

Permissions	Department,	please	visit

www.pearsoned.com/permissions/

(http://www.pearsoned.com/permissions/).	No

patent	liability	is	assumed	with

respect	to	the	use	of	the	information

contained	herein.	Although	every

precaution	has	been	taken	in	the

preparation	of	this	book,	the

publisher	and	author	assume	no

responsibility	for	errors	or	omissions.

Nor	is	any	liability	assumed	for

damages	resulting	from	the	use	of	the

information	contained	herein.

ISBN-13:	978-1-50-930441-7

ISBN-10:	1-50-930441-X

Library	of	Congress	Control	Number:

2018938486

1 18

Trademarks

Microsoft	and	the	trademarks	listed	at

http://www.microsoft.com

(http://www.microsoft.com)	on	the

“Trademarks”	webpage	are

trademarks	of	the	Microsoft	group	of

companies.	All	other	marks	are

property	of	their	respective	owners.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make

this	book	as	complete	and	as	accurate

as	possible,	but	no	warranty	or	fitness

is	implied.	The	information	provided

is	on	an	“as	is”	basis.	The	author,	the

publisher,	and	Microsoft	Corporation

shall	have	neither	liability	nor

responsibility	to	any	person	or	entity

with	respect	to	any	loss	or	damages

arising	from	the	information

contained	in	this	book	or	from	the	use

of	the	CD	or	programs	accompanying

it.

Special	Sales

For	information	about	buying	this

title	in	bulk	quantities,	or	for	special

sales	opportunities	(which	may

include	electronic	versions;	custom

cover	designs;	and	content	particular

to	your	business,	training	goals,

marketing	focus,	or	branding

interests),	please	contact	our

corporate	sales	department	at

corpsales@pearsoned.com	or	(800)

382-3419.

For	government	sales	inquiries,	please

contact

governmentsales@pearsoned.com.

For	questions	about	sales	outside	the

U.S.,	please	contact

intlcs@pearson.com.

	

Editor-in-Chief

Greg	Wiegand

Acquisitions	Editor

Trina	Fletcher	MacDonald

Development	Editor

Mark	Renfrow

Managing	Editor

Sandra	Schroeder

Senior	Project	Editor

Tracey	Croom

Copy	Editor

Rick	Kughen

Indexer

Ken	Johnson

Proofreader

Abigail	Manheim

Technical	Editor

Christophe	Navarre

Editorial	Assistant

Courtney	Martin

Cover	Designer

Twist	Creative,	Seattle

Compositor

codemantra

Contents	at	a	Glance

Introduction

PART	I	THE	NEW	ASP.NET	AT	A

GLANCE

CHAPTER	1	Why	Another	ASP.NET?

CHAPTER	2	The	First	ASP.NET	Core

Project

PART	II	THE	ASP.NET	MVC

APPLICATION	MODEL

CHAPTER	3	Bootstrapping	ASP.NET

MVC

CHAPTER	4	ASP.NET	MVC

Controllers

CHAPTER	5	ASP.NET	MVC	Views

CHAPTER	6	The	Razor	Syntax

PART	III	CROSS-CUTTING

CONCERNS

CHAPTER	7	Design	Considerations

CHAPTER	8	Securing	the	Application

CHAPTER	9	Access	to	Application

Data

PART	IV	FRONTEND

CHAPTER	10	Designing	a	Web	API

CHAPTER	11	Posting	Data	from	the

Client	Side

CHAPTER	12	Client-side	Data

Binding

CHAPTER	13	Building	Device-friendly

Views

PART	V	THE	ASP.NET	CORE

ECOSYSTEM

CHAPTER	14	The	ASP.NET	Core

Runtime	Environment

CHAPTER	15	Deploying	an	ASP.NET

Core	Application

CHAPTER	16	Migration	and	Adoption

Strategies

Index

Contents

Introduction

Who	should	read	this	book

Assumptions

This	might	not	be	for	you	if

Organization	of	this	book

System	requirements

Downloads:	Code	samples

Errata,	updates,	&	book	support

Stay	in	touch

PART	I	THE	NEW	ASP.NET	AT	A

GLANCE

Chapter	1	Why	Another

ASP.NET?

The	Current	.NET	Platform

Highlights	of	the	.NET	Platform

The	.NET	Framework

The	ASP.NET	Framework

The	Web	API	Framework

The	Need	for	Super-Simple	Web

Services

.NET	Fifteen	Years	Later

A	More	Compact	.NET	Framework

Decoupling	ASP.NET	from	the	Host

The	New	ASP.NET	Core

.NET	Core	Command-line	Tools

Installing	CLI	Tools

The	dotnet	Driver	Tool

Predefined	dotnet	Commands

Summary

Chapter	2	The	First	ASP.NET

Core	Project

Anatomy	of	an	ASP.NET	Core	Project

Structure	of	the	Project

Interacting	with	the	Runtime

Environment

The	Dependency	Injection	Subsystem

Dependency	Injection	at	a	Glance

Dependency	Injection	in	ASP.NET

Core

Integrating	with	External	DI	Libraries

Building	a	Mini	Website

Creating	a	Single	Endpoint	Website

Accessing	Files	on	the	Web	Server

Summary

PART	II	THE	ASP.NET	MVC

APPLICATION	MODEL

Chapter	3	Bootstrapping

ASP.NET	MVC

Enabling	the	MVC	Application	Model

Registering	the	MVC	Service

Enabling	Conventional	Routing

Configuring	the	Routing	Table

Anatomy	of	a	Route

Advanced	Aspects	of	Routing

Map	of	ASP.NET	MVC	Machinery

The	Action	Invoker

Processing	Action	Results

Action	Filters

Summary

Chapter	4	ASP.NET	MVC

Controllers

Controller	Classes

Discovering	the	Controller	Name

Inherited	Controllers

POCO	Controllers

Controller	Actions

Mapping	Actions	to	Methods

Attribute-based	Routing

Implementation	of	Action	Methods

Basic	Data	Retrieval

Model	Binding

Action	Results

Action	Filters

Anatomy	of	Action	Filters

Little	Gallery	of	Action	Filters

Summary

Chapter	5	ASP.NET	MVC	Views

Serving	HTML	Content

Serving	HTML	from	Terminating

Middleware

Serving	HTML	from	Controllers

Serving	HTML	from	Razor	Pages

The	View	Engine

Invoking	the	View	Engine

The	Razor	View	Engine

Adding	a	Custom	View	Engine

Structure	of	a	Razor	View

Passing	Data	to	a	View

Built-in	Dictionaries

Strongly	Typed	View	Models

Injecting	Data	through	the	DI	System

Razor	Pages

Discovering	the	Rationale	behind

Razor	Pages

Implementation	of	Razor	Pages

Posting	Data	from	a	Razor	Page

Summary

Chapter	6	The	Razor	Syntax

Elements	of	the	Syntax

Processing	Code	Expressions

Layout	Templates

Partial	Views

Razor	Tag	Helpers

Using	Tag	Helpers

Built-in	Tag	Helpers

Writing	Custom	Tag	Helpers

Razor	View	Components

Writing	a	View	Component

The	Composition	UI	Pattern

Summary

PART	III	CROSS-CUTTING

CONCERNS

Chapter	7	Design	Considerations

The	Dependency	Injection

Infrastructure

Refactoring	to	Isolate	Dependencies

Generalities	of	the	ASP.NET	Core	DI

System

Aspects	of	the	DI	Container

Injecting	Data	and	Services	in	Layers

Collecting	Configuration	Data

Supported	Data	Providers

Building	a	Configuration	Document

Object	Model

Passing	Configuration	Data	Around

The	Layered	Architecture

The	Presentation	Layer

The	Application	Layer

The	Domain	Layer

The	Infrastructure	Layer

Dealing	with	Exceptions

Exception	Handling	Middleware

Exception	Filters

Logging	Exceptions

Summary

Chapter	8	Securing	the

Application

Infrastructure	for	Web	Security

The	HTTPS	Protocol

Dealing	with	Security	Certificates

Applying	Encryption	to	HTTPS

Authentication	in	ASP.NET	Core

Cookie-based	Authentication

Dealing	with	Multiple	Authentication

Schemes

Modeling	the	User	Identity

External	Authentication

Authenticating	Users	via	ASP.NET

Identity

Generalities	of	ASP.NET	Identity

Working	with	the	User	Manager

Authorization	Policies

Role-based	Authorization

Policy-based	Authorization

Summary

Chapter	9	Access	to	Application

Data

Toward	a	Relatively	Generic

Application	back	end

Monolithic	Applications

The	CQRS	Approach

Inside	the	Infrastructure	Layer

Data	Access	in	.NET	Core

Entity	Framework	6.x

ADO.NET	Adapters

Using	Micro	O/RM	Frameworks

Using	NoSQL	Stores

EF	Core	Common	Tasks

Modeling	a	Database

Working	with	Table	Data

Dealing	with	Transactions

A	Word	on	Async	Data	Processing

Summary

PART	IV	FRONTEND

Chapter	10	Designing	a	Web	API

Building	a	Web	API	with	ASP.NET

Core

Exposing	HTTP	Endpoints

File	Servers

Designing	a	RESTful	Interface

REST	at	a	Glance

REST	in	ASP.NET	Core

Securing	a	Web	API

Planning	Just	the	Security	You	Really

Need

Simpler	Access	Control	Methods

Using	an	Identity	Management	Server

Summary

Chapter	11	Posting	Data	from	the

Client	Side

Organizing	HTML	Forms

Defining	an	HTML	Form

The	Post-Redirect-Get	Pattern

Posting	Forms	Via	JavaScript

Uploading	the	Form	Content

Refreshing	Portions	of	the	Current

Screen

Uploading	Files	to	a	Web	Server

Summary

Chapter	12	Client-side	Data

Binding

Refreshing	the	View	via	HTML

Preparing	the	Ground

Defining	Refreshable	Areas

Putting	It	All	Together

Refreshing	the	View	via	JSON

Introducing	the	Mustache.JS	Library

Introducing	the	KnockoutJS	Library

The	Angular	Way	to	Building	Web

Apps

Summary

Chapter	13	Building	Device-

friendly	Views

Adapting	Views	to	the	Actual	Device

The	Best	of	HTML5	for	Device

Scenarios

Feature	Detection

Client-side	Device	Detection

Client	Hints	Coming	Soon

Device-friendly	Images

The	PICTURE	Element

The	ImageEngine	Platform

Resizing	Images	Automatically

Device-oriented	Development

Strategies

Client-centric	Strategies

Server-centric	Strategies

Summary

PART	V	THE	ASP.NET	CORE

ECOSYSTEM

Chapter	14	The	ASP.NET	Core

Runtime	Environment

The	ASP.NET	Core	Host

The	WebHost	Class

Custom	Hosting	Settings

The	Embedded	HTTP	Server

Selection	of	the	HTTP	Server

Configuring	a	Reverse	Proxy

Kestrel	Configuration	Parameters

The	ASP.NET	Core	Middleware

Pipeline	Architecture

Writing	Middleware	Components

Packaging	Middleware	Components

Summary

Chapter	15	Deploying	an

ASP.NET	Core	Application

Publishing	the	Application

Publishing	from	within	Visual	Studio

Publishing	Using	CLI	Tools

Deploying	the	Application

Deploying	to	IIS

Deploying	to	Microsoft	Azure

Deploying	to	Linux

Docker	Containers

Containers	vs.	Virtual	Machines

From	Containers	to	Microservice

Architecture

Docker	and	Visual	Studio	2017

Summary

Chapter	16	Migration	and

Adoption	Strategies

In	Search	of	Business	Value

Looking	for	Benefits

Brownfield	Development

Greenfield	Development

Outlining	a	Yellowfield	Strategy

Dealing	with	Missing	Dependencies

The	.NET	Portability	Analyzer

The	Windows	Compatibility	Pack

Postponing	the	Cross-platform

Challenge

Moving	Towards	a	Microservice

Architecture

Summary

Index

About	the	Author

Dino	Esposito	is	a	digital	strategist

at	BaxEnergy	who	has	authored	more

than	20	books	and	1,000	articles	to

date.	His	programming	career	has	so

far	spanned	25	years.	It	is	commonly

recognized	that	his	books	and	articles

helped	the	professional	growth	of

thousands	of	.NET	developers	and

architects	worldwide.	Dino	started

back	in	1992	as	a	C	developer	and

witnessed	the	debut	of	.NET,	the	rise

and	fall	of	Silverlight	and	the	ups	and

downs	of	various	architectural

patterns.	He	now	looks	ahead	to

Artificial	Intelligence	2.0	and

Blockchain	and	is	the	author	of	“The

Sabbatical	Break”,	a	theatrical-style

work	to	travel	the	uncontaminated

spaces	of	imagination	hyperlinking

software,	literature,	science,	sport,

technology,	art.	Get	in	touch	at

http://youbiquitous.net

(http://youbiquitous.net).

http://twitter.com/despos

(http://twitter.com/despos)

http://instagram.com/desposofficial

(http://instagram.com/desposofficial)

http://facebook.com/desposofficial

(http://http://facebook.com/desposofficial)

—President	John	F.	Kennedy,	Speech

to	the	Irish	Parliament,	June	1963

Introduction

“We	need	men	who	can	dream	of

things	that	never	were,	and	ask	why

not.”

Some	aspects	of	the	ASP.NET	Core
story	remind	me	of	the	beginning	of

the	ASP.NET	adventure	more	than	15

years	ago.	A	very	young	Scott	Guthrie

—now	a	Microsoft	VP—presented	a

new	thing	called	ASP+	to	a	small

audience	of	web	developers	in	London

in	the	fall	of	1999.	Those	were	the

days	of	Active	Server	Pages,	and	ASP+

was	trying	to	introduce	a	new	syntax

for	moving	the	VBScript	code	back	to

the	server	and	express	it	through	a

compiled	language.	ASP+	was	a	real

breakthrough.

At	the	time	of	the	presentation,	there

was	no	public	awareness	of	the	.NET

thing	yet,	which	would	not	be	publicly

disclosed	until	the	following	summer.

The	demos	Scott	showed,	including	a

jaw-dropping	Web	Service	example,

were	coming	out	of	a	standalone

runtime	environment	based	on	a

custom	worker	process—a	console

application—capable	of	listening	on

the	port	80.	The	first	demos	used

plain	Visual	Basic	and	C++	code

against	the	Win32	API.	In	a	short

time,	the	whole	ASP+	thing	was

quickly	consumed	by	the	new	.NET

Framework	and	eventually	became

ASP.NET.

ASP.NET	Core,	too,	was	first

presented	as	a	new	standalone

framework	rewritten	from	scratch	to

take	the	Microsoft	web	stack	to

another	level	of	scalability	and

performance.	However,	in	doing	so,

the	team	glimpsed	the	enticing

opportunity	to	make	the	ASP.NET

Core	framework	available	on	multiple

platforms.	To	achieve	that	goal,	a

subset	of	the	.NET	Framework	had	to

be	made	available	on	target	platforms,

and	this	meant	a	new	.NET

Framework	had	to	be	created.	And,	in

the	end,	this	is	just	what	happened.

For	too	long,	ASP.NET	Core	was	a

moving	target	and	the	mechanics

moving	the	target	were	not	clear	to

anyone,	and	they	weren’t	always

communicated	timely	and	effectively.

Twenty	years	ago,	we	(thankfully?)

lacked	the	instant	sharing	attitude

that	social	media	imposes	today.	Also,

ASP+	probably	was	a	moving	target,

but	nobody	outside	Microsoft—and

the	people	directly	involved—ever

knew	about	that.

While	the	pillars	of	the	ASP.NET	and

ASP.NET	Core	stories	might	be	seen

as	being	the	same,	runtime	conditions

are	fairly	different.	The	web	before

ASP.NET	was	a	web	in	its	infancy,

with	limited	availability	of	scalable

server-side	technologies	and	without

scalability	itself	being	the	serious

issue	it	is	today.	At	the	same	time,	a

great	many	applications	were

potentially	ready	to	be	rewritten	for

the	web,	and	they	were	just	awaiting	a

reliable	platform	from	a	reliable

vendor.

Today,	many	frameworks	exist	today

that	could	be	used	instead	of

ASP.NET	Core.	However,	ASP.NET

Core	is	not	just	frontend;	ASP.NET

Core	is	also	backend,	Web	API,	and

small	and	compact	web

(containerized)	monoliths	to	be

deployed	standalone	or	within	a

service	fabric.	ASP.NET	Core	also	can

be	used	on	multiple

hardware/software	platforms.

It’s	really	hard	to	say	whether

ASP.NET	Core	is	a	must	in	the	near

future—or	even	at	present—of	every

company	and	team.	For	sure,

ASP.NET	Core	is	the	natural	follow	up

for	ASP.NET	developers	and	the

incarnation	of	another	full-stack

solution	for	web	development	on	a

variety	of	platforms.

WHO	SHOULD	READ	THIS	BOOK

This	book	is	not	for	absolute

beginners,	at	least	not	in	the	sense

of	newbies	without	at	least	a

superficial	understanding	of	web

development.	It	is	tailor-made	for

existing	ASP.NET	developers

especially	those	with	an	MVC

background.	At	the	same	time,	this

book	is	a	good	fit	for	expert	web

developers,	especially	those	with	an

MVC	background	but	who	are	new

to	ASP.NET.	Even	though	ASP.NET

Core	is	brand-new,	it	does	have	a

lot	of	common	points	with

ASP.NET	MVC	(and	to	a	much	less

extent,	Web	Forms).

If	you’re	on	the	Microsoft	stack,	or	if

you	are	considering	moving	there,

ASP.NET	Core	offers	an	excellent

choice	for	the	entire	stack,	including	a

tight	connection	with	the	Azure	cloud.

Assumptions

This	book	expects	that	you	have	at

least	a	minimal	understanding	of

web	development—preferably

matured—but	not	necessarily,	on

the	Microsoft	stack.

This	might	not	be	for	you	if...

This	might	not	be	for	you	if...

If	you’re	an	absolute	newbie	to	web

programming	who	has	never	heard

about	ASP.NET	and	you’re

subsequently	looking	for	a	step-by-

step	guide	to	ASP.NET	Core,	this

book	might	not	be	ideal.

ORGANIZATION	OF	THIS	BOOK

This	book	is	divided	into	five

sections.

Part	I,	“The	New	ASP.NET	at	a	Glance,”	provides	a	quick

overview	of	the	foundation	of	ASP.NET	Core	and	introduces	the

hello-world	application.

Part	II,	“The	ASP.NET	MVC	Application	Model,”	focuses	on	the

MVC	application	model	and	outlines	its	core	parts,	such	as

controllers	and	views.

Part	III,	“Cross-cutting	Concerns,”	touches	on	common	aspects	of

development	such	as	authentication,	configuration,	and	data

access.

Part	IV,	“Frontend,”	is	dedicated	to	technologies	and	additional

frameworks	for	building	a	usable	and	effective	presentation	layer.

Part	V,	“The	ASP.NET	Core	Ecosystem,”	is	about	the	runtime

pipeline,	deployment,	and	migration	strategies.

SYSTEM	REQUIREMENTS

You	will	need	the	following

hardware	and	software	to	complete

the	practice	exercises	in	this	book:

Window	7	or	higher	or	MacOS	10.12	or	higher.

Alternatively,	you	can	use	one	of	many	Linux	distros,	as	described

at	https://docs.microsoft.com/en-us/dotnet/core/linux-

prerequisites.

Visual	Studio	2015,	any	edition,	or	superior;	Visual	Studio	Code.

Internet	connection	to	download	software	or	chapter	examples.

DOWNLOADS:	CODE	SAMPLES

All	the	code	illustrated	in	the	book,

including	possible	errata	and

extensions,	can	be	found	at

https://aka.ms/ASPNetCore/down

loads.

ERRATA,	UPDATES,	&	BOOK

ERRATA,	UPDATES,	&	BOOK
SUPPORT

We’ve	made	every	effort	to	ensure

the	accuracy	of	this	book	and	its

companion	content.	You	can	access

updates	to	this	book—in	the	form

of	a	list	of	submitted	errata	and

their	related	corrections—at:

https://aka.ms/ASPNetCore/errata

If	you	discover	an	error	that	is	not

already	listed,	please	submit	it	to	us	at

the	same	page.

If	you	need	additional	support,	email

Microsoft	Press	Book	Support	at

mspinput@microsoft.com.

Please	note	that	product	support	for

Microsoft	software	and	hardware	is

not	offered	through	the	previous

addresses.	For	help	with	Microsoft

software	or	hardware,	go	to

http://support.microsoft.com

(http://support.microsoft.com).

STAY	IN	TOUCH

Let’s	keep	the	conversation	going!

We’re	on	Twitter:

http://twitter.com/MicrosoftPress

(http://twitter.com/MicrosoftPress).

PART	I

The	New	ASP.NET	at	a
Glance
Welcome	to	ASP.NET	Core.

It’s	been	over	fifteen	years	since

Microsoft	introduced	ASP.NET	and

the	.NET	Framework.	Of	course,	web

development	has	changed

dramatically	in	that	time.	Developers

have	learned	much,	and	clients	want

radically	different	solutions	delivered

in	new	ways	to	new	devices.	ASP.NET

Core	reflects	all	of	this,	and	it

anticipates	much	of	what’s	likely	to

happen	next.	Part	I	places	ASP.NET

Core	in	context,	and	it	helps	you

quickly	get	started	with	it.

Chapter	1,	Why	Another	ASP.NET?,

explains	why	ASP.NET	Core	exists,

where	it	might	be	familiar	(especially

to	ASP.NET	MVC	developers),	and	the

many	ways	it’s	radically	different.

You’ll	explore	ASP.NET	Core	in	the

context	of	the	compact,	modular,

open	source,	and	cross-platform	.NET

Core	Framework,	and	you’ll	see	how	it

promotes	better	support	for	both

minimal	web	services	and	full	sites.

You’ll	also	get	a	quick	first	look	at	its

Command-line	Interface	(CLI)

developer	tools.

Then,	in	Chapter	2,	The	First

ASP.NET	Core	Project,	you’ll	quickly

create	your	first	application.	A	few

things	seem	never	to	change,	so	I’ve

kept	the	familiar	“Hello	World”

convention	for	the	first	apps.	But	even

here,	you’ll	get	a	taste	of	ASP.NET

Core’s	striking	minimalism[md]and

what	it	makes	possible.

—Giuseppe	Tomasi	di	Lampedusa,

“The	Leopard”

CHAPTER	1

Why	Another	ASP.NET?
If	we	want	things	to	stay	as	they	are,

things	will	have	to	change.

I	think	it	was	probably	the	summer	of

1999.	Writing	software	for	the

Windows	operating	system	at	that

time	required	C/C++	skills	and	big

libraries	like	Microsoft	Foundation

Classes	(MFC)	and	ActiveX	Template

Library	(ATL)	existed	to	make

development	easier.	The	Component

Object	Model	(COM)	was	becoming

the	bare	bones	of	any	application

running	on	Windows.	Everything,

including	data	access,	was	going	to	be

redesigned	to	be	COM-compliant	and

COM-aware.	However,	the	choice	of

the	programming	language	and	the

development	tool	was	a	still	a	relevant

discriminant,	especially	if	data	access

or	sophisticated	user	interface	was

necessary	in	a	Windows	application.	If

you	opted	for	Visual	Basic,	then	you

could	have	trivially	easy	database

access	and	a	quick	and	nice	user

interface,	but	you	couldn’t	play	with

the	function	pointer	and	couldn’t

access—not	easily	and	reliably	at	least

—all	the	functions	in	Windows	SDK.

On	the	other	hand,	if	you	opted	for	C

or	C++,	there	were	no	high-level

facilities	for	data	access,	and	building

a	menu	or	a	toolbar	was	a	sore	way	to

walk	in	comparison	to	what	it	was	in

Visual	Basic.

As	a	software	professional,	it	was	not

an	easy	world	to	live	in,	but	we	all

managed	to	find	our	own	most

comfortable	nests,	and	we	managed	to

run	and	grow	our	businesses	quite

nicely.	Suddenly,	however,	.NET

arrived,	and	everything	changed.	And

thankfully	it	changed	for	the	best.

THE	CURRENT	.NET	PLATFORM

The	.NET	platform	was	announced

in	the	summer	of	2000	and

reached	the	second	beta	stage	a

year	later.	Version	1.0	was	released

in	early	2002,	though	in	software

terms,	it	might	as	well	have	been

three	geological	eras	ago.

Highlights	of	the	.NET	Platform

The	.NET	platform	is	made	of	a

framework	of	classes	and	a	virtual

machine	called	the	Common

Language	Runtime	(CLR).	The	CLR

is	essentially	an	execution

environment	for	code	conceptually

written	in	an	intermediate

language	(IL)	like	the	Java’s

bytecode.	The	CLR	provides

running	code	with	a	variety	of

services	such	as	memory

management	and	garbage

collection,	exception	handling,

security,	versioning,	debugging,

and	profiling.	More	than	anything,

though,	the	CLR	can	provide	those

services	in	a	cross-language	way.

On	top	of	the	CLR,	there	are	language

compilers	and	the	concept	of	a

“managed	language.”	A	managed

language	is	a	plain	programming

language	for	which	a	compiler	exists;

the	compiler	can	generate	IL	code	for

the	CLR	to	consume.	Any	.NET

compiler	produces	IL	code,	but	IL

code	is	not	directly	runnable	under

the	host	Windows	operating	system.

So,	another	tool	was	put	on	the	table—

the	just-in-time	compiler.	This

compiler	turned	IL	code	into	binary

code	that	could	execute	on	the	specific

hardware/software	platform.

The	.NET	Framework

The	.NET	Framework

At	the	time,	the	aspect	of	.NET	that

most	struck	me	was	the	ability	to

mix	different	programming

languages	in	the	same	project.	You

could	easily	create	a	library	in,	say

Visual	Basic,	and	call	it	from	code

written	in	any	other	managed

language.	Also,	a	new,	extremely

powerful	language	was	offered—the

now	ubiquitous	C#	language,	which

was	born	as	the	legendary	phoenix

from	the	ashes	of	the	Java

language.

Overall,	the	biggest	change	for

developers	was	the	availability	of

classes	to	access	most	of	the

underlying	Windows	SDK.	That	is	the

Base	Class	Library	(BCL),	which	is	a

common	substrate	of	code	that	any

.NET	application	could	target.	The

BCL	is	a	collection	of	reusable	types

that	are	closely	integrated	with	CLR,

such	as	primitive	types,	LINQ,	and

classes	and	types	helpful	in	common

operations	such	as	I/O,	dates,

collections,	and	diagnostics.

The	BCL	is	complemented	by	a	set	of

additional	and	highly	specialized

libraries,	such	as	ADO.NET	for

database	access,	Windows	Forms	for

desktop	Windows	applications,

ASP.NET	for	web	applications,	XML,

and	a	few	others.	Over	the	years,	the

set	of	additional	libraries	has	grown	to

incorporate	giant	frameworks	such	as

Windows	Presentation	Foundation

(WPF),	Windows	Communication

Foundation	(WCF),	and	Entity

Framework	(EF).

Altogether,	BCL	and	additional

frameworks	form	the	.NET

Framework.

The	ASP.NET	Framework

The	ASP.NET	Framework

In	the	fall	of	1999,	Microsoft

started	unveiling	a	new	web

framework	slated	to	replace	Active

Server	Pages	(ASP).	In	the	first

public	demos,	the	framework	was

called	ASP+,	and	it	was	based	on	its

own	C/C++	engine,	which	then

flowed	into	the	.NET	platform

becoming	today’s	ASP.NET.

The	ASP.NET	framework	consists	of

an	extension	to	Internet	Information

Services	(IIS)	capable	of	capturing

incoming	HTTP	requests	and	running

them	through	the	ASP.NET	runtime

environment.	Within	the	runtime

environment,	the	request	is	resolved

by	finding	a	special	component	that

can	handle	that	request	and	preparing

an	HTTP	response	packet	for	the

browser.	The	runtime	environment	is

structured	like	a	pipeline:	The	request

comes	in	and	goes	through	various

stages	until	it	is	fully	processed,	and

the	response	is	written	back	to	the

output	stream.

Unlike	its	competitors,	ASP.NET

provided	a	stateful	and	event-based

programming	model	that	allowed

implicit	context	to	flow	from	one

request	to	the	other.	This	model	was

well	known	by	desktop	application

developers,	and	it	opened	the	world	of

web	programming	to	many	developers

with	limited	or	no	skills	at	all	in

HTML	and	JavaScript.	Because	of	the

thick	abstraction	layer	over	HTTP	and

HTML	initially	featured	in	ASP.NET,

it	attracted	swarms	of	Visual	Basic,

Delphi,	C/C++,	and	even	Java

programmers.

The	Web	Forms	Model

Originally,	the	ASP.NET	runtime

environment	was	devised	with	two

main	goals:

The	first	goal	was	providing	a	programming	model	that	could

shield	developers	as	much	as	possible	from	HTML	and

JavaScript.	Deeply	inspired	to	the	classic	client/server	request

model,	the	Web	Forms	model	worked	beautifully	and	created	an

ecosystem	of	free	and	commercial	server	components	offering

more	and	more	advanced	capabilities	such	as	smart	data	grids,

input	forms,	wizards,	date	pickers,	and	so	forth.

The	second	goal	was	to	aim	as	much	as	possible	at	blending

ASP.NET	and	IIS	together.	ASP.NET	was	envisioned	to	be	the

operational	wing	of	IIS,	and	not	just	a	plugin,	and	its	runtime

environment	destined	to	become	a	structural	part	of	IIS.	This

milestone	was	fully	reached	with	the	release	of	IIS	7	back	in	2008.

The	Integrated	Pipeline	mode	of	IIS	7	and	superior	is	a	working

mode	in	which	IIS	and	ASP.NET	share	the	same	pipeline.	The

path	a	request	goes	through	when	it	knocks	at	the	IIS	gate	is	just

the	path	it	would	go	through	within	ASP.NET.	ASP.NET	code	is

simply	responsible	for	processing	the	request	and	for	intercepting

and	preprocessing	any	specific	requests	it	wants.

About	2009,	the	Web	Forms

programming	model	was	paired	with

the	ASP.NET	MVC	framework,	which

was	inspired	by	a	completely	different

principle	that	represents	a	complete

turnaround	from	the	original	goal	of

ASP.NET.	In	the	Web	Forms	model,

ASP.NET	pages	produce	their	HTML

via	server	controls,	which	are	the

main	reason	for	the	success	and	rapid

adoption	of	ASP.NET.	These	server

controls	are	black-box	components

(declaratively	or	programmatically

configured)	that	generate	HTML	and

JavaScript	for	the	browser.	However,

the	developer	has	limited	control	over

the	HTML	being	generated	and

people	requirements	change	over

time.

The	ASP.NET	MVC	Model

ASP.NET	MVC	is	designed	from

the	ground	up	to	work	close	to	the

HTTP	metal;	it	doesn’t	attempt	to

hide	any	of	the	features	of	HTTP,

and	it	requires	developers	to	be

very	aware	of	the	mechanics	of

HTTP	requests	and	responses.

Ideally,	developers	using	ASP.NET

MVC	should	possess	JavaScript

and	CSS	skills.	ASP.NET	MVC	is

the	result	of	a	profound	rework	of

the	programming	model	driven	by

new	cross-cutting	requirements,

such	as	separation	of	concerns,

modularization,	and	testability.

It	was	probably	a	tough	decision,	but

ASP.NET	MVC	didn’t	get	its	own

runtime	environment	and	ended	up

being	coded	as	a	plugin	for	the

existing	ASP.NET	runtime.	This	is

good	and	bad	news	at	the	same	time.

It	is	good	news	because	you	can

handle	incoming	requests	either

through	the	Web	Forms	model	or	the

ASP.NET	MVC	model,	which	makes	it

easy	to	start	with	an	existing	Web

Forms	application	and	slowly	evolve	it

to	ASP.NET	MVC	piecemeal.	It	is	bad

news,	however,	because	very	few	of

the	structural	shortcomings	of

ASP.NET	(in	light	of	modern

requirements)	could	be	addressed.

For	example,	the	ASP.NET	MVC	team

managed	to	make	the	entire	HTTP

context	mockable	but	couldn’t	build	in

the	framework	a	full	and	canonical

dependency-injection	infrastructure.

Yet,	the	ASP.NET	MVC	programming

model	is	the	most	flexible	and

understandable	way	to	handle	web

requests	that	have	to	return	HTML

content.	Except	that	at	some	point,

with	the	explosion	of	the	mobile

space,	HTML	stopped	being	the	sole

possible	output	of	an	HTTP	request.

The	Web	API	Framework

Particularly	with	the	advent	of

devices,	a	web	endpoint	could	be

requested	to	serve	any	type	of

content	(for	example,	JSON,	XML,

images,	and	PDF)	to	any	type	of

client.	Any	piece	of	code	that	could

place	an	HTTP	request	is	a

potential	client	of	a	web	endpoint.

And,	the	scalability	level	of	certain

solutions	became	critical.

In	the	ASP.NET	space,	there	was	not

much	else	to	do	to	expand	the

infrastructure	to	play	well	in	new

scenarios:	extreme	scalability,	cloud,

and	platform	independence.	The	Web

API	framework	has	been	an	attempt

to	offer	a	temporary	solution	to	the

high	demand	of	thin	servers	capable

of	exposing	a	RESTful	interface	and

capable	of	dialoging	with	any	HTTP

client	without	any	assumptions	and

restrictions.	The	Web	API	framework

is	an	alternate	set	of	classes	to	create

HTTP	endpoints	designed	to	be	only

aware	of	the	full	HTTP	syntax	and

semantics.	The	Web	API	framework

offers	a	programming	interface	nearly

identical	to	ASP.NET	MVC;	it	includes

controllers,	routing,	and	model

binding	but	runs	them	within	a

brand-new	runtime	environment.

With	the	ASP.NET	Web	API,	the	point

of	creating	a	web	framework

decoupled	from	the	web	server	started

taking	root,	and	this	led	to	the

definition	of	the	Open	Web	Interface

for	.NET	standard	(OWIN).	OWIN	is	a

specification	that	sets	the	rules	for	a

web	server	and	a	web	application	to

interoperate.	With	OWIN,	the	second

original	goal	of	ASP.NET—strong	and

tight	coupling	between	web	host	and

web	application—was	dismissed	as

obsolete.

Web	API	has	the	potential	to	be

hosted	in	any	application	that

complies	with	the	OWIN	standard.

However,	to	be	usable,	Web	API	must

be	hosted	under	IIS,	which	requires

an	ASP.NET	application.	The	use	of

Web	API	within	an	ASP.NET

application,	whether	Web	Forms	or

MVC,	just	increases	the	memory

footprint	of	the	application	because

two	runtime	environments	are	used.

The	Need	for	Super-Simple	Web	Services

The	Need	for	Super-Simple	Web	Services

Another	significant	change	in	the

software	industry	landscape	that

happened	in	recent	years	is	the

need	for	minimal,	super-simple

web	services—just	a	thin	web	server

layer	around	a	piece	of	business

logic.

A	minimal	web	server	is	an	HTTP

endpoint	that	can	be	called	by	a	client

to	get	extremely	basic,	mostly	text-

based	content.	Such	a	web	server	does

not	need	to	run	a	sophisticated	and

customizable	pipeline.	All	it	needs	is

to	receive	the	HTTP	request,	process

it	as	appropriate,	and	return	an	HTTP

response.	All	this	should	happen

without	any	overhead	or	just	with	the

overhead	required	by	the	context.	The

use	of	client-side	programming

models	(such	as	Angular)	just	fuels

the	need	for	such	web	services.

ASP.NET	and	all	its	runtime

environments	are	just	not	designed

for	similar	scenarios.	While	the

ASP.NET	runtime	(which	supports

both	Web	Forms	and	MVC

applications)	is	to	some	extent

customizable	(disable	session,	output

caching,	and	even	authentication)	it

doesn’t	reach	the	level	of	granularity

and	control	that	some	business

scenarios	require	these	days.	As	an

example,	it	is	nearly	impossible	to

turn	ASP.NET	into	an	effective	static

file	server.

.NET	FIFTEEN	YEARS	LATER

.NET	FIFTEEN	YEARS	LATER

Fifteen	years	is	quite	a	long	time

for	any	software,	and	the	.NET

Framework	is	no	exception.

ASP.NET	was	devised	in	the	late

1990s,	and	the	web	evolved	very

quickly.	In	about	2014,	the

ASP.NET	team	started	making

plans	for	a	new	ASP.NET	and

designed	a	brand-new	runtime

environment	following	the	OWIN

specification	quite	closely.

Removing	any	dependencies	upon	the

old	ASP.NET	runtime—symbolized	by

the	system.web	assembly—has	been

the	primary	goal	of	the	team.

However,	another	crucial	objective	of

the	team	was	to	give	developers	full

control	over	the	pipeline	so	that

building	both	a	minimal	web	service

and	a	full	website	could	be	possible.

In	doing	so,	the	team	faced	another

nontrivial	problem:	to	ensure

throughput	and	make	any	solution

cloud-effective	in	terms	of	costs:	the

footprint	of	the	application	had	to	be

drastically	reduced.	Also,	the	.NET

Framework	then	had	to	undergo	a

special	treatment	to	lose	weight.

The	guidelines	for	the	new	ASP.NET

can	be	summarized	as	below:

Making	ASP.NET	able	to	access	both	the	full	existing	.NET

Framework	and	a	shrink-wrapped	version	of	it	devoid	of	all	little-

used—and	little	useful—dependencies	to	web	developers.

Decoupling	the	new	ASP.NET	environment	from	the	host	web

server.

However,	once	this	plan	was

implemented,	a	bunch	of	other	issues

and	opportunities	came	along.	And

they	were	too	appealing	to	let	them

pass.

A	More	Compact	.NET	Framework

A	More	Compact	.NET	Framework

The	new	ASP.NET	was	designed

side	by	side	with	a	new	.NET

Framework	that	in	the	end	was

named	.NET	Core	Framework.	The

new	framework	can	be	seen	as	a

subset	of	original	.NET	Framework

specifically	designed	to	be	more

granular,	compact	and,	more

importantly,	cross-platform.	This

design	goal	was	achieved	in	two

ways:	dropping	some

functionalities	and	rewriting	other

functionalities	to	improve

effectiveness	in	some	cases	and	to

make	up	for	existing	dependencies

on	dropped	functionalities.

The	.NET	Core	Framework	was

primarily	designed	to	work	with

ASP.NET	applications.	This	was	the

ultimate	vector	that	guided	the	choice

of	which	libraries	to	include	in	the

library	and	which	to	drop.	The	.NET

Core	Framework	comes	with	a	new

runtime	for	application	execution

called	CoreCLR.	The	CoreCLR	follows

the	same	layout	and	architecture	of

the	current	.NET	CLR	and	does	things

like	loading	the	IL	code,	compiling	to

machine-level	code,	and	collecting

garbage.	The	CoreCLR	doesn’t

support	some	features	of	the	current

CLR,	such	as	application	domains	and

code	access	security,	that	proved

unnecessary	or	too	specific	for	the

Windows	platform	and	then	hard	to

port	out	to	the	other	platform.

Furthermore,	the	set	of	class	libraries

in	the	.NET	Core	Framework	is

articulated	in	packages,	and	packages

have	a	very	fine	granularity	and	are

much	smaller	than	the	current	.NET

Framework.

The	entire	.NET	Core	platform	is	fully

open	source.	Links	to	repositories	are

shown	Table	1-1.

TABLE	1-1	Github	links	to	.NET	Core

source	code

Pla

tfor

m

Descripti

on

Link

Cor

eCL

R

CLR	and	

related	

tools

http://github.com/dotnet/coreclr	

(http://github.com/dotnet/coreclr)

Cor

eFX

.NET	Core	

Framework

http://github.com/dotnet/corefx	

(http://github.com/dotnet/corefx)

In	a	nutshell,	the	differences	between

the	full	.NET	Framework	and	the

.NET	Core	Framework	can	be

summarized	in	the	following	points:

The	.NET	Core	Framework	is	more	compact	and	modular.

The	.NET	Core	Framework	(and	related	tools)	is	open	source.

The	.NET	Core	Framework	cannot	be	used	to	write	anything	other

than	ASP.NET	and	console	applications.

The	.NET	Core	Framework	can	be	deployed	side	by	side	with	the

application,	whereas	the	full	.NET	Framework	can	only	be

installed	on	the	target	machine	and	shared	by	all	applications.	As

you	can	see,	this	poses	a	nontrivial	issue	of	versioning.

Once	devoid	of	platform

dependencies,	a	new	and	more

compact	.NET	framework	is	also	code

that	could	be	adapted	to	work	on	a

variety	of	alternative	operating

systems.	This	makes	for	another	huge

difference	between	the	.NET	Core

Framework	and	the	existing	.NET

Framework.	The	.NET	Core

Framework	can	be	used	to	write

cross-platform	applications	that	also

run	on	Linux	and	Mac	operating

systems.

	Note	With	the	release	of	.NET	Core	2.0,	the	functional	gap
between	the	full	.NET	Framework	and	the	.NET	Core	Framework	is	reducing
because	more	classes	and	namespaces	have	been	ported	to	the	Core
Framework	(System.Drawing	and	data-table	classes,	for	example).	However,
considering	the	.NET	Core	Framework	to	be	a	copy	of	the	full	.NET
Framework	is	a	mistake.	It’s	another	framework	redesigned	from	scratch	that
looks	very	similar	and	works	in	a	cross-platform	way.

Decoupling	ASP.NET	from	the	Host

Decoupling	ASP.NET	from	the	Host

To	address	the	requirement	of	a

web	application	model	that	could

be	used	to	write	both	minimal	web

services	and	full	websites,

decoupling	ASP.NET	from	IIS

proved	to	be	a	necessary	step.	The

entire	OWIN	philosophy	(see

http://owin.org	(http://owin.org))	is

about

Separating	the	functions	of	the	web	server	from	the	functions	of

the	web	application.

Encouraging	the	development	of	simpler	modules	for	.NET	web

development	that	when	composed	together	can	reach	the	full

horsepower	of	a	real-world	web	site.

Figure	1-1	shows	the	overall

architecture	found	in	OWIN.

FIGURE	1-1	The	open	web	interface	architecture

With	an	OWIN-based	architecture	in

place,	the	host	web	server	is	no	longer

forced	to	be	IIS.	Also,	the	host

interface	can	be	implemented	by	a

console	application	or	a	Windows

service.	However,	beyond	these

limited	scenarios,	the	true	power	of	a

web	application	model	inspired	by	the

OWIN	open	interface	is	that	the	same

application	can	be	hosted	on	any

compliant	web	server,	regardless	of

the	system	platform.

HTTP	is	a	platform	agnostic	protocol,

and	the	moment	a	new	version	of	the

.NET	Framework	is	built	without	tight

dependencies	on	a	specific	platform

like	Windows,	then	building	a	web

application	model	that	works	in	a

cross-platform	manner	becomes,

suddenly,	a	realistic	and	quite

appealing	project.

	Important	Back	in	2008	when	IIS	started	supporting	the
Integrated	Pipeline	mode,	Microsoft’s	vision	of	the	web	was	totally	different
from	today’s	vision.	And	to	some	extent,	the	world	was	different.	Per	the
Integrated	Pipeline	vision,	IIS	and	ASP.NET	had	to	work	together	and	look
like	a	unified	engine.	The	model	built	for	the	new	ASP.NET	overturns	the
Integrated	Pipeline	vision,	which	says	that	ASP.NET	is	a	standalone
environment	and	could	be	hosted	behind	any	web	server.	This	model	says

this	standalone	environment	could	even	work—in	some	situations—when
directly	exposed	to	the	public.

The	New	ASP.NET	Core

ASP.NET	Core	is	a	new	framework

for	building	a	variety	of	Internet-

based	applications,	most	notably

(though	not	limited	to)	web

applications.	In	fact,	special	flavors

of	web	applications	can	be

considered	IoT-embedded	servers

and	web-exposed	services,	such	as

the	back	end	of	a	mobile

application.

ASP.NET	Core	applications	can	be

written	to	target	the	.NET	Core

Framework	or	the	existing	full	.NET

Framework.	ASP.NET	was	designed

to	be	cross-platform	so	that

developers	can	create	applications

that	run	on	Windows,	Mac,	and

Linux.	ASP.NET	Core	consists	of	an

embedded	web	server	and	a	runtime

environment	that	runs	the	application

code.	The	application	code	is	written

using	a	slightly	reworked	ASP.NET

MVC	framework	and	relies	on	a

collection	of	system	modules	designed

to	be	extremely	small,	which	provides

more	opportunity	to	build

applications	that	require	minimal

overhead	to	run.	Figure	1-2	presents

the	overall	architecture	of	ASP.NET

Core.

	Note	A	web	server,	such	as	IIS	or	Apache,	is	not	strictly
required	because	the	embedded	web	server	(Kestrel)	can	be	exposed
directly.	Your	need	for	a	separate	web	server	mostly	depends	on	whether
Kestrel	serves	your	needs.

FIGURE	1-2	The	overall	architecture	of	ASP.NET
Core

The	new	ASP.NET	relies	on	the	tools

of	the	.NET	Core	SDK	to	build	and

run	applications.	We’ll	learn	more

about	the	.NET	SDK	and	the

command-line	tools	in	the	next

section.	I’ll	cover	the	ASP.NET	Core

runtime	in	depth	in	Chapter	14,	“The

ASP.NET	Core	Runtime

Environment.”

.NET	CORE	COMMAND-LINE
TOOLS

In	.NET	Core,	the	entire	set	of

fundamental	development	tools—

those	used	to	build,	test,	run,	and

publish	applications—is	also

available	as	command-line

applications.	Together,	such

applications	are	referred	to	as	the

.NET	Core	Command-line	Interface

(CLI).

Installing	CLI	Tools

CLI	tools	are	available	for	all

development	and	deployment

platforms	that	.NET	Core

applications	can	target.	They

usually	come	with	the	install

package	tailor-made	for	the

platform,	such	as	RPM	or	DEB

packages	on	Linux	and	MSI

packages	on	Windows.	Once	you’ve

run	the	installer,	CLI	tools	are

safely	stored	in	a	globally	accessible

location	on	the	disk.	Figure	1-3

shows	the	folder	of	CLI	tools	on	a

Windows	computer.

FIGURE	1-3	Installed	CLI	tools

Notice	that	you	can	have	multiple

versions	of	CLI	tools	running	side	by

side.	When	multiple	versions	are

installed,	then	by	default	the	most

recent	runs.

The	dotnet	Driver	Tool

The	dotnet	Driver	Tool

The	CLI	is	generally	referred	to	as	a

collection	of	tools,	but	instead,	it	is

a	collection	of	commands	run	by	a

host	tool	known	as	the	driver.	This

tool	is	dotnet.exe	(see	Figure	1-3).

Any	command-line	instruction

takes	the	following	form:

Click	here	to	view	code	image

dotnet	[host-options]	[command]	[arguments]	[common-options]

The	[command]	placeholder	refers	to

the	command	to	execute	within	the

driver	tool	whereas	[arguments]

refers	to	the	arguments	being	passed

to	the	command.	Host	and	common

options	are	detailed	below.

When	multiple	versions	of	the	CLI	are

installed,	and	you	don’t	want	to	run

the	latest,	then	you	create	a

global.json	file	in	the	same	folder	of

the	application	and	ensure	it	contains

at	least	the	following:

{

		"sdk":	{

				"version":	"2.0.0"

		}

}

The	value	of	the	version	property

determines	the	version	of	the	CLI

tooling	to	use.

	Note	This	version	of	the	CLI	tooling	is	not	the	same	as
the	version	of	the	.NET	Core	runtime	the	application	will	use.	The	runtime
version	is	specified	in	the	project	file,	and	you	can	comfortably	edit	it	from
within	the	user	interface	of	the	IDE	of	your	choice.	If	you	want,	instead,	to	edit
the	project	file	manually,	then	it	is	as	easy	as	editing	the	.csproj	XML	file	and
changing	the	value	of	the	TargetFramework	element.	The	value	refers	to	the
moniker	that	identifies	the	version	(such	as	netcoreapp2.0).

Host	Options

Host	Options

On	the	command	line	of	the	dotnet

tool,	host	options	are	passed	before

the	command	moniker	and	refer	to

the	configuration	of	the	dotnet	tool.

There	are	three	supported	values	to

get	general	information	about	the

tooling	and	the	runtime

environment,	to	get	the	version

number	of	the	CLI,	and	to	enable

diagnostics.	(See	Table	1-2.)

TABLE	1-2	Host	options	of	CLI

Platform Description

-d	or	--

diagnostic

s

Enables	diagnostic	output

--info Displays	information	about	the	runtime	

environment	and	the	.NET	CLI

--version Displays	the	.NET	CLI	version	number

Common	Options

The	common	CLI	options	in	Table

1-3	refer	to	options	common	to	all

commands,	such	getting	help	or

enabling	verbose	output.

TABLE	1-3	Common	options	of	CLI

Platform Description

-v	or	--

verbose

Enables	verbose	output

-h	or	--help Shows	general	help	about	how	to	use	a	

dotnet	tool

Predefined	dotnet	Commands

Predefined	dotnet	Commands

By	default,	installing	the	CLI	tools

makes	available	the	commands

listed	in	Table	1-4.	Note	that	the

order	commands	appear	in	the

table	attempts	to	resemble	a

realistic	order	of	use.

TABLE	1-4	Usual	CLI	commands

C

o

m

m

a

n

d

Description

ne

w

Creates	a	new	.NET	Core	application	starting	from	one	

of	the	available	templates.	Default	templates	include	

console	applications	as	well	as	ASP.NET	MVC	

applications,	test	projects,	and	class	libraries.	

Additional	options	let	you	indicate	the	target	language	

and	the	name	of	the	project.

re

st

or

e

Restores	all	the	dependencies	of	the	project.	

Dependencies	are	read	from	the	project	file	and	

restored	as	NuGet	packages	consumed	from	a	

configured	feed.

b

ui

ld

Builds	the	project	and	all	its	dependencies.	Parameters	

for	the	compilers	(such	as	whether	to	build	a	library	or	

an	application)	should	be	specified	in	the	project	file.

ru

n

Compiles	the	source	code	if	required,	generates	an	

executable	and	runs	it.	It	relies	on	the	command	build	

for	the	first	step.

te

st

Runs	unit	tests	in	the	project	using	the	configured	test	

runner.	Unit	tests	are	class	libraries	with	a	dependency	

on	a	particular	unit	test	framework	and	its	runner	

application.

p

u

bl

is

h

Compiles	the	application	if	required,	reads	the	list	of	

dependencies	from	the	project	file	and	then	publishes	

the	resulting	set	of	files	to	an	output	directory.

pa

ck

Creates	a	NuGet	package	out	of	the	project	binaries.

m

ig

ra

te

Migrates	an	old	project.json-based	project	to	a	

msbuild-based	project.

cl

ea

n

Cleans	the	output	folder	of	the	project.

To	learn	more	about	the	detailed	way

to	invoke	any	of	the	above	commands,

you	can	type	the	following	from	the

command	line:

dotnet	<command>	--help

More	commands	can	be	added	by

referencing	portable	console

applications	within	the	project	or

globally	by	copying	the	executable	in	a

directory	associated	to	the	PATH

environment	variable.

SUMMARY

The	.NET	platform	has	been

around	for	more	than	fifteen	years,

and	in	all	this	time,	it	has	attracted

a	lot	of	investment	and	has	become

very	popular.	The	world,	however,

is	in	continuous	change	and	the

famous	quote	from	the	novel,	“The

Leopard,”	by	Giuseppe	Tomasi	di

Lampedusa	at	the	beginning	of	this

chapter—”If	we	want	things	to	stay

as	they	are,	things	will	have	to

change”—says	it	all.	So,	the	original

.NET	platform,	centered	around	a

single,	comprehensive	class	library

and	a	few	application	models

(ASP.NET,	Windows	Forms,	and

WPF),	is	now	undergoing	a

significant	redesign.	I	said

“undergoing”	here	because	the

redesign,	which	started	in	2014,

reached	a	first	firm	milestone	with

version	2.0,	but	it	will	definitely

continue	in	the	future.

Business-wise,	you	might	or	might	not

feel	the	rush	to	embrace	the	new

platform	yet,	but	I	believe	the	new

platform	will	become	the	way	to	go

(and	migrate	to)	in	no	more	than	a

couple	of	years.	The	highlights	of	the

new	platform	are	its	extreme

modularity	and	cross-platform	nature.

Any	code	you	write	targeting	.NET

Core	will	also	run	on	Linux,	Mac,	or

Windows,	albeit	with	different

runtimes.	Because	of	the	strong

orientation	to	cross-platform

development,	all	the	core	tools	to

operate	the	platform	(building,

running,	testing,	and	publishing)	are

exposed	as	command-line	tools	on

which	IDEs	can	build.	The	command-

line	interface	of	.NET	Core	goes	under

the	name	of	CLI	tools.

In	the	next	chapter,	we	start	focusing

on	the	core	topic	of	this	book—

ASP.NET	and	web	development.

—George	Orwell,	“Animal	Farm”

CHAPTER	2

The	First	ASP.NET	Core
Project
All	animals	are	equal	but	some

animals	are	more	equal	than	others.

ASP.NET	Core	is	the	web-oriented

application	model	that	works	on	top

of	the	.NET	Core	platform.	Although

the	name	of	the	application	model

contains	the	old	familiar	ASP.NET

moniker,	nothing	in	ASP.NET	Core	is

really	the	same	as	in	the	preceding

version	of	ASP.NET.	First	and

foremost,	ASP.NET	Core	has	a	brand-

new	runtime	environment	that

supports	a	single	application	model—

ASP.NET	MVC.	This	means	that	the

new	web	framework	has	nothing	like

Web	Forms	and	even	nothing	exactly

like	Web	API.	Everything	is	brand

new,	and	a	bit	of	code	and	skills	reuse

is	only	possible	in	the	realm	of	the

ASP.NET	MVC	programming	model—

controllers,	views,	and	routes.

	Important	In	this	chapter	and	in	the	rest	of	the	book,	we’ll
make	references	to	features	and	implementation	aspects	of	non-.NET	Core
ASP.NET	(including	Web	Forms,	ASP.NET	MVC,	and	Web	API),	and	compare
them	to	features	of	ASP.NET	Core.	To	avoid	misunderstandings,	we’ll	use	the
term	classic	ASP.NET	to	refer	to	any	application	model	of	ASP.NET	available
before	ASP.NET	Core.

ANATOMY	OF	AN	ASP.NET	CORE

ANATOMY	OF	AN	ASP.NET	CORE
PROJECT

There	are	a	few	options	to	create	a

new	ASP.NET	Core	project.	First,

you	can	use	one	of	the	canonical

project	templates	available	in	your

version	of	Visual	Studio.

Alternatively,	you	can	use	the	New

command	in	the	CLI	tool.	If	you

opt	for	another	IDE,	such	as

JetBrains’s	Rider,	then	you	have	a

bunch	of	other	ASP.NET	project

templates	from	which	to	choose.

Finally,	if	you	just	want	files

generated	to	arrange	in	a	project

under	your	total	control,	then	the

best	option	is	probably	the

ASP.NET	generator	in	Yeoman.

Yeoman	is	a	language-agnostic	project

generator	that,	when	properly

configured,	can	generate	all	the	files

that	make	up	the	skeleton	of	a	web

application,	including	ASP.NET	Core

applications.	(For	more	information,

see	http://yeoman.io/learning

(http://yeoman.io/learning).)

	Note	The	project	files	you	get	using	Visual	Studio,	Rider,	CLI
tools,	and	Yeoman	are	slightly	different.	Visual	Studio	offers	two	options—a
barebone	project	and	a	full	project	with	membership	and	Bootstrap.	The	New
command	in	the	CLI	tool	also	generates	a	rich	ASP.NET	project.	The	default
ASP.NET	Core	application	from	Rider	is	something	in	between	an	empty
project	and	a	fully	configured	project	devoid	of	application	logic.	Yeoman	is
probably	the	most	flexible	generator	as	it	offers	a	few	options	from	which	you
can	choose.

Structure	of	the	Project

As	you	can	see	in	Figure	2-1,	Visual

Studio	comes	with	predefined

templates	to	create	classic

non-.NET	Core	Web	applications

that	target	the	full	.NET

Framework	as	well	as	ASP.NET

Core	applications.	The	option

highlighted	in	the	figure—ASP.NET

Core	Web	Application	(.NET	Core)

—instead	creates	an	ASP.NET	Core

application	targeting	the	.NET	Core

framework.

FIGURE	2-1	Creating	a	new	ASP.NET	Core	project	in	Visual	Studio

The	next	step	in	the	wizard	requires

you	to	specify	the	amount	of	code	you

want	to	be	generated	for	the	first	run

of	the	application.	Overall,	I	believe

that	at	least	for	learning	purposes	the

best	approach	is	starting	with	a

barebone	but	functioning	project.	In

this	regard,	the	Empty	option	of

Visual	Studio	is	the	ideal	option,	as

shown	in	Figure	2-2.

FIGURE	2-2	Selecting	an	empty	project

Once	you	confirm	the	selection,	Visual

Studio	creates	a	few	files	and

configures	a	new	project.	At	this

point,	you’re	ready	to	inspect	the	files

and	try	to	build	them	into	an

executable.

A	First	Look	at	the	Empty	Project

The	content	of	the	solution	might

trigger	different	reactions

depending	on	your	developer

background.	As	a	former	ASP.NET

developer,	for	example,	you’ll

typically	notice	an	unusual

wwwroot	project	folder	and	the

lack	of	one	of	the	fundamental	files

of	the	past	ASP.NET:	global.asax.

The	other	crucial	file	of	the	past

ASP.NET	configuration—the

web.config	file—is	still	there,	but

its	content	differs	significantly	from

expectations.	(See	Figure	2-3.)

FIGURE	2-3	The	content	of	solution	explorer	for	an	empty	project

As	Figure	2-3	shows,	the	solution

includes	two	new	files:	startup.cs	and

program.cs.	Having	startup.cs

available	might	not	be	a	complete

surprise	if	you’ve	practiced	a	bit	with

OWIN-based	frameworks	such	as

Web	API	or	ASP.NET	SignalR.

However,	having	program.cs	in	a	web

application	might	also	be	a	shock.	A

console	program	file	in	a	web

application?	How	is	that	possible?

Well,	it’s	all	about	the	new	runtime

infrastructure	that	hosts	and	runs

ASP.NET	Core	applications.	Let’s	find

out	more	about	the	new	entries	of	a

barebone	ASP.NET	Core	project.

Purpose	of	the	wwwroot	Folder

As	far	as	static	files	are	concerned,

the	ASP.NET	Core	runtime

distinguishes	between	the	content

root	folder	and	the	web	root	folder.

The	content	root	is	generally	the

current	directory	of	the	project,	and	in

production,	it	is	the	root	folder	of

deployment.	It	represents	the	base

path	for	any	file	search	and	access

that	might	be	required	by	the	code.

Instead,	the	web	root	is	the	base	path

for	any	static	files	that	the	application

might	serve	to	web	clients.	Generally,

the	web	root	folder	is	a	child	folder	of

the	content	root	and	is	named

wwwroot.

The	interesting	thing	is	that	the	web

root	folder	must	be	created	on	the

production	machine,	but	it	is

completely	transparent	to	client

browsers	requesting	static	files.	In

other	words,	if	you	have	an	images

subfolder	below	wwwroot	with	a	file

named	banner.jpg,	then	the	valid

URL	to	grab	the	banner	is	the

following:

/images/banner.jpg

However,	the	physical	image	file	must

go	under	wwwroot	on	the	server;

otherwise,	it	won’t	be	retrieved.	The

location	of	both	root	folders	may	be

changed	programmatically	in	the

program.cs	file.	(More	on	this	in	a

moment.)

	Note	A	clear,	system-level	distinction	between	content	root
and	web	root	doesn’t	exist	in	classic	ASP.NET.	In	classic	ASP.NET,	the
content	root	is	automatically	defined	to	be	the	root	folder	where	the
application	is	installed.	Having	a	clearly	identified	web	root	folder,	however,	is
a	good	practice	that	most	teams	have	implemented,	and	it	has	been	turned
into	a	system	feature	in	ASP.NET	Core.	Personally,	I	tend	to	call	my	web	root
folder	Content,	but	I	see	that	many	others	like	to	call	it	Assets.	At	any	rate,	in
classic	ASP.NET,	the	definition	of	the	web	root	folder	is	virtual,	and	the	folder
must	be	included	in	any	URL	that	points	to	a	static	file	stored	inside.

Purpose	of	the	Program	File

As	weird	as	it	may	sound,	an

ASP.NET	Core	application	is

nothing	more	than	a	console

application	launched	by	the	dotnet

driver	tool	we	already	met	in

Chapter	1.	The	source	code	of	the

(required)	console	application	is	in

the	program.cs	file.	The	role	of	the

console	application	is	well

illustrated	in	Figure	2-4.

FIGURE	2-4	Bird’s	eye	view	of	how	an	ASP.NET	Core	application

works

The	web	server	(IIS,	for	example)

communicates	with	a	fully	decoupled

executable	over	a	configured	port	and

forwards	the	incoming	request	to	the

console	application.	The	console

application	is	spawned	from	the	IIS

process	space,	care	of	a	required

HTTP	module	that	enables	IIS	to

support	ASP.NET	Core.	Analogous

extension	modules	are	required	to

host	ASP.NET	Core	applications	on

other	Web	servers	such	as	Apache	or

NGINX.

	Important	It	is	interesting	to	note	that	the	ASP.NET	Core
architecture	depicted	in	Figure	2-4	has	some	analogy	to	the	original
architecture	linking	ASP.NET	1.x	and	IIS	back	in	2003.	At	that	time,	ASP.NET
had	its	own	worker	process	communicating	with	IIS	through	named	pipes.
Later,	the	tasks	of	the	ASP.NET	worker	process	have	been	absorbed	by	the
built-in	IIS	worker	process	(w3wp.exe),	creating	the	concept	of	application
pools.	In	ASP.NET	Core	two	independent,	unrelated	and	fully	decoupled
executables	communicate,	but	the	ASP.NET	executable	is	not	a	multi-tenant
worker	process.	It	is	simply	an	instance	of	the	application	that	hosts	a	basic
async	web	server	to	process	incoming	requests.

Internally,	the	console	application	is

built	around	the	following	few	lines	of

code	taken	from	the	program.cs	file.

Click	here	to	view	code	image

public	static	void	Main(string[]	args)

{

	var	host	=	new	WebHostBuilder()

				.UseKestrel()

					.UseContentRoot(Directory.GetCurrentDirectory())

					.UseIISIntegration()

					.UseStartup<Startup>()

					.Build();

		host.Run();

}

An	ASP.NET	Core	application

requires	a	host	in	which	to	execute.

The	host	is	responsible	for	the

application	startup	and	lifetime

management.	WebHostBuilder	is	the

class	responsible	for	building	a	fully

configured	instance	of	a	valid

ASP.NET	Core	host.	Table	2-1	briefly

explains	the	tasks	performed	by	the

methods	invoked	in	the	code	snippet

above.

TABLE	2-1	Extension	methods	for

the	ASP.NET	Core	host

M

et

h

o

d

Effect

U

se

K

es

tr

el

Instructs	the	host	about	the	embedded	web	server	to	

use.	The	embedded	web	server	is	responsible	for	

accepting	and	processing	HTTP	requests	in	the	context	

of	the	host.	Kestrel	is	the	name	of	the	default	cross-

platform	ASP.NET	embedded	web	server.

U

se

C

o

nt

en

tR

oo

t

Instructs	the	host	about	the	location	of	the	content	root	

folder.

U

se

II

SI

nt

eg

ra

ti

o

n

Instructs	the	host	about	using	IIS	as	the	reverse	proxy	

that	will	grab	requests	from	the	public	Internet	and	

pass	them	on	to	the	embedded	server.

Note	that	for	an	ASP.NET	Core	application	having	a	

reverse	proxy	might	be	recommended	for	security	and	

traffic	reasons	but	it	is	not	necessary	at	all	from	a	

purely	functional	point	of	view.

U

se

St

ar

tu

p

<

T

>

Instructs	the	host	about	the	type	that	contains	

initialization	settings	for	the	application.

B

ui

ld

Builds	an	instance	of	the	ASP.NET	Core	host	type.

The	WebHostBuilder	class	has	quite	a

few	extension	methods	that	would	let

you	further	customize	the	behavior.

Also,	ASP.NET	Core	2.0	offers	a

simpler	way	to	build	the	web	host

instance.	By	using	a	“default”	builder,

a	single	call	can	return	a	freshly

created	instance	of	the	web	host.

Here’s	how	the	program.cs	file	can	be

rewritten.

Click	here	to	view	code	image

public	class	Program

{

		public	static	void	Main(string[]	args)

		{

						BuildWebHostInstance(args).Run();

		}

		public	static	IWebHost	BuildWebHostInstance(string[]	args)	=>

						WebHost.CreateDefaultBuilder(args)

										.UseStartup<Startup>()

										.Build();

}

The	static	method

CreateDefaultBuilder	does	all	the

work	for	you	and	adds	Kestrel,	IIS

configuration,	and	the	content	root	as

well	as	other	options,	such	as	logging

providers	and	configuration	data	that

up	until	ASP.NET	Core	1.1	could	only

be	added	in	the	startup	class.	The	best

way	to	make	sense	of	the	things	that

the	CreateDefaultBuilder	method

does	for	you	is	taking	a	look	at	its

source	code:

http://github.com/aspnet/MetaPack

ages/blob/dev/src/Microsoft.AspNet

Core/WebHost.cs#L150

(http://github.com/aspnet/MetaPackages/blob

/dev/src/Microsoft.AspNetCore/WebHost.cs#L1

50).

Purpose	of	the	Startup	File

The	startup.cs	file	contains	the

class	designated	to	configure	the

request	pipeline	that	handles	all

requests	made	to	the	application.

The	class	contains	at	least	a	couple

of	methods	that	the	host	will	call

back	during	the	initialization	of	the

application.	The	first	method	is

called	ConfigureServices	and	is

used	to	add	in	the	dependency

injection	mechanism	services	that

the	application	expects	to	use.	The

ConfigureServices	is	optional	to

have	in	a	startup	class,	but	having

one	is	necessary	in	most	realistic

scenarios.

The	second	method	is	called

Configure	and,	as	its	name	suggests,

serves	the	purpose	of	configuring

previously	requested	services.	For

example,	if	you	declared	your

intention	to	use	the	ASP.NET	MVC

service	in	the	method

ConfigureServices,	then	in	Configure

you	can	specify	the	list	of	valid	routes

you	intend	to	handle	by	calling	the

UseMvc	method	on	the	provided

IApplicationBuilder	parameter.	The

Configure	method	is	required.	Note

that	the	startup	class	is	not	expected

to	implement	any	interface	or	inherit

from	any	base	class.	Both	Configure

and	ConfigureServices,	in	fact,	are

discovered	and	invoked	via	reflection.

	Note	As	weird	as	it	may	sound,	ASP.NET	Core	allows	you	to
write	web	applications	but	not	necessarily	ASP.NET	MVC	applications	with
controllers,	views,	and	routes.	Hence,	if	you	intend	to	write	a	canonical
ASP.NET	MVC,	you	must	first	request	MVC-specific	services.

In	a	way,	the	operations	you	perform

in	the	folds	of	the	startup	class	recall

closely	the	operations	that,	in	classic

ASP.NET,	you	would	have	coded	in

the	Application_Start	method	of

global.asax	and	in	some	sections	of

the	web.config	file.

Note	that	the	name	of	the	startup

class	is	not	set	in	stone.	The	name

Startup	is	a	reasonable	choice,	but

you	can	change	it	to	your	liking.

Needless	to	say,	if	you	rename	the

startup	class,	then	you	must	pass	in

the	right	type	in	the	call	to

UseStartup<T>.	Also,	notice	that	the

UseStartup	extension	method	offers	a

few	additional	overloads	for	you	to

indicate	the	startup	class.	For

example,	you	can	pass	its	name	as	a

class-assembly	string	or	as	a	Type

object	as	follows.

Click	here	to	view	code	image

//	Using	a	non-conventional	and	nostalgic	name	

//	for	the	startup	class	(GlobalAsax)

//	...

var	host	=	new	WebHostBuilder()

									.UseKestrel()

									.UseContentRoot(Directory.GetCurrentDirectory())

									.UseIISIntegration()

									.UseStartup<GlobalAsax>()

									.Build();

	Important	As	previously	mentioned,	we’re	only	scratching
the	surface	of	the	ASP.NET	runtime	and	hosting	environment	in	this	chapter.
The	purpose	is	to	go	straight	to	the	substance	of	how	to	build	applications
and	how	to	make	them	behave	as	expected.	However,	an	insightful	look	at
the	ASP.NET	Core	runtime	environment	is	necessary	to	comprehend	the
potential	of	the	platform	and	the	best	ways	to	use	it,	even	on	different
operating	systems.	Hence,	a	tour	of	the	ASP.NET	system	is	in	order	and	will
take	place	in	Chapter	14,	“The	ASP.NET	Core	Runtime	Environment.”

Interacting	with	the	Runtime
Environment

All	ASP.NET	Core	applications	are

hosted	in	a	runtime	environment,

and	they	consume	a	few	available

services.	The	great	news	is	that	the

number	and	quality	of	these

services	is	entirely	up	to	the

development	team.	You	don’t	get

any	services	that	you	don’t	want.

Also,	you	must	declare	explicitly	all

the	services	you	need	to	have	up

and	running	for	the	application	to

work.

	Note	A	mistake	that	I	made	quite	often	in	my	early	days	with
the	ASP.NET	Core	platform	was	forgetting	to	require	the	static-files	service
with	the	subsequent	refusal	of	the	system	to	serve	any	images	or	JavaScript
files,	even	when	they	were	regularly	deployed	under	the	web	root	folder.

Next,	you’ll	learn	more	about	the

interaction	that	takes	place	between

the	application	and	the	hosting

environment.

Resolving	the	Startup	Type

One	of	the	first	tasks	the	host	takes

on	is	resolving	the	startup	type.

You	explicitly	indicate	a	startup

type	of	any	name	either	through

the	UseStartup<T>	generic

extension	method	or	by	passing	it

as	a	parameter	to	the	nongeneric

version	.	It	is	also	possible	to	pass

the	name	of	a	referenced	assembly

that	contains	a	Startup	type.

The	conventional	name	of	the	startup

class	is	Startup,	and	you	can

definitely	change	it	to	your	liking.

However,	if	you	maintain	the

conventional	name,	you	get	a	few

extra	benefits.	In	particular,	you	can

have	multiple	startup	classes

configured	in	the	application,	one	per

development	environment.	You	can

have	a	startup	class	to	use	in

development	and	others	to	use	in	the

staging	or	production	environments.

Furthermore,	you	can	also	define

custom	development	environments	if

you	like.

Let’s	say	that	you	have	a	couple	of

classes	in	your	project	named

StartupDevelopment	and

StartupProduction,	and	you	use	the

following	code	to	create	the	host:

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

				.UseKestrel()

				.UseContentRoot(Directory.GetCurrentDirectory())

				.UseIISIntegration()

				.UseStartup(Assembly.GetEntryAssembly().GetName().Name)

				.Build();

You’re	now	telling	the	host	to	resolve

the	startup	class	from	the	current

assembly.	In	this	case,	the	host

attempts	to	find	a	loadable	class	that

matches	the	following	pattern:

StartupXXX	where	XXX	is	the	name

of	the	current	hosting	environment.

By	default,	the	hosting	environment	is

set	to	Production	but	can	be	changed

to	any	string	you	like.	For	example,	it

could	be	Staging	or	Development	or

whatever	else	that	makes	sense	for

you.	If	the	hosting	environment	is	not

set,	then	the	system	will	simply	try	to

locate	a	plain	Startup	class	and

throws	an	error	if	it	fails.

In	a	nutshell,	you	can	defnitely

rename	the	startup	class	but,	more

realistically,	you	might	want	the	host

to	resolve	the	class	based	on	the

current	hosting	environment.	Great,

but	how	do	you	set	the	current	hosting

environment?

The	Hosting	Environment

The	Development	environment

results	from	the	value	of	an

environment	variable	named

ASPNETCORE_ENVIRONMENT.

In	a	Visual	Studio	project,	the

variable	is	set	to	Development	by

default,	and	the	variable	can	be	set

to	any	string	you	wish,	such	as

Production	or	Staging.

The	ASPNETCORE_ENVIRONMENT

variable	can	be	set	in	any	way	you	can

set	an	environment	variable	on	a

given	operating	system.	For	example,

on	Windows,	you	can	use	the	Control

Panel,	PowerShell,	or	the	set	tool	from

the	command	prompt.	Of	course,	you

can	also	set	the	variable

programmatically	or	from	within

Visual	Studio	in	the	Properties	dialog

of	the	project,	as	shown	in	Figure	2-5.

Bear	in	mind	that	if,	for	whatever

reason,	the

ASPNETCORE_ENVIRONMENT

variable	is	not	set,	then	the	hosting

environment	is	assumed	to	be

Production.

FIGURE	2-5	Setting	an	environment	variable	in	Visual	Studio

The	configuration	of	the	hosting

environment	is	exposed

programmatically	through	the

members	of	the

IHostingEnvironment	interface	(see

Table	2-2).

TABLE	2-2	The

IHostingEnvironment	interface

M

e

Description

m

be

r

Ap

pli

cat

ion

Na

me

Gets	or	sets	the	name	of	the	application.	The	host	sets	

the	value	of	the	property	to	the	assembly	that	contains	

the	application	entry	point.

En

vir

on

me

nt

Na

me

Gets	or	sets	the	name	of	the	environment	overriding	

the	value	of	the	ASPNETCORE_	ENVIRONMENT	

variable.	You	can	use	the	setter	of	this	property	to	set	

the	environment	programmatically.

Co

nte

nt

Ro

ot

Pa

th

Gets	or	sets	the	absolute	path	to	the	directory	that	

contains	the	application	files.	This	property	is	usually	

set	to	the	root	installation	path.

Co

nte

nt

Ro

ot

Fil

eP

ro

vid

er

Gets	or	sets	the	component	that	must	be	used	to	

retrieve	content	files.	The	component	can	be	any	class	

that	implements	the	IFileProvider	interface.	The	

default	file	provider	uses	the	file	system	to	retrieve	

files.

We

bR

oot

Pa

th

Gets	or	sets	the	absolute	path	to	the	directory	that	

contains	the	static	files	that	clients	can	request	via	

URL.

We

bR

oot

Fil

eP

ro

vid

er

Gets	or	sets	the	component	that	must	be	used	to	

retrieve	web	files.	The	component	can	be	any	class	

that	implements	the	IFileProvider	interface.	The	

default	file	provider	uses	the	file	system	to	retrieve	

files.

The	IFileProvider	interface	represents

a	read-only	file	provider,	and	it	works

by	taking	a	string	that	describes	a	file

or	directory	name	and	returning	an

abstraction	of	the	content.	An

interesting	alternate	implementation

of	the	IFileProvider	interface	is	one

that	retrieves	the	file	and	directory

contents	from	a	database.

An	object	that	implements	the

IHostingEnvironment	interface	is

created	by	the	host	and	made	publicly

available	to	the	startup	class	and	all

other	classes	in	the	application	via

dependency	injection.	(More	on	this

in	the	next	section,	“Enabling	System

and	Application	Services.”)

	Note	The	constructor	of	the	startup	class	can	optionally
receive	the	reference	to	a	couple	of	system	services:	IHostingEnvironment
and	ILoggerFactory.	In	particular,	the	latter	is	the	ASP.NET	Core	abstraction
for	creating	instances	of	a	logger	component.

Enabling	System	and	Application	Services

If	defined,	the	ConfigureServices

method	is	invoked	before

Configure	to	give	developers	a

chance	to	wire	up	system	and

application	services	to	the	request

pipeline.	Configuration	of	wired

services	might	take	place	directly	in

ConfigureServices,	or	it	can	be

postponed	until	Configure	is	called.

It	depends	ultimately	on	the

programming	interface	of	the

service.	Here’s	the	prototype	of	the

ConfigureServices	method.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

As	you	can	see,	the	method	receives	a

collection	of	services	and	just	adds	its

own	services.	In	general,	services	that

have	a	substantial	setup	phase

provide	an	AddXXX	extension

method	on	IServiceCollection	and

accept	a	few	parameters.	In	the	code

snippet	below,	you	see	how	to	add	the

Entity	Framework	DbContext	to	the

list	of	available	services.	The

AddDbContext	method	accepts	a	few

options,	such	as	the	database	provider

to	use	and	the	actual	connection

string.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

		var	connString	=	"...";

		services.AddDbContext<YourDbContext>(options	=>	options.UseSqlS
erver(connString));

}

Adding	a	service	to	the

IServicesCollection	container	makes

the	service	further	available	to	the	rest

of	the	application	via	the	ASP.NET

Core	built-in	dependency	injection

system.

Configuring	System	and	Application	Services

The	Configure	method	is	used	to

configure	the	HTTP	request

pipeline	and	to	specify	the	modules

that	will	have	a	chance	to	process

incoming	HTTP	requests.	Modules

and	loose	code	that	can	be	added	to

the	HTTP	request	pipeline	are

collectively	referred	to	as

middleware.

The	Configure	method	receives	an

instance	of	a	system	object	that

implements	the	IApplicationBuilder

interface	and	will	add	middleware

through	extension	methods	of	the

interface.	Also,	the	Configure	method

may	receive	an	instance	of

IHostingEnvironment	and

ILoggerFactory	components.	Here’s	a

possible	way	to	declare	the	method.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironmen
t	env)

{

		...

}

A	very	common	action	you	would	take

in	the	Configure	method	is	enabling

the	ability	to	serve	static	files	and	a

centralized	error	handler.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironmen
t	env)

{

		app.UseExceptionHandler("/error/view");

		app.UseStaticFiles();

}

The	extension	method

UseExceptionHandler	acts	as	a

centralized	error	handler	and

redirects	to	the	specified	URL	in	case

of	unhandled	exceptions.	Its	overall

behavior	is	analogous	to	the

Application_	Error	method	in

global.asax	in	classic	ASP.NET.	To

receive	the	developer’s	friendly

messages	in	case	of	exceptions,	you

might	want	to	use	the

UseDeveloperExceptionPage	instead.

At	the	same	time,	you	might	want	to

see	developer’s	friendly	messages	only

in	development	mode.	This	scenario

represents	an	excellent	use-case	for

the	methods	of	some	of	the	extension

methods	of	the	IHostingEnvironment

interface.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironmen
t	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

		}

		else

		{

				app.UseExceptionHandler("/Error/View");

		}

		app.UseStaticFiles();

}

Extension	methods	like

IsDevelopment,	IsProduction,	and

IsStaging	are	predefined	to	check	the

current	development	mode.	If	you

define	a	custom	environment,	you	can

check	it	through	the	IsEnvironment

method.	Note	that	environment

names	are	not	case-sensitive	in

Windows	and	Mac,	but	they	are	case-

sensitive	in	Linux.

Because	any	code	you	write	in

Configure	ends	up	configuring	the

runtime	pipeline,	the	order	in	which

services	are	configured	is	important.

For	this	reason,	the	first	thing	you

want	to	do	in	Configure	is	set	up	error

handling	right	after	the	static	files.

Environment-Specific	Configuration	Methods

Environment-Specific	Configuration	Methods

In	a	startup	class,	the	names	of

Configure	and	ConfigureServices

methods	can	also	be	made

environment-specific.	The	pattern

is	ConfigureXxx	and

ConfigureXxxServices;	Xxx	refers

to	an	environment	name.

Creating	a	single	startup	class	using

the	default	name	of	Startup	and

registering	it	with	the	host	via

UseStartup<T>	is	probably	the	ideal

way	to	configure	the	startup	of	an

ASP.NET	Core	application.	Then,	in

the	body	of	the	class,	you	create

environment-specific	methods,	such

as	ConfigureDevelopment	and

ConfigureProduction.

The	host	will	take	care	of	resolving	the

method	based	on	the	environment

currently	set.	Note	that	if	you	rename

the	startup	class	to	anything	other

than	Startup,	then	the	built-in	logic

for	automatic	resolution	of	types	will

fail.

The	ASP.NET	Pipeline

The	IApplicationBuilder	interface

provides	the	means	to	define	the

structure	of	the	ASP.NET	pipeline.

The	pipeline	is	a	chain	of	optional

modules	that	preprocess	and

postprocess	an	incoming	HTTP

request,	as	shown	in	Figure	2-6.

FIGURE	2-6	The	ASP.NET	Core	pipeline

The	pipeline	is	made	of	middleware

components	registered	in	Configure

and	invoked	in	the	registered	order

for	each	request.	Every	middleware

component	is	built	around	the

following	pattern:

Click	here	to	view	code	image

app.Use(async	(httpContext,	next)	=>

{

				//	Pre-process	the	request

				...

				//	Yield	to	the	next	middleware	module	in	the	chain

				await	next();

				//	Post-process	the	request

				...

});

All	middleware	components	are	given

a	chance	to	process	the	request	before

it	is	actually	run	by	the	ASP.NET

code.	By	calling	the	next	module,	each

middleware	component	pushes	the

request	down	to	the	next	request	in

the	queue.	When	the	last	registered

module	has	preprocessed	the	request,

the	request	executes.	After	that,	the

chain	of	middleware	components	is

traversed	backward,	and	all	registered

modules	have	a	chance	to	postprocess

the	request	usually	by	looking	at	the

updated	context	and	its	response.	On

the	way	back	to	the	client,	middleware

modules	are	invoked	in	the	reverse

order.

You	can	register	your	own	middleware

with	a	code	snippet,	as	shown	above,

and	indicate	the	code	through	a

lambda	expression.	Alternatively,	you

can	wrap	up	the	logic	in	a	class	and

create	an	ad	hoc	UseXxx	method	to

register	it	in	the	pipeline	within	the

Configure	method.	I’ll	return	to	the

ASP.NET	pipeline	and	its

customization	in	Chapter	14.

The	chain	of	middleware	components

ends	with	the	request	runner,	namely

the	code	that	will	actually	perform	the

action	intended	for	the	request.	This

code	is	also	referred	to	as	terminating

middleware.	In	classic	ASP.NET

MVC,	the	request	runner	is	the	action

invoker	that	selects	the	appropriate

controller	class,	determines	the

correct	method,	and	invokes	it.	As

mentioned,	though,	in	ASP.NET	Core,

the	MVC	programming	model	is	just

one	option.	This	means	that	the

request	runner	takes	a	more	abstract

form:

Click	here	to	view	code	image

app.Run(async	context	=>

{

		await	context.Response.WriteAsync("Courtesy	of	'Programming	ASP
.NET	Core'");

});

The	code	processed	by	the

terminating	middleware	has	the	form

of	the	following	delegate:

Click	here	to	view	code	image

public	delegate	Task	RequestDelegate(HttpContext	context);

The	terminating	middleware	takes	an

instance	of	the	HttpContext	object

and	returns	a	task.	The	HTTP	context

object	is	a	container	of	HTTP-based

information,	including	the	response

stream,	authentication	claims,	input

parameters,	session	state,	and

connection	information.

If	the	terminating	middleware	is

defined	explicitly	through	a	Run

method,	then	any	request	is	served

directly	from	there	with	no	need	to

have	controllers	and	views	around.

With	a	Run	middleware	method

implemented,	any	request	can	be

served	with	nearly	no	overhead	in	the

fastest	possible	way	and	with	the	bare

minimum	of	memory	footprint.	I’ll

demonstrate	this	feature	in	the	next

section	of	the	chapter.

THE	DEPENDENCY	INJECTION
SUBSYSTEM

The	overview	of	the	ASP.NET

runtime	environment	couldn’t	be

completed	without	a	look	at	the

built-in	dependency	injection	(DI)

subsystem.

Dependency	Injection	at	a	Glance

Dependency	Injection	at	a	Glance

DI	is	a	design	principle	that

promotes	loose	coupling	between

classes.	For	example,	let’s	say	you

have	the	following	class:

Click	here	to	view	code	image

public	class	FlagService

{

			private	FlagRepository	_repository;

			public	FlagService()

			{

						_repository	=	new	FlagRepository();

			}

			public	Flag	GetFlagForCountry(string	country)

			{

						return	_repository.GetFlag(country);

			}

}

The	class	FlagService	depends	on	the

class	FlagRepository	and	given	the

tasks	that	both	classes	accomplish,	a

tight	relationship	is	unavoidable.	The

DI	principle	helps	keep	a	loose

relationship	between	the	FlagService

and	its	dependencies.	The	core	idea	of

DI	is	to	make	FlagService	dependent

only	on	an	abstraction	of	the	functions

provided	by	FlagRepository.	With	DI

in	mind,	the	class	can	be	rewritten	as

follows:

Click	here	to	view	code	image

public	class	FlagService

{

			private	IFlagRepository	_repository;

			public	FlagService(IFlagRepository	repository)

			{

						_repository	=	repository;

			}

			public	Flag	GetFlagForCountry(string	country)

			{

						return	_repository.GetFlag(country);

			}

}

Now,	any	class	that	implements

IFlagRepository	can	safely	work	with

an	instance	of	FlagService.	By	using

DI,	we	turned	a	tight	dependency

between	FlagService	and

FlagRepository	into	a	looser

relationship	between	FlagService	and

an	abstraction	of	the	services	it	needs

to	import	from	the	outside.	The

responsibility	of	creating	an	instance

of	the	repository	abstraction	has	been

moved	away	from	the	service	class.

This	means	that	some	other	code	is

now	responsible	for	taking	a	reference

to	an	interface	(an	abstraction)	and

returning	a	usable	instance	of	a

concrete	type	(a	class).	This	code	can

be	written	manually	every	time	it	is

needed.

Click	here	to	view	code	image

var	repository	=	new	FlagRepository();

var	service	=	new	FlagService(repository);

Or,	this	code	can	be	run	by	an	ad	hoc

layer	of	code	that	inspects	the

constructor	of	the	service	and	resolves

all	its	dependencies.

Click	here	to	view	code	image

var	service	=	DependencyInjectionSubsystem.Resolve(FlagService);

Refactoring	your	types	by	following

this	injection	pattern	will	also	help

you	write	unit	tests	more	easily

because	mocked	implementation	can

be	passed	at	any	time	to	the

constructors.

ASP.NET	Core	comes	with	its	own	DI

subsystem	so	that	any	class,	including

controllers,	can	just	declare	in	the

constructor	(or	members)	all

necessary	dependencies;	the	system

will	ensure	that	valid	instances	are

created	and	passed.

Dependency	Injection	in	ASP.NET	Core

Dependency	Injection	in	ASP.NET	Core

To	use	the	DI	system,	you	need	to

register	the	types	the	system	must

be	able	to	instantiate	for	you.	The

ASP.NET	Core	DI	system	is	already

aware	of	some	types,	such	as

IHostingEnvironment	and

ILoggerFactory,	but	it	needs	to

know	about	application-specific

types.	Let’s	see	what	it	takes	to	add

new	types	to	the	DI	system.

Registering	Types	with	the	DI	System

The	IServicesCollection	parameter

that	your	code	receives	in	the

method	ConfigureServices	is	the

handle	to	access	all	types	currently

registered	with	the	DI	system.	To

register	a	new	type,	you	add	code	to

the	ConfigureServices	method.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

			//	Register	a	custom	type	with	the	DI	system

			services.AddTransient<IFlagRepository,	FlagRepository>();

}

The	method	AddTransient	instructs

the	DI	system	to	serve	a	fresh	new

instance	of	the	type	FlagRepository

every	time	an	abstraction	like	the

IFlagRepository	interface	is

requested.	With	this	line	in	place,	any

class	whose	instantiation	is	managed

by	ASP.NET	Core	can	simply	declare	a

parameter	of	type	IFlagRepository	to

have	a	fresh	instance	served	by	the

system.	Here’s	a	common	use	of	the

DI	system:

Click	here	to	view	code	image

public	class	FlagController

{

		private	IFlagRepository	_flagRepository;

		public	FlagController(IFlagRepository	flagRepository)

		{

				_flagRepository	=	flagRepository;

		}

		...

}

Controller	and	view	classes	are	very

common	examples	of	ASP.NET	Core

classes	that	take	advantage	of	the	DI

system.

Resolving	Types	Based	on	Runtime
Conditions

Sometimes	you	want	to	register	an

abstract	type	with	the	DI	system,

but	you	need	to	decide	about	the

concrete	type	only	after	verifying

some	runtime	conditions

(appended	cookies,	HTTP	headers,

or	query	string	parameters,	for

example).	Here’s	how	to	do	it:

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddTransient<IFlagRepository>(provider	=>

				{

								//	Create	the	instance	of	the	actual	type	to	return	

								//	based	on	the	identity	of	the	currently	logged	user.	

								var	context	=	provider.GetRequiredService<IHttpContextAcc
essor>();

								return	new	FlagRepositoryForUser(context.HttpContext.User
);

				});

}

Notice	that	you	can	have	the	HTTP

context	injected	in	a	programming

context	where	it	is	not	natively

available	by	asking	the	DI	container	to

inject	an	instance	of

IHttpContextAccessor.

Resolving	Types	on	Demand

In	some	cases,	you	need	to	create

instances	of	types	that	have	their

own	dependencies.	A	very	good

example	is	FlagService,	the	class

we	introduced	earlier	to	play	with

the	concept	of	dependency

injection.	(See	the	section,

“Dependency	Injection	at	a

Glance,”	earlier	in	this	chapter.)

Click	here	to	view	code	image

public	class	FlagService

{

			public	FlagService(IFlagRepository	repository)

			{

						_repository	=	repository;

			}

			...

}

How	would	you	create	an	instance	of

the	class	without	first	manually

resolving	all	its	dependencies?	Note

that	dependencies	can	be	nested	to

many	levels,	so	it	could	be	that	to

instantiate	a	type	that	implements

IFlagRepository,	one	first	must

instantiate	many	other	types.	Any	DI

system	can	help	with	this	problem,

and	the	ASP.NET	Core	system	is	no

exception.

Usually,	a	DI	system	is	centered

around	a	root	object	known	as	the

container	that	traverses	the	tree	of

dependencies	and	resolves	abstract

types.	In	the	ASP.NET	Core	system,

the	container	is	represented	by	the

IServiceProvider	interface.	To	resolve

an	instance	of	the	FlagService,	you

have	two	options:	using	the	classic

new	operator	and	providing	a	valid

instance	of	the	IFlagRepository

implementation	dependency	or

leveraging	IServiceProvider,	as

below:

Click	here	to	view	code	image

var	flagService	=	provider.GetService<FlagService>();

To	get	an	instance	of	the

IServiceProvider	container,	you	just

define	IServiceProvider	as	a

parameter	of	the	constructor

wherever	needed,	and	the	DI	will

kindly	inject	the	expected	instance.

Here’s	an	example	of	a	controller:

Click	here	to	view	code	image

public	class	FlagController

{

			private	FlagService	_service;

			public	FlagController(IServiceProvider	provider)

			{

						_service	=	provider.GetService<FlagService>();

			}

			...

}

Injecting	IServiceProvider	or

injecting	the	actual	dependency	has

the	same	effect	on	your	code.	There’s

no	way	to	get	a	static,	global	reference

to	the	service	provider.	However,	in

the	context	of	ASP.NET	Core,	you

don’t	need	it.	Your	code,	in	fact,	will

always	run	within	an	ASP.NET	Core

class	that	supports	dependency

injection.	As	far	as	custom	classes	are

concerned,	all	you	have	to	do	is	design

them	to	accept	dependencies	through

the	constructor.

Controlling	the	Lifetime	of	Objects

There	are	three	different	ways	to

register	a	type	with	the	DI	system,

and	the	lifetime	of	the	returned

instance	differs	for	each.	Let’s	have

a	look	at	Table	2-3.

TABLE	2-3	Lifetime	options	for	DI-

created	objects

M

et

h

o

d

Behavior

A

d

d

Tr

a

ns

ie

nt

Every	caller	receives	a	freshly	created	instance	of	the	

specified	type.

A

d

d

Si

n

gl

et

o

n

All	requests	receive	the	same	instance	of	the	specified	

type	created	the	first	time	after	application	startup.	If	

for	some	reason	no	cached	instance	is	available,	it	is	

re-created.	The	method	also	features	an	overload	that	

allows	you	to	pass	yourself	the	instance	to	cache	and	

return	on	demand.

A

d

d

Sc

o

pe

d

Each	call	to	the	DI	system	within	the	context	of	a	given	

request	receives	the	same	instance	created	at	the	

beginning	of	the	request	processing.	This	option	is	like	

a	singleton	except	that	it	is	scoped	to	the	request	

lifetime.

The	code	below	shows	how	to	register

a	user-created	instance	to	be	served	as

a	singleton.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

			services.AddSingleton<ICountryRepository>(new	CountryRepositor
y());

}

Every	abstract	type	can	be	mapped	to

multiple	concrete	types.	When	this

happens,	the	system	uses	the	last

registered	concrete	type	to	resolve	the

dependency.	If	no	concrete	type	can

be	found,	then	null	is	returned.	If	a

concrete	type	is	found,	but	it	cannot

be	instantiated,	then	an	exception	is

thrown.

Integrating	with	External	DI	Libraries

Integrating	with	External	DI	Libraries

Over	the	years,	classic	ASP.NET

MVC	progressively	increased	the

level	of	customization	of	the	out-of-

the-box	features.	In	the	latest

version,	for	example,	the

IDependencyResolver	interface

defines	the	methods	to	locate

available	services	and	to	resolve

dependencies.	It	has	more	of	a

service	locator	than	a	dependency

injection	framework,	but	it

provides	the	requested

functionality.	The	biggest

difference	between	Service	Locator

and	Dependency	Injection	is	that

the	former	offers	a	global	object—

the	service	locator—that	must	be

explicitly	asked	to	resolve	a

dependency.	With	the	Dependency

Injection	pattern,	instead,	type

resolution	is	implicit,	and	all	a	class

must	do	is	declare—through

supported	injection	points—the

dependencies.	The	Service	Locator

pattern	is	much	easier	to	add	to	an

existing	framework.	The

Dependency	Injection	pattern	is

ideal	for	a	framework	built	from

the	ground	up.

The	DI	framework	in	ASP.NET	Core	is

not	a	fully-fledged	DI	framework	and

hardly	competes	with	any	of	the	top-

industry	frameworks	out	there.	It	does

basic	tasks,	does	them	well,	and

serves	the	needs	of	the	ASP.NET	Core

platform.	The	biggest	difference	with

other	popular	DI	frameworks	is

injection	points.

Injection	Points

Injection	Points

Generally	speaking,	a	dependency

can	be	injected	in	a	class	in	three

different	ways:	as	an	additional

parameter	in	the	constructor,	in	a

public	method,	or	through	a	public

property.	The	DI	implementation

in	ASP.NET	Core,	however,	has

been	kept	deliberately	simple	and	it

doesn’t	fully	support	advanced	use-

cases	like	other	popular	DI

frameworks,	including	Microsoft’s

Unity,	AutoFac,	Ninject,	Structure-

Map,	and	so	forth.

So	in	ASP.NET	Core,	dependency

injection	can	only	occur	via	the

constructor,	and	this	is	by	design.

However,	when	using	DI	in	a	fully

enabled	MVC	context,	then	you	can

use	the	FromServices	attribute	to

mark	a	public	property	of	a	class	or	a

method	parameter	as	an	injection

point.	The	drawback	is	that	the

FromServices	attribute	belongs	to	the

ASP.NET	model	binding	layer	and	it	is

not	technically	a	part	of	the	DI

system.	For	this	reason,	you	can	use

FromServices	only	when	the

ASP.NET	MVC	engine	is	enabled	and

only	within	the	realm	of	a	controller

class.	We’ll	demonstrate	this	feature

in	Chapter	3,	“Bootstrapping

ASP.NET	MVC,”	after	introducing

MVC	controllers.

	Note	Another	feature	of	most	industry-leading	DI	frameworks
that	the	ASP.NET	Core	implementation	doesn’t	support	is	the	ability	to	map
the	same	abstract	type	to	multiple	concrete	types—each	with	a	different	and
unique	key.	By	passing	the	key	(usually,	an	arbitrary	string)	to	the	service
provider,	you	can	have	the	abstract	type	resolved	in	a	particular	way.	This
feature	can	be	simulated	in	ASP.NET	Core	either	using	a	factory	class	for	the
abstract	type	or,	if	possible,	through	a	callback-based	type	resolution.

Using	External	DI	Frameworks

Using	External	DI	Frameworks

If	you	find	the	ASP.NET	Core	DI

infrastructure	too	simple	for	your

needs,	or	if	you	have	a	large

codebase	written	against	a	different

DI	framework,	then	you	can

configure	the	ASP.NET	Core

system	to	switch	to	using	the

external	DI	framework	of	choice.

For	this	to	happen,	though,	it	is

required	that	the	external

framework	supports	ASP.NET	Core

and	provides	a	bridge	to	connect	to

the	ASP.NET	Core	infrastructure.

Supporting	ASP.NET	Core	means

providing	a	class	library	compatible

with	the	.NET	Core	framework	and	a

custom	implementation	of	the

IServiceProvider	interface.	As	part	of

this	support	effort,	the	external	DI

framework	must	also	be	able	to

import	the	collection	of	services

natively	or	programmatically

registered	with	the	ASP.NET	Core	DI

system.

Click	here	to	view	code	image

public	IServiceProvider	ConfigureServices(IServiceCollection	serv
ices)

{

				//	Add	some	services	using	the	ASP.NET	Core	interface	

				services.AddTransient<IFlagRepository,	FlagRepository>();

				//	Create	the	container	of	the	external	DI	library	

				//	Using	StructureMap	here.

				var	structureMapContainer	=	new	Container();

				//	Add	your	own	services	using	the	native	API	of	the	DI	libra
ry

				//	...

				//	Add	services	already	registered	with	the	ASP.NET	Core	DI	s
ystem

				structureMapContainer.Populate(services);

				//	Return	the	implementation	of	IServiceProvider	using	intern
ally

				//	the	external	library	to	resolve	dependencies

				return	structureMapContainer.GetInstance<IServiceProvider>();

}

It	is	important	to	note	that	you	can

register	an	external	DI	framework	in

ConfigureServices.	In	doing	so,

though,	you	must	change	the	return

type	of	the	method	in	the	startup	class

from	void	to	IServiceProvider.

Finally,	keep	in	mind	that	only	a	few

of	the	DI	frameworks	out	there	have

been	ported	to	.NET	Core.	Among	the

few,	there	are	Autofac	and

StructureMap.	You	can	get	Autofac	for

.NET	Core	through	the

Autofac.Extensions.DependencyInject

ion	NuGet	package.	If	you’re

interested	in	Structure-Map,	instead,

you	can	grab	it	from	Github	at	the

following	address:

http://github.com/structuremap/Str

uctureMap.Microsoft.DependencyInj

ection

(http://github.com/structuremap/StructureMa

p.Microsoft.DependencyInjection).

BUILDING	A	MINI	WEBSITE

As	mentioned,	ASP.NET	Core	is	a

framework	to	build	web

applications,	and	it	doesn’t	support

some	of	the	application	models	of

classic	ASP.NET,	most	notably	the

Web	Forms	application	model.	It

does	support	the	ASP.NET	MVC

application	model	with	a	good	level

of	compatibility	instead.	In	fact,

most	of	the	existing	controllers	and

Razor	views	can	be	ported	as-is

under	the	realm	of	an	ASP.NET

Core	application	that	uses	the	MVC

services.

In	fact,	you	don’t	strictly	need	the

MVC	and	Razor	engines	to	build	fully

functioning	websites.	This	aspect	of

the	ASP.NET	Core	platform	enables

you	to	create	mini	website	or	website

with	a	short	pipeline	and	a	tiny

memory	footprint.

	Note	Creating	a	mini	website	that	can	run	without	a	large
footprint	isn’t	easy	to	do	with	classic	ASP.NET.	In	classic	ASP.NET	you	could
disable	some	unwanted	HTTP	modules,	thus	reducing	the	length	of	the
request	pipeline,	but	a	lot	happens	before	your	code	gets	to	run.	To	my	best
knowledge,	the	fastest	way	to	have	your	custom	code	run	in	classic	ASP.NET
is	to	use	an	HTTP	handler.	You	cannot	get	close	to	that	with	either	ASPX	files
or	MVC	controllers.	As	far	as	Web	API	is	concerned,	things	don’t	change

much	if	the	Web	API	server	is	hosted	within	the	boundaries	of	an	ASP.NET
site.

Creating	a	Single	Endpoint	Website

As	we’ll	see	in	much	more	detail

later	in	the	book,	any	middleware

components	added	to	the	pipeline

can	inspect	and	modify	every

aspect	of	the	request,	and	any

middleware	components	can	add

response	cookies	and	headers	and

even	write	to	the	output	stream,

thus	producing	some	actual	output

for	the	client.

The	Hello	World	Application

Let’s	start	seeing	what	it	takes	to

create	a	true	hello-world	web

application	with	ASP.NET	Core.

While	it	was	not	possible	with

classic	ASP.NET,	ASP.NET	Core

allows	you	to	create	a	minimalistic

application	that	just	prints	out	a

simple	message.	Here’s	the	code:

Click	here	to	view	code	image

public	void	Configure	(IApplicationBuilder	app,	IHostingEnvironme
nt	env)

{

			app.Run(async	(context)	=>

			{

						await	context.Response

										.WriteAsync("Courtesy	of	Programming	ASP.NET	Core!"	+

										"<hr>"	+

										"ENVIRONMENT="	+	env.EnvironmentName);

			});

}

The	code	above	belongs	to	the	startup

class.	In	addition	to	this	code,	all	you

need	is	a	program.cs	file	and	a	project

file.	Figure	2-7	shows	the	output	in

the	browser.

FIGURE	2-7	The	Hello-World	application	in	ASP.NET	Core

The	code	necessary	to	generate	the

output	in	the	figure	is	not	long,	but

you	can	actually	make	it	even	shorter.

Here’s	a	simple	echo	website	that

writes	out	the	segment	of	the	URL

that	follows	the	server	name.

Click	here	to	view	code	image

using	Microsoft.AspNetCore.Hosting;

using	Microsoft.AspNetCore.Builder;

using	Microsoft.AspNetCore.Http;

namespace	Echo

{

			public	class	Program

			{

						public	static	void	Main(string[]	args)

						{

									var	host	=	new	WebHostBuilder()

													.UseKestrel()

													.UseIISIntegration()

													.Configure(app	=>	{

																app.Run(async	(context)	=>	{

																			var	path	=	context.Request.Path;

																			await	context.Response.WriteAsync(path);	});

													})

												.Build();

									host.Run();

						}

			}

}

You	don’t	even	need	a	startup	class

and	a	startup	file.	The	terminating

middleware,	in	fact,	is	attached

directly	to	the	host	instance.	And	you

still	have	access	to	the	HTTP	request

internals	to	figure	out	the	origin	URL

and	query	string	parameters	(see

Figure	2-8).	There’s	still	room	in	the

terminating	middleware	for	some

minimally	complex	business	logic.

FIGURE	2-8	The	Echo	sample	application

Launching	the	Website

Within	Visual	Studio,	you	can	test

the	website	through	IIS	(including

IIS	Express)	or	by	launching	the

console	application	directly	(see

Figure	2-9).

FIGURE	2-9	Launch	options	for	an	ASP.NET	Core	application	in

Visual	Studio

When	you	launch	the	console

application	directly,	the	effect	is	that

the	application	starts	and	begins

listening	on	the	configured	port	(port

5000,	by	default).	At	the	same	time,	a

browser	window	is	opened	for	you	to

make	requests	(see	Figure	2-10).

FIGURE	2-10The	application	listening	on	configured	port

The	Country	Server

Let’s	take	this	approach	one	step

further	and	try	to	build	a	very	thin

but	functional	mini	website.	In	the

example,	the	website	will	hold	a

JSON	file	with	a	list	of	the	world’s

countries	and	return	a	filtered	list

based	on	the	hints	provided	by	the

query	string.

The	business	logic	required	to	set	up

the	Country	mini	website	is	limited	to

the	code	that	loads	the	content	of	the

JSON	file	into	memory	and	runs	a	few

LINQ	queries	on	it.	The	JSON	file	is

added	to	the	content	root	folder	as	a

project	file	and	remains	invisible	from

the	web	channel.	A	repository	class

manages	the	interaction	between	the

mini	website	and	the	list	of	countries.

The	repository	is	abstracted	to	the

ICountryRepository	interface:

Click	here	to	view	code	image

namespace	CoreBook.MiniWeb.Persistence.Abstractions

{

			public	interface	ICountryRepository

			{

						IQueryable<Country>	All();

						Country	Find(string	code);

						IQueryable<Country>	AllBy(string	filter);

			}

}

To	be	honest,	in	the	perspective	of

saving	as	much	code	as	possible,

having	an	interface	here	to	abstract

the	country	repository	is	probably

overkill.	However,	the	approach	taken

in	the	demo	illustrates	a	practice	that

is	highly	recommended	in	real-world

code—at	least	for	testability	reasons.

The	repository	is	registered	with	the

DI	system	and	is	made	available	as	a

singleton	through	the	application.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

			services.AddSingleton<ICountryRepository>(new	CountryRepositor
y());

}

Here’s	the	full	code	of	the	repository.

As	you	can	see,	the	code	is	nearly

identical	to	the	code	you	would	write

for	the	full	.NET	Framework	in	a

classic	ASP.NET	application.	The	only

(minor)	noticeable	difference	is	the

actual	API	necessary	to	read	the

content	of	a	text	file.	In	the	.NET	Core

framework,	you	still	have	stream

readers	but	no	more	overloads	that

can	accept	a	file	name.	Instead,	you

now	have	a	File	singleton	object	for

more	direct	access	to	file	content.

Click	here	to	view	code	image

public	class	CountryRepository	:	ICountryRepository

{

			private	static	IList<Country>	_countries;	

			public	IQueryable<Country>	All()

			{

						EnsureCountriesAreLoaded();

						return	_countries.AsQueryable();

			}

			public	Country	Find(string	code)

			{

						return	(from	c	in	All()

													where	c.CountryCode.Equals(code,	StringComparison.Cu
rrentCultureIgnoreCase)

													select	c).FirstOrDefault();

			}

			public	IQueryable<Country>	AllBy(string	filter)

			{

						var	normalized	=	filter.ToLower();

						return	String.IsNullOrEmpty(filter)	

										?	All()

										:	(All().Where(c	=>	c.CountryName.ToLower().StartsWith(
normalized)));

			}

			#region	PRIVATE

			private	static	void	EnsureCountriesAreLoaded()

			{

						if	(_countries	==	null)

									_countries	=	LoadCountriesFromStream();

			}

			private	static	IList<Country>	LoadCountriesFromStream()

			{

						var	json	=	File.ReadAllText("countries.json");

						var	countries	=	JsonConvert.DeserializeObject<Country[]>(js
on);

						return	countries.OrderBy(c	=>	c.CountryName).ToList();

			}

			#endregion

}

The	full	solution	is	shown	in	Figure	2-

11.

FIGURE	2-11	The	Mini	Web	solution

Aside	from	the	business	logic	that

retrieves	country	information,	the

entire	application	is	built	around	the

terminating	middleware	in	the	startup

class:

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	

												IHostingEnvironment	env,	

												ICountryRepository	country)

{

			//	NOTE

			//	You	can	inject	ICountryRepository	through	the	method's	sign
ature	or

			//	request	the	DI	container	(IServiceProvider)	through	the	sig
nature	and	

			//	ask	it	to	resolve	ICountryRepository.

			//

			//	var	country	=	provider.GetService<ICountryRepository>();

			app.Run(async	(context)	=>

			{

							var	query	=	context.Request.Query["q"];

							var	listOfCountries	=	country.AllBy(query).ToList();

							var	json	=	JsonConvert.SerializeObject(listOfCountries);

							await	context.Response.WriteAsync(json);

			});

}

The	country	hint	passed	through	the

query	string	is	retrieved	directly	from

the	HTTP	Request	object,	and	they

are	used	to	filter	the	countries.	Next,

the	list	of	matching	Country	objects	is

serialized	to	JSON.	Also,	note	that	the

API	of	the	HTTP	Request	object	to

read	the	query	string	is	slightly

different	from	that	in	classic

ASP.NET.	The	mini	site	in	action	is

shown	in	Figure	2-12.

FIGURE	2-12	The	country	server	in	action

Blinking	at	Microservices

Blinking	at	Microservices

A	mini	website	is	conceptually

similar	to	a	dedicated,	company-

wide	content	delivery	network.

Imagine	a	scenario	in	which	you

have	a	lot	of	client-side	code,

spread	across	multiple	web	and

mobile	applications,	and	that	it’s

continually	retrieving	the	same

information,	such	as	weather

forecasts,	user	pictures,	zip	codes,

or	country	information.

Incorporating	the	same	data	retrieval

logic	in	all	web	applications	is	an

option	but	isolating	that	logic	into	a

distinct	web	API	promotes	reusability

and	modularity.	Isolating	that	logic	is

the	core	principle	of	microservices.

How	would	you	code	such	a	website?

In	classic	ASP.NET,	there	will	be	a	lot

that	happens	outside	your	control

before	the	actual	request	is	processed.

In	ASP.NET	code,	building	a	mini

website	or	web	microservices	is	a

reality.

Accessing	Files	on	the	Web	Server

In	ASP.NET	Core,	no	feature	is

available	until	you	enable	it

explicitly.	Enabling	a	feature	means

adding	the	appropriate	NuGet

package	to	the	project,	registering

the	service	with	the	DI	system,	and

configuring	the	service	in	the

startup	class.	The	rule	doesn’t	have

exceptions	even	for	the	MVC

engine	that	must	be	registered.

Likewise,	you	must	register	a

service	that	guarantees	access	to

static	files	located	under	the	web

root	folder.

Enabling	the	Static	Files	Service

Enabling	the	Static	Files	Service

To	enable	retrieval	of	static	files

such	as	HTML	pages,	images,

JavaScript	files,	or	CSS	files	you

need	to	add	the	following	line	to

the	Configure	method	of	the

startup	class:

app.UseStaticFiles();

The	above	line	requires	the

installation	of	the

Microsoft.AspNetCore.StaticFiles

NuGet	package.	Any	files	below	the

configured	web	root	are	now	available

for	request.	This	includes	any	files

that	must	be	served	as-is	to	the	client

without	passing	for	any	form	of

dynamic	code,	such	as	a	controller

method.

Enabling	the	static	files	service

doesn’t	let	your	users	browse	the

content	of	the	specified	directory.	To

also	enable	directory	browsing	you

need	the	following:

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)	

{

			services.AddDirectoryBrowsing();

}

public	void	Configure(IApplicationBuilder	app)	

{

			app.UseStaticFiles();	

			app.UseDirectoryBrowser();	

}

With	the	above	code	in	place,

directory	browsing	is	enabled	for	all

directories	under	the	web	root.	You

can	also	restrict	browsing	to	just	a	few

directories.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)	

{

			app.UseDirectoryBrowser(new	DirectoryBrowserOptions()

			{

							FileProvider	=	new	PhysicalFileProvider(

											Path.Combine(Directory.GetCurrentDirectory(),	@"wwwroo
t",	"pics"))

			});

}

The	middleware	adds	a	directory

configuration	that	enables	browsing

for	the	wwwroot/pics	folder	only.	If

you	want	to	enable	browsing	for	other

directories	as	well,	just	duplicate	the

UseDirectoryBrowser	call	changing

the	path	to	the	desired	directory.

Note	that	static	files	and	directory

browsing	are	independent	settings.

You	can	have	both	enabled,	none,	or

only	one	of	the	two.	Realistically,

though,	you	want	to	have	at	least

static	files	enabled	in	any	web

application.

	Important	Enabling	directory	browsing	is	not	a	feature
that’s	recommended	to	have	because	it	can	lead	users	to	sneak	into	your	files
and	possibly	learn	secrets	of	your	website.

Enabling	Multiple	Web	Roots

Sometimes,	you	want	to	be	able	to

serve	static	files	from	wwwroot	as

well	as	from	other	directories.	This

is	definitely	possible	in	ASP.NET

Core,	and	all	that	is	required	is

multiple	calls	to	UseStaticFiles,	as

illustrated	below.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				//	Enable	serving	files	from	the	configured	web	root	folder	(
i.e.,	WWWROOT)

				app.UseStaticFiles();

				//	Enable	serving	files	from	\Assets	located	under	the	root	f
older	of	the	site

				app.UseStaticFiles(new	StaticFileOptions()

				{

								FileProvider	=	new	PhysicalFileProvider(

												Path.Combine(Directory.GetCurrentDirectory(),	@"Asset
s")),

								RequestPath	=	new	PathString("/Public/Assets")

				});

}

The	code	contains	two	calls	to

UseStaticFiles.	The	former	enables

the	application	to	serve	files	only	from

the	configured	web	root	folder

—wwwroot	by	default.	The	latter

enables	the	application	also	to	serve

files	located	under	the	Assets	folder

located	under	the	root	directory	of	the

site.	However,	in	this	case,	what

would	be	the	URL	used	to	retrieve

files	from	the	Assets	physical	folder?

That’s	precisely	the	role	of	the

RequestPath	property	of	the

StaticFileOptions	class.	To	access

test.jpg	from	Assets,	a	browser	should

call	the	following	URL:

/public/assets/test.jpg.

Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="utf-8"	/>

				<title>Programming	ASP.NET	Core	--	Ch03</title>

				<link	rel="stylesheet"	href="/css/site.css"	/>

</head>

<body>

				<h1>FILE	SERVER	demo</h1>

				<hr	/>

				

</body>

</html>

Even	HTML	pages	are	subject	to	the

action	of	the	static	files	service,	as

long	as	they	are	static	files	and	not

dynamic	markup	served	by	some

controller	(see	Figure	2-13).

FIGURE	2-13	Serving	files	in	ASP.NET	Core

Note	that	as	far	as	static	files	are

concerned,	no	authorization	layer

exists	that	lets	you	control	which

users	get	which	files.	All	files	under

the	jurisdiction	of	the	static	file

service	are	considered	publicly

accessible.	This	is	how	most	websites

work	and	is	certainly	not	a	specific

feature	of	ASP.NET	Core	applications.

If	you	need	to	apply	some	level	of

authorization	to	some	static	files,	then

you	have	just	one	option:	storing	the

physical	files	outside	of	wwwroot	and

any	other	directory	configured	with

the	static	files	service	and	serving

them	via	a	controller	action.	I’ll

discuss	this	in	more	detail	in	Chapter

3.

	Tip	File	names	are	case-insensitive	under	Windows	but	not	under
Mac	and	Linux.	If	you	develop	ASP.NET	Core	applications	that	can	be	hosted
outside	IIS	and	the	Windows	platform,	you	should	keep	this	aspect	in	mind.

	Note	IIS	has	its	own	HTTP	module	to	handle	static	files,
named	StaticFileModule.	When	an	ASP.NET	Core	application	is	hosted	under
IIS,	the	default	static	file	handler	is	bypassed	by	the	ASP.NET	Core	Module.
However,	if	the	ASP.NET	Core	Module	in	IIS	is	misconfigured	or	missing,	then
the	StaticFileModule	will	not	be	bypassed,	and	files	will	be	served	outside
your	control.	To	avoid	that,	as	an	additional	measure,	it	is	recommended	to
disable	the	StaticFileModule	of	IIS	for	an	ASP.NET	Core	application.

Supporting	Default	Files

A	default	web	file	is	an	HTML	page

automatically	served	when	the	user

navigates	to	a	folder	within	the	site.

The	default	page	is	usually	named

index.*	or	default.*	with	allowed

extensions	of	.html	and	.htm.	Those

files	should	be	placed	in	wwwroot

but	ignored	unless	you	add	the

following	middleware:

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

			app.UseDefaultFiles();

			app.UseStaticFiles();

}

Note	that	default	files	middleware

must	be	enabled	before	the	static	files

middleware.	In	particular,	the	default

files	middleware	will	check	for	the

following	files	in	the	following	order:

default.htm,	default.html,	index.htm,

and	index.html.	The	search	stops	at

first	match	found.

You	are	welcome	to	completely

redefine	the	list	of	default	file	names.

Here’s	how:

Click	here	to	view	code	image

var	options	=	new	DefaultFilesOptions();

options.DefaultFileNames.Clear();

options.DefaultFileNames.Add("home.html");

options.DefaultFileNames.Add("home.htm");

app.UseDefaultFiles(options);

If	it	bothers	you	to	deal	with	different

types	of	file-related	middleware,	then

you	can	consider	using	the

UseFileServer	middleware	that

combines	the	functions	of	static	files

and	default	files.	Note	that

UseFileServer	doesn’t	enable

directory	browsing	by	default,	but	it

supports	options	to	change	that

behavior	and	also	to	add	the	same

level	of	configuration	we	have	seen	for

UseStaticFiles	and	UseDefaultFiles

middleware.

Adding	Your	Own	MIME	Types

The	static	files	middleware	can

recognize	and	serve	over	400

different	file	types.	However,	if

your	website	misses	a	MIME	type,

you	can	still	add	it.	Here’s	how.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

			//	Set	up	custom	content	types	-associating	file	extension	to	
MIME	type

			var	provider	=	new	FileExtensionContentTypeProvider();

			//	Add	a	new	mapping	or	replace	if	it	exists	already

			provider.Mappings[".script"]	=	"text/javascript";

			//	Remove	JS	files

			provider.Mappings.Remove(".js");

			app.UseStaticFiles(new	StaticFileOptions()

			{

						ContentTypeProvider	=	provider

			});

}

For	classic	ASP.NET	web	applications,

adding	a	missing	MIME	type	is	a

configuration	task	you	perform	within

IIS.	However,	in	the	context	of	an

ASP.NET	Core	application,	IIS	(as

well	as	web	servers	on	other

platforms)	plays	the	bare	role	of	a

reverse	proxy	and	simply	forwards

incoming	requests	to	the	ASP.NET

Core	embedded	web	server	(Kestrel)

and	from	there	up	through	the	request

pipeline.	The	pipeline,	though,	must

be	configured	programmatically.

SUMMARY

In	this	chapter,	we	have	taken	a

look	at	a	few	sample	ASP.NET	Core

projects.	An	ASP.NET	Core

application	is	a	plain	console

application	usually	triggered	within

the	boundaries	of	a	fully-fledged

web	server	such	as	IIS,	Apache

Server,	or	NGINX.	However,	you

don’t	strictly	need	a	full	web	server

to	run	an	ASP.NET	Core

application.	All	ASP.NET	Core

applications	are	equipped	with

their	own	basic	web	server

(Kestrel)	that	can	still	receive

HTTP	requests	over	a	configured

port.

The	console	application	builds	a	host

environment	where	requests	will	be

processed	through	a	pipeline.	In	this

chapter,	we’ve	scratched	the	surface	of

the	HTTP	pipeline	and	web	server

architecture	and	discussed	how	to

arrange	mini	websites	and	sites	that

can	serve	static	files.	In	the	next

chapter,	we’ll	attack	dynamic

processing	of	requests,	and	we’ll

introduce	routes,	controllers,	and

views.

PART	II

The	ASP.NET	MVC
Application	Model
You’ve	already	had	your	first	taste	of

ASP.NET	Core	development	and	what

it	can	do.	Now,	it’s	time	to	explore	its

powerful	ASP.NET	Model-View-

Controller	(MVC)	application	model.

If	you’ve	coded	with	ASP.NET	MVC,

you’ll	find	much	that’s	familiar	here.

In	fact,	the	MVC	concepts

implemented	by	ASP.NET	Core	won’t

surprise	users	of	platforms	such	as

Rails	and	Django,	or	front-end

frameworks	like	Angular.	Of	course,

the	details	matter,	so	Part	II	drills

down	on	these,	helping	you	make	the

most	of	ASP.NET	Core’s	modern

application	model	whatever	your

background.

Chapter	3,	Bootstrapping	ASP.NET

MVC,	helps	you	get	your	MVC

infrastructure	up	and	running.	You’ll

enable	the	MVC	application	model,

register	the	MVC	service,	enable	and

configure	routing,	and	see	how

routing	fits	into	the	workflow	of	an

ASP.NET	MVC	request.

Next,	Chapter	4,	ASP.NET	MVC

Controllers	introduces	the

fundamental	pillar	of	the	ASP.NET

MVC	application	model,	showing	how

controllers	govern	request

processing[md]from	capturing	input

to	organizing	a	valid	response.

Chapter	5,	ASP.NET	MVC	Views,

introduces	the	framework’s	view

engine	for	generating	HTML	markup

that	browsers	can	process.	Finally,

Chapter	6,	The	Razor	Syntax,

introduces	Microsoft’s	improved

Razor	markup	language	for	building

modern	HTML	pages	more	simply

and	efficiently.

—Herman	Melville,	“Moby	Dick”

CHAPTER	3

Bootstrapping	ASP.NET	MVC
It	is	not	down	in	any	map;	true

places	never	are.

ASP.NET	Core	fully	supports	the

specific	ASP.NET	Model-View-

Controller	(MVC)	application	model

in	which	the	URL	of	an	incoming

request	is	resolved	to	a	pair	of

controller/action	items.	The

controller	item	identifies	a	class

name;	the	action	item	identifies	a

method	on	the	controller	class.	The

processing	of	the	request,	therefore,	is

a	matter	of	executing	the	given	action

method	of	the	given	controller	class.

The	ASP.NET	MVC	application	model

in	ASP.NET	Core	is	nearly	identical	to

the	MVC	application	model	available

in	classic	ASP.NET,	and	it	doesn’t

even	differ	too	much	from

implementations	of	the	same	MVC

pattern	you	find	in	other	web

platforms	such	as	CakePHP	for	PHP,

Rails	for	Ruby,	and	Django	for

Python.	The	MVC	pattern	is	also

pretty	popular	among	front-end

frameworks,	most	notably	Angular

and	KnockoutJS.

In	this	chapter,	we’ll	go	through	the

preliminary	steps	that	ultimately	set

up	the	ASP.NET	MVC	Core	pipeline

and	pick	up	the	handler	responsible

for	the	actual	processing	of	any

incoming	requests.

ENABLING	THE	MVC

ENABLING	THE	MVC
APPLICATION	MODEL

If	you’re	coming	to	ASP.NET	Core

from	an	ASP.NET	background,

having	to	explicitly	enable	the	MVC

application	model	might	seem

strange.	First	and	foremost,

ASP.NET	Core	is	a	fairly	generic

web	framework	that	allows

requests	to	be	handled	through	a

centralized	endpoint—the

terminating	middleware.

Also,	ASP.NET	supports	a	more

sophisticated	endpoint	based	on

controller	actions.	However,	if	this	is

the	application	model	you	want,	then

you	have	to	enable	it	so	that	the

terminating	middleware—the	Run

method	we	discussed	in	Chapter	2—is

bypassed.

Registering	the	MVC	Service

The	beating	heart	of	the	MVC

application	model	is	the

MvcRouteHandler	service.

Although	publicly	documented,	the

service	is	not	one	that	you	want	to

use	directly	in	your	application

code.	However,	its	role	is	crucial	for

the	whole	ASP.NET	MVC

machinery.	The	MVC	route	handler

is	the	engine	responsible	for

resolving	the	URL	to	an	MVC

route,	invoking	the	selected

controller	method,	and	processing

the	results	of	the	action.

	Note	MvcRouteHandler	is	also	the	name	of	a	class	used	in
the	implementation	of	classic	ASP.NET	MVC.	In	classic	ASP.NET	MVC,
however,	the	class	played	a	more	limited	role	than	it	does	in	ASP.NET	Core.
For	capturing	the	big	picture	of	what	the	class	does	in	ASP.NET	Core,	rather
than	just	relying	on	the	ability	of	a	search	engine,	it	is	preferable	to	look
directly	at	its	implementation,	which	can	be	found	at	http://bit.ly/2kOrKcJ
(http://bit.ly/2kOrKcJ).

Adding	the	MVC	Service

Adding	the	MVC	Service

To	add	the	MVC	route	handler

service	to	the	ASP.NET	host,	you

proceed	in	the	same	way	as	for	any

other	application	service	such	as

static	files,	authentication,	or

Entity	Framework	Core.	You	just

add	a	line	of	code	to	the

ConfigureServices	method	of	the

startup	class.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Package	required:	Microsoft.AspNetCore.Mvc	or	Microsoft.As
pNetCore.All	(only	in	2.0)

				services.AddMvc();

}

Note	that	the	code	requires	a

reference	to	an	additional	package

that	the	IDE	(Visual	Studio,	for

instance)	typically	offers	to	restore	for

you.	The	AddMvc	method	has	two

overloads.	The	parameter-less	method

accepts	all	default	settings	for	the

MVC	service.	The	second	overload,	as

below,	allows	you	to	select	ad	hoc

options.

Click	here	to	view	code	image

//	Receives	an	instance	of	the	MvcOptions	class

services.AddMvc(options	=>

{

				options.ModelBinderProviders.Add(new	SmartDateBinderProvider(
));

				options.SslPort	=	345;

});

Options	are	specified	through	an

instance	of	the	MvcOptions	class.	The

class	is	a	container	of	configuration

parameters	you	can	change	in	the

MVC	framework.	For	example,	the

code	snippet	above	adds	a	new	model

binder	that	parses	specific	strings	into

valid	dates	and	specifies	the	SSL	port

to	be	used	when	the	controller	class	is

decorated	with	the

RequireHttpsAttribute.	The	full	list	of

configurable	options	can	be	found

here:	http://docs.microsoft.com/en-

us/aspnet/core/api/microsoft.aspnet

core.mvc.mvcoptions

(http://docs.microsoft.com/en-

us/aspnet/core/api/microsoft.aspnetcore.mvc.

mvcoptions).

Additional	Services	Enabled

The	AddMvc	method	is	only	an

umbrella	method	under	which

many	other	services	are	initialized

and	added	to	the	pipeline.	Table	3-1

provides	the	full	list.

TABLE	3-1	List	of	MVC	services

enabled	by	the	AddMvc	method

Servi

ce

Description

MVC	

Core

Set	of	core	services	of	the	MVC	application	model	

including	routing	and	controllers

API	

Explo

rer

Service	responsible	for	gathering	and	exposing	

information	about	controllers	and	actions	for	

dynamic	discovery	of	capabilities	and	help	pages

Autho

rizatio

n

Service	behind	authentication	and	authorization

Defau

lt	

Frame

work	

Parts

Service	that	adds	input	tag	helpers	and	URL	

resolution	helpers	to	the	list	of	application	parts

Form

atter	

Mappi

ngs

Service	that	sets	up	default	media	type	mappings

Views Service	to	process	action	results	as	HTML	views

Razor	

Engin

e

Registers	the	Razor	view	and	page	engine	into	the	

MVC	system

Tag	

Helpe

rs

Service	to	reference	the	part	of	the	framework	

about	tag	helpers

Data	

Annot

ations

Service	to	reference	the	part	of	the	framework	

about	data	annotations

JSON	

Form

atters

Service	to	process	action	results	as	JSON	streams

CORS Service	to	reference	the	part	of	the	framework	

about	cross-origin	resource	sharing	(CORS)

For	more	details,	see	the	method’s

source	code	at	http://bit.ly/2l3H8QK

(http://bit.ly/2l3H8QK).

If	you	have	memory	constraints—for

example,	you’re	hosting	the

application	in	the	cloud—you	might

want	the	application	to	reference

nothing	but	the	bare	metal	of	the

framework.	The	list	of	services	in

Table	3-1	can	be	made	shorter;	how

much	shorter	mostly	depends	on	the

actual	features	you	need	to	have	in	the

application.	The	following	code	is

enough	to	serve	plain	HTML	views

without	more	advanced	features,	such

as	data	annotations	for	form

validation	and	tag	helpers.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				var	builder	=	services.AddMvcCore();

				builder.AddViews();

				builder.AddRazorViewEngine();

}

The	code	above,	though,	is	not	enough

to	return	formatted	JSON	data.	To

add	that	capability	as	well,	you	just

add:

builder.AddJsonFormatters();

Note	that	some	of	the	services	in

Table	3-1	are	useful	only	if	you	are

exposing	a	web	API.	These	services

are	API	Explorer,	Formatter

Mappings,	and	CORS.	Tag	helpers

and	default	application	parts	can	also

be	blissfully	dropped	if	you’re	happy

to	content	yourself	with	a

programming	experience	like	that	of

classic	ASP.NET	MVC.

Activating	the	MVC	Service

Activating	the	MVC	Service

In	the	Configure	method	of	the

startup	class,	you	call	the	UseMvc

method	to	configure	the	ASP.NET

Core	pipeline	to	support	the	MVC

application	model.	At	this	point,

everything	around	the	MVC

application	model	is	completely	set

up	except	conventional	routing.	As

we’ll	see	in	a	moment,	conventional

routing	consists	of	a	bunch	of

pattern	rules	that	identify	all	valid

URLs	the	application	intends	to

process.

In	the	MVC	application	model,	that’s

not	the	only	way	to	bind	actions	to

URLs.	For	example,	if	you	decide	to

associate	actions	to	URLs	through

attributes	(as	we’ll	see	in	Chapter	4),

then	you’re	done.	Otherwise,	for	the

MVC	service	to	be	effective,	you	also

must	list	the	URL	routes	that	the

application	intends	to	handle.

A	route	is	a	URL	template	that	your

application	can	recognize	and	process.

A	route	is	ultimately	mapped	to	a	pair

of	controller	and	action	names.	As

we’ll	see	in	a	moment,	you	can	add	as

many	routes	as	you	wish,	and	those

routes	can	take	nearly	any	shape	you

like	them	to	be.	An	internal	MVC

service	is	responsible	for	request

routing;	it	is	automatically	registered

when	you	enable	MVC	Core	services.

Enabling	Conventional	Routing

To	be	usable,	your	application

should	provide	rules	to	select	the

URLs	it	wants	to	handle.	However,

not	all	feasible	URLs	must	be	listed

explicitly;	one	or	more	URL

templates	with	placeholders	will	do

the	job.	A	default	routing	rule

exists,	which	is	sometimes	referred

to	as	conventional	routing.	Usually,

the	default	route	is	enough	for	the

entire	application.

Adding	the	Default	Route

If	you	don’t	have	any	special

concerns	about	routes,	the	simplest

and	easiest	method	is	to	use	the

default	route	only.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				app.UseMvcWithDefaultRoute();

}

The	actual	code	behind	the

UseMvcWithDefaultRoute	method	is

shown	below.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				app.UseMvc(routes	=>

				{

								routes.MapRoute(

												name:	"default",

												template:	"{controller=Home}/{action=Index}/{id?}");

				});

}

As	per	the	previous	code,	any

requested	URL	will	be	parsed	in

segments:

The	first	segment	right	after	the	server	name	will	be	matched	to	a

route	parameter	named	controller.

The	second	segment	will	be	matched	to	a	route	parameter	named

action.

The	third	segment	(if	any)	will	be	matched	to	an	optional	route

parameter	named	id.

In	light	of	this,	the	URL	Product/List

will	be	matched	to	a	controller	name

of	Product	and	an	action	method	of

List.	If	the	URL	contains	fewer	than

two	segments,	default	values	apply.

For	example,	the	root	URL	of	the

website	will	match	a	controller	name

of	Home	and	an	action	method	of

Index.	The	default	route	also	supports

an	optional	third	segment	whose

content	is	matched	to	a	named	value

of	Id.	Note	that	the	?	symbol	indicates

that	the	argument	is	optional.

Route	parameters—and	in	particular,

route	parameters	named	controller

and	action—play	a	key	role	in	the

overall	processing	of	an	incoming

request	because	they	point	in	some

way	to	the	code	that	will	actually

produce	the	response.	Any	request

successfully	mapped	to	a	route	will	be

processed	by	executing	a	method	on	a

controller	class.	The	route	parameter

named	controller	identifies	the

controller	class,	and	the	route

parameter	named	action	identifies	the

method	to	invoke.	We’ll	cover

controllers	in	detail	in	the	next

chapter.

When	No	Routes	Are	Configured

The	UseMvc	method	can	also	be

invoked	without	parameters.	When

this	happens,	the	ASP.NET	MVC

application	is	fully	functional	but

has	no	configured	routes	it	can

handle.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				app.UseMvc();

}

Note	that	the	code	above	is	fully

equivalent	to	the	snippet	below:

app.UseMvc(routes	=>	{	});

It	would	be	interesting	to	see	what

happens	when	no	routes	are

configured.	For	doing	so,	let	me

briefly	anticipate	how	a	simple

controller	class	might	look.	Say	you

add	a	new	class	to	the	project,	named

HomeController.cs,	and	then	invoke

the	home/index	URL	from	the

address	bar.

Click	here	to	view	code	image

public	class	HomeController	:	Controller

{

				public	IActionResult	Index()

				{

							//	Writes	out	the	Home.Index	text

							return	new	ContentResult	{	Content	=	"Home.Index"	};

				}

}

Conventional	routing	would	map	the

URL	home/index	to	the	Index	method

of	the	Home	controller.	As	a	result,

you	should	see	a	blank	page	with	the

text	Home.Index	printed.	If	you	use

conventional	routing	with	the	above

configuration,	all	you	get	is	an	HTTP

404	page-not-found	error.

Let’s	add	now	some	terminating

middleware	to	the	pipeline	and	try	it

again.	Figure	3-1	shows	the	new

output	you	get.

Click	here	to	view	code	image

app.Run(async	(context)	=>

{

				await	context.Response.WriteAsync(

										"I,d	rather	say	there	are	no	configured	routes	here.");

});

FIGURE	3-1	No	routes	are	configured	in	the	application

Now,	let’s	go	back	the	default	route

and	try	again.	Figure	3-2	shows	the

result.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				app.UseMvcWithDefaultRoute();

				app.Run(async	(context)	=>

				{

								await	context.Response.WriteAsync(

														"I,d	rather	say	there	are	no	configured	routes	here
.");

				})

}

FIGURE	3-2	The	default	route	is	configured	in	the	application

The	conclusion	is	twofold.	On	the	one

hand,	we	can	say	that	UseMvc

changes	the	structure	of	the	pipeline

bypassing	any	terminating

middleware	you	may	have	defined.	On

the	other	hand,	if	a	matching	route

can’t	be	found,	or	doesn’t	work	(as	a

result	of	a	missing	controller	or

method),	then	the	terminating

middleware	regains	a	place	in	the

pipeline	and	runs	as	expected.

Let’s	learn	a	bit	more	about	the

internal	behavior	of	the	UseMvc

method.

The	Routing	Service	and	the	Pipeline

Internally,	the	UseMvc	method

defines	a	route	builder	service	and

configures	it	to	use	the	provided

routes	and	a	default	handler.	The

default	handler	is	an	instance	of	the

MvcRouteHandler	class.	This	class

is	responsible	for	finding	a

matching	route	and	for	extracting

controller	and	action	method

names	from	the	template.

Also,	the	MvcRouteHandler	class	will

also	try	to	execute	the	action	method.

If	successful,	it	marks	the	context	of

the	request	as	handled	so	that	no

further	middleware	will	ever	touch	the

generated	response.	Otherwise,	it	lets

the	request	proceed	through	the

pipeline	until	fully	processed.	Figure

3-3	summarizes	the	workflow	with	a

diagram.

FIGURE	3-3	Routes	and	pipeline

	Note	In	classic	ASP.NET	MVC,	failing	to	find	a	matching
route	for	a	URL	would	result	in	an	HTTP	404	status	code.	In	ASP.NET	Core,
instead,	any	terminating	middleware	is	given	a	chance	to	process	the	request.

CONFIGURING	THE	ROUTING

CONFIGURING	THE	ROUTING
TABLE

Historically,	the	primary	way	to

define	routes	in	ASP.NET	MVC	is

to	add	URL	templates	to	an	in-

memory	table.	It	is	worth	noting

that	ASP.NET	Core	also	supports

routes	defined	as	attributes	of

controller	methods,	as	you’ll	learn

in	Chapter	3.

Whether	defined	through	a	table	entry

or	through	an	attribute,	conceptually,

a	route	is	always	the	same	and	always

contains	the	same	amount	of

information.

Anatomy	of	a	Route

A	route	is	essentially	given	by	a

unique	name	and	a	URL	pattern.

The	URL	pattern	can	be	made	of

static	text	or	can	include	dynamic

parameters	whose	values	are

excerpted	from	the	URL	and

possibly	the	whole	HTTP	context.

The	full	syntax	for	defining	a	route

is	shown	below.

Click	here	to	view	code	image

app.UseMvc(routes	=>	

{			

			routes.MapRoute(

							name:	"your_route",

							template:	"...",

							defaults:	new	{	controller	=	"...",	action	=	"..."	},

							constraints:	{	...	},

							dataTokens:	{	...	});

})

The	template	argument	refers	to	the

URL	pattern	of	your	choice.	As

mentioned,	for	the	default

conventional	route,	it	is	equal	to:

{controller}/{action}/{id?}

Defining	additional	routes	can	take

any	form	you	like	and	can	include

both	static	text	and	custom	route

parameters.	The	defaults	argument

specifies	default	values	for	the	route

parameters.	The	template	argument

can	be	fused	to	the	defaults	argument.

When	this	happens,	the	defaults

argument	is	omitted,	and	the

template	argument	takes	the

following	form.

Click	here	to	view	code	image

template:	"{controller=Home}/{action=Index}/{id?}"

As	mentioned,	if	the	?	symbol	is

appended	to	the	parameter	name,

then	the	parameter	is	optional.

The	constraints	argument	refers	to

constraints	set	on	a	particular	route

parameter	such	as	acceptable	values

or	required	type.	The	dataTokens

argument	refers	to	additional	custom

values	associated	with	the	route	but

not	used	to	determine	whether	the

route	matches	a	URL	pattern.	We’ll

return	on	these	advanced	aspects	of	a

route	in	a	moment.

Defining	Custom	Routes

Conventional	routing	figures	out

controller	and	method	name

automatically	from	the	segments	of

the	URL.	Custom	routes	just	use

alternative	algorithms	to	figure	out

the	same	information.	More	often,

custom	routes	are	made	of	static

text	explicitly	mapped	to	a

controller/method	pair.

While	conventional	routing	is	fairly

common	in	ASP.NET	MVC

applications,	there’s	no	reason	for	not

having	additional	routes	defined.

Typically,	you	don’t	disable

conventional	routing;	you	simply	add

some	ad	hoc	routes	to	have	some

controlled	URLs	to	invoke	a	certain

behavior	of	the	application.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				//	Custom	routes

				app.UseMvc(routes	=>

				{

								routes.MapRoute(name:	"route-today",

												template:	"today",

												defaults:	new	{	controller="date",	action="day",	offs
et	=	0	});

								routes.MapRoute(name:	"route-yesterday",

												template:	"yesterday",

												defaults:	new	{	controller	=	"date",	action	=	"day",	
offset	=	-1	});

								routes.MapRoute(name:	"route-tomorrow",

												template:	"tomorrow",

												defaults:	new	{	controller	=	"date",	action	=	"day",	
offset	=	1	});

				});

				//	Conventional	routing

				app.UseMvcWithDefaultRoute();

				//	Terminating	middleware

				app.Run(async	(context)	=>

				{

								await	context.Response.WriteAsync(

												"I'd	rather	say	there	are	no	configured	routes	here."
);

				});

}

Figure	3-4	Shows	the	output	of	the

newly	defined	routes.

FIGURE	3-4	New	routes	in	action

All	the	new	routes	are	based	on	a

static	text	mapped	to	the	method	Day

on	the	controller	Date.	The	only

difference	is	the	value	of	an	additional

route	parameter—the	offset

parameter.	For	the	sample	code	to

work	as	shown	in	the	Figure	3-4,	a

DateController	class	is	required	in	the

project.	Here’s	a	possible

implementation:

Click	here	to	view	code	image

public	class	DateController	:	Controller	

{

				public	IActionResult	Day(int	offset)

				{

							...

				}

}

It’s	interesting	to	notice	what	happens

when	you	invoke	a	URL	like	the

following	/date/day?offset=1.	Not

surprisingly,	the	output	is	the	same	as

invoking	/tomorrow.	This	is	the	effect

of	having	custom	routes	and

conventional	routing	working	side	by

side.	Instead,	the	URL	/date/day/1

won’t	be	recognized	properly,	but	you

won’t	get	an	HTTP	404	error	or	a

message	from	the	terminating

middleware.	The	URL	is	resolved	as	if

you	had	called	/today	or	/date/day.

As	expected,	the	URL	/date/day/1

doesn’t	match	any	of	the	custom

routes.	However,	it	is	perfectly

matched	by	the	default	route.	The

controller	parameter	is	set	to	Date,

and	the	action	parameter	is	set	to

Day.	However,	the	default	route

features	a	third	optional	parameter—

the	id	parameter—whose	value	is

excerpted	from	the	third	segment	of

the	URL.	The	value	1	of	the	sample

URL	is	then	assigned	to	a	variable

named	id,	not	to	a	variable	named

offset.	The	parameter	offset	that	is

passed	to	the	Day	method	in	the

controller	implementation	only	gets

the	default	value	of	its	type—0	for	an

integer.

To	give	a	URL	like	/date/day/1	the

meaning	of	one	day	after	today,	you

must	slightly	rework	the	list	of	custom

routes	and	add	a	new	one	at	the	end	of

the	table.

Click	here	to	view	code	image

routes.MapRoute(name:	"route-day",

																template:	"date/day/{offset}",

																defaults:	new	{	controller	=	"date",	action	=	"da
y",	offset	=	0	});

Also,	you	could	even	edit	the	route-

today	route	as	below:

Click	here	to	view	code	image

routes.MapRoute(name:	"route-today",

																template:	"today/{offset}",

																defaults:	new	{	controller	=	"date",	action	=	"da
y",	offset	=	0	});

Now	any	text	following	/date/day/

and	/today/	will	be	assigned	to	the

route	parameter	named	offset	and

made	available	within	the	controller

class	action	methods	(see	Figure	3-5).

FIGURE	3-5	Slightly	edited	routes

At	this	point,	a	good	question	would

be:	Is	there	a	way	to	force	the	text

being	assigned	to	the	offset	route

parameter	to	be	a	number?	That’s	just

what	route	constraints	are	for.

However,	we	have	a	couple	of	other

topics	to	cover	before	approaching

route	constraints.

	Important	The	MapRoute	method	maps	the	URL	to	a	pair
of	controller/method	regardless	of	the	HTTP	verb	used	for	the	request.	You
are	also	welcome	to	map	to	a	specific	URL	verb	using	other	mapping
methods	such	as	MapGet,	MapPost,	and	MapVerb.

Order	of	Routes

When	you	work	with	multiple

routes,	the	order	in	which	they

appear	in	the	table	is	important.

The	routing	service,	in	fact,	scans

the	route	table	from	top	to	bottom

and	evaluates	routes	as	they

appear.	The	scan	stops	at	the	first

match.	In	other	words,	very	specific

routes	should	be	given	a	higher

position	in	the	table	so	that	they

are	evaluated	before	more	generic

routes.

The	default	route	is	a	fairly	generic

one	because	it	determines	controller

and	action	directly	from	the	URL.	The

default	route	is	so	generic	that	it	can

even	be	the	only	route	you	use	in	an

application.	Most	of	the	ASP.NET

MVC	applications	I	have	in

production	only	use	conventional

routing.

If	you	have	custom	routes,	however,

make	sure	you	list	them	before

enabling	conventional	routing;

otherwise,	you	risk	that	the	greedier

default	route	will	capture	the	URL.

Note,	however,	that	in	ASP.NET	MVC

Core,	capturing	the	URL	is	not	limited

to	extracting	the	name	of	the

controller	and	method.	A	route	is

selected	only	if	both	the	controller

class	and	the	related	method	exist	in

the	application.	For	example,	let’s

consider	a	scenario	in	which

conventional	routing	is	enabled	as	the

first	route	and	is	followed	by	all

custom	routes	we	saw	in	Figure	3-5.

What	happens	when	the	user	requests

/today?	The	default	route	would

resolve	it	to	the	Today	controller	and

Index	method.	However,	if	the

application	lacks	a	TodayController

class,	or	an	Index	action	method,	then

the	default	route	is	discarded,	and	the

search	proceeds	with	the	next	route.

It	might	be	a	good	idea	to	have	a

catch-all	route	at	the	very	bottom	of

the	table,	after	the	default	route.	A

catch-all	route	is	a	fairly	generic	route

that	is	matched	in	any	case	and	works

as	a	recovery	step.	Here’s	an	example

of	it:

Click	here	to	view	code	image

app.UseMvc(routes	=>

{

			//	Custom	routes

});

//	Conventional	routing

app.UseMvcWithDefaultRoute();

//	Catch-all	route

app.UseMvc(routes	=>

{

				routes.MapRoute(name:	"catch-all",

								template:	"{*url}",

								defaults:	new	{	controller	=	"error",	action	=	"message"	
});

});

The	catch-all	route	map	to	the

Message	method	of	the

ErrorController	class	that	accepts	a

route	parameter	named	url.	The

asterisk	symbol	indicates	that	this

parameter	grabs	the	rest	of	the	URL.

Accessing	Route	Data	Programmatically

The	information	available	about

the	route	that	matches	the

requested	URL	is	saved	to	a	data

container	of	type	RouteData.

Figure	3-6	provides	a	glimpse	of

the	internals	of	RouteData	during

the	execution	of	a	request	for

home/index.

FIGURE	3-6	RouteData	internals

The	incoming	URL	has	been	matched

to	the	default	route	and,	because	of

the	URL	pattern,	the	first	segment	is

mapped	to	the	controller	route

parameter	while	the	second	segment

is	mapped	to	the	action	route

parameter.	Route	parameters	are

defined	within	the	URL	template

through	the	{parameter}	notation.

The	{parameter=value}	notation,

instead,	defines	a	default	value	for	the

parameter	to	be	used	in	case	the	given

segment	is	missing.	Route	parameters

can	be	accessed	programmatically

using	the	following	expression:

Click	here	to	view	code	image

var	controller	=	RouteData.Values["controller"];

var	action	=	RouteData.Values["action"];

The	code	works	nicely	if	you	are	in	the

context	of	a	controller	class	that

inherits	from	the	base	Controller

class.

As	we’ll	see	in	Chapter	4,	though,

ASP.NET	Core	also	supports	plain-old

CLR	object	(POCO)	controllers,

namely	controller	classes	that	do	not

inherit	from	Controller.	In	this	case,

getting	the	route	data	is	a	bit	more

complicated.

Click	here	to	view	code	image

public	class	PocoController

{

				private	IActionContextAccessor	_accessor;

				public	PocoController(IActionContextAccessor	accessor)

				{

								_accessor	=	accessor;

				}

				public	IActionResult	Index()

				{

								var	controller	=	_accessor.ActionContext.RouteData.Values
["controller"];

								var	action	=	_accessor.ActionContext.RouteData.Values["ac
tion"];

								var	text	=	string.Format("{0}.{1}",	controller,	action);

								return	new	ContentResult	{	Content	=	text	};

				}

}

You	need	to	have	an	action	context

accessor	injected	into	the	controller.

ASP.NET	Core	provides	a	default

action	context	accessor	but	binding	it

to	the	services	collection	is	a

responsibility	of	the	developer.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

			//	More	code	may	go	here

			...

			//	Register	the	action	context	accessor

			services.AddSingleton<IActionContextAccessor,	ActionContextAcc
essor>();

}

To	access	route	data	parameters	from

within	controllers,	you	don’t	strictly

need	to	use	any	of	the	techniques

illustrated	here.	As	we’ll	see	in

Chapter	4,	the	model	binding

infrastructure	will	automatically	bind

HTTP	context	values	to	declared

parameters	by	name.

	Important	We	don’t	recommend	injecting	the
IActionContextAccessor	service	because	it	performs	poorly	and,	more

importantly,	is	rarely	really	needed.	Model	binding	is	a	much	clearer	and
faster	way	to	grab	input	HTTP	data	even	in	POCO	controllers.

Advanced	Aspects	of	Routing

A	route	can	be	further

characterized	by	constraints	and

data	tokens.	A	constraint	is	a	sort

of	a	validation	rule	that	is

associated	with	a	route	parameter.

If	a	constraint	is	not	validated	the

route	is	not	matched.	Data	tokens,

instead,	are	simple	bits	of

information	associated	with	a	route

made	available	to	the	controller	but

not	used	to	determine	if	a	URL

matches	the	route.

Route	Constraints

Technically	speaking,	a	constraint

is	a	class	that	implements	the

IRouteConstraint	interface	and

essentially	validates	the	value

passed	to	a	given	route	parameter.

For	example,	you	can	use	a

constraint	to	ensure	that	a	route	is

matched	only	if	a	given	parameter

receives	a	value	of	the	expected

type.	Here’s	how	you	define	a	route

constraint:

Click	here	to	view	code	image

app.UseMvc(routes	=>

{

				routes.MapRoute(name:	"route-today",

																				template:	"today/{offset}",

																				defaults:	new	{	controller="date",	action="da
y",	offset=0	}

																				constraints:	new	{	offset	=	new	IntRouteConst
raint()	});

});

In	the	example,	the	offset	parameter

of	the	route	is	subject	to	the	action	of

the	IntRouteConstraint	class,	one	of

the	predefined	constraint	classes	in

the	ASP.NET	MVC	Core	framework.

The	following	code	shows	the	skeleton

of	a	constraint	class.

Click	here	to	view	code	image

//	Code	adapted	from	the	actual	implementation	of	IntRouteConstra
int	class.	

public	class	IntRouteConstraint	:	IRouteConstraint

{

				public	bool	Match(

												HttpContext	httpContext,

												IRouter	route,

												string	routeKey,

												RouteValueDictionary	values,

												RouteDirection	routeDirection)

				{

									object	value;

									if	(values.TryGetValue(routeKey,	out	value)	&&	value	!=	
null)

									{

													if	(value	is	int)	return	true;

													int	result;

													var	valueString	=	Convert.ToString(value,	CultureInf
o.InvariantCulture);

													return	int.TryParse(valueString,	

																													NumberStyles.Integer,	

																													CultureInfo.InvariantCulture,	

																													out	result);

									}

									return	false;

				}

}

A	constraint	class	extracts	the	value	of

the	routeKey	parameter	from	the

dictionary	of	route	values	and	makes

reasonable	checks	on	it.	The

IntRouteConstraint	class	simply

checks	that	the	value	can	be

successfully	parsed	to	an	integer.

Note	that	a	constraint	can	be

associated	with	a	unique	name	string

that	explains	how	the	constraint	is

used.	The	constraint	name	can	be

used	to	specify	the	constraint	more

compactly.

Click	here	to	view	code	image

routes.MapRoute(name:	"route-day",

																template:	"date/day/{offset:int}",

																defaults:	new	{	controller	=	"date",	action	=	"da
y",	offset	=	0	});

The	name	of	the	IntRouteConstraint

class	is	int	meaning	that	{offset:int}

associates	the	action	of	the	class	to	the

offset	parameter.	IntRouteConstraint

is	one	of	the	predefined	route

constraint	classes	in	ASP.NET	MVC

Core,	and	their	names	are	set	at

startup	and	fully	documented.	If	you

create	a	custom	constraint	class,	you

should	set	the	name	of	the	constraint

when	you	register	it	with	the	system.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				...

				services.Configure<RouteOptions>(options	=>

												options.ConstraintMap.Add("your-route",	typeof(YourRo
uteConstraint)));

}

Based	on	that	you	can	now	use	the

{parametername:contraintprefix}

notation	to	bind	the	constraint	to	a

given	route	parameter.

Predefined	Route	Constraints

Table	3-2	presents	the	list	of

predefined	route	constraints	and

their	mapped	names.

TABLE	3-2	Predefined	route

constraints

Ma

ppi

ng	

Na

me

Class Description

Int IntRoute

Constrai

nt

Ensures	the	route	parameter	is	set	to	

an	integer

Bool BoolRout

eConstra

int

Ensures	the	route	parameter	is	set	to	

a	Boolean	value

date

time

DateTim

eRouteCo

nstraint

Ensures	the	route	parameter	is	set	to	

a	valid	date

deci

mal

Decimal

RouteCo

nstraint

Ensures	the	route	parameter	is	set	to	

a	decimal

dou

ble

DoubleR

outeCons

traint

Ensures	the	route	parameter	is	set	to	

a	double

Floa

t

FloatRou

teConstr

aint

Ensures	the	route	parameter	is	set	to	

a	float

Gui

d

GuidRout

eConstra

int

Ensures	the	route	parameter	is	set	to	

a	GUID

Lon

g

LongRou

teConstr

aint

Ensures	the	route	parameter	is	set	to	

a	long	integer

minl

engt

h(N)

MinLeng

thRouteC

onstraint

Ensures	the	route	parameter	is	set	to	

a	string	no	shorter	than	the	specified	

length

max

leng

th(N

)

MaxLeng

thRouteC

onstraint

Ensures	the	route	parameter	is	set	to	

a	string	no	longer	than	the	specified	

length

leng

th(N

)

LengthR

outeCons

traint

Ensures	the	route	parameter	is	set	to	

a	string	of	the	specified	length

min

(N)

MinRout

eConstra

int

Ensures	the	route	parameter	is	set	to	

an	integer	greater	than	the	specified	

value

max

(N)

MaxRout

eConstra

int

Ensures	the	route	parameter	is	set	to	

an	integer	smaller	than	the	specified	

value

rang

e(M,	

N)

RangeRo

uteConst

raint

Ensures	the	route	parameter	is	set	to	

an	integer	that	falls	within	the	

specified	range	of	values

alph

a

AlphaRo

uteConst

raint

Ensures	the	route	parameter	is	set	to	

a	string	made	of	alphabetic	characters

rege

x(R

E)

RegexInli

neRouteC

onstraint

Ensures	the	route	parameter	is	set	to	

a	string	compliant	with	the	specified	

regular	expression

requ

ired

Required

RouteCo

nstraint

Ensures	the	route	parameter	has	an	

assigned	value	in	the	URL

As	you	might	have	noticed,	the	list	of

predefined	route	constraints	doesn’t

include	a	fairly	common	one:

Ensuring	that	the	route	parameter

takes	a	value	from	a	known	set	of

possible	values.	To	constrain	a

parameter	in	this	way,	you	can	use	a

regular	expression,	as	shown	below.

{format:regex(json|xml|text)}

A	URL	would	match	the	route	with

such	a	format	parameter	only	if	the

parameter	takes	any	of	the	listed

substrings.

Data	Tokens

Data	Tokens

In	ASP.NET	MVC,	a	route	is	not

limited	to	the	information	within

the	URL.	The	URL	segments	are

used	to	determine	whether	a	route

matches	a	request,	but	additional

information	can	be	associated	with

a	route	and	retrieved

programmatically	later.	To	attach

extra	information	to	a	route	you

use	data	tokens.

A	data	token	is	defined	with	the	route

and	is	nothing	more	than	a

name/value	pair.	Any	route	can	have

any	number	of	data	tokens.	Data

tokens	are	free	bits	of	information	not

used	to	match	a	URL	to	the	route.

Click	here	to	view	code	image

app.UseMvc(routes	=>

{

				routes.MapRoute(name:	"catch-all",

								template:	"{*url}",

								defaults:	new	{	controller	=	"home",	action	=	"index"	},

								constraints:	new	{	},	

								dataTokens:	new	{	reason	=	"catch-all"	});

});

Data	tokens	are	not	a	critical,	must-

have	feature	of	the	ASP.NET	MVC

routing	system,	but	they	are

sometimes	useful.	For	example,	let’s

say	you	have	a	catch-all	route	mapped

to	a	controller/action	pair	that	is	also

used	for	other	purposes	and	imagine

that	the	Index	method	of	the	Home

controller	is	used	for	a	URL	that

doesn’t	match	any	of	the	routes.	The

idea	is	to	show	the	home	page	if	a

more	specific	URL	can’t	be

determined.

How	can	you	distinguish	between	a

direct	request	for	the	home	page	and

the	home	page	displayed	because	of	a

catch-all	routing?	Data	tokens	are	an

option.	Here’s	how	you	can	retrieve

data	tokens	programmatically.

Click	here	to	view	code	image

var	catchall	=	RouteData.DataTokens["reason"]	??	"";

Data	tokens	are	defined	with	routes

but	are	only	used	programmatically.

MAP	OF	ASP.NET	MVC
MACHINERY

Routing	is	the	first	step	of	the

longer	process	that	takes	an	HTTP

request	to	produce	a	response.	The

ultimate	result	of	the	routing

process	is	the	paired

controller/action	that	will	process

requests	not	mapped	to	a	physical

static	file.	In	Chapter	4,	we’ll	take	a

closer	look	at	controller	classes—

the	central	console	of	any	ASP.NET

MVC	applications.	Until	then,

though,	an	overall	look	at	the	entire

ASP.NET	MVC	machinery	is	in

order.

In	the	rest	of	the	book,	in	fact,	we’ll

focus	on	parts	and	how	to	configure

and	implement	them,	but	it	would	be

nice	to	see	the	big	picture	and	analyze

how	those	parts	relate	to	each	other

(see	Figure	3-7).

FIGURE	3-7	The	full	route	of	an	ASP.NET	MVC	request

The	machinery	is	triggered	by	an

HTTP	request	that	doesn’t	map	to	a

static	file.	First,	the	URL	goes	through

the	routing	system	and	is	mapped	to	a

controller	name	and	an	action	name.

	Important	In	this	chapter,	we	used	the	terms	“action”	and
“method”	interchangeably.	That	was	just	right	for	the	current	level	of
abstraction.	However,	in	the	overall	architecture	of	ASP.NET	MVC,	the
concept	of	an	“action”	and	the	concept	of	a	“method”	are	related	but	are	not
the	same.	The	term	“method”	refers	to	a	plain	public	method	defined	on	a
controller	class	not	marked	with	the	NonAction	attribute.	Such	a	method	is
commonly	referred	to	as	an	“action	method.”	Instead,	the	term,	“action,”	refers
to	a	plain	string	for	the	name	of	the	action	method	to	invoke	on	a	controller
class.	By	convention,	the	value	of	the	action	route	parameter	usually	matches
the	name	of	an	action	method	on	the	controller	class.	However,	as	we’ll	see	in
the	next	chapter,	a	level	of	indirection	is	possible,	and	a	method	with	a
custom	name	can	be	mapped	to	a	particular	action	name.

The	Action	Invoker

The	Action	Invoker

The	action	invoker	is	the	beating

heart	of	the	entire	ASP.NET	MVC

infrastructure	and	the	component

that	orchestrates	all	the	steps

necessary	to	process	a	request.	The

action	invoker	receives	the

controller	factory	and	the

controller	context,	a	container

object	populated	with	route	data

and	HTTP	request	information.	As

shown	in	Figure	3-7,	the	invoker

runs	its	own	pipeline	of	action

filters	and	provides	hooks	for	some

ad	hoc	application	code	to	run

before	and	after	the	actual

execution	of	the	request.

The	invoker	uses	reflection	to	create

an	instance	of	the	selected	controller

class	and	to	invoke	the	selected

method.	In	doing	so,	it	also	resolves

the	method’s	and	constructor’s

parameters,	reading	from	the	HTTP

context,	route	data,	and	the	system’s

DI	container.

As	we’ll	see	in	the	next	chapter,	any

controller	method	is	expected	to

return	an	object	wrapped	in	a

IActionResult	container.	As	the	name

suggests,	the	controller	method

returns	just	data	to	be	used	for	the

production	of	the	actual	response	that

will	be	sent	back	to	clients.	In	no	way

is	the	controller	method	responsible

for	writing	directly	to	the	response

output	stream.	The	controller	method

does	have	programmatic	access	to	the

response	output	stream,	but	the

recommended	pattern	is	that	the

method	packages	data	into	an	action

result	object	and	gives	instruction	to

the	invoker	on	how	to	further	process

it.

	Note	For	more	information	about	the	actual	behavior	of	the
ASP.NET	MVC	action	invoker,	refer	to	the	implementation	of	the	class
ControllerActionInvoker	at	http://bit.ly/2kQfNAA	(http://bit.ly/2kQfNAA).

Processing	Action	Results

The	controller	method’s	action

result	is	a	class	that	implements	the

IActionResult	interface.	The

ASP.NET	MVC	framework	defines

several	such	classes	for	the	various

types	of	output	a	controller	method

might	want	to	return:	HTML,

JSON,	plain	text,	binary	content,

and	specific	HTTP	responses.

The	interface	has	one	single	method

—ExecuteResultAsync—that	the

action	invoker	calls	to	have	the	data

embedded	in	the	specific	action	result

object	processed.	The	ultimate	effect

of	executing	an	action	result	is	writing

to	the	HTTP	response	output	filter.

Next,	the	action	invoker	runs	its

internal	pipeline	and	calls	out	the

request.	The	client—most	typically	the

browser—will	then	receive	any

generated	output.

Action	Filters

An	action	filter	is	a	piece	of	code

that	runs	around	the	execution	of	a

controller	method.	The	most

common	types	of	action	filters	are

filters	that	run	before	or	after	the

controller	method	executes.	For

example,	you	can	have	an	action

filter	that	only	adds	an	HTTP

header	to	a	request	or	an	action

filter	that	refuses	to	run	the

controller	method	if	the	request	is

not	coming	via	Ajax	or	from	an

unknown	IP	address	or	referrer

URL.

Action	filters	can	be	implemented	in

either	of	two	ways:	as	method

overrides	within	the	controller	class

or,	preferably,	as	distinct	attribute

classes.	We’ll	find	out	more	about

action	filters	in	Chapter	4.

SUMMARY

SUMMARY

Architecturally	speaking,	the	most

relevant	fact	about	ASP.NET	Core

is	that	it	is	a	true	web	framework

that	just	enables	developers	to

build	HTTP	frontends.	It	doesn’t

force	you	to	a	particular	application

model.	In	the	past,	classic	ASP.NET

was	offered	as	a	web	framework

with	a	specific	application	model

simply	bolted	on,	whether	Web

Forms	or	MVC.

ASP.NET	Core	has	open	middleware

for	you	to	plug	in	and	receive	and

process	incoming	requests	to	your

liking.	In	ASP.NET	Core	you	can

effectively	have	code	that	sits	there

over	the	communication	port,

captures	any	requests	and	returns

responses.	It	could	just	be	you,	HTTP,

and	your	code	with	no	intermediaries.

At	the	same	time,	though,	you	can

enable	a	more	sophisticated

application	model	like	MVC.	When

you	do	so,	some	side	tasks	become

necessary	such	as	defining	the	URL

templates	that	your	application	will

recognize	and	the	components

responsible	for	handling	those

requests.	In	this	chapter,	we	focused

on	URL	templates	and	request

routing.	In	Chapter	4,	we	move	on	to

controllers	for	actual	request

processing.

—Mark	Twain,	“The	Adventures	of

Tom	Sawyer”

CHAPTER	4

ASP.NET	MVC	Controllers
“Well,	everybody	does	it	that	way,

Huck.“

“Tom,	I	am	not	everybody.“

Despite	the	explicit	reference	to	the

Model-View-Controller	pattern	in	the

name,	the	ASP.NET	MVC	application

model	is	essentially	centered	on	one

pillar—the	controller.	The	controller

governs	the	entire	processing	of	a

request.	It	captures	input	data,

orchestrates	the	activity	of	business

and	data	layers,	and	finally	wraps	up

raw	data	computed	for	the	request

into	a	valid	response	for	the	caller.

Any	request	that	passes	the	URL

routing	filter	is	mapped	to	a	controller

class	and	served	by	executing	a	given

method	on	the	class.	Therefore,	the

controller	class	is	the	place	where

developers	write	the	actual	code

required	to	serve	a	request.	Let’s

briefly	explore	some	characteristics	of

controller	classes,	including

implementation	details.

CONTROLLER	CLASSES

CONTROLLER	CLASSES

The	writing	of	a	controller	class	can

be	summarized	in	two	steps:

implementing	a	class	that	is

discoverable	as	a	controller	and

adding	a	bunch	of	public	methods

that	are	discoverable	as	actions	at

runtime.	However,	a	couple	of

important	details	remain	to	be

clarified:	How	the	system	gets	to

know	the	controller	class	to

instantiate	and	how	it	figures	out

the	method	to	invoke.

Discovering	the	Controller	Name

All	that	the	MVC	application

receives	is	a	URL	to	process,	and

the	URL	must	be	mapped	in	some

way	to	one	controller	class	and	one

public	method.	Regardless	of	the

routing	strategy,	you	might	have

chosen	(convention-based	routing,

attribute	routing,	or	both)	to	fill	the

route	table.	In	the	end,	a	URL	is

mapped	to	a	controller	based	on

the	routes	registered	in	the

system’s	route	table.

Discovery	via	Convention-based	Routing

If	a	match	is	found	between	the

incoming	URL	and	one	of	the

predefined	conventional	routes,

then	the	name	of	the	controller

results	from	the	parsing	of	the

route.	As	seen	in	the	previous

chapter,	the	default	route	is	defined

as	follows:

Click	here	to	view	code	image

app.UseMvc(routes	=>

{

				routes.MapRoute(

								name:	"default",

								template:	"{controller=Home}/{action=Index}/{id?}");

});

The	controller	name	is	inferred	from

the	URL	template	parameter	as	the

first	segment	of	the	URL	that	follows

the	server	name.	Conventional	routing

sets	the	value	of	the	controller

parameter	via	explicit	or	implicit

route	parameters.	An	explicit	route

parameter	is	a	parameter	defined	as

part	of	the	URL	template,	as	shown

above.	An	implicit	route	parameter	is

a	parameter	that	doesn’t	appear	in	the

URL	template	and	is	treated	as	a

constant.	In	the	example	below,	the

URL	template	is	today,	and	the	value

of	the	controller	parameter	is

statically	set	through	the	defaults

property	of	the	route.

Click	here	to	view	code	image

app.UseMvc(routes	=>

{

				routes.MapRoute(

								name:	"route-today",

								template:	"today",

								defaults:	new	{	controller="date",	action="day",	offset=0
	});

}

Note	that	the	controller	value	that	is

inferred	from	the	route	may	not	be	the

exact	name	of	the	controller	class	to

be	used.	More	often,	though	not

always,	is	a	sort	of	a	nickname.	Hence,

some	extra	work	may	be	required	to

turn	the	controller	value	into	an

actual	class	name.

Discovery	via	Attribute	Routing

Discovery	via	Attribute	Routing

Attribute	routing	allows	you	to

decorate	controller	classes	or

methods	with	special	attributes

that	indicate	the	URL	template	that

will	end	up	invoking	methods.	The

major	benefit	of	attribute	routing	is

that	route	definitions	are	placed

close	to	their	corresponding

actions.	In	this	way,	whoever	reads

the	code	has	a	clear	idea	of	when

and	how	that	method	is	will	be

invoked.	Furthermore,	choosing

attribute	routing	keeps	the	URL

template	independent	from	the

controller	and	the	action	used	to

serve	the	request.	Later,	if	you

change	the	URLs	for	evolutionary

or	marketing	reasons,	you	don’t

have	to	refactor	the	code.

Click	here	to	view	code	image

[Route("Day")]

public	class	DateController	:	Controller

{

				[Route("{offset}")]					//	Serves	URL	like	Day/1

				public	ActionResult	Details(int	offset)	{	...	}

}

Routes	specified	via	attributes	will

still	flow	into	the	global	route	table	of

the	application,	the	same	table

explicitly	populated	programmatically

when	you	use	convention-based

routing.

Discovery	via	Mixed	Routing	Strategy

Discovery	via	Mixed	Routing	Strategy

Convention-based	and	attribute

routing	are	not	mutually	exclusive.

Both	can	be	used	in	the	context	of

the	same	application.	Both

attribute	routing	and	convention-

based	routing	populate	the	same

route	table	used	to	resolve	URLs.

Conventional	routing	must	be

explicitly	enabled	in	the	sense	that

convention-based	routes	must

always	be	added	programmatically.

Attribute	routing	is	always	on	and

needs	no	explicit	enablement.	Note

that	this	was	not	the	case	with

attribute	routing	in	Web	API	and

previous	versions	of	ASP.NET

MVC.

Because	attribute	routing	is	always	on

it	turns	out	that	routes	defined	via

attributes	take	precedence	over

convention-based	routes.

Inherited	Controllers

A	controller	class	is	usually	a	class

that	inherits—either	directly	or

indirectly—from	a	given	base	class,

the

Microsoft.AspNetCore.Mvc.Contro

ller	class.	Note	that	in	all	versions

of	ASP.NET	MVC	released	before

ASP.NET	Core,	inheriting	from	the

base	class	Controller	was	a	strict

requirement.	In	ASP.NET	Core,

instead,	you	can	also	have

controller	classes	that	are	plain	C#

classes	with	no	inherited

functionality.	I’ll	say	more	on	this

flavor	of	controller	classes	in	a

moment,	but	for	the	time	being,

let’s	assume	that	controllers	must

originally	inherit	from	the	system’s

base	class.

Once	the	system	has	successfully

resolved	the	route,	it	holds	a

controller	name.	The	name	is	a	plain

string—sort	of	a	nickname.	The

nickname	(for	example,	Home	or

Date)	must	be	matched	to	a	real	class

included	or	referenced	in	the	project.

Class	Name	with	Suffix

The	most	common	scenario	for

having	a	valid	controller	class	that

the	system	can	easily	discover	is

giving	the	class	name	the	suffix,

“Controller,”	and	inheriting	it	from

the	aforementioned	Controller	base

class.	This	means	that	the

corresponding	class	of	a	controller

name,	Home,	will	be	the

HomeController	class.	If	such	a

class	exists,	the	system	is	happy

and	can	successfully	resolve	the

request.	This	is	the	way	that	things

worked	in	past	versions	of

ASP.NET	MVC	before	ASP.NET

Core.

The	namespace	of	the	controller	class

is	unimportant	in	ASP.NET	Core,

though	tooling	and	many	examples

available	in	the	community	tend	to

place	controller	classes	under	a	folder

named	Controllers.	The	reality	is	that

you	can	place	your	controller	classes

in	any	folder	and	any	namespace	you

wish.	As	long	as	the	class	has	the

“Controller”	suffix	and	inherits	from

Controller,	it	will	always	be

discovered.

Class	Name	without	Suffix

In	ASP.NET	Core,	the	controller

class	also	will	be	successfully

discovered	if	it	lacks	the

“Controller”	suffix.	There	are	a

couple	of	caveats,	though.	The	first

caveat	is	that	the	discovery	process

works	only	if	the	class	inherits	from

base	class	Controller.	The	second

caveat	is	that	the	name	of	the	class

must	match	the	controller	name	in

the	route	analysis.

If	the	controller	name	extracted	from

the	route	is,	say,	Home,	then	it	is

acceptable	to	have	a	class	named

Home	that	inherits	from	base	class

Controller.	Any	other	name	won’t

work.	In	other	words,	you	can’t	just

use	a	custom	suffix,	and	the	root	part

of	the	name	must	always	match	the

name	in	the	route.

	Note	In	general,	a	controller	class	inherits	directly	from	the
class	Controller,	and	it	gets	environment	properties	and	capabilities	from	the
Controller	class.	Most	notably,	the	controller	inherits	the	HTTP	context	from	its
base	class.	You	can	have	intermediate	custom	classes	that	inherit	from
Controller	from	which	the	actual	controller	classes	bound	to	URLs	inherit.
Having	such	intermediate	classes	depends	on	how	much	abstraction	you
need	given	the	specific	requirements	of	the	application	you’re	writing.	It’s
mostly	a	design	decision.

POCO	Controllers

The	action	invoker	injects	the

HTTP	context	into	the	controller’s

instance	and	the	code	running

within	the	controller	class	can

access	it	through	the	handy

HttpContext	property.	Inheriting

your	controller	class	from	a	system-

provided	base	class	gives	you	all	the

necessary	plumbing	for	free.	In

ASP.NET	Core,	however,	inheriting

any	controller	from	a	common	base

class	is	no	longer	necessary.	In

ASP.NET	Core,	a	controller	class

can	be	a	plain	old	C#	object

(POCO),	simply	defined	as	shown

below:

Click	here	to	view	code	image

public	class	PocoController

{

			//	Write	your	action	methods	here

}

For	the	system	to	successfully

discover	a	POCO	controller,	either	the

class	name	has	the	“Controller”	suffix,

or	the	class	is	decorated	with	the

Controller	attribute.

Click	here	to	view	code	image

[Controller]

public	class	Poco

{

			//	Write	your	action	methods	here

}

Having	a	POCO	controller	is	a	form	of

optimization	and	optimization	usually

comes	from	dropping	some	features

to	reduce	overhead	and/or	memory

footprint.	Consequently,	not

inheriting	from	a	known	base	class

might	preclude	some	common

operations	or	make	them	a	bit	more

verbose	to	implement.	Let’s	review	a

few	scenarios.

Returning	Plain	Data

A	POCO	controller	is	a	fully

testable	plain	C#	class	that	has	no

dependencies	on	the	surrounding

ASP.NET	Core	environment.	It

should	be	noted	that	a	POCO

controller	only	works	well	if	you

don’t	need	any	dependencies	on	the

surrounding	environment.	If	your

task	is	creating	a	super-simple	web

service	that	barely	represents	a

fixed	endpoint	for	returning	data,

then	a	POCO	controller	might	be	a

good	choice.	(See	the	following

code.)

Click	here	to	view	code	image

public	class	PocoController

{

				public	IActionResult	Today()

				{

								return	new	ContentResult()	{	Content	=	DateTime.Now.ToStr
ing("ddd,	d	MMM")	};

				}

}

This	code	also	works	well	if	you	must

return	the	contents	of	a	file—whether

the	file	exists	or	it	is	to	be	created	on

the	fly.

Returning	HTML	Content

You	can	send	plain	HTML	content

back	to	the	browser	via	the	services

of	ContentResult.	All	you	do

differently	from	the	example	above

is	set	the	ContentType	property	to

an	appropriate	MIME	type	and

build	the	HTML	string	to	your

liking.

Click	here	to	view	code	image

public	class	Poco

{

				public	IActionResult	Html()

				{

								return	new	ContentResult()

								{

												Content	=	"<h1>Hello</h1>",

												ContentType	=	"text/html",

												StatusCode	=	200

								};

				}

}

Any	HTML	content	you	can	build	in

this	way	is	created	algorithmically.	If

you	want	to	connect	to	the	view

engine	(see	Chapter	6)	and	output	the

HTML	resulting	from	a	Razor

template,	then	more	work	is	required

and,	more	importantly,	more	intimate

knowledge	of	the	framework	is

required.

Returning	HTML	Views

Accessing	the	ASP.NET

infrastructure	that	deals	with

HTML	views	is	not	immediate.

From	within	a	controller	method,

you	must	return	an	appropriate

IActionResult	object	(more	on	this

soon),	but	all	the	available	helper

methods	for	doing	that	quickly	and

effectively	belong	to	the	base	class

and	are	not	available	in	a	POCO

controller.	Here’s	a	workaround	to

return	HTML	based	on	a	view.	As	a

disclaimer,	most	of	the	artifacts

shown	in	the	code	snippet	will	be

fully	explained	later	in	this	chapter

or	in	Chapter	5.	The	primary	point

of	the	following	code	snippet	is	to

show	that	a	POCO	controller	has	a

smaller	memory	footprint	but	lacks

some	built-in	facilities.

Click	here	to	view	code	image

public	IActionResult	Index([FromServices]	IModelMetadataProvider	
provider)

{

				//	Initialize	a	ViewData	dictionary	to	make	data	available	wi
thin	the	view

				var	viewdata	=	new	ViewDataDictionary<MyViewModel>(provider,	
new	ModelStateDictionary());

				//	Fill	the	data	model	for	the	view	

				viewdata.Model	=	new	MyViewModel()	{	Title	=	"Hi!"	}; ​

				//	Invoke	the	view	passing	data

				return	new	ViewResult()	{	ViewData	=	viewdata,	ViewName	=	"in
dex"	};

}

The	additional	parameter	in	the

method	signature	deserves	more

explanation.	It	is	a	form	of

dependency	injection	that	is	widely

used	(and	recommended)	around

ASP.NET	Core.	To	create	an	HTML

view,	you	need	at	least	a	reference	to

IModelMetadataProvider	that	comes

from	the	outside.	Frankly,	without

externally	injected	dependencies	you

won’t	be	able	to	do	much.	Have	a	look

at	the	following	code	snippet	that

attempts	to	simplify	the	code	above.

Click	here	to	view	code	image

public	IActionResult	Simple()

{

				return	new	ViewResult()	{	ViewName	=	"simple"	};

}

You	can	have	a	Razor	template	named

“simple”	and	whatever	HTML	is	being

returned	comes	from	the	template.

However,	you	are	unable	to	pass	your

own	data	to	the	view	to	make	the

rendering	logic	smart	enough.	Also,

you	are	unable	to	access	any	data

posted	your	way	whether	through	a

form	or	the	query	string.

	Note	Roles	and	features	of	the	ViewResult	class	and	the
Razor	language	for	creating	HTML	views	will	be	discussed	in	Chapter	5.

Accessing	the	HTTP	Context

Accessing	the	HTTP	Context

The	most	problematic	aspect	of	a

POCO	controller	is	the	lack	of	the

HTTP	context.	In	particular,	this

means	that	you	can’t	inspect	the

raw	data	being	posted,	including

query	string	and	route	parameters.

This	context	information,	however,

is	available	and	can	be	attached	to

the	controllers	only	where	you	need

it.	There	are	two	ways	to	do	that.

The	first	approach	consists	of

injecting	the	current	context	for	the

action.	The	context	is	an	instance	of

the	ActionContext	class	and	wraps	the

HTTP	context	and	route	information.

Here’s	what’s	required	on	your	end.

Click	here	to	view	code	image

public	class	PocoController

{

				[ActionContext]O

				public	ActionContext	Context	{	get;	set;	}				

				...

}

Based	on	this	example,	you	can	now

access	the	Request	object	or	the

RouteData	object	as	if	you	were	in	a

regular,	non-POCO	controller.	The

following	code	allows	you	to	read	the

controller	name	from	the	RouteData

collection.

Click	here	to	view	code	image

var	controller	=	Context.RouteData.Values["controller"];

Another	approach	uses	a	feature

called	model	binding,	which	I	explain

later	in	this	chapter.	Model	binding

can	be	seen	as	injecting	specific

properties	available	in	the	HTTP

context	into	the	controller	method.

Click	here	to	view	code	image

public	IActionResult	Http([FromQuery]	int	p1	=	0)

{

			...

			return	new	ContentResult()	{	Content	=	p1.ToString()	};

}

By	decorating	a	method	parameter

with	the	FromQuery	attribute,	you

instruct	the	system	to	try	to	find	a

match	between	the	name	of	the

parameter	(say,	p1)	and	one	of	the

parameters	on	the	query	string	of	the

URL.	If	a	match	is	found	and	types	are

convertible,	then	the	method

parameter	automatically	receives	the

value	passed.	Analogously,	by	using

the	FromRoute	or	FromForm

attributes,	you	can	access	data	in	the

RouteData	collection	or	that	has	been

posted	through	an	HTML	form.

	Note	In	ASP.NET	Core,	the	notion	of	global	data	is	quite
blurred.	Nothing	can	really	be	global	in	the	sense	of	being	globally	accessible
from	anywhere	in	the	application.	Any	data	intended	to	be	globally	accessible
must	be	passed	around	explicitly.	More	exactly,	it	must	be	imported	in	any
context	where	it	might	be	used.	To	make	this	happen,	ASP.NET	Core	comes
with	a	built-in	Dependency	Injection	(DI)	framework	through	which	developers
register	abstract	types	(like	interfaces)	and	their	concrete	types,	leaving	on
the	framework	the	burden	of	returning	an	instance	of	the	concrete	type
whenever	a	reference	to	the	abstract	type	is	requested.	We	have	seen
already	a	few	examples	of	this	(common)	programming	technique.	So	far,
however,	all	the	examples	were	special	in	the	sense	types	involved	were	all
types	registered	implicitly.	In	Chapter	8,	we’ll	see	in	a	lot	more	detail	how	to
code	for	the	DI	system.

CONTROLLER	ACTIONS

The	final	output	of	the	route

analysis	of	the	URL	of	an	incoming

request	is	a	pair	made	of	the	name

of	the	controller	class	to	instantiate

and	the	name	of	the	action	to

perform	on	it.	Executing	an	action

on	a	controller	invokes	a	public

method	on	the	controller	class.

Let’s	see	how	action	names	are

mapped	to	class	methods.

Mapping	Actions	to	Methods

Mapping	Actions	to	Methods

The	general	rule	is	that	any	public

method	on	a	controller	class	is	a

public	action	with	the	same	name.

As	an	example,	consider	the	case	of

a	URL	like	/home/index.	Based	on

the	routing	facts	we	have	discussed

earlier,	the	controller	name	is

“home,”	and	it	requires	an	actual

class	named	HomeController

available	in	the	project.	The	action

name	extracted	from	the	URL	is

“index.”	Subsequently,	the

HomeController	class	is	expected

to	expose	a	public	method	named

Index.

There	are	some	additional	parameters

that	might	come	into	play,	but	this	is

the	core	rule	of	mapping	actions	to

methods.

Mapping	by	Name

To	see	all	aspects	of	action-to-

method	mapping	in	the	MVC

application	model,	let’s	consider

the	following	example.

Click	here	to	view	code	image

public	class	HomeController	:	Controller

{

				//	Implicit	action	name:	Index	

				public	ActionResult	Index()

				{

							...

				}

				[NonAction]

				public	ActionResult	About()

				{

							...

				}

				[ActionName("About")]

				public	ActionResult	LoveGermanShepherds()

				{

							...

				}

}

Because	the	method	Index	is	public

and	not	decorated	with	any	attributes,

it	is	implicitly	bound	to	an	action	with

the	same	name.	This	is	the	most

common	scenario:	Just	add	a	public

method,	and	its	name	becomes	an

action	on	the	controller	you	can

invoke	from	the	outside	using	any

HTTP	verb.

Interestingly,	the	method	About	in	the

example	above	is	also	a	public

method,	but	it	is	decorated	with	the

NonAction	attribute.	The	attribute

doesn’t	alter	the	visibility	of	the

method	at	compile	time	but	makes	the

method	invisible	to	the	routing	system

of	ASP.NET	Core	at	runtime.	You	can

call	it	from	within	the	server-side	code

of	the	application,	but	it	is	not	bound

to	any	action	that	can	be	called	from

browsers	and	JavaScript	code.

Finally,	the	third	public	method	in	the

sample	class	has	the	fancy	name	of

LoveGermanShepherds	but	is

decorated	with	the	ActionName

attribute.	The	attribute	binds	the

method	explicitly	to	the	action	About.

Hence,	every	time	the	user	requests

the	action	About,	the	method

LoveGermanShepherds	runs.	The

name	LoveGermanShepherds	can

only	be	used	in	calls	within	the	realm

of	the	controller	class	or	in	any

scenario	(quite	unlikely	indeed)	where

an	instance	of	the	HomeController

class	is	programmatically	created	and

used	via	developer’s	code.

So	far,	we	haven’t	considered	the	role

of	HTTP	verbs,	such	as	GET	or	POST.

Another	level	of	method-to-action

mapping	is	based	on	the	HTTP	verb

used	for	the	request.

Mapping	by	HTTP	Verbs

Mapping	by	HTTP	Verbs

The	MVC	application	model	is

flexible	enough	to	let	you	bind	a

method	to	an	action	only	for	a

specific	HTTP	verb.	To	associate	a

controller	method	with	an	HTTP

verb,	you	either	use	the	parametric

AcceptVerbs	attribute	or	direct

attributes	such	as	HttpGet,

HttpPost,	and	HttpPut.	The

AcceptVerbs	attribute	allows	you	to

specify	which	HTTP	verb	is

required	to	execute	a	given	method.

Let’s	consider	the	following

example:

Click	here	to	view	code	image

[AcceptVerbs("post")]

public	IActionResult	CallMe()

{

			...

}

Given	that	code,	it	turns	out	that	the

CallMe	method	can’t	be	invoked	using

a	GET	request.	The	AcceptVerbs

attribute	takes	strings	to	refer	to

HTTP	verbs.	Valid	values	are	strings

that	correspond	to	known	HTTP	verbs

such	as	get,	post,	put,	options,	patch,

delete,	and	head.	You	can	pass

multiple	strings	to	the	AcceptVerbs

attribute,	or	you	can	repeat	the

attribute	multiple	times	on	the	same

method.

Click	here	to	view	code	image

[AcceptVerbs("get",	"post")]

public	IActionResult	CallMe()

{

			...

}

Using	AcceptVerbs	or	multiple

individual	attributes,	such	as	HttpGet,

HttpPost,	HttpPut	is	entirely	a	matter

of	preference.	The	following	code	is

equivalent	to	the	code	above	using

AcceptVerbs.

Click	here	to	view	code	image

[HttpPost]	

[HttpGet]

public	IActionResult	CallMe()

{

			...

}

Over	the	web,	you	perform	an	HTTP

GET	command	when	you	follow	a	link

or	type	the	URL	into	the	address	bar.

You	perform	an	HTTP	POST	when

you	submit	the	content	of	an	HTML

form.	Any	other	HTTP	command	can

be	performed	from	the	Web	only	via

AJAX,	and	from	any	client	code	that

sends	requests	to	the	ASP.NET	Core

application.

When	Distinct	Verbs	Are	Helpful

Here’s	a	common	scenario	you’ll

face	every	time	you	have	MVC

views	hosting	an	HTML	form.	You

need	a	method	to	render	the	view

that	displays	the	form,	and	you	also

need	a	method	to	process	the

values	the	form	will	post.	The

request	to	render	typically	comes

with	GET;	the	request	to	process

typically	comes	through	a	POST.

How	do	you	handle	that	within	the

controller?

An	option	might	be	to	have	just	one

method	that	can	handle	requests

regardless	of	the	HTTP	verb	used.

Click	here	to	view	code	image

public	IActionResult	Edit(Customer	customer)

{

			var	method	=	HttpContext.Request.Method;

			switch(method)

			{

							case	"GET":

									return	View();

							...

			}

			...

}

In	the	body	of	the	method,	you	must

determine	whether	the	user	intended

to	display	the	form	or	process	the

posted	values.	The	best	source	of

information	you	have	is	the	Method

property	of	the	Request	object	in	the

HTTP	context.	By	using	verb

attributes,	you	can	break	up	the	code

into	distinct	methods.

Click	here	to	view	code	image

[HttpGet]

public	ActionResult	Edit(Customer	customer)

{

			...

}

[HttpPost]

public	ActionResult	Edit(Customer	customer)

{

			...

}

There	are	two	methods	now	bound	to

distinct	actions.	This	is	acceptable	for

ASP.NET	Core,	which	will	invoke	the

appropriate	method	based	on	the

verb.	It	is	not	acceptable	for	a

Microsoft	C#	compiler,	though,	which

won’t	let	you	have	two	methods	with

the	same	name	and	signature	in	the

same	class.	Here’s	a	rewrite:

Click	here	to	view	code	image

[HttpGet]

[ActionName("edit")]

public	ActionResult	DisplayEditForm(Customer	customer)

{

			...

}

[HttpPost]

[ActionName("edit")]

public	ActionResult	SaveEditForm(Customer	customer)

{

			...

}

Methods	now	have	distinct	names,

but	both	are	bound	to	the	same

action,	albeit	for	different	verbs.

Attribute-based	Routing

Attribute-based	Routing

Attribute-based	routing	is	an

alternate	way	of	binding	controller

methods	to	URLs.	The	idea	is	that

instead	of	defining	an	explicit	route

table	at	the	startup	of	the

application,	you	decorate	controller

methods	with	ad	hoc	route

attributes.	Internally,	the	route

attributes	will	populate	the

system’s	route	table.

The	Route	Attribute

The	Route	attribute	defines	the

URL	template	that	is	valid	for

invoking	the	given	method.	The

attribute	can	be	placed	both	at	the

controller	class	level	and	at	the

method	level.	If	placed	in	both

places,	then	the	URLs	will	be

concatenated.	Here’s	an	example.

Click	here	to	view	code	image

[Route("goto")]

public	class	TourController	:	Controller

{

				public	IActionResult	NewYork()

				{

								var	action	=	RouteData.Values["action"].ToString();

								return	Ok(action);

				}

				[Route("nyc")]

				public	IActionResult	NewYorkCity()

				{

								var	action	=	RouteData.Values["action"].ToString();

								return	Ok(action);

				}

				[Route("/ny")]

				public	IActionResult	BigApple()

				{

								var	action	=	RouteData.Values["action"].ToString();

								return	Ok(action);

				}

}

The	Route	attribute	at	the	class	level

is	quite	intrusive.	With	the	attribute	in

place,	you	can’t	invoke	any	method	on

a	class	named	TourController	that

includes	the	controller	name	of	the

tour.	The	only	way	to	call	a	method	on

the	controller	class	is	through	the

template	specified	by	the	Route

attribute.	How	would	you	invoke	the

NewYork	method,	then?

The	method	doesn’t	have	its	own

Route	attribute	and	inherits	the

parent	template.	To	invoke	the

method,	therefore,	the	URL	to	use	is

/goto.	Note	that	/goto/newyork	will

return	a	404	error	(URL	not	found).

Try	adding	another	method	following

the	same	routing	pattern	of	NewYork.

Click	here	to	view	code	image

//	No	[Route]	specified	explicitly

public	IActionResult	Chicago()

{

			var	action	=	RouteData.Values["action"].ToString();

			return	Ok(action);

}

Now	the	controller	class	contains	two

methods	devoid	of	their	own	Route

attribute.	Subsequently,	invoking

/goto	results	in	ambiguity.	(See

Figure	4-1.)

FIGURE	4-1	Ambiguous	action	exception	when	methods	lack	the

route	attribute

When	a	controller	method	has	its	own

Route	attribute,	things	are	clearer.

The	specified	URL	template	is	the

only	way	to	invoke	the	method,	and	if

the	same	Route	attribute	is	also

specified	at	the	class	level,	the	two

templates	will	be	concatenated.	For

example,	to	invoke	the	NewYorkCity

method,	you	must	invoke	/goto/nyc.

In	the	example	above,	the	method

BigApple	addresses	yet	another

scenario.	As	you	can	see,	in	this	case,

the	value	of	the	Route	attribute	begins

with	a	backslash.	In	this	case,	the	URL

is	intended	to	be	an	absolute	path	and

won’t	be	concatenated	with	the	parent

template.	As	a	result,	to	invoke	the

BigApple	method,	you	must	use	the

URL	/ny.	Note	that	an	absolute	path

is	identified	by	URL	templates

beginning	with	/	or	~/.

Using	Route	Parameters	in	Routes

Routes	also	support	parameters.

Parameters	are	custom	values

collected	from	the	HTTP	context.

Interestingly,	if	you	also	have

conventional	routing	enabled	in

your	application,	then	you	can	use

the	detected	controller	and	action

names	in	the	routes.	Let’s	rewrite

the	NewYork	method	of	the

previous	example	as	below:

Click	here	to	view	code	image

[Route("/[controller]/[action]")]

[ActionName("ny")]

public	IActionResult	NewYork()

{

				var	action	=	RouteData.Values["action"].ToString();

				return	Ok(action);

}

Even	though	the	method	belongs	to	a

TourController	class	with	a	root

Route	attribute	of	goto,	it	is	now

available	on	the	/tour/ny	URL

because	of	the	combined	effect	of	the

parametric	route	and	the	ActionName

attribute.	Because	of	conventional

routing,	controller	and	action

parameters	are	defined	in	the

RouteData	collection	and	can	be

mapped	to	parameters.	The

ActionName	attribute	just	renames

NewYork	to	ny.	That’s	why	it	works!

Here’s	another	nice	example:

Click	here	to	view	code	image

[Route("go/to/[action]")]

public	class	VipTourController	:	Controller

{

				public	IActionResult	NewYork()

				{

								var	action	=	RouteData.Values["action"].ToString();

								return	Ok(action);

				}

				public	IActionResult	Chicago()

				{

								var	action	=	RouteData.Values["action"].ToString();

								return	Ok(action);

				}

}

All	methods	in	the	controller	will	now

be	available	as	URLs	in	the	form

/go/to/XXX	where	XXX	is	the	just

the	name	of	the	action	method	(see

Figure	4-2).

FIGURE	4-2	Routes	with	route	parameters

Using	Custom	Parameters	in	Routes

The	route	can	host	custom

parameters	as	well,	namely

parameters	sent	to	the	method	via

the	URL,	query	string	or	the	body

of	the	request.	We’ll	get	to	tools

and	techniques	to	collect	input	data

in	just	a	moment.	For	the	time

being,	let’s	just	consider	the

following	controller	method	in	the

same	VipTourController	class	seen

above.

Click	here	to	view	code	image

[Route("{days:int}/days")]

public	IActionResult	SanFrancisco(int	days)

{

				var	action	=	string.Format("In	{0}	for	{1}	days",	

								RouteData.Values["action"].ToString(),

								days);

				return	Ok(action);

}

The	method	receives	a	parameter

named	days	of	type	integer.	The

Route	attribute	defines	the	location	of

the	parameter	days	(note	the	different

{	}	notation	for	custom	parameters)

and	adds	a	type	constraint	to	it.	As	a

result,	the	fancy	URL

go/to/sanfrancisco/for/4/days	now

works	beautifully	(Figure	4-3).

FIGURE	4-3	Routes	with	CUSTOM	parameters

Note	that	if	you	try	a	URL	in	which

the	days	parameters	can’t	be

converted	to	an	integer,	you	get	a	404

status	code	because	the	URL	might

not	be	found.	However,	if	you	omit

the	type	constraint	and	just	set	the

custom	parameter	{days}	then	the

URL	will	be	recognized,	the	method

has	a	chance	to	process	it,	and

internally	the	days	parameter	gets	the

default	value	for	the	type.	In	case	of

integers,	it	is	0.	Just	for	fun,	see	what

happens	with	the	URL

go/to/sanfrancisco/for/some/days.

	Note	In	ASP.NET	Core	you	can	also	specify	route	information
in	verb-specific	attributes	like	HttpGet	and	HttpPost.	As	a	result,	instead	of
specifying	the	route	and	then	the	verb	attribute	you	can	pass	the	route	URL
template	to	the	verb	attribute.

IMPLEMENTATION	OF	ACTION
METHODS

The	signature	of	a	controller	action

method	is	up	to	you	and	is	not

subject	to	any	constraints.	If	you

define	parameter-less	methods,	you

then	make	yourself	responsible	for

programmatically	retrieving	any

input	data	your	code	requires	from

the	request.	If	you	add	parameters

to	the	method’s	signature,

ASP.NET	Core	will	offer	automatic

parameter	resolution	through

model	binder	components.

In	this	section,	we’ll	first	discuss	how

to	retrieve	input	data	from	within	a

controller	action	method	manually.

Next,	we’ll	turn	to	automatic

parameter	resolution	via	model

binders—the	most	common	choice	in

ASP.NET	Core	applications.	Finally,

we’ll	look	into	the	codification	of

action	results.

Basic	Data	Retrieval

Controller	action	methods	can

access	any	input	data	posted	with

the	HTTP	request.	Input	data	can

be	retrieved	from	various	sources,

including	form	data,	a	query	string,

cookies,	route	values,	and	posted

files.	Let’s	get	into	some	details.

Getting	Input	Data	from	the	Request	Object

When	writing	the	body	of	an	action

method,	you	can	directly	access	any

input	data	that	comes	through	the

familiar	Request	object	and	its

child	collections,	such	as	Form,

Cookies,	Query,	and	Headers.	As

you’ll	see	in	a	moment,	ASP.NET

Core	offers	quite	compelling

facilities	(for	example,	model

binders)	that	you	might	want	to	use

to	keep	your	code	cleaner,	more

compact,	and	easier	to	test.

However,	nothing	prevents	you

from	writing	old-style	Request-

based	code	as	shown	below.

Click	here	to	view	code	image

public	ActionResult	Echo()

{

			//	Capture	data	in	a	manual	way	from	the	query	string

			var	data	=	Request.Query["today"];

			return	Ok(data);

}

The	Request.Query	dictionary

contains	the	list	of	parameters	and

respective	values	extracted	from	the

query	string	of	the	URL.	Note	that	the

search	for	a	matching	entry	is	case

insensitive.

While	fully	functional,	this	approach

suffers	from	two	major	problems.

First,	you	must	know	where	to	get	the

value,	whether	from	the	query	string,

the	list	of	posted	values,	the	URL,	and

the	like.	You	must	use	a	different	API

for	any	different	source.	Second,	any

value	you	get	is	coded	as	a	string,	and

any	type	conversion	is	on	your	own.

Getting	Input	Data	from	the	Route

When	you	use	conventional

routing,	you	can	insert	parameters

in	the	URL	template.	These	values

are	captured	by	the	routing	module

and	are	made	available	to	the

application.	Route	values,	though,

are	not	exposed	to	applications	via

the	Request	property	inherited

from	Controller.	You	must	use	a

slightly	different	approach	to

retrieve	them	programmatically.

Suppose	you	have	the	following

route	registered	when	the

application	starts	up.

Click	here	to	view	code	image

routes.MapRoute(

				name:	"demo",

				template:	"go/to/{city}/for/{days}/days",

				defaults:	new	{	controller	=	"Input",	action	=	"Go"	}

);

The	route	has	two	custom	parameters

—city	and	days.	The	name	of	the

controller	and	method	are	set

statically	via	the	defaults	property.

How	would	retrieve	the	values	of	city

and	days	in	code?

Click	here	to	view	code	image

public	ActionResult	Go()

{

			//	Capture	data	in	a	manual	way	from	the	URL	template

			var	city	=	RouteData.Values["city"];

			var	days	=	RouteData.Values["days"];

			return	Ok(string.Format("In	{0}	for	{1}	days",	city,	days));

}

Route	data	is	exposed	through	the

RouteData	property	of	the	Controller

class.	Also,	in	this	case,	the	search	for

a	matching	entry	is	conducted	in	a

case-insensitive	way.	The

RouteData.Values	dictionary	is	a

String/Object	dictionary.	Any

necessary	type	conversion	is	up	to

you.

Model	Binding

Model	Binding

Using	native	request	collections	of

input	data	works	but	from	a

readability	and	maintenance

standpoint,	it	is	preferable	to	use

an	ad	hoc	model	to	expose	data	to

controllers.	This	model	is

sometimes	referred	to	as	the	input

model.	ASP.NET	MVC	provides	an

automatic	binding	layer	that	uses	a

built-in	set	of	rules	for	mapping

raw	request	data	from	a	variety	of

value	providers	to	properties	of

input	model	classes.	As	a

developer,	you	are	largely

responsible	for	the	design	of	input

model	classes.

	Note	Most	of	the	time,	the	built-in	mapping	rules	of	the
model-binding	layer	are	enough	for	controllers	to	receive	clean	and	usable
data.	However,	the	logic	of	the	binding	layer	can	be	customized	to	a	large
extent,	thus	adding	unprecedented	levels	of	flexibility	as	far	as	the	processing
of	input	data	is	concerned.

The	Default	Model	Binder

The	Default	Model	Binder

Any	incoming	request	passes

through	the	gears	of	a	built-in

binder	object	that	corresponds	to

an	instance	of	the

DefaultModelBinder	class.	Model

binding	is	orchestrated	by	the

action	invoker	and	consists	in

investigating	the	signature	of	the

selected	controller	method	and

looking	at	formal	parameter	names

and	types	trying	to	find	a	match

with	the	names	of	any	data

uploaded	with	the	request,	whether

through	the	query	string,	form,

route	or	perhaps	cookies.	The

model	binder	uses	convention-

based	logic	to	match	the	names	of

posted	values	to	parameter	names

in	the	controller’s	method.	The

DefaultModelBinder	class	knows

how	to	deal	with	primitive	and

complex	types,	as	well	as

collections	and	dictionaries.	In

light	of	this,	the	default	binder

works	just	fine	most	of	the	time.

Binding	Primitive	Types

Admittedly,	model	binding	may

sound	a	bit	magical	at	first,	but

there’s	no	actual	wizardry	behind

it.	The	key	fact	about	is	that	it	lets

you	focus	exclusively	on	the	data

you	want	the	controller	method	to

receive.	You	completely	ignore	the

details	of	how	you	retrieve	that

data,	whether	it	comes	from	the

query	string,	the	body,	or	the	route.

	Important	The	model	binder	matches	parameters	to
incoming	data	in	a	precise	order.	First	it	checks	if	a	match	can	be	found	on
route	parameters,	next	on	form	posted	data,	and	finally,	it	checks	query	string
data.

Let’s	suppose	you	need	a	controller

method	to	repeat	a	given	string	a

given	number	of	times.	The	input	data

you	need	is	a	string	and	a	number.

Here’s	what	you	do:

Click	here	to	view	code	image

public	class	BindingController	:	Controller

{

			public	IActionResult	Repeat(string	text,	int	number)

			{

						...

			}

}

Designed	in	this	way,	there’s	no	need

for	you	to	access	the	HTTP	context	to

grab	data.	The	default	model	binder

reads	the	actual	values	for	text	and

number	from	the	full	collection	of

values	available	in	the	context	of	the

request.	The	binder	looks	for	a

feasible	value	trying	to	match	formal

parameter	names	(text	and	number	in

the	example)	to	named	values	found

within	the	request	context.	In	other

words,	if	the	request	carries	a	form

field,	a	query	string	field,	or	a	route

parameter	named	text,	the	carried

value	is	automatically	bound	to	the

text	parameter.	The	mapping	occurs

successfully	if	the	parameter	type	and

the	actual	value	are	compatible.	If	a

conversion	cannot	be	performed,	an

argument	exception	is	thrown.	The

next	URL,	for	example,	works	just

fine:

Click	here	to	view	code	image

/binding/repeat?text=Dino&number=2

Conversely,	the	following	URL	may

generate	invalid	results.

Click	here	to	view	code	image

/binding/repeat?text=Dino&number=true

The	query	string	field	text	contains

Dino,	and	the	mapping	to	the	string

parameter	text	on	the	method	Repeat

takes	place	successfully.	The	query

string	field	number,	on	the	other

hand,	contains	true,	which	can’t	be

successfully	mapped	to	an	int

parameter.	The	model	binder	returns

a	parameter	dictionary,	where	the

entry	for	number	contains	the	default

value	of	the	type,	therefore	0.	What

happens	exactly	depends	on	the	code

used	to	process	the	input.	It	can

return	some	empty	content	or	even

throw	an	exception.

The	default	binder	can	map	all

primitive	types,	such	as	string,	int,

double,	decimal,	bool,	DateTime,	and

related	collections.	To	express	a

Boolean	type	in	a	URL,	you	resort	to

the	true	and	false	strings.	These

strings	are	parsed	using	.NET

Framework	native	Boolean	parsing

functions,	which	recognize	true	and

false	strings	in	a	case-insensitive

manner.	If	you	use	strings	such	as

yes/no	to	mean	a	Boolean,	the	default

binder	won’t	understand	your

intentions	and	will	place	a	false	value

in	the	parameter	dictionary,	which

might	affect	the	actual	output.

Forcing	Binding	from	a	Given	Source

In	ASP.NET	Core,	you	can	alter	the

fixed	order	of	model	binding	data

sources	by	forcing	the	source	for	a

particular	parameter.	You	can	do

this	through	any	of	the	following

new	attributes:	FromQuery,

FromRoute,	and	FromForm.	As	the

names	indicate,	those	attributes

force	the	model	binding	layer	to

map	values	from	query	strings,

route	data,	and	post	data,

respectively.	Let’s	consider	the

following	controller	code.

Click	here	to	view	code	image

[Route("goto/{city}")]

public	IActionResult	Visit([FromQuery]	string	city)

{

			...

}

The	FromQuery	attribute	forces	the

binding	of	parameter	code	to

whatever	comes	from	the	query	string

with	a	matching	name.	Suppose	the

URL	/goto/rome?city=london	is

requested.	Where	are	you	going,

Rome	or	London?	The	value	Rome	is

passed	through	a	higher-priority

dictionary,	but	the	actual	method

parameter	is	bound	to	any	value

coming	over	the	query	string.	Hence,

the	value	of	the	city	parameter	is

London.	The	interesting	thing	is	that

if	the	forced	source	doesn’t	contain	a

matching	value,	then	the	parameter

takes	the	default	value	for	the

declared	type	rather	than	any	other

matching	value	being	available.	Put

another	way,	the	net	effect	of	any	of

the	FromQuery,	FromRoute,	and

FromForm	attributes	is	constraining

the	model	binding	to	exactly	the

specified	data	source.

Binding	from	Headers

In	ASP.NET	Core,	a	new	attribute

makes	its	debut	to	simplify	getting

information	stored	in	HTTP

headers	in	the	context	of	controller

methods.	The	new	attribute	is

FromHeader.	You	might	wonder

why	HTTP	headers	aren’t

automatically	subjected	to	model

binding.	There	are	two	aspects	to

consider.	In	my	opinion,	the	first

aspect	is	more	philosophical	than

technical.	HTTP	headers	may	not

be	considered	plain	user	input	and

model	binding	is	just	devised	to

map	user	input	to	controller

methods.	HTTP	headers	carry

information	that	in	some

circumstances	can	be	helpful	to

check	inside	the	controller.	The

most	illustrious	example	of	this	is

authentication	tokens,	but	then

again,	the	authentication	token	is

not	exactly	“user	input.”	The

second	aspect	of	not	having	HTTP

headers	automatically	resolved	by

the	model	binder	is	purely

technical	and	has	to	do	with

naming	conventions	of	HTTP

headers.

Mapping	a	header	name	like	Accept-

Language,	for	example,	would	require

a	parameter	named	accordingly,

except	that	dashes	are	not	acceptable

in	a	C#	variable	name.	The

FromHeader	attribute	just	solves	this

problem.

Click	here	to	view	code	image

public	IActionResult	Culture([FromHeader(Name	="Accept-Language")
]	string	language)

{

			...

}

The	attribute	gets	the	header	name	as

an	argument	and	binds	the	associated

value	to	the	method	parameter.	As	a

result	of	the	previous	code,	the

language	parameter	of	the	method

will	receive	the	current	value	of	the

Accept-Language	header.

Binding	from	Body

Sometimes	it	is	worthwhile	passing

request	data	not	via	the	URL	or

headers	but	as	part	of	the	request

body.	To	enable	the	controller

method	to	receive	body	content	you

must	explicitly	tell	the	model

binding	layer	to	parse	the	body

content	to	a	particular	parameter.

This	is	the	job	of	the	new

FromBody	attribute.	All	that	is

required	on	your	end	is	decorating

a	parameter	method	with	the

attribute,	as	below.

Click	here	to	view	code	image

public	IActionResult	Print([FromBody]	string	content)

{

			...

}

The	entire	content	of	the	request

(GET	or	POST)	will	be	processed	as	a

single	unit	and	mapped	wherever

possible	to	the	parameter	standing

possible	type	constraints.

Binding	Complex	Types

Binding	Complex	Types

There’s	no	limitation	on	the

number	of	parameters	you	can	list

on	a	method’s	signature.	However,

a	container	class	is	often	better

than	a	long	list	of	individual

parameters.	For	the	default	model

binder,	the	result	is	nearly	the	same

whether	you	list	a	sequence	of

parameters	or	just	one	parameter

of	a	complex	type.	Both	scenarios

are	fully	supported.	Here’s	an

example:

Click	here	to	view	code	image

public	class	ComplexController	:	Controller

{		

			public	ActionResult	Repeat(RepeatText	input)

			{

						...

			}

}

The	controller	method	receives	an

object	of	type	RepeatText.	The	class	is

a	plain	data-transfer	object	defined	as

follows:

Click	here	to	view	code	image

public	class	RepeatText

{

				public	string	Text	{	get;	set;	}

				public	int	Number	{	get;	set;	}

}

As	you	can	see,	the	class	just	contains

members	for	the	same	values	you

passed	as	individual	parameters	in	the

previous	example.	The	model	binder

works	with	this	complex	type	as	well

as	it	did	with	single	values.

For	each	public	property	in	the

declared	type—RepeatText	in	this	case

—the	model	binder	looks	for	posted

values	whose	key	names	match	the

property	name.	The	match	is	case-

insensitive.

Binding	Arrays	of	Primitive	Types

Binding	Arrays	of	Primitive	Types

What	if	the	argument	that	a

controller	method	expects	is	an

array?	For	example,	can	you	bind

the	content	of	a	posted	form	to	an

IList<T>	parameter?	The

DefaultModelBinder	class	makes	it

possible	but	doing	so	requires	a	bit

of	contrivance	of	your	own.	Have	a

look	at	the	figure	4-4.

FIGURE	4-4	Sample	view	posting	an	array	of	email	strings

When	the	user	clicks	the	button,	the

form	sends	out	the	content	of	the

various	text	boxes.	If	each	textbox	has

a	unique	name,	then	you	can	only

collect	those	values	individually	by

name.	However,	if	you	name	the

textboxes	appropriately,	you	can

leverage	the	binder’s	ability	to	build

arrays.	Here’s	some	ad	hoc	HTML	you

might	want	to	use	to	create	forms	to

post	multiple	related	pieces	of

information.

Click	here	to	view	code	image

<input	name="emails"	id="email1"	type="text">

<input	name="emails"	id="email2"	type="text">

<input	name="emails"	id="email3"	type="text">

As	you	can	see,	each	input	field	has	a

unique	ID,	but	the	value	of	the	name

attribute	is	the	same.	The	information

that	browsers	send	is	the	following:

Click	here	to	view	code	image

emails=one@fake-server.com&emails=&emails=three@fake-server.com

There	are	three	items	with	the	same

name,	and	the	model	binder

automatically	groups	them	in	an

enumerable	collection	(see	Figure	4-

5).

FIGURE	4-5	An	array	of	strings	has	been	posted

In	the	end,	to	ensure	that	a	collection

of	values	is	passed	to	a	controller

method,	you	need	to	ensure	that

elements	with	the	same	name	are

uploaded.	Next,	the	name	must	match

the	controller	method’s	signature

according	to	the	normal	rules	of	the

binder.

Taking	Control	of	Binding	Names

An	interesting	point	to	consider	is

just	the	name	of	the	input	field	you

would	use.	In	the	code	snippet

above,	all	input	fields	were	named

emails.	A	plural	name	like	that

works	beautifully	on	the

controller’s	side	where	you	would

expect	to	receive	an	array	of

strings.	However,	on	the	HTML

side,	you	would	be	naming	a	single

email	field	with	a	plural	name.	It’s

not	a	matter	of	whether	it	works	or

not;	it’s	a	matter	of	calling	things

with	the	name	they	have	in	the	real

world.	ASP.NET	Core	offers	the

Bind	attribute	to	fix	things.

Click	here	to	view	code	image

<input	name="email"	id="email1"	type="text">

<input	name="email"	id="email2"	type="text">

<input	name="email"	id="email3"	type="text">

In	the	HTML	source	code,	you	would

use	the	singular,	and	in	the	controller

code,	you	force	the	binder	to	map	an

incoming	name	to	the	specified

parameter.

Click	here	to	view	code	image

public	IActionResult	Email([Bind(Prefix="email")]	IList<string>	e
mails)

Note	that	HTML	is	strict	about	the

characters	allowed	in	an	ID	name.	For

example,	the	value	assigned	to	an	ID

attribute	can’t	contain	square

brackets.	However,	these	constraints

are	released	for	the	name	attribute.

This	characteristic	comes	in	handy	to

bind	arrays	of	complex	types.

Binding	Arrays	of	Complex	Types

Suppose	your	HTML	form	collects

multiple	aggregates	of	information

such	as	addresses.	Realistically,	you

might	define	an	address	as	below:

Click	here	to	view	code	image

public	class	Address

{

				public	string	Street	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	Country	{	get;	set;	}

}

Moreover,	an	address	might	be	part	of

a	larger	data	structure	such	as

Company:

Click	here	to	view	code	image

public	class	Company

{

				public	int	CompanyId	{	get;	set;	}

				public	IList<Address>	Addresses	{	get;	set;	}

				...

}

Let’s	assume	the	input	form	matches

the	structure	of	the	Company	class.

When	the	form	is	posted,	the	server

receives	a	collection	of	addresses.

How	does	it	work	with	model

binding?	Again,	it’s	a	matter	of	how

you	define	the	HTML	markup.	In	case

of	complex	types,	the	array	must	be

explicitly	created	also	in	the	markup.

Click	here	to	view	code	image

<input	type="text"	id="..."	name="company.Addresses[0].Street"	..
.	/>

<input	type="text"	id="..."	name="company.Addresses[0].City"	...	
/>

<input	type="text"	id="..."	name="company.Addresses[1].Street"	..
.	/>

<input	type="text"	id="..."	name="company.Addresses[1].City"	...	
/>

The	above	HTML	structure	will	be

matched	nicely	by	the	following

controller	method	signature:

Click	here	to	view	code	image

public	IActionResult	Save(Company	company)

The	bound	object	is	an	instance	of	the

Company	class	where	the	Addresses

collection	property	contains	two

elements.	This	approach	is	quite

elegant	and	functional	but	not	perfect.

In	particular,	it	works	nicely	if	you

know	exactly	how	many	items

populate	the	collection	but	might	fail

otherwise.	Also,	if	the	sequence	of

indexes	in	the	posted	values	has	holes,

then	binding	fails.	Indexes	usually

start	from	0,	but	regardless	of	the

starting	index	the	bound	collection	is

truncated	at	the	first	missing	index.

For	example,	if	you	have	addresses[0]

and	then	addresses[2]	and

addresses[3]	then	only	the	first	one

will	be	automatically	passed	to	the

controller	method.

	Important	Be	aware	that	the	notion	of	missing	information
here	refers	exclusively	to	the	data	being	recognized	and	processed	by	the
model	binder.	Browsers	correctly	post	all	the	data	entered	into	the	HTML
form.	However,	without	model	binding,	you	must	arrange	a	fairly	sophisticated
parsing	algorithm	yourself	to	retrieve	all	posted	data	and	relate	the	pieces	to
each	other.

Action	Results

An	action	method	can	produce

various	results.	For	example,	an

action	method	can	just	act	as	a	web

service	and	return	a	plain	string	or

a	JSON	string	in	response	to	a

request.	Likewise,	an	action

method	can	determine	that	there’s

no	content	to	return	or	that	a

redirect	to	another	URL	is

required.	An	action	method

typically	returns	an	instance	of	a

type	implementing	IActionResult.

The	type	IActionResult	refers	to	a

common	programming	interface	to

execute	some	further	operations	on

behalf	of	the	action	method.	All	these

further	operations	relate	to	producing

some	response	for	the	requesting

browser.

Predefined	Action	Result	Types

ASP.NET	Core	comes	with	a	variety

of	concrete	types	that	implement

the	IActionResult	interface.	A	few

types	are	listed	in	Table	4-1.	The

table	below	doesn’t	include	action

result	types	related	to	security	and

Web	API.

TABLE	4-1	Some	of	the	predefined

IActionResult	types

Ty

pe

Description

Co

nte

nt

Re

sul

t

Sends	raw	text	content	(not	necessarily	HTML)	to	the	

browser

Em

pty

Re

sul

t

Sends	no	content	to	the	browser

Fil

eC

ont

ent

Re

sul

t

Sends	the	content	of	a	file	to	the	browser.	The	content	

of	the	file	is	expressed	as	a	byte	array

Fil

eSt

rea

m

Re

sul

t

Sends	the	content	of	a	file	to	the	browser.	The	content	

of	the	file	is	represented	through	a	Stream	object

Lo

cal

Re

dir

ect

Re

sul

t

Sends	an	HTTP	302	response	code	to	the	browser	to	

redirect	the	browser	to	the	specified	URL	local	to	the	

current	site.	It	only	accepts	a	relative	URL

Jso

nR

esu

lt

Sends	a	JSON	string	to	the	browser.	The	

ExecuteResult	method	of	this	class	sets	the	content	

type	to	JSON	and	invokes	the	JavaScript	serializer	to	

serialize	any	provided	managed	object	to	JSON

No

tFo

un

dR

esu

lt

Returns	a	404	status	code

Pa

rti

alV

ie

wR

esu

lt

Sends	HTML	content	to	the	browser	that	represents	a	

fragment	of	the	whole	page	view

Ph

ysi

cal

Fil

eR

esu

lt

Sends	the	content	of	a	file	to	the	browser.	The	file	is	

identified	via	its	path	and	content	type

Re

dir

ect

Re

sul

t

Sends	an	HTTP	302	response	code	to	the	browser	to	

redirect	the	browser	to	the	specified	URL

Re

dir

ect

To

Act

ion

Re

sul

t

Like	RedirectResult,	it	sends	an	HTTP	302	code	to	the	

browser	and	the	new	URL	to	navigate	to.	The	URL	is	

built	based	on	action/controller	pair

Re

dir

ect

To

Ro

ute

Re

sul

t

Like	RedirectResult,	it	sends	an	HTTP	302	code	to	the	

browser	and	the	new	URL	to	navigate	to.	The	URL	is	

built	based	on	a	route	name

Sta

tus

Co

de

Re

sul

t

Returns	the	specified	status	code

Vie

wC

om

po

ne

nt

Re

sul

t

Sends	HTML	content	to	the	browser	taken	from	a	

view	component

Vie

wR

esu

lt

Sends	HTML	content	to	the	browser	that	represents	a	

full	page	view

Vir

tua

lFil

eR

esu

lt

Sends	the	content	of	a	file	to	the	browser.	The	file	is	

identified	via	its	virtual	path

You	use	file-related	action	result

classes	if	you	want	to	reply	to	a

request	with	the	download	of	some

file	content	or	even	some	plain	binary

content	expressed	as	a	byte	array.

	Note	JavascriptResult	and	FilePathResult	action	result	types
available	in	previous	versions	of	ASP.NET	MVC	are	no	longer	supported	in
ASP.NET	Core.	FilePathResult	has	been	split	into	PhysicalFileResult	and
VirtualFileResult.	To	return	Javascript	instead,	you	now	use	ContentResult
with	the	appropriate	MIME	type.	Also,	HttpStatusCodeResult,
HttpNotFoundResult	and	HttpUnauthorizedResult	are	no	longer	available.
However,	they	have	been	just	renamed	to	StatusCodeResult,
NotFoundResult,	and	UnauthorizedResult	respectively.

Security	Action	Results

ASP.NET	Core	provides	more

action	result	types	specific	to

security	actions,	such	as

authentication	and	authorization.

Table	4-2	summarizes	the	action

result	types.

TABLE	4-2	Security-related

IActionResult	types

T

y

p

e

Description

C

h

al

le

n

g

e

R

es

ul

t

Returns	a	401	status	code	(unauthorized)	and	redirects	

to	the	configured	access	denied	path.	Returning	an	

instance	of	this	type	or	explicitly	calling	challenge	

methods	of	the	framework	has	the	same	effect

F

or

bi

d

R

es

ul

t

Returns	a	403	status	code	(forbidden)	and	redirects	to	

the	configured	access	denied	path.	Returning	an	

instance	of	this	type	or	explicitly	calling	forbid	methods	

of	the	framework	has	the	same	effect

Si

g

nI

n

R

es

ul

t

Signs	the	user	in.	Returning	an	instance	of	this	type	or	

explicitly	calling	sign-in	methods	of	the	framework	has	

the	same	effect

Si

g

n

O

Signs	the	user	out.	Returning	an	instance	of	this	type	or	

explicitly	calling	sign-out	methods	of	the	framework	

has	the	same	effect

ut

R

es

ul

t

U

n

a

ut

h

or

iz

e

d

R

es

ul

t

Just	returns	a	401	status	code	(unauthorized)	without	

taking	any	further	action

As	far	as	the	sign-in	process	is

concerned,	returning	a	SignInResult

object	from	a	controller	method	has

the	same	effect	as	explicitly	calling	the

method	in	the	new	authentication	API

(see	Chapter	8)	to	sign	users	in.	If	you

are	within	a	controller	method	call

(e.g.,	the	post	method	after	a	login

form)	then	causing	the	creation	of	a

principal	object	via	the	action	result	is

probably	cleaner	from	a	design

perspective.	However,	it’s	mostly	a

matter	of	preference	in	my	opinion.

Web	API	Action	Results

The	list	of	action	result	types	in

ASP.NET	Core	also	includes	a

bunch	of	types	specifically	created

for	the	Web	API	framework	and

not	part	of	the	ASP.NET	MVC

framework	in	previous	versions.

Table	4-3	lists	the	action	result

types	specific	to	Web	API.

TABLE	4-3	Web	API-related

IActionResult	types

Type Description

Accepte

dResult

Returns	a	202	status	code	and	returns	the	URI	to	

monitor	the	status	of	the	request

Accepte

dAtActi

onResul

t

Returns	a	202	status	code	and	returns	the	URI	to	

monitor	the	status	of	the	request	as	a	

controller/action	pair

Accepte

dAtRou

teResult

Returns	a	202	status	code	and	returns	the	URI	to	

monitor	the	status	of	the	request	as	a	route	name

BadReq

uestObj

ectResu

lt

Returns	a	400	status	code	and	optionally	sets	an	

error	in	the	model	state	dictionary

BadReq

uestRes

ult

Returns	a	400	status	code

Created

Result

Returns	a	201	status	code	along	with	the	URI	of	

the	resource	created

Created

AtActio

nResult

Returns	a	201	status	code	along	with	the	URI	of	

the	resource	expressed	as	controller/action	pair

Created

AtRoute

Result

Returns	a	201	status	code	along	with	the	URI	of	

the	resource	expressed	as	a	route	name

Created

Result

Returns	a	201	status	code	along	with	the	URI	of	

the	object	created

NoCont

entResu

lt

Returns	a	204	status	code	and	null	content.	

Similar	to	EmptyResult	except	that	EmptyResult	

returns	null	content	but	sets	a	status	code	of	200

OkObje

ctResult

Returns	a	200	status	code	and	does	content	

negotiation	before	serializing	provided	content

OkResu

lt

Returns	a	200	status	code

Unsupp

ortedM

ediaTy

peResul

t

Returns	a	415	status	code

In	previous	versions	of	ASP.NET,	the

Web	API	framework	was	available	as

a	separate	framework	for	accepting

and	serving	requests	in	a	pure	REST

style.	In	ASP.NET	Core,	the	Web	API

framework,	including	its	own	set	of

controller	services	and	action	result

types,	has	been	integrated	into	the

main	framework.

ACTION	FILTERS

ACTION	FILTERS

An	action	filter	is	a	piece	of	code

that	runs	around	the	execution	of

an	action	method	and	can	be	used

to	modify	and	extend	the	behavior

coded	in	the	method	itself.

Anatomy	of	Action	Filters

An	action	filter	is	fully	represented

by	the	following	interface:

Click	here	to	view	code	image

public	interface	IActionFilter

{

				void	OnActionExecuting(ActionExecutingContext	filterContext);

				void	OnActionExecuted(ActionExecutedContext	filterContext);

}

As	you	can	see,	it	offers	a	hook	for	you

to	run	code	before	and	after	the

execution	of	the	action.	From	within

the	filter,	you	have	access	to	the

request	and	controller	context	and

can	read	and	modify	parameters.

Native	Implementation	of	Action	Filters

Each	user-defined	controller	that

inherits	from	the	class	Controller

ends	up	getting	a	default

implementation	of	the

IActionFilter	interface.	The	base

Controller	class,	in	fact,	exposes	a

pair	of	overridable	methods	called

OnActionExecuting	and

OnActionExecuted.	This	means

that	each	controller	class	gives	you

the	chance	to	decide	what	to	do

before,	after,	or	both	before	and

after	a	given	method	is	invoked,

simply	overriding	methods	of	the

base	class.	This	feature	won’t	work

for	POCO	controllers.

Here’s	some	code	that	adds	an	ad	hoc

response	header	any	time	the	method

Index	is	invoked.

Click	here	to	view	code	image

public	class	FilterController	:	Controller

{

				protected	DateTime	StartTime;

				public	override	void	OnActionExecuting(ActionExecutingContext
	filterContext)

				{

								var	action	=	filterContext.ActionDescriptor.RouteValues["
action"];

								if	(string.Equals(action,	"index",	StringComparison.Curre
ntCultureIgnoreCase))

								{

												StartTime	=	DateTime.Now;

								}

								base.OnActionExecuting(filterContext);

				}

				public	override	void	OnActionExecuted(ActionExecutedContext	f
ilterContext)

				{

								var	action	=	filterContext.ActionDescriptor.RouteValues["
action"];

								if	(string.Equals(action,	"index",	StringComparison.Curre
ntCultureIgnoreCase))

								{

												var	timeSpan	=	DateTime.Now	-	StartTime;

												filterContext.HttpContext.Response.Headers.Add(

																"duration",	timeSpan.TotalMilliseconds.ToString()
);

								}

								base.OnActionExecuted(filterContext);

				}

				public	IActionResult	Index()

				{

								return	Ok("Just	processed	Filter.Index");

				}

}

Figure	4-6	demonstrates	how	the

method	counts	the	milliseconds	it

takes	to	execute,	and	the	method

writes	that	number	to	a	new	response

header	called	duration.

FIGURE	4-6	A	custom	response	header	added	to	the	method	Index

Classification	of	Filters

Classification	of	Filters

Action	filters	are	just	one	type	of

filters	invoked	in	the	ASP.NET

Core	pipeline.	Filters	are	classified

into	different	types	according	to	the

tasks	they	actually	accomplish.

Table	4-4	lists	the	types	of	filters

that	intervene	in	the	ASP.NET	Core

pipeline.

TABLE	4-4	Types	of	filters	in	the

ASP.NET	Core	pipeline

Type Description

Auth

orizat

ion	

filters

The	first	class	of	filters	that	runs	in	the	pipeline	to	

determine	whether	the	requesting	user	is	

authorized	for	the	current	request

Reso

urce	

filters

Run	right	after	authorization	before	the	rest	of	

pipeline	and	after	all	the	pipelined	component.	

Useful	for	caching

Actio

n	

filters

Run	before	and	after	a	controller	method	action

Excep

tion	

filters

If	registered,	are	triggered	in	case	of	unhandled	

exceptions

Resul

t	

filters

Run	before	and	after	the	execution	action	method	

results

Filters	can	have	a	synchronous	or

asynchronous	implementation.	Using

either	is	a	matter	of	preference	and

opportunity.

A	few	built-in	filters	are	available	in

ASP.NET	Core,	and	as	we’ll	see	in	a

moment,	many	more	can	be	created

for	specific	purposes.	In	the	list	of

built-in	filters,	I	like	to	emphasize

RequireHttps	to	force	controller

methods	to	be	invoked	over	HTTPS,

ValidateAntiForgeryToken	to	check

the	token	sent	over	an	HTML	post	to

avoid	sneaky	attacks,	and	Authorize,

which	makes	methods	of	a	controller

available	only	to	authenticated	users.

Visibility	of	Filters

You	can	apply	filters	to	individual

methods	or	to	the	entire	controller

class.	If	you	apply	filters	to	the

controller	class,	they	will	affect	all

action	methods	exposed	by	the

controller.	In	contrast,	global	filters

are	those	that,	when	registered	at

application	startup,	are

automatically	applied	to	any	action

of	any	controller	class.

Global	filters	are	plain	action	filters

that	are	just	registered

programmatically	at	startup,	as

demonstrated	here:

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddMvc(options	=>

				{

								options.Filters.Add(new	OneActionFilterAttribute());		

								options.Filters.Add(typeof(AnotherActionFilterAttribute))
;	

				});

}

Filters	can	be	added	by	instance	or	by

type.	In	the	latter	case,	the	actual

instance	is	obtained	through	the

ASP.NET	Core	DI	framework.	Global

filters	are	the	first	to	be	invoked.	Next

are	filters	defined	at	the	controller

level,	and	last	are	filters	defined	on

action	methods.	Note	that	if	the

controller	class	overrides

OnActionExecuting	its	code	runs

before	any	method-level	filter	applied.

If	the	controller	overrides

OnActionExecuted	then	this	code	runs

after	any	method-level	filter	applied.

Little	Gallery	of	Action	Filters

Little	Gallery	of	Action	Filters

Overall,	action	filters	form	an

embedded	aspect-oriented

framework	within	ASP.NET	Core.

When	it	comes	to	writing	an	action

filter,	you	typically	inherit	from

ActionFilterAttribute	and	just	add

your	own	behavior.

Let’s	go	through	a	short	list	of	sample

action	filters.

	Note	Action	filters	are	custom	components	that	encapsulate	a
specific	behavior.	You	write	an	action	filter	whenever	you	want	to	isolate	this
behavior	and	replicate	it	with	ease.	Reusability	of	the	behavior	is	one	of	the
factors	for	deciding	whether	to	write	action	filters,	but	it’s	not	the	only	one.
Action	filters	also	serve	the	purpose	of	keeping	the	controller’s	code	lean	and
mean.	As	a	general	rule,	whenever	your	controller’s	method	code	is	padded
with	branches	and	conditional	statements,	stop	and	consider	whether	some	of
those	branches	(or	repetitive	code)	can	be	moved	to	an	action	filter.	The
readability	of	the	code	will	be	largely	improved.

Adding	a	Custom	Header

A	common	example	of	an	action

filter	is	a	filter	that	adds	a	custom

header	to	every	request	for	a	given

action	method.	Earlier	in	the

chapter,	you	saw	how	to	achieve

this	by	overriding	the

OnActionExecuted	controller

method.	The	following	code	shows

how	to	move	that	code	out	of	the

controller	to	a	distinct	class.

Click	here	to	view	code	image

public	class	HeaderAttribute	:	ActionFilterAttribute

{

				public	string	Name	{	get;	set;	}

				public	string	Value	{	get;	set;	}

				public	override	void	OnActionExecuted(ActionExecutedContext	f
ilterContext)

				{

								if	(!string.IsNullOrEmpty(Name)	&&	!string.IsNullOrEmpty(
Value))

												filterContext.HttpContext.Response.Headers.Add(Name,	
Value);

								return;

				}

}

You	now	have	an	easily	managed

piece	of	code.	You	can	attach	it	to	any

number	of	controller	actions,	to	all

actions	of	a	controller,	and	even

globally	to	all	controllers.	All	you	need

to	do	is	to	add	an	attribute,	as	shown

here:

Click	here	to	view	code	image

[Header(Name="Action",	Value="About")]

public	ActionResult	About()

{	

			...	

}

Let’s	see	a	slightly	more	sophisticated

example	that	involves	the	localization

of	an	application’s	views.

Setting	the	Request	Culture

ASP.NET	Core	provides	a	fully

functional	and	tailor-made

infrastructure	to	support	multi-

lingual	applications.	A	similar

specific	framework	doesn’t	exist	in

any	previous	versions	of	ASP.NET,

though	individual	tools	to	build	the

framework	exist.	If	you	have	a	large

codebase	of	legacy	ASP.NET	MVC

code,	the	chances	are	that	you	have

logic	to	read	the	user’s	preferred

culture	and	restore	it	on	every

incoming	request.

In	Chapter	8,	we’ll	look	at	the

ASP.NET	Core	new	middleware	for

dealing	with	multiple	cultures	and

switching	between	them.	Here,

instead,	I’ll	show	how	to	rewrite	the

same	logic	using	a	global	action	filter.

As	you	can	see,	the	idea	is	the	same

but	implemented	through	the

ASP.NET	Core	middleware	triggered

by	any	culture	switches	earlier	in	the

pipeline.

Click	here	to	view	code	image

[AttributeUsage(AttributeTargets.Class|AttributeTargets.Method,	A
llowMultiple	=	false)]

public	class	CultureAttribute	:	ActionFilterAttribute

{

				public	string	Name	{	get;	set;	}

				public	static	string	CookieName

				{

								get	{	return	"_Culture";	}

				}

				public	override	void	OnActionExecuting(ActionExecutingContext
	filterContext)

				{

								var	culture	=	Name;

								if	(string.IsNullOrEmpty(culture))

												culture	=	GetSavedCultureOrDefault(filterContext.Http
Context.Request);

								//	Set	culture	on	current	thread

								SetCultureOnThread(culture);

								//	Proceed	as	usual

								base.OnActionExecuting(filterContext);

				}

				private	static	string	GetSavedCultureOrDefault(HttpRequest	ht
tpRequest)

				{

								var	culture	=	CultureInfo.CurrentCulture.Name;

								var	cookie	=	httpRequest.Cookies[CookieName]	??	culture;

								return	culture;

				}

				private	static	void	SetCultureOnThread(string	language)

				{

								var	cultureInfo	=	new	CultureInfo(language);

								CultureInfo.CurrentCulture	=	cultureInfo;

								CultureInfo.CurrentUICulture	=	cultureInfo;

				}

}

Right	before	executing	the	action

method,	the	code	checks	for	a	custom

cookie	named	_Culture	that	might

contain	the	user’s	choice	of	the

language.	If	no	cookie	is	found,	the

filter	defaults	to	the	current	culture

and	assigns	it	to	the	current	thread.

To	ensure	that	the	Culture	filter	acts

on	every	controller	method	you

register	it	globally:

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddMvc(options	=>

				{

								options.Filters.Add(new	CultureAttribute());

				});

}

	Note	A	filter	registered	globally	is	not	different	from	a	filter
explicitly	assigned	to	the	class	or	method	level.	When	writing	an	action	filter,
you	can	control	the	scope	of	the	filter	by	using	the	AttributeUsage	attribute.

Click	here	to	view	code	image

[AttributeUsage(AttributeTargets.Class|AttributeTargets.Method,	Allo
wMultiple	=	false)]

In	particular,	the	AttributeTargets	enumeration	lets	you	indicate	where	the
attribute	can	be	placed	and	the	AllowMultiple	property	lets	you	determine	the
number	of	times	it	can	be	used	in	the	same	place.	Note	that	the
AttributeUsage	attribute	works	with	any	custom	attribute	you	create	and	not
just	with	action	filters.

Restricting	a	Method	to	AJAX	Calls	Only

Restricting	a	Method	to	AJAX	Calls	Only

The	action	filters	considered	thus

far	are	components	aimed	at

intercepting	a	few	stages	of	the

execution	of	action	methods.	What

if	you	want	to	add	some	code	to

help	decide	whether	a	given

method	is	fit	to	serve	a	given

action?	For	this	type	of

customization,	another	category	of

filters	is	required:	action	selectors.

Action	selectors	come	in	two	distinct

flavors:	action	name	selectors	and

action	method	selectors.	Name

selectors	decide	whether	the	method

they	decorate	can	be	used	to	serve	a

given	action	name.	Method	selectors

decide	whether	a	method	with	a

matching	name	can	be	used	to	serve	a

given	action.	Method	selectors

typically	give	their	response	based	on

other	runtime	conditions.	The

canonical	example	of	an	action	name

selector	is	the	system’s	ActionName

attribute	we	used	earlier.	Common

examples	of	action	method	selectors,

instead,	are	NonAction	and

AcceptVerbs	attributes.	Let’s	see	how

to	write	a	custom	method	selector	that

accepts	a	method	call	only	if	the

request	is	made	via	JavaScript.

All	you	need	is	a	class	that	inherits

from	ActionMethodSelectorAttribute

and	overrides	the	IsValidForRequest

method:

Click	here	to	view	code	image

public	class	AjaxOnlyAttribute	:	ActionMethodSelectorAttribute

{

				public	override	bool	IsValidForRequest(RouteContext	routeCont
ext,	ActionDescriptor	action)

				{

								return	routeContext.HttpContext.Request.IsAjaxRequest();

				}

}

The	method	IsAjaxRequest	is	an

extension	method	of	the	HttpRequest

class.

Click	here	to	view	code	image

public	static	class	HttpRequestExtensions

{

				public	static	bool	IsAjaxRequest(this	HttpRequest	request)

				{

								if	(request	==	null)

												throw	new	ArgumentNullException("request");

								if	(request.Headers	!=	null)

												return	request.Headers["X-Requested-With"]	==	"XMLHtt
pRequest";

								return	false;

				}

}

Any	method	marked	with	the

AjaxOnly	attribute	is	only	enabled	to

serve	calls	placed	via	the	browser’s

XMLHttpRequest	object.

Click	here	to	view	code	image

[AjaxOnly]

public	ActionResult	Details(int	customerId)

{	

				var	model	=	...;

				return	PartialView(model);

}

If	you	try	to	invoke	a	URL	that,

according	to	routes,	should	be

mapped	to	an	Ajax-only	method,	well,

you’ll	get	a	not-found	exception.

	Note	The	same	approach	can	be	used	to	check,	for	example,
the	user-agent	of	the	requesting	client	and	recognize	calls	coming	from	a
mobile	device.

SUMMARY

Controllers	are	the	heart	of	an

ASP.NET	Core	application.

Controllers	mediate	between	the

user	requests	and	the	capabilities	of

the	server	system.	Controllers	are

linked	to	user-interface	actions	and

are	in	touch	with	the	middle	tier.

Controllers	perform	actions	aimed

at	getting	results	but	don’t	return

results	directly.	In	a	controller,	the

processing	of	the	request	is	neatly

separated	from	any	further	action

that	makes	the	results	available,

most	notably	the	rendering	of	an

HTML	view.

From	a	design	perspective,	controllers

are	part	of	the	presentation	layer	as

they	hold	tight	references	to	the

runtime	environment	and	know	about

the	HTTP	context	of	the	request.

While	ASP.NET	Core	introduces	and

supports	POCO	controllers,	I	use	non-

POCO	controllers	much	more	often.

Controller	action	methods	can	return

a	long	list	of	action	result	types	such

as	file	content,	JSON,	plain	text,	and

redirect	responses.	In	Chapter	5,	we’ll

look	at	the	most	common	action	result

type	of	a	web	application—HTML

views.

—Franz	Kafka,	“The	Trial”

CHAPTER	5

ASP.NET	MVC	Views
You	do	not	need	to	accept	everything

as	true,	you	only	have	to	accept	it	as

necessary.

The

majority	of

ASP.NET

MVC	requests	require	that	HTML

markup	is	served	back	to	browsers.

Architecturally	speaking,	there’s	no

difference	at	all	between	requests	that

return	HTML	markup	and	requests

that	return	plain	text	or	JSON	data.

However,	because	producing	HTML

markup	might	sometimes	require	a	lot

of	work	(and	always	require	a	lot	of

flexibility),	ASP.NET	MVC	comes	with

a	dedicated	system	component—the

view	engine—responsible	for

producing	plain	HTML	for	the

browser	to	process.	In	doing	so,	the

view	engine	mixes	application	data

and	a	markup	template	to	create

HTML	markup.

In	this	chapter,	we’ll	explore	structure

and	behavior	of	the	view	engine	and

the	margin	for	customizing	its

behavior.	Lastly,	we’ll	look	into

controller-less	pages	(also	known	as

Razor	pages),	which	essentially	are

HTML	templates	invoked	directly

without	the	intermediation	of	a

controller	action	method.

SERVING	HTML	CONTENT

In	ASP.NET	Core,	an	application

can	serve	HTML	in	a	variety	of

ways	with	a	growing	level	of

sophistication	and	control	from	the

developer’s	side.

Serving	HTML	from	Terminating

Serving	HTML	from	Terminating
Middleware

As	discussed	in	Chapter	2,	an

ASP.NET	Core	application	can	just

be	a	very	thin	web	server	built

around	some	terminating

middleware.	The	terminating

middleware	is	a	chunk	of	code	that

gets	to	process	the	request.

Basically,	it’s	a	function	that

processes	the	HTTP	request.	Your

code	can	do	everything,	including

returning	a	string	that	the	browser

will	treat	as	HTML.	Here’s	a

sample	Startup	class	for	the

purpose.

Click	here	to	view	code	image

public	class	Startup

{

				public	void	Configure(IApplicationBuilder	app)

				{

							app.Run(async	context	=>

							{

										var	obj	=	new	SomeWork();

										await	context.Response.WriteAsync("<h1>"	+	obj.Now()	+	
"</h1>");

							});

				}

}

By	simply	writing	HTML-formatted

text	in	the	response’s	output	stream

(and	possibly	setting	the	appropriate

MIME	type),	you	can	serve	HTML

content	to	the	browser.	It	all	happens

in	a	very	straightforward	way,	with	no

filters	and	no	intermediation.	It

works,	but	we’re	far	from	having	a

maintainable	and	flexible	solution.

Serving	HTML	from	Controllers

Serving	HTML	from	Controllers

More	realistically,	an	ASP.NET

Core	application	leverages	the	MVC

application	model	and	makes	use	of

controller	classes.	As	discussed	in

Chapter	4,	“ASP.NET	MVC

Controllers,”	any	request	is

mapped	to	a	method	on	a

controller	class.	The	selected

method	is	given	access	to	the	HTTP

context,	can	inspect	the	incoming

data,	and	determine	the	action	to

take.	Once	the	method	has

gathered	all	the	necessary	data,	it	is

ready	to	prepare	the	response.

HTML	content	can	be	arranged

algorithmically	on	the	fly,	or	it	can

be	more	comfortably	created	from

a	selected	HTML	template	with

placeholders	for	computed	data.

Serving	HTML	as	Plain	Text	from	Action
Methods

The	code	below	illustrates	the

pattern	of	a	controller	method	that

retrieves	data	in	some	way	and

then	formats	it	to	some	valid

HTML	layout.

Click	here	to	view	code	image

public	IActionResult	Info(int	id)

{

			var	data	=	_service.GetInfoAsHtml(id);

			return	Content(html,	"text/html");

}

When	the	controller	method	regains

control	of	the	flow,	it	holds	a	text

string	that	it	knows	is	made	of	HTML

markup.	The	controller	then	just

returns	the	text	decorated	with	the

proper	HTML	MIME	type.	This

approach	is	only	a	bit	better	than

writing	HTML	directly	to	the	output

stream	because	it	allows	for	input

data	to	be	mapped	to	comfortable

.NET	types	via	model	binding,	and	it

relies	on	more	structured	code.	The

physical	generation	of	HTML	still

happens	algorithmically;	by	that,	I

mean	that	to	change	the	layout,

changes	to	the	code	are	required,

which	will	need	subsequent

compiling.

Serving	HTML	from	Razor	Templates

The	most	common	approach	for

serving	HTML	content	is	relying	on

template	files	for	expressing	the

desired	layout	and	a	standalone

engine	to	parse	the	template	and

fill	it	out	with	live	data.	In

ASP.NET	MVC,	Razor	is	the

markup	language	used	for

expressing	HTML-like	templates,

and	the	view	engine	is	the	system

component	that	renders	templates

out	to	consumable	HTML.

Click	here	to	view	code	image

public	IActionResult	Info(int	id)

{

			var	model	=	_service.GetInfo(id);

			return	View("template",	model);

}

The	view	engine	is	triggered	by	the

call	of	the	View	function,	which

returns	an	object	that	packages	the

name	of	the	Razor	template	file	to	use

—a	file	with	a	.cshtml	extension—and

a	view	model	object	containing	the

data	to	show	in	the	final	HTML

layout.

The	benefit	of	this	approach	is	in	the

neat	separation	between	the	markup

template—the	foundation	of	the	final

HTML	page—and	the	data	that	will	be

shown	in	it.	The	view	engine	is	a

system	tool	that	orchestrates	the

activity	of	other	components,	such	as

the	Razor	parser	and	page	compiler.

From	a	developer’s	perspective,	it

suffices	to	edit	the	Razor	template—an

HTML-like	file—to	change	the	layout

of	the	HTML	that	is	served	back	to	the

browser.

Serving	HTML	from	Razor	Pages

Serving	HTML	from	Razor	Pages

In	ASP.NET	Core	2.0,	Razor	pages

are	an	additional	way	to	serve

HTML	content.	Basically,	it’s	about

having	Razor	template	files	that

can	be	used	directly	without	going

through	a	controller	and	a

controller	action.	As	long	as	the

Razor	page	file	is	located	under	the

Pages	folder,	and	its	relative	path

and	name	matches	the	URL,	then

the	view	engine	will	process	the

content	and	produce	HTML.

The	big	difference	between	a	Razor

page	and	a	regular	controller-driven

view	is	that	a	Razor	page	can	be	a

single	file—much	like	an	ASPX	page—

that	contains	code	and	markup.	If

you’re	used	to	MVC	controllers,	then	I

expect	you	will	find	Razor	pages

fundamentally	useless	and	pointless,

perhaps	only	useful	in	those	rare

scenarios	in	which	you	have	a

controller	method	that	renders	out	a

view	without	any	business	logic.	If

you’re	new	to	the	MVC	application

model,	then	Razor	pages	can

represent	a	lower	entry	point	barrier

to	make	progress	on	the	framework.

	Note	The	weird	thing	about	Razor	pages	is	that	they	fit	well
as	long	as	your	view	is	just	a	bit	more	complex	than	a	static	HTML	file.	Razor
pages,	though,	can	be	made	quite	complex.	They	can	perform	database
access,	dependency	injection,	and	they	can	post	and	redirect.	With	these
features	in	place,	however,	the	gap	with	a	regular	controller-driven	view	is
very	thin.

THE	VIEW	ENGINE

The	view	engine	is	the	central

component	of	the	MVC	application

model	responsible	for	creating

HTML	from	your	views.	Views	are

usually	a	mix-up	of	HTML

elements	and	C#	code	snippets.

First,	let’s	review	the	trigger	of	the

view	engine	in	the	most	common

case—the	View	method	on	the

Controller	base	class.

Invoking	the	View	Engine

Invoking	the	View	Engine

From	within	a	controller	method,

you	invoke	the	view	engine	by

calling	the	View	method,	as	below:

Click	here	to	view	code	image

public	IActionResult	Index()

{

			return	View();	//	same	as	View("index");

}

The	View	method	is	a	helper	method

responsible	for	creating	a	ViewResult

object.	The	ViewResult	object	needs

to	know	about	the	view	template,	an

optional	master	view,	and	the	raw

data	to	be	incorporated	into	the	final

HTML.

The	View	Method

Even	though	the	method	View	is

parameter-less	in	this	code	snippet,

it	doesn’t	mean	no	data	is	actually

passed	on.	Here’s	the	complete

signature	of	the	method:

Click	here	to	view	code	image

protected	ViewResult	View(String	viewName,	String	masterViewName,
	Object	viewModel)

Here’s	a	more	common	pattern	for	a

controller	method:

Click	here	to	view	code	image

public	IActionResult	Index(...)

{

			var	model	=	GetRawDataForTheView(...);

			return	View(model);		

}

In	this	case,	the	name	of	the	view

defaults	to	the	name	of	the	action

whether	implicitly	inferred	from	the

method’s	name	or	explicitly	set

through	the	ActionName	attribute.

The	view	is	a	Razor	file	(with	a	.cshtml

extension)	located	under	the	Views

project	folder.	The	master	view

defaults	to	a	Razor	file	named

_Layout.cshtml	and	is	the	HTML

layout	on	which	the	view	is	based.

Finally,	the	variable	model	indicates

the	data	model	to	be	incorporated	into

the	template	to	generate	the	final

HTML.

More	details	about	the	syntax	of	the

Razor	language	are	in	Chapter	6.

Processing	the	ViewResult	Object

The	View	method	packages	up	the

name	of	the	Razor	template,	the

master	view,	and	the	view	model	to

return	a	single	object	that

implements	the	IActionResult

interface.	The	class	is	named

ViewResult	and	abstracts	the	result

obtained	after	processing	the	action

method.	When	the	controller

method	returns,	no	HTML	has

been	generated	yet,	and	nothing

has	been	written	to	the	output

stream	yet.

Click	here	to	view	code	image

public	interface	IActionResult

{

			Task	ExecuteResultAsync(ActionContext	context)

}

As	you	can	see,	at	its	core,	the

IActionResult	interface	comprises	a

single	method	with	the	self-

explanatory	name	of

ExecuteResultAsync.	Inside	of	the

ViewResult	class—and	in	any	other

class	that	serves	as	an	action	result

class—there’s	a	piece	of	logic	that

processes	embedded	data	to	shape	up

the	response.

However,	the	trigger	for	the

ExecuteResultAsync	method	is	not	the

controller.	When	the	controller

returns,	the	action	invoker	picks	up

the	action	result	and	executes	it.

When	an	instance	of	the	ViewResult

class	has	its	ExecuteResultAsync

method	invoked,	the	view	engine	is

triggered	to	produce	the	actual

HTML.

Putting	it	All	Together

Putting	it	All	Together

The	view	engine	is	the	component

that	physically	builds	the	HTML

output	for	the	browser.	The	view

engine	kicks	in	for	each	request

that	ends	up	in	a	controller	action

that	returns	HTML.	It	prepares	the

output	by	mixing	a	template	for	the

view	and	any	data	the	controller

passes	in.

The	template	is	expressed	in	an

engine-specific	markup	language	(for

example,	Razor);	the	data	is	passed

packaged	in	dictionaries	or	in	strongly

typed	objects.	Figure	5-1	shows	the

overall	picture	of	how	a	view	engine

and	controller	work	together.

FIGURE	5-1	Controllers	and	view	engines

The	Razor	View	Engine

The	Razor	View	Engine

In	ASP.NET	Core,	a	view	engine	is

merely	a	class	that	implements	a

fixed	interface—the	IViewEngine

interface.	Each	application	can

have	one	or	more	view	engines	and

use	all	of	them	in	different	cases.	In

ASP.NET	Core,	however,	each

application	is	armed	by	just	one

default	view	engine—the

RazorViewEngine	class.	The	aspect

of	the	view	engine	that	most

impacts	the	development	is	the

syntax	it	supports	for	defining	the

template	of	the	view.

The	Razor	syntax	is	quite	clean	and

friendly.	A	view	template	is	essentially

an	HTML	page	with	a	few	code

placeholders.	Each	placeholder

contains	an	executable	expression—

much	like	a	code	snippet.	The	code	in

the	snippets	is	evaluated	when	the

view	gets	rendered,	and	the	resulting

markup	is	integrated	into	the	HTML

template.	Code	snippets	can	be

written	in	C#	or	other	.NET	languages

supported	by	the	.NET	Core	platform.

	Note	It	is	possible	to	implement	your	own	view	engine	based
on	your	custom	syntax	in	addition	to	the	RazorViewEngine	class	provided	by
ASP.NET	Core.

Generalities	of	the	Razor	View	Engine

Generalities	of	the	Razor	View	Engine

The	Razor	view	engine	reads

templates	from	a	physical	location

on	disk.	Any	ASP.NET	Core	project

has	a	root	folder	named	Views

where	the	templates	are	stored	in	a

specific	structure	of	subdirectories.

The	Views	folder	usually	has	some

subfolders—each	named	after	an

existing	controller.	Each	controller-

specific	subdirectory	contains

physical	files	whose	name	is

expected	to	match	the	name	of	an

action.	The	extension	has	to	be

.cshtml	for	the	Razor	view	engine.

(If	you’re	writing	your	ASP.NET

Core	application	in,	say,	Visual

Basic,	then	the	extension	must	be

.vbhtml.)

ASP.NET	MVC	requires	that	you	place

each	view	template	under	the

directory	named	from	the	controller

that	uses	it.	In	case	multiple

controllers	are	expected	to	invoke	the

same	view,	then	you	move	the	view

template	file	under	the	Shared	folder.

It	is	important	to	note	that	the	same

hierarchy	of	directories	that	exists	at

the	project	level	under	the	Views

folder	must	be	replicated	on	the

production	server	when	you	deploy

the	site.

View	Location	Formats

The	Razor	view	engine	defines	a

few	properties	through	which	you

can	control	how	view	templates	are

located.	For	the	internal	working	of

the	Razor	view	engine,	it	is

necessary	to	provide	a	default

location	for	master,	regular,	and

partial	views	both	in	a	default

project	configuration	and	when

areas	are	used.

Table	5-1	shows	the	location

properties	supported	by	the	Razor

view	engine	with	the	predefined	value.

The	AreaViewLocationFormats

property	is	a	list	of	strings,	each	of

which	points	to	a	placeholder	string

defining	a	virtual	path.	Also,	the

ViewLocationFormats	property	is	a

list	of	strings,	and	each	of	its

contained	strings	refers	to	a	valid

virtual	path	for	the	view	template.

TABLE	5-1	The	default	location

formats	of	the	Razor	view	engine

Property Default	location	format

AreaViewLocationFor

mats

~/Areas/{2}/Views/{1}/{0}.cshtm

l

~/Areas/{2}/Views/Shared/{0}.c

shtml

ViewLocationFormats ~/Views/{1}/{0}.cshtml

~/Views/Shared/{0}.cshtml

As	you	can	see,	locations	are	not	fully

qualified	paths	but	contain	up	to	three

placeholders.

The	placeholder	{0}	refers	to	the	name	of	the	view,	as	it	is	being

invoked	from	the	controller	method.

The	placeholder	{1}	refers	to	the	controller	name	as	it	is	used	in

the	URL.

Finally,	the	controller	{2},	if	specified,	refers	to	the	area	name.

	Note	If	you’re	familiar	with	classic	ASP.NET	MVC
development,	you	might	be	surprised	to	see	that	in	ASP.NET	Core,	there’s
nothing	like	view	location	formats	for	partial	views	and	layouts.	In	general,	as
we’ll	see	in	Chapter	6,	views,	partial	views,	and	layouts	are	similar	and	are
treated	and	discovered	in	the	same	way	by	the	system.	This	is	probably	the
rationale	behind	such	a	decision.	Therefore,	to	add	a	custom	view	location	for
partial	views	or	layout	views,	you	simply	add	it	to	the	ViewLocationFormats
list.

Areas	in	ASP.NET	MVC

Areas	in	ASP.NET	MVC

Areas	are	a	feature	of	the	MVC

application	model	used	to	group

related	functionalities	within	the

context	of	a	single	application.

Using	areas	is	comparable	to	using

multiple	sub-applications,	and	it	is

a	way	to	partition	a	large

application	into	smaller	segments.

The	partition	that	areas	offer	is

analogous	to	namespaces,	and	in	an

MVC	project,	adding	an	area	(which

you	can	do	from	the	Visual	Studio

menu)	results	in	adding	a	project

folder	where	you	have	a	distinct	list	of

controllers,	model	types,	and	views.

This	allows	you	to	have	two	or	more

HomeController	classes	for	different

areas	of	the	application.	Area

partitioning	is	up	to	you	and	is	not

necessarily	functional.	You	can	also

consider	using	areas	one-to-one	with

roles.

In	the	end,	areas	are	nothing	technical

or	functional;	instead,	they’re	mostly

related	to	the	design	and	organization

of	the	project	and	the	code.	When

used,	areas	have	an	impact	on

routing.	The	name	of	the	area	is

another	parameter	to	be	considered	in

the	conventional	routing.	For	more

information	refer	to

http://docs.microsoft.com/en-

us/aspnet/core/mvc/controllers/area

s.	(http://docs.microsoft.com/en-

us/aspnet/core/mvc/controllers/areas.)

Customizing	Location	Formats

If	I	look	back	at	almost	a	decade	of

ASP.NET	MVC	programming,	I

realize	that	in	nearly	any

production	application	of	medium

complexity,	I	have	ended	up	having

a	custom	view	engine	or,	more

often,	a	customized	version	of	the

default	Razor	view	engine.

The	primary	reason	for	using	a

configuration	different	from	the

default	is	always	the	need	of

organizing	views	and	partial	views	in

specific	folders	to	make	it	simpler	and

faster	to	retrieve	files	when	the

number	of	views	and	partial	views

exceeds	a	couple	of	dozens.	Razor

views	can	be	given	any	name

following	any	sort	of	naming

convention.	Although	neither	a

naming	convention	nor	a	custom

organization	of	folders	is	strictly

required,	in	the	end,	both	are	useful	to

manage	and	maintain	your	code.

My	favorite	naming	convention	is

based	on	the	use	of	a	prefix	in	the

name	of	views.	For	example,	all	my

partial	views	begin	with	pv_	whereas

layout	files	begin	with	layout_.	This

guarantees	that	even	when	quite	a	few

files	are	found	in	the	same	folder,	they

are	grouped	by	name	and	can	be

spotted	easily.	Also,	I	still	like	to	have

a	few	additional	subfolders	at	least	for

partial	views	and	layouts.	The	code

below	shows	how	you	can	customize

the	view	locations	in	ASP.NET	Core.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services

								.AddMvc()

								.AddRazorOptions(options	=>

								{

												//	Clear	the	current	list	of	view	location	formats.	A
t	this	time,	

												//	the	list	contains	default	view	location	formats.

												options.ViewLocationFormats.Clear();

												//	{0}	-	Action	Name

												//	{1}	-	Controller	Name

												//	{2}	-	Area	Name

												options.ViewLocationFormats.Add("/Views/{1}/{0}.cshtm
l");

												options.ViewLocationFormats.Add("/Views/Shared/{0}.cs
html");

												options.ViewLocationFormats.Add("/Views/Shared/Layout
s/{0}.cshtml");

												options.ViewLocationFormats.Add("/Views/Shared/Partia
lViews/{0}.cshtml");

								});

}

The	call	to	Clear	empties	the	default

list	of	view	location	strings	so	that	the

system	will	only	work	according	to

custom	location	rules.	Figure	5-2

presents	the	resulting	folder	structure

as	it	appears	in	a	sample	project.	Note

that	now	partial	views	will	only	be

discovered	if	located	under

Views/Shared	or

Views/Shared/PartialViews,	and

layout	files	will	only	be	discovered	if

located	under	Views/Shared	or

Views/Shared/Layouts.

FIGURE	5-2	Customized	view	locations

	Note	If	you	are	a	bit	unfamiliar	with	the	concept	of	partial
views	and	layout	files,	don’t	worry.	In	the	next	chapter,	they	will	be	fully
explained	with	examples.

View	Location	Expanders

View	location	formats	are	a	static

setting	for	the	view	engine.	You

define	view	location	formats	at	the

application	startup,	and	they

remain	active	for	the	entire

lifetime.	Each	time	a	view	must	be

rendered,	the	view	engine	goes

through	the	list	of	registered

locations	until	it	finds	a	location

that	contains	the	desired	template.

If	no	template	is	found,	an

exception	is	thrown.	So	far	so	good.

What	if,	instead,	you	need	to

determine	the	path	to	the	view

dynamically	on	a	per-request	basis?	If

it	sounds	like	a	weird	use-case,	think

about	multi-tenant	applications.

Imagine	you	have	an	application	that

is	consumed	as	a	service	by	multiple

customers	concurrently.	It’s	always

the	same	codebase,	and	it’s	always	the

same	set	of	logical	views,	but	each

user	can	be	served	a	specific	version	of

the	view,	maybe	styled	differently	or

with	a	different	layout.

A	common	approach	for	this	type	of

application	is	defining	the	collection

of	default	views	and	then	allowing

customers	to	add	customized	views.

For	example,	let’s	say	customer

Contoso	navigates	to	the	view

index.cshtml	and	expects	to	see

Views/Contoso/Home/index.cshtml

instead	of	the	default	view	at

Views/Home/index.cshtml.	How

would	you	code	this?

In	classic	ASP.NET	MVC,	you	had	to

create	a	custom	view	engine	and

override	the	logic	to	find	views.	It	was

not	a	huge	amount	of	work—just	a	few

lines	of	code—but	yet	you	had	to	roll

your	own	view	engine	and	learn	a	lot

about	its	internals.	In	ASP.NET	Core,

view	location	expanders	are	a	new

type	of	component	made	to	resolve

views	dynamically.	A	view	location

expander	is	a	class	that	implements

the	IViewLocationExpander

interface.

Click	here	to	view	code	image

public	class	MultiTenantViewLocationExpander	:	IViewLocationExpan
der

{

				public	void	PopulateValues(ViewLocationExpanderContext	contex
t)

				{

								var	tenant	=	context.ActionContext.HttpContext.ExtractTen
antCode();

								context.Values["tenant"]	=	tenant;

				}

				public	IEnumerable<string>	ExpandViewLocations(

															ViewLocationExpanderContext	context,	

															IEnumerable<string>	viewLocations)

				{

								if	(!context.Values.ContainsKey("tenant")	||	

													string.IsNullOrWhiteSpace(context.Values["tenant"]))

																return	viewLocations;

								var	tenant	=	context.Values["tenant"];

								var	views	=	viewLocations

																.Select(f	=>	f.Replace("/Views/",	"/Views/"	+	ten
ant	+	"/"))

																.Concat(viewLocations)

																.ToList();

								return	views;

				}

}

In	PopulateValues,	you	access	the

HTTP	context	and	determine	the	key

value	that	will	determine	the	view

path	to	use.	This	could	easily	be	the

code	of	the	tenant	you	extract	in	some

way	from	the	requesting	URL.	The	key

value	to	be	used	to	determine	the	path

is	stored	in	the	view	location	expander

context.	In	ExpandViewLocations,

you	receive	the	current	list	of	view

location	formats,	edit	as	appropriate

based	on	the	current	context,	and

return	it.	Editing	the	list	typically

means	inserting	additional	and

context-specific	view	location	formats.

According	to	the	code	above,	if	you	get

a	request	from

http://contoso.yourapp.com/home/i

ndex

(http://contoso.yourapp.com/home/index)

and	the	tenant	code	is	“contoso,”	then

the	returned	list	of	view	location

formats	can	be	as	shown	in	Figure	5-

3.

FIGURE	5-3	Using	a	custom	location	expander	for	a	multi-tenant

application

Tenant-specific	location	formats	have

been	added	at	the	top	of	the	list,

meaning	that	any	overridden	view	will

take	precedence	over	any	default	view.

Your	custom	expander	must	be

registered	in	the	startup	phase.	Here’s

how	to	do	it.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services

								.AddMvc()

								.AddRazorOptions(options	=>

								{

												options.ViewLocationExpanders.Add(new	MultiTenantView
LocationExpander());

								});

}

Note	that	by	default	the	no	view

location	expander	is	registered	in	the

system.

Adding	a	Custom	View	Engine

In	ASP.NET	Core	the	availability	of

view	location	expander

components	drastically	reduces	the

need	of	having	a	custom	view

engine,	at	least	for	the	need	of

customizing	the	way	that	views	are

retrieved	and	processed.	A	custom

view	engine	is	based	on	the

IViewEngine	interface,	as	shown

below.

Click	here	to	view	code	image

public	interface	IViewEngine

{

				ViewEngineResult	FindView(ActionContext	context,	string	viewN
ame,	bool	isMainPage);

				ViewEngineResult	GetView(string	executingFilePath,	string	vie
wPath,	bool	isMainPage);

}

The	method	FindView	is	responsible

for	locating	the	specified	view,	and	in

ASP.NET	Core,	its	behavior	is	largely

customizable	through	location

expanders.	Instead,	the	method

GetView	is	responsible	for	creating

the	view	object,	namely	the

component	that	will	then	be	rendered

to	the	output	stream	to	capture	the

final	markup.	Typically,	there’s	no

need	to	override	the	behavior	of

GetView	unless	you	need	to

something	unusual,	such	as	changing

the	template	language.

These	days,	the	Razor	language	and

the	Razor	view	are	largely	sufficient

for	most	needs,	and	examples	of

alternate	view	engines	are	rare.

However,	some	developers	started

projects	to	create	and	evolve	alternate

view	engines	that	use	the	Markdown

(MD)	language	to	express	HTML

content.	In	my	opinion,	that	is	one	of

the	few	cases	for	really	having	(or

using)	a	custom	view	engine.

At	any	rate,	if	you	happen	to	have	a

custom	view	engine,	you	can	add	it	to

the	system	through	the	following	code

in	ConfigureServices.

Click	here	to	view	code	image

services.AddMvc()

								.AddViewOptions(options	=>

												{

																options.ViewEngines.Add(new	SomeOtherViewEngine()
);

												});

Also,	note	that	RazorViewEngine	is

the	sole	view	engine	registered	in

ASP.NET	Core.	Hence,	the	code	above

just	adds	a	new	engine.	If	you	want	to

replace	the	default	engine	with	your

own	engine,	you	must	empty	the

ViewEngines	collection	before

registering	the	new	engine.

Structure	of	a	Razor	View

Technically	speaking,	the	primary

goal	of	a	view	engine	is	to	produce

a	view	object	from	a	template	file

and	provide	view	data.	The	view

object	is	then	consumed	by	the

action	invoker	infrastructure	and

leads	to	the	generation	of	the	actual

HTML	response.	Every	view

engine,	therefore,	defines	its	own

view	object.	Let’s	find	out	more

about	the	view	object	managed	by

the	default	Razor	view	engine.

Generalities	of	the	View	Object

Generalities	of	the	View	Object

As	discussed,	the	view	engine	is

triggered	by	a	controller	method

that	calls	into	the	View	method	of

the	base	controller	class	to	have	a

particular	view	rendered.	At	this

point,	the	action	invoker—the

system	component	that	governs	the

execution	of	any	ASP.NET	Core

requests—goes	through	the	list	of

registered	view	engines	and	gives

each	a	chance	to	process	the	view

name.	This	happens	through	the

services	of	the	FindView	method.

The	FindView	method	of	the	view

engine	receives	the	view	name	and

verifies	that	a	template	file	with	given

name	and	due	extension	exists	in	the

tree	of	folders	it	supports.	If	a	match

is	found,	the	GetView	method	is

triggered	to	parse	the	file	content	and

arrange	for	a	new	view	object.

Ultimately,	the	view	object	is	an	object

that	implements	the	IView	interface.

Click	here	to	view	code	image

public	interface	IView

{

				string	Path	{	get;	}

				Task	RenderAsync(ViewContext	context);

}

The	action	invoker	just	calls

RenderAsync	to	have	HTML

generated	and	written	to	the	output

stream.

Parsing	the	Razor	Template

Parsing	the	Razor	Template

The	Razor	template	file	is	parsed	to

separate	static	text	from	language

code	snippets.	A	Razor	template	is

essentially	an	HTML	template	with

some	interspersed	chunks	of

programmatic	code	written	in	C#

(or	in	general	in	any	language	the

ASP.NET	Core	platform	supports).

Any	C#	code	snippet	must	be

prefixed	with	the	@	symbol.	A

sample	Razor	template	file	is

shown	below.	(This	sample

template	shows	only	a	glimpse	of

what	we’ll	cover	in	Chapter	6;

there,	we’ll	delve	deeper	into	all

syntax	aspects	of	Razor	templates.)

Click	here	to	view	code	image

<!--	test.cshtml	located	in	Views/Home	-->

<h1>Hi	everybody!</h1>

<p>It's	@DateTime.Now.ToString("hh:mm")</p>

<hr>

Let	me	count	till	ten.

@for(var	i=1;	i<=10;	i++)

{

					@i

}

The	content	of	the	template	file	is	split

into	a	list	of	text	items	of	two	types:

Static	HTML	content	and	code

snippets.	The	list	built	by	the	Razor

parser	looks	like	what’s	shown	in

Table	5-2.

TABLE	5-2	List	of	items	found	out	of

parsing	the	sample	Razor	template

Content Type	of	content

<h1>Hi	everybody!

</h1><p>It’s

Static	content

DateTime.Now.ToStri

ng(“hh:mm”)

Code	snippet

</p><hr>Let	me	

count	till	ten.

Static	content

for(var	i=1;	i<=10;	

i++)

{

	:

}

Code	snippet

 Static	content	(recursively	

processed	in	the	for	loop)

I Code	snippet	(recursively	

processed	in	the	for	loop)

 Static	content	(recursively	

processed	in	the	for	loop)

 Static	content

The	@	symbol	is	used	to	tell	the

parser	where	a	transition	occurs

between	static	content	and	a	code

snippet.	Any	text	following	the	@

symbol	is	then	parsed	according	to	the

syntax	rules	of	the	supported

language—in	this	case,	the	C#

language.

Building	the	View	Object	out	of	the	Razor
Template

The	text	items	discovered	in	the

Razor	template	file	form	the

groundwork	for	dynamically

building	a	C#	class	that	fully

represents	the	template.	A	C#	class

is	dynamically	created	and

compiled	using	the	compiler

services	of	the	.NET	platform

(Roslyn).	Assuming	that	the	sample

Razor	file	is	named	test.cshtml	and

it	is	located	in	Views/Home,

following	is	the	code	that	the	actual

Razor	view	class	silently	generates.

Click	here	to	view	code	image

//	The	code	below	is	NOT	an	exact	printout	of	the	actual	code	bei
ng	generated.	However

//	it	shows	the	fundamental	things.	Other	lines,	not	relevant	for
	our	purposes,	have	

//	been	removed	for	clarity	and	brevity.	The	substance	of	the	beh
avior,	though,	is	all	here.

public	class	_Views_Home_Test_cshtml	:	RazorPage<dynamic>

{

				public	override	async	Task	ExecuteAsync()

				{

								WriteLiteral("<h1>Hi	everybody!</h1>\r\n<p>It\'s	");

								Write(DateTime.Now.ToString("hh:mm"));

								WriteLiteral("</p>\r\n<hr>\r\nLet	me	count	till	ten.\r\n<
ul>\r\n");

								for(var	i=1;	i<=10;	i++)

								{

												WriteLiteral("");

												Write(i);

												WriteLiteral("");

								}

								WriteLiteral("\r\n");

				}

}

The	class	inherits	from

RazorPage<T>,	which	in	turn

implements	the	IView	interface.

Because	of	the	predefined	members	of

the	RazorPage<T>	base	page

(available	in	the

Microsoft.AspNetCore.Mvc.Razor

namespace),	you	can	use	apparently

magic	objects	to	access	the	request

and	your	own	data	in	the	body	of	a

Razor	template.	Noticeable	examples

are	Html,	Url,	Model,	and	ViewData.

We’ll	see	these	property	objects	in

action	in	Chapter	6	when	we	discuss

the	Razor	syntax	available	to	produce

HTML	views.

More	often	than	not,	a	Razor	view

results	from	the	combination	of

multiple	.cshtml	files,	such	as	the	view

itself,	the	layout	file,	and	two	optional

global	files	named	_viewstart.cshtml

and	_viewimports.cshtml.	The	role	of

these	two	files	is	explained	below.

TABLE	5-3	Global	files	in	the	Razor

system

Fi

le	

n

a

m

e

Purpose

_

Vi

e

w

St

ar

t.c

sh

Contains	code	that	is	being	run	before	any	view	is	

rendered.	You	can	use	this	file	to	add	any	configuration	

code	that	is	common	to	all	views	in	the	application.	

You	commonly	use	this	file	to	specify	a	default	layout	

file	for	all	views

This	file	must	be	located	in	the	root	Views	folder	and	is	

t

m

l

also	supported	in	classic	ASP.NET	MVC

_

Vi

e

w

I

m

po

rt

s.

cs

ht

m

l

Contains	Razor	directives	that	you	want	to	share	across	

all	views.	You’re	allowed	to	have	multiple	copies	of	this	

file	in	various	view	folders.	The	scope	of	its	content	

affects	all	views	in	the	same	folder	or	below	it	unless	

another	copy	of	the	file	exists	at	an	inner	level.	This	file	

is	not	supported	in	classic	ASP.NET.	In	classic	

ASP.NET,	though,	the	same	purpose	is	achieved	using	

a	web.config	file

When	multiple	Razor	files	are

involved,	the	compile	process

proceeds	in	steps.	The	layout	template

is	processed	first,	followed	by

_ViewStart	and	the	actual	view.	The

output	is	then	merged	so	that	the

common	code	in	_ViewStart	is

rendered	before	the	view	and	the	view

outputs	its	content	within	the	layout.

	Note	Files	in	Table	5-3	are	the	only	files	you	might	globally
need	to	run	ASP.NET	Core	MVC	applications.	In	Visual	Studio	2017,	some	of
the	predefined	application	templates	create	some	other	files	(such
as_ValidationScriptsPartial.cshtml)	that	you	can	happily	and	blissfully	ignore
unless	you	find	them	useful	for	your	purposes.

Razor	Directives

The	behavior	of	the	Razor	parser

and	code	generator	is	driven	by	a

few	optional	directives	you	can	use

to	configure	the	rendering	context

further.	Table	5-4	presents

commonly	used	Razor	directives.

TABLE	5-4	Most	popular	Razor

directives

D

ir

e

ct

iv

e

Purpose

@

u

si

n

g

Adds	a	namespace	to	the	compilation	context.	Same	as	

the	using	instruction	of	C#

@using	MyApp.Functions

@

in

h

er

it

s

Indicates	the	actual	base	class	to	use	for	the	

dynamically	generated	Razor	view	object.	By	default,	

the	base	class	is	RazorPage<T>,	but	the	@inherits	

directive	lets	you	use	a	custom	base	class	that	in	turn	

must	inherit	from	RazorPage<T>

@inherits	MyApp.CustomRazorPage

@

m

o

d

el

Indicates	the	type	of	the	class	being	used	to	pass	data	

to	the	view.	The	type	specified	through	the	@model	

directive	becomes	the	generic	parameter	T	of	

RazorPage<T>.	If	not	specified,	T	defaults	to	dynamic

@model	MyApp.Models.HomeIndexViewModel

@

in

je

ct

Injects	in	the	view	context	an	instance	of	the	specified	

type	bound	to	the	given	property	name.	The	directive	

relies	on	the	system’s	DI	infrastructure

@inject	IHostingEnvironment	CurrentEnvironment

The	@using	and	@model	directives

are	pretty	common	in	nearly	any

Razor	view.	The	@inject	directive,

instead,	represents	the	connecting

point	between	a	Razor	view	and	the

DI	system	of	ASP.NET	Core.	Through

@inject,	you	can	resolve	any

registered	type	and	have	a	fresh

instance	of	it	in	the	view.	The	injected

instance	will	be	available	via	a

property	with	that	name	in	the

dynamically	generated	code	for	the

Razor	view.

Precompiled	Views

Razor	views	are	generated	and

compiled	on	the	fly	when	the	view

is	invoked.	The	generated	assembly

is	cached	and	dropped	only	when

the	system	detects	that	the	Razor

view	template	has	been	modified.

When	this	is	detected,	the	view	is

regenerated	and	recompiled	on

first	access.

Starting	with	ASP.NET	Core	1.1,	you

can	optionally	precompile	Razor	views

and	deploy	them	as	an	assembly	with

your	application.	Precompilation	is

relatively	easy	to	request	and	consists

of	making	a	change	in	the	.csproj	file

either	manually	or	through	the

interface	of	your	IDE	(if	supported).

All	you	need	to	do	is	reference	the

package

Microsoft.AspNetCore.Mvc.Razor.Vie

wCompilation	and	ensure	the	.csproj

file	contains	the	following:

Click	here	to	view	code	image

<PropertyGroup>	

		<TargetFramework>netcoreapp2.0</TargetFramework>	

		<MvcRazorCompileOnPublish>true</MvcRazorCompileOnPublish>	

		<PreserveCompilationContext>true</PreserveCompilationContext>	

</PropertyGroup>

All	in	all,	there	are	two	reasons	for

considering	precompiled	views.

Determining	the	relevance	of	such

reasons,	however,	is	up	to	the

development	team.	If	you	deploy

precompiled	views,	then	the	first	user

who	hits	a	given	view	will	get	the	page

a	little	faster.	Second,	while	going

through	the	precompilation	step,	any

undetected	compile	errors	show	up

quickly	and	can	be	fixed	immediately.

To	me,	the	second	reason	sounds

much	more	compelling	than	the	first.

PASSING	DATA	TO	A	VIEW

There	are	three	different,	non-

exclusive	ways	to	pass	data	to	a

Razor	view.	In	ASP.NET	Core,	you

also	have	a	fourth	way—

dependency	injection	via	the

@inject	directive.	You	can	use	one

of	the	two	built-in	dictionaries

—ViewData	and/or	ViewBag—or

you	use	strongly-typed	view	model

classes.	No	difference	exists

between	these	approaches	from	a

purely	functional	point	of	view,	and

even	from	a	performance

perspective,	the	difference	is

negligible.

However,	a	huge	difference	exists

regarding	design,	readability,	and

subsequently,	maintenance.	The

difference	is	all	in	favor	of	using

strongly-typed	view	model	classes.

Built-in	Dictionaries

The	simplest	way	for	a	controller	to

pass	data	to	a	view	is	stuffing	any

information	into	a	name/value

dictionary.	This	can	be	done	in

either	of	two	ways.

The	ViewData	Dictionary

ViewData	is	a	classic	name/value

dictionary.	The	actual	type	of	the

property	is	ViewDataDictionary

which	is	not	derived	from	any	of

the	system’s	dictionary	types	but

still	exposes	the	common

dictionary	interfaces	as	defined	in

the	.NET	Core	framework.

The	base	Controller	class	exposes	a

ViewData	property,	and	the	content

of	that	property	is	automatically

flushed	into	the	dynamically	created

instance	of	the	RazorPage<T>	class

behind	the	view.	This	means	that	any

value	stored	in	controller	ViewData	is

available	in	the	view	without	any

further	effort	on	your	end.

Click	here	to	view	code	image

public	IActionResult	Index()

{

				ViewData["PageTitle"]	=	"Hello";

				ViewData["Copyright"]	=	"(c)	Dino	Esposito";

				ViewData["CopyrightYear"]	=	2017;

				return	View();

}

The	index.cshtml	view	doesn’t	need	to

declare	a	model	type	and	can	just	read

back	any	passed	data.	This	is	where

the	first	crack	in	the	wall	appears.	The

developer	responsible	for	writing	the

view	might	have	no	clue	about	the

data	being	passed	through	the

dictionary.	She	must	rely	on	internal

documentation	and	live

communication	channels,	or	perhaps

she	can	place	a	breakpoint	and	inspect

the	dictionary	in	Visual	Studio	(see

Figure	5-4).	In	any	case,	it’s	not	going

to	be	a	pleasant	experience	even	when

the	same	person	writes	the	controller

and	the	view.

FIGURE	5-4	Inspecting	the	content	of	the	ViewData	dictionary	in

Visual	Studio

Also,	consider	that	just	because

ViewData	entries	are	identified	by

name	(for	example,	magic	strings)

your	code	is	constantly	subject	to

typos	and	in	this	case	not	even

precompiled	views	can	protect	you

against	unexpected	runtime

exceptions	or	unpredictably	wrong

content.	The	use	of	constants	instead

of	magic	strings	mitigates	the	issue

but	at	the	cost	of	forcing	internal

documentation	of	those	constants	and

the	entire	collection	of	data	being

passed	to	the	view.

The	ViewData	dictionary	is	a

string/object	dictionary,	which	means

any	data	you	store	in	it	is	exposed	as	a

generic	object.	This	might	not	be	a	big

deal	if	you’re	only	displaying	the

content	in	the	view	from	a	relatively

small	dictionary.	For	a	large

dictionary,	you	might	incur

boxing/unboxing	performance	issues.

If	you	need	to	use	some	of	the

ViewData	items	for	comparisons	or

other	type-sensitive	operations,	then

you	must	perform	a	type	cast	before

getting	a	usable	value.

The	most	compelling	reason	for	using

a	weakly	typed	dictionary	like

ViewData	is	simplicity	and

immediateness	of	programming.

However,	this	always	comes	at	the

cost	of	making	your	code	brittle,	and

any	effort	to	make	it	less	brittle

inevitably	forces	you	to	put	in	an

effort	comparable	to	using	strongly

typed	classes	without	the	inherent

clarity	that	results	from	using	classes.

	Important	While	we	wouldn’t	recommend	an	extensive
use	of	ViewData	dictionary	in	a	web	application,	we	recognize	that	it	can	be	a
life-saver	in	some	edge	cases,	such	as	when	you	find	it	problematic	to	update
a	strongly	typed	model	(for	example,	you	don’t	own	the	source	code)	and	still
need	to	pass	additional	data	to	the	view.	As	mentioned,	in	fact,	dictionaries
and	view	models	can	be	blissfully	used	together.	Another	tricky	scenario	in
which	dictionaries	can	sometimes	be	used	side	by	side	with	strongly-typed
view	models	is	when	you’re	passing	data	from	a	view	to	a	child	partial	view.
We’ll	cover	this	scenario	in	Chapter	6	when	we	discuss	partial	views.

The	ViewBag	Dynamic	Object

ViewBag	is	another	property

defined	on	the	base	Controller	class

whose	content	is	flushed

automatically	into	the	view	class.

ViewBag	differs	from	ViewData

because	it	allows	direct

programming	access	to	properties,

thus	avoiding	the	dictionary

standard	access	supported	by

ViewData.	Here’s	an	example:

Click	here	to	view	code	image

public	IActionResult	Index()

{

				ViewBag.CurrentTime	=	DateTime.Now;

				ViewBag.CurrentTimeForDisplay	=	DateTime.Now.ToString("HH:mm"
);

				return	View();

}

Note	that	any	access	to	use	an	indexer

on	ViewBag	will	miserably	fail,	which

will	result	in	an	exception.	In	other

words,	the	following	two	expressions

are	not	equivalent	and	the	only	former

works.

Click	here	to	view	code	image

ViewBag.CurrentTimeForDisplay	=	DateTime.Now.ToString("HH:mm");		
				//	works

ViewBag["CurrentTimeForDisplay"]	=	DateTime.Now.ToString("HH:mm")
;			//	throws

The	interesting	part	of	the	story	is	that

ViewBag	doesn’t	contain	anywhere

any	definitions	for	properties	like

CurrentTime	and

CurrentTimeForDisplay.	You	can

type	any	property	name	next	to	the

ViewBag	object	reference,	and	the	C#

compiler	will	never	complain.	The

reason	is	that	ViewBag	is	defined	on

the	Controller	base	class	as	a

DynamicViewData	property,	and

DynamicViewData	is	an	ASP.NET

Core	type	defined	as	follows:

Click	here	to	view	code	image

namespace	Microsoft.AspNetCore.Mvc.ViewFeatures.Internal

{

		public	class	DynamicViewData	:	DynamicObject	

		{

					:

		}

}

The	C#	language	supports	dynamic

features	through	the	Dynamic

Language	Runtime	(DLR),	and	the

DynamicObject	class	is	part	of	it.

Whenever	it	encounters	a	reference	to

a	dynamic	type	variable,	the	C#

compiler	skips	type	checking	and

emits	code	that	boils	down	to	the	DLR

to	resolve	the	call	at	runtime.	This

means	that	errors	(if	any)	will	only	be

discovered	at	runtime	even	in	case	of

precompiled	views.

Another	interesting	aspect	of

ViewBag	is	that	its	content	is

automatically	synced	up	to	the

content	of	the	ViewData	dictionary.

This	happens	because	the	constructor

of	the	DynamicViewData	class

receives	a	reference	to	the	ViewData

dictionary	and	just	reads	and	writes

any	received	value	from	and	to	a

corresponding	ViewData	entry.	As	a

result,	the	following	expressions	are

equivalent.

Click	here	to	view	code	image

var	p1	=	ViewData["PageTitle"];

var	p2	=	ViewBag.PageTitle;

So	what’s	the	point	of	using	ViewBag?

All	in	all,	ViewBag	is	only	apparently

cool.	It	just	prettifies	your	code	a	bit

by	getting	rid	of	ugly	dictionary-based

code,	and	it	does	so	at	the	cost	of

resorting	to	DLR-interpreted	code	for

any	reads	and	writes.	In	doing	so,	it

lets	you	define	properties	that	might

not	actually	exist,	so	it	doesn’t	even

save	you	from	null	reference

exceptions	at	runtime.

	Note	Dynamic	objects	like	ViewBag	make	little	sense	in	the
context	of	passing	data	from	an	ASP.NET	Core	controller	and	the	view	but
having	dynamic	features	in	C#	is	highly	rewarding.	LINQ	and	social	network
APIs,	for	example,	take	advantage	of	such	dynamic	features	in	the	language.

Strongly	Typed	View	Models

Some	developers	seem	to	hate

using	view	model	classes	because

it’s	just	a	bunch	of	more	classes	to

write	and	doing	so	requires	a	bit	of

forethought.	However,	as	a	general

rule,	strongly	typed	view	models

are	the	preferable	approach	to

passing	data	to	a	view	because	it

forces	you,	as	a	developer,	to	focus

on	the	data	flow	going	in	and	out	of

the	view.

Compared	to	using	dictionaries,	a

view	model	class	is	just	a	different

way	to	lay	out	the	data	to	pass	to	the

view.	Instead	of	looking	like	a

collection	of	sparse	object	values,	with

a	view	model	class,	the	data	is	laid	out

nicely	in	a	hierarchical	structure

where	each	piece	of	data	retains	its

own	real	type.

Guidelines	for	a	View	Model	Class

A	view	model	class	is	a	class	that

fully	represents	the	data	being

rendered	into	the	view.	The

structure	of	the	class	should	match,

as	closely	as	possible,	the	structure

of	the	view.	While	some	reuse	is

always	possible	(and	to	some	extent

advisable),	in	general	terms,	you

should	aim	at	having	one	ad	hoc

view	model	class	per	Razor	view

template.

A	common	mistake	is	using	an	entity

class	as	a	view	model	class.	For

example,	let’s	say	that	your	data

model	has	an	entity	of	type	Customer.

How	should	you	pass	data	to	the

Razor	view	that	allows	editing	a

customer	record?	You	might	be

tempted	to	pass	the	view	just	the

reference	to	the	Customer	object	you

want	to	edit.	This	might	or	might	not

be	a	good	solution.	In	the	end,	it	all

depends	on	the	actual	structure	and

content	of	the	view.	For	example,	if

the	view	allows	you	to	change	the

country	of	the	customer,	then	you

probably	need	to	pass	the	view	the	list

of	countries	from	which	to	choose.

Generally,	the	ideal	view	model	is	a

class	similar	to	the	class	below:

Click	here	to	view	code	image

public	class	CustomerEditViewModel

{

			public	Customer	CurrentCustomer	{	get;	set;	}

			public	IList<Country>	AvailableCountries	{	get;	set;	}

}

The	only	case	in	which	it	could	be

acceptable	to	have	an	entity	model

passed	directly	to	the	view	is	when

you	really	have	a	CRUD	view.	But,

frankly,	pure	CRUD	views	these	days

exist	only	in	tutorials	and	summary

articles.

I	recommend	you	always	start	from

common	base	class	to	create	your

view	model	classes.	Here’s	a	simple

and	effective	starting	point.

Click	here	to	view	code	image

public	class	ViewModelBase

{

				public	ViewModelBase(string	title	=	"")

				{

								Title	=	title;

				}

				public	string	Title	{	get;	set;	}

}

Because	the	class	is	primarily

expected	to	model	an	HTML	view,

then	at	the	very	minimum,	it	has	to

expose	a	Title	property	to	set	the	title

of	the	page.	More	properties	can	be

added	as	long	as	you	identify	other

properties	common	to	all	pages	in	the

application.	Also,	it’s	a	good	idea	to

have	formatting	methods	in	the	view

model	base	class	instead	of	placing

the	same	large	amount	of	C#	code

inside	the	Razor	view.

Should	you	derive	all	of	your	view

model	classes	from	something	like	the

ViewModelBase	class	above?	Ideally,

you	should	have	one	base	view	model

class	for	each	layout	class	you	use.

These	view	model	classes	will	extend

ViewModelBase	with	the	properties

common	to	the	specific	layout.

Finally,	each	view	based	on	a

particular	layout	will	be	fed	by	an

instance	of	a	class	derived	from	the

layout	base	view	model	class.

Centralizing	the	Flow	of	Data	into	the	View

Let’s	take	a	look	at	the	following

basic,	but	still	relevant,	snippet	of

Razor	code.	It	simply	features	a

DIV	element	that	renders	the

current	time	internally	and	offers	a

link	to	navigate	back	to	the

previous	page.

Click	here	to	view	code	image

@model	IndexViewModel

@using	Microsoft.Extensions.Options;

@inject	IOptions<GlobalConfig>	Settings	

<div>

			

						@DateTime.Now.ToString(Settings.Value.DateFormat)

			

			Back

</div>

There’s	no	single	flow	of	data	into	the

view.	Data	actually	flows	in	from	three

distinct	sources:	the	view	model

(Model	property),	the	injected

dependency	(Settings	property),	and

the	static	reference	to	the	system’s

DateTime	object.	While	not

compromising	at	all,	the	view

functionality	the	preceding	approach

might	be	problematic	to	handle	in

large	applications	with	hundreds	of

views	and	quite	complex.

Direct	use	of	static	references	and

even	DI-injected	references	(the	pride

and	joy	of	ASP.NET	Core)	should	be

avoided	in	Razor	views	because	they

enlarge	the	bandwidth	through	which

data	flows	in.	If	you’re	looking	for

guidance	on	how	to	build

maintainable	views,	then	you	should

aim	at	giving	each	view	only	one	way

to	get	to	its	data:	the	view	model	class.

Hence,	if	your	view	needs	a	static

reference	or	a	global	reference	simply

add	those	properties	to	the	view

model	class.	In	particular,	the	current

time	could	be	just	one	more	property

that	can	be	added	to	the	super

ViewModelBase	class.

Injecting	Data	through	the	DI	System

In	ASP.NET	Core,	you	also	have	the

possibility	of	injecting	into	the	view

an	instance	of	any	type	registered

with	the	DI	system.	You	do	this

through	the	@inject	directive.	As

mentioned,	the	@inject	directive

adds	one	more	channel	through

which	data	can	flow	into	the	view,

and	this	might	be	a	problem	to

maintain	the	code	easily	in	the	long

run.

However,	for	short-lived	applications

or	just	as	a	shortcut	injection	of

external	references	to	a	view	is	a	fully

supported	feature	that	you	are

welcome	to	use.	No	matter	the

possible	benefits	of	a	different	design,

it	should	be	noted	that	the	ViewData

dictionary	and	the	@inject	directive

together	offer	a	powerful	and

extremely	quick	way	to	retrieve	any

data	you	may	need	from	within	a

Razor	view.	This	is	not	a	practice	I

apply	or	encourage,	but	it’s	supported,

and	it	definitely	works.

RAZOR	PAGES

In	classic	ASP.NET	MVC,	there’s

no	way	to	reference	a	Razor

template	via	a	direct	URL.	A	URL

can	be	used	to	either	link	a	static

HTML	page	or	the	HTML	output

arranged	by	a	controller	action

method.	ASP.NET	Core	is	no

exception.	However,	starting	with

ASP.NET	Core	2.0,	a	new	feature	is

available—Razor	pages—that	allow

you	call	a	Razor	template	directly

via	the	URL	without	any	controller

intermediation.

Discovering	the	Rationale	behind	Razor
Pages

Sometimes,	though,	you	have

controller	methods	that	simply

serve	some	fairly	static	markup.

Canonical	examples	are	the	About

Us	or	Contact	Us	pages	of	a

standard	website.	Let’s	take	a	look

at	the	following	code.

Click	here	to	view	code	image

public	class	HomeController

{

				public	IActionResult	About()

				{

							return	View();	

				}

				public	IActionResult	ContactUs()

				{

							return	View();	

				}

}

As	you	can	see,	there’s	no	data	being

passed	from	the	controller	to	the	view

and	nearly	no	rendering	logic	is

expected	in	the	actual	view.	Why

should	you	use	the	filter	and	the

overhead	of	a	controller	for	such	a

simple	request?	Razor	pages	serve	this

purpose.

Another	scenario	for	using	Razor

pages	is	that	their	use	in	some	way

lowers	the	barrier	to	proficient

ASP.NET	programming.	Let’s	see

how.

Implementation	of	Razor	Pages

The	main	reason	for	Razor	pages	is

to	save	the	costs	of	a	controller

when	all	you	need	is	a	bit	more

than	static	HTML	and	much	less

than	a	full	Razor	view	with	all	of	its

infrastructure.	Razor	pages	can

support	rather	advanced

programming	scenarios	such	as

accessing	a	database,	posting	a

form,	validating	data,	and	the	like.

However,	if	this	is	what	you	need,

then	why	use	a	plain	page?

The	@page	Directive

The	following	code	shows	the

source	code	of	a	simple,	yet

functional,	Razor	page.	The

excessive	simplicity	of	the	Razor

code	is	not	coincidental.

Click	here	to	view	code	image

@page

@{

				var	title	=	"Hello,	World!";

}

<html>

		<head>

				<title>@title</title>

		</head>

		<body>

					<!--	Some	relatively	static	markup	-->

		</body>

</html>

A	Razor	page	is	like	a	layout-less

Razor	view	except	for	the	root

directive—the	@page	directive.	A

Razor	page	fully	supports	all	aspects

of	the	Razor	syntax,	including	the

@inject	directive	and	the	C#

language.

The	@page	directive	is	crucial	to	turn

a	Razor	view	into	a	Razor	page

because	it	is	this	directive	that,	once

processed,	instructs	the	ASP.NET

Core	infrastructure	to	treat	the

request	as	an	action	even	though	it

was	not	bound	to	any	controller.	It	is

key	to	notice	that	the	@page	directive

must	be	the	first	Razor	directive	on	a

page	as	it	affects	the	behavior	of	other

supported	directives.

Supported	Folders

Razor	pages	are	regular	.cshtml

files	located	under	the	new	Pages

folder.	The	Pages	folder	is	typically

located	at	the	root	level.	Within	the

Pages	folder,	you	can	have	as	many

levels	of	subdirectories	as	you	like,

and	each	directory	can	contain

Razor	pages.	In	other	words,	the

location	of	Razor	pages	is	much	the

same	as	the	location	of	files	in	a	file

system	directory.

Razor	pages	can’t	be	located	outside

the	Pages	folder.

Mapping	to	URLs

The	URL	to	invoke	a	Razor	page

depends	on	the	physical	location	of

the	file	in	the	Pages	folder	and	the

name	of	the	file.	A	file	named

about.cshtml,	located	right	in	the

Pages	folder,	is	reachable	as

/about.	Similarly,	a	file	named

contact.cshtml,	located	under

Pages/Misc,	is	reachable	as

/misc/contact.	The	general

mapping	rule	is	that	you	take	the

path	of	the	Razor	page	file	relative

to	Pages	and	drop	the	file

extension.

What	happens	if	your	application	also

has	a	MiscController	class	with	a

Contact	action	method?	In	this	case,

when	the	URL	/misc/contact	is

invoked,	will	it	be	run	through	the

MiscController	class	or	the	Razor

page?	The	controller	will	win.

Note	also	that	if	the	name	of	the	Razor

page	is	index.cshtml	then	also	the

name	index	can	be	dropped	in	the

URL	and	the	page	can	be	reached

both	via	/index	and	via	/.

Posting	Data	from	a	Razor	Page

Another	realistic	scenario	for	a

Razor	page	is	when	all	the	page	can

do	is	post	a	form.	This	feature	is

ideal	for	basic	form-based	pages

like	the	contact-us	page.

Adding	a	Form	to	Razor	Page

The	following	code	shows	a	Razor

page	with	a	form	and	illustrates

how	to	initialize	the	form	and	post

its	content.

Click	here	to	view	code	image

@inject	IContactRepository	ContactRepo

@functions	{

				[BindProperty]

				public	ContactInfo	Contact	{	get;	set;	}

				public	void	IActionResult	OnGet()

				{

								Contact.Name	=	"";

								Contact.Email	=	"";

								return	Page();

				}

				public	void	IActionResult	OnPost()

				{

								if	(ModelState.IsValid)

								{

												ContactRepo.Add(Contact);

												return	RedirectToPage();

								}

								return	Page();

				}

}

<html>

<body>

				<p>Let	us	call	you	back!</p>	

				<div	asp-validation-summary="All"></div>

				<form	method="POST">

						<div>Name:	<input	asp-for="ContactInfo.Name"	/></div>

						<div>Email:	<input	asp-for="ContactInfo.Email"	/></div>

						<button	type="submit">SEND</button>

				</form>

</body>

</html>

The	page	is	split	into	two	main	parts:

The	markup	zone	and	the	code	zone.

The	markup	zone	is	a	regular	Razor

view	with	all	of	the	features	of	a	Razor

view,	including	tag	helpers	and	HTML

helpers.	The	code	zone	contains	all

the	code	to	initialize	the	page	and

process	its	posted	data.

Initializing	the	Form

The	@functions	directive	acts	as

the	container	of	all	code	around	the

page.	It	is	typically	made	of	two

methods—OnGet	and	OnPost.	The

former	is	invoked	to	initialize	the

input	elements	of	the	markup.	The

latter	is	invoked	to	process	any

content	posted	from	the	form.

Binding	between	HTML	input

elements	and	code	elements	is

performed	using	the	model	binding

layer.	Decorated	with	the

BindProperty	attribute,	the	Contact

property	is	initialized	in	OnGet	and

has	its	values	rendered	in	HTML.

When	the	form	posts	back,	the	same

property	contains	(via	model	binding)

the	posted	values.

Processing	the	Input	of	the	Form

The	OnPost	method	can	use	the

ModelState	property	to	check	for

errors—the	entire	validation

infrastructure	works	as	it	would

work	in	a	controller	scenario—and

if	all	is	good	faces	the	problem	of

processing	the	posted	data.	If

errors	are	detected,	the	page	is

rendered	back	calling	the	Page()

function,	which	results	in	a	GET

request	for	the	same	URL.

Processing	the	input	of	a	form

realistically	means	accessing	a

database.	You	can	access	the	database

directly	through	the	DbContext	object

of	the	application	or	via	some

dedicated	repository.	In	both	cases,

the	reference	to	the	tool	must	be

injected	via	DI	in	the	page.	Likewise,

you	can	use	the	@inject	directive	to

make	available	any	necessary

information	in	the	context	of	the

Razor	page.

	Important	If	you	check	out	the	documentation	of	Razor
pages,	you	will	find	a	few	more	supported	options	and	tools	available	for	more
advanced	scenarios.	Quite	frankly,	though,	the	real	power	of	Razor	pages	lies
in	the	quick	coverage	they	allow	for	basic	scenarios.	Going	beyond	this	level
makes	the	complexity	of	Razor	pages	and	the	complexity	of	controllers	nearly
the	same.	And	controllers	provide	for	much	deeper	layering	of	the	code	and
far	more	separation	of	concerns.	Beyond	the	level	of	complexity	discussed
here,	using	Razor	pages	over	controllers	is	only	a	matter	of	personal
preference.

SUMMARY

Views	are	the	foundation	of	web

applications,	and	in	ASP.NET	Core,

views	are	the	result	of	processing	a

template	file—typically	a	Razor

template	file—and	mixing	it	with

some	data	provided	by	the	caller—

typically,	but	not	necessarily,	a

controller	method.	In	this	chapter,

we	first	discussed	the	view	engine

architecture	and	then	dug	into	the

rendering	of	a	Razor	view.	Next,	we

proceeded	to	compare	the	various

approaches	to	pass	data	to	a	view.

We	concluded	the	chapter	with	a

look	at	Razor	pages,	which	are

useful	for	quickly	arranging

extremely	simple	and	basic	views;

they’re	also	a	tool	for	learning	web

programming	in	ASP.NET	Core

from	a	different	perspective.

This	chapter	contained	many	snippets

of	Razor	code.	Razor	is	a	markup

language	whose	syntax	looks	like

HTML	but	allows	for	numerous

extensions	and	specific	features.	We’ll

analyze	the	syntax	of	Razor	in	Chapter

6,	“The	Razor	Syntax.”

—Joseph	Conrad,	“The	Shadow	Line”

CHAPTER	6

The	Razor	Syntax
A	man	should	stand	up	to	his	bad

luck,	to	his	mistakes,	to	his	conscience

and	all	that	sort	of	thing.	Why—what

else	would	you	have	to	fight	against?

An	ASP.NET	Core	application	is

typically,	but	not	necessarily,	made	of

controllers,	and	controller	methods

typically,	but	not	necessarily,	return

ViewResult	objects	as	the	result	of

their	action.	The	action	result	is	then

processed	by	the	action	invoker

system	component	to	produce	the

actual	response.	If	the	action	result	is

a	ViewResult	object,	the	view	engine

is	kicked	off	to	produce	some	HTML

markup.	The	view	engine	is

architected	to	consume	templates

from	a	given	folder	structure	and	fill	it

out	with	some	provided	data.	The	way

templates	are	expressed	and	the	way

data	is	injected	into	them	depends	on

the	internal	implementation	of	the

view	engine	component	and	the

internal	markup	language	they

understand	and	parse	on	the	way	to

generating	HTML.

ASP.NET	Core	ships	with	one	default

view	engine—the	Razor	view	engine.

And	Razor	is	the	markup	language

you	use	to	define	the	layout	of	your

application’s	HTML	views.	We’ve

already	seen	a	few	examples	of	the

Razor	language	in	past	chapters.	In

this	chapter,	we’re	aimed	at	providing

structured	and	comprehensive

coverage	of	the	language	elements.

ELEMENTS	OF	THE	SYNTAX

ELEMENTS	OF	THE	SYNTAX

A	Razor	file	is	a	text	file	that

contains	two	main	syntax	items—

HTML	expressions	and	code

expressions.	HTML	expressions	are

emitted	verbatim;	code

expressions,	instead,	are	evaluated,

and	their	output	is	merged	with

HTML	expressions.	Code

expression	refers	to	the	syntax	of	a

predefined	programming	language.

The	programming	language	is

identified	from	an	extension	of	the

Razor	file.	By	default,	the	extension	is

.cshtml,	and	the	programming

language	for	expressions	is	C#.

Regardless	of	the	selected

programming	language,	the	@

character	always	denotes	the	start	of	a

Razor	code	expression.

Processing	Code	Expressions

In	Chapter	5,	we	have	seen	how	the

Razor	parser	processes	the	source

code	and	how	it	comes	up	with	an

ordered	list	of	static	HTML

expressions	and	dynamic	code

expression.	A	code	expression	can

be	a	direct	value	to	be	emitted

inline	(for	example,	a	variable	or	a

plain	expression)	or	it	can	be	a

complex	statement	made	of	control

flow	elements	such	as	loops	and

conditions.

Interestingly,	in	Razor,	you	must

always	indicate	the	start	of	a	code

snippet,	but	after	that,	the	internal

parser	uses	the	syntax	of	the	selected

programming	language	to	figure	out

where	the	code	expression	ends.

Inline	Expressions

Let’s	consider	the	following

example:

Click	here	to	view	code	image

<div>

			@CultureInfo.CurrentUICulture.DisplayName

</div>

In	the	code	snippet,	the

CultureInfo.CurrentUICulture.Displa

yName	expression	is	evaluated,	and

the	output	is	emitted	to	the	output

stream.	Another	example	of	an	inline

expression	is	the	following:

Click	here	to	view	code	image

@{

			var	message	=	"Hello";

}

<div>

			@message

</div>

The	@message	expression	emits	the

current	value	of	the	message	variable.

In	this	second	snippet,	though,	we	see

another	syntax	element—the	@{	…	}

code	block.

Code	Blocks

The	code	block	allows	for	multi-line

statements—both	declarations	and

calculations.	The	content	of	a	@{	…

}	block	is	assumed	to	be	code

unless	the	content	is	wrapped	up	in

a	markup	tag.	The	markup	tag	will

mostly	be	an	HTML	tag,	but	in

principle,	you	can	even	use	non-

HTML	custom	tags	if	that	makes

sense	in	your	specific	scenario.

Let’s	consider	the	following	case:

Click	here	to	view	code	image

@{

				var	culture	=	CultureInfo.CurrentUICulture.DisplayName;

				Your	culture	is	@culture

}

In	this	case,	the	code	block	needs	to

contain	both	code	and	static	markup.

Let’s	say	the	markup	you	wish	to	send

to	the	browser	is	plain	text	without

any	surrounding	HTML	elements	(not

even	elements	that	have	no	visual

clue,	such	as	SPAN).	The	net	effect	of

the	snippet	above	is	that	the	parser

attempts	to	treat	the	text	“Your

culture	is	…”	according	to	the	syntax

of	the	current	programming	language.

This	would	likely	result	in	a	compile

error.	Here’s	how	to	rewrite	it.

Click	here	to	view	code	image

@{

				var	culture	=	CultureInfo.CurrentUICulture.DisplayName;

				<text>Your	culture	is	@culture</text>

}

The	<text>	tag	can	be	used	to	mark

some	static	text	as	verbatim	without

having	some	surrounding	markup

element	being	rendered	to	the

response.

Statements

Any	Razor	code	snippet	can	be

mixed	with	plain	markup,	even

when	the	snippet	contains	control

flow	statements	such	as	if/else	or

for/foreach.	Here’s	a	brief	example

that	shows	how	to	build	an	HTML

table:

Click	here	to	view	code	image

<body>

				<h2>My	favorite	cities</h2>

				<hr	/>

				<table>

								<thead>

											<th>City</th>

											<th>Country</th>

											<th>Ever	been	there?</th>

								</thead>

				@foreach	(var	city	in	Model.Cities)	{

							<tr>

										<td>@city.Name</td>

										<td>@city.Country</td>

										<td>@city.Visited	?"Yes"	:"No"</td>

							</tr>

				}

				</table>

</body>

Note	that	the	closing	curly	brace,

which	is	placed	in	the	middle	of	the

source	(you	can	see	it	in	the	line	of

@foreach),	is	correctly	recognized	and

interpreted	by	the	parser.

Multiple	tokens	(for	example,	markup

and	code)	can	be	combined	in	the

same	expression	using	round

brackets:

Click	here	to	view	code	image

<p>	@("Welcome,	"	+	user)	</p>

Any	variable	you	create	can	be

retrieved	and	used	later	as	if	the	code

belonged	to	a	single	block.

Output	Encoding

Any	content	being	processed	by

Razor	is	automatically	encoded,

which	makes	your	HTML	output

extremely	secure	and	resistant	to

XSS	script	injections	without	any

additional	effort	on	your	end.	Keep

this	in	mind	and	avoid	explicitly

encoding	output	because	it	would

possibly	result	in	a	double	encoded

text.

However,	there	might	be	situations	in

which	your	code	just	needs	to	emit

unencoded	HTML	markup.	In	this

case,	you	resort	to	using	the

Html.Raw	helper	method.	Here’s	how

to	do	it.

Click	here	to	view	code	image

Compare	this	@Html.Raw("Bold	text")	

to	the	following:	@("Bold	text")

Where	does	the	Html	object	come

from?	Technically,	it’s	called	an

HTML	helper,	and	it	is	just	one	of	the

predefined	properties	on	the	base

RazorPage	class	from	which	any

Razor	view	is	derived.	As	we’ll	see	in	a

moment,	there	are	quite	a	few

interesting	HTML	helpers	available	in

Razor.

HTML	Helpers

HTML	Helpers

An	HTML	helper	is	an	extension

method	of	the	HtmlHelper	class.

Abstractly	speaking,	an	HTML

helper	is	nothing	more	than	an

HTML	factory.	You	call	the	method

in	your	view;	some	HTML	is

inserted	that	results	from	provided

input	parameters	(if	any).

Internally,	an	HTML	helper	simply

accumulates	markup	into	an

internal	buffer	and	then	outputs	it.

A	view	object	incorporates	an

instance	of	the	HtmlHelper	class

under	the	property	name,	Html.

ASP.NET	Core	supplies	a	few	HTML

helpers	out	of	the	box,	including

CheckBox,	ActionLink,	and	TextBox.

The	stock	set	of	HTML	helpers	is

presented	in	Table	6-1.

TABLE	6-1	The	stock	set	of	HTML

helper	methods

Method T

y

p

e

Description

BeginForm,	

BeginRouteF

orm

F

o

r

m

Returns	an	internal	object	that	

represents	an	HTML	form	that	the	

system	uses	to	render	the	<form>	

tag

EndForm F

o

r

m

A	void	method,	closes	the	pending	

</form>	tag

CheckBox,	

CheckBoxFor

I

n

p

u

t

Returns	the	HTML	string	for	a	check	

box	input	element

Hidden,	

HiddenFor

I

n

p

u

t

Returns	the	HTML	string	for	a	

hidden	input	element

Password,	

PasswordFor

I

n

p

u

t

Returns	the	HTML	string	for	a	

password	input	element

RadioButton,

	RadioButton

For

I

n

p

u

t

Returns	the	HTML	string	for	a	radio	

button	input	element

TextBox,	

TextBoxFor

I

n

p

u

t

Returns	the	HTML	string	for	a	text	

input	element

Label,	

LabelFor

L

a

b

el

Returns	the	HTML	string	for	an	

HTML	label	element

ActionLink,	

RouteLink

L

in

k

Returns	the	HTML	string	for	an	

HTML	link

DropDownLi

st,	

DropDownLi

stFor

L

is

t

Returns	the	HTML	string	for	a	drop-

down	list

ListBox,	

ListBoxFor

L

is

t

Returns	the	HTML	string	for	a	list	

box

TextArea,	

TextAreaFor

T

e

xt

A

r

e

a

Returns	the	HTML	string	for	a	text	

area

ValidationM

essage,	

ValidationM

essageFor

V

al

id

a

ti

o

n

Returns	the	HTML	string	for	a	

validation	message

ValidationSu

mmary

V

al

id

a

ti

o

n

Returns	the	HTML	string	for	a	

validation	summary	message

As	an	example,	let’s	see	how	to	use	an

HTML	helper	to	create	a	text	box	with

programmatically	determined	text.

Click	here	to	view	code	image

@Html.TextBox("LastName",	Model.LastName)

Each	HTML	helper	has	a	bunch	of

overloads	to	let	you	specify	attribute

values	and	other	relevant	information.

For	example,	here’s	how	to	style	the

text	box	by	using	the	class	attribute:

Click	here	to	view	code	image

@Html.TextBox("LastName",	

														Model.LastName,	

														new	Dictionary<String,	Object>{{"class",	"myCoolTex
tBox"}})

In	Table	6-1,	you	see	a	lot	of	xxxFor

helpers.	In	what	way	are	they	different

from	other	helpers?	An	xxxFor	helper

differs	from	the	base	version	because

it	accepts	only	a	lambda	expression,

such	as	the	one	shown	here:

Click	here	to	view	code	image

@Html.TextBoxFor(model	=>	model.LastName,	

																	new	Dictionary<String,	Object>{{"class",	"myCool
TextBox"}})

For	a	text	box,	the	lambda	expression

indicates	the	text	to	display	in	the

input	field.	The	xxxFor	variation	is

especially	useful	when	the	data	to

populate	the	view	is	grouped	in	a

model	object.	In	this	case,	your	view

results	are	clearer	to	read	and	strongly

typed.

There	are	strong	pros	and	strong	cons

around	the	use	of	HTML	helpers.

They’ve	been	first	introduced	as

HTML	subroutines—call	it,	pass	it

parameters,	get	the	desired	markup.

The	most	sophisticated	HTML	helpers

become	the	more	C#	code	you	have	to

write	to	pass	parameters—often	deep

graphs	of	parameters.	To	some	extent,

HTML	helpers	hide	the	intricacy	of

rendering	complex	markup.	At	the

same	time,	though,	just	because	the

markup	structure	is	hidden	as	a

developer,	you	lose	the	perspective	of

it	and	use	it	as	a	black	box.	Even

styling	an	internal	piece	with	CSS

requires	a	design	effort	because	the

CSS	property	must	be	exposed	in	the

API.

While	HTML	helpers	are	fully

supported	in	ASP.NET	Core,	their	use

is	much	less	appealing	than	it	was	a

few	years	ago.	ASP.NET	Core	provides

tag	helpers	(see	later)	as	an	additional

tool	to	render	complex	HTML	in	a

way	that	is	both	flexible	and

expressive.	Personally,	I	haven’t	been

using	HTML	helpers	much	lately	with

one	exception—the	CheckBox	helper.

The	Strange	Case	of	Booleans	and	Check
boxes

Suppose	you	have	a	check	box	in	an

HTML	form.	An	excellent	example

is	the	Remember	me	check	box	of	a

canonical	login	form.	If	you	don’t

use	the	CheckBox	helper,	then	you

end	up	with	plain	HTML	as	below:

Click	here	to	view	code	image

<input	name="rememberme"	type="CheckBox"	/>

According	to	the	HTML	standard,

browsers	will	post	the	following	if	the

check	box	is	checked.

rememberme=on

If	the	check	box	is	not	checked,

instead,	then	input	field	is	ignored

and	not	sent.	At	this	point,	how	can

the	model	binding	deal	with	posted

data?	The	model	binding	layer	is

instructed	to	understand	on	as	true,

but	it	can’t	do	much	if	no	value	for	the

RememberMe	name	is	posted!	The

CheckBox	helper	silently	appends	an

INPUT	hidden	element	with	the	same

RememberMe	name	and	sets	it	to

false.	If	the	check	box	is	checked,

however,	two	values	are	posted	for	the

same	name,	but	in	this	case,	the

model	binding	layer	only	picks	up	the

first.

Beyond	this	particular	scenario,	using

HTML	helpers	over	plain	HTML	or,

better	yet,	tag	helpers	is	primarily	a

matter	of	preference.

Comments

Comments

Last	but	not	least	are	comments.

You	might	not	need	them	in

production	code,	but	you	definitely

need	them	in	development	code

and	you	might	need	to	use

comments	in	Razor	views.	When

you	are	working	inside	multiline

code	snippets	using	@{	...	},	you

use	the	language	syntax	to	place

comments.	When	you	want	to

comment	a	block	of	markup,	you

use	the	@*	...	*@	syntax.	Here’s

how:

Click	here	to	view	code	image

@*

		<div>	Some	Razor	markup	</div>

*@

Nicely	enough,	Visual	Studio	detects

comments	and	renders	them	with	the

configured	color.

Layout	Templates

In	Razor,	layout	templates	play	the

role	of	master	pages.	A	layout

template	defines	the	skeleton	that

the	view	engine	will	render	around

any	mapped	view,	thus	giving	a

uniform	look	and	feel	to	those

sections	of	the	site.

Each	view	can	define	its	own	layout

template	by	simply	setting	the	Layout

property	of	the	parent	view	class.	The

layout	can	be	set	to	a	hardcoded	file	or

to	any	path	that	results	from

evaluating	runtime	conditions.	As	you

saw	in	Chapter	5,	you	can	use	the

_ViewStart.cshtml	file	to	assign	a

default	property	to	the	Layout

property	—thus	defining	a	default

graphical	template	for	all	your	views.

Guidelines	for	a	Layout

Guidelines	for	a	Layout

Technically	speaking,	a	layout

template	is	in	no	way	different

from	a	view	(or	a	partial	view)	and

its	content	is	parsed	and	processed

by	the	view	engine	in	just	the	same

way.	However,	unlike	most	views

(and	all	partial	views),	a	layout

template	is	a	full	HTML	template

starting	with	the	<html>	element

and	terminating	with	the	</html>

element.

	Note	It	is	not	required	for	a	view	to	have	the	layout	set	as	a
distinct	resource.	In	the	end,	layouts	and	regular	views	are	treated	in	the
same	way	by	the	Razor	engine,	which	means	a	full	HTML	page	view	template
wrapped	by	an	HTML	element	is	acceptable.

Because	a	layout	file	is	a	full	HTML

template,	it	should	incorporate	a

comprehensive	HEAD	block	in	which

meta	information	is	provided	(as	well

as	favicons	and	commonly	used	CSS

and	JavaScript	files).	It’s	up	to	you	to

place	script	files	in	the	HEAD	section

or	at	the	end	of	the	view	body.	The

body	of	the	template	defines	the

layout	for	all	the	derived	views.	A

typical	layout	template	contains	a

header,	a	footer	and	perhaps	a

sidebar.	The	content	displayed	in

those	elements	is	inherited	by	all

views	and	can	either	be	statically	set

as	plain	localized	text	or	can	be	bound

from	passed	data.	As	we’ll	see	in	a

moment,	a	layout	page	can	receive

data	from	the	outside.

How	many	layout	files	should	you

have	in	a	realistic	application?

That’s	hard	to	say	in	general.	For	sure,

you	might	want	to	have	at	least	one

layout.	However,	if	all	your	views	are

full	HTML	views,	you	can	blissfully

live	without	layouts.	A	recommended

rule	for	determining	layouts	is	to	have

one	for	each	macro	area	of	the	site.

For	example,	you	could	have	one

layout	for	the	home	page,	and	you

could	then	realistically	have	internal

pages	that	are	quite	different.	The

number	of	internal	pages	depends	on

how	those	pages	can	be	grouped.	If

your	application	needs	to	have	a	back

office	for	admin	users	to	enter	data

and	configuration,	well,	that	likely

makes	for	another	required	layout.

	Important	In	any	view,	it	is	recommended	you	reference
resources	such	as	images,	scripts,	and	stylesheets	by	using	the	tilde	operator
to	refer	to	the	root	of	the	website.	In	ASP.NET	Core,	a	tilde	is	expanded
automatically	by	the	Razor	engine.	Be	aware	that	the	tilde	is	only	honored	in
the	blocks	of	code	parsed	by	the	Razor	engine.	It	won’t	work	in	a	plain	HTML
file	(with	a	.html	extension),	and	it	also	won’t	work	in	all	<script>	elements	of	a
Razor	file.	Either	you	express	the	path	as	a	code	block,	or	you	use	some
JavaScript	trick	to	fix	the	URL.

Passing	Data	to	Layouts

Programmatically,	a	developer	only

references	a	view	and	its	view

model.	In	classic	ASP.NET,	the

View	method	of	the	Controller

class	also	has	an	overload	that

allows	you	to	set	the	layout	via

code.	That	overload	is	not	exposed

in	ASP.NET	Core.	When	the	view

engine	figures	out	that	the	view

being	rendered	has	a	layout,	the

content	of	the	layout	is	parsed	first

and	then	merged	with	the	view

template.

The	layout	can	define	the	type	of	view

model	it	expects	to	receive,	but	all	that

it	really	receives	is	the	view	model

object—if	any—passed	to	the	actual

view.	For	this	reason,	the	view	model

of	the	layout	view	must	ideally	be	a

parent	class	of	the	view	model	used

for	the	view.	Hence,	I	suggest	that	for

each	layout	you	plan	to	have	you

define	an	ad	hoc	view	model	base

class	and	derive	specific	view	model

classes	for	actual	views	just	from

there.	See	Table	6-2.

TABLE	6-2	Layouts	and	view	model

classes

View	model Layout Description

HomeLayoutVi

ewModel

HomeLa

yout

View	model	for	the	

HomeLayout	template

InternalLayout

ViewModel

Internal

Layout

View	model	for	the	

InternalLayout	template

BackofficeLayo

utViewModel

Backoffi

ceLayou

t

View	model	for	the	

BackofficeLayout	template

Better	yet,	all	layout	view	model

classes	would	inherit	from	a	single

parent	class—for	example,	the

ViewModelBase	class	we	discussed	in

Chapter	5.

All	this	said,	consider	that	a	layout

view—like	any	other	view—can	still	be

passed	data	via	dependency	injection

and	through	dictionaries.

Defining	Custom	Sections

Any	layout	is	forced	to	have	at	least

one	injection	point	for	external

view	content.	This	injection	point

consists	of	a	call	to	the	method

RenderBody.	The	method	is

defined	in	the	base	view	class	being

used	to	render	layouts	and	views.

Sometimes,	though,	you	need	to

inject	content	into	more	than	one

location.	In	this	case,	you	define

one	or	more	named	sections	in	the

layout	template	and	let	views	fill

them	out	with	markup.

Click	here	to	view	code	image

<body>

			<div	class="page">

				@RenderBody()

			</div>

			<div	id="footer">

						@RenderSection("footer")

			</div>

</body>

Each	section	is	identified	by	name	and

is	considered	required	unless	it	is

marked	as	optional.	The

RenderSection	method	accepts	an

optional	Boolean	argument	that

denotes	whether	the	section	is

required.	To	declare	a	section

optional,	you	do	as	follows:

Click	here	to	view	code	image

<div	id="footer">

			@RenderSection("footer",	false)

</div>

The	following	code	is	functionally

equivalent	to	the	preceding	code,	but

it’s	much	better	from	a	readability

standpoint:

Click	here	to	view	code	image

<div	id="footer">

			@RenderSection("footer",	required:false)

</div>

Note	that	required	is	not	a	keyword;

more	simply,	it	is	the	name	of	the

formal	parameter	defined	by	the

RenderSection	method.	(Its	name

shows	up	nicely	thanks	to

IntelliSense.)	There’s	no	limitation	on

the	number	of	custom	sections	you

can	use.	A	custom	section	can	be	used

anywhere	in	the	layout	if,	once

populated	in	a	view,	the	resulting

HTML	is	valid.

If	the	view	template	doesn’t	include	a

section	marked	as	required,	then	you

get	a	runtime	exception.	Here’s	how

to	define	content	for	a	section	in	a

view	template:

Click	here	to	view	code	image

@section	footer	{

				<p>Written	by	Dino	Esposito</p>

}

You	can	define	the	content	for	a

section	anywhere	in	a	Razor	view

template.

Partial	Views

Partial	Views

A	partial	view	is	a	distinct	piece	of

HTML	that	is	contained	in	a	view,

but	it	is	treated	as	an	entirely

independent	entity.	In	fact,	it	is

even	legitimate	to	have	a	view

written	for	one	view	engine	and	a

referenced	partial	view	that

requires	another	view	engine.

Partial	views	are	like	HTML

subroutines	and	serve	two	main

scenarios:	Having	reusable	UI-only

HTML	snippets	and	breaking	up

complex	views	into	smaller	and

more	manageable	pieces.

Reusable	HTML	Snippets

Historically,	partial	views	have

been	introduced	as	a	way	to	have

reusable	pieces	of	HTML-based

user	interface.	However,	a	partial

view	is	just	what	the	name	says:	A

view,	just	smaller,	built	around	a

template	and	some	passed	or

injected	data.	A	partial	view	is

reusable,	but	it	is	hardly	a

standalone	HTML	snippet.

To	evolve	from	the	level	of	a	reusable

template	to	the	level	of	a	standalone

widget,	a	partial	view	lacks	business

logic.	A	partial	view,	in	other	words,	is

barely	a	rendering	instrument.	It	is

excellent	to	isolate	banners	and

menus,	maybe	some	tables	and

sidebars,	but	not	autonomous	web

parts.	For	that,	ASP.NET	Core

provides	view	components.

Breaking	Up	Complex	Views

Breaking	Up	Complex	Views

Overall,	we	find	even	more

interesting	the	use	of	partial	views

as	a	way	to	break	up	large	and

complex	forms	into	more

manageable	pieces.	Large	forms,

especially	multi-stepped	forms,

become	more	and	more	common,

and	without	partial	views,	they	can

be	problematic	to	express	and

handle.

From	a	user	experience	perspective,

tabs	are	an	excellent	way	to	break	up

forms	that	are	inevitably	large	and	full

of	input	fields.	Large	forms	aren’t	only

an	issue	for	the	user	though.	Let’s

consider	the	following	tab-based

forms	in	which	tabs	have	been

obtained	using	Bootstrap	CSS	classes.

Click	here	to	view	code	image

<form	class="form-horizontal"	id="largeform"

						role="form"	method="post"

						action="@Url.Action("largeform",	"sample")">

					<div>

								<!--	Nav	tabs	-->

								<ul	class="nav	nav-tabs"	role="tablist">

												@Html.Partial("pv_largeform_tabs")

												<li	role="presentation"	class="active">

															<a	href="#tabGeneral"	role="tab"	data-toggle="tab"
>General

												

												<li	role="presentation">

															
Emails

												

												<li	role="presentation">

															<a	href="#tabPassword"	role="tab"	data-toggle="tab
">Password

												

								

								<!--	Tab	panes	-->

								<div	class="tab-content">

												<div	role="tabpanel"	class="tab-pane	active"	id="tabG
eneral">

																@Html.Partial("pv_largeform_general")

												</div>

												<div	role="tabpanel"	class="tab-pane"	id="tabEmails">

																@Html.Partial("pv_largeform_emails")

												</div>

												<div	role="tabpanel"	class="tab-pane"	id="tabPassword
">

																@Html.Partial("pv_largeform_password")

												</div>

								</div>

				</div>

</form>

If	you	must	write	a	form	like	this,

without	using	partial	classes,	you	will

have	the	entire	markup	of	a	tab

embedded	in	the	main	view.	Given

that	each	tab	can	be	a	simple	view	of

its	own,	the	amount	of	markup	in	a

single	place—to	write,	read,	and	edit—

is	overwhelming.	Partial	views	used	in

this	context	are	hardly	reusable,	but

they	serve	you	quite	effectively.

Passing	Data	to	Partial	Views

The	view	engine	treats	a	partial

view	like	any	other	view.	Therefore,

a	partial	view	receives	data	in	the

same	way	as	a	regular	view	or	a

layout.	You	can	use	a	strongly

typed	view	model	class	or

dictionaries.	However,	if	you	don’t

pass	any	data	in	the	call	to	the

partial	view,	the	partial	view

receives	the	same	strongly	typed

view	model	passed	to	the	parent

view.

@Html.Partial("pv_Grid")

The	content	of	the	view	dictionaries	is

always	shared	between	the	parent

view	and	all	its	partial	views.	If	the

partial	is	passed	its	own	view	model,

then	it	loses	reference	to	the	view

model	of	the	parent	view.

Let’s	now	consider	sort	of	an	edge

case.	Your	parent	view	receives	an

array	of	data	objects	and	loops

through	the	list.	Each	data	object	then

is	passed	to	a	partial	view	for	actual

rendering.

Click	here	to	view	code	image

@foreach(var	customer	in	Model.Customers)

{

				@Html.Partial("pv_customer",	customer)

}

The	rendering	of	the	customer	details

is	now	completely	offloaded	to	the

pv_customer	view	which	makes	it

eligible	to	be	the	only	way	in	the

application	to	render	details	of	a

customer.	So	far	so	good.	What	if	you

need	to	pass	more	information	to	the

partial	view	that	is	not	available	in	the

customer	data	object	it	receives?	You

have	a	few	options.

First,	you	can	refactor	the	classes	involved	so	that	the	partial	view

receives	all	the	required	data.	This	approach,	however,	might

compromise	the	overall	reusability	of	the	partial	view.

Second,	you	can	use	an	anonymous	type	that	joins	the	original

data	object	plus	additional	data.

Finally,	you	can	pass	any	extra	data	via	ViewData.

RAZOR	TAG	HELPERS

Using	HTML	helpers,	you	can

programmatically	express	the

markup	you	wish	to	have	without

fully	writing	it.	In	a	way,	an	HTML

helper	is	a	smart	HTML	factory	you

configure	to	emit	some	specific

pieces	of	HTML.	Internally,	helpers

are	made	of	C#	code,	and

externally,	they	are	added	to	the

Razor	template	as	C#	code

snippets.

Tag	helpers	have	ultimately	the	same

effect	as	HTML	helpers—they	work	as

HTML	factories—but	provide	a	much

more	concise	and	natural	syntax.	In

particular,	you	don’t	need	any	C#

code	to	tie	in	tag	helpers.

	Note	Tag	helpers	are	an	ASP.NET	Core-only	feature.	The
closest	you	can	get	to	tag	helpers	in	classic	ASP.NET	MVC	is	with	HTML
helpers	or,	better	yet,	with	HTML	templated	helpers.

Using	Tag	Helpers

Tag	helpers	are	server-side	code

that	can	be	bound	to	one	or	more

markup	elements	and	when	run,

can	inspect	the	DOM	of	the

element	and	possibly	alter	the

markup	being	emitted.	A	tag	helper

is	a	C#	class	compiled	to	an

assembly	and	requires	a	special

view	directive	to	be	recognized.

Registering	Tag	Helpers

The	@addTagHelper	directive	in	a

Razor	view	instructs	the	parser	to

link	in	the	specified	classes	and

process	unknown	markup

attributes	and	elements	against

their	content.

Click	here	to	view	code	image

@addTagHelper	*,	YourTagHelperLibrary

The	above	syntax	links	in	the	current

view	as	potential	tag	helpers	all	the

classes	in	the	YourTagHelperLibrary

assembly.	If	you	indicate	a	type	name

instead	of	the	*	symbol,	then	only	that

class	out	of	the	specified	assembly	will

be	picked	up.	If	inserted	in	a

ViewImports.cshtml	file,	the

@addTagHelper	directive	will	be

automatically	added	to	any	Razor

view	being	processed.

Attaching	Tag	Helpers	to	HTML	Elements

At	a	first	look,	a	tag	helper	can	be

seen	as	a	custom	HTML	attribute

or	a	custom	HTML	element	with

which	the	Razor	parser	deals.

Here’s	how	to	use	a	sample	tag

helper.

Click	here	to	view	code	image

And	here’s	another	example:

Click	here	to	view	code	image

<environment	names="Development">

				<script	src="~/content/scripts/yourapp.dev.js"	/>

</environment>

<environment	names="Staging,	Production">

				<script	src="~/content/scripts/yourapp.min.js"	asp-append-ver
sion="true"	/>

</environment>

The	assemblies	registered	as	tag

helpers	tell	the	Razor	parser	which

attributes	and	elements	found	in

markup	expressions	should	instead	be

processed	server-side	to	generate	the

actual	markup	for	the	browser.

Attributes	and	elements	recognized	as

tag	helpers	are	also	emphasized	in

Visual	Studio	with	a	special	color.

In	particular,	the	asp-append-version

tag	helper	modifies	the	bound

element	adding	a	timestamp	to	the

URL	of	a	referenced	file	so	that	the

browser	won’t	cache	it.	Here’s	the

actual	markup	generated	for	the	IMG

element	above.

Click	here	to	view	code	image

A	version	query	string	parameter	is

automatically	appended,	which	is

calculated	as	a	hash	of	the	file	content.

This	indicates	that	whenever	the	file

changes,	a	new	version	string	will	be

generated,	thus	invalidating	the

browser’s	cache.	This	simple

workaround	fixes	the	long-standing

problem	of	clearing	the	browser’s

cache	during	development	whenever

an	external	resource	(such	as	an

image,	stylesheet,	or	script	file)

changes.

	Note	No	version	string	will	be	emitted	if	the	referenced	file
doesn’t	exist.	Instead,	the	environment	tag	helper	conditionally	outputs
markup	based	on	the	currently	detected	ASP.NET	Core	hosting	environment.
Every	tag	helper	is	configured	to	bind	to	a	particular	HTML	element.	Multiple
tag	helpers	can	be	attached	to	the	same	HTML	element.

Built-in	Tag	Helpers

ASP.NET	Core	comes	with	a	bag

full	of	predefined	tag	helpers.	All

are	defined	in	the	same	assembly

that	you	likely	would	reference

from	the	_ViewImports.cshtml	file,

which	guarantees	that	built-in

helpers	are	available	to	all	Razor

views.

Click	here	to	view	code	image

@addTagHelper	*,	Microsoft.AspNetCore.Mvc.TagHelpers

Built-in	tag	helpers	cover	a	range	of

functionalities.	For	example,	there	are

some	that	affect	the	same	HTML

elements	you	can	have	in	a	Razor

template:	FORM,	INPUT,

TEXTAREA,	LABEL,	and	SELECT.

Many	other	helpers	exist	for

validating	messages	to	be	displayed	to

users.	All	these	system’s	tag	helpers

share	the	asp-*	name	prefix.	A	full

reference	can	be	found	at

http://docs.microsoft.com/en-

us/aspnet/core/api/microsoft.aspnet

core.mvc.taghelpers

(http://docs.microsoft.com/en-

us/aspnet/core/api/microsoft.aspnetcore.mvc.t

aghelpers).

General	Structure	of	Tag	Helpers

To	help	make	sense	of	the	following

sections	covering	some	of	the	built-

in	tag	helpers,	it	is	useful	to	look

first	at	the	internal	composition	of

tag	helpers	and	the	core

information	that	characterizes

them.

A	tag	helper	class	is	identified	by	the

HTML	element	or	HTML	elements	to

which	it	can	refer.	The	tag	helper	class

is	mostly	made	of	public	properties

and	private	methods	that	are	used	in

the	implementation	of	the	actual

behavior.	Each	public	property	may

optionally	be	decorated	with	the	name

of	the	tag	helper	attribute	to	which	it

is	associated.	As	an	example,	here’s

the	declaration	of	the	C#	class	for	the

anchor	tag	helper.

Click	here	to	view	code	image

[HtmlTargetElement("a",	Attributes	=	"asp-action")]

[HtmlTargetElement("a",	Attributes	=	"asp-controller")]

[HtmlTargetElement("a",	Attributes	=	"asp-area")]

[HtmlTargetElement("a",	Attributes	=	"asp-fragment")]

[HtmlTargetElement("a",	Attributes	=	"asp-host")]

[HtmlTargetElement("a",	Attributes	=	"asp-protocol")]

[HtmlTargetElement("a",	Attributes	=	"asp-route")]

[HtmlTargetElement("a",	Attributes	=	"asp-all-route-data")]

[HtmlTargetElement("a",	Attributes	=	"asp-route-*")]

public	class	AnchorTagHelper	:	TagHelper,	ITagHelper

{

			...

}

It	reads	like	the	tag	helper	can	be

associated	only	with	A	elements	that

have	any	of	the	listed	attributes.	In

other	words,	if	your	Razor	contains

just	a	plain	…

element	with	none	of	the	above	asp-*

attributes,	then	it	will	be	emitted

verbatim	without	further	processing.

Figure	6-1	shows	that	Visual	Studio

can	detect	which	of	the	asp-*

attributes	are	actually	supported	by

some	registered	tag	helpers.

FIGURE	6-1	Valid	and	invalid	tag	helper	attributes

As	you	can	see	in	the	figure,	Visual

Studio	detects	that	asp-hello	is	not	a

valid	attribute	for	the	A	element	on

any	of	the	registered	tag	helpers.

Anchor	Tag	Helpers

The	anchor	tag	helper	applies	to

the	A	element	and	allows	you	to

specify	the	URL	it	points	to	with

extreme	flexibility.	In	fact,	you	can

specify	the	target	URL	by	breaking

it	up	into	area-controller-action

components,	by	route	name,	and

even	specifying	the	segments	of	the

URL,	such	as	host,	fragment,	and

protocol.	Figure	6-1	shows	how	to

use	the	anchor	tag	helpers.

	Note	The	helper	class	will	throw	an	exception	if	both	the	href
attribute	and	route	attributes	are	specified.

Form	Tag	Helpers

The	form	tag	helper	supports

attributes	to	set	the	action	URL	via

a	controller	and	action	name	or	via

a	route	name.

Click	here	to	view	code	image

<form	asp-controller="room"	asp-action="book">

			...

</form>

The	Razor	code	above	sets	the	method

attribute	to	POST	and	the	action

attribute	to	the	URL	that	results	from

the	composition	of	the	specified

controller	and	action.	Also,	the	form

tag	helper	does	an	interesting	and

tricky	thing;	it	injects	a	hidden	field

with	a	request	verification	token

tailor-made	to	prevent	cross-site

request	forgery	(XSRF)	attacks.

Click	here	to	view	code	image

<form	method="POST"	action="/room/book"

			<input	name="__RequestVerificationToken"	type="hidden"	value="
..."	/>

			...

</form>

Also,	it	adds	a	cookie	with	an

encrypted	version	of	the	same	value

stored	in	the	field.	This	represents	a

strong	defense	against	XSRF	attacks

as	long	as	you	also	decorate	the

receiving	controller	with	a	server-side

attribute,	as	shown	below.

Click	here	to	view	code	image

[AutoValidateForgeryToken]

public	class	RoomController	:	Controller

{

			...

}

The	AutoValidateForgeryToken

attribute	will	read	the	request

validation	cookie,	decrypt	it,	and

compare	its	value	to	the	content	of	the

value	attribute	of	the	request

validation	hidden	field.	If	no	match	is

found,	an	exception	is	thrown.

Without	the

AutoValidateForgeryToken	attribute,

no	double-check	is	performed.

Typically,	you	might	want	to	use	the

attribute	at	the	controller	level	or,

better	yet,	as	a	global	filter.	In	this

case,	if	you	want	to	disable	it	only	for

some	methods,	you	can	use	the

IgnoreValidateForgeryToken

attribute.

	Note	In	ASP.NET	Core	you	also	have	a	similar	attribute
named	ValidateForgeryToken.	The	difference	with	AutoValidateForgeryToken
is	that	the	latter	only	checks	POST	requests.

Input	Tag	Helpers

The	input	tag	helper	binds	an

INPUT	element	to	a	model

expression.	The	binding	occurs

through	the	asp-for	attribute.	Note

that	the	asp-for	attribute	also

works	for	the	LABEL	element.

Click	here	to	view	code	image

<div	class="form-group">

				<label	class="col-md-4	control-label"	asp-for="Title"></label
>		

				<div	class="col-md-4">

								<input	class="form-control	input-lg"	asp-for="Title">

				</div>

</div>

The	asp-for	attribute	for	the	INPUT

element	generates	name,	id,	type,	and

value	attributes	based	on	the

expression.	In	the	example,	the	value

Title	refers	to	a	matching	property	on

the	bound	view	model.	For	the	LABEL

element,	the	asp-for	attribute	sets	the

for	attribute	and	optionally,	the

content	of	the	label.	Here	are	the

results.

Click	here	to	view	code	image

<div	class="form-group">

				<label	class="col-md-4	control-label"	for="Title">Title</labe
l>				

				<div	class="col-md-4">

								<input	class="form-control	input-lg"	

															type="text"	id="Title"	name="Title"	value="...">

				</div>

</div>

The	value	property	of	the	INPUT	field

gets	the	value	generated	by	the

expression.	Note	that	you	can	also	use

complex	expressions	such	as

Customer.Name.

To	determine	the	most	appropriate

type	of	field,	the	asp-for	attribute	also

looks	at	data	annotations	possibly

defined	on	the	view	model	class.	The

affected	attributes	are	never

overridden	if	already	specified	in	the

markup.	Also,	based	on	data

annotations,	the	asp-for	attribute	can

generate	HTML5	validation	attributes

reading	from	error	messages	and

validation	rules.	These	data-*

validation	attributes	are	used	by	the

validation	tag	helpers	and	also,	if

configured,	by	jQuery	validation

client-side	validation.

Finally,	it	worth	noting	that	if	the	view

model	structure	changes	and	the	tag

helper	expression	is	not	updated,	a

compile-time	error	is	produced.

Validation	Tag	Helpers

Validation	tag	helpers	are	of	two

types—validation	of	individual

properties	and	summary.	In

particular,	the	validation	message

helper	consumes	the	value	of	the

asp-validation-for	attribute	on	a

SPAN	element.

Click	here	to	view	code	image

The	SPAN	element	is	set	with	the

corresponding	HTML5	validation

message	that	the	Email	INPUT	field

might	have	output.	If	any	error

messages	should	be	rendered,	they

will	be	rendered	as	the	body	of	the

SPAN	element.

Click	here	to	view	code	image

<div	asp-validation-summary="All">

The	validation	summary	helper,

instead,	consumes	the	asp-validation-

summary	attribute	of	the	DIV

elements.	Its	output	is	a	UL	element

that	lists	all	validation	errors	in	the

form.	The	value	of	the	attribute

determines	which	errors	are	listed.

Feasible	values	are	All,	meaning	that

all	errors	are	listed	and	ModelOnly,

meaning	that	only	model	errors	are

listed.

Select	List	Tag	Helpers

Particularly	interesting	is	the	tag

helper	for	the	SELECT	element

because	it	now	solves	a	long-

standing	problem	for	web

developers:	Finding	the	most

concise	and	effective	way	to	bind	an

enumerated	type	to	a	drop-down

list.

Click	here	to	view	code	image

<select	id="room"	name="room"	class="form-control"

								asp-for="@Model.CurrentRoomType"

								asp-items="@Html.GetEnumSelectList(typeof(RoomCategories)
)">

</select>

In	the	SELECT	element,	asp-for

points	to	an	expression	to	evaluate	in

order	to	find	the	selected	item	in	the

list.	Instead,	the	asp-items	tag

provides	the	list	of	items.	The	new

Html.GetEnumSelectList	extension

method	takes	an	enumerated	type	and

serializes	it	to	a	list	of	SelectListItem

objects.

Click	here	to	view	code	image

public	enum	RoomCategories

{

				[Display(Name	=	"Not	specified")]

				None	=	0,

				Single	=	1,

				Double	=	2

}

The	nice	touch	is	that	if	any	element

of	the	enumeration	is	decorated	with

the	Display	attribute,	the	rendered

name	is	the	specified	text	and	not	the

literal	value.	Interestingly,	the	values

of	the	options	generated	are	the

numeric	values—not	the	names—of

the	enumerated	entries.

Writing	Custom	Tag	Helpers

Writing	Custom	Tag	Helpers

Tag	helpers	help	to	keep	the	Razor

template	readable	and	concise.

However,	I	would	just	use	tag

helpers	to	automate	the	writing	of

long,	repetitive	blocks	of	markup

code	rather	than	creating	anything

like	a	view-specific	language.	The

more	you	do	so,	in	fact,	the	more

you	drive	yourself	away	from	plain

HTML.

Motivation	for	an	Email	Tag	Helper

Suppose	that	a	few	of	your	views

display	email	addresses	as	plain

text.	Wouldn’t	it	be	nice	to	make

those	strings	clickable	and	pop	up

the	Outlook	new	email	window?	In

HTML,	this	is	pretty	easy	to

achieve.	All	you	do	is	turn	the	text

into	an	anchor	and	make	it	point	to

a	mailto	protocol	string.

Click	here	to	view	code	image

you@yourserver.com

In	Razor,	it	would	be	something	like

this:

Click	here	to	view	code	image

@Model.Email

It	is	not	noticeably	hard	to	read	and

maintain,	but	what	if	you	also	want	to

specify	a	default	subject	for	the	email

and	a	body,	a	CC	address,	or	the	like?

In	this	case,	the	code	you	need	to

write	gets	significantly	more	complex.

You	must	check	whether	the	subject	is

non-null	and	add	it	to	the	mailto

protocol	string;	the	same	is	required

for	any	other	attribute	to	process.	You

probably	end	up	with	a	local

StringBuilder	variable	to	accumulate

the	final	mailto	URL.	This	code

pollutes	your	view	without	adding

significance	because	it	is	just

boilerplate	transformation	of	data

into	markup.

Planning	the	Tag	Helper

Planning	the	Tag	Helper

A	tag	helper	would	make	it	easy	to

read	and	will	hide	from	view	(and

from	the	view)	the	details	of	the

transformation.	You	can	now	have

the	following:

Click	here	to	view	code	image

<email	to="@Model.Email.To"	

							subject="@Model.Email.Subject">

			@Model.Email.Body

</email>

The	tag	helper	class	must	be

registered	with	the	view,	either	in	the

view	itself	or	for	all	views	in	the

_ViewImports.cshtml	file.	Here’s

what	you	need.

Click	here	to	view	code	image

@addTagHelper	*,	Your.Assembly

The	new	tag	helper	has	a	custom

element	and	can	be	made	even	more

sophisticated	by	adding	extra

properties	such	as	CC.

Implementing	the	Tag	Helper

A	typical	tag	helper	class	inherits

from	TagHelper	and	overrides	the

method	ProcessAsync.	The	method

is	responsible	for	producing	the

output	for	any	tag	that	is	under	the

control	of	the	helper.

As	mentioned,	to	bind	Razor	elements

to	a	helper,	you	use	the

HtmlTargetElement	attribute.	The

attribute	contains	the	name	of	the

element	to	which	the	helper	will	bind.

Click	here	to	view	code	image

[HtmlTargetElement("email")]

public	class	MyEmailTagHelper	:	TagHelper

{

				public	override	async	Task	ProcessAsync(

																TagHelperContext	context,	TagHelperOutput	output)

				{

								//	Evaluate	the	Razor	content	of	the	email's	element	body
	

								var	body	=	(await	output.GetChildContentAsync()).GetConte
nt();

								//	Replace	<email>	with	<a>	

								output.TagName	=	"a";	

								//	Prepare	mailto	URL

								var	to	=	context.AllAttributes["to"].Value.ToString();

								var	subject	=	context.AllAttributes["subject"].Value.ToSt
ring();

								var	mailto	=	"mailto:"	+	to;

								if	(!string.IsNullOrWhiteSpace(subject))

																mailto	=	string.Format("{0}&subject={1}&body={2}"
,	mailto,	subject,	body);

								//	Prepare	output

								output.Attributes.Clear();

								output.Attributes.SetAttribute("href",	mailto);

								output.Content.Clear();

								output.Content.AppendFormat("Email	{0}",	to);

				}

}

FIGURE	6-2	The	sample	tag	helper	in	action	in	Visual	Studio	2017

Figure	6-2	shows	a	sample	Razor	view

using	the	helper.	The	markup	emitted

is	the	following.

Click	here	to	view	code	image

<a	href="mailto:dino.esposito@jetbrains.com&subject=Talking	a
bout	ASP.NET	Core&body=Hello!">

				Email	dino.esposito@jetbrains.com

Figure	6-3	shows	the	page	in	action.

FIGURE	6-3	The	sample	page	in	action

If	the	name	of	the	target	element	is

not	enough	to	restrict	the	elements

under	the	effect	of	the	tag	helper,	then

you	can	add	attributes.

Click	here	to	view	code	image

[HtmlTargetElement("email",	Attributes="to,	subject")]

A	tag	helper	decorated	as	above	will

apply	only	to	EMAIL	elements	that

have	both	the	attributes	specified	and

not	null.	If	no	tag	helper	matches	the

custom	markup,	the	markup	is

emitted	as	is	and	each	browser	will

deal	with	it	in	some	way.

Tag	Helpers	vs.	HTML	Helpers

In	ASP.NET	Core,	you	have	two

similar	tools	to	raise	the

abstraction	level	of	the	markup

language	in	the	Razor	views:	HTML

helpers	(also	supported	in	classic

ASP.NET	MVC)	and	tag	helpers.

Both	tools	do	the	same	job,	and

both	provide	an	easier-to-use

syntax	for	relatively	complex	and

repetitive	Razor	tasks.	However,	an

HTML	helper	is	an	extension

method	invoked	programmatically.

@Html.MyDropDownList(...)

An	HTML	helper	incorporates—or	generates	programmatically—

its	markup.	The	markup,	however,	is	hidden	from	the	outside.

Suppose	now	you	need	to	edit	a	simple	attribute	of	the	internal

markup—say,	add	a	CSS	class	to	some	element.	It’s	an	easy	task

as	long	as	the	change	is	general	and	applies	to	all	instances	of	the

helper.	If	you	want	to	be	able	to	specify	a	different	CSS	attribute

for	each	instance,	then	the	CSS	attribute	must	be	exposed	as	an

input	parameter	for	the	helper.	Making	this	change	has	a

significant	effect	both	on	the	internal	markup	and	the

surrounding	API.

Tag	helpers,	instead,	are	just	code	around	a	markup	right	in	the

view.	The	code	is	only	about	how	to	manipulate	the	template

being	specified	case	by	case.

RAZOR	VIEW	COMPONENTS

View	components	are	a	relatively

new	entry	in	the	world	of	ASP.NET

MVC.	Technically,	they	are	self-

contained	components	that	include

both	logic	and	view.	In	this	regard,

they’re	a	revised	version,	and	a

replacement,	of	child	actions	as

they	appeared	in	classic	ASP.NET.

Writing	a	View	Component

In	the	context	of	a	view,	you

reference	view	components	via	a

C#	block	and	pass	them	any	input

data	that	is	required.	Internally,	the

view	component	will	run	its	own

logic,	process	the	data	you	passed

in,	and	return	a	view	ready	for

rendering.

Unlike	tag	helpers,	ASP.NET	Core

doesn’t	have	any	predefined	view

components.	Therefore,	view

components	are	created	on	a	per-

application	basis.

Implementation	of	ViewComponent

The	view	component	is	a	class	that

inherits	from	ViewComponent	and

exposes	an	InvokeAsync	method

whose	signature	matches	the	input

data	you	might	be	passing	from	the

view	in	Razor.	Here’s	a	reasonable

layout	for	the	view	component	core

code.

Click	here	to	view	code	image

public	async	Task<IViewComponentResult>	InvokeAsync(/*	input	dat
a	*/)

{

				var	data	=	await	RetrieveSomeDataAsync(/*	input	data	*/);

				return	View(data);

}

Within	the	view	component	class,	you

may	have	database	or	service

references	and	might	ask	the	system

to	inject	dependencies	for	you.	It’s	an

entirely	distinct	piece	of	business	logic

that	grabs	data	from	where	data	lives

and	packages	that	up	into	a	chunk	of

HTML.

Connecting	Components	to	Razor	Views

The	view	component	class	can	be

placed	anywhere	in	the	project,	but

all	views	used	by	view	components

are	restricted	to	a	specific	location.

In	particular,	you	must	have	a

Components	folder	that	has	one

child	folder	for	each	view

component.	Typically,	you	place

the	Components	folder	under	the

Views/Shared	folder	just	to	ensure

full	reusability	of	the	components.

If	it	makes	sense	to	have	multiple

view	components	limited	to	just

one	controller,	then	it	is	okay	to

have	a	Components	folder	under

the	controller	folder	in	Views.

The	name	of	the	view	component

folder	is	the	name	of	the	view

component	class.	Note	that	if	the	class

name	ends	with	the	ViewComponent

suffix,	then	the	suffix	must	be

removed.	This	folder	contains	all

Razor	views	being	used.	When	you

return	from	the	InvokeAsync	method,

if	no	view	name	is	specified	then	a

default.cshtml	file	is	assumed.	The

view	is	a	regular	Razor	view	with

usual	directives.

Invoking	a	View	Component

To	invoke	a	view	component	from

within	a	view,	you	use	the	following

code.	Note	that	the	Component.

InvokeAsync	method	below	can

take	any	parameters,	and	those

parameters	are	then	passed	to	the

InvokeAsync	method	of	the

internal	implementation	of	the

referenced	component.	The

Component.InvokeAsync	method

is	a	placeholder	for	the	markup

being	generated.

Click	here	to	view	code	image

@await	Component.InvokeAsync("LatestBookings",	new	{	maxLength	=	
4	})

Note	that	a	view	component	can	also

be	invoked	by	a	controller.	In	this

case,	the	code	to	use	is	like	the	code

shown	below.

Click	here	to	view	code	image

public	IActionResult	LatestBookings(int	maxNumber)		

{

				return	ViewComponent("LatestBookings",	maxNumber);

}

This	approach	is	analogous	to

returning	a	partial	view.	In	both	cases,

callers	will	receive	an	HTML

fragment.	The	difference	between	a

partial	view	and	a	view	component	is

all	in	their	internal	implementation.	A

partial	view	is	a	plain	Razor	template

that	receives	and	incorporates	data	in

the	template.	A	view	component

receives	input	parameters,	retrieves

its	data,	and	then	incorporates	it	in

the	template.

The	Composition	UI	Pattern

View	components	serve	the

purpose	of	help	componentizing

the	view	so	that	it	results	from	the

composition	of	distinct	and	self-

made	widgets.	It’s	the

“Composition	UI”	pattern	that,

despite	the	bold	name,	is	ultimately

a	very	intuitive	concept.

Aggregating	Data	and	UI	Templates

Some	views	in	the	application

should	ideally	result	from	the

aggregation	of	data	coming	from

different	queries.	In	this	context,	a

query	is	not	necessarily	a	database

query,	but	it	is	an	operation	that

returns	data	shaped	in	the	way	the

view	requires.	You	can	define	a

canonical	view	model	object	and

have	an	application	controller

populate	that	with	the	data	it	gets

out	of	several	operations,	possibly

parallel	operations.	Let’s	consider

the	following	view	model	for	a

dashboard	view.

Click	here	to	view	code	image

public	class	DashboardViewModel	

{

			public	IList<MonthlyRevenue>	ByMonth	{	get;	set;	}

			public	IList<EmployeeOfTheMonth>	TopPerformers	{	get;	set;	}

			public	int	PercentageOfPeopleInTheOffice	{	get;	set;	}

}

As	you	can	see,	defining	a	canonical

view	model	object	aggregates	three

completely	distinct	pieces	of

information	that	the	user	wishes	to

see	in	the	same	view:	the	monthly

revenues,	the	list	of	top	performers

and	the	percentage	of	people	who

checked	into	the	office	to	date.

In	general,	the	information	can	be

located	in	the	same	database,	or	it	can

be	spread	across	multiple	databases

and	even	multiple	servers.	So,	in

general,	the	application	service	will

trigger	three	calls	to	get	the	data.

Click	here	to	view	code	image

public	DashboardViewModel	Populate()

{

				var	model	=	new	DashboardViewModel();

				//	Trigger	the	monthly	revenue	query

				model.ByMonth	=	RetrieveMonthlyRevenues(DateTime.Now.Year);

				//	Trigger	the	top	performers	query

				model.TopPerformers	=	RetrieveTopPerformersRevenues(DateTime.
Now.Year,	DateTime.Now.Month);

				//	Trigger	the	occupancy	query

				model.PercentageOfPeopleInTheOffice	=	RetrieveOccupancy(DateT
ime.Now);

				return	model;

}

In	this	approach,	the	retrieval	of	the

data	is	centralized.	The	view	will	likely

be	made	of	three	distinct	partial	views

with	each	receiving	one	chunk	of	data.

Click	here	to	view	code	image

<div>@Html.Partial("pv_MonthlyRevenues",	Model.ByMonth)</div>

<div>@Html.Partial("pv_TopPerformers",	Model.TopPerformers)</div>

<div>@Html.Partial("pv_Occupancy",	Model.PercentageOfPeopleInTheO
ffice)</div>

Another	approach	consists	of	splitting

this	view	into	three	smaller,

independent	pieces,	each	dedicated	to

one	query	task.	A	view	component	is

just	a	partial	view	plus	some

dedicated	query	logic.	The	same	view

might	then	be	expressed	as	shown

below.

Click	here	to	view	code	image

<div>@await	Component.InvokeAsync("MonthlyRevenues",	DateTime.Now
.Year)</div>

<div>@await	Component.InvokeAsync("TopPerformers",	DateTime.Now)<
/div>

<div>@await	Component.InvokeAsync("Occupancy",	DateTime.Now)</div>

The	controller	responsible	for

rendering	the	dashboard	view	does

not	need	to	go	through	the	application

service,	and	it	can	just	render	the

view.	Rendering	the	view	will	then

trigger	components.

View	Components	vs.	Child	Actions

View	Components	vs.	Child	Actions

At	first	sight,	view	components

look	pretty	similar	to	both	partial

views	and	child	actions	of	classic

ASP.NET	MVC.	ASP.NET	Core	has

partial	views	but	lacks	child

actions.	Compared	to	a	child

action,	a	view	component	is	faster

because	it	doesn’t	go	through	the

controller	pipeline	as	do	child

actions.	In	particular,	this	means

no	model	binding	and	no	action

filters.

How	does	a	view	component	compare

to	a	partial	view?

Partial	views	are	just	templates	that

receive	and	render	data;	they	have	no

back-end	logic.	They	are	typically

codeless	or	just	contain	some

rendering	logic.	A	view	component

typically	queries	some	database	to	get

its	data.

Impact	of	View	Components

Having	the	view	split	into

independent	components	is

primarily	a	convenient	way	of

organizing	the	work;	splitting	the

view	into	independent	components

also	can	make	the	process	of

creating	the	view	more	parallel	by

having	different	developers	taking

care	of	distinct	parts.	However,

view	components	are	not

necessarily	a	way	to	speed	up	the

application.

Because	each	view	component	is

rendered	(and	subsequently

populated)	independently,	the

database	logic	might	result	to	be	less

than	optimized.	Unless	the	data	lives

in	distinct	and	unrelated	sources,

multiple	independent	queries	might

involve	multiple	connections	and

multiple	commands.

As	a	general	rule,	make	sure	that	the

resulting	overall	query	logic	is	not	hit

by	splitting	the	view	into	components.

An	example	is	the	following.	Let’s	say

that	the	home	page	of	a	site	must

render	a	box	with	three	most	recent

news	headlines	and	another	box	with

the	last	ten	news	with	a	photo,	a

headline,	and	an	abstract.	Distinct

view	components	will	require	two

distinct	queries	against	the	same

database	table.	A	centralized	data

retrieval	process,	instead,	would

probably	go	for	just	one	query.

SUMMARY

The	Razor	language	in	ASP.NET

Core	is	essentially	the	same	as	in

classic	ASP.NET	MVC.	A	couple	of

additional	directives	have	been

added	to	provide	for	new

framework	features—tag	helpers

and	dependency	injection.	Also,

view	components	have	been	added,

which	are	a	new	flavor	of

components	for	reusable	in-app

HTML	widgets.	Beyond	these

changes,	the	Razor	language	works

in	ASP.NET	Core	similarly	to	how

it	worked	in	ASP.NET	MVC.

This	chapter	completes	our	review	of

the	ASP.NET	Core	application	model.

Starting	in	Chapter	7,	“Design

Considerations,”	we’ll	move	toward

cross-cutting	concerns	and	touch	on

topics	such	as	dependency	injection,

exception	handling,	and

configuration.

PART	III

Cross-cutting	Concerns
Now	that	you’re	comfortable	with

ASP.NET	Core	projects	and	the	MVC

application	model,	we	can	turn	to

some	of	the	real-world	issues	you’ll

face	in	building	production	solutions,

including	configuration,

authentication,	and	data	access.

Chapter	7,	Design	Considerations,

introduces	the	key	role	of	ASP.NET

Core’s	native	Dependency	Injection

(DI)	infrastructure,	and	it	addresses

ubiquitous	challenges	such	as

managing	global	configuration	data,

handling	errors	and	exceptions,	and

designing	controllers.

Chapter	8,	Securing	Your

Application,	shows	how	to	implement

user	authentication	in	ASP.NET	Core,

and	use	its	new	policy-based	API	to

authorize	users.	While	ASP.NET	Core

relies	on	familiar	authentication

concepts,	experienced	ASP.NET

developers	will	find	its

implementation	substantially

different.

Finally,	Chapter	9,	Access	to

Application	Data,	takes	a	modern

design-first	approach	to	data	access.

Building	on	Eric	Evans’	influential

innovations	in	Domain-driven	Design

(DDD),	you’ll	master	a	modern

pattern	for	an	application	backend

that	provides	for	persistence.	Then,

you’ll	put	it	to	work	with	ASP.NET

Core’s	facilities	for	reading	and

writing	data.	By	the	time	you’re	done,

you’ll	be	prepared	to	handle	data

access,	whether	it	involves	NoSQL

stores,	the	cloud,	or	pretty	much

anything	else.

—Francis	Scott	Fitzgerald,	“The

Great	Gatsby”

CHAPTER	7

Design	Considerations
It	takes	two	to	make	an	accident.

This	chapter	covers	a	few	cross-

cutting	concerns	of	all	web

applications	such	as	global

configuration	data,	patterns	for

dealing	with	errors	and	exceptions,

the	design	of	the	controller	classes,

and	modern	features	like	dependency

injection	to	pass	data	across	layers	of

code.	In	the	design	of	core

components	of	an	ASP.NET	Core

application,	the	native	Dependency

Injection	(DI)	infrastructure	plays	a

fundamental	role.

Without	further	ado,	let’s	start	taking

a	deeper	look	under	the	hood	of	the

native	DI	infrastructure	of	the

ASP.NET	Core	framework.

THE	DEPENDENCY	INJECTION
INFRASTRUCTURE

DI	is	a	development	pattern	widely

used	to	make	services	available	to

code	everywhere	in	the	application.

Whenever	a	code	component	(such

as	a	class)	needs	to	reference	some

external	code	(such	as	a	service),

you	have	two	options.

First,	you	create	a	fresh	instance	of	the	service	component	right	in

the	calling	code.

Second,	you	expect	to	receive	a	valid	instance	of	the	service	that

someone	else	would	create	for	you.	Let’s	go	with	an	illustrative

example.

Refactoring	to	Isolate	Dependencies

Refactoring	to	Isolate	Dependencies

Suppose	you	have	a	class	that	acts

as	a	wrapper	around	an	external

piece	of	functionality,	such	as	a

logger.	In	the	code	below,	the	class

is	tightly	coupled	with	a	specific

implementation	of	the	feature.

Click	here	to	view	code	image

public	class	BusinessTask

{

			public	void	Perform()

			{

						//	Get	hold	of	the	dependency

						var	logger	=	new	Logger();

						//	Perform	task

			 				...

						//	Use	the	dependency

						logger.Log("Done");

			}

}

If	you	move	the	class	around,	it	will

only	work	if	the	referenced

component	and	all	its	dependencies

are	moved	as	well.	As	an	example,	if

the	logger	uses,	say,	a	database,	then	a

connection	to	the	database	must	be

available	anywhere	the	sample

business	class	is	used.

Decoupling	Application	Code	from
Dependencies

An	old	and	wise	principle	of	object-

oriented	design	says	you	should

always	program	to	interfaces	rather

than	to	implementations.	Applied

to	the	previous	code,	this	principle

means	we	would	extract	an

interface	from	the	logger

component	and	inject	a	reference

to	it	into	the	business	class.

Click	here	to	view	code	image

public	class	BusinessTask

{

			private	ILogger	_logger;

			public	BusinessTask(ILogger	logger)

			{

						//	Get	hold	of	the	dependency

							_logger	=	logger;

			}

			public	void	Perform()

			{

						//	Perform	task

						...

						//	Use	the	(injected)	dependency

						_logger.Log("Done");

			}

}

The	logger	functionality,	abstracted	to

the	ILogger	interface,	is	now	injected

via	the	constructor.	From	here,	two

main	facts	descend.

First,	the	burden	of	instantiating	the	logger	has	been	moved

outside	of	the	business	class.

Second,	the	business	class	can	now	transparently	work	with	just

any	class	of	today	and	tomorrow	that	implements	the	given

interface.

This	is	a	basic	form	of	dependency

injection	that	sometimes	is	also

referred	to	as	poor	man’s	dependency

injection	just	to	emphasize	its	bare-

minimum,	yet	functional

implementation.

Introducing	DI	Frameworks

A	class	designed	to	receive	external

dependencies	moves	the	burden	of

creating	all	necessary	instances	to

the	calling	code.	However,	if	you

use	the	DI	pattern	extensively,	the

amount	of	code	to	write	before	you

can	get	an	instance	to	inject	can	be

significant.	For	example,	the

business	class	has	a	dependency	on

the	logger	and	the	logger,	in	turn,

has	a	dependency	on	a	data	source

provider.	In	turn,	the	data	source

provider	might	have	another

dependency	and	so	forth.

To	reduce	the	burden	of	similar

situations,	you	can	use	a	DI

framework,	which	uses	reflection	or,

more	likely,	dynamically	compiled

code	to	return	the	desired	instance	at

the	sole	cost	of	a	single	line	of	code	on

your	end.	DI	frameworks	are

sometimes	referred	to	as	Inversion-of-

Control	(IoC)	frameworks.

Click	here	to	view	code	image

var	logger	=	SomeFrameworkIoC.Resolve(typeof(ILogger));

A	DI	framework	essentially	works	by

mapping	an	abstract	type	(commonly,

an	interface)	to	a	concrete	type.

Whenever	the	occurrence	of	a	known

abstract	type	is	requested

programmatically,	then	the

framework	creates	and	returns	an

instance	of	the	mapped	concrete	type.

Note	that	the	root	object	of	a	DI

framework	is	commonly	known	as	the

container.

The	Service	Locator	Pattern

Dependency	injection	is	not	the

only	possible	pattern	to	invoke

external	dependencies	in	a	loosely

coupled	way.	An	alternate	pattern

is	called	Service	Locator.	Here’s

how	to	retrieve	the	previous	sample

class	to	use	Service	Locator.

Click	here	to	view	code	image

public	class	BusinessTask

{

			public	void	Perform()

			{

						//	Perform	task

						...

						//	Get	the	reference	to	the	logger

						var	logger	=	ServiceLocator.GetService(typeof(ILogger));

						//	Use	the	(located)	dependency

						logger.Log("Done");

			}

}

The	ServiceLocator	pseudo-class

represents	some	infrastructure

capable	of	creating	a	matching

instance	for	the	specified	abstract

type.	The	key	difference	between	DI

and	Service	Locator	is	that	DI	requires

the	surrounding	code	to	be	designed

accordingly;	signatures	of	the

constructor	and	other	methods	may

change.	Service	Locator	is	more

conservative,	but	it	also	results	in	less

readable	code	because	a	developer

needs	to	investigate	the	entire	source

code	to	figure	out	dependencies.	At

the	same	time,	Service	Locator	is	an

ideal	choice	when	you	are	in	the

process	of	refactoring	dependencies	in

a	large	existing	codebase.

In	ASP.NET	Core,	the	role	of	the

Service	Locator	is	played	by	the

RequestServices	object	in	the	HTTP

context.	Here’s	some	sample	code.

Click	here	to	view	code	image

public	void	Perform()

{

				//	Perform	task

				...

				//	Get	the	reference	to	the	logger

				var	logger	=	HttpContext.RequestServices.GetService<ILogger>(
);

				//	Use	the	(located)	dependency

				logger.Log("Done");

}

Note	that	the	sample	code	is	assumed

to	be	part	of	a	controller	class;

therefore,	HttpContext	is	meant	to	be

a	property	of	the	base	Controller

class.

Generalities	of	the	ASP.NET	Core	DI
System

ASP.NET	Core	comes	with	its	own

DI	framework	that	gets	initialized

right	at	the	application	startup.

Let’s	review	its	most	characterizing

points.

Predefined	Dependencies

When	the	container	becomes

available	to	application	code,	it

already	contains	a	few	configured

dependencies,	as	shown	in	Table	7-

1.

TABLE	7-1	Abstract	types	mapped	by

default	in	the	ASP.NET	Core	DI

system

Abstrac

t	Type

Description

IApplica

tionBuil

The	type	provides	the	mechanisms	to	configure	

the	application’s	request	pipeline

der

ILogger

Factory

The	type	provides	the	pattern	for	creating	logger	

components

IHosting

Environ

ment

The	type	provides	information	about	the	web	

hosting	environment	which	an	application	is	

running

In	an	ASP.NET	Core	application,	you

can	inject	any	of	the	above	types	into

any	valid	code	injection	points

without	any	preliminary

configuration.	(More	on	injection

points	in	a	moment.)	To	be	able	to

inject	any	other	types,	though,	you

must	first	go	through	a	registration

step.

Registering	Custom	Dependencies

You	can	register	types	with	the

ASP.NET	Core	DI	system	in	either

of	two	non-exclusive	ways.

Registering	a	type	consists	of

letting	the	system	know	how	to

resolve	an	abstract	type	to	a

concrete	type.	The	mapping	can	be

statically	set	or	determined

dynamically.

A	static	mapping	typically	happens	in

the	ConfigureServices	method	of	the

startup	class.

Click	here	to	view	code	image

public	class	Startup

{

				public	void	ConfigureServices(IServiceCollection	services)

				{

								//	Bind	the	concrete	type	CustomerService	to	the	ICustome
rService	interface	

								services.AddTransient<ICustomerService,	CustomerService>(
);

				}

}

You	use	one	of	the	AddXxx	extension

methods	defined	by	the	DI	system	to

bind	types.	AddXxx	extension

methods	for	DI	are	defined	on	the

IServiceCollection	interface.	The	net

effect	of	the	code	above	is	that	any

time	an	instance	of	a	type	that

implements	ICustomerService	is

requested,	the	system	returns	an

instance	of	CustomerService.	In

particular,	the	method	AddTransient

ensures	that	a	fresh	new	instance	of

the	CustomerService	type	is	returned

every	time.	Other	lifetime	options

exist,	however.

Static	resolution	of	abstract	types	is

sometimes	restrictive.	What	if,	in	fact,

you	need	to	resolve	type	T	to	different

types	depending	on	runtime

conditions?	This	is	where	dynamic

resolution	comes	into	play;	dynamic

resolution	allows	you	to	indicate	a

callback	function	to	resolve	the

dependency.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddTransient<ICustomerService>(provider	=>

				{

								//	Place	your	logic	here	to	decide	how	to	resolve	ICustom
erService.

								if	(SomeRuntimeConditionHolds())

											return	new	CustomerServiceMatchingRuntimeCondition();

								else	

											return	new	DefaultCustomerService();

				});

}

Realistically,	you	need	to	pass	some

runtime	data	to	evaluate	conditions.

To	retrieve	the	HTTP	context	from

within	the	callback	function,	you

resort	to	the	service	locator	API.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddTransient<ICustomerService>(provider	=>

				{

								//	Place	your	logic	here	to	decide	how	to	resolve	ICustom
erService.

								var	context	=	provider.GetRequiredService<IHttpContextAcc
essor>();

								if	(SomeRuntimeConditionHolds(context.HttpContext.User))

											return	new	CustomerServiceMatchingRuntimeCondition();

								else	...				

				});

}

	Note	You	must	call	one	of	the	AddXxx	extension	methods	of
IServiceCollection	to	add	any	of	your	types	to	the	DI	system	as	well	as	to	bind
any	system	abstract	type	to	a	different	implementation.

Lifetime	of	a	Dependency

In	ASP.NET	Core,	there	are	a	few

different	ways	to	request	the	DI

system	an	instance	of	the	mapped

concrete	type.	Table	7-2	lists	all	of

them.

TABLE	7-2	Lifetime	options	for	DI-

created	instances

M

et

h

o

d

Description

A

d

d

Tr

a

ns

ie

nt

The	caller	receives	a	new	instance	of	the	specified	type	

per	call

A

d

d

Si

n

gl

et

o

n

The	caller	receives	the	same	instance	of	the	specified	

type	which	was	created	the	first	time.	Regardless	of	the	

type,	every	application	gets	its	own	instance

A

d

d

Sc

o

pe

d

Same	as	AddSingleton,	except	that	it	is	scoped	to	the	

current	request

Note	that	by	simply	using	an	alternate

overload	of	the	AddSingleton	method

you	can	also	indicate	the	specific

instance	to	be	returned	for	any

successive	calls.	This	approach	is

helpful	when	you	need	the	object

being	returned	to	be	configured	with	a

certain	state.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Singleton

				services.AddSingleton<ICustomerService,	CustomerService>();

				//	Custom	instance

				var	instance	=	new	CustomerService();

				instance.SomeProperty	=	...;

				services.AddSingleton<ICustomerService>(instance);											
	

}

In	this	case,	you	first	create	the

instance	and	store	in	it	any	state	you

wish,	and	then	you	pass	it	to

AddSingleton.

	Important	It	is	key	to	notice	that	any	components
registered	with	a	given	lifetime	can’t	depend	on	other	components	registered
with	a	shorter	lifetime.	In	other	words,	you	should	avoid	injecting	a	component
registered	with	a	transient	or	scoped	lifetime	into	a	singleton.	If	you	do	so,	you
might	run	into	application	inconsistencies	because	the	dependency	upon	the
singleton	makes	the	transient	(or	scoped)	instance	live	well	beyond	its
expected	lifetime.	This	might	not	necessarily	result	in	a	visible	bug	in	the
application,	but	there	is	the	risk	that	the	wrong	object	(insofar	as	the
application	is	concerned)	is	being	worked	on	by	the	singleton.	Generally,	the
problem	exists	whenever	the	lifetimes	of	chained	objects	are	not	the	same.

Connecting	to	an	External	DI	Framework

The	DI	system	in	ASP.NET	Core	is

tailor-made	to	the	needs	of

ASP.NET,	so	it	might	not	offer	all

the	features	and	functions	you	are

familiar	with	in	another	DI

framework.	The	nice	thing	about

ASP.NET	Core	is	that	it	allows	you

to	plug	in	any	external	DI

framework	provided	that	the

framework	has	been	ported	to	.NET

Core	and	a	connector	exists.	The

following	code	shows	how	to	do

that.

Click	here	to	view	code	image

public	IServiceProvider	ConfigureServices(IServiceCollection	serv
ices)

{

				//	Configure	the	ASP.NET	Core	native	DI	system

				services.AddTransient<ICustomerService,	CustomerService>();

				...

				//	Import	existing	mappings	in	the	external	DI	framework	

				var	builder	=	new	ContainerBuilder();		

				builder.Populate(services);

				var	container	=	builder.Build();

				//	Replace	the	service	provider	for	the	rest	of	the	pipeline	
to	use

				return	container.Resolve<IServiceProvider>();

}

When	you	plan	to	have	an	external	DI

framework	in	the	application,	the	first

thing	you	should	do	is	change	the

signature	of	the	ConfigureServices

method	in	the	startup	class.	Instead	of

being	void,	the	method	must	return

IServiceProvider.	In	the	code	above,

the	class	ContainerBuilder	is	the

connector	for	the	specific	DI

framework	we’re	trying	to	plug	in	(for

example,	Autofac).	The	method

Populate	imports	all	pending	type

mappings	inside	of	Autofac,	and	then

the	Autofac	framework	is	used	to

resolve	the	root	dependency	on

IServiceProvider.	This	is	the	interface

that	all	the	rest	of	the	pipeline	will	use

internally	to	have	dependencies

resolved.

Aspects	of	the	DI	Container

In	ASP.NET	Core,	the	DI	container

returns	null	if	asked	to	instantiate	a

type	that	has	not	yet	been

registered.	If	multiple	concrete

types	have	been	registered	for	the

same	abstract	type,	the	DI

container	returns	an	instance	of	the

last	registered	type.	If	the

constructor	can’t	be	resolved	due	to

ambiguity	or	incompatible

parameters,	the	DI	container	then

throws	an	exception.

In	case	of	sophisticated	scenarios	to

handle,	you	can	programmatically

retrieve	all	concrete	types	registered

for	a	given	abstract	type.	The	list	is

returned	by	the

GetServices<TAbstract>	method

defined	on	the	IServiceProvider

interface.	Finally,	some	popular	DI

frameworks	let	developers	register	a

type	based	on	keys	or	conditions.	This

scenario	is	not	supported	in	ASP.NET

Core.	If	that	feature	is	crucial	in	your

application,	you	might	want	to

consider	creating	a	dedicated	factory

class	for	the	involved	types.

Injecting	Data	and	Services	in	Layers

Once	a	service	has	been	registered

with	the	DI	system,	all	you	need	to

do	to	use	it	is	to	request	an	instance

in	the	necessary	location.	In

ASP.NET	Core,	you	can	inject

services	into	the	pipeline—both

through	the	Configure	method	and

middleware	classes—in	controllers

and	views.

Injection	Techniques

The	primary	way	to	inject	a	service

into	a	component	is	via	its

constructor.	Middleware	classes,

controllers,	and	views	are	always

instantiated	through	the	DI	system,

and	subsequently,	any	additional

parameter	listed	in	the	signature

will	be	automatically	resolved.

In	addition	to	constructor	injection,	in

controller	classes,	you	can	leverage

the	FromServices	attribute	to	get	an

instance	and,	last	but	not	least,	the

Service	Locator	interface.	Note	that

the	Service	Locator	interface	is	what

you	use	when	you	need	to	check

runtime	conditions	to	resolve	the

dependency	properly.

Injecting	Services	in	the	Pipeline

You	can	inject	services	into	the

startup	class	of	an	ASP.NET	Core

application.	At	this	time,	though,

you	can	only	proceed	with

constructor	injection	and	only	for

the	types	listed	in	Table	7-1.

Click	here	to	view	code	image

//	Constructor	injection

public	Startup(IHostingEnvironment	env,	ILoggerFactory	loggerFact
ory)

{

			//	Initialize	the	application	

			...

}

Next	up,	as	you	proceed	with

configuring	the	pipeline	with

components	that	pre-	and	post-

process	the	request,	you	can	inject

dependencies	via	the	constructor	of	a

middleware	class	(if	you	use	any)	or

you	can	use	the	Service	Locator

approach.

Click	here	to	view	code	image

app.Use((context,	next)	=>

{

				var	service	=	context.RequestServices.GetService<ICustomerSer
vice>();

				...

				next();

				...

});

Injecting	Services	into	Controllers

Inside	of	the	MVC	application

model,	service	injection	mostly

occurs	through	the	constructor	of

controller	classes.	Here’s	a	sample

controller.

Click	here	to	view	code	image

public	class	CustomerController	:	Controller

{

				private	readonly	ICustomerService	_service;

				//	Service	injection

				public	CustomerController(ICustomerService	service)

				{

								_service	=	service;

				}

				...

}

Also,	you	can	override	the	model

binding	mechanism	to	map	method

parameters	to	members.

Click	here	to	view	code	image

public	IActionResult	Index(

							[FromServices]	ICustomerService	service)

{

			...				

}

The	FromServices	attribute	causes	the

DI	system	to	create	and	return	an

instance	of	the	concrete	type

associated	with	the	ICustomerService

interface.	Finally,	in	the	body	of

controller	methods,	you	can	always

refer	to	the	HTTP	context	object	and

its	RequestServices	object	to	use	the

Service	Locator	API.

Injecting	Services	into	Views

As	seen	in	Chapter	5,	“ASP.NET

MVC	Views,”	the	@inject	directive

can	be	used	in	Razor	views	to	force

the	DI	system	to	return	an	instance

of	the	specified	type	and	bind	it	to

the	given	property.

Click	here	to	view	code	image

@inject	ICustomerService	Service

The	net	effect	of	the	line	above	is	that

a	property	named	“Service,”	which

has	been	set	to	a	DI-resolved	instance

of	the	ICustomerService	type	is	made

available	in	the	Razor	view.	The

lifetime	of	the	assigned	instance	will

depend	on	the	configuration	of	the

ICustomerService	type	in	the	DI

container.

COLLECTING	CONFIGURATION
DATA

Any	realistic	website	is	structured

as	a	central	engine	connected	to	the

outside	world	through	HTTP-based

endpoints.	When	ASP.NET	MVC	is

used	as	the	application	model,

those	endpoints	are	implemented

as	controllers.	As	seen	in	Chapter	4,

“ASP.NET	MVC	Controllers,”

controllers	deal	with	incoming

requests	and	generate	outgoing

responses.	Reasonably,	the

behavior	of	the	central	engine	that

contains	the	logic	behind	the

website	is	not	entirely	hard-coded

but	may	contain	some	parametric

information	whose	values	are	read

from	external	sources.

In	classic	ASP.NET	applications,	the

system	support	to	grab	configuration

data	was	limited	to	a	minimal	API	to

read	and	write	from	the	web.config

file.	At	startup,	developers	typically

collect	all	information	into	a	global

data	structure	callable	from	anywhere

in	the	application.	In	ASP.NET	Core,

there’s	no	web.config	file	anymore,

but	the	framework	offers	an	even

richer	and	more	sophisticated

infrastructure	for	dealing	with

configuration	data.

Supported	Data	Providers

The	configuration	of	an	ASP.NET

Core	application	is	based	on	a	list

of	name-value	pairs	collected	at

runtime	from	a	variety	of	data

sources.	The	most	common

scenario	for	configuration	of	data	is

to	have	it	read	from	a	JSON	file.

However,	many	other	options	exist;

Table	7-3	lists	the	most	relevant

options.

TABLE	7-3	Most	common

configuration	data	sources	for

ASP.NET	Core

Data	

source

Description

Text	files Data	is	read	from	ad-hoc	file	formats	

including	JSON,	XML,	and	INI	formats

Environmen

t	variables

Data	is	read	from	environment	variables	

configured	on	the	hosting	server

In-memory	

dictionaries

Data	is	read	from	in-memory	.NET	

dictionary	classes

Also,	the	configuration	API	provides	a

built-in	command-line	argument	data

provider,	which	produces	name-value

configuration	pairs	right	from

command-line	parameters.	However,

this	option	is	not	as	common	in

ASP.NET	applications	because	you

have	little	control	over	the	command

line	of	the	console	application	that

fires	up	the	web	application.

Command-line	providers	are	more

commonly	used	in	console

applications	development.

JSON	Data	Provider

Any	JSON	file	can	become	a	data

source	for	the	configuration	of	the

ASP.NET	Core	application.	The

structure	of	the	file	is	completely

up	to	you	and	can	include	any	level

of	nesting.	The	search	for	the	given

JSON	file	begins	in	the	content	root

folder	as	specified	in	the

application	startup.

As	we’ll	see	in	more	detail	in	a

moment,	the	entire	set	of

configuration	data	is	built	as	a

hierarchical	document	object	model

(DOM)	and	results	from	the	union	of

data	that	might	come	from	multiple

data	sources.	This	means	you	can	use

as	many	JSON	files	as	needed	in	the

building	of	the	required	configuration

tree,	and	each	file	can	have	its	own

custom	schema.

Environment	Variables	Provider

Any	environment	variables	defined

in	the	server	instance	are

automatically	eligible	to	be	added

to	the	configuration	tree.	All	you

have	to	do	is	programmatically

append	those	variables	to	the	tree.

Environment	variables	are	added

as	a	single	block.	If	you	need

filtering,	then	you’d	better	opt	for

an	in-memory	provider	and	add

selected	environment	variables	to

the	dictionary.

In-memory	Provider

In-memory	Provider

The	in-memory	provider	is	a	plain

dictionary	of	name-value	pairs

populated	programmatically	and

added	to	the	configuration	tree.	As

a	developer,	you	are	entirely

responsible	for	retrieving	the	actual

values	to	store	in	the	dictionary.

Data	passed	through	the	in-

memory	provider	can,	therefore,	be

constant	or	read	from	any

persistent	data	store.

Custom	Configuration	Providers

In	addition	to	using	predefined

configuration	data	providers,	you

are	also	entitled	to	create	your	own

provider.	In	this	context,	a	provider

is	a	class	that	implements	the

IConfigurationSource	interface.

Inside	the	implementation,

however,	you	also	need	to	reference

a	custom	class	that	inherits	from

ConfigurationProvider.

A	very	common	example	of	a	custom

configuration	provider	is	one	that

uses	an	ad-hoc	data-base	table	to	read

data.	The	provider	ultimately	hides

the	schema	and	layout	of	the	database

tables	involved.	To	create	a	database-

driven	provider,	you	first	create	a

configuration	source	object	that	is

nothing	more	than	a	wrapper	for	a

configuration	provider.

Click	here	to	view	code	image

public	class	MyDatabaseConfigSource	:	IConfigurationSource

{

				public	IConfigurationProvider	Build(IConfigurationBuilder	bui
lder)

				{

								return	new	MyDatabaseConfigProvider();

				}

}

A	configuration	provider	is	where	the

actual	data	retrieval	is	performed.	The

configuration	provider	contains	and

hides	the	details	about	the	DbContext

to	use,	the	names	of	tables	and

columns	and	connection	string.	(The

code	snippet	uses	bits	and	pieces	of

Entity	Framework	Core,	which	we’ll

discuss	in	Chapter	9.)

Click	here	to	view	code	image

public	class	MyDatabaseConfigProvider	:	ConfigurationProvider

{	

				private	const	string	ConnectionString	=	"...";

				public	override	void	Load()

				{

								using	(var	db	=	new	MyDatabaseContext(ConnectionString))

								{

												db.Database.EnsureCreated();

												Data	=	!db.Values.Any()

																						?	GetDefaultValues()

																						:	db.Values.ToDictionary(c	=>	c.Id,	c	=>	c.
Value);

								}

				}

				private	IDictionary<string,	string>	GetDefaultValues	()

				{

								//	Pseudo	code	for	determining	default	values	to	use

								var	values	=	DetermineDefaultValues();

								

								return	values;

				}

}

The	sample	code	lacks	an

implementation	for	the	DbContext

class	which	is	where	you	deal	with	the

connection	string,	tables,	and

columns.	In	general,	let’s	say	that

MyDatabaseContext	is	yet	another

piece	of	code	you	need	to	have

around.	The	snippet	using

MyDatabaseContext	refers	to	a

database	table	named	Values.

	Note	If	you	find	a	way	to	pass	DbContextOptions	object	as	an
argument	to	the	provider,	you	can	even	manage	to	work	with	a	rather	generic
EF-based	provider.	An	example	of	this	technique	can	be	found	at
http://bit.ly/2uQBJmK	(http://bit.ly/2uQBJmK).

Building	a	Configuration	Document

Building	a	Configuration	Document
Object	Model

Configuration	data	providers	are

necessary	components	to	have	but

are	not	enough	for	actually

retrieving	and	using	parametric

information	within	the	web

application.	All	the	information

that	selected	providers	can	supply

must	be	aggregated	in	a	single,

possibly	hierarchical,	DOM.

Creating	the	Configuration	Root

Configuration	data	is	commonly

built	in	the	constructor	of	the

startup	class,	as	shown	below.	Note

that	injecting	the

IHostingEnvironment	interface	is

necessary	only	if	you’re	going	to

use	it	somewhere.	Usually,	you

need	to	inject

IHostingEnvironment	only	if

you’re	setting	the	base	path	for

locating	JSON	files	or	other

configuration	files.

Click	here	to	view	code	image

public	IConfigurationRoot	Configuration	{	get;	}

public	Startup(IHostingEnvironment	env)

{

				var	dom	=	new	ConfigurationBuilder()

								.SetBasePath(env.ContentRootPath)

								.AddJsonFile("MyAppSettings.json")

								.AddInMemoryCollection(new	Dictionary<string,	string>	{	{
	"Timezone",	"+1"	}	})

								.AddEnvironmentVariables()

								.Build();

				//	Save	the	configuration	root	object	to	a	startup	member	for
	further	references

				Configuration	=	dom;

}

The	ConfigurationBuilder	class	is

responsible	for	aggregating

configuration	values	and	building	the

DOM.	The	aggregated	data	should	be

saved	within	the	startup	class	to	be

used	later	during	the	initialization	of

the	pipeline.	The	next	point	to	address

is	how	to	read	the	configuration	data;

the	reference	to	the	configuration	root

is	simply	the	tool	you	leverage	to

access	the	actual	values.	Before	we	get

to	that,	though,	there	are	a	few

remarks	to	be	made	about	text	files

used	in	the	configuration.

Advanced	Aspects	of	Configuration	Files

As	long	as	you	create	your	own	data

provider,	you	can	store

configuration	in	any	format	you

wish,	and	you	can	still	bind	stored

data	as	name-value	pairs	to	the

standard	configuration	DOM.

ASP.NET	Core	supports	JSON,

XML,	and	INI	formats	out	of	the

box.

To	add	each	to	the	configuration

builder,	you	use	an	ad	hoc	extension

method	such	as	AddJsonFile,

AddXmlFile,	or	AddIniFile.	All

methods	share	the	same	signature,

which	includes	two	extra	Boolean

parameters	in	addition	to	the	file

name.

Click	here	to	view	code	image

//	Extension	method	of	the	IConfigurationBuilder	type

public	static	IConfigurationBuilder	AddJsonFile(this	IConfigurati
onBuilder	builder,	

					string	path,	

					bool	optional,	

					bool	reloadOnChange);

The	first	Boolean	argument	indicates

whether	the	file	should	be	considered

optional.	If	not,	an	exception	is

thrown	if	the	file	cannot	be	found.	The

second	argument—reloadOnChange—

indicates	whether	the	file	should	be

monitored	for	changes.	If	so,	any	time

the	file	undergoes	changes,	then	the

configuration	tree	is	automatically

rebuilt	to	reflect	those	changes.

Click	here	to	view	code	image

var	builder	=	new	ConfigurationBuilder()

							.SetBasePath(env.ContentRootPath)

							.AddJsonFile("MyAppSettings.json",	optional:	true,	reloadO
nChange:	true);

Configuration	=	builder.Build();

In	light	of	the	remarks,	this	is	a	more

resilient	way	to	load	configuration

data	from	text	files,	whether	JSON,

XML,	or	INI.

	Note	ASP.NET	Core	also	supports	environment-specific	files
for	settings.	This	means	that	along	with	MyAppSettings.json,	you	can	also
have	MyAppSettings.Development.json	and	perhaps
MyAppSettings.Staging.json.	You	add	all	JSON	files	you	might	need,	and	the
system	picks	up	only	the	one	that	seems	appropriate	given	the	context.	The
current	environment	in	which	the	application	is	running	is	determined	by	the
value	of	the	ASPNETCORE_ENVIRONMENT	environment	variable.	In	Visual
Studio	2017,	you	can	set	it	directly	from	the	property	page	of	the	project.	In
IIS	or	Azure	App	Service,	you	just	add	it	through	the	respective	portals.

Reading	Configuration	Data

To	read	configuration	data

programmatically,	you	use	the

GetSection	method	on	the

configuration	root	object	and	pass

it	a	path	string	to	indicate	exactly

the	piece	of	information	you	want

to	read.	To	delimit	properties	in	a

hierarchical	schema,	you	use	the	:

(colon)	symbol.	Suppose	that	the

JSON	file	looks	like	this:

Click	here	to	view	code	image

{

			"paging"	:	{

							"pageSize"	:	"20"

			},

			"sorting"	:	{

							"enabled"	:	"false"

			}

}

To	read	settings,	you	can	proceed	in

many	different	ways	as	long	as	you

know	the	path	to	value	in	the	JSON

schema.	For	example,

paging:pagesize	is	the	path	string	to

read	the	page	size.	The	path	string	you

specify	applies	to	the	current

configuration	DOM	and	results	from

the	aggregation	of	all	defined	data

sources.	A	path	string	is	always	case-

insensitive.

The	simplest	way	to	read	settings	is

through	the	indexer	API,	as	shown

below.

Click	here	to	view	code	image

//	The	returned	value	is	a	string

var	pageSize	=	Configuration["paging:pageSize"];

It	is	important	to	note	that	by	default,

the	setting	is	returned	as	a	plain	string

and	must	be	programmatically

converted	to	its	actual	concrete	type

before	further	use.	There’s	also	a

strongly	typed	API,	though.

Click	here	to	view	code	image

//	The	returned	value	is	an	integer	(if	conversion	is	possible)

var	pageSize	=	Configuration.GetValue<int>("paging:pageSize");

The	GetSection	method	lets	you	select

an	entire	configuration	subtree	where

you	can	act	on	using	both	the	indexer

and	the	strongly	typed	API.

Click	here	to	view	code	image

var	pageSize	=	Configuration.GetSection("Paging").GetValue<int>("
PageSize");

Finally,	you	have	available	also	a

GetValue	method	and	the	Value

property.	Both	would	return	the	value

of	the	setting	as	a	string.	Note	that	the

GetSection	method	is	a	generic	query

tool	on	the	configuration	tree;	it	is	not

specific	to	JSON	files	only.

	Note	The	configuration	API	is	designed	to	be	read-only.
However,	this	only	means	that	you	can’t	write	back	to	the	configured	data
source	using	an	API.	If	you	have	another	way	to	edit	the	content	of	the	data
source	(i.e.,	programmatic	overwrites	of	text	files,	database	updates),	then
the	system	allows	you	reload	the	configuration	tree.	All	you	need	to	do	is	call
the	Reload	method	of	the	IConfigurationRoot	object.

Passing	Configuration	Data	Around

Reading	configuration	data

punctually	through	path	strings	is

not	particularly	friendly,	though	it

represents	a	useful	low-level	tool.

ASP.NET	Core	provides	a

mechanism	to	bind	configuration

data	to	strongly	typed	variables	and

members.	Before	we	explore	this

point	further,	though,	we	should

investigate	ways	to	pass

configuration	data	around	to

controllers	and	views.

Injecting	Configuration	Data

Injecting	Configuration	Data

So	far,	we	have	used	the

configuration	API	from	within	the

startup	class.	In	the	startup	class,

you	configure	the	application’s

pipeline,	which	is	a	good	place	for

reading	back	configuration	data.

More	often,	though,	you	need	to

read	configuration	data	into

controller	methods	and	views.	To

make	this	happen,	you	have	both

an	old	approach	and	a	new

approach	to	follow.

The	old	approach	consists	of	turning

the	IConfigurationRoot	object	into	a

global	object	visible	from	anywhere	in

the	application.	It	works,	but	it’s	a

legacy	approach	that	is	not

recommended.	The	new	approach

consists	of	using	the	DI	system	to

make	the	configuration	root	object

available	to	controllers	and	views.

Click	here	to	view	code	image

public	class	HomeController	:	Controller

{

					private	IConfigurationRoot	Configuration	{	get;	}

					public	HomeController(IConfigurationRoot	config)

					{

								Configuration	=	config;

					}

					...

}

Whenever	an	instance	of	the

HomeController	class	is	created,	the

configuration	root	is	injected.

However,	to	avoid	receiving	a	null

reference,	you	must	first	register	the

configuration	root	object	created	in

the	startup	class	with	the	DI	system	as

a	singleton.

Click	here	to	view	code	image

services.AddSingleton<IConfigurationRoot>(Configuration);

You	place	this	code	in	the

ConfigureServices	method	of	the

startup	class.	Note	that	the

Configuration	object	is	just	the

configuration	root	object	created	in

the	constructor	of	the	startup	class.

Mapping	Configuration	to	POCO	Classes

In	classic	ASP.NET	MVC,	the	best

practice	for	dealing	with

configuration	data	entails	that	you

load	all	your	data	once	at	startup

into	a	global	container	object.	The

global	object	is	accessible	from

controller	methods,	and	its	content

can	be	injected	as	an	argument	into

back-end	classes	such	as

repositories	and	even	views.	In

classic	ASP.NET	MVC,	the	cost	of

mapping	loose	string-based	data

into	the	strongly	typed	properties

of	the	global	container	is	entirely

on	you.

In	ASP.NET	Core,	instead,	you	can

use	the	so-called	Options	pattern	to

automatically	bind	the	name-value

pairs	from	the	configuration	root

DOM	into	the	configuration	container

model.	The	Options	pattern	is	the

descriptive	name	for	the	following

coding	strategy.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Initializes	the	Options	subsystem

				services.AddOptions();

				//	Maps	the	specified	segment	of	the	configuration	DOM	to	the
	given	type.

				//	NOTE:	Configuration	used	below	is	the	configuration	root	c
reated	

				//							in	the	constructor	of	the	startup	class

				services.Configure<PagingOptions>(Configuration.GetSection("p
aging"));	

}

Once	you	have	initialized	the	Options

subsystem,	you	can	then	ask	the

subsystem	to	bind	all	the	values	read

out	of	the	specified	section	of	the

configuration	DOM	into	the	public

members	of	the	class	used	as	the

Configure<T>	method	argument.	The

binding	follows	the	same	rules	used

by	the	controller’s	model	binding,	and

it	recursively	applies	to	nested	objects.

The	binding	silently	fails	if	no	binding

is	possible	given	the	structure	of	the

data	and	the	binding	object.

PagingOptions	is	a	POCO	class	you

create	to	store	some	(or	even	all)	of

the	configuration	settings.	Here’s	a

possible	implementation:

Click	here	to	view	code	image

public	class	PagingOptions

{

				public	int	PageSize	{	get;	set;	}

				...

}

The	overall	behavior	of	the

configuration	API	is	analogous	to	how

model	binding	works	during	the

processing	of	a	request	at	the

controller	level.	The	missing	link	for

using	the	configuration’s	strongly

typed	object	in	controllers	and	views

is	found	in	how	you	inject	it	into	the

DI	system.	You	must	resort	to	the

IOptions<T>	abstract	type.

Registering	the	IOptions	type	with	the

DI	system	is	precisely	the	purpose	of

the	AddOptions	extension	method.

Therefore,	all	that	remains	to	do	is

inject	IOptions<T>	wherever	it	is

needed.

Click	here	to	view	code	image

//	PagingOptions	is	an	internal	member	of	the	controller	class	

protected	PagingOptions	Configuration	{	get;	set;	}

public	CustomerController(IOptions<PagingOptions>	config)

{

				PagingOptions	=	config.Value;

}

If	you	extensively	use	the	Options

pattern	in	all	your	controllers,	then

you	might	want	to	consider	moving

the	options	property	you	see	above	to

some	base	class	and	inherit	your

controller	classes	from	there.

Finally,	in	a	Razor	view,	all	you	do	is

use	the	@inject	directive	to	bring	in

an	instance	of	the	IOptions<T>	type.

THE	LAYERED	ARCHITECTURE

ASP.NET	Core	is	a	technology,	but

just	like	any	technology,	it

shouldn’t	be	used	only	as	such.	In

other	words,	the	best	way	to	take

advantage	of	a	powerful	technology

is	to	put	it	in	the	context	of	a

business	domain.	Hence,	for	a

software	technology,	you	won’t	go

any	further	with	complex

applications	without	a	sane	and

savvy	architecture.

Visual	Studio	makes	it	easy	to	create

your	own	controller	class.	It	only

requires	you	to	right-click	on	a	project

folder	and	add	a	new	class,	even	a

POCO	class.	In	a	controller	class,

you’ll	typically	have	one	method	per

user	action	that	falls	under	the

responsibility	of	the	controller.	How

do	you	code	an	action	method?

An	action	method	is	expected	to

collect	input	data	and	use	it	to	prepare

one	or	multiple	calls	to	the	middle	tier

of	the	application.	Next,	it	receives

computation	or	results	and	fills	up	a

model	that	the	view	needs	to	receive.

Finally,	the	action	method	sets	up	the

response	for	the	user	agent.	All	this

work	might	add	up	to	several	lines	of

code,	making	even	a	controller	class

with	just	a	few	methods	quite	a	messy

class.	Getting	input	data	is	a	problem

mostly	solved	for	you	by	the	model

binding	layer.	Ultimately,	generating

the	response	is	just	one	call	to	a

method	that	triggers	the	processing	of

the	action	result.	The	core	of	the

action	method	is	in	the	code	that

performs	the	task	and	prepares	data

for	the	view.	Where	does	this	code

belong?	Should	it	go	right	in	the

controller	class?

The	controller	code	is	only	the

topmost	part	of	the	stack	that	can	be

easily	mapped	to	the	presentation

layer.	Underneath	presentation,	we

can	recognize	a	few	other	layers	that

altogether	make	for	a	compact

application—easy	to	deploy	to	the

cloud	and	scale.	The	inspiring	pattern

for	designing	controllers	and	their

dependencies	is	the	Layered

Architecture	pattern	(see	Figure	7-1).

FIGURE	7-1	Visual	representation	of	a	layered	architecture

Compared	to	the	classic	3-tier

architecture,	the	layered	architecture

counts	a	fourth	section	and	has

expanded	the	notion	of	the	data

access	layer	to	encompass	any	other

required	piece	of	infrastructure,	such

as	data	access	and	many	other	cross-

cutting	concerns	such	as	emails,

logging,	and	caching.

The	business	layer	of	the	classic	3-tier

architecture	has	been	broken	into	the

application	and	domain	layer.	This	is

an	attempt	to	clarify	that	there	are

two	types	of	business	logic:

application	and	domain.

The	application	logic	is	the	orchestration	of	any	tasks	triggered	by

the	presentation.	The	application	layer	is	where	any	UI-specific

transformation	of	data	takes	place.

The	domain	logic	is	any	core	logic	of	the	specific	business	that	is

reusable	across	multiple	presentation	layers.	The	domain	logic	is

about	business	rules	and	core	business	tasks	using	a	data	model

that	is	strictly	business-oriented.

In	an	ASP.NET	MVC	application,	the

presentation	layer	is	made	of

controllers	and	the	application	layer	is

made	of	controller-specific	service

classes	that	in	literature	go	under	the

name	of	application	services	or

worker	services.

The	Presentation	Layer

The	presentation	layer	funnels	data

to	the	rest	of	the	system,	ideally

using	a	data	model	that	well

reflects	the	structure	of	the	data	in

the	screens.	Generally	speaking,

each	screen	in	the	presentation	that

posts	a	command	to	the	back	end

of	the	system	groups	data	into	an

input	model	and	receives	a

response	using	classes	in	a	view

model.	Input	and	view	models

might	coincide.	At	the	same	time,

they	might	coincide	with	any	data

model	being	used	in	the	back	end

to	perform	actual	tasks.	When	a

single	entity	can	be	used	for	input,

logic,	persistence,	and	view,	this	is

an	indicator	that	the	application

you’re	working	with	is	particularly

simple.	Or	it	could	mean	that

you’ve	blissfully	created	a	huge

amount	of	technical	debt.

The	Input	Model

In	ASP.NET	MVC,	a	user’s	clicks

initiate	a	request	that	a	controller

class	will	handle.	Each	request	is

turned	into	an	action	mapped	to	a

public	method	defined	on	a

controller	class.	What	about	input

data?

As	usual,	in	ASP.NET,	any	input	data

is	wrapped	up	in	the	HTTP	request

regardless	of	whether	it’s	in	the	query

string,	in	any	form	posted	data,	or

perhaps	in	HTTP	headers	or	cookies.

Input	data	represents	the	data	being

posted	for	the	server	to	take	action.

However	you	look	at	it,	these	are

simply	input	parameters.	Input	data

can	be	treated	as	loose	values	and

variables,	or	it	can	be	grouped	into	a

class	that	acts	as	a	container.	The

collection	of	input	classes	forms	the

overall	input	model	for	the

application.

The	input	model	carries	data	in	the

core	of	the	system	in	a	way	that	is

identical	to	the	expectations	of	the

user	interface.	Employing	a	separated

input	model	makes	it	easier	to	design

the	user	interface	in	a	very	business-

oriented	way.	The	application	layer

will	then	take	care	of	unpacking	data

and	consuming	it	as	appropriate.

The	View	Model

Any	request	will	get	a	response,

and	more	often	than	not,	the

response	you	get	from	ASP.NET

MVC	is	an	HTML	view.	In

ASP.NET	MVC,	the	creation	of	an

HTML	view	is	governed	by	the

controller	that	invokes	the	system’s

back	end	and	receives	a	response.

The	controller	then	selects	the

HTML	template	to	use	and	passes

the	HTML	template	and	data	to	an

ad	hoc	system	component—the

view	engine—which	will	mix

template	and	data	and	produce	the

markup	for	the	browser.

As	we	saw	in	Chapter	5,	in	ASP.NET

MVC,	there	are	a	few	ways	to	pass

data	to	the	view	engine	that	will	be

incorporated	in	the	resulting	view.

You	can	use	a	public	dictionary	such

as	ViewData,	a	dynamic	object	such

as	ViewBag,	or	a	made-to-measure

class	that	just	collects	all	properties	to

pass.	Any	class	you	create	to	carry

data	to	be	incorporated	into	the

response	contributes	to	creating	the

view	model.	The	application	layer	is

the	layer	that	receives	input	model

classes	and	returns	view	model

classes.

Click	here	to	view	code	image

[HttpGet]

public	IActionResult	List(CustomerSearchInputModel	input)

{

				var	model	=	_applicationLayer.GetListOfCustomers(input);

				return	View(model);

}

In	the	future,	the	ideal	format	for

persistence	will	be	different	from	the

ideal	format	of	presentation.	The

presentation	layer	is	responsible	for

defining	the	clear	boundaries	of

acceptable	data,	and	the	application

layer	is	responsible	for	accepting	and

providing	data	in	only	those	formats.

The	Application	Layer

The	application	layer	is	the	entry

point	to	the	system’s	back	end,	and

it	is	the	point	of	contact	between

the	presentation	and	back	end.	The

application	layer	consists	of

methods	bound	in	an	almost	one-

to-one	fashion	to	the	use-cases	of

the	presentation	layer.	We	suggest

you	create	a	service	class	for	each

controller	and	have	the	controller

action	methods	simply	yield	to	the

service	class.	Methods	in	the

service	class	will	receive	classes	in

the	input	model	and	return	classes

from	the	view	model.	Internally,

the	service	class	will	perform	any

due	transformation	to	make	data

map	nicely	to	the	presentation	and

be	ready	for	processing	in	the	back

end.

The	primary	purpose	of	the

application	layer	is	to	abstract

business	processes	as	users	perceive

them	and	to	map	those	processes	to

the	hidden	and	protected	assets	of	the

application’s	back	end.	In	an	e-

commerce	system,	for	example,	the

user	sees	the	shopping	cart,	but	the

physical	data	model	might	have	no

entities	like	the	shopping	cart.	The

application	layer	sits	between	the

presentation	and	the	back	end,	and

the	application	does	any	necessary

transformation.

When	you	make	intensive	use	of	the

application	layer,	then	your

controllers	suddenly	will	become	fat-

free	controllers	because	they	delegate

all	the	orchestration	work	to	the

application	layer.	Last	but	not	least,

the	application	layer	is	completely

agnostic	of	the	HTTP	context	and	fully

testable.

The	Domain	Layer

The	domain	layer	is	the	part	of	the

business	logic	that	is,	for	the	most

part,	invariant	to	use-cases.	A	use-

case—namely,	an	interaction

between	the	user	and	the	system—

can	sometimes	be	different

depending	on	the	device	used	to

access	the	site	or	the	version	of	the

site.	The	domain	logic	provides

pieces	of	code	and	workflows	that

are	specific	to	the	business	domain

and	not	specific	to	the	application

functionality.

The	domain	layer	is	made	of	two

classes	of	families—domain	models

and	domain	services.	In	the	domain

model,	you	focus	on	classes	that

express	business	rules	and	domain

processes.	You	should	not	aim	to

identify	aggregations	of	data	to

persist;	instead,	any	aggregation	you

identify	should	simply	descend	from

business	understanding	and

modeling.	As	Figure	7-2	shows,

domain	layer	classes	are	persistence-

agnostic.	You	only	use	domain	model

classes	to	perform	business	tasks	in	a

way	that	is	easier	for	you	to	code.

FIGURE	7-2	Classes	in	the	domain	model	receive	the	state	from	the

outside

The	state	is	injected	into	a	domain

model	class.	For	example,	an	Invoice

class	for	a	domain	model	knows	how

to	deal	with	the	invoice,	but	it	receives

the	data	to	work	on	from	the	outside.

The	point	of	connection	between	the

domain	model	and	persistence	layer	is

a	domain	service.	A	domain	service	is

a	class	that	sits	on	top	of	data	access,

brings	data	in,	loads	state	into	a

domain	model	class,	and	takes	the

modified	state	out	of	the	domain

model	class	and	puts	it	back	into	the

data	access	layer.

The	simplest	and	most	illustrious

example	of	a	domain	service	is	a

repository.	A	domain	service	class

typically	holds	a	reference	to	the	data

access	layer.

	Important	The	idea	of	a	domain	model	as	described
above	is	like	the	idea	of	a	domain	model	that	you	find	in	Domain-driven
Design	(DDD).	However,	speaking	pragmatically,	the	whole	point	of	a	domain
model	is	business	logic	and	behavior.	Sometimes,	modeling	business	rules
through	classes	simplifies	the	design.	This	simplification	is	the	added	value	of
a	domain	model;	certainly	not	the	label	“I	do	DDD”	you	can	attach	to	your
solution.	For	this	reason,	not	all	applications	really	need	a	domain	model.

The	Infrastructure	Layer

The	infrastructure	layer	is	anything

related	to	using	concrete

technologies,	whether	data

persistence	(O/RM	frameworks	like

Entity	Framework),	external	web

services,	specific	security	API,

logging,	tracing,	IoC	containers,

email,	caching,	and	more.

The	most	prominent	component	of

the	infrastructure	layer	is	the

persistence	layer,	which	is	nothing

more	than	the	old	faithful	data	access

layer,	only	extended	to	cover	a	few

data	sources	other	than	plain

relational	data	stores.	The	persistence

layer	knows	how	to	read	and/or	save

data	and	is	made	of	repository	classes.

Conceptually,	a	repository	class	is	a

class	that	only	performs	CRUD

operations	on	persistence	entities,

such	as	Entity	Framework	entities.

However,	you	can	add	any	level	of

logic	to	the	repository.	The	more	logic

you	add	to	it	the	more	it	looks	a	like	a

domain	service	or	an	application

service	than	a	plain	data	access	tool.

In	summary,	the	point	of	the	layered

architecture	is	to	set	up	a	chain	of

dependencies	that	starts	from	the

controller	and	reaches	the	bottom	of

the	back	end,	passing	through

application	services	and	consuming

domain	model	classes,	if	any.

DEALING	WITH	EXCEPTIONS

In	ASP.NET	Core,	you	find	many	of

the	exception	handling	features

found	in	classic	ASP.NET	MVC.

You	won’t	find	anything	that	relates

to	sections	of	the	web.config	file,

such	as	automatic	redirects	to	error

pages.	However,	the	practices	of

ASP.NET	Core	exception	handling

are	more	or	less	the	same	as	in

classic	ASP.NET.

In	particular,	ASP.NET	Core	offers

exception	handling	middleware	and

controller-based	exception	filters.

Exception	Handling	Middleware

The	exception	handling

middleware	of	ASP.NET	Core

offers	a	centralized	error	handler

that	conceptually	matches	the

Application_Error	handler	of

classic	ASP.NET.	The	middleware

captures	any	unhandled	exceptions

and	uses	your	custom	logic	to	route

the	request	to	the	most	appropriate

error	page.

There	are	two	flavors	of	middleware

tailor-made	for	two	different

audiences:	developers	and	users.

Reasonably,	you	might	want	to

employ	the	user’s	page	in	production

(or	even	in	staging)	and	stick	to	the

developer’s	page	during	development.

Error	Handling	in	Production

Error	Handling	in	Production

Regardless	of	the	middleware	you

choose,	the	way	you	configure	it	is

always	the	same.	You	add	the

middleware	to	the	pipeline	using

the	Configure	method	of	the

startup	class.

Click	here	to	view	code	image

public	class	Startup

{

				public	void	Configure(IApplicationBuilder	app)

				{

								app.UseExceptionHandler("/app/error");

								app.UseMvc();

				}

}

The	UseExceptionHandler	extension

method	receives	a	URL	and	places	a

new	request	for	that	URL	right	into

the	ASP.NET	pipeline.	In	the	end,	the

routing	to	the	specified	error	page	is

not	a	canonical	HTTP	302	redirect,

but	it	has	more	of	an	internal

prioritized	request	that	the	pipeline

will	process	as	usual.

From	a	developer’s	perspective,	you

“route”	the	user	to	a	page	that	can

figure	out	the	most	appropriate	error

message.	In	a	way,	error	handling	is

decoupled	from	the	main	course	of

the	application	logic.	At	the	same

time,	though,	the	internal	nature	of

the	error	request	gains	the	handling

code	full	access	to	all	the	details	of	the

detected	exception.	Note	that	in	case

of	a	classic	redirect,	the	exception

information	would	be	lost	unless	you

explicitly	pass	it	around	to	the	“next”

request	past	the	HTTP	302	response.

	Note	The	exception	handling	middleware	should	be	placed	at
the	very	top	of	the	pipeline	to	ensure	that	all	possible	exceptions	that	would
not	be	caught	by	the	application	are	detected.

Retrieving	Exception	Details

Retrieving	Exception	Details

With	the	exception	handling

middleware	properly	configured,

any	unhandled	exception	would

route	the	application	flow	to	a

common	endpoint.	In	the	above

code	snippet,	the	endpoint	is	the

Error	method	on	the

AppController	class.	Here’s	a	bare

minimum	implementation	of	the

method.	The	most	relevant

segment	is	how	to	retrieve	the

exception	information.

Click	here	to	view	code	image

public	IActionResult	Error()

{

				//	Retrieve	error	information

				var	error	=	HttpContext.Features.Get<IExceptionHandlerFeature
>();

				if	(error	==	null)

									return	View(model);

				//	Use	the	information	stored	in	the	detected	exception	objec
t

				var	exception	=	error.Error;

				...

}

Unlike	classic	ASP.NET,	in	ASP.NET

Core,	there’s	no	intrinsic	Server	object

with	its	popular	GetLastError

method.	The	Features	object	in	the

HTTP	context	is	the	official	tool	to

retrieve	uncleared	exception

information.

Capturing	Status	Codes

The	code	presented	so	far	is

sufficient	to	capture	and	handle

any	internal	server	errors	(HTTP

500)	that	result	from	code

execution.	What	if	the	status	code

is	different?	What	if,	for	example,

an	exception	occurs	because	the

URL	doesn’t	exist?	To	handle

exceptions	that	would	match	to

anything	different	from	HTTP	500,

you	add	another	middleware.

Click	here	to	view	code	image

app.UseStatusCodePagesWithReExecute("/app/error/{0}");

If	a	non-HTTP	500	exception	is

detected,	the

UseStatusCodePagesWithReExecute

extension	method	routes	the	flow	to

the	given	URL.	In	light	of	this,	the

above	error	handling	code	should	be

revisited	a	bit.

Click	here	to	view	code	image

public	IActionResult	Error(

					[Bind(Prefix	=	"id")]	int	statusCode	=	0)

{

				//	Switch	to	the	appropriate	page

				switch(statusCode)

				{

								case	404:

											return	Redirect(...);

								...

				}

				//	Retrieve	error	information	in	case	of	internal	errors

				var	error	=	HttpContext.Features.Get<IExceptionHandlerFeature
>();

				if	(error	==	null)

									return	View(model);

				//	Use	the	information	stored	in	the	detected	exception	objec
t

				var	exception	=	error.Error;

				...

}

In	case	of,	say,	an	HTTP	404	error,	it’s

up	to	you	to	redirect	to	a	static	page	or

view	or	to	just	adapt	the	error

message	in	the	same	view	served	by

the	Error	method.

Error	Handling	in	Development

ASP.NET	Core	is	extremely

modular	and	nearly	every	feature

you	might	want	must	be	explicitly

enabled.	This	holds	true	even	for

debugging	error	pages	(classic

ASP.NET	developers	used	to	call

them	“yellow	pages	of	death”).	To

have	actual	messages	and	the	stack

trace	unveiled	in	case	of	an

exception,	you	should	use	yet

another	middleware.

Click	here	to	view	code	image

app.UseDeveloperExceptionPage();

The	middleware	doesn’t	let	you	route

to	any	custom	page;	it	simply	arranges

on	the	fly	a	system	error	page	that

provides	a	snapshot	of	system	status

at	the	time	of	the	exception	(see

Figure	7-3).

FIGURE	7-3	The	developer’s	exception	page

More	often	than	not,	you	might	want

to	switch	between	production	and

development	exception	handling

middleware	automatically.	This	is	an

easy	win	if	you	use	the	services	of	the

hosting	environment	API.

Click	here	to	view	code	image

Public	void	Configure(IApplicationBuilder	app,	IHostingEnvironmen
t	env)

{

				if	(env.IsDevelopment())

				{

								app.UseDeveloperExceptionPage();

								app.UseStatusCodePagesWithReExecute("/app/error/{0}");

				}	

				else	

				{

								app.UseExceptionHandler("~/app/error");

								app.UseStatusCodePagesWithReExecute("/app/error/{0}");

				}

				...

}

You	use	the	IHostingEnvironment

methods	to	detect	the	current

environment	and	intelligently	decide

which	exception	middleware	to	turn

on.

Exception	Filters

As	a	general	rule	of	good

development,	you	should	be	using

try/catch	blocks	around	any	piece

of	code	that	might	possibly	raise

exceptions,	such	as	remote	web

service	or	database	calls.	Also,	you

can	use	exception	filters	around

controller	code.

Setting	Up	an	Exception	Filter

Setting	Up	an	Exception	Filter

Technically,	an	exception	filter	is

an	instance	of	a	class	that

implements	the	IExceptionFilter

interface,	defined	below.

Click	here	to	view	code	image

public	interface	IExceptionFilter	:	IFilterMetadata

{

				void	OnException(ExceptionContext	context);

}

The	filter	is	implemented	in	the

ExceptionFilterAttribute	and	all	its

derived	classes,	including	controller

classes.	This	means	that	you	can

override	the	OnException	method	in

any	controller	and	use	it	as	a	catch-all

handler	for	any	exceptions	that	occur

during	the	execution	of	a	controller

action	or	another	filter	attached	to	the

controller	or	action	method.

Exception	filters	can	be	configured	to

run	globally,	on	a	per-controller	basis

or	even	on	a	per-action	basis.

Exception	filters	are	never	called	to

handle	exceptions	outside	the	realm

of	a	controller	action.

	Important	Exception	filters	won’t	let	you	catch	model
binding	exceptions,	route	exceptions,	and	exceptions	that	would	generate
other	than	an	HTTP	500	status	code,	most	notably	HTTP	404	but	also
authorization	exceptions	such	as	HTTP	401	and	HTTP	403.

Handling	Startup	Exceptions

All	the	exception	handling

mechanisms	examined	so	far

operate	in	the	context	of	the

application	pipeline.	An	exception,

however,	can	also	occur	during	the

startup	of	the	application	well

before	the	pipeline	is	fully

configured.	To	capture	startup

exceptions,	you	must	adjust	the

configuration	of	the

WebHostBuilder	class	in

program.cs.

In	addition	to	all	the	settings	we

discussed	in	past	chapters,	you	can

add	the	CaptureStartupErrors

setting,	as	shown	below.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

					...

					.CaptureStartupErrors(true)	

					.Build();

By	default,	the	host	silently	exits	when

the	startup	process	abruptly

terminates	because	of	an	error.	When

CaptureStartupErrors	is	set	to	true,

instead,	the	host	will	capture	any

exceptions	from	the	startup	class	and

attempts	to	display	an	error	page.	The

page	can	be	generic	or	detailed,	based

on	the	value	of	another	setting	you

can	add	to	the	WebHostBuilder	class.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

					...

					.CaptureStartupErrors(true)	

					.UseSetting("detailedErrors",	"true")

					.Build();

When	the	detailed-errors	setting	is

enabled,	the	error	page	served	has	the

same	template	as	in	Figure	7-3.

Logging	Exceptions

In	ASP.NET	Core,	exceptions

processed	through	the

UseExceptionHandler	middleware

are	automatically	logged,	provided

that	at	least	one	logger	component

is	registered	with	the	system.	All

logger	instances	pass	through	the

system-provided	logger	factory,

which	is	one	of	the	few	services

added	to	the	DI	system	by	default.

Linking	a	Logging	Provider

Linking	a	Logging	Provider

The	ASP.NET	Core	Logging	API	is

built	on	top	of	special	components

known	as	logging	providers.	A

logging	provider	lets	you	send	logs

to	one	or	more	destinations	such	as

the	console,	the	Debug	window,

text	files,	a	database,	and	the	like.

ASP.NET	Core	comes	with	a	variety

of	built-in	providers	and	also	lets

you	plug	in	a	custom	provider.

A	common	way	to	link	a	logging

provider	to	the	system	is	via	the

extension	methods	on	the

ILoggerFactory	service.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	ILoggerFactory	log
gerFactory)

{

				//	Register	two	different	logging	providers

				loggerFactory.AddConsole();

				loggerFactory.AddDebug();

}

You	can	have	as	many	logging

providers	as	you	wish	in	the	same

application.	When	adding	a	logging

provider,	you	can	also	optionally	add

a	log	level,	which	means	the	provider

will	only	receive	messages	with	the

appropriate	relevance	level.

Creating	a	Log

Logging	providers	work	by	storing

messages	in	their	respective

destinations.	A	log	is	a	related	set

of	messages	identified	in	some	way

(by	name,	for	example).	The	code

writes	to	a	log	through	the	services

of	the	ILogger	interface.	You	can

create	the	logger	in	a	couple	of

different	ways.

First,	you	can	create	the	logger	right

from	the	factory.	The	following	code

snippet	shows	how	to	create	a	logger

and	give	it	a	unique	name.	Typically,

the	logger	logs	within	the	scope	of	a

controller.

Click	here	to	view	code	image

public	class	CustomerController	:	Controller

{

				ILogger	logger;

				public	CustomerController(ILoggerFactory	loggerFactory)

				{

								logger	=	loggerFactory.CreateLogger("Customer	Controller"
);

								logger.LogInformation("Some	message	here");

				}

}

The	CreateLogger	method	gets	the

name	of	the	log	and	creates	it	across

registered	providers.	The

LogInformation	method	is	just	one	of

the	many	methods	that	let	you	write

to	the	log.	The	ILogger	interface

exposes	one	logging	method	for	each

supported	log	level,	for	example,	(to

eliminate	fragment)	LogInformation

to	output	informational	messages	and

LogWarning	for	more	serious

warning	messages.	Logging	methods

can	accept	plain	strings,	format

strings,	and	even	exception	objects	to

serialize.

Alternatively,	you	can	just	resolve	the

ILogger<T>	dependency	through	the

DI	system,	thus	bypassing	the	logger

factory.

Click	here	to	view	code	image

public	class	CustomerController	:	Controller

{

				ILogger	Logger;

				public	CustomerController(ILogger<CustomerController>	logger)

				{

								Logger	=	logger;

				}

				//	Use	the	internal	member	in	the	action	methods

				...

}

The	log	created	here	uses	the	full

name	of	the	controller	class	as	a

prefix.

SUMMARY

SUMMARY

To	write	an	ASP.NET	Core

application,	you	must	be

acquainted	with	the	DI	system	of

the	framework.	It’s	a	key	change

that	makes	you	think	more	about

the	interface	and	concrete	types.

Programming	to	interfaces	rather

than	implementations	is	old	advice

that	holds	true	now.	Interfaces	are

everywhere	in	ASP.NET	Core,	and

they	offer	a	way	for	developers	to

replace	default	functionalities	with

custom	functionalities.	The	first

example	of	interfaces	used	to	pass

data	is	configuration	data.	Another

even	more	relevant	example	is	the

layered	structure	of	the	application

code	that	stacks	up	controllers,

application	services,	repositories,

and	optionally	domain	model

classes.

What	in	past	versions	of	ASP.NET

was,	for	the	most	part,	a	best	practice

left	to	the	discipline	of	individual

teams	and	developers	has	been

upgraded	to	the	rank	of	common

practice	in	ASP.NET	Core.	In

ASP.NET	Core,	the	quality	of	the

resulting	code	is	superior	to	any	other

versions	of	the	framework	because	of

the	design.	Most	of	the	common	best

practices	have	been	engineered	right

into	the	pillars	of	ASP.NET	Core.

Another	great	example	of	common

best	practices	engineered	right	in	the

framework	will	come	in	Chapter	8,

which	will	discuss	the	API	for

securing	access	to	an	application.

—	H.	G.	Wells,	“The	Time	Machine"

CHAPTER	8

Securing	the	Application
There	is	no	intelligence	where	there	is

no	change	and	no	need	of	change.

The	security	of	web	applications	has

many	facets.	First	and	foremost,	in	a

web	scenario,	security	relates	to	the

act	of	ensuring	the	confidentiality	of

the	data	being	exchanged.	Second,	it

relates	to	avoiding	tampering	with	the

data	thus	ensuring	that	the	integrity

of	the	information	is	preserved	as	it

travels	end	to	end.	Another	aspect	of

web	security	is	preventing	injection	of

malicious	code	in	the	running

application.	Finally,	security	relates	to

building	applications	(and	sections	of

an	application)	that	only

authenticated	and	authorized	users

can	access.

In	this	chapter,	we’ll	see	how	to

implement	user	authentication	in

ASP.NET	Core	and	explore	the	new

policy-based	API	to	deal	with	user

authorization.	Before	we	get	there,

though,	a	look	at	some	infrastructure

for	security	is	in	order.

INFRASTRUCTURE	FOR	WEB
SECURITY

The	HTTP	protocol	was	not

designed	with	security	in	mind,	but

security	was	patched	on	it	later.	As

obvious	as	it	might	sound,	HTTP	is

not	encrypted,	which	means	third

parties	can	still	intercept	and

gather	data	that	is	being	passed

between	two	connected	systems.

The	HTTPS	Protocol

The	HTTPS	Protocol

HTTPS	is	the	secured	form	of	the

HTTP	protocol.	By	using	it	on	a

website,	all	communications

between	the	browser	and	the

website	are	encrypted.	Any

information	going	in	and	out	of

HTTPS	pages	is	automatically

encrypted	in	a	way	that	ensures	full

confidentiality.	Encryption	is	based

on	the	content	of	a	security

certificate.	The	way	in	which	data	is

sent	depends	upon	the	security

protocols	enabled	on	the	web

server,	such	as	Transport	Layer

Security	(TLS)	and	its	predecessor,

Secure	Sockets	Layer	(SSL).

The	first	secure	transportation

protocol	ever	created	was	SSL,	and	it

was	created	at	Netscape	back	in	1995.

It	reached	version	3.0	in	a	year,	but	it

has	not	been	updated	since	1996.

Clearly,	SSL	was	an	imperfect	attempt

at	creating	a	secure	protocol.	TLS	1.0

was	released	in	1999,	and	it	was

designed	to	be	incompatible	with	SSL

3.0	so	that	people	would	be	forced	to

drop	SSL	and	switch	to	TLS.	In	2015,

both	SSL	2.0	and	SSL	3.0	were

deprecated.	Today,	it	is	highly

recommended	that	you	disable	SSL

2.0	and	SSL	3.0	in	your	web	server

configuration;	only	TLS	1.x	should	be

enabled.

Dealing	with	Security	Certificates

Quite	often	when	talking	about

HTTPS	and	certificates,	the

expression	SSL	certificate	is	used.

The	expression	seems	to	indicate

that	certificates	are	somewhat

related	to	secure	protocols.

However,	to	be	precise,	certificates

and	protocols	are	different	things.

Hence,	comparing	SSL	certificates

to	TLS	certificates	is	a	pointless

argument.

The	configuration	of	an	HTTPS	web

server	determines	the	secure

protocols	to	use,	and	certificates	only

contain	a	pair	of	private/public

encryption	keys	and	bind	the	domain

name	and	the	identity	of	the	owner.

As	an	end	user,	the	major	benefit	of

HTTPS	is	that	when	you	visit	the	page

of	an	HTTPS	site—say,	your	online

banking	web	site—you	can	be	sure

that	the	website	claiming	to	be	your

bank’s	website	really	is	your	bank’s

website.	In	other	words,	the	page

you’re	viewing	and	interacting	with	is

exactly	the	page	it	claims	to	be.	As

shocking	as	it	might	sound,	this	is	not

necessarily	true	for	non-HTTPS

pages.	When	HTTPS	is	not	used,	in

fact,	there’s	always	the	risk	that	the

actual	URL	is	fake	or	malicious,	and

that	you’re	interacting	with	a	page

that	only	looks	like	the	real	page.	For

this	reason,	login	pages	should	always

be	under	HTTPS	sites,	and	as	a	user,

you	should	always	be	careful	before

signing	in	to	a	site	from	a	non-HTTPS

login	page.

Applying	Encryption	to	HTTPS

When	your	browser	requests	a	web

page	located	on	an	HTTPS

connection,	the	website	will

initially	react	by	returning	the

configured	HTTPS	certificate.	The

certificate	contains	the	public	key

needed	to	arrange	a	secure

conversation.

Next,	the	browser	and	the	website	will

complete	a	handshake	according	to

the	rules	of	the	configured	protocols

(typically	TLS).	If	the	browser	trusts

the	certificate,	it	then	generates	a

symmetric	public/private	key	and

shares	the	public	key	with	the	server.

AUTHENTICATION	IN	ASP.NET

AUTHENTICATION	IN	ASP.NET
CORE

User	authentication	is	one	of	the

most-changed	parts	in	ASP.NET

Core	when	compared	to	older

versions	of	ASP.NET.	However,	the

overall	approach	to	authentication

is	still	based	on	familiar	concepts

such	as	principal,	login	forms,	and

challenge	and	authorization

attributes;	however,	the	way	you

implement	them	is	quite	different.

Let’s	explore	the	cookie

authentication	API	as	made

available	in	ASP.NET	Core,

including	the	core	facts	of	external

authentication.

Cookie-based	Authentication

In	ASP.NET	Core,	user

authentication	involves	the	use	of	a

cookie	to	track	the	identity	of	the

user.	Any	users	who	attempt	to	visit

a	private	page	are	redirected	to	a

login	page	unless	they	carry	a	valid

authentication	cookie.	The	login

page	then	collects	credentials	on

the	client	side	and	verifies	them	on

the	server.	If	all	is	good,	a	cookie	is

emitted.	The	cookie	travels	with

any	subsequent	requests	from	that

user	through	the	same	browser

until	it	expires.	This	workflow	is

not	really	different	from	any	older

versions	of	ASP.NET.

In	ASP.NET	Core,	there	are	two	major

changes	for	those	coming	from	an

ASP.NET	Web	Forms	and	ASP.NET

MVC	background.

First,	there’s	no	longer	a	web.config	file,	which	means	the

configuration	of	the	login	path,	cookie	name,	and	expiration	is

specified	and	retrieved	differently.

Second,	the	IPrincipal	object—the	object	used	to	model	user

identity—is	based	on	claims	rather	than	the	sole	plain	username.

Enabling	Authentication	Middleware

Enabling	Authentication	Middleware

To	enable	cookie	authentication	in

a	brand	new	ASP.NET	Core

application,	you	need	to	reference

the

Microsoft.AspNetCore.Authenticati

on.Cookies	package.	The	actual

code	entered	into	the	application,

however,	is	different	in	ASP.NET

Core	2.0	compared	to	what	it	was

in	earlier	versions	of	the	same

ASP.NET	Core	framework.

Authentication	middleware	is	exposed

as	a	service,	and	subsequently,	it	must

be	configured	in	the

ConfigureServices	method	of	the

startup	class.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddAuthentication(CookieAuthenticationDefaults.Authe
nticationScheme)

								.AddCookie(options	=>

								{

												options.LoginPath	=	new	PathString("/Account/Login");

												options.Cookie.Name	=	"YourAppCookieName";

												options.ExpireTimeSpan	=	TimeSpan.FromMinutes(60);

												options.SlidingExpiration	=	true;

												options.AccessDeniedPath	=	new	PathString("/Account/D
enied");

												...

								});

}

The	AddAuthentication	extension

method	gets	a	string	as	an	argument

that	indicates	the	authentication

scheme	to	use.	You	will	go	this	route	if

you	plan	to	support	a	single

authentication	scheme.	Later,	we’ll

see	how	to	slightly	tweak	this	code	to

support	multiple	schemes	and

handlers.	The	object	returned	by

AddAuthentication	must	be	used	to

call	another	method	representing	the

authentication	handler.	In	the

example	above,	the	AddCookie

method	instructs	the	framework	to

sign	in	and	authenticate	users	via	the

configured	cookie.	Each

authentication	handler	(cookie,

bearer,	and	so	on)	has	its	own	set	of

configuration	properties.

In	the	Configure	method,	instead,	you

simply	declare	your	intention	to	use

authentication	services	as	configured

without	specifying	any	further

options.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

					app.UseAuthentication();

					...

}

There	are	a	few	names	and	concepts

in	the	code	snippet	that	deserve	some

further	explanation—most	notably,

authentication	schemes.

Cookie	Authentication	Options

Most	of	the	information	that	classic

ASP.NET	MVC	applications	stored

in	the	<authentication>	section	of

the	web.config	file	are	now

configured	in	code	as	middleware

options.	The	snippet	above	listed

some	of	the	most	common	options

you	might	want	to	choose.	Table	8-

1	provides	more	details	about	each

option.

TABLE	8-1	Cookie	authentication

options

O

p

ti

o

n

Description

A

c

c

e

ss

D

e

ni

e

d

P

at

h

Indicates	the	path	where	an	authenticated	user	will	be	

redirected	if	the	current	identity	doesn’t	have	

permission	to	view	the	requested	resource.	The	option	

sets	the	URL	the	user	must	be	redirected	to	instead	of	

receiving	a	plain	HTTP	403	status	code.

C

o

Container	object	of	type	CookieBuilder	that	contains	

properties	of	the	authentication	cookie	being	created.

o

ki

e

E

x

pi

r

e

T

i

m

e

S

p

a

n

Sets	the	expiration	time	of	the	authentication	cookie.	

Whether	the	time	has	to	be	intended	as	absolute	or	

relative	is	determined	by	the	value	of	the	

SlidingExpiration	property.

L

o

gi

n

P

at

h

Indicates	the	path	where	an	anonymous	user	will	be	

redirected	to	sign	in	with	her	own	credentials.

R

et

u

r

n

U

rl

P

a

r

a

m

et

e

r

Indicates	the	name	of	the	parameter	being	used	to	pass	

the	originally	requested	URL	that	caused	the	redirect	to	

the	login	page	in	case	of	anonymous	users.

Sl

id

in

g

E

x

pi

r

at

io

n

Indicates	whether	the	ExpireTimeSpan	value	is	

intended	as	an	absolute	or	relative	time.	In	the	latter	

case,	the	value	is	considered	as	an	interval,	and	the	

middleware	will	reissue	the	cookie	if	more	than	half	the	

interval	has	elapsed.

Note	that	the	value	of	path	properties

like	LoginPath	and	AccessDeniedPath

is	not	a	string.	In	fact,	LoginPath	and

AccessDeniedPath	are	of	type

PathString.	In	.NET	Core,	the	type

PathString	differs	from	the	plain

String	type	because	it	provides	correct

escaping	when	building	a	request

URL.	In	essence,	it	is	a	more	URL-

specific	string	type.

The	overall	design	of	the	user

authentication	workflow	in	ASP.NET

Core	does	allow	an	unprecedented

amount	of	flexibility.	Every	single

aspect	of	it	can	be	customized	at	will.

As	an	example,	let’s	see	how	you	can

control	the	authentication	workflow

being	used	on	a	per-request	basis.

Dealing	with	Multiple	Authentication
Schemes

It	is	interesting	to	notice	that	in

past	versions	of	ASP.NET,	the

authentication	challenge	was

automatic	and	there	was	nearly

nothing	you	could	do	about	it.

Automatic	authentication	challenge

means	that	the	system	will

automatically	serve	the	configured

login	page	as	soon	as	it	detects	that

the	current	user	lacks	proper

identity	information.	In	ASP.NET

Core	1.x,	the	authentication

challenge	is	automatic	by	default,

but	it	is	subject	to	your	changes.	In

ASP.NET	Core	2.0,	settings	to	turn

off	automatic	challenge	have	been

dropped	again.

In	ASP.NET	Core,	however,	you	can

register	multiple	and	distinct	pieces	of

authentication	handlers	and

determine	either	algorithmically	or

via	configuration	which	handler	must

be	used	for	each	request.

Enabling	Multiple	Authentication	Handlers

In	ASP.NET	Core,	you	can	choose

from	multiple	authentication

handlers	such	as	cookie-based

authentication,	bearer

authentication,	authentication

through	social	networks	or	an

identity	server,	and	what-ever	else

you	can	ever	think	of	and

implement.	To	register	multiple

authentication	handlers,	you	just

list	all	the	pieces	one	after	the	next

in	the	ConfigureServices	method	of

the	ASP.NET	Core	2.0	Startup

class.

Each	configured	authentication

handler	is	identified	by	a	name.	The

name	is	just	a	conventional	and

arbitrary	string	you	use	in	the

application	to	refer	to	the	handler.

The	name	of	the	handler	is	known	as

the	authentication	scheme.	The

authentication	scheme	can	be

specified	as	a	magic	string,	like

Cookies	or	Bearer.	However,	for

common	cases,	some	predefined

constants	exist	to	limit	typos	when

used	in	the	code.	If	you	use	magic

strings,	then	be	aware	that	strings	are

treated	as	case-sensitive.

Click	here	to	view	code	image

//	Authentication	scheme	set	to	"Cookies"

services.AddAuthentication(options	=>

{

					options.DefaultChallengeScheme	=	CookieAuthenticationDefault
s.AuthenticationScheme;

					options.DefaultSignInScheme	=	CookieAuthenticationDefaults.A
uthenticationScheme;

					options.DefaultAuthenticateScheme	=	CookieAuthenticationDefa
ults.AuthenticationScheme;

})

				.AddCookie(options	=>

				{

								options.LoginPath	=	new	PathString("/Account/Login");

								options.Cookie.Name	=	"YourAppCookieName";

								options.ExpireTimeSpan	=	TimeSpan.FromMinutes(60);

								options.SlidingExpiration	=	true;

								options.AccessDeniedPath	=	new	PathString("/Account/Denie
d");

				})

				.AddOpenIdConnect(options	=>

				{

								options.Authority	=	"http://localhost:6000";

								options.ClientId	=	"...";

								options.ClientSecret	=	"...";

								...

				});

You	simply	concatenate	handler

definitions	following	a	single	call	to

AddAuthentication.	At	the	same	time,

when	multiple	handlers	are

registered,	you	must	indicate	the

default	challenge,	authentication	and

sign-in	scheme	of	choice.	In	other

words,	you	indicate	which	handler	to

use	when	the	authentication	is

attempted	on	the	presented	token

when	the	user	is	challenged	to	prove

her	identity	at	sign-in.	In	each

handler,	you	can	overwrite	the	sign-in

scheme	to	meet	your	purposes.

Applying	the	Authentication	Middleware

As	in	classic	ASP.NET	MVC,

ASP.NET	Core	uses	the	Authorize

attribute	to	decorate	those

controller	classes	or	action

methods	subject	to	authentication.

Click	here	to	view	code	image

[Authorize]

public	class	CustomerController	:	Controller

{

				//	All	action	methods	in	this	controller	will	

				//	be	subject	to	authentication	except	those	explicitly	

				//	decorated	with	the	AllowAnonymous	attribute.

				...

}

As	pointed	out	in	the	code	snippet,

you	can	also	use	the

AllowAnonymous	attribute	to	mark	a

particular	action	method	as

anonymous	and	as	such,	not	subject

to	authentication.

So	the	presence	of	the	Authorize

attribute	on	an	action	method

restricts	its	use	to	only	authenticated

users.	However,	if	multiple

authentication	middleware	is

available,	which	one	should	be

applied?	ASP.NET	Core	offers	a	new

property	on	the	Authorize	attribute,

which	lets	you	choose	the

authentication	scheme	on	a	per

request	basis.

Click	here	to	view	code	image

[Authorize(ActiveAuthenticationSchemes	=	"Bearer")]

public	class	ApiController	:	Controller

{

				//	Your	API	action	methods	here	

				...

}

The	net	effect	of	this	code	snippet	is

that	all	public	endpoints	of	the	sample

ApiController	class	are	subject	to	the

identity	of	the	user	as	authenticated

by	the	bearer	token.

Modeling	the	User	Identity

Any	user	logged	into	an	ASP.NET

Core	application	must	be	described

in	some	unique	way.	In	the	early

days	of	the	web—when	the

ASP.NET	Framework	was	first

devised—the	sole	username	was

more	than	enough	to	uniquely

identify	a	logged	user.	In	older

versions	of	ASP.NET,	in	fact,	the

username	is	all	that	gets	saved	in

the	authentication	cookie	and	that

models	the	user’s	identity.

There’s	a	double	level	of	information

about	users	that	is	worth	pointing	out.

Nearly	all	applications	have	some	sort

of	users	store	in	which	all	details

about	the	users	is	saved.	Data	items	in

such	a	store	have	a	primary	key	and

many	additional	descriptive	fields.

When	that	user	logs	into	the

application,	an	authentication	cookie

is	created,	and	some	of	the	user-

specific	information	is	copied.	At	the

very	minimum,	you	must	save	in	the

cookie	the	unique	value	that	identifies

the	user	as	it	appears	in	the	back	end

of	the	application.	The	authentication

cookie,	though,	can	also	contain

additional	information	strictly	related

to	the	security	environment.

In	summary,	you	typically	have	one

entity	in	the	domain	and	persistence

layers	that	represents	the	user	and	a

collection	of	name/value	pairs	that

provide	direct	user	information

reading	from	the	authentication

cookie.	These	name/value	pairs	go

under	the	name	of	claims.

Introducing	Claims

Introducing	Claims

In	ASP.NET	Core,	claims	are	the

content	stored	in	the

authentication	cookie.	All	that	you

can	store,	as	a	developer,	in	an

authentication	cookie	are	claims—

namely,	name/value	pairs.

Compared	to	the	past,	there	are

many	more	pieces	of	information

you	can	add	to	the	cookie	and	read

directly	from	there	without	fetching

further	data	from	the	database.

You	use	claims	to	model	the	user

identity.	ASP.NET	Core	formalizes	a

long	list	of	predefined	claims,	namely

predefined	key	names	aimed	at

storing	certain	well-known	pieces	of

information.	You	are	welcome	to

define	additional	claims.	At	the	very

end	of	the	day,	defining	a	claim	is	up

to	you	and	your	application.

In	the	ASP.NET	Core	Framework,	you

find	a	Claim	class	that	is	designed

around	the	layout	below.

Click	here	to	view	code	image

public	class	Claim

{

				public	string	Type	{	get;	}

				public	string	Value	{	get;	}

				public	string	Issuer	{	get;	}

				public	string	OriginalIssuer	{	get;	}

				public	IDictionary<string,	string>	Properties	{	get;	}

				//	More	properties

}

A	claim	has	a	property	that	identifies

the	type	of	the	claim	being	made

about	the	user.	For	example,	the	claim

type	is	the	role	of	the	user	in	a	given

application.	A	claim	also	has	a	string

value.	For	example,	a	value	for	the

Role	claim	might	be	“admin.”	The

description	of	a	claim	is	completed	by

the	name	of	an	original	issuer	and

also	the	name	of	the	actual	issuer	in

case	the	claim	relays	through

intermediate	issuers.	Finally,	a	claim

also	can	have	a	dictionary	of

additional	properties	to	complement

the	value.	All	properties	are	read-only,

and	the	constructor	is	the	only	way	to

push	values.	A	claim	is	an	immutable

entity.

Using	Claims	in	Code

Once	the	user	has	provided	valid

credentials	(or,	more	generally,

once	the	user	has	been	bound	to	a

known	identity),	the	problem	to

solve	is	persisting	key	information

about	the	recognized	identity.	As

mentioned,	in	older	versions	of

ASP.NET	this	was	limited	to

storing	the	username.	It’s	much

more	expressive	in	ASP.NET	Core

due	to	use	of	claims.

To	prepare	the	user	data	to	store	in	an

authentication	cookie,	you	typically

proceed	as	follows:

Click	here	to	view	code	image

//	Prepare	the	list	of	claims	to	bind	to	the	user's	identity

var	claims	=	new	Claim[]	{

				new	Claim(ClaimTypes.Name,	"123456789"),

				new	Claim("display_name",	"Sample	User"),

				new	Claim(ClaimTypes.Email,	"sampleuser@yourapp.com"),

				new	Claim("picture_url",	"\images\sampleuser.jpg"),

				new	Claim("age",	"24"),

				new	Claim("status",	"Gold"),

				new	Claim(ClaimTypes.Role,	"Manager"),

				new	Claim(ClaimTypes.Role,	"Supervisor")

};

//	Create	the	identity	object	from	claims

var	identity	=	new	ClaimsIdentity(claims,	CookieAuthenticationDef
aults.AuthenticationScheme);

//	Create	the	principal	object	from	identity

var	principal	=	new	ClaimsPrincipal(identity);

You	create	an	identity	object—type

ClaimsIdentity—from	claims	and

create	a	principal	object—type

ClaimsPrincipal—from	an	identity

object.	When	creating	an	identity,	you

also	indicate	the	authentication

scheme	of	choice	(meaning	you

specify	how	to	deal	with	claims).	In

the	code	snippet,	the	passed	value	of

CookieAuthenticationDefaults.Authen

ticationScheme—the	string	value	of

Cookies—indicates	that	claims	will	be

stored	in	the	authentication	cookie.

There	are	a	couple	of	things	to	notice

in	the	above	code	snippet.

First,	the	claim	type	is	a	plain	string	value,	but	many	predefined

constants	exist	for	common	types	such	as	role,	name,	email.	You

can	use	your	own	strings	or	predefined	strings	exposed	as

constants	out	of	the	ClaimTypes	class.

Second,	you	can	have	multiple	roles	in	the	same	list	of	claims.

Claim	Assumptions

All	claims	are	equal,	but	some

claims	are	more	equal	than	others.

Name	and	Role	are	two	claims	that

enjoy	a	(reasonable)	special

treatment	from	the	ASP.NET	Core

infrastructure.	Let’s	consider	the

following	code:

Click	here	to	view	code	image

var	claims	=	new	Claim[]

{

					new	Claim("PublicName",	userName),

					new	Claim(ClaimTypes.Role,	userRole),

					//	More	claims	here

};

The	list	of	claims	has	two	elements—

one	named	PublicName	and	one

named	Role	(through	the	constant

ClaimTypes.Roles).	As	you	can	see,	no

claim	named	Name	exists.	It’s	not	an

error,	of	course,	as	the	list	of	claims	is

entirely	up	to	you.	However,	having

Name	and	Role,	at	least,	is	fairly

common.	The	ASP.NET	Core

Framework	provides	an	additional

constructor	for	the	ClaimsIdentity

class	that	beyond	the	list	of	claims,

and	the	authentication	scheme	also

lets	you	indicate	by	name	the	claims

in	the	given	list	that	carry	the

identity’s	name	and	role.

Click	here	to	view	code	image

var	identity	=	new	ClaimsIdentity(claims,

						CookieAuthenticationDefaults.AuthenticationScheme,

						"PublicName",

						ClaimTypes.Role);

The	net	effect	of	this	code	is	that	the

claim	named	Role	will	be	the	role

claim,	as	one	would	expect.	Whether

the	provided	list	of	claims	contains	a

Name	claim	or	not,	the	PublicName	is

the	claim	you	should	use	as	the	name

of	the	user.

The	name	and	role	are	indicated	in

the	list	of	claims	because	those	two

pieces	of	information	will	be	used—

mostly	for	backward	compatibility

with	old	ASP.NET	code—to	support

the	functions	of	the	IPrincipal

interface,	such	as	IsInRole	and

Identity.Name.	The	roles	specified	in

the	list	of	claims	will	be	automatically

honored	by	the	implementation	of

IsInRole	in	the	ClaimsPrincipal	class.

Similarly,	the	name	of	the	user

defaults	to	the	value	of	the	claim

appointed	with	the	Name	status.

In	summary,	Name	and	Role	claims

have	default	names,	but	you	can

override	those	names	at	will.	The

override	takes	place	in	one	overloaded

constructor	of	the	ClaimsIdentity

class.

Signing	In	and	Signing	Out

Having	a	principal	object	available

is	the	necessary	condition	for

signing	in	a	user.	The	actual

method	that	signs	a	user	in,	and	in

doing	so	creates	the	authentication

cookie,	is	exposed	by	the	HTTP

context	object	under	the	name	of

Authentication.

Click	here	to	view	code	image

//	Gets	the	principal	object

var	principal	=	new	ClaimsPrincipal(identity);

//	Signs	the	user	in	(and	creates	the	authentication	cookie)

await	HttpContext.SignInAsync(

										CookieAuthenticationDefaults.AuthenticationScheme,

										principal);

To	be	precise,	the	creation	of	the

cookie	during	the	sign-in	process	only

happens	if	the	authentication	scheme

is	set	to	cookies.	The	exact	sequence

of	operations	that	happen	during	the

sign-in	process	depends	on	the

handler	for	the	selected

authentication	scheme.

The	Authentication	object	is	an

instance	of	the

AuthenticationManager	class.	The

class	has	two	more	interesting

methods:	SignOutAsync	and

AuthenticateAsync.	As	the	name

suggests,	the	former	method	revokes

the	authentication	cookies	and	signs

the	user	out	of	the	application.

Click	here	to	view	code	image

await	HttpContext.SignOutAsync(

										CookieAuthenticationDefaults.AuthenticationScheme);

When	calling	the	method,	you	must

indicate	the	authentication	scheme

from	which	you	want	to	sign	out.	The

AuthenticateAsync	method	instead

just	validates	the	cookie	and	checks	to

see	if	the	user	is	authenticated.	Also,

in	this	case,	the	attempt	to	validate

the	cookie	is	based	on	the	selected

authentication	scheme.

Reading	Content	of	Claims

Reading	Content	of	Claims

ASP.NET	Core	authentication	is

half	a	familiar	world	and	half	an

unknown	space—especially	for

those	coming	from	years	of	classic

ASP.NET	programming.	In	classic

ASP.NET,	once	the	system	has

processed	the	authentication

cookie,	the	username	is	easily

accessible,	and	that’s	the	only	piece

of	information	available	by	default.

If	more	information	about	the	user

must	be	available,	you	create	your

own	claims	and	serialize	their

content	into	the	cookie,	essentially

creating	your	own	principal	object.

Recently,	support	for	claims	has

been	added	to	classic	ASP.NET.

Using	claims	is	the	only	way	to

work	in	ASP.NET	Core.	When	you

create	your	own	principal,	you

make	yourself	responsible	for

reading	the	content	of	the	claims.

The	ClaimsPrincipal	instance	that	you

access	programmatically	via	the

HttpContext.User	property	has	a

programming	interface	to	query	for

specific	claims.	Here’s	an	example

taken	from	a	Razor	view.

Click	here	to	view	code	image

@if(User.Identity.IsAuthenticated)

{

				var	pictureClaim	=	User.FindFirst("picture_url");

				if	(pictureClaim	!=	null)

				{

												var	picture	=	pictureClaim.Value;

												

				}

}

When	rendering	a	page,	you	might

want	to	show	the	avatar	of	the	logged

user.	Assuming	that	this	information

is	available	as	a	claim,	the	code	above

shows	the	LINQ-friendly	code	to

query	for	claims.	The	FindFirst

method	returns	only	the	first	of

possibly	multiple	claims	with	the

same	name.	If	you	want	to	take	all	of

them,	then	you	use	the	FindAll

method	instead.	To	read	the	actual

value	of	the	claim,	you	expand	on	the

Value	property.

	Note	Once	the	login	page	credentials	have	been	verified,	you
have	the	problem	of	getting	hold	of	all	the	claims	you	want	to	persist	in	the
cookie.	Note	that	the	more	information	you	store	in	the	cookie,	the	more	user
information	you	have	available	nearly	for	free.	Sometimes,	you	can	store	a
user	key	in	the	cookie,	and	once	the	sign-in	begins,	you	use	the	key	to
retrieve	the	matching	record	from	the	database.	This	is	more	expensive	but
ensures	the	user	information	is	always	up	to	date,	and	it	allows	updates
without	logging	the	user	out	and	in	again	when	creating	the	cookie.	The
actual	content	for	the	claims	should	be	read	from	locations	you	determine.
For	instance,	claims	content	can	come	from	a	database,	the	cloud,	or	Active
Directory.

External	Authentication

External	authentication	refers	to

using	an	external	and	properly

configured	service	to	authenticate

users	coming	to	your	website.	In

general	terms,	external

authentication	is	a	win-win

situation.	External	authentication

is	good	for	end	users	who	don’t

have	to	create	one	account	for	each

website	to	which	they	intend	to

register.	Also,	external

authentication	is	good	for	the

developer	who	doesn’t	have	to	add

critical	boilerplate	code	and	store

and	check	the	user’s	credentials	for

each	website	she	sets	up.	Not	just

any	website	can	serve	as	an

external	authentication	server.	An

external	authentication	server

requires	the	availability	of	specific

features,	but	nearly	any	current

social	network	can	act	as	an

external	authentication	service.

Adding	Support	for	External	Authentication

Adding	Support	for	External	Authentication
Services

ASP.NET	Core	supports	external

authentication	via	identity

providers	from	the	ground	up.

Most	of	the	time,	all	you	do	is

install	the	appropriate	NuGet

package	for	the	job.	For	example,	if

you	want	to	allow	your	users	to

authenticate	using	their	Twitter

credentials,	the	first	thing	you	do	in

your	project	is	bring	in	the

Microsoft.AspNetCore.Authenticati

on.Twitter	package	and	install	the

related	handler:

Click	here	to	view	code	image

services.AddAuthentication(TwitterDefaults.AuthenticationScheme)

		.AddTwitter(options	=>

		{

						options.SignInScheme	=	CookieAuthenticationDefaults.Authent
icationScheme;

						options.ConsumerKey	=	"...";

						options.ConsumerSecret	=	"...";

		});

The	SignInScheme	property	is	the

identifier	of	the	authentication

handler	that	will	be	used	to	persist	the

resulting	identity.	In	this	example,	an

authentication	cookie	will	be	used.	To

see	the	effects	of	the	above

middleware,	add	a	controller	method

to	trigger	the	Twitter-based

authentication.	Below	is	an	example.

Click	here	to	view	code	image

public	async	Task	TwitterAuth()

{

			var	props	=	new	AuthenticationProperties

			{

						RedirectUri	=	"/"		//	Where	to	go	after	authenticating

			};

			await	HttpContext.ChallengeAsync(TwitterDefaults.Authenticatio
nScheme,	props);

}

The	internals	of	the	Twitter	handler

knows	which	URL	to	contact	to	pass

the	application’s	identity	(consumer

key	and	secret)	and	enable	a	user’s

validation.	If	all	goes	well,	the	user	is

shown	the	familiar	Twitter

authentication	page.	If	the	user	is

already	authenticated	on	the	local

device	to	Twitter,	then	she’s	only

asked	to	confirm	that	it	is	okay	to

grant	the	given	application

permission	to	operate	on	Twitter	on

behalf	of	the	user.

Figure	8-1	shows	the	confirmation

page	from	Twitter	that	shows	when	a

sample	application	attempts	to

authenticate	a	user.

FIGURE	8-1	As	a	Twitter	user,	you’re	now	authorizing	the	app	to

act	on	behalf	of	you

Next,	once	Twitter	has	successfully

authenticated	the	user,	the

SignInScheme	property	instructs	the

application	on	what	to	do	next.	A

value	of	“Cookies”	is	acceptable	if	you

want	a	cookie	from	the	claims

returned	by	the	external	provider

(Twitter,	in	the	example).	If	you	want

to	review	and	complete	the

information	through,	say,	an

intermediate	form,	then	you	have	to

break	the	process	in	two	by

introducing	a	temporary	sign-in

scheme.	I’ll	get	back	to	this	more

sophisticated	scenario	in	a	moment.

For	now,	let’s	complete	the	tour	of

what	happens	in	a	simpler	scenario.

The	RedirectUri	option	indicates

where	to	go	once	authentication	has

successfully	completed.	In	such	a

simple	scenario	in	which	you	only	rely

on	the	list	of	claims	provided	by	the

authentication	service,	you	have	no

control	over	the	data	you	know	about

each	user	who	signs	in	to	your	system.

The	list	of	claims	returned	by	default

by	the	various	social	networks	is	not

homogeneous.	For	example,	if	users

connect	through	Facebook,	you	might

have	the	user’s	email	address.

However,	you	might	not	have	the

email	address	if	the	user	connects

through	Twitter	or	Google.	It’s	not	a

big	deal	if	you	only	support	one	social

network,	but	if	you	support	many	of

them—and	the	number	might	grow

over	time—then	you	have	to	set	up	an

intermediate	page	to	normalize

information	and	ask	users	to	enter	all

the	claims	you	currently	lack.

Figure	8-2	shows	the	workflow	that

sets	up	between	the	client	browser,

the	web	application,	and	the	external

authentication	service	when	access	is

made	to	a	protected	resource	that

requires	a	login.

FIGURE	8-2	The	full	workflow,	when	access	is	made	to	a	protected

resource	and	authentication,	is	provided	via	an	external	service

This	illustration	shows	three	boxes

representing	the	browser,	the	web

application,	and	the	authentication

service.	At	the	top,	a	bold	arrow

connects	the	box	“Browsers”	with	the

box	“Web	App.”	At	the	bottom,

another	arrow	connects	the	box	“Web

App”	with	the	box	“Browsers.”	Other

grayed	arrows	indicate	the	various

steps	of	the	process	of	authenticating

users	via	an	external	service.

Requiring	Completion	of	Information

Requiring	Completion	of	Information

To	gather	additional	information

after	the	external	service	has

authenticated	the	user,	you	need	to

tweak	a	bit	the	service

configuration.	Essentially,	you	add

another	handler	to	the	list,	as

shown	below.

Click	here	to	view	code	image

services.AddAuthentication(options	=>

{

				options.DefaultChallengeScheme	=	CookieAuthenticationDefaults
.AuthenticationScheme;

				options.DefaultSignInScheme	=	CookieAuthenticationDefaults.Au
thenticationScheme;

				options.DefaultAuthenticateScheme	=	CookieAuthenticationDefau
lts.AuthenticationScheme;

})

				.AddCookie(options	=>

				{

								options.LoginPath	=	new	PathString("/Account/Login");

								options.Cookie.Name	=	"YourAppCookieName";

								options.ExpireTimeSpan	=	TimeSpan.FromMinutes(60);

								options.SlidingExpiration	=	true;

								options.AccessDeniedPath	=	new	PathString("/Account/Denie
d");

				})

				.AddTwitter(options	=>

				{

								options.SignInScheme	=	"TEMP";

								options.ConsumerKey	=	"...";

								options.ConsumerSecret	=	"...";

				})	

				.AddCookie("TEMP");

When	the	external	Twitter	provider

returns,	a	temporary	cookie	is	created

using	the	TEMP	scheme.	By	setting

the	redirect	path	appropriately	in	the

controller	method	that	challenges	the

user,	you	have	a	chance	to	inspect	the

principal	returned	by	Twitter	and	edit

it	further:

Click	here	to	view	code	image

public	async	Task	TwitterAuthEx()

{

			var	props	=	new	AuthenticationProperties

			{

							RedirectUri	=	"/account/external"		

			};

			await	HttpContext.ChallengeAsync(TwitterDefaults.Authenticatio
nScheme,	props);

}

Twitter	(or	whatever	service	you	use)

will	now	redirect	to	the	External

method	on	the	Account	controller	to

complete	your	own	workflow.	When

the	External	method	is	called	back,

it’s	all	up	to	you.	You	might	want	to

show	an	HTML	form	to	collect

additional	information.	In	the

building	of	this	form,	you	might	want

to	use	the	list	of	claims	on	the	given

principal.

Click	here	to	view	code	image

public	async	Task<IActionResult>	External()

{

				var	principal	=	await	HttpContext.AuthenticateAsync("TEMP");

				//	Access	the	claims	on	the	principal	and	prepare	an	HTML	

				//	form	that	prompts	only	for	the	missing	information

				...

				return	View();

}

The	user	is	then	presented	the	form

and	fills	it	out;	your	form	code

validates	the	data	and	posts	back.	In

the	body	of	the	controller	method

where	you	save	the	content	of	the

completion	form,	you	need	to	perform

a	couple	of	key	steps	before	leaving.

You	retrieve	the	principal	as	shown

above	and	then	you	sign	in	to	the

cookies	scheme	and	sign	out	of	the

temporary	TEMP	scheme.	Here’s	the

code:

Click	here	to	view	code	image

await	HttpContext.SignInAsync(CookieAuthenticationDefaults.Authen
ticationScheme,	principal);

await	HttpContext.SignOutAsync("TEMP");

At	this	point—and	only	at	this	point—

the	authentication	cookie	is	created.

	Note	In	the	previous	sample	code,	TEMP,	as	well	as
CookieAuthenticationDefaults.	AuthenticationScheme,	are	just	internal
identifiers;	they	can	be	renamed	as	long	as	they	remain	consistent	throughout
the	application.

Issues	of	External	Authentication

Issues	of	External	Authentication

External	authentication,	such	as	via

Facebook	or	Twitter,	is	sometimes

cool	for	the	users	but	not	always.

As	usual,	it	is	a	matter	of	tradeoff.

So,	let’s	list	a	few	challenges	you

have	to	face	when	using	it	in	your

applications.

First,	users	must	log	in	to	the	social

network	or	identity	server	of	your

choice.	They	might	or	might	not	love

the	idea	of	using	existing	credentials.

In	general,	social	authentication

should	always	be	provided	as	an

option	unless	the	application	itself	is

so	tightly	integrated	with	a	social

network	or	so	social	itself	to	justify	the

reliance	on	the	sole	external

authentication.	Always	consider	that

users	might	not	have	an	account	to

the	social	network	you’re	supporting.

From	a	development	perspective,

external	authentication	means	that

the	effort	to	configure	authentication

is	duplicated	in	each	application.

More	often	than	not,	you	have	to	deal

with	user	registration	and	fill	up	all

required	fields	anyway,	which	means

a	lot	of	work	as	far	as	account

management	is	concerned	on	your

end.	Finally,	you	have	to	maintain	a

link	between	the	account	in	your	local

users	store	with	an	external	account.

In	the	end,	external	authentication	is

not	exactly	a	time-saver	approach.	It

should	be	seen	as	a	feature	you	offer

to	users	of	your	application	if	justified

by	nature	of	the	application	itself.

AUTHENTICATING	USERS	VIA

AUTHENTICATING	USERS	VIA
ASP.NET	IDENTITY

So	far,	you	have	read	about	the

fundamentals	of	user

authentication	in	ASP.NET	Core.

An	entire	universe	of	features,

however,	lies	behind	user

authentication.	It	usually	goes

under	the	name	of	membership

system.	A	membership	system

doesn’t	simply	manage	the	process

of	user	authentication	and	identity

data;	it	also	deals	with	user

management,	password	hashing,

validation	and	reset,	roles	and	their

management	and	even	more

advanced	functions	such	as	two-

factor	authentication	(2FA).

Building	a	custom	membership

system	is	not	a	huge	task,	but	it’s

likely	a	repetitive	task,	and	it’s	the

classic	wheel	you	have	to	reinvent

every	time,	and	for	every	application

you	build.	At	the	same	time,	a

membership	system	is	not	that	easy	to

abstract	into	something	that	you	can

reuse	across	multiple	applications

with	minimal	overhead.	Many

attempts	at	it	have	been	made	over

the	years,	and	Microsoft	itself	counts

a	few	of	them.	My	personal	take	on

membership	systems	is	that	if	you’re

going	to	write	and	maintain	multiple

systems	of	the	same	complexity,	you

probably	want	to	invest	some	time

and	build	your	own	system	with	your

own	extensibility	points.	In	other

cases,	the	choice	is	between	two

extremes—a	plain	user	authentication

as	discussed	earlier	in	the	chapter	or

ASP.NET	Identity.

Generalities	of	ASP.NET	Identity

Generalities	of	ASP.NET	Identity

ASP.NET	Identity	is	a	full-fledged,

comprehensive,	large	framework

that	provides	an	abstraction	layer

over	a	membership	system.	As	is,	it

is	overkill	if	all	you	need	is	to

authenticate	users	via	plain

credentials	read	out	of	a	simple

database	table.	At	the	same	time,

though,	ASP.NET	Identity	is

designed	to	decouple	storage	from

the	security	layer.	So,	in	the	end,	it

provides	a	rich	API	with	plenty	of

extensibility	points	for	you	to	adapt

things	to	your	context	while	also

including	an	API	that	often	you

only	have	to	configure.

Configuring	ASP.NET	Identity	means

indicating	the	details	of	the	storage

layer	(both	relational	and	object-

oriented)	and	the	details	of	the

identity	model	that	best	represents

your	users.	Figure	8-3	illustrates	the

architecture	of	ASP.NET	Identity.

FIGURE	8-3	Overall	architecture	of	ASP.NET	Identity

The	User	Manager

The	User	Manager

The	User	Manager	is	the	central

console	from	which	you	conduct	all

of	the	operations	supported	by

ASP.NET	Identity.	As	mentioned,

this	includes	an	API	to	query	for

existing	users,	create	new	users,

and	update	or	delete	users.	The

User	Manager	also	provides

methods	to	support	password

management,	external	logins,	role

management,	and	even	more

advanced	features,	such	as	user

lockout,	2FA,	emailing	in	case	of

need,	and	password	strength

validation.

In	code,	you	invoke	the	above

functions	through	the	services	of	the

UserManager<TUser>	class.	The

generic	type	refers	to	the	provided

abstraction	of	the	user	entity.	In	other

words,	through	the	class,	you	can

perform	all	coded	tasks	on	the	given

model	of	the	user.

User	Identity	Abstraction

In	ASP.NET	Identity,	the	model	of

the	user	identity	becomes	a

parameter	that	you	inject	in	the

machinery,	and	it	more	or	less

works	transparently	because	of	the

user	identity	abstraction

mechanism	and	the	underlying

user	store	abstraction.

ASP.NET	Identity	provides	a	base

user	class	that	already	contains	many

common	properties	you	want	to	have

on	a	user	entity,	such	as	a	primary

key,	username,	password	hash,	email

address,	and	phone	number.

ASP.NET	Identity	also	provides	more

sophisticated	properties,	such	as

email	confirmation,	lockout	state,

access	failed	count,	and	a	list	of	roles

and	logins.	The	base	user	class	in

ASP.NET	Identity	is	IdentityUser.

You	can	use	it	directly	or	just	derive

your	own	class	from	it.

Click	here	to	view	code	image

public	class	YourAppUser	:	IdentityUser

{

				//	App-specific	properties

				public	string	Picture	{	get;	set;	}

				public	string	Status	{	get;	set;	}

}

The	IdentityUser	class	has	some

aspects	hard-coded	into	the

framework.	The	Id	property	is	treated

as	the	primary	key	when	the	class	is

saved	to	a	database.	This	aspect	can’t

be	changed,	even	though	I	can	hardly

think	of	a	reason	for	doing	it.	The

primary	key	is	rendered	as	a	string	by

default,	but	even	the	type	of	the

primary	key	has	been	abstracted	in

the	design	of	the	framework,	so	you

can	change	it	to	your	liking	when

deriving	from	IdentityUser.

Click	here	to	view	code	image

public	class	YourAppUser	:	IdentityUser<int>

{

				//	App-specific	properties

				public	string	Picture	{	get;	set;	}

				public	string	Status	{	get;	set;	}

}

The	Id	property,	in	fact,	is	defined	as

follows:

Click	here	to	view	code	image

public	virtual	TKey	Id	{	get;	set;	}

	Note	In	older	versions	of	ASP.NET	Identity—for	classic
ASP.NET—the	primary	key	was	rendered	as	a	GUID,	and	that	has	created	a
bit	of	an	issue	in	some	applications.	In	ASP.NET	Core,	you	can	use	GUID	if
you	want.

User	Store	Abstraction

User	Store	Abstraction

The	identity	user	class	is	saved	to

some	persistence	layer	through	the

services	of	some	storage	API.	The

favorite	API	is	based	on	Entity

Framework	Core,	but	the

abstraction	of	the	user	store	lets

you	plug	in	virtually	any	framework

out	there	that	knows	how	to	store

information.	The	main	storage

interface	is	IUserStore<TUser>.

Here’s	an	excerpt	from	it.

Click	here	to	view	code	image

public	interface	IUserStore<TUser,	in	TKey>	:	IDisposable	where	T
User	:	class,	IUser<TKey>

{

			Task	CreateAsync(TUser	user);

			Task	UpdateAsync(TUser	user);

			Task	DeleteAsync(TUser	user);

			Task<TUser>	FindByIdAsync(TKey	userId);

			Task<TUser>	FindByNameAsync(string	userName);

			...

}

As	you	can	see,	the	abstraction	is	a

plain	CRUD	API	on	top	of	the	identity

user	class.	The	query	functionality	is

pretty	basic	because	it	only	lets	you

retrieve	users	by	name	or	ID.

However,	a	concrete	ASP.NET

Identity	user	store	is	much	more	than

the	IUserStore	interface	suggests.

Table	8-2	lists	storage	interfaces	for

additional	features.

TABLE	8-2	Some	additional	storage

interfaces

Add

itio

nal	

inte

rfac

e

Purpose

IUse

rCla

imSt

ore

The	interface	groups	functions	to	store	claims	about	

the	user.	This	is	useful	if	you	store	claims	as	distinct	

pieces	of	information	from	the	properties	of	the	

User	entity	itself.

IUse

rEm

ailSt

ore

The	interface	groups	functions	to	store	email	

information,	for	example	for	password	reset.

IUse

rLoc

kout

Stor

e

The	interface	groups	functions	to	store	lockout	data	

to	track	brute	force	attacks.

IUse

rLog

inSt

ore

The	interface	groups	functions	to	store	linked	

accounts	obtained	through	external	providers.

IUse

rPas

swo

rdSt

ore

The	interface	groups	functions	to	store	passwords	

and	perform	related	operations.

IUse

rPho

neN

umb

erSt

ore

The	interface	groups	functions	to	store	phone	

information	to	use	in	2FA.

IUse

rRol

eSto

re

The	interface	groups	functions	to	store	role	

information.

IUse

rTw

oFac

torS

tore

The	interface	groups	functions	to	store	user	

information	related	to	2FA.

All	those	interfaces	are	implemented

by	the	actual	user	store.	If	you	create	a

custom	user	store—for	example,	one

that	targets	a	custom	SQL	Server

schema	or	a	custom	NoSQL	store—

you	are	responsible	for	the

implementation.	ASP.NET	Identity

comes	with	an	Entity	Framework-

based	user	store	available	through	the

Microsoft.AspNetCore.Identity.Entity

FrameworkCore	NuGet	package.	The

store	supports	the	interfaces	listed	in

Table	8-2.

Configuring	ASP.NET	Identity

Configuring	ASP.NET	Identity

To	start	working	with	ASP.NET

Identity,	you	first	need	to	select	(or

create)	a	user	store	component	and

set	up	the	underlying	database.

Assuming	you	opt	for	the	Entity

Framework	user	store,	the	first

thing	you	must	do	is	create	a

DbContext	class	in	your

application.	The	role	of	the

DbContext	class	and	all	of	its

dependencies	will	be	fully

explained	in	Chapter	9,	which	is

entirely	devoted	to	Entity

Framework	Core.

In	brief,	a	DbContext	class	represents

the	central	console	to	access	a

database	programmatically	via	Entity

Framework.	A	DbContext	class	for	use

with	ASP.NET	Identity	inherits	from	a

system-provided	base	class	(the

IdentityDbContext	class)	and	contains

a	DbSet	class	for	users	and	other

entities	such	as	logins,	claims,	and

emails.	Here’s	how	you	lay	out	a	class.

Click	here	to	view	code	image

public	class	YourAppDatabase	:	IdentityDbContext<YourAppUser>

{

			...

}

To	configure	the	connection	string	to

the	actual	database,	you	use	normal

Entity	Framework	Core	code.	More	on

this	in	a	moment	and	then	in	Chapter

9.

In	the	IdentityDbContext,	you	inject

the	user	identity	class	and	also	many

other	optional	components.	Here’s	the

complete	signature	of	the	class.

Click	here	to	view	code	image

public	class	IdentityDbContext<TUser,	TRole,	TKey,	TUserLogin,	TU
serRole,	TUserClaim>	:

													DbContext

				where	TUser	:	IdentityUser<TKey,	TUserLogin, TUserRole, TUser
Claim>

				where	TRole	:	IdentityRole<TKey, TUserRole>

				where	TUserLogin	:	IdentityUserLogin<TKey>

				where	TUserRole	:	IdentityUserRole<TKey>

				where	TUserClaim	:	IdentityUserClaim<TKey>

{

			...

}

As	you	can	see,	you	can	inject	the	user

identity,	the	role	type,	the	primary	key

of	the	user	identity,	the	type	to	use	to

link	external	logins,	the	type	to	use	to

represent	user/role	mappings,	and	the

type	to	represent	claims.

The	final	step	to	enable	ASP.NET

Identity	is	to	register	the	framework

with	ASP.NET	Core.	This	step	occurs

in	the	ConfigureServices	method	of

the	startup	class.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Grab	the	connection	string	to	use	(or	have	it	fixed)

				//	Assume	Configuration	is	set	in	the	Startup	class	construct
or	(see	Ch.7)

				var	connString	=	Configuration.GetSection("database").Value;	
				

				//	Normal	EF	code	to	register	a	DbContext	around	a	SQL	Server
	database

				services.AddDbContext<YourAppDatabase>(options	=>							

															options.UseSqlServer(connString));															

				//	Attach	the	previously	created	DbContext	to	the	ASP.NET	Ide
ntity	framework

				services.AddIdentity<YourAppUser,	IdentityRole>()												
			

												.AddEntityFrameworkStores<YourIdentityDatabase>();			

}

Once	the	connection	string	to	connect

the	database	of	choice	is	known,	you

use	normal	Entity	Framework	code	to

inject	the	DbContext	of	the	given

database	in	the	ASP.NET	Core	stack.

Next,	you	register	the	user	identity

role	model,	the	role	identity	model,

and	the	Entity	Framework-based	user

store.

At	configuration	time,	you	also	can

indicate	parameters	for	the

authentication	cookie	to	be	created.

Here’s	an	example.

Click	here	to	view	code	image

services.ConfigureApplicationCookie(options	=>

{

			options.Cookie.HttpOnly	=	true;

			options.Cookie.Expiration	=	TimeSpan.FromMinutes(20);

			options.LoginPath	=	new	PathString("/Account/Login");		

			options.LogoutPath	=	new	PathString("/Account/Logout");

			options.AccessDeniedPath	=	new	PathString("/Account/Denied");

			options.SlidingExpiration	=	true;

});

Similarly,	you	can	also	change	the

cookie	name	and,	in	general,	gain	full

control	over	the	cookie.

Working	with	the	User	Manager

The	UserManager	object	is	the

central	object	through	which	you

use	and	administer	the

membership	system	based	on

ASP.NET	Identity.	You	don’t	create

an	instance	of	it	directly;	an

instance	of	it	is	silently	registered

with	the	DI	system	when	you

register	ASP.NET	Identity	at

startup.

Click	here	to	view	code	image

public	class	AccountController	:	Controller

{

				UserManager<YourAppUser>	_userManager;

				public	AccountController(UserManager<YourAppUser>	userManager
)

				{

								_userManager	=	userManager;

				}

				//	More	code	here

				...

}

In	any	controller	class	where	you	need

to	use	it,	you	just	inject	it	in	some

way;	for	example,	you	could	inject	it

through	the	constructor,	as	shown	in

the	previous	code	snippet.

Dealing	with	Users

Dealing	with	Users

To	create	a	new	user,	you	call	the

CreateAsync	method	and	pass	to	it

the	user	object	in	use	in	the

application	with	ASP.NET	Identity.

The	method	returns	an

IdentityResult	value	which

contains	a	list	of	error	objects	and	a

Boolean	property	to	denote	success

or	failure.

Click	here	to	view	code	image

public	class	IdentityResult

{

				public	IEnumerable<IdentityError>	Errors	{	get;	}

				public	bool	Succeeded	{	get;	protected	set;	}

}

public	class	IdentityError

{

				public	string	Code	{	get;	set;	}

				public	string	Description	{	get;	set;	}

}

There	are	two	overloads	for	the

CreateAsync	method:	one	only	takes

the	user	object,	and	the	other	also

accepts	a	password.	The	former

method	just	doesn’t	set	any	password

for	the	user.	By	using	the	method

ChangePasswordAsync,	you	can	set

or	change	the	password	later.

When	adding	users	to	a	membership

system,	you	face	the	problem	of

determining	how	and	where	to

validate	the	consistency	of	the	data

being	added	into	the	system.	Should

you	have	a	user	class	that	knows	how

to	validate	itself,	or	should	you	have

validation	deployed	as	a	separate

layer?	ASP.NET	Identity	opted	for	the

latter	pattern.	The	interface

IUserValidator<TUser>	can	be

supported	to	implement	any	custom

validator	for	the	given	type.

Click	here	to	view	code	image

public	interface	IUserValidator<TUser>

{

				Task<IdentityResult>	ValidateAsync(UserManager<TUser>	manager
,	TUser	user)

}

You	create	the	class	that	implements

the	interface	and	then	registers	it	with

the	DI	system	at	application	startup.

A	user	in	the	membership	system	can

be	deleted	with	a	call	to	DeleteAsync.

The	method	has	the	same	signature	as

CreateAsync.	To	update	the	state	of

an	existing	user,	instead,	you	have

many	predefined	methods,	such	as

SetUserNameAsync,	SetEmailAsync,

SetPhoneNumberAsync,

SetTwoFactorEnabledAsync,	and

more.	To	edit	claims,	you	have

methods	like	AddClaimAsync,

RemoveClaimAsync,	and	similar

methods	to	deal	with	logins.

Every	time	you	call	a	specific	update

method,	a	call	to	the	underlying	user

store	is	performed.	Alternatively,	you

can	edit	the	user	object	in	memory

and	then	apply	all	changes	in	a	batch

mode	using	the	UpdateAsync	method.

Fetching	Users

The	ASP.NET	Identity	membership

system	provides	two	patterns	for

fetching	user	data.	You	can	query

the	user	object	by	parameter,

whether	ID,	email,	or	username,	or

you	can	use	LINQ.	The	following

code	snippet	illustrates	the	use	of	a

few	query	methods.

Click	here	to	view	code	image

var	user1	=	await	_userManager.FindByIdAsync(123456);

var	user2	=	await	_userManager.FindByNameAsync("dino");

var	user3	=	await	_userManager.FindByEmailAsync("dino@yourapp.com
");

If	the	user	store	supports	the

IQueryable	interface,	you	can	build

any	LINQ	query	on	top	of	the	Users

collections	exposed	from	the

UserManager	object.

Click	here	to	view	code	image

var	emails	=	_userManager.Users.Select(u	=>	u.Email);

If	you	only	need	a	specific	piece	of

information,	such	as	the	email	or	the

phone	number,	then	you	can	do	it

with	a	single	API	call

—GetEmailAsync,

GetPhoneNumberAsync,	and	the	like.

Dealing	with	Passwords

In	ASP.NET	Identity,	passwords

are	automatically	hashed	using	the

RFC2898	algorithm	with	ten

thousand	iterations.	From	a

security	perspective,	it’s	an

extremely	safe	way	to	store

passwords.	The	hashing	takes	place

through	the	services	of	the

IPasswordHasher	interface.	As

usual,	you	can	replace	the	hasher

with	your	own	by	adding	a	new

hasher	to	the	DI	system.

To	validate	the	strength	of	the

password—and	to	refuse	weak	ones—

you	can	rely	on	the	built-in	validator

infrastructure	and	just	configure	it,	or

you	can	create	your	own.	Configuring

the	built-in	validators	means	setting

minimum	length	and	determining

whether	letters	and/or	digits	are

required.	Here’s	an	example:

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				services.AddIdentity<YourAppUser,	IdentityRole>(options=>

				{

								//	At	least	6	characters	long	and	digits	required

								options.Password.RequireUppercase	=	false;

								options.Password.RequireLowercase	=	false;

								options.Password.RequireDigit	=	true;

								options.Password.RequiredLength	=	6;

				})

				.AddEntityFrameworkStores<YourDatabase>();

}

To	use	a	custom	password	validator,

you	create	a	class	that	implements

IPasswordValidator	and	register	it

with	AddPasswordValidator	at

application	startup	after	calling

AddIdentity.

Dealing	with	Roles

Dealing	with	Roles

At	the	end	of	the	day,	roles	are	just

claims,	and	in	fact,	earlier	in	the

chapter,	we	have	seen	that	a

predefined	claim	exists	named

Role.	Speaking	abstractly,	a	role	is

just	a	string	with	no	permission

and	logic	mapped	to	it	that

describes	the	role	a	user	can	play	in

the	application.	Mapping	logic	and

permissions	to	roles	is	necessary	to

spice	up	the	application	and	make

it	realistic.	This	responsibility,

though,	belongs	to	the	developer.

However,	in	the	context	of	a

membership	system,	the	intent	of

roles	is	much	more	specific.	A

membership	system	like	ASP.NET

Identity	contains	much	of	the	work	a

developer	should	otherwise	do	herself

to	save	and	retrieve	users	and	related

information.	Part	of	the	work	a

membership	system	does	is	to	map

users	to	roles.	In	this	context,	a	role

becomes	a	list	of	things	the	user	can

or	cannot	do	with	the	application.	In

ASP.NET	Core	and	ASP.NET	Identity,

a	role	is	a	named	group	of	claims

saved	in	the	user	store.

In	an	ASP.NET	Identity	application

claims,	users,	supported	roles,	and

mappings	between	users	and	roles	are

stored	separately.	All	operations	that

involve	roles	are	grouped	in	the

RoleManager	object.	Like	the

UserManager	object,	also

RoleManager	is	added	to	the	DI

system	when	the	call	to	AddIdentity	is

made	at	application	startup.	Likewise,

you	inject	an	instance	of

RoleManager	in	a	controller	via	DI.

Roles	are	stored	in	a	distinct	role

store.	In	the	EF	scenario,	it’s	simply	a

distinct	table	in	the	same	SQL	Server

database.

Managing	roles	programmatically	is

nearly	identical	to	managing	users

programmatically.	Here’s	an	example

of	how	to	create	a	role.

Click	here	to	view	code	image

//	Define	the	ADMIN	role

var	roleAdmin	=	new	IdentityRole

{

				Name	=	"Admin"

};

//	Create	the	ADMIN	role	in	the	ASP.NET	Identity	system

var	result	=	await	_roleManager.CreateAsync(roleAdmin);

In	ASP.NET	Identity,	a	role	is

ineffective	until	users	are	mapped	to

it.

Click	here	to	view	code	image

var	user	=	await	_userManager.FindByNameAsync("dino");

var	result	=	await	_userManager.AddToRoleAsync(user,	"Admin");

To	add	users	to	a	role,	you	use	the	API

of	the	UserManager	class	though.	In

addition	to	AddToRoleAsync,	the

manager	features	methods	like

RemoveFromRoleAsync	and

GetUsersInRoleAsync.

Authenticating	Users

Authenticating	users	with	ASP.NET

Identity	requires	many	steps

because	of	the	complexity	and

sophistication	of	the	framework.

Steps	involve	operations	like

validating	credentials,	handling

failed	attempts	and	locking	users

out,	dealing	with	disabled	users,

and	handling	2FA	logic	(if	the

feature	is	enabled).	Then	you	must

populate	the	ClaimsPrincipal

object	with	claims	and	issue	the

authentication	cookie.

All	the	steps	are	encapsulated	in	the

API	exposed	by	the	SignInManager

class.	The	sign-in	manager	is	obtained

via	DI	in	the	same	way	you	have	seen

for	UserManager	and	RoleManager

objects.	To	perform	all	the	steps	of	a

login	page,	you	use	the

PasswordSignInAsync	method.

Click	here	to	view	code	image

public	async	Task<IActionResult>	Login(string	user,	string	passwo
rd,	bool	rememberMe)

{

				var	shouldConsiderLockout	=	true;

				var	result	=	await	_signInManager.PasswordSignInAsync(

																											user,	password,	rememberMe,	shouldCons
iderLockout);

				if	(result.Succeeded)

				{

								//	Redirect	where	needed

								...

				}

				return	View("error",	result);

}

The	PasswordSignInAsync	method

takes	the	username	and	password	(as

clear	text)	and	also	a	couple	of

Boolean	flags	to	denote	the

persistence	nature	of	the	resulting

authentication	cookie	and	whether

lockout	should	be	considered.

	Note	User	lockout	is	an	ASP.NET	Identity	built-in	feature	by
means	of	which	users	can	be	disabled	from	logging	into	the	system.	The
feature	is	controlled	by	two	pieces	of	information—whether	the	lockout	is
enabled	for	the	application	and	the	lockout	end	date.	You	have	ad	hoc
methods	to	enable	and	disable	lockout,	and	you	have	ad	hoc	methods	to	set
the	lockout	end	date.	A	user	is	active	either	if	the	lockout	is	disabled	or	if	the
lockout	is	enabled,	but	the	current	date	is	past	lockout	end	date.

The	outcome	of	the	sign-in	process	is

summarized	by	the	SignInResult	type,

which	informs	whether	authentication

was	successful,	2FA	is	required,	or	if

the	user	is	locked	out.

AUTHORIZATION	POLICIES

AUTHORIZATION	POLICIES

The	authorization	layer	of	a

software	application	ensures	that

the	current	user	is	allowed	to

access	a	given	resource,	perform	a

given	operation,	or	perform	a	given

operation	on	a	given	resource.	In

ASP.NET	Core,	there	are	two	ways

to	set	up	an	authorization	layer.

You	can	use	roles,	or	you	can	use

policies.	The	former	approach—

role-based	authorization—has	been

maintained	from	previous	versions

of	the	ASP.NET	platform.	Policy-

based	authorization	instead	is

completely	new	to	ASP.NET	Core

and	quite	powerful	and	flexible,

too.

Role-based	Authorization

Authorization	is	one	step	further

than	authentication.

Authentication	is	about	discovering

the	identity	of	a	user	to	track	its

activity	and	only	allow	known	users

into	the	system.	Authorization	is

more	specific	and	is	about	defining

requirements	for	users	to	call	into

predefined	appllications’

endpoints.	Common	examples	of

tasks	subject	to	permissions	and

subsequently	to	the	authorization

layer	include	showing	or	hiding

elements	of	the	user	interface,

executing	actions,	or	just	flowing

through	to	other	services.	In

ASP.NET,	roles	are	a	common	way

to	implement	an	authorization

layer	since	the	early	days.

Technically	speaking,	a	role	is	a	plain

string	with	no	attached	behavior.	Its

value,	however,	is	treated	as	meta

information	by	the	ASP.NET	and

ASP.NET	Core	security	layers.	For

example,	both	layers	check	roles	for

presence	in	the	principal	object.	(See

the	method	IsInRole	in	the	identity

object	in	the	principal.)	Beyond	this,

roles	are	used	by	applications	to	grant

permissions	to	all	users	in	that	role.

In	ASP.NET	Core,	the	availability	of

role	information	in	the	claims	of	a

logged	user	depends	on	the	backing

identity	store.	If	you	use	social

authentication,	for	example,	you’re

never	going	to	see	roles	at	all.	A	user

who	authenticates	through	Twitter	or

Facebook	won’t	bring	any	role

information	that	might	be	significant

for	your	application.	However,	your

application	might	assign	a	role	to	that

user	based	on	internal	and	domain-

specific	rules.

In	summary,	roles	are	just	meta

information	that	the	application—and

only	the	application—can	turn	into

permissions	for	doing	or	not	doing

certain	things.	The	ASP.NET	Core

Framework	only	provides	a	bit	of	an

infrastructure	to	persist,	retrieve,	and

carry	roles.	The	list	of	supported	roles

and	mappings	between	users	and

roles	is	typically	stored	in	the

underlying	membership	system

(whether	custom	or	based	on

ASP.NET	Identity)	and	is	retrieved

when	the	user	credentials	are

validated.	Next,	in	some	way,	the	role

information	is	attached	to	the	user

account	and	is	exposed	to	the	system.

The	IsInRole	method	on	the	identity

object	(ClaimsIdentity	in	ASP.NET

Core)	is	the	lever	used	to	implement

role-based	authorization.

The	Authorize	Attribute

The	Authorize	attribute	is	the

declarative	way	to	secure	a

controller	or	just	some	of	its

methods.

Click	here	to	view	code	image

[Authorize]

public	class	CustomerController	:	Controller

{

			...		

}

Note	that	if	specified	without

arguments,	the	Authorize	attribute

only	checks	if	the	user	is

authenticated.	In	the	code	snippet

above,	all	users	who	can	successfully

sign	in	to	the	system	are	equally

enabled	to	call	into	any	methods	of

the	CustomerController	class.	To

select	only	a	subset	of	users,	you	use

roles.

The	Roles	property	on	the	Authorize

attribute	indicates	that	only	users	in

any	of	the	listed	roles	would	be

granted	access	to	the	controller

methods.	In	the	code	below,	both

Admin	and	System	users	are	equally

enabled	to	call	into	the

BackofficeController	class.

Click	here	to	view	code	image

[Authorize(Roles="Admin,	System")]

public	class	BackofficeController	:	Controller

{

			...		

			[Authorize(Roles="System")]

			public	IActionResult	Reset()

			{

						//	You	MUST	be	a	SYSTEM	user	to	get	here

						...

			}

			[Authorize]

			public	IActionResult	Public()

			{

						//	You	just	need	be	authenticated	and	can	view	this	

						//	regardless	of	role(s)	assigned	to	you

						...

			}

			[AllowAnonymous)]

			public	IActionResult	Index()

			{

						//	You	don't	need	to	be	authenticated	to	get	here

						...

			}

}

The	Index	method	doesn’t	require

authentication	at	all.	The	Public

method	just	requires	an	authenticated

user.	The	method	Reset	strictly

requires	a	System	user.	All	other

methods	you	might	have	work	with

either	an	Admin	or	a	System	user.

If	multiple	roles	are	required	to	access

a	controller,	you	can	apply	the

Authorize	attribute	multiple	times.

Alternatively,	you	can	always	write

your	own	authorization	filter.	In	the

code	below,	only	users	who	have	the

Admin	and	the	System	role	will	be

granted	permission	to	call	into	the

controller.

Click	here	to	view	code	image

[Authorize(Roles="Admin")]

[Authorize(Roles="System")]

public	class	BackofficeController	:	Controller

{

			...		

}

Optionally,	the	Authorize	attribute

also	can	accept	one	or	more

authentication	schemes	through	the

ActiveAuthenticationSchemes

property.

Click	here	to	view	code	image

[Authorize(Roles="Admin,	System",	ActiveAuthenticationSchemes="Co
okies"]

public	class	BackofficeController	:	Controller

{

			...		

}

The	ActiveAuthenticationSchemes

property	is	a	comma-separated	string

listing	the	authentication	components

the	authorization	layer	will	trust	in

the	current	context.	In	other	words,	it

states	that	access	to	the

BackofficeController	class	is	allowed

only	if	the	user	is	authenticated

through	the	Cookies	scheme	and	has

any	of	the	listed	roles.	As	mentioned,

string	values	passed	to	the

ActiveAuthenticationSchemes

property	must	comply	with	the

handlers	registered	with	the

authentication	service	at	the	startup

of	the	application.	Subsequently,	an

authentication	scheme	is	essentially	a

label	that	selects	a	handler.

Authorization	Filters

The	information	provided	by	the

Authorize	attribute	is	consumed	by

a	predefined,	system-provided

authorization	filter.	This	filter	runs

before	any	of	the	other	ASP.NET

Core	filters	because	it	is	responsible

for	checking	whether	the	user	can

perform	the	requested	operation.	If

not,	the	authorization	filter	short-

circuits	the	pipeline	and	cancels	the

current	requests.

Custom	authorization	filters	can	be

created,	but	you	usually	don’t	need	to

do	it.	It	is	preferable,	in	fact,	to

configure	the	existing	authorization

layer	on	which	the	default	filter	relies.

Roles,	Permissions,	and	Overrules

Roles	are	an	easy	way	to	group	the

users	of	an	application	based	on

what	they	can	or	cannot	do.	Roles,

however,	are	not	very	expressive;	at

least	not	enough	for	the	needs	of

most	modern	applications.	For

example,	consider	a	relatively

simple	authorization	architecture:

regular	users	of	the	site	and	power

users	authorized	to	access	the	back-

office	and	to	update	the	content.	A

role-based	authorization	layer	can

be	built	around	two	roles—user	and

admin.	Based	on	that,	you	define

which	controllers	and	methods

each	group	of	users	can	access.

The	problem	is	that	in	the	real	world,

things	are	rarely	so	simple.	In	the	real

world,	often	you	run	into	subtle

distinctions	of	what	a	user	can	or

cannot	do	within	a	given	user	role.

You	have	roles,	but	you	need	to	make

exceptions	and	overrules.	For

example,	among	the	users	who	can	be

given	access	to	the	back-office,	some

are	only	authorized	to	edit	customer

data,	some	should	only	work	on

contents,	and	some	can	do	both.	How

would	you	render	an	authorization

scheme	like	that	of	Figure	8-4?

FIGURE	8-4	Roles	and	overrules	to	roles

This	is	an	illustration	made	by	a

diagram	of	boxes	and	arrows.	The	box

“User”	and	the	box	“Admin”	have	a

gray	background,	and	the	box

“Admin”	has	outbound	arrows	that

connect	it	to	other	white	boxes	labeled

“Customer,”	“Contents,”	and

“Customer	+	Contents,”	respectively.

Roles	are	essentially	flat	concepts.

How	would	you	flatten	out	even	a

simple	hierarchy	like	that	shown	in

Figure	8-4?	For	example,	you	can

create	four	different	roles:	User,

Admin,	CustomerAdmin,	and

ContentsAdmin.	The	Admin	role	will

be	the	union	of	CustomerAdmin	and

ContentsAdmin.

It	works,	but	when	the	number	of

overrules—which	are	strictly	business

specific—grows,	the	number	of

required	roles	will	increase

significantly.

The	bottom	line	is	that	roles	are	not

necessarily	the	most	effective	way	to

handle	authorizations,	though	they

are	useful	for	backward	compatibility

and	in	very	simple	scenarios.	For

other	situations,	something	else	is

required.	Enter	policy-based

authorization.

Policy-based	Authorization

Policy-based	Authorization

In	ASP.NET	Core,	the	policy-based

authorization	framework	is

designed	to	decouple	authorization

and	application	logic.	A	policy	is	an

entity	devised	as	a	collection	of

requirements.	A	requirement	is	a

condition	that	the	current	user

must	meet.	The	simplest	policy

ever	is	that	the	user	is

authenticated.	Another	common

requirement	is	that	the	user	is

associated	with	a	given	role.

Another	requirement	is	that	the

user	has	a	particular	claim	or	a

particular	claim	with	a	particular

value.	In	most	general	terms,	a

requirement	is	an	assertion	about

the	user	identity	that	must	be

proven	true	for	the	user	to	be

granted	access	to	a	given	method.

Defining	an	Authorization	Policy

You	create	a	policy	object	using	the

following	code:

Click	here	to	view	code	image

var	policy	=	new	AuthorizationPolicyBuilder()

				.AddAuthenticationSchemes("Cookie,	Bearer")

				.RequireAuthenticatedUser()

				.RequireRole("Admin")

				.RequireClaim("editor",	"contents")

				.RequireClaim("level",	"senior")

				.Build();

The	builder	object	collects

requirements	using	a	variety	of

extension	methods	and	then	builds

the	policy	object.	As	you	can	see,

requirements	act	on	the

authentication	status	and	schemes,

the	role,	and	any	combination	of

claims	read	through	the

authentication	cookie	(or,	if	used,

bearer	token).

	Note	Bearer	tokens	are	an	alternative	to	authentication
cookies	to	carry	information	about	the	identity	of	a	user.	Bearer	tokens	are
typically	used	by	Web	services	invoked	by	non-browser	clients,	such	as
mobile	applications.	We’ll	tackle	bearer	tokens	in	Chapter	10,	“Designing	a
Web	API.”

If	none	of	the	predefined	extension

methods	for	defining	requirements

work	for	you,	then	you	can	always

resort	to	defining	a	new	requirement

through	your	own	assertion.	Here’s

how:

Click	here	to	view	code	image

var	policy	=	new	AuthorizationPolicyBuilder()

				.AddAuthenticationSchemes("Cookie,	Bearer")

				.RequireAuthenticatedUser()

				.RequireRole("Admin")

				.RequireAssertion(ctx	=>

				{

								return	ctx.User.HasClaim("editor",	"contents")	||

															ctx.User.HasClaim("level",	"senior");

				})

				.Build();

The	RequireAssertion	method	takes	a

lambda	that	receives	the	HttpContext

object	and	returns	a	Boolean	value.

The	assertion	is,	therefore,	a

conditional	statement.	Note	that	if

you	concatenate	RequireRole	multiple

times	in	the	definition	of	the	policy,

then	all	roles	must	be	honored	by	the

user.	If	you	want	to	express,	instead,

an	OR	condition	then	you	have	to

resort	to	an	assertion.	In	the	above

example,	in	fact,	the	policy	allows

users	that	are	either	editors	of

contents	or	senior	users.

Once	defined,	policies	must	also	be

registered	with	the	authorization

middleware.

Registering	Policies

The	authorization	middleware	is

first	registered	as	a	service	in	the

ConfigureServices	method	of	the

startup	class.	In	doing	so,	you

configure	the	service	with	all

required	policies.	Policies	can	be

created	through	a	builder	object

and	added	(or	just	declared)

through	the	AddPolicy	extension

method.

Click	here	to	view	code	image

services.AddAuthorization(options=>

{

			options.AddPolicy("ContentsEditor",	policy	=>

			{

							policy.AddAuthenticationSchemes(CookieAuthenticationDefaul
ts.AuthenticationScheme);

							policy.RequireAuthenticatedUser();

							policy.RequireRole("Admin");

							policy.RequireClaim("editor",	"contents");

			});

};

Each	policy	added	to	the

authorization	middleware	has	a	name,

and	the	name	will	be	then	used	to

reference	the	policy	within	the

Authorize	attribute	on	the	controller

class.	Here’s	how	you	set	a	policy,

instead	of	a	role,	to	define

permissions	on	a	controller	method.

Click	here	to	view	code	image

[Authorize(Policy	=	"ContentsEditor")]

public	IActionResult	Save(Article	article)

{

				...

}

Through	the	Authorize	attribute,	you

can	set	a	policy	declaratively	and

allow	the	authorization	layer	of

ASP.NET	Core	to	enforce	it	before	the

method	executes.	Alternatively,	you

can	enforce	the	policy

programmatically.	Here’s	the

necessary	code.

Click	here	to	view	code	image

public	class	AdminController	:	Controller

{

				private	IAuthorizationService	_authorization;

				public	AdminController(IAuthorizationService	authorizationSer
vice)

				{

								_authorization	=	authorizationService;

				}

				public	async	Task<IActionResult>	Save(Article	article)

				{

								var	allowed	=	await	_authorization.AuthorizeAsync(

														User,	"ContentsEditor");

								if	(!allowed.Succeeded)

												return	new	ForbiddenResult();

								//	Proceed	with	the	method	implementation	

								...

				}

}

As	usual,	the	reference	to	the

authorization	service	is	injected	via

DI.	The	AuthorizeAsync	method	gets

the	principal	object	of	the	application

and	the	policy	name,	and	it	returns	an

AuthorizationResult	object	with	a

Succeeded	boolean	property.	When	its

value	is	false,	you	find	the	reason	with

FailCalled	or	FailRequirements	of	the

Failure	property.	If	the	programmatic

check	of	permissions	fails,	you	should

return	a	ForbiddenResult	object.

	Note	There’s	a	subtle	difference	between	returning
ForbiddenResult	or	ChallengeResult	when	a	permission	check	fails;	the
difference	is	even	trickier	if	you	consider	ASP.NET	Core	1.x.	ForbiddenResult
is	a	neat	answer—you	failed—and	an	HTTP	401	status	code	is	returned.
ChallengeResult	is	a	milder	kind	of	response.	It	ends	up	in	a	ForbiddenResult
if	the	user	is	logged	and	redirects	to	the	login	page	if	not	logged.	However,
starting	with	ASP.NET	Core	2.0,	ChallengeResult	no	longer	redirects	non-
logged	users	to	the	login	page.	Hence,	the	only	reasonable	way	to	react	to
failed	permissions	is	through	ForbiddenResult.

Policies	in	Razor	Views

So	far,	we	have	seen	policy

checking	in	controller	methods.

You	can	also	perform	the	same

checks	in	Razor	views,	especially	if

you’re	using	Razor	pages	as

discussed	in	Chapter	5,	“ASP.NET

MVC	Views.”

Click	here	to	view	code	image

@{	

			var	authorized	=	await	Authorization.AuthorizeAsync(User,	"Con
tentsEditor")

}

@if	(!authorized)

{

			<div	class="alert	alert-error">

						You're	not	authorized	to	access	this	page.

			</div>

}

For	the	previous	code	to	work,	you

must	first	inject	the	dependency	on

the	authorization	service.

Click	here	to	view	code	image

@inject	IAuthorizationService	Authorization

Using	the	authorization	service	in	a

view	can	help	hide	segments	of	the

user	interface	not	within	reach	of	the

current	user.

	Important	Showing	or	hiding	user	interface	elements
(links	to	secured	pages,	for	example)	only	based	on	authorization	permission
checks	isn’t	enough	to	be	secure.	Doing	so	works	as	long	as	you	also	do
permission	checks	at	the	controller	method	level.	Keep	in	mind	that	controller
methods	are	the	only	way	to	gain	access	to	the	back	end	of	a	system,	and
people	can	always	try	to	access	a	page	directly	by	typing	the	URL	in	the
browser.	A	hidden	link	is	not	completely	secure.	The	ideal	method	is	to	check
permissions	at	the	gate,	and	the	gate	is	the	controller	level.	The	only
exception	is	starting	with	ASP.NET	Core	2.0,	you	use	Razor	pages.

Custom	Requirements

The	stock	requirements	cover

claims	and	authentication	and

provide	a	general-purpose

mechanism	for	customization

based	on	assertions.	You	can	create

custom	requirements,	too.	A	policy

requirement	is	made	of	two

elements—a	requirement	class	that

just	holds	data	and	an

authorization	handler	that	will

validate	the	data	against	the	user.

You	create	custom	requirements	if

you	fail	expressing	the	desired

policy	with	stock	tools.

As	an	example,	let’s	say	we	want	to

extend	the	ContentsEditor	policy	by

adding	the	requirement	that	the	user

must	have	at	least	three	years	of

experience.	Here’s	a	sample	class	for	a

custom	requirement.

Click	here	to	view	code	image

public	class	ExperienceRequirement	:	IAuthorizationRequirement

{

				public	int	Years	{	get;	private	set;	}

				public	ExperienceRequirement(int	minimumYears)

				{

								Years	=	minimumYears;

				}

}

A	requirement	must	have	at	least	one

authorization	handler.	A	handler	is	a

class	of	type

AuthorizationHandler<T>	where	T	is

the	requirement	type.	The	code	below

illustrates	a	sample	handler	for	the

ExperienceRequirement	type.

Click	here	to	view	code	image

public	class	ExperienceHandler	:	AuthorizationHandler<ExperienceR
equirement>

{

				protected	override	Task	HandleRequirementAsync(

									AuthorizationHandlerContext	context,	

									ExperienceRequirement	requirement)

				{

								//	Save	User	object	to	access	claims

								var	user	=	context.User;

								if	(!user.HasClaim(c	=>	c.Type	==	"EditorSince"))

											return	Task.CompletedTask;

								var	since	=	int.Parse(user.FindFirst("EditorSince").Value
);

								if	(since	>=	requirement.Years)

												context.Succeed(requirement);

								return	Task.CompletedTask;

				}

}

The	sample	authorization	handler

reads	the	claims	associated	with	the

user	and	checks	for	a	custom

EditorSince	claim.	If	not	found,	it	just

returns	without	doing	anything.

Success	is	returned	only	if	the	claim

exists	and	the	claim	contains	an

integer	value	not	less	than	the

specified	number	of	years.	The	custom

claim	is	expected	to	be	a	piece	of

information	linked	in	some	way	to	the

user—for	example,	a	column	in	the

Users	table—saved	to	the

authentication	cookie.	However,	once

you	hold	a	reference	to	the	user,	you

can	always	find	the	username	from

the	claims	and	run	a	query	against	a

database	or	external	service	to	learn

the	number	of	years	of	experience	and

use	the	information	in	the	handler.

	Note	Admittedly,	the	above	example	would	have	been	a	bit
more	realistic	had	the	EditorSince	value	held	a	DateTime	and	calculated	if	a
given	number	of	years	have	passed	since	the	user	began	as	an	Editor.

An	authorization	handler	calls	the

method	Succeed	indicating	that	the

requirement	has	been	successfully

validated.	If	the	requirement	didn’t

pass	then	the	handler	doesn’t	need	to

do	anything	and	can	just	return.

However,	if	the	handler	wants	to

determine	the	failure	of	a

requirement,	regardless	of	that	fact

that	other	handlers	on	the	same

requirement	may	succeed,	it	then	calls

the	method	Fail	on	the	authorization

context	object.

	Important	In	general,	calling	Fail	from	a	handler	should
be	considered	an	exceptional	situation.	An	authorization	handler,	in	fact,
generally	succeeds	or	does	nothing	because	a	requirement	can	have	multiple
handlers,	and	another	one	might	succeed.	Calling	Fail	remains	an	option	for
crucial	situations	when	you	want	to	stop	any	other	handler	from	succeeding,
no	matter	what.	Also,	note	that	even	when	Fail	is	called	programmatically,	the
authorization	layer	evaluates	every	other	requirement	because	handlers	may
have	side	effects	like	logging.

Here’s	how	you	add	a	custom

requirement	to	the	policy.	Because

this	is	a	custom	requirement,	you

have	no	extension	method,	and	you

must	proceed	through	the

Requirements	collection	of	the	policy

object.

Click	here	to	view	code	image

services.AddAuthorization(options	=>

{

				options.AddPolicy("AtLeast3Years",

								policy	=>	policy

																		.Requirements

																		.Add(new	ExperienceRequirement(3)));

});

Also,	you	also	must	register	the	new

handler	with	the	DI	system	under	the

scope	of	the	IAuthorizationHandler

type.

Click	here	to	view	code	image

services.AddSingleton<IAuthorizationHandler,	ExperienceHandler>();

As	mentioned,	a	requirement	can

have	multiple	handlers.	When

multiple	handlers	are	registered	with

the	DI	system	for	the	same

requirement	in	the	authorization

layer,	it	suffices	that	at	least	one

succeeds.

In	the	implementation	of	the

authorization	handler,	it	might

sometimes	be	necessary	to	inspect

request	properties	or	route	data.

Click	here	to	view	code	image

if	(context.Resource	is	AuthorizationFilterContext)

{

				var	url	=	mvc.HttpContext.Request.GetDisplayUrl();

				...

}

In	ASP.NET	Core,	the

AuthorizationHandlerContext	object

exposes	a	Resource	property	set	to	the

filter	context	object.	The	context

object	is	different	depending	on	the

framework	involved.	For	example,

MVC	and	SignalR	send	their	own

specific	context	object.	Whether	you

cast	the	value	held	in	the	Resource

property	depends	on	what	you	need	to

access.	For	example,	the	User

information	is	always	there,	so	you

don’t	need	to	cast	for	that.	However,	if

you	want	MVC-specific	details,	such

as	routing	or	URL	and	request

information,	then	you	have	to	cast.

SUMMARY

Securing	an	ASP.NET	Core

application	passes	through	two

layers—authentication	and

authorization.	Authentication	is	the

step	aimed	at	associating	an

identity	to	the	requests	coming

from	a	particular	user	agent.

Authorization	is	aimed	at	checking

whether	that	identity	can	perform

the	operations	it	is	requesting	in

some	way.

Authentication	passes	through	a	basic

API	centered	on	the	creation	of	an

authentication	cookie	and	can	also

rely	on	the	services	of	a	dedicated

framework	that	provides	a	highly

customizable	membership	system—

ASP.NET	Identity.	Authorization

comes	in	two	flavors.	One	is

traditional	role-based	authorization,

which	works	in	the	same	way	it	works

in	classic	ASP.NET	MVC.	The	other	is

policy-based	authentication,	which	is

a	new	approach	that	makes	for	a

richer	and	more	expressive

permission	model.	A	policy	is	a

collection	of	requirements	based	on

claims	and	custom	logic	based	on	any

other	information	that	can	be	injected

from	the	HTTP	context	or	external

sources.	A	requirement	is	associated

with	one	or	more	handlers,	and	a

handler	is	responsible	for	the	actual

evaluation	of	the	requirement.

While	discussing	ASP.NET	Identity,

we	touched	on	some	database-related

objects	and	concepts.	In	the	next

chapter,	we’ll	just	tackle	data	access	in

ASP.NET	Core.

—	Ray	Bradbury,	“Fahrenheit	451”

CHAPTER	9

Access	to	Application	Data
If	you	hide	your	ignorance,	no	one

will	hit	you	and	you’ll	never	learn.

More	than	a	decade	ago,	Eric	Evans

introduced	Domain-driven	Design

(DDD),	and	one	statement	he	made	in

his	seminal	book	shook	the	pillars	of

software	development.	Essentially,	he

said	that	persistence	should	be	the

last—although	not	the	least—concern

of	an	architect	in	the	design	of	the

system.	In	this	chapter,	we’ll	start

from	there	to	try	to	make	sense	of

data	access	in	modern	web

applications	and	to	develop	a

relatively	generic	pattern	for	an

effective	application	back	end.

Persistence	is	clearly	part	of	the

application	back	end	and,	regardless

of	the	abstraction	layer	you	intend	to

have	on	top,	persistence	is	obviously

made	of	a	framework	to	read	and

write	data	from	some	persistent	store,

possibly	located	on	a	remote	server	on

some	cloud	platform.	More	and	more

applications	use	NoSQL	stores	and

quite	a	few	use	two	distinct	stacks	to

deal	with	data—command	and	query.

Discussing	data	access	in	the	context

of	a	modern	ASP.NET	Core

application	is	not	simply	a	matter	of

going	through	the	nitty-gritty	details

of	a	data	access	library.	The	vision

you’ll	get	in	this	chapter	is	design-first

rather	than	technology-first.	So,	we’ll

first	try	to	capture	the	essence	of	a

general-purpose	pattern	for	the

application	back	end—inspired	by	the

DDD	well-known	Layered

Architecture	pattern—and	then	end

up	reviewing	the	data	access	options

for	actual	reads	and	writes	of

application	data.	In	this	regard,	we’ll

tackle	the	key	capabilities	of	Entity

Framework	Core.

TOWARD	A	RELATIVELY
GENERIC	APPLICATION	BACK
END

In	the	suggested	Layered

Architecture	pattern,	Evans	revisits

the	canonical	3-tier	architecture—

presentation,	business,	data—

introducing	two	key	changes.	The

first	change	is	that	he	moves	the

focus	on	the	concept	of	a	layer

rather	than	a	tier.	A	layer	refers	to	a

logical	separation	between

application	components	whereas	a

tier	refers	to	physically	distinct

applications	and	servers.	The

second	change	is	in	the	number	of

layers	recognized	in	the	schema.

The	layered	architecture	is	based

on	four	layers—presentation,

application,	domain,	and

infrastructure.

Compared	to	the	canonical	3-tier

schema,	you	see	that	the	business	tier

has	been	split	into	two	segments—

application	logic	and	domain	logic—

and	the	data	tier	has	been	renamed	to

a	much	more	generic	infrastructure

layer.	(See	Figure	9-1.)

FIGURE	9-1	3-tier	and	Layered	Architecture	compared

It’s	easy	to	see	from	the	figure	how	the

various	pieces	of	an	ASP.NET

application	map	to	the	layers	of	the

Layered	Architecture.	Of	the	layers	in

Figure	9-1,	only	components	in	the

infrastructure	are	expected	to	know

about	database	details	such	as

location	and	connection	string.	The

rest	of	the	system	should	ideally	be

designed	agnostic	of	the	actual

schema	of	persisted	data.	All	that	the

topmost	application	layers	see	is	data

just	shaped	as	they	need	it	to	be.

Hence,	persisted	data	is	still	crucial

for	any	application	to	work,	but	all

that	any	application	should	know	is

how	to	read	and	write	the	data	it

needs.	These	details	can,	and	should,

be	hidden	as	much	as	possible.

Monolithic	Applications

In	a	classic	bottom-up	design—a

design	philosophy	that	has	been	in

large	use	for	decades—the	first	sign

of	understanding	of	the	system	you

give	to	the	outside	world	is	the	data

model.	Everything	else	is	built	on

top	of	that	including	processes	and,

more	than	everything	else,	user

interface	and	experience.

In	a	monolithic	application,	data

travels	from	the	bottom	of	the

persistence	up	to	the	front	end	and

back.	The	data	goes	through	a	couple

of	transformation	points	that	adapt

data	collected	in	the	user	interface	to

the	storage	needs	and	adjust	that

stored	data	in	the	back	end	for	display

purposes	(see	Figure	9-2).

FIGURE	9-2	Shapes	of	data	in	a	monolithic	application

As	you	can	easily	guess	from	the

figure,	data	goes	through	a	couple	of

distinct	paths:	From	storage	to	front

end	and	from	front	end	back	to

storage.	Shouldn’t	we	consider

breaking	the	application	stack	in	two?

Wouldn’t	treating	the	command	stack

and	the	read	stack	independently	be

more	effective	for	development?	This

question	has	led	to	NoSQL	stores	as

well	as	XML	and	JSON	support	in

classic	RDBMS	systems.	This	is	just

what	Command	and	Query

Responsibility	Segregation	(CQRS)

pattern	is	making.	A	separation

between	the	command	and	the	query

stack	makes	it	easier	to	deal	with

those	real-world	situations	in	which

data	is	ideally	stored	in	one	way	and

read	in	another	way.

Though	not	strictly	a	necessity,

Layered	Architecture	combined	with

CQRS	provides	a	starting	design	point

that	probably	represents	the	best	fit

for	most	cases	today	(see	Figure	9-3).

FIGURE	9-3	Layered	Architecture	pattern	combined	with	CQRS

design

The	CQRS	Approach

The	moment	you	open	your	mind

to	having	two	distinct	stacks—one

for	reading	and	one	for	updating

the	state	of	your	application—a

number	of	possible	implementation

scenarios	unveil.	No	scenario	is	just

perfect	for	everyone.	The	one-size-

fits-all	pattern	doesn’t	work	here,

but	the	general	idea	of	CQRS	can

have	benefits	for	everyone.

Any	seasoned	developer	can

remember	how	problematic	it	was	to

work	out	the	ideal	data	model	that

could	combine	the	principles	of

relational	data	modeling	with	the

intricacies	of	actual	views	required	by

end	users.	A	single	application	stack

forces	you	to	have	a	single	data	model

that	is	persistence-oriented	but

adapted	to	effectively	serve	the	needs

of	the	front	end.	Especially	when

combined	with	the	additional

abstraction	layer	of	a	methodology

like	Domain-driven	Design,	the	design

of	the	back	end	(business	logic	and

data	access	logic)	easily	becomes	an

entangled	mess.

In	this	regard,	CQRS	adds	simplicity

by	breaking	the	design	problem	into

two	smaller	problems	and	helping	to

find	the	right	design	solution	for	each

problem	without	external	constraints.

This	is,	however,	the	epiphany	of	a

new	vision	of	the	application

architecture.	The	nice	thing	about

having	distinct	stacks	is	that	you	can

easily	use	separate	object	models	for

implementing	commands	and	queries.

If	required,	you	can	have	a	full

domain	model	for	commands	but

plain	data	transfer	objects	tailor-made

for	the	presentation,	perhaps	simply

materialized	from	SQL	queries.	Also,

when	you	need	multiple	presentation

front	ends	(for	example	web,	mobile

web,	and	mobile	applications),	all	you

do	is	create	additional	read	models.

The	complexity	results	from	the

summation	of	individual	complexities

rather	than	from	the	Cartesian

product	of	all.	This	is	just	what	Figure

9-3	tries	to	communicate.

Working	with	Distinct	Databases

Working	with	Distinct	Databases

The	separation	of	the	back	end	into

distinct	stacks	simplifies	design

and	coding	and	sets	the	ground	for

an	unparalleled	scalability

potential.	At	the	same	time,	it

raises	issues	that	should	be

carefully	considered	at	the

architecture	level.	How	can	you

keep	the	two	stacks	in	sync	so	that

the	data	commands	write	is	read

back	consistently?	Depending	on

the	business	problem	you’re	trying

to	solve,	a	CQRS	implementation

can	be	based	on	one	or	two

databases.	If	a	shared	database	is

used,	then	getting	the	right

projection	of	data	for	the	query

purpose	is	just	extra	work	in	the

read	stack	performed	on	top	of

plain	queries.	A	shared	database,	at

the	same	time,	ensures	classic

ACID	consistency.

FIGURE	9-4	Comparing	CQRS	architectures	using	shared	and

distinct	databases	for	command	and	query	stacks

When	it	comes	to	performance	or

scalability,	you	can	consider	using

different	persistence	endpoints	for	the

command	and	read	stacks.	As	an

example,	the	command	stack	might

have	an	event	store,	a	NoSQL

document	store,	or	perhaps	a	non-

durable	store	such	as	an	in-memory

cache.	The	synchronization	of

command	data	with	read	data	might

happen	asynchronously	or	even	be

scheduled	periodically	depending	on

how	stale	data	(and	on	how	stale	that

data	is)	affects	the	presentation.	In

case	of	distinct	databases,	the	read

database	is	often	a	plain	relational

database	that	just	offers	one	(or	more)

projection	of	the	data	(see	Figure	9-4).

When	Is	CQRS	Appropriate?

CQRS	is	not	a	comprehensive

approach	to	the	design	of	an

enterprise-class	system.	CQRS	is

simply	a	pattern	that	guides	you	in

architecting	a	specific	bounded

context	of	a	possibly	larger	system.

The	CQRS	architectural	pattern

was	devised	primarily	to	solve

performance	issues	in	highly

concurrent	business	scenarios

where	handling	commands

synchronously	and	performing	data

analysis	was	getting	more	and	more

problematic.	Many	seem	to	think

that	outside	the	realm	of	such

collaborative	systems,	the	power	of

CQRS	diminishes	significantly.	As	a

matter	of	fact,	the	power	of	CQRS

shines	in	collaborative	systems

because	it	lets	you	address

complexity	and	competing

resources	in	a	much	smoother	way.

There’s	more	to	it	than	meets	the

eye,	I	think.

CQRS	can	sufficiently	pay	the

architecture	bill	even	in	far	simpler

scenarios,	where	the	plain	separation

between	query	and	command	stacks

leads	to	simplified	design	and

dramatically	reduces	the	risk	of	design

errors.	Put	another	way,	CQRS	lowers

the	level	of	skills	required	to

implement	even	quite	a	sophisticated

system.	Using	CQRS	makes	doing	a

good	job	regarding	scalability	and

cleanliness	an	affordable	effort	for

nearly	any	team.

	Note	Using	CQRS	with	a	clean	and	full	separation	of	stacks
(for	example,	using	distinct	databases)	straightens	the	road	ahead	to	using
events	as	the	primary	source	of	data.	Using	events	as	the	primary	source	of
data	means	that	the	command	stack	just	records	what	has	happened	(for
example,	a	new	customer	has	been	added	to	the	system)	without	necessarily
updating	the	current	list	of	customers.	Getting	the	up-to-date	list	of	customers
is	the	responsibility	of	the	read	stack,	and	to	preserve	performance,	out-of-
band	synchronization	can	be	added	so	that	every	recorded	event	triggers	an
update	on	the	read	stack	that	keeps	all	of	the	data	snapshots	necessary	to
the	application	up	to	date.

Inside	the	Infrastructure	Layer

Inside	the	Infrastructure	Layer

In	a	realistic	application	back	end,

the	infrastructure	layer	is	anything

related	to	using	concrete

technologies,	including	data

persistence	(O/RM	frameworks	like

Entity	Framework),	external	web

services,	specific	security	API,

logging,	tracing,	IoC	containers,

caching,	and	more.	The	most

prominent	component	of	the

infrastructure	layer	is	the

persistence	layer—nothing	more

than	the	old	faithful	data	access

layer	only	possibly	extended	to

cover	a	few	data	sources	other	than

plain	relational	data	stores.	The

persistence	layer	knows	how	to

read	and/or	save	data	and	is	made

of	repository	classes.

The	Persistence	Layer

If	you	use	the	classic	approach	of

storing	the	current	state	of	the

system,	then	you’re	going	to	have

one	repository	class	per	each

relevant	group	of	entities.	By	a

group	of	entities,	I	mean	entities

that	always	go	together,	such	as

orders	and	order	items.	(This

concept	is	referred	to	as

aggregates	in	DDD	jargon.)	The

structure	of	a	repository	can	be

CRUD-like,	meaning	you	have

Save,	Delete,	and	Get	methods	on	a

generic	type	T,	and	you	work	with

predicates	to	query	ad	hoc	sections

of	data.	Nothing,	however,	really

prevents	you	from	giving	your

repository	an	RPC	style	with

methods	that	reflect	actions—

reads,	deletes	or	insertions—that

serve	the	purpose	of	the	business.	I

usually	summarize	this	by	saying

that	there’s	no	wrong	way	to	write	a

repository.

Caching	Layers

Caching	Layers

Not	all	data	you	have	in	a	system

changes	at	the	same	rate.	In	light	of

this,	it	makes	little	sense	to	ask	the

database	server	to	read	unchanged

data	every	time	a	request	comes	in.

At	the	same	time,	in	a	web

application,	requests	come	in

concurrently.	Many	requests	might

hit	the	web	server	each	second,	and

many	of	those	concurrent	requests

might	request	the	same	page.	Why

shouldn’t	you	cache	that	page,	or	at

least	the	data	it	consumes?

Even	though	all	systems	are	supposed

to	work	without	a	cache,	very	few

applications	can	survive	a	second	or

two	without	data	caching.	On	a	high-

traffic	site,	a	second	or	two	can	make

the	difference.	In	many	situations,

caching	has	become	an	additional

layer	built	around	ad	hoc	frameworks

(actually,	in-memory	databases)	such

as	Memcached,	ScaleOut,	or	NCache.

At	the	same	time,	in-memory

solutions	are	not	free	of	issues	either

because	they	might	trigger	more

frequent	and	longer	garbage	collection

operations	on	longer-lived	objects	of

generation	2.	In	edge	cases,	this	could

lead	to	timeouts.

External	Services

External	Services

Another	scenario	for	the

infrastructure	layer	is	when	data	is

only	accessible	through	web

services.	A	good	example	of	this

scenario	is	when	the	web

application	lives	on	top	of	some

CRM	software	or	has	to	consume

proprietary	company	services.	In

general,	the	infrastructure	layer	is

responsible	for	wrapping	external

services	as	appropriate.

Architecturally	speaking,	today,	we

really	have	to	think	of	an

infrastructure	layer	rather	than	as	a

plain	data	access	layer	that	wraps

up	a	relational	database.

DATA	ACCESS	IN	.NET	CORE

When	it	comes	to	data	access	in	an

ASP.NET	Core	application,	the	first

option	that	often	comes	to	mind	is

using	Entity	Framework	Core	(EF

Core).	For	sure,	EF	Core	is	the	new

entry	specifically	created	from	the

ashes	of	canonical	Entity

Framework	6.x	to	offer	a	primary

choice	of	an	O/RM	to	developers.

The	remainder	of	this	chapter	will

cover	the	basic	and	most	common

tasks	one	would	likely	perform	with

EF	Core.	Before	we	get	there,

though,	it	is	interesting	to	skim	the

other	options	you	have	as	far	as

data	access	is	concerned.	And	you’ll

be	surprised	at	how	many	different

options	you	might	have.

Entity	Framework	6.x

Entity	Framework	6.x

Entity	Framework	6.x	(EF6)	is	the

old	faithful	O/RM	framework	we

used	for	quite	a	few	years	to	code

data	access	tasks	in	.NET

applications.	EF6	is	only	partially

compatible	with	the	new	.NET	Core

platform.	In	other	words,	you	are

welcome	to	use	EF6	in	your	.NET

Core	projects	but	doing	that	forces

you	to	compile	your	.NET	Core

code	against	the	full	.NET

Framework.	The	issue	is	that	EF6

doesn’t	fully	support	.NET	Core.

The	net	effect	is	that	using	EF6

from	within	your	ASP.NET	Core

application	doesn’t	give	you	any	of

the	cross-platform	features	you

might	have	heard	about.	An

ASP.NET	Core	application

compiled	against	the	full	.NET

Framework	(and	then	possibly

reusing	some	existing	EF6	code)	is

restricted	to	run	under	Windows.

	Note	When	running	under	Windows,	an	ASP.NET	Core
application	can	be	hosted	under	IIS,	but	it	can	also	be	hosted	in	a	Windows
service	and	run	on	top	of	Kestrel.	It	would	be	quite	efficient	even	though	you
lose	the	higher-level	services	of	IIS.	At	the	same	time,	though,	you	don’t
always	need	those	services.	As	usual,	it	is	a	matter	of	trade-offs.

Wrapping	Up	EF6	Code	in	a	Separate	Class
Library

The	recommended	way	to	use	EF6

in	an	ASP.NET	Core	application	is

to	put	all	the	classes,	including	DB

context	and	entity	classes,	in	a

separate	class	library	project	and

make	it	target	the	full	framework.

Next,	a	reference	to	this	project	will

be	added	to	the	new	ASP.NET	Core

project.	This	additional	step	is

required	because	ASP.NET	Core

projects	don’t	support	all	the

functionality	that	you	can

programmatically	trigger	from

within	the	EF6	context	class.

Hence,	direct	use	of	the	EF6

context	class	inside	of	ASP.NET

Core	projects	is	not	supported.

	Important	Realistically,	using	an	intermediate	class	library
is	not	a	limitation.	In	fact,	the	primary	reason	for	using	EF6	in	an	ASP.NET
Core	(or	just	.NET	Core)	project	is	to	reuse	existing	code	rather	than	to	use	a
familiar	old	API.	Existing	code	is	likely	already	isolated	in	a	separate	class
library.	However,	even	if	you’re	writing	fresh	EF6	code,	keeping	it	well	isolated
from	the	main	body	of	the	project	is	an	excellent	design	choice	that	would
make	it	easy	in	the	future	to	replace	the	framework	for	data	access	and	use	a
fully	supported	cross-platform	API	like	EF	Core	or	any	other	of	the	options
described	in	this	chapter.

Retrieving	the	Connection	String

The	way	in	which	EF6	context

classes	retrieve	their	connection

string	is	not	completely	compatible

with	the	newest	and	totally

rewritten	configuration	layer	of

ASP.NET	Core.	Let’s	consider	the

following	common	code	fragment.

Click	here	to	view	code	image

public	class	MyOwnDatabase	:	DbContext

{

			public	MyOwnDatabase(string	connStringOrDbName	=	"name=MyOwnDa
tabase")

							:	base(connStringOrDbName)

			{

						

			}	

}

The	application-specific	Db	context

class	receives	the	connection	string	as

an	argument	or	retrieves	it	from	the

web.config	file.	In	ASP.NET	Core,

there’s	nothing	like	a	web.config	file,

so	the	connection	string	either

becomes	a	constant	or	should	be	read

through	the	.NET	Core	configuration

layer	and	passed	in.

Integrating	EF	Context	with	ASP.NET	Core	DI

Most	of	the	ASP.NET	Core	data

access	examples	you	find	on	the

web	show	how	to	inject	the	DB

context	into	all	layers	of	the

application	via	Dependency

Injection	(DI).	You	can	inject	the

EF6	context	in	the	DI	system	as

you	would	do	with	any	other

service.	The	ideal	scope	is	per-

request,	which	means	the	same

instance	is	shared	by	all	possible

callers	within	the	same	HTTP

request.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Other	services	added	here	

				...

				//	Get	connection	string	from	configuration

				var	connString	=	...;

				services.AddScoped<MyOwnDatabase>(()	=>	new	MyOwnDatabase(con
nString));

}

With	the	above	configuration	in	place,

you	can	now	inject	even	an	EF6	DB

context	directly	into	a	controller	or,

more	likely,	into	a	repository	class.

Click	here	to	view	code	image

public	class	SomeController	:	Controller

{

				private	readonly	MyOwnDatabase	_context;

				public	SomeController(MyOwnDatabase	context)

				{

								_context	=	context;

				}

				//	More	code	here

				...

}

The	above	code	snippet—injecting	a

DB	context	into	a	controller	class—is

fairly	common	in	articles	and

documentation,	but	it	is	not

something	I	recommend	you	do	for

the	simple	reason	that	it	inevitably

leads	to	fat	controllers	and	one	big

layer	of	code	that	from	the	input	level

goes	straight	to	the	data	access.	I’d

rather	use	the	DI	pattern	in	a

repository	class	or	not	use	the	DI

pattern	at	all	for	DB	context	classes.

ADO.NET	Adapters

ADO.NET	Adapters

In	ASP.NET	Core	2.0,	Microsoft

has	brought	back	some

components	of	the	old	ADO.NET

API,	specifically	DataTable	objects,

data	readers,	and	data	adapters.

While	always	supported	as	a

constituent	part	of	the	.NET

Framework,	the	ADO.NET	classic

API	was	progressively	abandoned

in	recent	years	in	the	development

of	new	applications	in	favor	of

Entity	Framework.	Because	of	this,

it	was	sacrificed	in	the	design	of	the

.NET	Core	API	1.x	and	then

brought	back	by	popular	demand	in

version	2.0.	As	a	result,	in

ASP.NET	2.0	applications,	you	can

write	data	access	code	to	manage

connections,	SQL	commands,	and

cursors	just	as	you	could	at	the

beginning	of	the	.NET	era.

Issuing	Direct	SQL	Commands

In	ASP.NET	Core,	the	ADO.NET

API	has	nearly	the	same

programming	interface	it	has	in	the

full	.NET	Framework,	and	it	has

the	same	programming	paradigms.

First	and	foremost,	you	can	gain

full	control	over	each	command	by

managing	the	connection	to	the

database	and	creating	the

command	and	its	parameters

programmatically.	Here’s	an

example:

Click	here	to	view	code	image

var	conn	=	new	SqlConnection();

conn.ConnectionString	=	"...";

var	cmd	=	new	SqlCommand("SELECT	*	FROM	customers",	conn);

Once	ready,	the	command	must	be

issued	through	an	open	connection.	A

few	more	lines	of	code	are	required	to

achieve	this.

Click	here	to	view	code	image

conn.Open();

var	reader	=	cmd.ExecuteReader(CommandBehavior.CloseConnection);

//	Read	data	and	do	any	required	processing

...

reader.Close();

The	connection	is	automatically

closed	when	you	close	the	reader

because	of	the	close-connection

behavior	requested	when	the	data

reader	was	opened.	The	SqlCommand

class	can	execute	the	command

through	a	variety	of	methods,	as

explained	in	Table	9-1.

TABLE	9-1	Execute	methods	of	a

SqlCommand	class

Exec

ute	

Met

hod

Description

Exec

uteN

onQu

ery

Executes	the	command	but	returns	no	value.	Ideal	

for	non-query	statements	such	as	UPDATEs.

Exec

uteR

eade

r

Executes	the	command	and	returns	a	cursor	that	

points	to	the	beginning	of	the	output	stream.	Ideal	

for	query	commands.

Exec

uteSc

alar

Executes	the	command	and	returns	a	single	value.	

Ideal	for	query	commands	returning	a	scalar	value	

such	as	MAX	or	COUNT.

Exec

uteX

mlRe

ader

Executes	the	command	and	returns	an	XML	reader.	

Ideal	for	commands	that	return	XML	content.

The	methods	in	Table	9-1	offer	a

variety	of	options	to	grab	the	results

of	any	SQL	statement	or	stored

procedure	you	want	to	execute.	Here’s

an	example	that	shows	how	to	go

through	the	records	of	a	data	reader.

Click	here	to	view	code	image

var	reader	=	cmd.ExecuteReader(CommandBehavior.CloseConnection);

while(reader.Read())

{

				var	column0	=	reader[0];	 													//	returns	an	Object

				var	column1	=	reader.GetString(1)				//	index	of	the	column	t
o	read

				//	Do	something	with	data

}

reader.Close();

	Note	The	ADO.NET	API	in	.NET	Core	is	identical	to	the	API
you	have	in	the	.NET	Framework	and	doesn’t	support	more	recent
development	in	the	SQL	Server	area,	such	as	native	JSON	support	in	SQL
Server	2016	and	newer.	For	example,	there’s	nothing	like
ExecuteJsonReader	method	to	parse	JSON	data	to	a	class.

Loading	Data	in	Disconnected	Containers

Using	a	reader	is	ideal	if	you	need

to	process	a	long	response	while

keeping	the	amount	of	memory	at	a

minimum.	Otherwise,	it	is

preferable	to	load	the	results	of	a

query	into	a	disconnected	container

such	as	a	DataTable	object.	There

are	a	few	facilities	for	this.

Click	here	to	view	code	image

conn.Open();

var	reader	=	cmd.ExecuteReader(CommandBehavior.CloseConnection);

var	table	=	new	DataTable("Customers");

table.Columns.Add("FirstName");

table.Columns.Add("LastName");

table.Columns.Add("CountryCode");

table.Load(reader);

reader.Close();

A	DataTable	object	is	the	in-memory

version	of	a	database	table	with

schema,	relations,	and	primary	keys.

The	easiest	way	to	fill	one	is	getting	a

data	reader	cursor	and	loading	the

entire	content	in	the	declared

columns.	Mapping	happens	by

column	index,	and	the	actual	code

behind	the	Load	method	is	very	close

to	the	loop	presented	earlier.	From

your	end,	though,	it	only	takes	a

method,	but	still	leaves	on	you	the

responsibility	of	managing	the	state	of

the	database	connection.	For	this

reason,	in	general,	the	safest	approach

you	can	take	is	to	use	the	Dispose

pattern	and	create	the	database

connection	within	a	C#	using

statement.

Fetching	via	Adapters

Fetching	via	Adapters

The	most	compact	way	to	fetch

data	into	in-memory	containers	is

through	data	adapters.	A	data

adapter	is	a	component	that	sums

up	the	entire	query	process.	It	is

made	of	a	command	object,	or	just

the	select	command	text,	and	a

connection	object.	It	takes	care	of

opening	and	closing	the	connection

for	you	and	packages	all	results	of

the	query	(including	multiple	result

sets)	into	a	DataTable	or	a	DataSet

object.	(A	DataSet	is	a	collection	of

DataTable	objects.)

Click	here	to	view	code	image

var	conn	=	new	SqlConnection();

conn.ConnectionString	=	"...";

var	cmd	=	new	SqlCommand("SELECT	*	FROM	customers",	conn);

var	table	=	new	DataTable();

var	adapter	=	new	SqlDataAdapter(cmd);

adapter.Fill(table);

Again,	if	you	are	familiar	with	the

ADO.NET	API,	you’ll	find	it	back	in

.NET	and	ASP.NET	Core	2.0	as	it	was

originally.	This	guarantees	that	one

more	piece	of	legacy	code	can	be

ported	to	other	platforms.	Beyond

that,	support	for	ADO.NET	gives

another	chance	to	use	the	more

advanced	capabilities	of	SQL	Server

2016,	such	as	JSON	support	and

history	of	updates,	in	.NET	Core	and

ASP.NET	Core.	For	those	features,	in

fact,	you	have	no	ad	hoc	support	from

either	EF6	or	EF	Core.

Using	Micro	O/RM	Frameworks

Using	Micro	O/RM	Frameworks

An	O/RM	framework	does	the	dirty

and	praiseworthy	job	of	querying

rows	of	data	and	mapping	them	to

the	properties	of	an	in-memory

object.	Compared	to	DataTable

objects	discussed	above,	an	O/RM

loads	the	same	low-level	data	into	a

strongly-typed	class	rather	than	a

generic	table-oriented	container.

When	it	comes	to	O/RM

frameworks	for	the	.NET

Framework,	most	developers	think

of	Entity	Framework	or	perhaps

NHibernate.	Those	are	the	most

popular	frameworks	but	also	the

most	gigantic.	For	an	O/RM

framework,	the	attribute	of	gigantic

relates	to	the	number	of	features	it

supports,	ranging	from	mapping

capabilities	to	caching,	and	from

transactionality	to	concurrency.

The	support	for	the	LINQ	query

syntax	is	crucial	in	a	modern	O/RM

for	.NET.	It	makes	for	a	long	list	of

features	that	inevitably	impacts	the

memory	footprint	and	even	the

performance	of	single	operations.

That’s	why	a	few	people	and

companies	have	recently	started

using	micro	O/RM	frameworks.	A

few	options	exist	for	ASP.NET	Core

applications.

Micro	O/RM	vs.	Full	O/RM

Micro	O/RM	vs.	Full	O/RM

Let’s	face	it.	A	micro	O/RM	does

the	same	basic	job	of	a	full	O/RM,

and	most	of	the	time,	you	don’t

really	need	a	fully-fledged	O/RM.

Want	an	example?	Stack	Overflow,

one	of	the	most	trafficked	websites

on	the	planet,	doesn’t	use	a	full

O/RM.	Stack	Overflow	even

managed	to	create	their	own	micro

O/RM	just	for	performance

reasons.	That	being	said,	my

personal	feeling	is	that	most

applications	use	Entity	Framework

only	because	it’s	part	of	the	.NET

Framework	and	because	it	makes

writing	a	query	a	matter	of	C#	code

instead	of	SQL.	Productivity	does

matter,	and	in	general	terms,	I	tend

to	consider	the	use	of	a	full	O/RM	a

more	productive	choice	because	of

the	number	of	examples	and

features,	including	internal

optimization	of	commands	to

ensure	a	sufficient	trade-off	all	the

time.

If	a	micro	O/RM	can	have	a	much

smaller	memory	footprint,	then	it	is

essentially	because	it	lacks	features.

The	question	is	whether	any	of	the

missing	features	affect	your

application.	The	primary	missing

features	are	second-level	caching	and

built-in	support	for	relationships.

Second-level	caching	refers	to	having

an	additional	layer	of	cache	managed

by	the	framework	that	persists	results

for	a	configured	amount	of	time

across	connections	and	transactions.

Second-level	caching	is	supported	in

NHibernate	but	not	in	Entity

Framework	(although	some

workarounds	make	it	possible	in	EF6

and	an	extension	project	exists	for	EF

Core).	This	is	to	say	that	second-level

caching	is	not	a	big	discriminant

between	micro	and	full	O/RM

frameworks.	Much	more	relevant	is

the	other	missing	feature—support	for

relationships.

When	you	write	a	query,	say	in	EF,

you	can	include	in	the	query	any

foreign-key	relationship	regardless	of

the	cardinality.	Expanding	the	results

of	a	query	to	joined	tables	is	part	of

the	syntax	and	doesn’t	require

building	the	query	through	a	different

and	more	articulated	syntax.	You

usually	don’t	get	this	with	a	micro

O/RM.	In	a	micro	O/RM,	this	is

precisely	the	point	where	you	make

the	trade-off.	You	can	have	faster

performance	of	the	operation	at	the

cost	of	spending	more	time	writing	a

more	complex	query	that	requires

more	advanced	SQL	skills.

Alternatively,	you	can	skip	over	the

SQL	skills	and	let	the	system	do	the

work	for	you.	This	extra	service	from

the	framework	comes	at	the	cost	of

memory	footprint	and	overall

performance.

Also,	a	full	O/RM	can	provide

designers	and/or	migration	facilities

that	not	everybody	likes	and	uses	that

contribute	to	making	the	image	of	the

full	O/RM	more	gigantic.

Sample	Micro	O/RMs

Sample	Micro	O/RMs

The	Stack	Overflow	team	opted	for

creating	a	tailor-made	mini	O/RM

—the	Dapper	framework—taking

on	the	responsibility	of	writing

super	optimized	SQL	queries	and

adding	themselves	tons	of	external

caching	layers.	The	Dapper

framework	is	available	at

http://github.com/StackExchange

/Dapper

(http://github.com/StackExchange/Dapper)

.	The	framework	shines	at

executing	SELECT	statements

against	a	SQL	database	and

mapping	the	data	returned	to

objects.	Its	performance	is	nearly

identical	to	using	a	data	reader—

which	is	the	fastest	way	to	query

data	in	.NET,	but	it	can	return	a	list

of	in-memory	objects.

Click	here	to	view	code	image

var	customer	=	connection.Query<Customer>(

											"SELECT	*	FROM	customers	WHERE	Id	=	@Id",	

											new	{	Id	=	123	});

The	NPoco	Framework	works	along

the	same	guidelines,	and	even	the

code	is	only	minimally	different	from

Dapper.	The	NPoco	framework	is

available	at

http://github.com/schotime/npoco

(http://github.com/schotime/npoco).

Click	here	to	view	code	image

using	(IDatabase	db	=	new	Database("connection_string"))		

{	

				var	customers	=	db.Fetch<Customer>("SELECT	*	FROM	customers")
;	

}

The	family	of	micro	O/RM	grows

every	day,	and	many	others	exist	for

ASP.NET	Core,	such	as

Insight.Database

(http://github.com/jonwagner/Insig

ht.Database

(http://github.com/jonwagner/Insight.Databas

e))	and	PetaPoco,	which	is	supplied	as

a	single	big	file	to	integrate	into	your

application

(http://www.toptensoftware.com/pe

tapoco

(http://www.toptensoftware.com/petapoco)).

The	key	thing	about	micro	O/RM,

however,	is	not	so	much	which	one

you	should	use	but	whether	you	use	a

micro	O/RM	instead	of	a	full	O/RM.

	Note	According	to	the	numbers	released	by	Stack	Overflow
engineers	on	the	Dapper	home	page
(http://github.com/StackExchange/Dapper	(http://github.com/StackExchange/Dapper)),
performance-wise,	Dapper	can	be	up	to	10	times	faster	than	Entity
Framework	on	a	single	query.	It’s	a	huge	difference,	but	not	necessarily
sufficient	to	have	everyone	decide	to	use	Dapper	or	another	micro	O/RM.
That	choice	depends	on	the	number	of	queries	you	run	and	the	skills	of	the
developers	writing	them,	as	well	as	which	alternatives	you	have	to	improve
performance.

Using	NoSQL	Stores

The	term	NoSQL	means	many

things	and	points	to	many	different

products.	In	the	end,	NoSQL	can	be

summarized	by	saying	that	it’s	the

data	storage	paradigm	of	choice

when	you	don’t	want—or	don’t

need—relational	storage.	All	in	all,

there’s	just	one	use-case	when	you

really	want	to	use	a	NoSQL	store:

When	the	schema	of	the	records

changes	but	the	records	are

logically	related.

Think	of	a	form	or	a	questionnaire	to

fill	and	store	in	a	multi-tenant

application.	Each	tenant	can	have	its

own	list	of	fields,	and	you	need	to	save

values	for	a	variety	of	users.	Each

tenant	form	might	be	different,	but

the	resulting	records	are	all	logically

related	and	should	ideally	go	in	the

same	store.	In	a	relational	database,

you	have	very	few	options	other	than

creating	a	schema	that	is	the	union	of

all	possible	fields.	But	even	in	this

case,	adding	a	new	field	for	a	tenant

requires	altering	the	schema	of	the

table.	Organizing	data	by	rows	rather

than	by	column	poses	other	problems,

such	as	the	performance	hit	every

time	the	query	for	a	tenant	crosses	the

SQL	page	size.	Again,	it	depends	on

the	specific	application	usage	but,	the

fact	is,	schema-less	data	is	not	ideal

for	a	relational	store.	Enter	NoSQL

stores.

As	mentioned,	there	are	many	ways	to

catalog	NoSQL	stores.	For	this	book,	I

prefer	to	simply	split	them	into

physical	and	in-memory	stores.	In

spite	of	physical/memory	contrast,

the	distinction	is	pretty	thin.	NoSQL

stores	are	mostly	used	as	a	form	of

cache	and	less	frequently	as	the

primary	data	store.	When	they’re	used

as	the	primary	data	store,	it’s	usually

because	the	application	has	an	event-

sourcing	architecture.

Classic	Physical	Stores

A	physical	NoSQL	store	is	a

schemaless	database	that	saves

.NET	Core	objects	to	disk	and

offers	functions	to	fetch	and	filter

them.	The	most	popular	NoSQL

store	is	probably	MongoDB,	which

goes	hand	in	hand	with	Microsoft’s

Azure	DocumentDB.	Interestingly,

applications	written	to	use	the

MongoDB	API	can	be	made	to

write	to	a	DocumentDB	database

simply	by	changing	the	connection

string.	Here’s	instead	a	sample

query	written	for	DocumentDB.

Click	here	to	view	code	image

var	client	=	new	DocumentClient(azureEndpointUri,	password);

var	requestUri	=	UriFactory.CreateDocumentCollectionUri("MyDB",	"
questionnaire-items");

var	questionnaire	=	client.CreateDocumentQuery<Questionnaire>(req
uestUri)	

								.Where(q	=>	q.Id	==	"tenant-12345"	&&	q	=>	q.Year	=	2018)
	

								.AsEnumerable()	

								.FirstOrDefault();

The	major	benefit	of	a	NoSQL	store	is

the	ability	to	store	differently	shaped,

but	related,	data	and	scale	storage	and

easy	query	capabilities.	Other	physical

NoSQL	databases	are	RavenDB,

CouchDB,	and	CouchBase,	which	is

particularly	suited	for	mobile

applications.

In-memory	Stores

In-memory	stores	are	essentially

large-cache	applications	that	work

as	key-value	dictionaries.	Even

though	they	do	back	up	content,

they	are	perceived	as	being	large

chunks	of	memory	in	which

applications	park	data	for	quick

retrieval.	An	excellent	example	of

an	in-memory	store	is	Redis

(http://redis.io	(http://redis.io)).

To	understand	the	relevance	of	such

frameworks,	think	again	of	Stack

Overflow’s	publicly	documented

architecture.	Stack	Overflow

(www.stackoverflow.com

(http://www.stackoverflow.com))	uses	a

customized	version	of	Redis	as	an

intermediate	second-level	caching	to

maintain	questions	and	data	for	a

long	period	without	the	need	to	re-

query	from	the	database.	Redis

supports	disk-level	persistence,	LRU-

eviction,	replication,	and	partitioning.

Redis	is	not	directly	accessible	from

ASP.NET	Core,	but	it	can	be	done

through	the	ServiceStack	API	(see

http://servicestack.net

(http://servicestack.net)).

Another	in-memory,	NoSQL	database

is	Apache	Cassandra,	which	is

accessible	in	ASP.NET	Core	via	the

DataStax	driver.

EF	CORE	COMMON	TASKS

EF	CORE	COMMON	TASKS

If	you	intend	to	remain	in	the	realm

of	a	full	O/RM	for	ASP.NET	Core,

the	choice	is	limited	to	the	new,

tailor-made	version	of	Entity

Framework,	known	as	EF	Core.	EF

Core	supports	a	provider	model

through	which	it	lets	you	work	with

a	variety	of	relational	DBMS,

specifically	SQL	Server,	Azure	SQL

Database,	MySQL,	and	SQLite.	For

all	these	databases,	EF	Core	has	a

native	provider.	Also,	an	in-

memory	provider	exists,	which	is

good	for	testing	purposes.	For

PostgreSQL,	you	need	an	external

provider	from	http://npgsql.org

(http://npgsql.org).	An	Oracle	provider

for	EF	Core	is	expected	by	early

2018.

To	install	EF	Core	in	an	ASP.NET

Core	application,	you	need	the

Microsoft.EntityFrameworkCore

package	plus	specific	packages	for	the

database	provider	you	intend	to	use

(SQL	Server,	MySQL,	SQLite,	or

something	else).The	most	common

tasks	you	would	perform	are	listed

below.

Modeling	a	Database

EF	Core	only	supports	the	Code

First	approach,	meaning	that	it

requires	a	set	of	classes	to	describe

the	database	and	contained	tables.

This	collection	of	classes	can	be

coded	from	scratch	or	reverse-

engineered	via	tooling	from	an

existing	database.

Defining	the	Database	and	the	Model

Defining	the	Database	and	the	Model

In	the	end,	a	database	is	modeled

after	a	class	derived	from

DbContext.	This	class	contains	one

or	more	collection	properties	of

type	DbSet<T>	where	T	is	the	type

of	records	in	the	table.	Here’s	the

structure	of	a	sample	database.

Click	here	to	view	code	image

public	class	YourDatabase	:	DbContext

{

			public	DbSet<Customer>	Customers	{	get;	set;	}

}

The	Customer	type	describes	the

records	of	the	Customers	table.	The

underlying	physical,	relational

database	is	expected	to	have	a	table

named	Customers	whose	schema

matches	the	public	interface	of	the

Customer	type.

Click	here	to	view	code	image

public	class	EntityBase

{

				public	EntityBase()

				{

								Enabled	=	true;

								Modified	=	DateTime.UtcNow;

				}

				public	bool	Enabled	{	get;	set;	}

				public	DateTime?	Modified	{	get;	set;	}

}

public	class	Customer	:	EntityBase

{

				[Key]

				public	int	Id	{	get;	set;	}

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

}

While	laying	out	the	public	interface

of	the	Customer	class,	you	can	still	use

common	object-oriented	techniques

and	use	base	classes	to	share	common

properties	across	all	tables.	In	the

example,	Enabled	and	Modified	are

two	properties	automatically	added	to

all	tables	whose	mapped	classes

inherit	from	EntityBase.	Also,	note

that	any	class	that	will	generate	a

table	must	have	a	primary	key	field

defined.	For	example,	you	can	do	that

via	the	Key	attribute.

	Important	The	schema	of	the	database	and	the	mapped
classes	must	always	be	kept	in	sync;	otherwise,	exceptions	are	thrown	by	the
EF	Core.	This	means	that	even	adding	a	new	nullable	column	to	a	table	might
be	an	issue.	At	the	same	time,	also	adding	a	public	property	to	one	of	the
classes	might	be	a	problem.	In	this	case,	though,	the	NotMapped	attribute
saves	you	from	getting	an	exception.	The	fact	is	that	EF	Core	tends	to
suppose	you	interact	with	the	physical	database	only	through	its	migration
scripts.	Migration	scripts	are	the	official	way	to	keep	the	model	and	database
in	sync.	However,	migrations	are	mostly	a	developer	thing	while	often	the
database	is	a	property	of	the	IT	department.	In	this	case,	migrations	between
the	model	and	the	database	can	only	be	manual.

Injecting	the	Connection	String

In	the	code	presented	above,

there’s	nothing	that	shows	the

physical	link	between	your	code

and	a	database.	How	would	you

inject	the	connection	string?

Technically,	a	DbContext-derived

class	is	not	fully	configured	to	work

against	a	database	until	the

provider	is	indicated	and	all	the

information	to	run	it—most	notably

the	connection	string.	You	can	set

the	provider	overriding	the

OnConfiguring	method	of	the

DbContext	class.	The	method

receives	an	option	builder	object

with	an	extension	method	for	each

of	the	natively	supported	providers:

for	SQL	Server,	SQLite	plus	a	test-

only	in-memory	database.	To

configure	SQL	Server	(including

SQL	Express	and	Azure	SQL

Database),	you	proceed	as	follows.

Click	here	to	view	code	image

public	class	YourDatabase	:	DbContext

{

			public	DbSet<Customer>	Customers	{	get;	set;	}

			protected	override	void	OnConfiguring(DbContextOptionsBuilder	
optionsBuilder)

			{

							optionsBuilder.UseSqlServer("...");

			}

}

The	parameter	to	UseSqlServer	must

be	the	connection	string.	If	it	is

acceptable	that	the	connection	string

is	a	constant,	you	just	type	it	where

you	see	the	ellipsis	in	the	code	snippet

above.	More	realistically,	instead,	you

want	to	use	different	connection

strings	based	on	the	environment—

production,	staging,	development,

and	the	like.	In	this	case,	you	should

find	a	way	to	inject	it.

Because	the	connection	string	doesn’t

change	dynamically	(and	if	it	changes,

it’s	a	very	special	situation	that	well

deserves	to	be	treated	differently),	the

first	option	that	comes	to	mind	is

adding	a	global	static	property	to	the

DbContext	class	to	be	set	with	the

connection	string.

Click	here	to	view	code	image

public	static	string	ConnectionString	=	"";

Now	the	ConnectionString	property	is

silently	passed	to	the	UseSqlServer

method	in	the	OnConfiguring

method.	The	connection	string	is

typically	read	from	the	configuration

files	and	set	at	the	application	startup.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironmen
t	env)

{

				YourDatabase.ConnectionString	=	!env.IsDevelopment()

								?	"production	connection	string"

								:	"development	connection	string";

				//	More	code	here

}

Similarly,	you	can	employ	different

JSON	configuration	files	for

production	and	development	and

store	there	individual	connection

strings	to	use.	This	approach	is	also

probably	easier	from	a	DevOps

perspective	because	the	publish	script

just	picks	up	the	right	JSON	file	by

convention.	(See	Chapter	2,	“The	First

ASP.NET	Core	Project.”)

Injecting	the	DbContext	Object

Injecting	the	DbContext	Object

If	you	search	for	EF	Core	articles,

including	the	official	Microsoft

documentation,	you	see	many

examples	showing	code	along	the

following	guidelines.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

					var	connString	=	Configuration.GetConnectionString("YourData
base");

					services.AddDbContext<YourDatabase>(options	=>

												options.UseSqlServer(connString));

}

The	code	adds	the	YourDatabase

context	object	to	the	DI	subsystem	so

that	it	can	be	retrieved	from	anywhere

in	the	application.	While	adding	the

context,	the	code	also	fully	configures

it	for	the	scope	of	the	current	request

and,	in	the	example,	to	use	the	SQL

Server	provider	on	a	given	connection

string.

Alternatively,	you	can	create	instances

of	the	database	context	yourself	and

give	them	the	lifetimes	you	want	(for

instance,	singleton,	or	scoped)	and

inject	only	the	connection	string	in	the

context.	The	static	property	discussed

above	is	an	option.	Here’s	another

one.

Click	here	to	view	code	image

public	YourDatabase(IOptions<GlobalConfig>	config)

{

				//	Save	to	a	local	variable	the	connection	string	

				//	as	read	from	the	configuration	JSON	file	of	the	applicatio
n.

}

As	discussed	in	Chapter	7,	“Design

Considerations,”	you	can	apply	the

Options	pattern	and	load	global

configuration	data	from	a	JSON

resource	into	a	class	and	inject	that

class	via	DI	into	the	constructor	of

classes.

	Note	Of	the	many	ways	to	inject	the	connection	string,	which

one	should	you	choose?	Personally,	I	go	with	the	static	property	because	it	is
simple,	direct,	and	easy	to	understand	and	figure	out.	My	second	favorite
approach	is	injecting	configuration	into	the	DbContext.	As	far	as	injecting	the
fully	configured	DbContext	into	the	DI	system,	that	scares	me	because	it
could	lead	developers	to	call	DbContext	anywhere	they	might	need	it,	thus
defeating	any	effort	to	separate	concerns.

Automatically	Creating	the	Database

The	overall	process	of	modeling	a

database	and	mapping	it	to	classes

is	a	bit	different	than	in	EF6;	the

code	required	to	create	a	database

(if	it	doesn’t	already	exist)	also	is.

In	EF	Core,	this	step	must	be

explicitly	requested	and	is	not	a

consequence	of	the	base	of	a

database	initializer	component.	If

you	want	a	database	to	be	created,

place	the	following	two	lines	of

code	in	the	startup	class	in	the

Configure	method:

Click	here	to	view	code	image

var	db	=	new	YourDatabase();

db.Database.EnsureCreated();

The	EnsureCreated	method	creates

the	database	if	it	does	not	exist	(and

skips	otherwise).	Loading	initial	data

to	the	database	is	also	under	your	full

programmatic	control.	A	common

pattern	is	to	expose	a	public	method—

the	name	is	up	to	you—out	of	the

DbContext	class	and	calling	it	right

after	EnsureCreated.

db.Database.SeedTables();

Inside	the	initializer,	you	can	either

call	the	EF	Core	methods	directly	or

repositories	if	you	have	them	defined.

	Note	Scaffolding	tasks	such	as	reverse-engineering	an
existing	database	or	migrating	changes	from	classes	to	the	database	can	be
controlled	via	many	command	line	tools.	More	details	can	be	found	here:
http://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db
(http://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db).

Working	with	Table	Data

Working	with	Table	Data

Reading	and	writing	data	with	EF

Core	is,	for	the	most	part,	just	the

same	as	in	EF6.	Once	the	database

has	been	correctly	created	or

reverse-engineered	from	an

existing	database,	then	queries	and

updates	work	the	same	way.	Some

differences	exist	in	the	EF6	and	EF

Core	API,	but	overall,	I	think	the

best	approach	is	to	try	to	do	things

the	same	as	in	EF6	and	focus	on

exceptions	only	when,	and	if,	they

occur.

Fetching	a	Record

The	following	code	shows	how	to

fetch	a	record	by	its	primary	key.

The	approach	is	more	general,

indeed,	and	shows	how	to	fetch	a

record	by	conditions.

Click	here	to	view	code	image

public	Customer	FindById(int	id)

{

				using	(var	db	=	new	YourDatabase())

				{

								var	customer	=	(from	c	in	db.Customers

																								where	c.Id	==	id

																								select	c).FirstOrDefault();

								return	customer;

				}

}

Two	things	are	more	relevant	than	the

code	itself.

First,	the	code	is	encapsulated	in	a	method	exposed	by	a

repository	class.	A	repository	class	is	a	wrapper	class	that	uses	a

fresh	instance	of	a	DbContext,	or	an	injected	copy	(it’s	up	to	you),

to	expose	database-specific	operations.

The	second	relevant	thing	is	that	the	code	above	is	a	sort	of	a

monolith.	It	opens	a	connection	to	the	database,	retrieves	its	data

and	closes	the	connection.	It	all	happens	in	the	context	of	a	single

transparent	database	transaction.	If	you	need	to	run	two	different

queries,	consider	that	two	calls	to	a	repository	method	will

open/close	connections	to	the	database	twice.

If	the	business	process	you’re	coding

requires	two	or	more	queries	from	the

database,	you	might	want	to	try	to

concatenate	them	in	a	single

transparent	transaction.	The	scope	of

the	DbContext	instance	determines

the	scope	of	a	system-created

database	transaction.

Click	here	to	view	code	image

public	Customer[]	FindAdminAndSupervisor()

{

				using	(var	db	=	new	YourDatabase())

				{

								var	admin	=	(from	c	in	db.Customers

																								where	c.Id	==	ADMIN

																								select	c).FirstOrDefault();

								var	supervisor	=	(from	c	in	db.Customers

																								where	c.Id	==	SUPERVISOR

																								select	c).FirstOrDefault();

								return	new[]	{admin,	supervisor};

				}

}

In	this	case,	the	two	records	are

retrieved	via	distinct	queries,	but	in

the	same	transaction	and	over	the

same	connection.	Another	interesting

use-case	is	when	the	overall	query	is

built	piecemeal.	Let’s	say	that	one

method	fetches	a	chunk	of	records,

and	the	output	is	then	passed	to

another	method	to	restrict	further	the

result	set	based	on	runtime

conditions.	Here’s	some	sample	code:

Click	here	to	view	code	image

//	Opens	a	connection	and	returns	all	EU	customers

var	customers	=	FindByContinent("EU");

//	Runs	an	in-memory	query	to	select	only	those	from	EAST	EU

if	(someConditionsApply())

{

				customers	=	(from	c	in	customers	where	c.Area.Is("EAST")	sele
ct	c).ToList();

}

In	the	end,	you	get	just	what	you

need,	but	the	use	of	memory	is	less

than	optimal.	Here’s	a	better	way	to

do	it.

Click	here	to	view	code	image

public	IQueryable<Customer>	FindByContinent(string	continent)

{

				var	customers	=	(from	c	in	db.Customers	

																					where	c.Continent	==	continent

																					select	c);

				//	No	query	is	actually	run	at	this	point!	Only	the	formal	

				//	definition	of	the	query	is	returned.

				return	customers;

}

Not	calling	FirstOrDefault	or	ToList

at	the	end	of	the	query	expression

doesn’t	actually	run	the	query;

instead,	it	simply	returns	the	formal

description	of	it.

Click	here	to	view	code	image

//	Opens	a	connection	and	returns	all	EU	customers

var	query	=	FindByContinent("EU");

//	Runs	an	in-memory	query	to	select	only	those	from	EAST	EU

if	(someConditionsApply())

{

				query	=	(from	c	in	query	where	c.Area.Is("EAST")	select	c;

}

var	customers	=	query.ToList();

The	second	filter	now	simply	edits	the

query	adding	an	additional	WHERE

clause.	Next,	when	ToList	is	called,

the	query	is	run	once	and	gets	all

customers	from	Europe	which	are	also

located	in	the	East.

Dealing	with	Relationships

The	following	code	defines	a	one-

to-one	relationship	between	two

tables.	The	Customer	object	refers

to	a	Country	object	in	a	Countries

table.

Click	here	to	view	code	image

public	class	Customer	:	EntityBase

{

				[Key]

				public	int	Id	{	get;	set;	}

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				[ForeignKey]

				public	int	CountryId	{	get;	set;	}

				public	Country	Country	{	get;	set;	}

}

That’s	enough	for	the	database	to

define	a	foreign-key	relationship

between	the	tables.	When	querying

customer	records,	you	can	easily	have

the	Country	property	expanded

through	an	underlying	JOIN

statement.

Click	here	to	view	code	image

var	customer	=	(from	c	in	db.Customers.Include("Country")

																where	c.Id	==	id

																select	c).FirstOrDefault();

Because	of	the	Include	call,	now	the

returned	object	has	the	Country

property	filled	out	with	a	JOIN

statement	on	the	configured	foreign

key.	The	string	you	pass	to	Include	is

the	name	of	the	foreign-key	property.

Technically,	in	a	query	statement,	you

can	have	as	many	Include	calls	as	you

need.	However,	the	more	you	have,

the	graph	of	objects	you	return	with

subsequent	additional	memory

consumption	also	grows.

Adding	a	Record

Adding	a	new	record	requires	some

code	to	add	an	object	in	memory

and	then	persisting	the	collection

to	disk.

Click	here	to	view	code	image

public	void	Add(Customer	customer)

{

				if	(customer	==	null)

						return;

				using	(var	db	=	new	YourDatabase())

				{

								db.Customers.Add(customer);

								try	

								{

											db.SaveChanges();

								}	

								catch(Exception	exception)	

								{

											//	Recover	in	some	way	or	expand	the	way

											//	it	works	for	you,	For	example,	only	catching

											//	some	exceptions.

								}

				}

}

Nothing	more	than	this	is	required,	as

long	as	the	object	being	passed	is	fully

configured	and	populated	in	all

required	fields.	A	good	approach	for	a

data	access	layer	is	that	you	validate

objects	from	a	business	perspective	in

the	application	layer	(in	the	service

class	invoked	from	the	controller)	and

either	assume	everything	is	okay	in

the	repository	or	throw	an	exception	if

anything	goes	wrong.	Alternatively,	in

the	repository	method,	you	can	also

repeat	some	checks	just	to	make	sure

everything	is	okay.

Updating	a	Record

In	EF	Core	updating,	a	record	is	a

two-step	operation.	First,	you

query	for	the	record	to	update	and

then,	in	the	context	of	the	same

DbContext,	you	update	its	state	in

memory	and	persist	changes.

Click	here	to	view	code	image

public	void	Update(Customer	updatedCustomer)

{

			using	(var	db	=	new	YourDatabase())

			{

							//	Retrieve	the	record	to	update

							var	customer	=	(from	c	in	db.Customers

																							where	c.Id	==	updatedCustomer.Id

																							select	c).FirstOrDefault();

							if	(customer	==	null)

											return;

							//	Make	changes			

							customer.FirstName	=	updatedCustomer.FirstName;

							customer.LastName	=	updatedCustomer.LastName;

							customer.Modified	=	DateTime.UtcNow;

							...

							//	Persist

							try	

							{

											db.SaveChanges();

							}	

							catch(Exception	exception)	

							{

											//	Recover	in	some	way	or	expand	the	way

											//	it	works	for	you,	For	example,	only	catching

											//	some	exceptions.

							}

				}

}

Updating	the	fetched	record	with	the

posted	record	can	be	boring	code	to

write.	While	nothing	is	faster	than

manually	copying	field-to-field,

reflection	or	advanced	tools	like

AutoMapper	can	be	a	time-saver.

Also,	having	a	single	line	of	code	to

clone	an	object	is	helpful.	Having	said

that,	though,	consider	that	updating	a

record	is	primarily	a	business

operation	rather	than	a	plain	database

operation,	and	the	two	things	coincide

only	in	trivial	applications.	The	point

here	is	that	depending	on	business

conditions,	some	fields	should	never

be	updated	or	should	get	system-

calculated	values.	More,	sometimes

updating	a	record	is	not	enough	and

other	operations	should	be	performed

in	the	context	of	the	same	business

transaction.	This	is	to	say	that	having

a	single	update	method	where	you

blindly	copy	properties	from	source

object	to	target	object	is	a	much	less

common	scenario	than	it	might	seem

at	first.	I’ll	return	to	this	in	a	moment,

talking	about	transactions.

Deleting	a	Record

Deleting	a	record	is	like	updating	a

record.	Also,	in	this	case,	you	have

to	retrieve	the	record	to	delete,

remove	it	from	the	in-memory

collection	of	the	database	and	then

update	the	physical	table.

Click	here	to	view	code	image

public	void	Delete(int	id)

{

				using	(var	db	=	new	YourDatabase())

				{

							//	Retrieve	the	record	to	delete

							var	customer	=	(from	c	in	db.Customers

																							where	c.Id	==	id

																							select	c).FirstOrDefault();

							if	(customer	==	null)

											return;

							db.Customers.Remove(customer);

								

							//	Persist

							try	

							{

											db.SaveChanges();

							}	

							catch(Exception	exception)	

							{

											//	Recover	in	some	way	or	expand	the	way

											//	it	works	for	you,	For	example,	only	catching

											//	some	exceptions.

							}

				}

}

There	are	two	remarks	to	make	about

deletions.	First,	deletions	also	are

business	operations,	and	very	rarely,

business	operations	require

destroying	data.	More	often	than	not,

deleting	a	record	is	a	matter	of

logically	deleting	it,	which	would	turn

the	delete	operation	into	an	update.

The	implementation	of	the	delete

operation	as	done	in	EF6	and	EF	Core

might	seem	overwhelming,	but	it

leaves	room	for	applying	any	required

logic.

If	you	really	need	to	physically	remove

records	from	the	database,	regardless

of	whether	cascading	options	have

been	configured	at	the	database	level,

you	can	just	go	with	a	plain	SQL

statement.

Click	here	to	view	code	image

db.Database.ExecuteSqlCommand(sql);

In	general,	I	encourage	you	(and	your

customers)	to	carefully	consider	a

physical	deletion	of	records.	The

future	of	development	blinks	at	event

sourcing,	and	one	of	the	pillars	of

event	sourcing	is	that	databases	are

append-only	structures.

Dealing	with	Transactions

Dealing	with	Transactions

In	real-world	applications,	most	of

the	database	operations	are	part	of

a	transaction,	and	sometimes,	they

are	part	of	a	distributed

transaction.	By	default,	if	the

underlying	database	provider

supports	transactions,	all	changes

that	go	with	a	single	call	to

SaveChanges	are	then	processed

within	a	transaction.	This	means

that	if	any	of	the	changes	fail,	the

entire	transaction	is	rolled	back	so

that	none	of	the	attempted	changes

are	physically	applied	to	the

database.	In	other	words,

SaveChanges	either	does	all	the

work	it	was	called	to	do	or	nothing.

Explicit	Control	of	Transactions

In	cases	when	you	can’t	drive	all

changes	through	a	single	call	to

SaveChanges,	you	can	define	an

explicit	transaction	through	an	ad

hoc	method	on	the	DbContext

class.

Click	here	to	view	code	image

using	(var	db	=	new	YourDatabase())

{

			using	(var	tx	=	db.Database.BeginTransaction())

			{

							try	

							{

												//	All	database	calls	including	multiple	SaveChanges	
calls

												...

												//	Commit

												tx.Commit();

							}

							catch(Exception	exception)

							{

											//	Recover	in	some	way	or	expand	the	way

											//	it	works	for	you,	For	example,	only	catching

											//	some	exceptions.

							}

			}

}

Again,	note	that	not	all	database

providers	may	support	transactions.

However,	that’s	not	the	case	with

providers	of	popular	databases	such

as	SQL	Server.	What	happens	when

the	provider	doesn’t	support

transactions	depends	on	the	provider

itself—it	can	either	throw	an

exception	or	just	do	nothing.

Sharing	Connections	and	Transactions

In	EF	Core,	when	creating	an

instance	of	the	DbContext	object,

you	can	inject	a	database

connection	and/or	a	transaction

object.	The	base	classes	for	both

objects	are	DbConnection	and

DbTransaction.

If	you	inject	the	same	connection	and

transaction	to	two	different

DbContext	objects,	the	effect	is	that	all

operations	across	those	contexts	will

happen	in	the	same	transaction	and

over	the	same	database	connection.

The	following	code	snippet	shows	how

to	inject	a	connection	in	a	DbContext.

Click	here	to	view	code	image

public	class	YourDatabase	:	DbContext

{

				private	DbConnection	_connection;

				public	YourDatabase(DbConnection	connection)

				{

							_connection	=	connection;

				}

				public	DbSet<Customer>	Customers	{	get;	set;	}

				protected	override	void	OnConfiguring(DbContextOptionsBuilder
	optionsBuilder)

				{

								optionsBuilder.UseSqlServer(_connection);

				}

}

To	inject	a	transaction	scope,	instead,

you	proceed	as	below:

Click	here	to	view	code	image

context.Database.UseTransaction(transaction);

To	get	a	transaction	object	from

within	a	running	transaction,	you	use

the	GetDbTransaction	method.	Have

a	look	at

http://docs.microsoft.com/en-

us/ef/core/saving/transactions

(http://docs.microsoft.com/en-

us/ef/core/saving/transactions)	for	more

information.

	Note	Some	support	for	TransactionScope	has	been	added	to
.NET	Core	2.0,	but	I	suggest	you	check	carefully	to	ensure	that	it	works	for
the	scenarios	with	which	you	intend	to	use	it	before	you	embark	on	serious
development.	The	class	is	there,	but	for	the	time	being,	the	behavior	doesn’t
seem	the	same	as	you	might	expect	from	the	version	in	the	full	.NET
Framework	that,	by	the	way,	allowed	you	to	enlist	together	relational
transactions	and	file	system	and/or	Web	service	operations.

A	Word	on	Async	Data	Processing

The	entire	set	of	methods	in	EF

Core	that	trigger	database

operations	also	have	an	async

version:	SaveChangesAsync,

FirstOrDefaultAsync,	and

ToListAsync	to	name	just	the	most

commonly	used	methods.	Should

you	use	them?	What	kind	of	benefit

are	they	really	providing?	And

what’s	the	point	of	async

processing	in	an	ASP.NET	Core

application?

Asynchronous	processing	is	not,	per

se,	faster	than	synchronous

processing.	An	async	call	has,	instead,

a	much	more	intricate	execution	flow

than	a	synchronous	call.	In	the

context	of	web	applications,

asynchronous	processing	is	mostly

about	not	having	threads	blocked

while	waiting	for	a	synchronous	call	to

return	instead	of	processing	the	next

requests.	The	entire	application	is,

therefore,	more	responsive	because	it

can	take	and	serve	more	requests.

From	here	comes	the	sense	of

improved	speed,	and	more

importantly,	increased	scalability.

The	C#	language	used	the

async/await	keywords	to	turn	any

apparently	synchronous	code	into

asynchronous	code	in	a	very	simple

way.	However,	with	great	power

comes	great	responsibility:	be	always

aware	of	the	cost	to	spawn	additional

threads	to	process	workloads	that

might	not	require	this	asynchronicity.

Remember	that	you	are	not	dealing

with	parallelism	here	but	forwarding

the	workload	to	another	thread	while

the	current	one	returns	back	to	the

pool	to	process	more	incoming

requests.	You	get	more	scalability	but

maybe	with	a	possibly	slight	speed

impact.

Async	Processing	in	ASP.NET	Core
Applications

Let’s	say	you	mark	a	controller

method	as	asynchronous.	The	code

downloads	content	from	a	website

and	tracks	the	thread	ID	before	and

after	the	async	operation.

Click	here	to	view	code	image

public	async	Task<IActionResult>	Test()

{

				var	t1	=	Thread.CurrentThread.ManagedThreadId.ToString();

				var	client	=	new	HttpClient();

				await	client.GetStringAsync("http://www.google.com");

				var	t2	=	Thread.CurrentThread.ManagedThreadId.ToString();

				return	Content(string.Concat(t1,	"	/	",	t2));

}

The	net	effect	you	obtain	can	be

summarized	as	in	Figure	9-5.

FIGURE	9-5	Thread	ID	before	and	after	an	async	operation

As	the	figure	shows,	the	request	was

served	by	different	threads	before	and

after	the	async	breakpoint.	The

request	for	the	specific	page	is	not

really	benefiting	from	the	async

implementation,	but	the	rest	of	the

site	would	enjoy	it.	The	reason	is	that

no	ASP.NET	thread	was	busy	waiting

for	an	I/O	operation	to	complete.

Thread	#9	returns	to	the	ASP.NET

pool	to	serve	any	new	incoming

request	right	after	asking	the	.NET

thread	pool	to	call	the	GetStringAsync

asynchronous	operation.	When	this

async	method	completed,	the	first

available	thread	from	the	pool	was

picked	up.	It	could	have	been	thread

#9	again,	but	not	necessarily.	In	a

highly	trafficked	site,	the	number	of

requests	that	can	arrive	in	the	seconds

a	long	operation	takes	to	complete	can

keep	high	or	sink	the	level	of

responsiveness	of	the	site.

Async	Processing	in	Data	Access

To	cause	a	thread	to	return	to	the

pool	and	be	ready	to	serve	another

request,	it	is	necessary	for	the

thread	to	wait	for	an	async

operation.	The	wording	of	this

syntax	might	be	confusing:	when

you	see	await	MethodAsync

appears,	it	means	that	the	current

thread	pushes	the	call	to

MethodAsync	to	the	.NET	thread

pool	and	returns.	The	code

following	the	MethodAsync	call	will

happen	on	any	available	thread

after	the	method	returns.	Calling

into	a	web	service,	as	in	the	code

snippet	below,	is	a	possibility.

Another	possibility	is	to	call

asynchronously	into	some	database

via	EF	Core.

Let’s	consider	a	common	scenario.

Say	you	have	a	web	application	made

of	some	static	content,	views	are

relatively	quick	to	render,	and	a	few

views	run	significantly	slower	because

of	required	long	database	operations.

Imagine	that	you	get	a	number	of

concurrent	requests	that	exhaust	the

thread	pool.	A	number	of	those

requests	need	to	hit	the	database,	and

subsequently,	all	those	threads	are

used	to	process	a	request	but	are

actually	idle,	waiting	for	the	database

query	to	come	back.	Your	system	can’t

serve	more	requests,	and	the	CPU	is

nearly	at	0	percent!	It	might	seem

that	turning	database	access	into

async	code	would	solve	the	problem.

Again,	it	depends.

First	and	foremost,	we’re	talking

about	refactoring	large	portions	of	the

data	access	layer.	Whatever	way	you

look	at	it,	it’s	not	a	walk	in	the	park.

But	let’s	assume	you	do	it.	Second,

what	you	really	achieve	is	that	more

threads	come	back	to	the	pool	ready

to	take	on	other	incoming	requests.

What	if	those	requests	need	to	hit	the

database	to	be	processed?	By	turning

your	data	access	code	to	async	mode,

you	only	gained	the	ability	to	clog	the

database	even	more!	You	turned	to

async	because	your	database	was	too

slow	to	respond	to	incoming	requests,

and	all	that	you	did	was	send	more

queries	to	the	database.	This	is	not

exactly	a	way	to	solve	the	problem.

Adding	a	cache	between	the	web

server	and	the	database	would	be	a

much	better	solution.	Again,	take	the

time	to	measure	your	distributed

application	performances	under	load

and	update	your	code	and

architecture	if	needed.

On	the	other	hand,	this	is	not	the	only

scenario.	It	could	even	be	that	the

more	requests	you	can	serve	by

turning	async	are	for	static	resources

or	quick	pages.	In	this	case,	your	site

would	provide	users	with	a	much

more	responsive	experience	and

provide	better	scalability.

Which	Server	Would	You	Like	to	Slow	Down?

In	some	ways,	it	seems	to	me	that

when	the	site	is	slow	to	respond

because	of	long-running	(not	CPU-

bound)	operations,	you	should

make	a	decision	about	which	server

is	acceptable	to	slow	down—the

web	server	or	the	database	server.

Generally	speaking,	the	ASP.NET

thread	pool	can	handle	many	more

simultaneous	requests	than	a

database	server.	Performance

counters	will	tell	you	if	the	problem	is

the	actual	HTTP	traffic	that’s	too	high

for	the	IIS	configuration	or	if	the	web

server	is	fine,	but	it’s	the	database	that

is	having	a	hard	time.	There	are

settings	in	the	IIS/ASP.NET

configuration	that	can	increase	the

number	of	requests	and	threads	per

CPU.	If	numbers	show	that	quick

requests	are	sacrificed	in	the	queue,

simply	raising	that	number	can	be

faster	than	turning	the	code	to	async.

If	numbers	tell	you	that	the	bottleneck

is	the	database	that	gets	too	many

requests	for	queries	that	take	too	long

to	complete,	then	you	need	to	review

the	overall	architecture	of	the	back

end	or	just	manage	to	use	caching	or

simply	try	to	make	queries	more

efficient.

Architectural	changes	in	the	back	end

could,	for	example,	mean	offloading

the	request	to	an	external	queue	and

have	the	queue	call	you	back	when

done.	A	long-running	query—

whatever	“long”	means	to	your

application—is	better	treated	as	a	fire-

and-forget	operation.	I	realize	that

this	approach	might	require	a

completely	different,	message-based

architecture.	That’s,	however,	the	real

key	to	scale	up.	Asynching	everything

is	not	a	guarantee	of	super

performance,	but	it	is	not	a

performance	killer	either.	Do	not

delude	yourself	thinking	it	just	works

and	fixes	everything.

SUMMARY

SUMMARY

ASP.NET	Core	applications	have

many	ways	to	access	data.	EF	Core

is	not	the	only	option,	but	it	is	an

O/RM	specifically	designed	for	the

.NET	Core	platform	and	to	work

well	with	ASP.NET	Core.	As	we

have	seen	in	the	chapter,	you	can

use	ADO.NET	as	well	as	micro

O/RM	to	create	your	data	access

layer.	My	best	advice	is	to	treat	the

data	access	layer	as	a	separate	layer

in	depending	not	directly	from	the

presentation	but	from	an

application	layer	where	you

concentrate	all	the	workflows.

PART	IV

Frontend
In	Part	IV,	we	turn	to	your

application’s	front	end,	introducing

technologies	and	complementary

frameworks	for	building	usable	and

modern	presentation	layers.

Chapter	10,	Designing	a	Web	API,

shows	how	to	build	true	Web	APIs

with	ASP.NET	Core	to	return	JSON,

XML,	or	other	data.	With	these

techniques,	you	can	solve	ubiquitous

problems	in	modern	application

scenarios	where	diverse	clients

continually	invoke	remote	backends

to	download	data	or	request

processing.

In	Chapter	11,	Posting	Data	from

Client	Side,	you’ll	learn	how	to	post

data	in	ASP.NET	Core	using

JavaScript	without	the	overhead	of

old-fashioned	full-page	form

refreshes.	Next,	in	Chapter	12,	Client-

side	Data	Binding,	we’ll	cover

techniques	for	refreshing	content	in	a

browser	directly	via	JavaScript

without	reloads.	You’ll	walk	through

downloading	and	dynamically

replacing	portions	of	an	HTML	page

and	setting	up	JSON	endpoints	that

can	be	queried	for	fresh	data	to

regenerate	HTML	layouts	entirely	on

the	client	side.

Chapter	13,	Building	Device-friendly

Views,	completes	our	tour	of	web

application	front	ends.	You’ll	learn

how	to	overcome	the	difficult

challenge	of	delivering	native-like	web

application	experiences	on	iPhone	or

Android	by	simulating	native	widgets

through	rich	component	controls	that

output	mixtures	of	JavaScript	and

HTML5.

—	D.H.	Lawrence,	“Lady	Chatterley’s

Lover”

CHAPTER	10

Designing	a	Web	API
We’ve	got	to	live,	no	matter	how

many	skies	have	fallen.

In	the	context	of	ASP.NET	Core,	the
term	“web	API”	finally	gets	its	real

meaning	without	ambiguity	and	need

to	explain	the	contours	further.	A	web

API	is	a	programmatic	interface	made

of	a	number	of	publicly	exposed	HTTP

endpoints	that	typically	(but	not

necessarily)	return	JSON	or	XML	data

to	callers.	A	web	API	fits	nicely	in

what	today	appears	to	be	a	fairly

common	application	scenario:	a	client

application	needs	to	invoke	some

remote	back	end	to	download	data	or

request	processing.	The	client

application	can	take	many	forms

including	a	JavaScript-intensive	web

page,	a	rich	client,	or	a	mobile

application.	In	this	chapter,	we’ll	see

what	it	takes	to	build	a	web	API	in

ASP.NET	Core.	In	particular,	we’ll

focus	on	the	philosophy	of	the	API—

whether	REST-oriented	or	procedure-

oriented—and	on	how	to	secure	it.

BUILDING	A	WEB	API	WITH

BUILDING	A	WEB	API	WITH
ASP.NET	CORE

At	its	core,	a	web	API	is	a	collection

of	HTTP	endpoints.	That	means	in

ASP.NET	Core,	an	application

equipped	with	a	terminating

middleware	that	parses	the	query

string	and	figures	out	the	action	to

take	is	a	minimal,	but	working,	web

API.	More	likely,	though,	you

would	build	a	web	API	using

controllers	to	better	organize

functions	and	behavior.	There	are

two	major	approaches	to	the	design

of	the	API.	You	can	expose

endpoints	that	refer	to	actual

business	workflows	and	actions

under	your	total	control,	or	you	can

define	business	resources	and	use

the	entire	HTTP	stack—headers,

parameters,	status	codes,	and	verbs

—to	receive	input	and	return

output.	The	former	approach	is

procedure-oriented	and	is	usually

labeled	as	RPC,	short	for	Remote

Procedure	Call.	The	other	approach

is	inspired	by	REST	philosophy.

The	REST	approach	is	more	standard

and	in	general,	more	recommended

for	a	public	API	that	is	part	of	the

enterprise	business.	If	customers	are

using	your	API,	then	you	might	want

to	expose	it	according	to	a	set	of

generally	accepted	and	known	design

rules.	If	the	API	exists	only	to	serve	a

limited	number	of	clients—mostly

under	the	same	control	of	the	API

creators—no	real	difference	exists

between	using	the	RPC	or	the	REST

design	route.	Let’s	ignore	REST

principles	for	the	moment	and	focus

on	what	it	takes	to	expose	HTTP

JSON	endpoints	in	ASP.NET	Core.

Exposing	HTTP	Endpoints

Exposing	HTTP	Endpoints

Even	though	you	could	embed

some	request	processing	logic	right

in	the	terminating	middleware,	the

most	common	approach	is	using

controllers.	Overall,	going	through

controllers	and	the	MVC

application	model	saves	you	the

burden	of	dealing	with	routes	and

binding	of	parameters.	As	we’ll	see

later,	though,	ASP.NET	Core	also	is

flexible	enough	to	accommodate

scenarios	where	the	server

structure	is	minimal	and	does	its

dirty	job	quickly	and	without

ceremony.

Returning	JSON	from	the	Action	Method

To	return	JSON	data,	all	you	do	is

create	an	ad	hoc	method	in	a	new

or	existing	Controller	class.	The

sole	specific	requirement	for	the

new	method	is	returning	a

JsonResult	object.

Click	here	to	view	code	image

public	IActionResult	LatestNews(int	count)

{

					var	listOfNews	=	_service.GetRecentNews(count);

					return	Json(listOfNews);

}

The	Json	method	ensures	that	the

given	object	is	packaged	in	a

JsonResult	object.	Once	returned

from	the	controller	class,	the

JsonResult	object	is	processed	by	the

action	invoker,	which	is	when	the

actual	serialization	takes	place.	That’s

all	of	it.	You	retrieve	the	data	you

need,	you	package	it	up	into	an	object,

and	pass	it	on	to	the	Json	method.

Done.	Or,	at	least,	it’s	done	if	the	data

is	fully	serializable.

The	actual	URL	to	invoke	the

endpoint	can	be	determined	through

the	usual	routing	approaches—

conventional	routing	and/or	attribute

routing.

Returning	Other	Data	Types

Serving	other	data	types	doesn’t

require	a	different	approach.	The

pattern	is	always	the	same—

retrieve	data	and	serialize	it	to	a

properly	formatted	string.	The

Content	method	on	the	base

controller	class	allows	to	you

serialize	any	text	using	a	second

parameter	to	instruct	the	browser

about	the	intended	MIME	type.

Click	here	to	view	code	image

[HttpGet]

public	IActionResult	Today(int	o	=	0)

{

				return	Content(DateTime.Today.AddDays(o).ToString("d	MMM	yyyy
"),	"text/plain");

}

To	return	the	content	of	a	server	file,

for	example,	a	PDF	file	for	download,

you	can	proceed	as	follows.

Click	here	to	view	code	image

public	IActionResult	Download(int	id)

{

				//	Locate	the	file	to	download	(whatever	that	means)

				var	fileName	=	_service.FindDocument(id);

				//	Reads	the	actual	content

				var	bytes	=	File.ReadAllBytes(fileName);

				return	File(bytes,	"application/pdf",	fileName);

}

If	the	file	is	located	on	the	server	(for

example,	your	application	is	hosted

on-premise),	then	you	can	locate	it	by

name.	If	the	file	was	uploaded	to	a

database	or	Azure	blob	storage,	then

you	retrieve	its	content	as	a	stream	of

bytes	and	still	pass	the	reference	to

the	appropriate	overload	of	the	File

method.	Setting	the	correct	MIME

type	is	up	to	you.	The	third	parameter

of	the	File	method	refers	to	the	name

of	the	downloaded	file.	(See	Figure	10-

1.)

FIGURE	10-1	Downloading	a	file	from	a	remote	endpoint

Requesting	Data	in	a	Particular	Format

In	the	previous	examples,	the

return	type	of	the	endpoint	was

fixed	and	determined	by	the

running	code.	It’s	fairly	common,

instead,	that	the	same	content	can

be	requested	by	different	clients,

each	with	its	own	preferred	MIME

type.	I	run	into	this	situation	quite

often.	Most	of	the	services	I	write

for	a	particular	customer	just

return	data	formatted	as	JSON.

This	serves	the	needs	of	the

corporate	developers	consuming

the	services	from	within	.NET,

mobile,	and	JavaScript

applications.	Sometimes,	however,

some	endpoints	are	consumed	also

by	Flash	applications	that,	for	a

number	of	reasons,	prefer	to

process	data	as	XML.	An	easy	way

to	solve	the	issue	is	to	add	a

parameter	to	the	endpoint	URL

that	using	any	convention	that

works	for	you	knows	the	desired

output	format.	Here’s	an	example.

Click	here	to	view	code	image

public	IActionResult	Weather(int	days	=	3,	string	format	=	"json"
)

{

				//	Get	weather	forecasts	for	the	specified	number	of	days	for
	a	given	city

				var	cityCode	=	"...";

				var	info	=	_weatherService.GetForecasts(cityCode,	days,	"cels
ius");

				//	Return	data	as	requested	by	the	user

				if	(format	==	"xml")

								return	Content(ForecastsXmlFormatter.Serialize(info),	"te
xt/xml");

				return	Json(info);

}

The	ForecastsXmlFormatter	is	a

custom	class	that	just	returns	a

custom	handmade	XML	string	written

to	any	schema	that	works	in	the

particular	context.

	Note	To	avoid	using	magic	strings	like	“json”	and	“xml,”	you
can	consider	using	MIME-type	constants	as	defined	by	the	MediaTypeNames
class.	Note,	though,	that	quite	a	few	MIME	types	are	missing—particularly,
application/json—in	the	current	definition	of	the	class.

Restricting	to	Verbs

In	all	the	examples	considered	so

far,	the	code	that	handles	the

request	is	a	controller	method.

Hence,	you	can	use	all	of	the

programmatic	features	of	a

controller	action	method	to	control

the	binding	of	the	parameters	and,

more	importantly,	the	HTTP	verbs

and/or	necessary	headers	or

cookies	to	trigger	the	code.	The

rules	are	the	same	routing	rules	we

explored	in	Chapter	3.	For

example,	the	code	below	restricts

the	endpoint	api/weather	to	be

invoked	over	a	GET	request	only.

Click	here	to	view	code	image

[HttpGet]

public	IActionResult	Weather(int	days	=	3,	string	format	=	"json"
)

{	

				...	

}

In	much	the	same	way,	you	apply

restrictions	on	the	referrer	URL

and/or	same-origin	security	policies

for	JavaScript	clients.

	Important	It	is	key	to	note	that	in	this	section	of	the
chapter,	I’m	just	trying	to	show	very	simple	but	still	effective	ways	to	solve
common	problems	of	a	web	API.	More	structured	solutions	exist	for	design
and	security,	and	I	will	cover	those	later	in	this	chapter.

File	Servers

Before	we	reconsider	the	crucial

aspects	of	the	design	of	an	API	and

add	some	security	to	it,	let’s	briefly

look	back	at	an	example	presented

in	Chapter	2—a	mini	website.

Terminating	Middleware	to	Catch	Requests

Terminating	Middleware	to	Catch	Requests

In	Chapter	2,	we	introduced	the

terminating	middleware	and

discussed	some	interesting	use

cases	for	it.	The	code	below	is	a

reprint	of	one	of	the	examples

presented	in	the	chapter.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	

												IHostingEnvironment	env,	

												ICountryRepository	country)

{

				app.Run(async	(context)	=>

				{

								var	query	=	context.Request.Query["q"];

								var	listOfCountries	=	country.AllBy(query).ToList();

								var	json	=	JsonConvert.SerializeObject(listOfCountries);

								await	context.Response.WriteAsync(json);

				});

}

The	method	Run—the	terminating

middleware—catches	any	requests

that	are	not	handled	otherwise.	For

example,	it	catches	requests	that	don’t

go	through	any	of	the	configured

controllers.	As	is,	whatever	the	actual

endpoint	will	be,	the	code	above

checks	for	a	specific	query	string

parameter	(named	q)	and	filters	the

internal	list	of	countries	by	that	value.

You	can	refactor	the	code	to	be,	for

example,	a	file	server.

Terminating	Middleware	to	Catch	Only	Some
Requests

By	design,	the	terminating

middleware	catches	any	requests

unless	it	is	restricted	to	some

specific	URLs.	To	restrict	the	valid

URLs,	you	can	use	the	Map

middleware	method.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)	

{

				app.Map("/api/file",	DownloadFile);

}

private	static	void	DownloadFile(IApplicationBuilder	app)

{

					app.Run(async	context	=>

					{

									var	id	=	context.Request.Query["id"];

									var	document	=	string.Format("sample-{0}.pdf",	id);

									await	context.Response.SendFileAsync(document);

					});

}

Because	of	the	Map	method,	every

time	the	incoming	request	points	to

the	/api/file	path	the	code	attempts	to

find	an	id	query	string	parameter.

From	there,	it	then	builds	a	file	path

and	returns	the	content	to	the	caller.

What	we	managed	to	have	is	a	very

thin	file	server	that	can	intelligently

retrieve	paths	to	stored	images	and

serve	them	back	with	the	minimal

amount	of	code	that	is	legitimately

possible	to	have.

DESIGNING	A	RESTFUL
INTERFACE

Our	first	run	over	the	whole	topic

of	exposing	JSON	and	data

endpoints	to	external	HTTP	callers

unveiled	a	couple	of	facts.	First,

exposing	endpoints	is	really	easy

and	is	in	no	way	different	from

exposing	the	common	pieces	of	a

website.	Instead	of	returning

HTML,	you	return	JSON	or

whatever	else.	Second,	when	you

expose	an	API	instead	of	a	website,

some	aspects	of	the	server	code

deserve	more	attention	and	a

deeper	forethinking.

In	the	first	place,	you	might	want	to

be	very	clear	and	consistent	about

what	each	endpoint	requires	and	what

it	provides.	It’s	not	simply	a	matter	of

documenting	URLs	and	JSON

schemas.	It’s	also	a	matter	of	setting

strict	rules	as	far	as	how	HTTP	verbs

and	headers	are	accepted	and

handled,	and	how	status	codes	are

returned.	Also,	you	might	want	to	put

an	authorization	layer	on	top	of	the

API	that	authenticates	callers	and

checks	their	permissions	on	the

various	endpoints.

REST	is	a	very	common	approach	to

unify	the	way	public	APIs	are	exposed

to	clients.	ASP.NET	Core	controllers

just	support	some	extra	features	to

make	the	output	as	RESTful	as

possible.

REST	at	a	Glance

The	core	idea	behind	REST	is	that

the	web	application—mostly	a	web

API—works	entirely	based	on	the

full	set	of	capabilities	of	the	HTTP

protocol,	including	verbs,	headers,

and	status	codes.	REST	is	a

shorthand	name	for

Representational	State	Transfer,

which	means	the	application	will

handle	requests	in	the	form	of

HTTP	verbs	(GET,	POST,	PUT,

DELETE,	and	HEAD)	acting	on

resources.	In	REST,	a	resource	is

nearly	identical	to	a	domain	entity

and	is	represented	by	a	unique

URI.

	Note	REST	is	a	sort	of	CRUD	over	the	web	done	against
resources	identified	by	URI	rather	than	database	entities	identified	by	primary
keys.	REST	defines	operations	through	HTTP	verbs	in	much	the	same	way
CRUD	does	via	SQL	statements.

REST	has	been	around	for	a	while

even	though	it	was	obfuscated	in	the

beginning	by	another	service	concept

—SOAP,	which	is	short	for	Simple

Object	Access	Protocol.	REST	was

defined	by	Roy	Fielding	in	2000	and

SOAP	was	formulated	more	or	less	at

the	same	time.	A	deep	philosophical

difference	separates	REST	and	SOAP.

SOAP	is	about	accessing	objects	hidden	behind	a	web	façade	and

is	about	invoking	actions	on	them.	SOAP	is	about	exposing	the

programmability	of	a	set	of	objects	and	is	essentially	about

performing	remote	procedure	calls	(RPC).

REST	is	about	acting	directly	on	objects	through	basic	core

operations—the	HTTP	verbs.

Given	this	foundational	difference,

SOAP	only	uses	a	small	subset	of

HTTP	verbs	in	its	implementation—

GET	and	POST.

Intended	Meaning	of	HTTP	Verbs

HTTP	verbs	have	easy	to

remember,	mostly	self-explanatory

meanings.	They	apply	the	basic

create-read-update-delete	CRUD

semantics	of	database	to	web

resources.	A	web	resource,	in	the

end,	is	the	business	entity	you

access	via	the	web	API.	If	the

business	entity	is,	say,	a	booking,

then	a	POST	command	on	the	URI

of	the	particular	booking	will	add	a

new	one	into	the	system.	The

details	of	a	REST-compliant

request,	whether	a	POST,	PUT,

GET,	or	whatever,	will	be	detailed

later	when	ASP.NET	Core

controller	classes	get	into	the	game.

Table	10-1	lists	and	comments	on

the	HTTP	verbs.

TABLE	10-1	HTTP	verbs

H

T

T

P	

V

e

r

b

Description

D

E

L

E

T

E

Issues	the	request	for	deleting	the	addressed	resource,	

whatever	that	means	for	the	back	end.	The	actual	

implementation	of	the	“delete”	operation	belongs	to	the	

application	and	could	be	either	something	physical	or	

logical.

G

E

T

Issues	the	request	for	getting	the	current	

representation	of	the	addressed	resource.	The	use	of	

additional	HTTP	headers	can	fine-tune	the	actual	

behavior.	For	example,	the	If-Modified-Since	header	

mitigates	the	request	by	expecting	a	response	only	if	

changes	have	occurred	since	the	specified	time.

H

E

A

D

Same	as	GET,	except	that	only	metadata	of	the	

addressed	resource	are	returned,	not	the	body.	This	

command	is	primarily	used	to	check	whether	a	

resource	exists.

P

O

S

T

Issues	the	request	for	adding	a	resource	when	the	URI	

is	not	known	in	advance.	The	REST	response	to	this	

request	returns	the	URI	of	the	newly	created	resource.	

Again,	what	“adding	a	resource”	actually	means	for	the	

back	end	is	the	responsibility	of	the	back	end.

P

U

T

Issues	the	request	for	making	sure	that	the	state	of	the	

addressed	resource	is	in	line	with	provided	

information.	It’s	the	logical	counterpart	of	an	update	

command.

Each	of	those	requests	is	expected	to

have	a	well-known	layout	regarding

what	comes	in	(verbs	and	headers)

and	what	comes	out	(status	code	and

headers.)

Structure	of	a	REST	Request

Let’s	just	go	through	the	verbs

listed	in	Table	10-1	and	find	out

more	about	the	suggested	template

of	a	request.	(See	Table	10-2.)

TABLE	10-2	Schema	of	REST

requests

H

T

T

P	

V

e

r

b

Request Response	in	case	of	

success

D

E

L

E

T

E

All	the	parameters	that	

allow	for	identification	of	

the	resource.	For	

example,	the	unique	

integer	identifier	of	the	

resource.

http://apiserver/booking

/12345	

(http://apiserver/booking/1234

5)

With	the	above	request,	

you	intend	to	delete	the	

booking	resource	whose	

ID	is	12345.

There	are	various	

options	for	the	

response.

Void	

response.

Status	code	

200	or	204.

Status	code	

202	to	

indicate	that	

request	was	

successfully	

received	and	

accepted	but	

will	be	

enacted	later.

G

E

T

All	the	parameters	that	

allow	for	identification	of	

the	resource,	plus	

optional	headers	such	as	

If-Modified-Since.

Status	code	200.	The	

body	of	the	response	

contains	information	

about	the	state	of	the	

addressed	resource.

H

E

A

D

Same	as	above. Status	code	200.	The	

body	is	empty,	and	the	

metadata	of	the	

resource	is	returned	as	

HTTP	headers.

P

O

S

T

Any	data	relevant	to	the	

operation.	The	POST	

operation	creates	a	new	

resource,	so	there’s	no	

identifier	to	be	passed.

There	are	a	few	things	to	

notice	for	a	successful	

POST	operation.

Status	code	

201	(created)	

but	also	a	

status	code	of	

200	or	204	is	

acceptable.

The	body	of	

the	response	

contains	any	

information	

valuable	to	

the	caller.

The	Location	

HTTP	header	

is	set	to	the	

URI	of	the	

newly	

created	

resource.

P

U

T

All	the	parameters	that	

allow	for	identification	of	

the	resource,	plus	any	

data	relevant	to	the	

operation.

There	are	various	

options	for	the	

response.

Status	code	is	

200	or	204.

The	void	

response	is	

also	

acceptable.

A	status	code	of	200	indicates	the

success	of	whatever	operation	was

attempted.	In	general,	a	successful

operation	might	require	that	the	URI

of	the	addressed	resource	is	returned.

This	is	acceptable,	for	example,	for	a

successful	POST	that	returns	the	URI

of	the	newly	created	resource.	It	is

arguably	acceptable,	instead,	for	a

DELETE	because	the	URI	you	would

return	points	to	a	resource	that	should

no	longer	exist.	To	indicate	success

with	no	response,	you	can	either	send

a	200	and	an	optional	empty	body	or,

more	precisely,	a	204,	which	just

means	success	and	empty	response.

Choosing	200	or	204	depends	on	the

verb	but	is	also,	to	some	extent,	an

arbitrary	decision	of	the	API	designer.

In	case	of	errors,	you	return	500	or	a

more	specific	error	code.	If	the

resource	can’t	be	found,	you	return

404.	If	not	authorized,	you	return	401

or	more	specific	codes.

To	REST	or	Not	to	REST?

As	I	see	things,	REST	is	primarily	a

matter	of	philosophy.	Philosophy	is

generally	good	in	life,	but	its

concrete	usefulness	also	depends

on	the	context.	It’s	hard	to	be	a

philosopher	when	you’re	in	a	save-

or-sink	situation.	At	the	same	time,

a	good	philosophy	might	reduce

your	likelihood	of	being	in	a	save-

or-sink	situation.

This	is	to	say	that	REST	is	ultimately

up	to	you,	the	web	API	designer.

REST	gives	you	a	way	to	be	clean	and

tidy	in	the	organization	of	the	API.	At

the	same	time,	if	you’re	only	partially

clean	and	tidy	in	the	actual

implementation,	well,	that’s	an	issue

as	well	that	removes	all	the	good	you

might	have	done	elsewhere.

REST	is	not	the	absolute	good,	per	se,

and	RPC	is	not	the	absolute	evil,	per

se.	The	good	or	evil	of	REST	depends

on	the	context.	For	example,	if	you’re

planning	a	public	API	for	customers

to	buy	licenses,	or	just	widely	use	it,

then	the	cleaner	and	tidier	you	are	the

better.	In	my	business,	I	have	plenty

of	web	services	that	run	the	business

and	big	public	events,	and	none	of

them	is	REST.	However,	it	works,	but

we	mostly	use	those	web	services

internally	or	with	partners.

Going	with	RPC	is	perhaps	more

natural	because	it’s	inherently

business-driven.	REST	requires	quite

a	bit	of	forethinking	and	discipline

from	a	development	perspective.

REST	is	not	a	magic	wand,	though.

Compared	to	RPC,	REST	has	two

other	factors	to	consider.

One	is	hypermedia,	namely	the	idea	that	HTTP	responses	also

return	an	additional	field	(named	_links)	with	further	action	that

can	be	taken	after	the	response	is	received.	Hypermedia,

therefore,	provides	information	to	the	client	on	what	it	could

potentially	do	next.

Another	aspect	of	REST	that	could	have	a	positive	impact	on	the

client	side	is	that	REST	expects	that	HTTP	responses	declare	their

cacheablility.

REST	in	ASP.NET	Core

Before	ASP.NET	Core,	Microsoft

had	something	called	the	Web	API

framework	specifically	designed	to

build	web	APIs	with	full

programming	support	for	RESTful

web	APIs.	The	Web	API	framework

was	not	fully	integrated	with	the

underlying	ASP.NET	pipeline	in	the

sense	that	once	routed	to	the

framework,	a	request	had	to	go

through	a	dedicated	pipeline.	Using

Web	API	in	the	context	of	an

ASP.NET	MVC	5.x	application

might	or	might	not	be	a	valid

decision.	You	can	achieve	the	same

goals	using	plain	ASP.NET	MVC

5.x	controllers,	even	RESTful

interfaces,	but	you	don’t	get	built-

in	facilities	for	being	RESTful.

Being	RESTful	then	is	up	to	you;

matching	the	requirements	of

Table	10-2	is	up	to	you	and	your

extra	code.

In	ASP.NET	Core,	there’s	nothing	like

a	distinct	and	dedicated	web	API

framework.	There	are	only	controllers

with	their	set	of	action	results	and

helper	methods.	If	you	want	to	build	a

web	API,	you	just	return	JSON,	XML,

or	whatever	else	as	discussed	earlier.

If	you	want	to	build	a	RESTful	API,

you	just	get	familiar	with	another	set

of	action	results	and	helper	methods.

RESTful	Action	Results

RESTful	Action	Results

In	Chapter	4,	“ASP.NET	MVC

Controllers,”	you	already	faced	the

full	list	of	web	API-related	action

result	types.	Here,	I	have	included

a	table	of	action	results,	grouping

them	by	the	core	action	performed

(Table	10-3).

TABLE	10-3	Web	API-related

IActionResult	types

Type Description

AcceptedR

esult

Returns	a	202	status	code	and	sets	the	URI	to	

check	to	be	informed	about	the	ongoing	status	

of	the	request.

BadReques

tResult

Returns	a	400	status	code.

CreatedRe

sult

Returns	a	201	status	code	along	with	the	URI	

of	the	resource	created	set	in	the	Location	

header.

NoContent

Result

Returns	a	204	status	code	and	null	content.

OkResult Returns	a	200	status	code.

Unsupport

edMediaT

ypeResult

Returns	a	415	status	code.

As	you	can	see,	the	action	result	types

prepare	a	response	that	is	in	line	with

the	typical	REST	behavior	as

described	earlier	in	Table	10-2.	A	few

types	in	the	table	have	sibling	types

that	offer	a	slightly	different	behavior.

For	example,	there	are	three

variations	of	action	results	for	the	202

and	201	status	codes.

In	addition	to	AcceptedResult	and

CreatedResult,	you	find

xxxAtActionResult	and

xxxAtRouteResult	types.	The

difference	is	in	how	the	types	express

the	URI	to	monitor	the	status	of	the

accepted	operation	and	the	location	of

the	resource	that	was	just	created.	The

xxxAtActionResult	type	expresses	the

URI	as	a	pair	of	controller	and	action

strings,	whereas	the

xxxAtRouteResult	type	uses	a	route

name.

For	a	few	other	action	result	types,

there’s	an	xxxObjectResult	variation.

Good	examples	are	OkObjectResult

and	BadRequestObjectResult.	The

difference	is	that	object	result	types

also	let	you	append	an	object	to	the

response.	So	OkResult	just	sets	a	200

status	code,	but	OkObjectResult	sets	a

200	status	code	and	appends	an

object	of	your	choice.	A	common	way

to	use	this	feature	is	to	return	a

ModelState	dictionary	updated	with

the	detected	error	when	a	bad	request

comes.	Another	example	could	be	a

NotFoundObjectResult	that	could	set

the	current	time	of	the	request.

Finally,	another	interesting

distinction	is	between

NoContentResult	and	EmptyResult.

Both	return	an	empty	response	but

NoContentResult	sets	a	status	code	of

204	whereas	EmptyResult	sets	a	200

status	code.

Skeleton	of	Common	Actions

Let’s	review	some	possible	code	for

a	REST	API	based	on	the

controllers	of	ASP.NET	Core.	The

sample	controller	features	a

resource	that	represents	the	news,

and	the	code	shows	how	to	possibly

code	GET,	DELETE,	POST,	and

PUT	actions.

Click	here	to	view	code	image

[HttpPost]

public	CreatedResult	AddNews(News	news)

{

				//	Do	something	here	to	save	the	news

				var	newsId	=	SaveNewsInSomeWay(news);

				//	Returns	HTTP	201	and	sets	the	URI	to	the	Location	header	

				var	relativePath	=	String.Format("/api/news/{0}",	newsId);

				return	Created(relativePath,	news);

}

[HttpPut]

public	AcceptedResult	UpdateNews(Guid	id,	string	title,	string	co
ntent)

{

				//	Do	something	here	to	update	the	news

				var	news	=	UpdateNewsInSomeWay(id,	title,	content);

				var	relativePath	=	String.Format("/api/news/{0}",	news.NewsId
);

				return	Accepted(new	Uri(relativePath));			

}

[HttpDelete]

public	NoContentResult	DeleteNews(Guid	id)

{

				//	Do	something	here	to	delete	the	news

				//	...

				return	NoContent();

}

[HttpGet]

public	ObjectResult	Get(Guid	id)

{

				//	Do	something	here	to	retrieve	the	news

				var	news	=	FindNewsInSomeWay(id);

				return	Ok(news);

}

All	return	types	are	derived	from

IActionResult,	and	actual	instances

are	created	using	ad	hoc	helper

methods	exposed	by	the	Controller

base	class.	It	is	interesting	to	note	that

compared	to	the	former	Web	API,	in

ASP.NET	Core,	controller	helper

methods	simplify	the	work	by

capturing	most	of	the	common	REST

chores.	In	fact,	if	you	look	into	the

source	code	of	the	CreatedResult

class,	you	see	the	following	code:

Click	here	to	view	code	image

//	Invoked	from	the	base	class	ObjectResult

public	override	void	OnFormatting(ActionContext	context)

{

				if	(context	==	null)

								throw	new	ArgumentNullException("context");

				base.OnFormatting(context);

				context.HttpContext.Response.Headers["Location"]	=	(StringVal
ues)	this.Location;

}

In	Web	API,	you	had	to	write	most	of

this	code	yourself.	ASP.NET	Core	does

a	better	job	of	making	controller

classes	RESTful.	The	source	code	of

Web	API-related	classes	in	ASP.NET

Core	can	be	inspected	looking	at	the

http://github.com/aspnet/Mvc/blob/

dev/src/Microsoft.AspNetCore.Mvc.C

ore

(http://github.com/aspnet/Mvc/blob/dev/src/

Microsoft.AspNetCore.Mvc.Core)	folder.

Content	Negotiation

Content	negotiation	is	a	feature	of

ASP.NET	Core	controllers	that	was

not	supported	by	ASP.NET	MVC	5

controllers	and	was	introduced

specifically	for	the	needs	of	the

Web	API	framework.	In	ASP.NET

Core,	it’s	built	into	the	engine	and

is	available	to	developers.	As	the

name	suggests,	content	negotiation

refers	to	a	silent	negotiation	taking

place	between	the	caller	and	the

API.	The	negotiation	regards	the

actual	format	of	returned	data.

Content	negotiation	is	taken	into

account	if	the	incoming	request

contains	an	Accept	header	that

advertises	the	MIMEs	the	caller	can

understand.	The	default	behavior	in

ASP.NET	Core	is	serializing	any

returned	object	as	JSON.	In	the

following	code,	for	example,	the	News

object	would	be	serialized	as	JSON

unless	content	negotiation	determines

a	different	format.

Click	here	to	view	code	image

[HttpGet]

public	ObjectResult	Get(Guid	id)

{

				//	Do	something	here	to	retrieve	the	news

				var	news	=	FindNewsInSomeWay(id);

				return	Ok(news);

}

If	the	controller	detects	an	Accept

header,	it	goes	through	the	types

listed	in	the	header	content	until	it

finds	a	format	it	can	provide.	The	scan

follows	the	order	in	which	MIME

types	appear.	If	no	type	is	found	that

the	controller	can	support,	then	JSON

is	used.

Note	that	content	negotiation	is

triggered	if	the	incoming	request

contains	an	Accept	header	and	the

response	sent	back	by	the	controller	is

of	type	ObjectResult.	If	you	serialize

the	controller	response	via,	say,	the

Json	method,	no	negotiation	will	ever

take	place	regardless	of	the	headers

sent.

	Note	Another	action	result	type,
UnsupportedMediaTypeResult,	appears	to	have	some	relationship	to	content
negotiation.	Processing	this	action	result	would	return	a	415	HTTP	status
code,	meaning	that	Content-Type	header—another	HTTP	other	than	Accept
—was	sent	to	describe	the	content	of	the	request.	For	example,	the	Content-
Type	header	indicates	the	actual	format	of	an	image	file	being	uploaded.	If	the
controller	doesn’t	support	that	content	type	(for	example,	a	PNG	is	uploaded
that	the	server	doesn’t	support),	then	a	415	code	might	be	returned.	Given
this,	the	UnsupportedMediaTypeResult	type	is	not	really	related	to	content
negotiation.

SECURING	A	WEB	API

SECURING	A	WEB	API

Securing	a	web	application	is

simpler	than	securing	an	API

exposed	over	HTTP.	A	web

application	is	consumed	by	web

browsers,	and	web	browsers	can

easily	deal	with	cookies.	In

ASP.NET	Core,	the	Authorize

attribute	on	action	methods

instructs	the	runtime	that	only

authenticated	users	can	invoke	the

method.	In	ASP.NET	Core	(and	in

any	sort	of	web	applications),

cookies	are	the	primary	way	to

store	and	forward	information

about	the	identity	of	the	user.

When	it	comes	to	an	API	over	the

web,	there	are	additional	scenarios

to	consider.	The	client	can	be	a

desktop	application	or,	more	likely,

a	mobile	application.	Suddenly,

cookies	are	no	longer	an	effective

way	to	secure	an	API	while	keeping

it	widely	usable	by	the	largest

possible	number	of	clients.

Overall,	I’d	split	the	security	options

for	a	web	API	into	two	big	camps:

simple-but-to-some-extent-effective

methods	and	best	practice	methods.

Planning	Just	the	Security	You	Really

Planning	Just	the	Security	You	Really
Need

Security	is	a	serious	matter,	isn’t	it?

So	why	would	you	ever	consider

anything	that	is	less	than	a	best

practice?	The	reason	is	that

security	doesn’t	mean	the	same	to

everyone.	Security	is	a

nonfunctional	requirement	whose

relevance	changes	based	on	the

context.	I	have	in-production	web

APIs	with	no	authorization	layer	at

all—APIs	that	anyone	can	call	if

only	they	could	figure	out	the

URLs.	I	also	have	other	web	APIs

that	implement	a	very	basic	layer	of

access	control,	which	are	sufficient

for	the	vast	majority	of	thinkable

scenarios.	Finally,	I	also	have	a

couple	of	web	APIs	with	which	I

use	best	practice	access	control.

The	tradeoff	between	simple-but-to-

some-extent-effective	methods	and

best	practice	methods	is	how	long	it

takes	and	much	it	costs	to	have	best

practice	security	in	place.	The

relevance	of	the	data	you	hold	and

share	via	the	API	is	crucial	to	your

decision.	A	read-only	API	that	shares

public	or	non-sensitive	data	is	much

less	problematic	from	an	access

control	perspective.

In	this	regard,	I’d	love	to	share	an

anecdote	from	one	of	the	ASP.NET

MVC	classes	I	taught	recently.	In	the

middle	of	the	ASP.NET	MVC	security

module	of	the	class,	one	of	the

attendees	asked	why	on	earth	did	he

need	all	the	mess	I	was	describing

about	principals,	roles,	claims,	tokens,

and	the	like.	I	gently	noted	that	it	all

depended	on	the	relevance	of	the

data.	The	answer	made	me	laugh,	but

it	just	helped	to	nail	the	point	down.

“The	most	that	can	happen	in	my

application,”	he	said,	“is	that	one	user

views	the	photos	of	someone	else’s

cows.	Not	really	a	big	deal.”	I	couldn’t

agree	more!

	Important	Using	the	Authorize	attribute	on	action
methods	subject	to	access	control	works	on	a	web	API,	but	it	only	lets	users
connecting	through	web	browser	clients	to	prove	their	identity.	If	users	come
to	the	API	via	a	mobile	or	desktop	application,	you	must	find	a	way	to	support
cookies.	Windows	does	have	some	APIs	for	the	purpose,	and	in	mobile
applications,	you	can	make	the	connection	through	some	dedicated
frameworks	that	basically	use	a	web	view	to	deal	with	cookies.	The	whole
point	of	securing	an	API	is	finding	a	unified	approach	that	is	not	cookie-based
and	still	guarantees	detection	of	the	identity.

Simpler	Access	Control	Methods

Let’s	review	a	few	options	to	add	an

access	control	layer	on	top	of	your

web	API.	None	is	perfect,	but	none

is	entirely	ineffective	either.

Basic	Authentication

The	simplest	approach	to

incorporate	access	control	in	the

web	API	is	to	use	the	Basic

authentication	built	into	the	web

server.	Basic	authentication	is

based	on	the	idea	that	user

credentials	are	packaged	in	every

request.

Basic	authentication	has	pros	and

cons.	It	is	supported	by	major

browsers,	it	is	an	Internet	standard,

and	it	is	simple	to	configure.	The

downside	is	that	credentials	are	sent

with	every	request	and,	worse	yet,

they	are	sent	as	clear	text.

Basic	authentication	expects	that

credentials	are	sent	to	be	validated	on

the	server.	The	request	is	then

accepted	only	if	credentials	are	valid.

If	credentials	are	not	in	the	request,

an	interactive	dialog	box	is	displayed.

Realistically,	basic	authentication	also

requires	some	ad	hoc	middleware	to

check	credentials	against	accounts

stored	in	some	database.

	Note	Basic	authentication	is	simple	and	quite	effective	if
combined	with	a	layer	that	does	custom	validation	of	credentials.	To
overcome	the	limitation	of	credentials	sent	as	clear	text,	you	should	always
implement	a	Basic	authentication	solution	over	HTTPS.

Token-based	Authentication

Token-based	Authentication

The	idea	is	that	the	web	API

receives	an	access	token—typically

a	GUID	or	an	alphanumeric	string

—validates	it	and	serves	the	request

if	the	token	is	not	expired	and	is

valid	for	the	application.	There	are

various	ways	to	issue	a	token.	The

simplest	is	that	tokens	are	issued

offline	when	a	customer	contacts

the	company	to	license	the	API.

You	create	the	token	and	associate

it	with	a	particular	customer.	From

that	point	forward,	the	customer	is

responsible	for	the	abuse	or	misuse

of	the	API,	and	server-side

methods	work	only	if	they

recognize	the	token.

The	web	API	back	end	needs	to	have	a

layer	that	checks	tokens.	You	can	add

this	layer	as	plain	code	to	any	method

or,	better	yet,	configure	it	to	be	a	piece

of	the	application	middleware.	Tokens

can	be	appended	to	the	URL	(for

example,	as	query	string	parameters)

or	embedded	in	the	request	as	an

HTTP	header.	None	of	these

approaches	is	perfect,	and	no

approach	exists	that	is	safer.	In	both

cases,	the	value	of	the	token	can	be

spied	on.	Using	a	header	is	preferable

because	an	HTTP	header	is	not

immediately	visible	in	the	URL.

To	make	the	defense	stronger,	you

might	want	to	use	some	strict

expiration	policy	on	the	tokens.	All	in

all,	though,	the	strength	of	this

approach	is	that	you	always	know	who

is	responsible	for	the	abuse	or	misuse

of	the	API	and	can	stop	them	from

disabling	the	token	at	any	time.

Additional	Access	Control	Barriers

Additional	Access	Control	Barriers

Also	(or	as	an	alternative	to	the

previous	approaches),	you	can	still

serve	only	requests	coming	from	a

given	URL	and/or	IP	address(es).

From	within	a	controller	method,

you	can	check	the	IP	address	from

which	the	request	comes	using	the

following	expression:

Click	here	to	view	code	image

var	ip	=	HttpContext.Connection.RemoteIpAddress;

Note,	though,	that	getting	the	IP

address	when	the	application	is

behind	a	load	balancer	(for	example,

Nginx)	might	be	more	problematic

and	some	fallback	logic	that	checks

and	handles	the	X-Forwarded-For

HTTP	header	might	be	required.

The	originating	URL	is	usually	set	in

the	referer	HTTP	header	that

indicates	the	last	page	the	user	was	on

before	placing	the	request.	You	can

state	that	your	web	API	serves	certain

requests	only	if	the	referer	header

contains	a	fixed	value.	HTTP	headers,

though,	can	be	set	easily	by	ad	hoc

robots.

In	general,	techniques	like	checking

the	IP	address	and/or	HTTP	headers

like	referer	and	even	user-agent	are

primarily	ways	to	raise	the	bar	higher

and	higher.

Using	an	Identity	Management	Server

Using	an	Identity	Management	Server

In	general,	an	identity	management

server	is	a	server	that	sits	in	the

middle	of	many	applications	and

components	and	outsources

identity	services.	In	other	words,

instead	of	having	the

authentication	logic	in-house,	you

configure	such	a	server	and	expect

it	to	do	the	job.	In	the	context	of

Web	API,	an	identity	server	can

provide	a	single	sign-on	between

configured,	related	APIs	and	access

control.	In	the	ASP.NET	Core	space

(but	also	in	the	classic	ASP.NET

space),	a	popular	choice	is	Identity

Server,	version	4	for	ASP.NET

Core.	(See

http://www.identityserver.com

(http://www.identityserver.com).)

Identity	Server	is	an	open-source

product	and	implements	both

OpenID	Connect	and	OAuth

protocols.	In	this	regard,	it	qualifies

as	an	excellent	tool	to	delegate

access	control	to	keep	your	web

API	secure.	In	the	rest	of	the

chapter,	we’ll	be	referring	to

Identity	Server	4	for	ASP.NET

Core.

	Note	The	advantage	of	using	an	identity	server	to	control	the
access	to	a	web	API	is	that	you	still	mark	action	methods	with	the	Authorize
attribute,	but	no	cookies	are	used	to	present	the	user’s	identity.	The	web	API
receives	(and	checks)	an	authorization	token	that	comes	as	an	HTTP	header.
The	content	of	the	token	is	set	by	the	selected	Identity	Server	instance	once
configured	with	the	users’	data	enabled	to	access	the	web	API.	Because	no
cookies	are	involved,	a	web	API	protected	with	Identity	Server	can	easily
serve	mobile	applications,	desktop	applications,	and	any	present	or	(why
not?)	future	HTTP	client.

Preparing	the	Ground	for	Identity	Server	v4

Figure	10-2	shows	the	overall

picture	of	how	Identity	Server

interacts	with	your	web	API	and	its

enabled	clients.

FIGURE	10-2	The	big	picture	of	a	web	API	protected	with	Identity

Server

Identity	Server	must	be	a	dedicated,

self-hosted	application,	which	in

ASP.NET	Core,	you	can	decide	to

expose	directly	through	Kestrel	or	via

a	reverse	proxy.	In	any	case,	you	need

a	well-known	HTTP	address	to	reach

out	the	server.	To	be	fair,	you	need	a

well-known	HTTPS	address	to	contact

the	server.	HTTPS	adds	privacy	to

whatever	is	exchanged	over	the	wire.

Identity	Server	provides	access

control,	but	realistically,	you	always

want	to	have	HTTPS	on	top	of	an

identity	server.

Figure	10-2	shows	that	Identity	Server

is	preferably	a	separate	application

from	the	API.	To	fully	demonstrate	it,

we’re	going	to	have	three	distinct

projects—one	to	host	Identity	Server,

one	to	host	the	sample	web	API,	and

one	to	simulate	a	client	application.

Building	a	Host	Environment	for	Identity
Server

To	host	Identity	Server,	start

creating	a	fresh	new	ASP.NET	Core

project	and	add	the

IdentityServer4	NuGet	package.	If

you’re	already	using	ASP.NET

Identity	(see	Chapter	8),	then	you

might	want	to	add	also

IdentityServer4.AspNetIdentity.

Additional	packages	might	be

required,	depending	on	the	actual

features	you	turn	on.	The	startup

class	looks	like	below	(the	Config

methods	are	explained	later	on).

Click	here	to	view	code	image

public	class	Startup

{

				public	void	ConfigureServices(IServiceCollection	services)

				{

								services.AddIdentityServer()

												.AddDeveloperSigningCredential()

												.AddInMemoryApiResources(Config.GetApiResources())

												.AddInMemoryClients(Config.GetClients());

				}

				public	void	Configure(IApplicationBuilder	app,	IHostingEnviro
nment	env)

				{

								app.UseDeveloperExceptionPage();

								app.UseIdentityServer();

								app.Run(async	(context)	=>

								{

												await	context.Response.WriteAsync(

															"Welcome	to	Identity	Server	-	Pro	ASP.NET	Core	boo
k");

								});

				}

}

Figure	10-3	shows	the	home	page	you

see.	As	is,	the	server	has	no	endpoints

and	no	user	interface,	but	adding	an

admin	user	interface	to	change

configuration	aspects	is	up	to	you.	An

AdminUI	service	for	Identity	Server	4

has	been	released	as	an	add-on.	(See

http://www.identityserver.com

(http://www.identityserver.com)).

FIGURE	10-3	The	Identity	Server	instance	up	and	running

Let’s	find	out	more	about	the

configuration	parameters	of	the	server

and	specifically	clients,	API	resources,

and	signing	credentials.

Adding	Clients	to	Identity	Server

Adding	Clients	to	Identity	Server

The	list	of	clients	refers	to	client

applications	allowed	to	connect	to

Identity	Server	and	access	the

resources	and	the	APIs	protected

by	the	server.	Each	client

application	must	be	configured	for

what	it	can	be	allowed	to	do	and

how	it	can	do	it.	For	example,	a

client	application	can	be	limited	to

call	only	into	a	segment	of	an	API.

At	a	minimum,	you	might	want	to

configure	a	client	application	with

an	ID	and	a	secret	as	well	as	a	grant

type	and	scopes.

Click	here	to	view	code	image

public	class	Config

{

				public	static	IEnumerable<Client>	GetClients()

				{

								return	new	List<Client>

								{

												new	Client

												{	

																ClientId	=	"contoso",

																ClientSecrets	=	{

																				new	Secret("contoso-secret".Sha256())

																},

																AllowedGrantTypes	=	GrantTypes.ClientCredentials,

																AllowedScopes	=	{	"weather-API"	}

												}

								};

				}

				...

You	might	be	familiar	with	IDs	and

secrets	if	you’ve	ever	tried	to	work

with	a	social	network	API.	For

example,	to	access	Facebook	data,	you

first	create	a	Facebook	application

that	is	fully	identified	by	a	couple	of

strings—ID	and	secret,	as	they’re

named	in	Identity	Server.	The	grant

type	indicates	how	a	client	will	be

allowed	to	interact	with	the	server.	A

client	application	can	have	multiple

grant	types.	It	should	be	noted	that	a

client	application	here	is	not	the	same

as	running	an	actual	application.

Actually,	a	client	application,	as

discussed	here,	is	an	OpenID	Connect

and	OAuth2	concept.	For	example,	a

concrete	mobile	application	and	an

actual	website	can	use	the	same	client

application	to	access	Identity	Server.

If	you	intend	to	protect	a	web	API,

you	typically	use	ClientCredentials,

which	means	that	a	request	token	is

not	necessary	for	the	individual	user;

a	request	token	is	only	necessary	for

the	client	application.	In	other	words,

as	the	web	API	owner,	you	grant

access	to	a	client	application	and	all	of

its	individual	users.	In	general,

though,	Identity	Server	can	be	used	to

perform	access	control	on	a	per-user

basis,	which	creates	the	need	for

multiple	grant	types	and	even

multiple	grant	types	for	the	same

client	application.	For	more

information	on	scenarios	that	go

beyond	protecting	a	web	API	in	a

server-to-server	communication,	you

might	want	to	check

http://docs.identityserver.io/en/rele

ase/topics/grant_types.html

(http://docs.identityserver.io/en/release/topics

/grant_types.html).

When	the	ClientCredentials	option	is

used,	the	resulting	flow	is	exactly	like

that	in	Figure	10-2.	The	actual

application	that	needs	to	call	the

protected	API	first	sends	a	token

request	to	the	Identity	Server	token

endpoint.	In	doing	so,	the	actual

application	uses	the	credentials	(ID

and	secret)	of	one	of	the	configured

Identity	Server	clients.	If

authentication	is	successful,	the	actual

application	gets	an	access	token	back

that	represents	the	client	to	pass	on	to

the	web	API.	(More	on	this	later	in	the

chapter.)

Adding	API	Resources	to	Identity	Server

Adding	API	Resources	to	Identity	Server

In	general,	an	API	resource	refers

to	the	resources	(for	example,	a

web	API)	you	want	to	protect	from

unauthorized	access.	Concretely,	an

API	resource	is	just	the	label	that

identifies	your	web	API	within

Identity	Server.	An	API	resource	is

made	of	a	key	and	a	display	name.

Through	API	resources,	a	client

application	sets	its	scope	in	much

the	same	way	you	declare	the

claims	of	the	user	you	intend	to

access	in	Facebook	applications.

Declaring	the	API	resources	of

interest	prevents	the	client

application	from	accessing	any	web

API,	or	a	portion	of	a	web	API,	not

in	scope.	When	registering	with

Identity	Server,	a	web	API	declares

the	resources	it	handles.

Click	here	to	view	code	image

public	class	Config

{

				public	static	IEnumerable<ApiResource>	GetApiResources()

				{

								return	new	List<ApiResource>

								{

												new	ApiResource("fun-API",	

												"My	API	just	for	test	and	fun"),

												new	ApiResource("weather-API",

																"My	fabulous	weather	API"),

								};

				}

...}

In	the	code	above,	Identity	Server	is

configured	to	support	two	resources

—fun-API	and	weather-API.	The

client	application	defined	earlier	is

interested	only	in	weather-API.

Persistence	of	Clients	and	Resources

Persistence	of	Clients	and	Resources

In	the	example	discussed	here,

we’re	using	statically	defined

clients	and	resources.	While	this

might	even	be	the	case	in	some

deployed	applications,	it’s	not

much	realistic	indeed.	It	could

make	sense	in	a	closed

environment	when	you	control	all

components	in	the	game	and	can

recompile	and	redeploy	API,

server,	and	actual	applications

when	something	must	change,	and

a	new	resource	or	a	new	client	is

required.

More	likely,	clients	and	resources	are

loaded	from	some	persistent	store.

This	can	be	achieved	in	a	couple	of

ways.	One	entails	that	you	write	your

own	code	to	retrieve	clients	and

resources	and	pass	them	as	in-

memory	objects	to	Identity	Server.

The	second	way	leverages	the	built-in

infrastructure	of	Identity	Server.

Click	here	to	view	code	image

services.AddIdentityServer()

				.AddDeveloperSigningCredential()

				.AddConfigurationStore(options	=>

				{

								options.ConfigureDbContext	=	builder	=>

												builder.UseSqlServer("connectionString...",

																sql	=>	sql.MigrationsAssembly(migrationsAssembly)
);

				})

				...

If	you	go	this	way,	you	need

migrations	to	pass	the	schema	of	the

database	that	will	then	be	silently

created.	To	create	migrations

assembly,	you	need	to	run	ad	hoc

commands	bundled	with	the

additional	NuGet	package

IdentityServer4.EntityFramework

that	you	need	to	install,	too.	Finally,

note	that	Identity	Server	also	gives

you	a	chance	to	plug	in	caching

components	for	performance	reasons.

In	this	case,	it	suffices	that	the

plugged	components	implement	a

given	interface	regardless	of	the	actual

underlying	technology	used	for	saving

data.

	Note	For	a	comprehensive	view	of	the	various	options	you
have	as	far	as	persistence	and	signing	are	concerned,	see
http://docs.identityserver.io/en/release/quickstarts/8_entity_framework.html.
(http://docs.identityserver.io/en/release/quickstarts/8_entity_framework.html.)

Signing	Credentials

In	the	startup	code	above,	you	have

seen	the

AddDeveloperSigningCredential

method	used	to	create	a	temporary

key	to	sign	tokens	being	sent	back

as	proof	of	identity.	If	you	look	at

the	project	after	the	first	run,	you

see	a	JSON	file	added	named

tempkey.rsa.

Click	here	to	view	code	image

{"KeyId":"c789...","Parameters":{"D":"ndm8...",...}}

While	this	might	be	good	to	try	out,	it

definitely	needs	to	be	replaced	with	a

persistent	key	or	certificate	for

production	scenarios.	Realistically,	at

some	point,	you	want	to	switch	to

AddSigningCredential,	perhaps	after

checking	the	current	environment.

The	AddSigningCredential	method

adds	a	signing	key	service	that

retrieves	the	same	key	information

that	AddDeveloperSigningCredential

creates	on	the	fly	from	a	persistent

store.	The	method

AddSigningCredential	can	accept	the

digital	signature	in	a	variety	of

formats.	It	can	be	an	object	of	type

X509Certificate2	or	a	reference	to	a

certificate	from	the	certificate	store.

Click	here	to	view	code	image

AddIdentityServer()

				.AddSigningCredential("CN=CERT_SIGN_TEST_CERT");

It	can	also	be	an	instance	of	the

SigningCredentials	class	or

RsaSecurityKey.

	Note	For	a	comprehensive	view	of	the	various	options	you
have	as	far	as	signing	is	concerned,	see
http://docs.identityserver.io/en/release/topics/crypto.html
(http://docs.identityserver.io/en/release/topics/crypto.html).

Adapting	the	Web	API	to	Identity	Server

At	this	point,	the	server	is	up	and

running	and	ready	to	control	access

to	our	API.	However,	the	web	API

still	lacks	a	layer	of	code	that

connects	it	to	the	Identity	Server.

To	add	authorization	via	Identity

Server,	you	need	to	take	two	steps.

First,	you	add	the

IdentityServer4.AccessTokenValid

ation	package.	The	package	adds

the	necessary	middleware	to

validate	the	tokens	coming	from

Identity	Server.	Second,	you

configure	the	service	as	below.

Click	here	to	view	code	image

public	void	ConfigureServices(IServiceCollection	services)

{

				//	Configure	the	MVC	application	model

				services.AddMvcCore();

				services.AddAuthorization();

				services.AddJsonFormatters();

				services.AddAuthentication(IdentityServerAuthenticationDefaul
ts.AuthenticationScheme)

								.AddIdentityServerAuthentication(x	=>

								{

													x.Authority	=	"http://localhost:6000";

													x.ApiName	=	"weather-API";

													x.RequireHttpsMetadata	=	false;

								});

}

Note	that	the	MVC	application	model

configuration	used	in	the	code	snippet

is	the	absolute	minimum	you	need.

The	authentication	scheme	is	Bearer,

and	the	Authority	parameter	points	to

the	URL	of	the	Identity	Server	in

place.	The	ApiName	parameter	refers

to	the	API	resource	the	web	API

implements,	and

RequireHttpsMetadata	establishes

that	HTTPS	is	not	required	to

discover	the	API	endpoint.

Also,	you	simply	place	all	your	APIs

that	are	not	intended	to	be	public

under	the	umbrella	of	the	Authorize

attribute.	User	information	can	be

inspected	through	the

HttpContext.User	property.	That’s	all

there	is	to	it!	When	the	access	token	is

presented	to	the	web	API,	the	Identity

Server’s	access	token	validation

middleware	will	investigate	it	and

match	the	audience	scope	of	the

incoming	request	to	the	value	of	the

ApiName	property.	(See	Figure	10-4.)

If	no	match	is	found,	an	unauthorized

error	code	is	returned.

FIGURE	10-4	Inspecting	the	content	of	the	HttpContext.User

object	in	Visual	Studio

Let’s	see	now	what	it	takes	to	actually

call	into	the	API.

Putting	It	All	Together

In	force	of	the	security	layer,	callers

of	the	web	API	must	now	provide

some	credentials	to	connect.

Connection	takes	place	in	two

steps.	First,	a	caller	attempts	to	get

a	request	token	from	the

configured	Identity	Server

endpoint.	In	doing	so,	the	caller

provides	credentials.	Credentials

must	match	those	of	a	client

application	registered	with	Identity

Server.	Second,	if	credentials	are

recognized,	an	access	token	is

issued,	which	must	be	passed	to	the

web	API.	Here’s	the	code.

Click	here	to	view	code	image

//	Obtains	the	actual	URL	to	request	the	token	from	the	instance	
of	Identity	Server.

//	By	default,	it	is	<server-URL>/connect/token.

var	disco	=	DiscoveryClient.GetAsync("http://localhost:6000").Res
ult;

//	Attempts	to	get	an	access	token	to	call	the	web	API.	ID	and	se
cret	of	

//	the	client	application	to	use	must	be	provided.

var	tokenClient	=	new	TokenClient(disco.TokenEndpoint,	

																																		"public-account",	"public-accou

nt-secret");

var	tokenResponse	=	tokenClient.RequestClientCredentialsAsync("we
ather-API").Result;

if	(tokenResponse.IsError)	{	...	}

The	classes	used	in	the	code	above

require	that	the	IdentityModel	NuGet

package	is	added	to	your	client

application	project.	Finally,	while

placing	the	call	to	the	web	API,	the

access	token	must	be	appended	as	an

HTTP	header.

Click	here	to	view	code	image

var	http	=	new	HttpClient();

http.SetBearerToken(tokenResponse.AccessToken);

var	response	=	http.GetAsync("http://localhost:6001/weather/now")
.Result;

if	(!response.IsSuccessStatusCode)	{	...	}

If	you’re	licensing	the	API	to	a

customer,	all	you	have	to	do	is	1)

provide	the	credentials	of	the	client

application	you	created	in	Identity

Server	to	call	into	the	web	API,	and	2)

provide	the	name	you	have	chosen	for

the	API	resource.	You	could	also

create	a	client	application	for	each

customer	and	append	additional

claims	to	each	request	or	run	some

authorization	code	in	web	API

methods	to	check	the	identity	of	the

actual	caller	and	make	decisions

about	that.

SUMMARY

A	web	API	is	a	common	element	in

most	applications	today.	A	web	API

is	used	to	provide	data	to	an

Angular	or	MVC	front	end	as	well

as	to	provide	services	to	mobile	or

desktop	applications.	In	a	web-to-

web	scenario,	security	can	be	easily

implemented	through	cookies,	but

a	bearer-based	approach	clears	any

dependencies	from	cookies,	thus

making	the	API	easy	to	call	from

whatever	HTTP	client	is	used.

An	identity	management	server	is	an

application	that	sits	in	between	a	web

API	(but	also	a	web	application)	and

its	callers	and	provides

authentication,	in	much	the	same	way

social	networks	can	do.	The

underlying	protocols	are	just	the	same

—OpenID	Connect	and	OAuth2.

Identity	Server	is	an	open-source

product	you	can	set	up	in	your	own

environment	and	configure	to	act	as

your	authentication	and	authorization

server.

—J.	K.	Rowling,	“Harry	Potter	and

the	Goblet	of	Fire”

CHAPTER	11

Posting	Data	from	the
Client	Side
It	matters	not	what	someone	is	born,

but	what	they	grow	to	be.

Admittedly,	the	problem	of	posting

data	to	a	web	server	from	an	HTML

form	has	always	been	a	no-brainer.

HTML	does	it	all	for	you,	and	all	you

must	learn	is	how	to	cope	with	the

basic	syntax	of	HTML.	As	far	as	forms

are	concerned,	the	HTML	syntax

hasn’t	changed	at	all	since	the	early

days	up	to	HTML5.	In	this	chapter,	we

face	reality.	Reality	says	that	it	is

much	less	acceptable	for	an	end	user

to	sustain	a	classic	HTML	form	than	it

was	a	few	years	ago.	Having	the

browser	carry	on	the	posting	of	a	form

means	that	a	full	page	refresh	will

occur.	This	might	be	acceptable	for	a

login	form,	for	example,	but	not	for	a

form	that	just	aims	at	posting	some

content	without	the	immediate	need

for	the	user	to	jump	to	a	different

page.

In	this	chapter,	we’ll	fully	dissect

HTML	forms	starting	with	an

overview	of	the	HTML	syntax	and

then	moving	forward	to	employ	some

client-side	JavaScript	code	to	perform

the	actual	posting	of	the	form	content.

Using	JavaScript	to	carry	on	the

operation	poses	additional	problems,

such	as	dealing	with	the	feedback	of

the	ongoing	server-side	operation	and

refreshing	portions	of	the	current

view.

ORGANIZING	HTML	FORMS

ORGANIZING	HTML	FORMS

The	content	of	an	HTML	form	is

automatically	posted	by	the

browser	when	one	of	the	submit

buttons	it	contains	is	pushed.	The

browser	automatically	scans	the

input	fields	within	the	boundaries

of	the	FORM	element,	serializes

their	content	to	a	string,	and	sets

up	an	HTTP	command	to	the	target

URL.	The	type	of	the	HTTP

command	(commonly	POST)	and

the	target	URL	are	set	via	attributes

on	the	HTML	FORM	element.	The

code	behind	the	target	URL—a

controller	action	method	in	an

ASP.NET	MVC	application—

processes	the	posted	content	and

typically	serves	back	a	new	HTML

view.	Any	feedback	about	the

processing	of	the	posted	data	is

incorporated	into	the	returned

page.	Let’s	briefly	review	syntax

and	issues	of	HTML	forms.

Defining	an	HTML	Form

An	HTML	form	is	made	of	a

collection	of	INPUT	elements

whose	values	are	streamlined	to	a

remote	URL	when	one	of	submit

buttons	is	pushed.	A	form	can	have

one	or	more	submit	buttons.	If	no

submit	button	is	defined,	then	the

form	can’t	be	posted	unless	it’s

done	through	ad	hoc	script	code.

Click	here	to	view	code	image

<form	method="POST"	action="@Url.Action(action,	controller)">

			<input	type="text"	value=""	/>

			...

			<button	type="submit">Submit</button>

</form>

You	can	have	as	many	INPUT

elements	as	you	need	in	a	form,	and

each	is	characterized	by	the	value	of

its	type	attribute.	Feasible	values	are

text,	password,	hidden,	date,	file,	and

many	others.	The	value	attribute	of	an

INPUT	element	contains	the	content

to	display	initially	and	the	content	to

upload	when	the	submit	button	is

pushed.

The	FORM	element	has	no	user

interface	except	the	content	produced

by	the	child	INPUT	elements.	Any

style	you	need	must	be	added	via	CSS,

and	any	layout	you	want	to	have	must

be	added	inside	or	around	the	FORM

element,	as	it	best	suits	you.	There’s

nothing	really	new	or	fancy	about

HTML	forms,	but	a	few	side	problems

originate	when	you	try	to	use	forms

beyond	any	basic	usage.	All	in	all,

there	are	three	relevant	programming

aspects	with	forms	in	the	MVC

application	model.

If	multiple	submit	buttons	exist	in	the	form,	how	would	you	easily

detect	which	button	was	used	to	post	the	form?

How	do	you	organize	the	form	layout	when	too	many	input	fields

are	necessary?

How	do	you	refresh	the	screen	after	the	form	has	been	submitted

and	the	content	is	processed?

Let’s	delve	deeper	into	these.

Multiple	Submit	Buttons

Sometimes	the	content	of	the	form

can	be	submitted	to	trigger	a	few

different	actions	on	the	server.

How	would	you	understand	the

intended	action	on	the	server?	If

you	use	a	single	submit	button,

then	you	have	to	find	a	way	to	add

somewhere	else	in	the	form	enough

information	for	the	MVC	controller

to	figure	out	the	intended	task	to

perform.	Otherwise,	you	can	just

place	multiple	submit	buttons	in

the	form.

In	this	case,	though,	the	target	URL	is

always	the	same	regardless	of	the

clicked	button	and,	again,	you’re	left

with	the	problem	of	letting	the	server

know	which	action	you	want	to	be

taken.	Let’s	see	how	to	pack	this

information	in	the	BUTTON	element

itself.

Click	here	to	view	code	image

<form	class="form-horizontal">

<div	class="form-group">

				<div	class="col-xs-12">

								<button	name="option"	value="add"	type="submit">ADD</butt
on>

								<button	name="option"	value="save"	type="submit">SAVE</bu
tton>

								<button	name="option"	value="delete"	type="submit">DELETE
</button>

				</div>

</div>

</form>

By	design,	browsers	post	the	name	of

the	submit	button	along	with	the

value	of	the	element.	Most	of	the	time,

though,	name	and	value	attributes	are

not	set	for	submit	buttons.	Omitting

those	attributes	might	be	acceptable

when	a	single	button	can	post	the

form,	but	having	them	becomes

crucial	when	multiple	submit	buttons

exist.	How	should	you	set	name	and

value	attributes?	In	the	context	of	the

MVC	application	model,	any	posted

data	is	processed	by	the	model

binding	layer.	Once	you	are	aware	of

this,	you	can	give	all	the	submit

buttons	the	same	name	and	store	a

unique	value	in	the	value	attribute

that	can	be	used	on	the	server	to

figure	out	the	next	action.

Better	yet,	you	can	associate	the

values	set	in	the	value	attribute	to	the

elements	of	an	enum	type,	as	is	shown

below.

Click	here	to	view	code	image

public	enum	Options

{

				None	=	0,

				Add	=	1,

				Save	=	2,

				Delete	=	3

}

Figure	11-1	shows	the	effect	of	using

such	an	HTML	code	when	posting

forms	with	multiple	submit	buttons.

FIGURE	11-1	The	value	of	the	submit	button	is	mapped	to	any

corresponding	value	of	an	enum	type

Large	Forms

Often,	the	number	of	input	fields

needed	in	a	form	is	overwhelmingly

high.	A	long,	scrollable	HTML	form

is	a	solution,	but	it	is	arguably	the

most	effective	in	terms	of	user

experience.	First	and	foremost,

users	have	to	move	up	and	down

between	fields,	which	means	they

sometimes	lose	their	focus	and

forget	what	they	just	typed.	Also,

mistyped	values	are	a	problem.

Even	worse,	problems	arise	when

the	order	in	which	data	must	be

entered	is	quite	strict,	and	some

data	entries	influence	later	entries.

For	these	reasons,	a	single,	huge

form	is	never	a	good	idea.	How

would	you	break	large	forms	into

smaller	and	more	manageable

pieces?

The	idea	here	is	to	introduce	tabs	in

the	body	of	the	HTML	form.	The	body

of	the	FORM	element	can	contain	any

HTML	except	child	forms.	So,	the

simplest	and	most	effective	trick	is	to

use	tabs	to	group	related	input	fields

and	hide	all	others	from	view.	This

way	is	much	simpler	for	the	user

because	she	can	focus	on	just	a	few

things	at	a	time.	When	it	comes	to

posting	the	form	content,	nothing	is

really	different	because	grouping

input	controls	may	give	users	the

feeling	of	multiple	forms.	In	reality,

the	FORM	container	is	a	form,	and

because	of	this,	there	is	a	single

collection	of	input	fields	to	be	posted.

Click	here	to	view	code	image

<form	method="post"	action="...">

					<div	id="wizard">

									<!--	Tabstrip	-->

									<ul	class="nav	nav-tabs"	role="tablist">

													<li	role="presentation"	class="active">

																	<a	href="#personal"	role="tab"	data-toggle="tab"
>You

													

													<li	role="presentation">

																	
Hobbies

													

													:

										

									<!--	Tab	panes	-->

									<div	class="tab-content">

													<div	role="tabpanel"	class="tab-pane	active"	id="per
sonal">

																<!--	Input	fields	-->

													</div>

													<div	role="tabpanel"	class="tab-pane"	id="hobbies">

																<!--	Input	fields	-->

													</div>

													:

									</div>

					</div>

</form>

The	simplest	way	to	break	a	large

form	into	smaller	pieces	is	to	use

Bootstrap’s	tab	component.	You	split

all	the	input	fields	that	would	go	in

the	form	into	a	number	of	tabs	and	let

Bootstrap	render	them.	Users	will	see

a	classic	tabstrip	where	each	pane

contains	a	section	of	the	original	input

form.	In	this	way,	users	can	focus	on	a

small	chunk	of	information	at	a	time

and	have	nearly	no	need	to	scroll	the

browser	window	up	and	down.

The	list	of	submit	buttons	can	be

placed	wherever	it	most	suits	you.	For

example,	you	can	place	them	on	the

same	line	as	tabs,	perhaps	next	to	the

right	edge	of	the	viewport.	Here’s

some	Bootstrap	markup	for	a	form

submit	button	within	a	tabstrip.

Click	here	to	view	code	image

	...	

	...	

	...	

<button	class="btn	btn-danger	pull-right">SAVE</button>

Figure	11-2	shows	the	visual	effect	of	a

large,	tabbed	form.

FIGURE	11-2	Tabbed	input	forms

	Note	All	tabs	are	freely	accessible	as	if	the	form	were	just
one	long	list	of	input	fields.	If	you	want	to	enforce	rules	and	make	the
experience	look	a	lot	more	like	a	guided	wizard,	then	I	recommend	you	look
into	some	jQuery	plugins	before	you	start	creating	your	own	infrastructure.
You	could	start	with	the	Twitter	Bootstrap	Wizard	plugin.

As	mentioned,	data	is	posted	in	the

usual	way,	and	it	is	captured	in	the

usual	way	by	the	MVC	model	binding

layer.	Client-side	validation	takes

place	in	the	usual	way,	too.	However,

in	this	case,	you	now	have	the

problem	of	giving	feedback	to	users

about	erroneous	input	fields.	Say	the

user	goes	to	the	Password	tab	and

enters	some	invalid	data.	Next,	she

moves	to	the	Email	tab,	types	some

acceptable	data	and	clicks	Save.	The

validation	would	fail	on	the	currently

invisible	tab,	so	any	visual	feedback

you	might	have	rendered	is	not

immediately	visible	to	the	user.	In	this

case,	I	suggest	you	find	a	way	to

intercept	the	validation	error	and	add

an	icon	to	the	tab	so	that	the	user

understands	where	the	invalid	input

was	entered.	(I’ll	return	to	this	later.)

The	Post-Redirect-Get	Pattern

The	Post-Redirect-Get	Pattern

There	are	issues	in	server-side	web

development	that	have	existed

since	the	early	days,	and	a

definitive	solution	that	is

unanimously	accepted	has	never

been	found.	One	of	these	issues	is

how	to	deal	with	the	response	of	a

POST	request,	whether	it	is	a

regular	HTML	view,	a	JSON

packet,	or	an	error.	The	problem	of

dealing	with	a	POST	response

doesn’t	much	affect	entirely	client-

side	applications	in	which	the

POST	request	is	issued	and

managed	via	JavaScript	from	the

client.	In	light	of	this,	many

developers	call	this	a	false	problem

that	only	old-school	developers

might	have.	However,	if	you’re	here

and	MVC	is	your	application	model

of	choice,	then	chances	are	that

your	solution	is	not	entirely	made

of	client-side	interactions.	That

means	discussing	the	Post-

Redirect-Get	pattern—the

recommended	way	of	dealing	with

form	posts—is	worth	the	cost.

	Note	The	Post-Redirect-Get	pattern	is	also	illuminating	from
the	perspective	of	CQRS,	Command-Query	Responsibility	Segregation,	an
emerging	pattern	for	essentially	keeping	the	query	and	command	stack	of	an
application	separated	to	develop,	deploy,	and	scale	them	independently.	In	a
web	application,	a	form	post	is	handled	by	the	command	stack,	but	presenting
some	visual	response	to	the	user	pertains	to	the	query	stack.	Hence,	the	post
request	ends	when	it	is	done	with	all	tasks,	and	the	user	interface	is	updated
in	some	other	way.	Again,	the	Post-Redirect-Get	pattern	offers	one	way	to
refresh	the	user	interface	in	full	respect	of	command-query	stack	separation.

Formalizing	the	problem

Let’s	consider	a	user	that	submits	a

form	from	within	a	web	page.	From

the	browser’s	perspective,	that’s	a

plain	HTTP	POST	request.	On	the

server,	the	request	is	mapped	to	a

controller	method	that	typically

renders	back	a	Razor	template.	As	a

result,	the	user	receives	some

HTML	and	feels	happy.	Everything

works	just	fine,	so	where’s	the

problem?

There	are	two	issues.	One	is	the

misalignment	between	the	displayed

URL	that	reflects	the	form	action

(hence,	something	like	“save”	or

“edit”)	and	the	view	in	front	of	the

user,	which	is	a	“get”	action.	The	other

issue	is	related	to	the	last	action

tracked	by	the	browser.

All	browsers	track	the	last	HTTP

command	the	user	requested	and

reiterate	that	command	when	the	user

presses	F5	or	selects	the	Refresh

menu	item.	In	this	case,	the	last

request	is	an	HTTP	POST	request.

Repeating	a	post	might	be	a

dangerous	action	because	the	POST	is

typically	an	action	that	alters	the	state

of	the	system.	To	be	safe,	the

operation	needs	be	an	idempotent

operation	(that	is,	it	doesn’t	change

the	state	if	executed	repeatedly).	To

warn	users	about	the	risk	of

refreshing	after	a	post,	all	browsers

display	a	well-known	message	as	in

Figure	11-3.

FIGURE	11-3	Sample	warning	message	from	Microsoft	Edge	when

a	POST	is	reiterated

Such	windows	have	existed	for	years,

and	they	didn’t	prevent	the	diffusion

of	the	web,	but	they’re	ugly	to	see.

Getting	rid	of	those	windows,	though,

is	not	as	easy	as	it	might	seem.	To

eliminate	the	risk	of	getting	such

messages,	the	entire	flow	of	server-

side	web	operations	should	be

revisited,	and	this	ends	up	creating

new	types	of	problems.

Addressing	the	Problem

Addressing	the	Problem

The	Post-Redirect-Get	(PRG)

pattern	consists	of	a	small	set	of

recommendations	aimed	at

guaranteeing	that	each	POST

command	actually	ends	with	a

GET.	It	resolves	the	F5	refresh

problem	and	promotes	neat

separation	between	command	and

query	HTTP	actions.

The	problem	originates	from	the	fact

that	in	a	typical	web	interaction,	a

POST	that	renders	back	some	user

interface	is	followed	by	an	implicit

GET.	The	PRG	pattern	just	suggests

you	make	this	GET	explicit	through	a

redirect	or	another	client	request	that

has	the	same	effect	as	a	redirect.

Here’s	some	concrete	code.

Click	here	to	view	code	image

[HttpGet]

[ActionName("register")]

public	ActionResult	ViewRegister()

{

				//	Display	the	view	through	which	the	user	will	register

				return	View();

}

To	register,	the	user	fills	out	and

submits	the	form.	A	new	request

comes	in	as	a	POST	and	is	handled	by

the	following	code:

Click	here	to	view	code	image

[HttpPost]

[ActionName("register")]

public	ActionResult	PostRegister(RegisterInputModel	input)

{

				//	Alters	the	state	of	the	system	(i.e.,	register	the	user)

				...

				//	Queries	the	new	state	of	the	system	for	UI	purposes.	

				//	(This	step	is	an	implicit	GET)

				return	View()

}

As	written	here,	the	method

PostRegister	alters	the	state	of	the

system	and	reports	it	back	through	an

internal,	server-side	query.	For	the

browser,	it	was	only	a	POST	operation

with	some	HTML	response.	Applying

the	PRG	pattern	to	this	code	requires

just	one	change:	In	the	POST	method,

instead	of	returning	the	view,	you

redirect	the	user	to	another	page.	For

example,	you	might	want	to	redirect

to	the	GET	method	of	the	same	action.

Click	here	to	view	code	image

[HttpPost]

[ActionName("register")]

public	ActionResult	PostRegister(RegisterInputModel	input)

{

				//	Alters	the	state	of	the	system	(i.e.,	register	the	user)

				...

				//	Queries	the	new	state	of	the	system	for	UI	purposes.	

				//	(This	step	is	NOW	an	explicit	GET	via	the	browser)

				return	RedirectToAction("register")

}

As	a	result,	the	last	tracked	action	is	a

GET,	and	this	eliminates	the	F5	issue.

But	there’s	more.	The	URL	displayed

on	the	browser’s	address	bar	is	now	a

lot	more	significant.

The	PRG	pattern	is	the	approach	to

follow	if	you’re	creating	a	classic

server	application	with	full	page

refreshes	after	each	request.	A	more

modern	alternative	that	doesn’t	have

the	issues	of	POST/GET	being	fused	is

to	post	the	content	of	the	form	via

JavaScript.

POSTING	FORMS	VIA
JAVASCRIPT

If	posting	is	a	browser-led

operation,	then	the	output	returned

by	the	target	URL	is	displayed	to

the	user	without	filters.	If	posting	is

conducted	via	JavaScript	instead,

your	client-side	code	has	the	great

chance	to	control	the	entire

operation	and	manage	things	so

that	users	can	have	a	very	smooth

experience.

Regardless	of	the	specific	framework

you	use—whether	it’s	plain	jQuery	or

a	much	more	sophisticated	framework

—the	steps	to	take	to	post	an	HTML

form	can	be	summarized	as	below:

Collect	the	data	to	post	from	the	input	fields	of	the	form.

Serialize	individual	field	values	into	a	stream	of	data	that	can	be

packaged	into	an	HTTP	request.

Prepare	and	run	the	Ajax	call.

Receive	response,	check	for	errors,	and	adjust	the	user	interface

accordingly.

There’s	no	need,	however,	for

handcrafting	all	the	steps	above.	All

browsers	expose	an	API	to	script	the

FORM	element	as	it	is	coded	in	the

local	DOM.	Therefore,	all	we	do	is

write	some	JavaScript	code	to	have

the	browser	post	the	form	out-of-band

and	handle	the	response	accordingly.

Uploading	the	Form	Content

The	correct	body	of	an	HTTP

request	that	carries	form	content	is

defined	in	the	HTML	standard

papers.	It’s	the	string	given	by	the

concatenation	of	input	names	and

related	values.	Each	name/value

pair	is	joined	to	the	next	by	the	&

symbol.

Click	here	to	view	code	image

name1=value1&name2=value2&name3=value3

There	are	many	ways	to	create	such	a

string.	You	can	do	it	yourself	by

reading	values	from	DOM	elements

and	creating	the	string,	but	using

jQuery	facilities	is	faster	and	more

reliable.

Serializing	the	Form

In	particular,	the	jQuery	library

offers	the	serialize	function,	which

takes	a	FORM	element,	loops

through	the	child	INPUT	elements,

and	returns	the	final	string.

Click	here	to	view	code	image

var	form	=	$("#your-form-element-id");

var	body	=	form.serialize();

Another	option	in	jQuery	is	the

$.param	function.	The	function

produces	the	same	output	as	serialize

except	that	it	accepts	a	different	type

of	input.	Whereas	serialize	can	only

be	called	on	a	form	and	it

automatically	scans	the	list	of	input

fields,	$.param	requires	an	explicit

array	of	name/value	pairs	but

produces	the	same	output.

Once	you	have	the	content	to	serialize

you	only	have	to	place	the	HTTP

request.	Note	that	browsers	also	offer

the	submit	method	on	the	FORM

element	of	their	DOM.	The	effect	is

different	from	placing	an	HTTP	call.

The	submit	method	produces	the

same	effect	as	pushing	the	button—a

browser-led	upload	of	the	form

content	with	a	subsequent	full-page

refresh.	If	you	manage	your	own

HTTP	call	instead,	you’re	in	total

control	of	the	workflow.

Placing	the	HTTP	Request

To	place	an	HTTP	request,	you	use

jQuery	again.	A	form	is	uploaded

using	the	HTTP	verb	specified	by

the	method	attribute	of	the	form

HTML	element.	The	target	URL

instead	is	identified	by	the	content

of	its	action	attribute.	Here’s	a

sample	AJAX	call	you	can	use	to

upload	the	content	of	an	HTML

form.

Click	here	to	view	code	image

var	form	=	$("#your-form-element-id");

$.ajax({

			cache:	false,

			url:	form.attr("action"),

			type:	form.attr("method"),

			dataType:	"html",

			data:	form.serialize(),

			success:	success,

			error:	error

});

The	jQuery	ajax	function	allows	you

to	pass	in	two	callbacks	to	handle	the

success	or	failure	of	the	request.	It	is

worth	noting	that	success	or	failure

refers	to	the	status	code	of	the

response	and	not	to	the	business

operation	behind	the	physical	HTTP

request.	In	other	words,	if	your

request	triggers	a	command	that	fails

but	your	server	code	swallows	the

exception	and	returns	an	error

message	in	an	HTTP	200	response,

the	error	callback	will	never	be

triggered.	Let’s	have	a	look	at	a

possible	ASP.NET	MVC	endpoint

getting	invoked	via	Ajax	and

JavaScript.

Click	here	to	view	code	image

public	IActionResult	Login(LoginInputModel	credentials)

{

				//	Validate	credentials	

				var	response	=	TryAuthenticate(credentials);

				if	(!response.Success)

								throw	new	LoginFailedException(response.Message);

				var	returnUrl	=	...;

				return	Content(returnUrl);

}

In	this	case,	if	the	authentication	fails,

an	exception	is	thrown,	meaning	that

the	status	code	of	the	request	becomes

HTTP	500,	which	will	invoke	the

error	handler.	Otherwise,	the	next

URL	is	returned	where	you	want	the

user	to	be	redirected	after	a	successful

login.	Note	that	as	this	method	is

invoked	via	Ajax,	any	redirect	to

another	URL	can	only	take	place	via

JavaScript	from	the	client	side.

window.location.href	=	"...";

The	post	of	the	form	is	invoked	in	the

click	handler	of	the	form	buttons.	To

prevent	the	browser	from	posting	the

form	automatically	upon	clicking,	you

might	want	to	change	the	button	type

attribute	to	a	button	instead	of

submit.

Click	here	to	view	code	image

<button	type="button"	id="myForm">SUBMIT</button>

The	click	handler	can	perform

additional	tasks	before	and	after	the

post	of	the	form,	including	giving

users	some	feedback.

Giving	Users	Feedback

The	callback	handlers,	whether	for

the	success	or	error	case,	receive	all

data	the	controller	method

returned,	and	they	are	responsible

for	displaying	that	data.	Displaying

that	data	might	require	unpacking

and	splitting	the	data	across	the

various	pieces	of	the	HTML	user

interface.	If	the	form	post	was

successful,	you	might	want	to	show

users	a	reassuring	message	like,

“The	operation	completed

successfully.”	Even	more

importantly,	if	the	form	post

resulted	in	a	functional	failure,

then	you	might	want	to	provide

details	that	typically	indicate	that

some	input	data	was	incorrect.	It	is

up	to	you	whether	the	messages

(success	or	failure)	are	hardcoded

or	determined	on	the	server	in	a

context-sensitive	manner.	If	they’re

generated	on	the	server,	though,

you	might	want	to	define	a

serializable	data	structure	to	be

returned,	which	contains	the

outcome	of	the	operation	and	also

provides	a	description	of	what	has

happened.	I	like	to	use	something

like	this:

Click	here	to	view	code	image

public	class	CommandResponse

{

			public	bool	Success	{	get;	set;	}

			public	string	Message	{	get;	set;	}

}

Should	messages	stay	on	screen

indefinitely	until	the	next	operation	is

attempted?	Error	messages	might

reasonably	remain	on	screen	until	the

next	submission	but,	at	some	point,

must	be	removed.	You	can	remove

error	message	just	before	you	submit

the	form	again.	Things	are	different

for	a	successful	message.	It’s

important	to	show	a	confirmation

message,	but	the	message	must	not	be

invasive	nor	should	it	be	around	for

too	long.	I’d	avoid	modal	popups	here,

and	would	rather	bind	the	message	to

a	timer	so	that	it	first	appears	as	a

piece	of	text	interspersed	with	the

regular	user	interface	and	is	then

dismissed	a	few	seconds	later	without

any	user	intervention.

A	middle	ground	is	to	display	the

message	in	a	DIV	that	looks	like	an

alert	box	and	gives	users	a	chance	to

dismiss	it	by	simply	clicking	a	button.

When	I	take	this	route,	I	typically	use

the	Bootstrap	alert	class	to	style	the

container	of	the	message	and	use	the

following	chunk	of	JavaScript	in	the

global	layout	so	that	it	automatically

applies	to	all	alert	boxes	and	makes

them	easily	dismissible.

Click	here	to	view	code	image

$(".alert").click(function(e)	{

			$(this).hide();

});

Note	that	dismissible	alert	boxes	are

also	supported	natively	by	Bootstrap,

but	I	find	this	trick	quicker	to	write

and	easier	for	users	because	they	can

click	or	touch	anywhere	to	dismiss	the

message.	Figure	11-4	shows	error

messages	after	a	form	post	was

attempted	via	JavaScript.

FIGURE	11-4	Error	messages	in	a	client-side	managed	HTML	form

The	feedback	for	the	user	is

orchestrated	from	within	the	client

page.	Here’s	some	sample	code.	For

more	details—specifically	for	the

details	of	the	JavaScript	libraries

being	used	to	support	the	described

behavior—refer	to	the	sample	code

that	comes	with	this	book.	(See

http://github.com/despos/progcore

(http://github.com/despos/progcore).)	In

particular,	look	at	the	file	ybq-core.js

in	the	Ch11	folder.

Click	here	to	view	code	image

Ybq.postForm("#large-form",

					function(data)	{

									var	response	=	JSON.parse(data);

									Ybq.toast("#large-form-message",	

																			response.message,	

																			response.success);

});

The	postForm	function	is	just	a

wrapper	that	contains	the	Ajax

snippet	presented	earlier:

Click	here	to	view	code	image

var	form	=	$("#your-form-element-id");

$.ajax({

			cache:	false,

			url:	form.attr("action"),

			type:	form.attr("method"),

			dataType:	"html",

			data:	form.serialize(),

			success:	success,

			error:	error

});

The	toastr	method	is	a	helper	routine

that	displays	a	DIV	with	the	message

and	times	it	out	automatically	after	a

few	seconds.	The	style	of	the	DIV	is	in

line	with	the	outcome	(success	or	fail)

of	the	operation.	(See	Figure	11-5.)

FIGURE	11-5	Error	messages	in	a	client-side	managed	HTML	form

	Note	In	ASP.NET	Core,	the	Json	method	that	serializes
objects	back	to	the	client	is	smart	enough	to	serialize	honoring	the	JavaScript
casing	conventions.	In	light	of	this,	when	the	above	CommandResponse	type
is	serialized	back,	C#	properties	like	Success	and	Message	become
JavaScript	properties	named	success	and	message.	(This	is	different	from
what	happens	in	MVC	5.x.)

Refreshing	Portions	of	the	Current
Screen

When	you	post	the	form	and	the

operation	completes	successfully,

sometimes	you	need	to	refresh

some	portions	of	the	current	user

interface.	If	the	form	posts	via	the

browser,	then	the	PRG	pattern

ensures	the	new	page	is	entirely

redrawn	from	scratch	with	fresh

and	up-to-date	information.	This	is

not	the	case	when	you	post	the

form	content	from	the	client	side

using	JavaScript.

Updating	Small	Pieces	of	the	User	Interface

Sometimes	the	parts	of	the	current

user	interface	to	be	updated	are

small	and,	more	importantly,	the

new	content	can	be	figured	out

from	the	content	of	the	form.	In

this	case,	all	you	do	is	save	the

small	pieces	of	new	content	to

some	local	variables	and	use	them

to	update	the	involved	DOM

elements.	In	this	context,	a	small

piece	of	the	user	interface	is

anything	as	simple	and	compact	as

a	string	or	a	number.

Click	here	to	view	code	image

Ybq.postForm("#large-form",

					function(data)	{

									//	Deserialize	the	received	response

									var	response	=	JSON.parse(data);

									//	Update	the	UI

									if	(response.success)	{

														var	name	=	$("#contactname").val();

														$("#public-name").html(name);

									}

									//	Give	feedback	about	the	overall	operation

									Ybq.toast("#large-form-message",	

																			response.message,	

																			response.success);

});

In	the	example,	we’re	assuming	that

the	view	contains	some	text	label

named	public-name	that	is	set	to	the

name	of	the	contact	in	the	form.

Calling	Back	the	Server	for	Partial	Views

Other	times,	refreshing	the	user

interface	might	not	be	that	simple.

Refreshing	the	text	of	a	label	is	no

big	deal,	but	sometimes	a	full	piece

of	HTML	is	required.	This	HTML

chunk	can	be	arranged	on	the	client

side,	but	unless	you’re	using	some

client-side	data	binding	library

(more	on	this	in	the	next	chapter),

it	only	introduces	a	possible	double

point	of	failure.	Basically,	you	have

some	code	on	the	server	and	some

code	on	the	client	to	generate	the

same	HTML	output	at	different

times.	This	means	that	any	change

you	could	make	to	the	actual	style

or	layout	must	be	applied	in	two

different	places,	using	two	different

languages.

In	these	cases,	it	could	be	more

reliable	to	call	back	the	server	and

have	it	serve	back	just	the	chunk	of

HTML	you’re	looking	for.	This	helps

to	componentize	the	user	interface.	In

Chapter	5,	“ASP.NET	MVC	Views,”	we

also	discussed	view	components.	I’d

say	that	if	the	chunk	of	HTML	is

complex	enough,	you	could

implement	it	as	a	view	component

and	order	it	to	refresh.	Sometimes,

you	can	make	it	a	partial	view	and	just

add	a	new	action	method	to	some

controller	that	simply	returns	the

partial	view	as	modified	by	the

current	state	of	the	system.	Here’s	an

example.

Click	here	to	view	code	image

[HttpGet]

public	IActionResult	GetLoginView()

{

				//	Get	any	necessary	data

				var	model	=	_service.GetAnyNecessaryData();

				return	new	PartialView("pv_loginbox",	model);

}

The	method	is	invoked	via	Ajax	and

returns	the	current	state	of	some	user

interface	portion.	All	it	does	is	gather

the	data	necessary	to	populate	the

HTML	and	pass	it	to	the	Razor	view

engine	for	populating	the	partial	view.

The	client	application	receives	an

HTML	string	and	just	updates	an

HTML	element	(most	likely,	a	DIV)

using	the	jQuery	html	method.

Uploading	Files	to	a	Web	Server

In	HTML,	files	are	pretty	much

treated	like	any	other	type	of	input

in	spite	of	the	deep	difference	that

exists	between	files	and	primitive

data.	As	usual,	you	start	by	creating

one	or	more	INPUT	elements	with

the	type	attribute	set	to	file.	The

native	browser	user	interface

allows	users	to	pick	a	local	file,	and

then	the	content	of	the	file	is

streamlined	with	the	rest	of	the

form	content.	On	the	server,	the	file

content	is	mapped	to	a	new	type—

the	IFormFile	type—and	enjoys	a

much	more	uniform	treatment

from	the	model	binding	layer	than

in	previous	versions	of	MVC.

Setting	Up	the	Form

To	pick	up	a	local	file	and	select	it

for	upload,	you	don’t	strictly	need

more	than	the	following	markup.

Click	here	to	view	code	image

<input	type="file"	id="picture"	name="picture">

While	this	code	must	be	found

somewhere	in	HTML	pages	for	user

interface	reasons,	it	usually	is	hidden

from	view.	This	allows	applications	to

provide	a	much	nicer	user	interface

while	still	preserving	the	ability	to

bring	up	the	local	explorer	window.

A	common	trick	is	to	hide	the	INPUT

element	and	display	some	nice	user

interface	to	invite	users	to	click.	Next,

the	handler	of	the	click	just	forwards

the	click	event	to	the	hidden	INPUT

element.

Click	here	to	view	code	image

<input	type="file"	id="picture"	name="picture">

<div	onclick="$('#picture').click()">image	not	available</div>

For	the	form	content	to	be	uploaded

correctly,	the	enctype	attribute	also

must	be	specified	with	the	fixed	value

of	multipart/form-data.

FIGURE	11-6	Hidden	INPUT	file	element

Processing	File	Content	on	the	Server

In	ASP.NET	Core,	file	content	is

abstracted	to	the	IFormFile	type,

which	mostly	preserves	the	same

programming	interface	of	the

HttpPostedFileBase	type	you	might

have	used	in	MVC	5	applications.

Click	here	to	view	code	image

public	IActionResult	UploadForm(FormInputModel	input,	IFormFile	p
icture)

{

				if	(picture.Length	>	0)

				{

								var	fileName	=	Path.GetFileName(picture.FileName);

								var	filePath	=	Path.Combine(_env.ContentRootPath,	"Upload
s",	fileName);

								using	(var	stream	=	new	FileStream(filePath,	FileMode.Cre
ate))

								{

											picture.CopyTo(stream);

								}

				}

}

Note	that	the	IFormFile	reference	can

also	be	added	to	the	FormInputModel

complex	type	because	model	binding

would	easily	and	happily	map	the

content	by	name	like	it	does	for

primitive	and	complex	data	types.	The

code	above	sets	a	file	name	from	the

current	content	root	folder	and

creates	a	server	copy	of	the	file	with

the	original	name	of	the	uploaded	file.

If	multiple	files	are	uploaded,	you

simply	reference	an	array	of

IFormFile	types.

If	you’re	posting	the	form	via

JavaScript,	then	you’d	better	replace

the	form	serialization	code	we’ve	seen

above	with	the	following	snippet:

Click	here	to	view	code	image

var	form	=	$("#your-form-element-id");

var	formData	=	new	FormData(form[0]);

form.find("input[type=file]").each(function	()	{

			formData.append($(this).attr("name"),	$(this)[0].files[0]);

});

$.ajax({

			cache:	false,

			url:	form.attr("action"),

			type:	form.attr("method"),

			dataType:	"html",

			data:	formData,

			success:	success,

			error:	error

});				

The	code	ensures	that	all	input	files

are	being	serialized.

Issues	with	File	Uploads

Issues	with	File	Uploads

The	above	code	is	guaranteed	to

work	for	small	files,	even	though	it

is	hard	to	define	what	“small”

means	in	general	terms.	Let’s	say

that	you	can	always	start	with	this

code	unless	you	know	beforehand

you’re	going	to	upload	files	as	large

as	30	megabytes.	In	this	case,	and

in	any	case	in	which	you	experience

some	delays	on	the	web	server

related	to	the	size	of	the	file,	you

might	want	to	consider	streaming

the	content	of	the	files.	Detailed

instructions	can	be	found	at

http://docs.microsoft.com/en-

us/aspnet/core/mvc/models/file-

uploads

(http://github.com/despos/progcore).

This	is	only	the	first	issue	you	might

have	these	days	when	it	comes	to	file

uploads.	Another	issue	is	the	need	for

a	highly	dynamic	and	interactive	user

interface.	Users	might	expect	that

visual	feedback	is	provided	about	the

progress	of	the	upload	operation.

Also,	when	the	file	to	upload	is	an

image	(say,	the	photo	of	a	registered

user)	users	might	even	expect	a

preview	and	the	ability	to	cancel	the

previously	selected	image	and	leave

the	field	blank.	All	these	operations

are	possible	but	are	not	free	of	effort.

You	could	consider	using	some	ad	hoc

component	such	as	Dropzone.js.	(See

http://dropzonejs.com

(http://dropzonejs.com))

Another	issue	is	related	to	how	you

save	a	copy	of	the	uploaded	file	on	the

server.	The	code	shown	above	creates

a	new	file	on	the	server.	Note	that	the

above	code	will	throw	an	exception	if

any	of	the	referenced	folders	don’t

exist.	This	approach	was	more	than

OK	for	years	but	is	losing	appeal	the

more	the	cloud	model	gains	relevance.

If	you	store	uploaded	files	locally	to	a

web	application	hosted	in	an	Azure

App	Service,	your	application	will

work	transparently	as	multiple

instances	of	the	same	App	Service	will

share	the	same	storage.	The	problem

with	uploaded	files	is	that	in	general	it

is	better	keeping	them	off	the	main

server.	Until	the	cloud	exploded,	there

was	not	much	else	you	could	do	other

than	storing	files	locally	or	perhaps	in

a	database.	With	the	cloud,	you	have

cheap	blob	storage	that	can	be	used	to

store	files	even	beyond	the	storage

limits	of	a	classic	App	Service

configuration.	Also,	the	traffic	to	the

files	is,	in	part,	diverted	from	your

main	server.

The	code	above	can	be	rewritten	to

save	the	uploaded	image	to	an	Azure

blob	container.	To	do	that,	you	need

an	Azure	storage	account.

Click	here	to	view	code	image

//	Get	the	connection	string	from	the	Azure	portal

var	storageAccount	=	CloudStorageAccount.Parse("connection	string
	to	your	storage	account");

//	Create	a	container	and	save	the	blob	to	it

var	blobClient	=	storageAccount.CreateCloudBlobClient();

var	container	=	blobClient.GetContainerReference("my-container");

container.CreateIfNotExistsAsync();

var	blockBlob	=	container.GetBlockBlobReference("my-blob-name");

using	(var	stream	=	new	MemoryStream())

{

				picture.CopyTo(stream);

				blockBlob.UploadFromStreamAsync(stream);

}

The	Azure	blob	storage	is	articulated

in	containers,	and	each	container	is

bound	to	an	account.	Within	a

container,	you	can	have	as	many	blobs

as	you	wish.	A	blob	is	characterized	by

a	binary	stream	and	a	unique	name.

To	access	the	Azure	blob	storage,	you

can	also	use	a	REST	API,	so	the	blob

storage	is	accessible	also	outside	the

web	application.

	Note	To	test	the	Azure	blob	storage,	you	use	the	Azure	blob
simulator,	which	allows	you	to	play	locally	with	the	API	of	the	platform.

SUMMARY

Today	applications	can	hardly

afford	the	burden	of	full	page

refreshes	when	the	user	performs

any	action.	While	quite	a	few

websites	that	are	built	around	the

old-fashioned	approach	still	exist,

that	does	not	excuse	not	trying	to

make	a	better	one.	Outside	the

realm	of	ASP.NET	Core,	you	can

have	an	Angular	application	which

would	perform	any	data	access

tasks	by	calling	remote	services	and

refreshing	the	user	interface

locally.	Whether	through	Angular

(or	analogous	frameworks)	or	by

using	plain	JavaScript	in	Razor

views,	you	should	aim	to	make	the

user	interface	a	bit	smoother	and

fluid.

In	this	chapter,	we	focused	on	how	to

post	data	to	the	server	from	the	client

side	using	JavaScript	code.	In	the	next

chapter,	we’ll	see	the	options	we	must

render	to	HTML	whatever	we	bring

down	to	the	client	page	from	remote

servers.

—Marguerite	Yourcenar,	“Memoirs

of	Hadrian”

CHAPTER	12

Client-side	Data	Binding
Our	great	mistake	is	to	try	to	exact

from	each	person	virtues	which	he

does	not	possess,	and	to	neglect	the

cultivation	of	those	which	he	has.

The	term	data	binding	refers	to	the

ability	of	a	visual	component	to	be

programmatically	updated	with	fresh

data.	The	canonical	example	is	a	text

box	that	is	assigned	a	default	text	to

show	for	the	user	to	edit.	Data	binding

is	therefore	just	what	the	name

suggests—a	way	to	bind	data	to	a

visual	component	in	software.	HTML

elements—input	fields	but	also	DIV

and	text	elements	such	as	P	and	SPAN

elements—are	visual	components.

Client-side	data	binding	refers	to	the

techniques	you	can	adopt	to	refresh

the	content	of	a	browser-displayed

web	page	directly	via	JavaScript	and

without	reloading	the	page	from	the

web	server.

In	this	chapter,	we’ll	review	and

compare	a	few	techniques	that	can	be

used	to	update	the	user	interface	and

better	reflect	the	state	of	the

application.	The	simplest	approach

consists	in	downloading	chunks	of

updated	HTML	from	the	server.

Those	segments	just	dynamically

replace	existing	segments	of	HTML,

thus	serving	up	a	partial	rendering	of

the	currently	displayed	page.	Another

approach	entails	having	a	JSON-

based	set	of	endpoints	that	can	be

queried	for	fresh	data	to	regenerate

the	HTML	layout	entirely	on	the	client

side	in	JavaScript.

REFRESHING	THE	VIEW	VIA
HTML

There	is	no	doubt	that	a	full	refresh

of	a	webpage	that	is	quite	rich	with

graphics	and	media	can	be

significantly	slow	and	cumbersome

for	users.	This	is	precisely	why	Ajax

and	partial	rendering	of	pages

became	so	popular.	At	the	other

extreme	of	page	rendering,	we	find

the	concept	of	a	Single	Page

Application	(SPA).	At	its	core,	an

SPA	is	an	application	made	of	one

(or	a	few)	minimal	HTML	pages

incorporating	a	nearly	empty	DIV

populated	at	runtime	with	a

template	and	data	downloaded

from	some	server.	On	the	way	from

server-side	rendering	to	the	full

client-side	rendering	of	SPAs,	I

suggest	we	start	with	an	HTML

partial	rendering	approach.

Preparing	the	Ground

Preparing	the	Ground

The	idea	is	that	any	page	is	first

served	entirely	from	the	server	and

downloads	as	a	single	chunk	of

HTML.	Next,	any	interaction

between	the	user	and	the	controls

within	the	page	is	arranged	via	Ajax

calls.	The	invoked	endpoint

performs	any	command	or	query

and	returns	any	response	as	pure

HTML.	Returning	HTML	is	less

efficient	than	returning	plain	JSON

data	because	HTML	is	made	of

layout	information	and	data

whereas	in	a	JSON	stream,	the

amount	of	extra	information	is

limited	to	the	schema	and,	on	the

average,	is	smaller	than	HTML

layout	data.	This	said,	downloading

plain	server-side	rendered	HTML	is

much	less	intrusive	and	doesn’t

require	additional	skills	or	learning

an	entirely	new	programming

paradigm.	Still,	a	bit	of	JavaScript

is	required,	but	it	is	limited	to	using

familiar	DOM	properties	such	as

innerHTML	or	just	a	few	core

jQuery	methods.

Defining	Refreshable	Areas

An	area	of	a	page	that	is	subject	to

dynamic	refresh	must	be	easily

identifiable	and	well	isolated	from

the	rest	of	the	page.	Ideally,	it	is	a

DIV	element	with	a	known	ID.

Click	here	to	view	code	image

<div	id="list-of-customers">

				<!--	Place	here	any	necessary	HTML	-->

</div>

Once	any	fresh	HTML	has	been

downloaded	for	the	DIV,	it	only	takes

a	line	of	JavaScript	to	update	it,	as

shown	below.

Click	here	to	view	code	image

$("#list-of-customers").html(updatedHtml);

From	a	Razor	perspective,	a

refreshable	area	is	fully	rendered	with

a	partial	view.	Not	only	would	a

partial	view	help	componentize	the

resulting	page	favoring	reuse	and

separation	of	concerns,	but	it	would

also	make	it	far	easier	to	refresh

portions	of	the	page	from	the	client

without	a	full	page	reload.

Click	here	to	view	code	image

<div	id="list-of-customers">

				@Html.Partial("pv_listOfCustomers")

</div>

The	missing	link	is	a	controller	action

method	that	performs	some	query	or

command	action	and	then	returns

HTML	generated	by	the	partial	view.

Putting	It	All	Together

Let’s	say	you	have	a	sample	page

that	renders	a	list	of	customer

names.	Any	user	authorized	to	view

the	page	can	click	a	side	button	to

delete	the	current	row.	How	would

you	code	that?	The	old-way

approach	entails	linking	the	button

to	a	URL	where	a	POST	controller

method	would	perform	the

operation	and	then	redirect	back	to

a	GET	page	that	renders	the	page

with	up-to-date	data.	It	works,	but

it	takes	a	chain	of	requests	(Post-

Redirect-Get)	and,	more

importantly,	causes	a	full-page

reload.	For	heavy	pages—nearly

every	realistic	website	page	is	heavy

—it	is	definitely	cumbersome.

A	refreshable	area	allows	the	user	to

click	a	button	and	have	some

JavaScript	place	the	POST	request

and	serve	back	some	HTML.	The

same	handler	that	places	the	initial

request	for	deleting	the	customer

would	receive	a	fragment	of	HTML	to

stick	on	top	of	the	existing	table	of

customers.

The	Action	Method

The	Action	Method

The	controller	action	method	is

nothing	special,	except	that	it

returns	a	partial	view	result	instead

of	a	full	view	result.	Such	a	method

exists	only	to	edit	a	given	view.	To

skip	unwanted	calls,	you	might

even	decorate	the	method	with	a

couple	of	custom	filter	attributes,

as	below.

Click	here	to	view	code	image

[AjaxOnly]

[RequireReferrer("/home/index",	"/home",	"/")]

[HttpPost]

[ActionName("d")]

public	ActionResult	DeleteCustomer(int	id)

{

			//	Do	some	work

			var	model	=	DeleteCustomerAndReturnModel(id);

			//	Render	HTML	back

			return	PartialView("pv_listOfCustomers",	model);

}

AjaxOnly	and	RequireReferrer	are

custom	filters	(see	companion	source

code)	that	run	the	method	only	if	the

request	comes	via	Ajax	and	from	any

of	the	given	referrers.	The	other	two

attributes	set	the	need	for	a	POST	call

and	an	action	name	of	d.

The	Response	from	the	Method

Placing	the	call	via	Ajax,	the

browser	would	receive	an	HTML

fragment	and	use	it	to	replace	the

content	of	the	refreshable	area.

Here’s	some	sample	code	you

would	bind	to	the	click	of	a	button.

Click	here	to	view	code	image

<script	type="text/javascript">

				function	delete(id)	{

								var	url	=	"/home/d/";

								$.post(url,	{	id:	id	})

									.done(function	(response)	{

																//	In	this	context,	the	parameter	"response"	is	t
he

																//	method	response.	Hence,	it	is	the	fragment	of	
HTML

																//	returned	by	the	action	method	via	PartialView(
).

																$("#listOfCustomers").html(response);

								});

				}

</script>

For	the	user,	the	experience	is	quite

nice.	She	clicks,	for	example,	an	item

on	a	list	and	the	list	refreshes

instantaneously	to	reflect	changes.

The	effect	is	shown	in	Figure	12-1.	In

the	figure,	the	screen	on	the	left

captures	the	user	clicking	the	delete

button	for	one	of	the	rows,	and	the

screen	on	the	right	shows	the	list	of

customers	minus	the	deleted	row.

FIGURE	12-1	Partial	refresh	of	the	page	after	an	update

For	the	user,	the	experience	is	quite

nice.	For	example,	she	clicks	an	item

on	a	list,	and	the	list	refreshes

instantaneously	to	reflect	changes.

Limitations	of	the	Technique

The	technique	works	beautifully,

but	it	is	limited	to	updating	one

HTML	fragment	at	a	time.	Whether

this	is	really	a	limitation	depends

on	the	nature—and	the	actual

content—of	the	view.	More

realistically,	a	web	view	can	have

two	or	more	fragments	that	need	to

be	updated	after	a	server	operation.

As	an	example,	consider	the	page

shown	in	Figure	12-2.

FIGURE	12-2	A	web	page	with	two	related	HTML	fragments	to

update

The	page	has	two	related	fragments

that	need	be	updated	when	a

customer	is	deleted.	You	don’t	just

want	to	update	the	table	to	remove	the

deleted	customer;	you	also	need	to

refresh	the	drop-down	list.	Obviously,

you	can	have	two	methods	on	the

controller	with	each	returning	a

distinct	fragment.	That	would	require

some	additional	code,	as	shown

below.

Click	here	to	view	code	image

<script	type="text/javascript">

				function	delete(id)	{

								var	url	=	"/home/d/";

								$.post(url,	{	id:	id	})

									.done(function	(response)	{

													$("#listOfCustomers").html(response);

													$.post("home/dropdown",	"")

														.done(function(response)	{

																		$("#dropdownCustomers").html(response);

														});

								});

				}

</script>

After	receiving	the	first	response,	you

make	a	second	Ajax	call	to	request	the

second	HTML	fragment.	Again,	it

works,	but	it	probably	can	be	done

better.

Introducing	the	Multiple	View	Action	Result

Introducing	the	Multiple	View	Action	Result
Type

A	controller	method	returns	a	type

that	implements	the	IActionResult

type	or,	more	likely,	inherits	from

ActionResult.	The	idea	is	to	create	a

custom	action	result	type	that

returns	multiple	HTML	fragments

combined	into	a	single	string	with

each	fragment	separated	by	a

conventional	separator.	The

technique	has	two	major

advantages.	First,	a	single	HTTP

request	is	made	for	as	many	HTML

fragments	as	needed.	Second,	the

workflow	is	simpler.	The	logic	to

determine	which	parts	of	the	view

should	be	updated	lives	on	the

server	and	the	client	just	receives

an	array	of	HTML	fragments.	The

client	still	needs	to	contain	the	UI

logic	necessary	to	stick	every

fragment	where	it	belongs.	This

aspect,	though,	can	be	further

lessened	by	building	a	custom

framework	around	it	that

declaratively	links	a	fragment	to	its

HTML	element	in	the	client	DOM.

Let’s	have	a	look	at	the	C#	class	for

the	custom	action	result	type.

Click	here	to	view	code	image

public	class	MultiplePartialViewResult	:	ActionResult

{

				public	const	string	ChunkSeparator	=	"---|||---";

				public	IList<PartialViewResult>	PartialViewResults	{	get;	}

				public	MultiplePartialViewResult(params	PartialViewResult[]	r
esults)

				{

								if	(PartialViewResults	==	null)

												PartialViewResults	=	new	List<PartialViewResult>();

								foreach	(var	r	in	results)

												PartialViewResults.Add(r);

				}

				public	override	async	Task	ExecuteResultAsync(ActionContext	c
ontext)

				{

								if	(context	==	null)

												throw	new	ArgumentNullException(nameof(context));

								var	services	=	context.HttpContext.RequestServices;

								var	executor	=	services.GetRequiredService<PartialViewRes
ultExecutor>();

								var	total	=	PartialViewResults.Count;

								var	writer	=	new	StringWriter();

								for	(var	index	=	0;	index	<	total;	index++)

								{

												var	pv	=	PartialViewResults[index];

												var	view	=	executor.FindView(context,	pv).View;

												var	viewContext	=	new	ViewContext(context,

																view,

																pv.ViewData,	

																pv.TempData,

																writer,	

																new	HtmlHelperOptions());

												await	view.RenderAsync(viewContext);

												if	(index	<	total	-	1)

																await	writer.WriteAsync(ChunkSeparator);

								}

								await	context.HttpContext.Response.WriteAsync(writer.ToSt
ring());

				}

}

The	action	result	type	holds	an	array

of	PartialViewResult	objects	and

executes	them	one	after	the	other,

accumulating	HTML	markup	in	an

internal	buffer.	When	done,	the	buffer

is	flushed	to	the	output	stream.	The

output	of	each	PartialViewResult

object	is	separated	using	a

conventional,	but	arbitrary,	substring.

The	interesting	part	is	how	you	use

this	custom	action	result	type	from	a

controller	method.	Let’s	rewrite	the

DeleteCustomer	action	method.

Click	here	to	view	code	image

[AjaxOnly]

[RequireReferrer("/home/index",	"/home",	"/")]

[HttpPost]

[ActionName("d")]

public	ActionResult	DeleteCustomer(int	id)

{

			//	Do	some	work

			var	model	=	DeleteCustomerAndReturnModel(id);

			//	Render	HTML	back

			var	result	=	new	MultiplePartialViewResult(

										PartialView("pv_listOfCustomer",	model),

										PartialView("pv_onBehalfOfCustomers",	model));

			return	result;

}

The	constructor	of	the

MultiplePartialViewResult	class

accepts	an	array	of	PartialViewResult

objects,	so	you	can	add	as	many	as

you	have	to	the	call.

Finally,	the	HTML	code	in	the	client

page	also	changes	slightly.

Click	here	to	view	code	image

<script	type="text/javascript">

				function	delete(id)	{

								var	url	=	"/home/d/";

								$.post(url,	{	id:	id	})

									.done(function	(response)	{

													var	chunks	=	Ybq.processMultipleAjaxResponse(respons
e);

													$("#listOfCustomers").html(chunks[0]);

													$("#dropdownCustomers").html(chunks[1]);

								});

				}

</script>

The

Ybq.processMultipleAjaxResponse

JavaScript	function	is	a	short	piece	of

code	that	just	splits	the	received	string

on	the	conventional	separator.	The

code	is	easy,	as	shown	below.	Figure

12-3	illustrates	the	effects.

Click	here	to	view	code	image

Ybq.processMultipleAjaxResponse	=	function	(response)	{

				var	chunkSeparator	=	"---|||---";

				var	tokens	=	response.split(chunkSeparator);

				return	tokens;

};

FIGURE	12-3	Multiple	HTML	fragments	updated	simultaneously

REFRESHING	THE	VIEW	VIA

REFRESHING	THE	VIEW	VIA
JSON

An	SPA	application	is	built	on	top

of	an	HTML	template	and	uses

directives	to	instruct	the	runtime

on	how	to	modify	the	DOM.	A

directive	usually	takes	the	form	of

an	HTML	attribute	that	some

embedded	JavaScript	module	will

process.	Directives	can	be	quite

complex	and	include	chainable

formatters	and	filters.	Also,

directives	might	sometimes	need	to

refer	to	core	language	operations,

such	as	checking	a	condition	or

running	a	loop.	A	framework	like

Angular	takes	the	approach	of

building	applications	from	the

client	side	quite	far	away	from	the

quick	and	dirty	problem	of

rebuilding	an	HTML	template

dynamically	to	make	it	display

fresher	data.

At	the	very	end	of	the	day,	when

refreshing	a	section	of	a	page,	Angular

builds	a	string	dynamically	and

displays	it	using	DOM	commands.

The	same,	however,	can	be	done	using

a	much	smaller	framework	that

embeds	an	HTML	template	in	the

page	and	knows	how	to	fill	it	out	with

bound	data.	Beyond	this	basic	point,

the	difference	between	a	huge

framework	like	Angular	and	a

handmade	string	builder	is	just

quantity	of	features.

Introducing	the	Mustache.JS	Library

Introducing	the	Mustache.JS	Library

Mustache	is	a	logic-less	syntax	for

creating	text	templates.	It	is	not

strictly	limited	to	HTML;	it	can	be

used	to	generate	any	text,	such	as

HTML,	XML,	any	configuration

files,	and	(why	not)	source	code	in

the	language	of	your	choice.	In	a

nutshell,	Mustache	can	produce

whatever	text	can	be	obtained	by

expanding	tags	in	a	template	to

incorporate	provided	values.

Mustache	is	logic-less	for	the

simple	reason	that	it	doesn’t

support	control	flow	statements

such	as	IF	statements	or	loops.	To

some	extent,	what	it	does	is

conceptually	close	to	using	a

String.Format	call	in	C#	code.

Around	the	Mustache	template,	there

is	the	Mustache.JS	library	that

essentially	takes	some	JSON	data	and

expands	tags	in	the	provided

template.

Key	Aspects	of	the	Mustache	Syntax

The	Mustache	syntax	for	text

templates	to	be	filled	out	is

centered	around	two	main	types	of

tags:	variables	and	sections.	There

are	more	types	of	tags,	but	those

are	the	two	most	relevant	types.

For	more	information,	check	out

http://mustache.github.io

(http://mustache.github.io).	A	variable

takes	the	following	form:

{{	variable_name	}}

The	tag	is	a	placeholder	for	data	in	the

bound	context	that	can	be	mapped	to

the	variable	name.	The	mapping

happens	recursively,	meaning	that	the

current	context	is	traversed	up	to	the

top,	and	if	no	match	is	found,	nothing

is	rendered.	Here’s	an	example:

Click	here	to	view	code	image

<p>

		{{	lastname	}},

		{{	firstname	}}

</p>

Now	assume	that	the	above	template

is	bound	to	the	following	JavaScript

object:

Click	here	to	view	code	image

{

		"firstname":	"Dino",

		"lastname":	"Esposito"

}

The	final	result	is	below.

Click	here	to	view	code	image

<p>

		Esposito,

		Dino

</p>

By	default,	any	text	is	rendered	in	the

template	in	its	escaped	form.	If	you

want	unescaped	HTML	instead,	you

just	add	an	extra	pair	of	curly

brackets:	{{{	unescaped	}}}.

Mustache	sections	render	a	given

chunk	of	text	multiple	times,	once	for

each	data	element	found	in	a	bound

collection.	A	section	starts	with	a	#

symbol	and	ends	with	a	/	symbol	in

much	the	same	way	an	HTML

element	ends.	The	string	following	the

#	symbol	is	the	value	of	the	key	and	is

used	to	identify	the	data	to	bind	and

subsequently	determines	the	final

output.

Click	here	to	view	code	image

		{{	#customers	}}

				{{	lastname	}}

		{{	/customers	}}

Bound	to	a	JavaScript	object	with	a

child	collection	named	customers

where	each	member	has	a	lastname

property,	the	template	can	return

something	as	below.

Click	here	to	view	code	image

		Esposito

		Another

		Name

		Here

The	value	of	the	section	can	also	be	a

JavaScript	function.	In	this	case,	the

function	will	be	invoked	and	passed	to

the	body	of	the	template.

Click	here	to	view	code	image

{{	#task_to_perform	}}

		{{	book	}}	is	finished.

{{	/task_to_perform	}}

In	this	case,	task_to_perform	and

book	are	both	expected	to	be

members	of	the	bound	JavaScript

object.

Click	here	to	view	code	image

{

		"book":	"Programming	ASP.NET	Core",

		"task_to_perform":	function()	{

				return	function(text,	render)	{

						return	"<h1>"	+	render(text)	+	"</h1>"

				}

		}

}

The	final	output	is	some	HTML	that

wraps	the	phrase	“Programming

ASP.NET	Core	is	finished”	in	an	H1

element.

Finally,	the	caret	(^)	symbol	before

the	section	key	indicates	that	the

following	template	should	be	used	in

case	of	inverted	values	of	the	key.	The

common	scenario	for	the	caret	is	to

render	some	content	in	case	of	empty

collections.

Click	here	to	view	code	image

{{	#customers	}}

		{{	companyname	}}

{{	/customers	}}

{{	^customers	}}

		No	customers	found

{{	/customers	}}

Although	far	from	being

comprehensive,	the	Mustache	syntax

covers	the	most	common	data	binding

scenarios.	Let’s	see	how	to	attach

JSON	data	to	a	template

programmatically.

Passing	JSON	to	the	Template

You	embed	a	Mustache	template	in

a	Razor	view	(or	a	plain	HTML

page)	using	a	variation	of	the

classic	SCRIPT	element.

Click	here	to	view	code	image

<script	type="x-tmpl-mustache"	id="template-details">

			<!--	Mustache	template	goes	here	-->

</script>

The	type	attribute	is	set	to	x-tmpl-

mustache,	and	this	prevents	the

template	from	being	treated	by	the

browser.	You	also	give	the	SCRIPT

element	a	unique	ID	for	retrieving	the

content	of	the	template

programmatically.

Click	here	to	view	code	image

<script	type="text/javascript">

				var	template	=	$('#template-details').html();

				Mustache.parse(template);			//	optional,	speeds	up	future	use
s

</script>

The	template	variable	contains	the

inner	content	of	the	SCRIPT	element,

namely	the	source	of	the	Mustache

template.	Here’s	an	example	that

returns	information	about	a	given

country.

Click	here	to	view	code	image

<script	id="template-details"	type="x-tmpl-mustache">

				<div	class="panel	panel-primary">

								<div	class="panel-heading">

												<h3	class="panel-title">

																{{Results.Name}}

												</h3>

								</div>

								<div	class="panel-body">

												<div	class="col-xs-8">

																<p>Capital	is	{{Results.Capital.Name}}</s
trong></p>

																<p>Phone	international	prefix	is	+{{Resul
ts.TelPref}}</p>

												</div>

												<div	class="col-xs-4">

																<button	id="btnGeo"	

																								type="button"	

																								class="btn	btn-info"	

																								data-toggle="collapse"	

																								data-target="#geo">

																				More

																</button>

																<div	id="geo"	class="collapse	pull-right">

																</div>

												</div>

								</div>

				</div>

</script>

As	an	example,	consider	a	page	that

lists	a	few	countries	and	provides	a

link	for	each	to	drill	down.

Click	here	to	view	code	image

<table	class="table	table-condensed">

				@foreach	(var	c	in	Model.CountryCodes)

				{

								<tr>

												<td>@c</td>

												<td>

																<button	class="btn	btn-xs	btn-info"	

																								onclick="i('@c')">

																				

																</button>

												</td>

								</tr>

				}

</table>

Clicking	the	button	runs	the	following

JavaScript	function:

Click	here	to	view	code	image

<script	type="text/javascript">

function	i(id)	{

				var	url	=	"/home/more/";

				$.getJSON(url,	{	id:	id	})

								.done(function	(response)	{

												var	rendered	=	Mustache.render(template,	response);

												$("#details").html(rendered);

								});

}

</script>

The	template	expression	is	the

Mustache	template	calculated	earlier

once	and	pre-parsed	to	speed	up

successive	calls.	You	obtain	the	final

HTML	markup	with	the	call	to	the

Mustache.render	method.

Putting	It	All	Together

Putting	It	All	Together

Figure	12-4	shows	a	sample	page	in

action.	By	clicking	on	the	country

button,	users	will	place	a	remote

call	to	an	endpoint	that	retrieves

further	details	about	the	countries

and	returns	it	as	JSON	data.	The

data	is	then	bound	to	the	view

through	a	Mustache	template.

FIGURE	12-4	Client-side	templates	used	to	render	the	details	of	the

selected	country

Introducing	the	KnockoutJS	Library

The	Mustache	library	only	supports

direct	binding	variables	and	logic-

less	templates.	In	other	words,	you

have	neither	conditional

expressions	nor	more	sophisticated

loops	for	navigating	through	bound

collections	via	sections	in

Mustache.	Another	library	you

might	want	to	look	into	is

KnockoutJS.

Key	Aspects	of	the	KnockoutJS	Library

KnockoutJS	differs	from	Mustache

for	two	main	reasons.	First,	it	is	not

based	on	a	separate	template.

Second,	it	supports	a	far	richer

binding	syntax.	In	KnockoutJS,

there’s	no	separate	template	turned

into	HTML	and	then	inserted	into

the	main	DOM.	In	KnockoutJS,	the

template	is	the	HTML	of	the	final

view.	To	express	its	richer	syntax,

however,	KnockoutJS	uses	its	own

set	of	HTML	custom	attributes.

Another	crucial	aspect	of	the	library	is

the	MVVM	(Model-View-View-Model)

pattern	for	binding	data	to	the	layout.

Most	of	the	MVVM	pattern	is	also

recognizable	in	the	Mustache

approach	to	programming,	but	in

KnockoutJS,	it	is	much	clearer.	In

KnockoutJS,	you	take	a	JavaScript

object	and	apply	it	to	a	selected

segment	of	the	DOM.	If	the	DOM	is

decorated	with	the	proper	attributes,

then	contained	data	is	applied.	In

KnockoutJS,	though,	data	binding	is

bidirectional,	which	means	JavaScript

code	is	applied	to	the	DOM.	Also,	any

changes	applied	to	the	DOM	(such	as

when	a	bound	input	text	box	is	edited)

are	copied	back	to	the	mapped

properties	of	the	JavaScript	object.

Binding	Mechanism

KnockoutJS	has	one	global	method

to	attach	data	to	a	section	of	the

DOM.	The	method	is	called

applyBindings,	and	it	takes	two

input	parameters.	The	first	is	the

JavaScript	object	that	carries	the

data.	The	other	parameter	is

optional,	and	it	refers	to	the	root

object	of	the	DOM	where	data	must

be	attached.	Data	binding	takes

place	through	a	variety	of

expressions,	as	in	Table	12-1.

TABLE	12-1	Most	relevant	binding

commands	in	KnockoutJS

Co

m

ma

nd	

Bi

nd

ing

Description

Att

r

Binds	the	value	to	the	specified	HTML	attribute	of	the	

parent	element.

<a	data-bind="attr:{	href:actualLink	
}">Click	me

The	actualLink	expression	identifies	a	valid	

expression	(property	or	function)	on	the	bound	

object.

Css Binds	the	value	to	the	class	attribute	of	the	parent	

element.

<h1	data-bind="css:{	
superTitle:shouldHilight	}"></h1>

The	shouldHilight	expression	identifies	a	valid	

Boolean	expression	on	the	bound	object.	If	true,	the	

specified	CSS	class	will	be	added	to	the	current	value	

of	the	class	attribute.

eve

nt

Binds	the	value	to	the	specified	event	of	the	parent	

element.

<button	data-bind="event:
{click:doSomething}">Click	me</button>

The	doSomething	expression	identifies	a	function	to	

be	invoked	when	the	element	is	clicked.

Sty

le

Binds	the	value	to	the	style	attribute	of	the	parent	

element.

<h1	data-bind="style:{	color:textColor	
}"></h1>

The	textColor	expression	identifies	a	valid	expression	

on	the	bound	object	that	can	be	assigned	to	the	

specified	style	attribute.

Tex

t

Binds	the	value	to	the	body	of	the	parent	element.

The	lastName	expression	identifies	a	valid	expression	

on	the	bound	object	that	can	be	assigned	as	the	

content	of	the	element.

Val

ue

Binds	the	value	to	the	value	attribute	of	the	parent	

element.

<input	type="text"	data-
bind="value:lastName"></input>

The	lastName	expression	identifies	a	valid	expression	

on	the	bound	object	that	can	be	assigned	as	the	value	

of	the	input	field.

Vis

ible

Sets	the	visibility	of	the	parent	element.

<div	data-
bind="visible:shouldBeVisible">	...	
</div>

The	shouldBeVisible	expression	identifies	a	valid	

Boolean	expression	on	the	bound	object.

All	binding	commands	are	used

within	the	data	binding	expression,

which	takes	the	form	below:

Click	here	to	view	code	image

<h1	data-bind="command:binding"	/>

The	data-bind	attribute	takes	an

expression	of	the	form

command:actual_binding_value.

The	command	part	identifies	the	part

of	the	parent	element	that	will	be

affected.	The	actual	binding	value

refers	to	the	expression	that,	once

evaluated,	produces	the	actual	value.

Multiple	bindings	can	be	combined	in

the	same	assignment	made	to	the

data-bind	attribute.	In	this	case,	they

will	be	separated	by	a	comma.	A	few

more	binding	commands	exist	but

they	follow	the	same	pattern	shown	in

Table	12-1.	Commands	not	mentioned

in	the	table	are	just	specific	binding

for	specific	HTML	attributes	or

events.	Find	out	more	on

http://knockoutjs.com

(http://knockoutjs.com).

Observable	Properties

Observable	properties	are	a	rather

advanced	feature	of	the

KnockoutJS	library	that	provides

change	notifications	for	bound

properties.	Once	the	property	of	a

JavaScript	object	has	been

populated	with	an	observable

value,	any	UI	element	that	is	bound

to	it	will	be	automatically	updated

every	time	the	value	changes.	And

because	of	the	two-way	nature	of

KnockoutJS,	data	binding	any

changes	made	through	the	UI	is

immediately	reflected	to	in-

memory	JavaScript	objects.

Click	here	to	view	code	image

var	author	=	{

				firstname	:	ko.observable("Dino"),

				lastname	:	ko.observable("Esposito"),

				born:	ko.observable(1990)

};

Observables	are	subject	to	a	slightly

different	syntax	for	reading	and

writing	values.

Click	here	to	view	code	image

//	Reading	an	observable	value

var	firstName	=	author.firstname();

//	Writing	an	observable	value

author.firstname("Leonardo");

Observable	values	can	also	be

computed	expressions,	as	shown

below.

Click	here	to	view	code	image

author.fullName	=	ko.computed(function	()	{

				return	author.firstname()	+	"	"	+	person.lastname();

});

Once	bound	to	a	UI	element,

computed	expressions	are	updated

automatically	every	time	any	of	the

linked	observables	change.

Control	Flow

KnockoutJS	has	two	main

constructs	to	control	the	flow	of

operations:	the	if	command	and	the

foreach	command.	The	former

implements	conditions	whereas	the

latter	is	about	repeating	a	template

for	all	the	elements	in	a	bound

collection.	Here’s	how	to	use	the	if

command.

Click	here	to	view	code	image

<div	data-bind="if:	customers.length	>	0">

				<!--	List	of	customers	here	-->

</div>

The	body	of	the	DIV	element	is

rendered	only	if	the	customers

collection	is	not	empty.	You	can	also

use	the	version	ifnot,	which	renders

any	output	only	if	the	negated

condition	is	true.

The	foreach	command	repeats	the

child	template	for	each	element

bound	to	it.	The	following	code	shows

how	to	populate	a	table.

Click	here	to	view	code	image

<div	id="listOfCountries">

				<table	class="table	table-condensed"	data-bind="foreach:count
ryCodes">

								<tr>

												<td></td>

								</tr>

				</table>

</div>

This	is	a	very	basic	way	of	using

KnockoutJS.	To	populate	the	table,

you	need	a	JavaScript	call	that	gets	a

JSON	collection.

Click	here	to	view	code	image

<script	type="text/javascript">

				var	initUrl	=	"/home/countries";

				$.getJSON(initUrl,

								function	(response)	{

												ko.applyBindings(response);

								});

</script>

This	code	runs	at	page	loading	and

downloads	some	JSON	from	a	site

endpoint.	The	JSON,	as	returned	from

the	server,	is	passed	to	the	Knockout

template.	In	this	case,	countryCodes

is	a	property	of	the	JSON	returned.

The	endpoint	is	the	same	used	in	the

Mustache	example.	The	countryCodes

property	is	a	simple	array	of	strings.

When	there’s	no	property	to	bind

other	than	direct	values,	you	use	the

$data	expression.

Putting	It	All	Together

Using	KnockoutJS	requires	a

significantly	different	mindset	than

when	using	Mustache	or	basic

server-side	data	binding.	Albeit	a

client-side	binding	library,

Mustache	is	much	closer	to	the

classic	server-side	oriented	vision

of	rendering	than	KnockoutJS.	The

core	differences	are	in	the	richness

of	the	syntax	and	the	rich	support

for	the	MVVM	model.

With	KnockoutJS,	everything	takes

place	on	the	client	side,	and	the	view

model	you	bind	to	data	must	be

rendered	on	the	client	as	a	JavaScript

object.	However,	the	rich	support	for

the	MVVM	model	requires	that	the

JavaScript	object	contains	both	data

and	behavior.	Every	event	handler

you	bind	needs	to	reference	a	method

on	the	view	model.	How	would	you

get	an	instance	of	the	object?	The

most	convenient	way	is	to	define	the

object	on	the	client	side	in	a	SCRIPT

block	referenced	from	the	Razor	view.

Let’s	take	the	previous	example	one

step	further.

Click	here	to	view	code	image

<script	type="text/javascript">

				function	CountryViewModel(codes)	{

								this.countries	=	$.map(codes,	function(code)	{	return	new
	Country(code);	});

				}

				function	Country(code)	{

								this.code	=	code;

								this.showCapital	=	function()	{

												var	url	=	"/home/more/";

												$.getJSON(url,	{	id:	code	})

																.done(function	(response)	{

																				alert(response.Results.Capital.Name);

																});

								}	

				}

</script>

The	SCRIPT	block	defines	a

CountryViewModel	wrapper	object

and	a	Country	helper	object.	The	raw

data	to	populate	both	objects	comes

from	the	same	server	endpoint	we

used	earlier	for	the	Mustache

example.

Click	here	to	view	code	image

<script	type="text/javascript">

				var	initUrl	=	"/home/countries";

				$.getJSON(initUrl,

								function	(response)	{

												var	model	=	new	CountryViewModel(response.countryCode
s);

												ko.applyBindings(model);

								});

</script>

The	above	JavaScript	code	is

responsible	for	triggering	the	actual

page	filling.	The	list	of	country	codes

downloaded	is	wrapped	in	a

CountryViewModel	object,	and	it	is

applied	to	the	entire	page	DOM

through	KnockoutJS.	Internally,	the

wrapper	object	creates	a	list	of

Country	objects,	one	per	country

code.	The	additional	step	is	because

we	expect	the	user	interface	to

produce	a	table	of	clickable	elements,

but	the	click	handler	is	subject	to

receive	a	bound	value—the	country

code.	Hence,	the	click	handler	must

be	data-bound,	and	with	KnockoutJS,

the	click	handler	must	be	a	member	of

the	bound	object.	Purposely,	the

Country	object	offers	a	showCapital

method	that	reads	the	current	country

code	from	the	internal	state	of	the

object.	Here’s	the	final	shape	of	the

KnockoutJS-enabled	Razor	view.

Click	here	to	view	code	image

<table	class="table	table-condensed"	data-bind="foreach:countries
">

				<tr>

								<td	data-bind="text:code"></td>

								<td>

												<button	class="btn	btn-info"	data-bind="event:{click:
showCapital}">

																<i	class="fa	fa-chevron-right"></i>

												</button>

								</td>

				</tr>

</table>

The	countries	property	is	an	array	of

Country	objects,	and	the

foreach:countries	command	loops	for

each	bound	object	create	a	TR

element.	The	first	TD	element	shows

the	country	code—the	property	code—

directly	in	the	body	of	the	element.

The	second	TD	contains	a	BUTTON

element	whose	click	handler	is	bound

to	the	showCapital	method	of	the

bound	item.	(See	Figure	12-5.)

FIGURE	12-5	The	KnockoutJS	version	of	the	country	page

THE	ANGULAR	WAY	TO

THE	ANGULAR	WAY	TO
BUILDING	WEB	APPS

Around	the	time	in	which	the

KnockoutJS	library	came	out	(this

was	a	few	years	ago),	the	first

version	of	another,	more

comprehensive	library	was	released

—the	Angular	library.	Today,

Angular	4	is	available,	but	it	is	now

much	more	than	just	a	library	for

conveniently	binding	data	to

HTML	elements.	Today,	Angular	is

a	full-fledged	framework	for

building	web	applications	using

HTML	and	JavaScript.	Nicely

enough,	Angular	also	supports

using	TypeScript,	which	ultimately

compiles	to	JavaScript.

Angular	is	made	of	multiple	libraries

to	cover	anything	from	data	binding

to	routing	and	navigation	and	from

HTTP	to	dependency	injection	and

unit	testing.	The	way	you	devise	the

application	is	unique	and	quite

different	from	classic	ASP.NET

development.	In	Visual	Studio	2017,

you	find	a	built-in	template	for

building	an	Angular	application.	If

you	go	through	it	and	then	explore	the

source	code	generated,	you’ll	see	a

completely	different	architecture

made	of	two	types	of	modules:

Angular	modules	and	JavaScript

modules.	Angular	modules	more	or

less	compare	to	ASP.NET	MVC	areas,

whereas	JavaScript	modules	are

pieces	of	functionality	you	add,	and

I’d	say	more	or	less	compare	to	NuGet

packages	you	bind.	Also,	you	have

components	that	compare	to

ASP.NET	view	components	or,	more

loosely,	to	Razor	views.	Within

components,	you	have	templates	and

data	binding	through	a	syntax	that

provides	a	set	of	facilities	comparable

to	the	MVVM	model	of	KnockoutJS.

Angular	strictly	depends	on	NodeJS

and	npm.	Outside	Visual	Studio	2017,

you	also	need	to	use	Angular	CLI	to

generate	the	skeleton	of	a	new	project.

Overall,	Angular	still	delivers	a	web

application,	but	it	does	so	through	a

completely	different	experience	and

through	a	completely	different

programming	approach.	There	are

many	resources	for	Angular

development.	The	starting	point,

though,	is	https://angular.io.

SUMMARY

Today,	applications	can	hardly

afford	the	burden	of	full-page

refreshes	when	the	user	performs

relevant	operations.	A	decade	ago,

the	(re)discovery	of	Ajax	sparked	a

whole	new	world	of	techniques	and

a	framework	that	culminated	with

client-side	data	binding.	Overall,

modern	web	applications	have	two

substantial	ways	to	do	client-side

data	binding.	One	is	maintaining	a

server-side,	ASP.NET-friendly

structure	and	enriching	individual

views	with	more	dynamic

rendering.	The	other	is	to	choose	a

completely	different	framework

and	play	by	another	set	of	rules.

In	this	chapter,	we	explored	only	the

first	route	and	provided	three

different	levels	of	solutions.	First,	we

went	through	the	dynamic	download

of	server-side–arranged	chunks	of

HTML.	Second,	we	integrated	a

minimal	client-side	JavaScript	library

(MustacheJS).	Third,	we	upgraded	to

a	full-fledged	client-side	data	binding

library	such	as	KnockoutJS.

The	other	route	to	client-side	data

binding	entails	opting	for	a	non-

ASP.NET	framework	such	as	Angular.

Not	that	Angular	can’t	be	integrated

with	ASP.NET	as	the	hosting

environment—in	fact,	you	find

Angular	templates	in	Visual	Studio

2017	and	plenty	of	examples	and

courseware	on	Angular	with	ASP.NET

Core.	However,	building	an	Angular

application	requires	a	completely

different	set	of	skills,	practices,	and

techniques	that	can	hardly	be	covered

in	due	depth	in	a	single	chapter.

With	the	next	chapter,	we’ll	complete

our	look	at	the	front	end	of	web

applications	and	discuss	ways	to	build

device-friendly	views.

—Isaac	Asimov,	“I,	Robot”

CHAPTER	13

Building	Device-friendly
Views
How	much	of	the	nose	on	your	face

can	you	see,	unless	someone	holds	a

mirror	up	to	you?

Users

who

connect	to

your	web	application	through	a	device

usually	have	high	expectations	when	it

comes	to	their	experiences.

Ultimately,	they	expect	websites	to

provide	an	experience	close	to	that	of

native	iPhone	or	Android	analogous

app.	This	means,	for	example,	having

popular	widgets,	such	as	pick-lists,

sideway	menus,	and	toggle	switches.

Most	of	these	widgets	don’t	exist	as

native	elements	of	HTML	and	must	be

simulated	by	using	rich	components

controls	that	output	a	mix	of

JavaScript	and	markup	each	time.

Twitter	Bootstrap	and	jQuery	plugins

do	a	fantastic	job,	but	that’s	not

enough,	and	anyway,	some	work	is

required	every	time	on	your	end.

However,	as	we’ve	seen	in	Chapter	6,

ASP.NET	Core	tag	helpers	can

significantly	help	smoothing	this	issue

by	raising	the	abstraction	level	of	the

markup	you	write	and	turning	it

under	the	hood	into	the	necessary

HTML	and	JavaScript.

Responsive	web	design	(and,	again,

ultimately	the	grid	system	of	Twitter

Bootstrap)	is	another	powerful	tool

that	can	reduce	the	burden	of	having	a

dedicated	mobile	app	for	a	given	site.

The	quick	rule	is,	do	not	have	a	mobile

application	until	the	business	loudly

demands	it.	Until	then,	though,	do	not

ignore	how	you	offer	your	services

through	devices	(mostly	smartphones

and	tablets).	If	you	have	ignored

devices	since	the	early	days,	then	you

might	even	never	reach	the	point	in

which	business	would	loudly	demand

a	native	app.

ADAPTING	VIEWS	TO	THE
ACTUAL	DEVICE

The	bottom	line	is	that	creating	a

website	making	the	best	possible

use	of	HTML,	CSS,	and	JavaScript

is	one	thing.	It	is	quite	another,

instead,	to	make	a	device-friendly

website	that	looks	like	a	native

application	or,	at	the	very

minimum,	behaves	as	such.	And	it

grows	to	be	an	even	bigger	problem

when	you	consider	that	a	device-

friendly	website	is	sometimes

expected	to	have	only	a	subset	of

the	features	compared	to	the	full

site	and	even	different	use-cases.

The	good	news,	though,	is	that	some

of	the	development	issues	can	be

lessened	by	making	good	use	of

HTML5.

The	Best	of	HTML5	for	Device	Scenarios

On	the	average,	browsers	mounted

on	devices	offer	great	support	for

HTML5	elements,	sometimes

significantly	better	than	desktop

browsers.	This	means	that	at	least

on	devices	that	fall	under	the

umbrella	of	“smartphones”	or

“tablets,”	you	can	default	to

HTML5	elements	without	worrying

about	workarounds	and	shims.

Two	aspects	of	HTML5	are

particularly	relevant	for	device-

friendly	development:	input	types

and	geolocation.

New	Input	Types

New	Input	Types

There’s	quite	a	bit	of	difference

between	dates,	numbers,	or	even

email	addresses,	not	to	mention

predefined	values.	However,

current	HTML	doesn’t	seem	to

support	much	more	than	plain	text

as	input.	Therefore,	developers	are

responsible	for	preventing	users

from	typing	unwanted	characters

by	implementing	client-side

validation	of	the	entered	text.	The

jQuery	library	has	several	plugins

that	simplify	the	task,	but	this	just

reinforces	the	point—input	is	a

delicate	matter.

HTML5	comes	with	a	plethora	of	new

values	for	the	attribute	type	of	the

INPUT	element.	Also,	the	INPUT

counts	several	new	attributes	mostly

related	to	these	new	input	types.	Here

are	a	few	examples:

Click	here	to	view	code	image

<input	type="date"	/>

<input	type="time"	/>

<input	type="range"	/>

<input	type="number"	/>

<input	type="search"	/>

<input	type="color"	/>

<input	type="email"	/>

<input	type="url"	/>

<input	type="tel"	/>

What’s	the	real	effect	of	these	new

input	types?	The	intended	effect—

though	not	completely	standardized

yet—is	that	browsers	provide	an	ad

hoc	UI	so	that	users	can	comfortably

enter	a	date,	time,	or	number.

Desktop	browsers	do	not	always

honor	these	new	input	types,	and	the

experience	they	provide	is	not	always

uniform.	Things	are	much	better	in

the	mobile	space.	First	and	foremost,

users	typically	browse	the	web	with

the	default	browser	on	mobile	devices.

Consequently,	the	experience	is

always	uniform	and	specific	to	the

device.

In	particular,	input	fields	like	email,

url,	and	tel	push	mobile	browsers	on

smartphones	to	automatically	adjust

the	input	scope	of	the	keyboard.

Figure	13-1	shows	the	effect	of	typing

in	a	tel	input	field	on	an	Android

device:	the	keyboard	defaults	to

numbers	and	phone-related	symbols.

FIGURE	13-1	The	tel	input	field	on	an	Android	smartphone

Today,	not	all	browsers	provide	the

same	experience,	and	although	they

mostly	agree	on	the	user	interface

associated	with	the	various	input

types,	still	some	key	differences	exist

that	might	require	developers	to	add

custom	JavaScript	polyfills.	As	an

example,	let’s	consider	the	date	type.

No	version	of	Internet	Explorer	or

Safari	offers	any	special	support

whatsoever	for	dates.	Also,	in	this

case,	things	go	much	better	with

mobile	devices,	as	the	screenshot	in

Figure	13-2	demonstrates.

FIGURE	13-2	The	date	input	field	on	an	Android	smartphone

In	general,	mobile	browsers	on	recent

smartphones	are	quite	respectful	of

HTML5	elements,	and	therefore,

developers	should	be	ready	to	use

proper	input	types.

Geolocation

Geolocation	is	an	HTML	standard

that	is	widely	supported	by	both

desktop	and	mobile	browsers.	As

mentioned,	sometimes	the	mobile

version	of	a	website	needs	to	have

ad	hoc	use-cases	that	users	won’t

find	on	the	full	version	of	the	site.

When	this	happens,	it’s	quite	likely

that	geolocation	of	users	is	involved

in	the	mobile-only	versions.	Here’s

some	sample	code.

Click	here	to	view	code	image

<script	type="text/javascript"	

								src="http://maps.googleapis.com/maps/api/js?sensor=true">
</script>	

<script	type="text/javascript">			

			function	initialize()	{					

			navigator.geolocation.getCurrentPosition(

												showMap,	

												function(e)	{alert(e.message);},	

												{enableHighAccuracy:true,	timeout:10000,	maximumAge:0
	});			

			}

			function	showMap(position)	{

												var	point	=	new	google.maps.LatLng(

																						position.coords.latitude,	

																						position.coords.longitude);

												var	myOptions	=	{							

																				zoom:	16,							

																				center:	point,							

																				mapTypeId:	google.maps.MapTypeId.ROADMAP					

												};					

												var	map	=	new	google.maps.Map(document.getElementById
("map_canvas"),	myOptions);			

												var	marker	=	new	google.maps.Marker({

																					position:	point,

																					map:	map,	

																					title:	"You	are	here"	});

			}

</script>

<body	onload="initialize()">			

			<div	id="map_canvas"	style="width:100%;	height:100%"></div>	

</body>

This	page	asks	for	user	permission

about	geolocation	and	then	shows	the

exact	geographical	position	of	the

device	on	a	map.

	Note	Geolocation	is	subject	to	browser	policies	that	usually
work	on	a	per-site	basis.	Also,	note	that	Google	Chrome	only	supports
Google	Maps	functions	on	secure	sites	(HTTPS).	The	above	example,
therefore,	might	not	work	for	the	map	part,	but	you	can	always	grab	the
latitude	and	longitude	instead.

Feature	Detection

Responsive	Web	Design	(RWD)

sprung	to	life	from	lateral	thinking

that	says	detecting	devices	is	hard.

Another	option	is	to	grab	a	few

snippets	of	basic	information

available	on	the	client	side	(for

example,	the	size	of	the	browser

window),	set	up	ad	hoc	style	sheets,

and	let	the	browser	reflow	content

in	the	page	accordingly.	This

thinking	led	to	feature	detection

and	brought	about	the	creation	of	a

popular	library—Modernizr—and

the	equally	popular	website,

http://caniuse.com

(http://caniuse.com).

What	Modernizr	Can	Do	for	You

What	Modernizr	Can	Do	for	You

The	idea	behind	feature	detection	is

simple	and,	to	some	extent,	even

smart.	You	don’t	even	attempt	to

detect	the	actual	capabilities	of	the

requesting	device,	which	is	known

to	be	cumbersome,	difficult,	and

even	poses	serious	issues	as	far	as

maintainability	of	the	solution	is

concerned.

Equipped	with	a	feature-detection

library,	you	decide	what	to	display

based	only	on	what	you	can	detect

programmatically	on	the	device.

Instead	of	detecting	the	user	agent,

and	blindly	assuming	that	such

devices	don’t	support	a	given	feature,

you	just	let	an	ad	hoc	library	like

Modernizr	find	out	for	you	whether

the	feature	is	actually	available	on	the

current	browser,	regardless	of	the

host	device.	(See

http://modernizr.com

(http://modernizr.com)).

For	example,	instead	of	maintaining	a

list	of	the	browsers	(and	related	user

agent	strings)	that	support	date	input

fields,	you	just	check	with	Modernizr

if	date	input	fields	are	available	on	the

current	browser.	Here’s	some

illustrative	script	code.

Click	here	to	view	code	image

<script	type="text/javascript">

Modernizr.load({

				test:	Modernizr.inputtypes.date,

				nope:	['jquery-ui.min.js',	'jquery-ui.css'],

				complete:	function	()	{

							$('input[type=date]').datepicker({

										dateFormat:	'yy-mm-dd'

							});	

				}

});

</script>

You	tell	Modernizr	to	test	the	date

input	type,	and	if	the	test	fails,	you

download	jQuery	UI	files	and	run	the

complete	callback	function	to	set	up

the	jQuery	UI	date	picker	plugin	for

all	INPUT	elements	in	the	page	of

type	date.	This	allows	you	to	blissfully

use	HTML5	markup	in	your	page

regardless	of	the	effect	on	end	users.

<input	type="date"	/>

Feature	detection	offers	the

significant	plus	that	you,	as	a

developer,	have	just	one	site	to	design

and	maintain.	The	burden	of	adapting

content	responsively	is	pushed	to

graphical	designers	or	ad	hoc

libraries,	such	as	Modernizr.

What	Modernizr	Can	Do	for	You

Modernizr	consists	of	a	JavaScript

library	with	some	code	that	runs

when	the	page	loads	and	checks

whether	the	current	browser	can

offer	certain	HTML5	and	CSS3

functionalities.	Modernizr	exposes

its	findings	programmatically	so

that	the	code	in	the	page	can	query

the	library	and	intelligently	adapt

the	output.

Modernizr	does	a	great	job,	but	the

job	it	performs	doesn’t	cover	the

entire	range	of	issues	you	face	when

optimizing	a	website	for	mobile	users.

Modernizr	is	limited	to	what	you	can

programmatically	detect	as	JavaScript

functions,	which	might	or	might	not

be	exposed	out	of	navigator	or

window	browser	objects.

In	other	words,	Modernizr	is	not	able

to	tell	you	about	the	form	factor	of	the

device	or	whether	the	device	is	a

smartphone,	tablet,	or	a	smart	TV.

When	browsers	eventually	expose	the

user’s	device	type,	Modernizr	will	be

able	to	add	this	service	too.	By

applying	some	logic	to	the	results	you

can	get	from	Modernizr,	you	can

“reliably	guess”	whether	the	browser

is	mobile	or	desktop.	You	can	hardly

go	beyond	that	point,	though.

Therefore,	if	you	really	need	to	do

something	specific	for	smartphones

and/or	tablets,	Modernizr	is	of	not

much	help.

The	major	strength	of	feature

detection,	which	we	can	summarize	as

“one	site	fits	all,”	is	also	likely	to	be

the	major	weakness.	Is	just	one	site

what	you	really	want?	Do	you	really

want	to	serve	the	“same”	site	to

smartphones,	tablets,	laptops,	and

smart	TVs?	The	answer	to	these

questions	invariably	is	specific	to	each

business.	In	general	terms,	it	can	only

be	a	resounding,	“It	depends.”

Enter	client-side,	lightweight	device

detection	via	user	agent	strings.

Client-side	Device	Detection

Optimizing	a	website	for	mobile

devices	doesn’t	usually	mean

allowing	users	to	have	the	same

experience	as	a	native	app	on	their

favorite	platforms.	A	mobile

website	is	very	rarely	specific	to	iOS

or	Android	operating	systems.	A

mobile	website,	instead,	is	devised

and	designed	in	such	a	way	any

mobile	browser	can	give	users	a

good	experience.

Currently,	sniffing	the	user	agent

string	is	the	only	reliable	way	to

determine	whether	the	device	is	a

desktop	computer	or	less	powerful

type	of	device,	such	as	a	phone	or

tablet.

Handmade	User	Agent	Sniffing

Handmade	User	Agent	Sniffing

There	a	few	online	resources	that

provide	some	heuristics	to	detect

mobile	browsers.	They	use	a

combination	of	two	core

techniques:	analysis	of	the	user

agent	string	and	cross-checking	of

some	of	the	properties	of	the

browser’s	navigator	object.	In

particular,	you	might	want	to	take	a

look	at	the	following	URLs	for

more	information:

http://www.quirksmode.org/js/detect.html

(http://www.quirksmode.org/js/detect.html)

http://detectmobilebrowsers.com	(http://detectmobilebrowsers.com)

In	particular,	the	script	you	find	on

the	second	website	uses	a	tricky

regular	expression	to	check	for	a	long

list	of	keywords	known	to	be	related

to	mobile	devices.	The	script	works

and	is	available	for	a	variety	of	web

platforms,	including	plain	JavaScript

and	ASP.NET.	It	has	two	nontrivial

drawbacks,	though.

One	drawback	is	the	date	of	the	last

update	you	find	on	the	web	page.	Last

time	I	checked,	it	was	dated	2014.	It

might	be	better	by	the	time	you	read

this,	yet	it	leaves	unaltered	the

perception	that	keeping	the	regular

expression	up	to	date	is	expensive	and

must	be	done	frequently.	Not	to

mention	that	the	script	for	ASP.NET

is	a	plain	Web	Forms	script	based	on

VBScript	and	is	incompatible	with

ASP.NET	Core.

The	other	drawback	is	that	the	script

only	attempts	to	tell	you	whether	the

user	agent	is	known	to	identify	a

mobile	device	as	opposed	to	a	desktop

device.	It	lacks	logic,	and	it	lacks

programming	power	to	identify	more

specifically	the	class	of	the	requesting

device	and	its	known	capabilities.

If	you’re	looking	for	a	free	client-side

solution	to	sniff	user	agent	strings,

then	I	suggest	you	look	at	WURFL.JS.

(See	http://wurfl.io.	(http://wurfl.io.))

Among	other	benefits,	WURFL.JS	is

not	based	on	any	regular	expressions;

it’s	your	responsibility	to	keep	it	up	to

date.

Using	WURFL.JS

In	spite	of	the	name,	WURFL.JS	is

not	a	static	JavaScript	file	you	can

host	on-premises	or	upload	to	your

cloud	site.	More	precisely,

WURFL.JS	is	an	HTTP	endpoint

you	link	to	your	web	views	through

a	regular	SCRIPT	element.

To	get	the	WURFL.JS	services,

therefore,	you	only	need	to	add	the

following	line	to	any	HTML	views	you

have	that	need	to	know	about	the

actual	device.

Click	here	to	view	code	image

<script	type="text/javascript"	src="//wurfl.io/wurfl.js"></script>

The	browser	knows	nothing	about	the

nature	of	the	WURFL.JS	endpoint.

The	browser	just	attempts	to

download	and	execute	any	script	code

it	can	get	from	the	specified	URL.	The

WURFL	server	that	receives	a	request

uses	the	user	agent	of	the	calling

device	to	figure	out	its	actual

capabilities.	The	WURFL	server	relies

on	the	services	of	the	WURFL

framework—a	powerful	device	data

repository	and	a	cross-platform	API

used	by	Facebook,	Google,	and

PayPal.

The	net	effect	of	calling	the

aforementioned	HTTP	endpoint	is	to

inject	a	tailor-made	JavaScript	object

into	the	browser	DOM.	Here’s	an

example	of	what	you	get:

Click	here	to	view	code	image

var	WURFL	=	{

			"complete_device_name":"iPhone	7",

			"is_mobile":false,

			"form_factor":"Smartphone"

};

The	server-side	endpoint	receives	the

user	agent	string	sent	with	the	request

and	thoroughly	analyzes	it.	The

server-side	endpoint	then	selects

three	pieces	of	information	and

arranges	a	JavaScript	string	to	return.

Table	13-1	provides	the	list	of

WURFL.JS	properties.

TABLE	13-1	WURFL.JS	Properties

Pr

op

ert

y

Description

co

mpl

ete

_de

vice

_na

me

Descriptive	name	for	the	detected	device.	The	name	

includes	vendor	information	and	device	name	(e.g.,	

iPhone	7).

for

m_

fact

or

Indicates	the	class	of	the	detected	device.	It’s	one	of	

the	following	strings:	Desktop,	App,	Tablet,	

Smartphone,	Feature	Phone,	Smart-TV,	Robot,	Other	

non-Mobile,	or	Other	Mobile.

is_

mo

bile

If	true,	it	indicates	that	the	device	is	not	a	desktop	

device.

Figure	13-3	shows	WURFL.JS	in

action	on	a	public	test	page	you	can

find	at

http://www.expoware.org/demos/d

evice.html

(http://www.expoware.org/demos/device.html)

.

FIGURE	13-3	Device	detection	with	WURFL.JS

Regarding	performance,	WURFL.JS	is

fairly	efficient;	it	does	a	lot	of	caching

and	doesn’t	really	check	any	user

agent	it	receives.	While	in

development,	though,	you	can	switch

off	the	cache	by	adding	debug=true	to

the	URL.

	Important	The	WURFL.JS	framework	is	free	to	use	as
long	as	the	website	is	publicly	available.	If	used	in	production,	though,	it	might
become	a	bottleneck	in	case	of	high	volumes	of	traffic.	In	this	case,	you	might
want	to	consider	a	commercial	option	that	reserves	more	bandwidth	and	also
gives	you	access	to	a	longer	list	of	device	properties.	For	more	information,
check	out	http://www.scientiamobile.com	(http://www.scientiamobile.com).

Mixing	Client-side	Detection	and	Responsive
Pages

WURFL.JS	can	be	used	in	many

different	scenarios	including

browser	personalization,	enhancing

analytics,	and	the	optimization	of

advertising.	Further,	if	you	are	a

front-end	developer	and

implementing	device	detection	on

the	server	side	is	not	an	option	for

you,	WURFL.JS	is	your	savior.	For

more	examples,	check	out	the

WURFL.JS	documentation	at

http://wurfl.io	(http://wurfl.io).

Let’s	briefly	consider	a	few	scenarios

where	you	want	to	use	client	device

detection.	One	scenario	is

downloading	images	of	size	and

content	that	are	appropriate	for	the

device.	You	can	go	with	code	like	this:

Click	here	to	view	code	image

<script>

			if	(WURFL.form_factor	==	"smartphone")	{

							$("#myImage").attr("src",	"...");

			}

</script>

Similarly,	you	can	use	the	WURFL

object	to	redirect	to	a	specific	mobile

site	if	the	requesting	device	looks	like

a	smartphone:

Click	here	to	view	code	image

<script>

			if	(WURFL.form_factor	==	"smartphone")	{

							window.location.href	=	"...";

			}

</script>

WURFL.JS	gives	you	clues	about	the

actual	device,	but	for	the	time	being,

there’s	no	way	to	mix	CSS	media

queries	and	external	information	such

device-specific	details.	A	responsive

design	driven	by	actual	user	agents

rather	than	media	query	parameters	is

still	possible,	but	it’s	entirely	on	your

own.	The	most	common	way	to	use

WURFL.JS	is	within	the	context	of

Bootstrap	or	any	other	RWD

solutions.	You	get	the	device	details,

and	via	JavaScript,	you	enable	or

disable	specific	features	or	download

ad	hoc	content.

	Note	In	the	companion	code	that	comes	with	this	book,	you
will	find	an	example	that	uses	WURFL.JS	to	figure	out	which	area	of	the
website	to	point	users.	The	example	is	a	simple	proof-of-concept,	but	it	might
be	enlarged	to	consider	a	scenario	in	which	most	of	the	site	is	a	classic	RWD
site	except	for	a	few	areas	that	are	duplicated	based	on	the	form-factor	of	the
device.

Client	Hints	Coming	Soon

Client	Hints	is	the	colloquial	name

of	a	draft	that	is	emerging,	which

will	provide	a	unified,	standard	way

for	browsers	and	servers	to

negotiate	content.	Client	Hints	is

inspired	by	the	widely	used	Accept-

*	HTTP	headers.	With	each

request,	the	browser	sends	in	a	few

extra	headers;	the	server	reads

those	headers	and	can	use	them	to

adapt	the	content	being	returned.

At	the	current	stage	of	the	draft,	you

can	have	a	header	suggesting	the

desired	width	of	the	content	and	the

client’s	maximum	download	speed.

These	two	pieces	of	information	could

be	enough	to	make	the	server	aware	of

most	critical	situations	we	face	today:

small	screen	devices	over	slow

connections.	In	most	cases,	in	fact,	it’s

not	even	crucial	to	know	if	it’s	a

smartphone	or	another	type	of	device.

Today,	and	even	more	so	in	the	future,

responsive	content	would	likely	be	a

good	approximation	except	for	very

slow	connections	and	very	low-

resolution	devices,	including	old

iPhone	devices.	Client	Hints	goes	in

this	direction.	The	following	code

shows	a	very	simple	way	to	include

some	client	hints	in	a	web	view.	This

meta	tag	is	an	alternative	to	using

HTTP	response	headers	for	servers	to

advertise	their	support	for	client

hints.

Click	here	to	view	code	image

<meta	http-equiv="Accept-CH"	content="DPR,	Viewport-Width,	Width">

Some	early	documentation	about

Client	Hints	and	prospective	headers

being	defined	for	exchange	is

available	at	http://httpwg.org/http-

extensions/client-hints.html

(http://httpwg.org/http-extensions/client-

hints.html).

DEVICE-FRIENDLY	IMAGES

High-quality	and	effective	images

are	a	necessary	burden	to	nearly

any	website.	However,	serving

images	to	devices	is	problematic

because	of	the	ratio	between	the

necessary	size	of	the	image	and	the

computing	power	of	the	device	(to

say	nothing	of	the	network).

Serving	device-friendly	images

means	essentially	two	things:

serving	images	of	an	appropriate

size	in	bytes	and	appropriately

cropped	and/or	resized	to	remain

relevant	in	the	context	in	which

they	are	used.	In	other	words,

serving	an	appropriate	image	is

both	a	matter	of	quantity	(of	bytes)

and	quality	(art	direction).

The	PICTURE	Element

The	PICTURE	Element

In	HTML5,	a	new	element	for

rendering	images	makes	its	debut—

the	PICTURE	element.	You	can

think	of	it	as	a	superset	of	the	old

familiar	IMG	element.	Here’s	the

syntax.

Click	here	to	view	code	image

<picture>

				<source	media="(min-width:	481px)"	srcset="~/content/images/p
oppies_md.jpg"	

												class="img-responsive">

				<source	media="(max-width:	480px)"	srcset="~/content/images/p
oppies_xs.jpg"	

												class="img-responsive">

				<img	src="~/content/images/poppies.jpg"	alt="Poppies"	

									class="img-responsive">

</picture>

Instead	of	having	one	image	that	is

scaled	up	or	down	based	on	the

viewport	width,	multiple	images	can

be	specified	to	appear	at	given

breakpoints.	Because	each

determined	breakpoint	can	have	its

own	image,	images	can	be	designed	to

better	address	the	needs	of	art

direction.	In	Figure	13-4,	you	see	the

effect	of	the	previous	code	in

Microsoft	Edge.	The	debug	bar	at	the

top	shows	the	current	width	of	the

screen.	At	480	pixels	wide,	you	see	an

XS	image	that	is	centered	around	the

old	country	building.	At	481	pixels

wide,	the	image	changes	to	offer	a

landscape	view	of	the	poppy	field.

FIGURE	13-4	The	PICTURE	element	in	Microsoft	Edge

The	same	original	image	was	adapted

to	serve	the	XS	and	MD	breakpoints.

Note	that	although	XS	and	MD

suffixes	seem	to	recall	Bootstrap’s

breakpoints,	there’s	no	relationship

between	those	breakpoints	and

Bootstrap’s.	Only	the	value	of	the

media	attribute	on	the	source	child

node	of	the	PICTURE	element	sets	the

conditions	for	the	browser	to	switch

images.

The	PICTURE	element	is	gaining

traction,	but	it	is	not	supported	across

the	entire	spectrum	of	browsers.

However,	it	works	on	more	recent

versions	of	Google	Chrome,	Opera,

and	Microsoft	Edge,	meaning	that	you

can	use	it	in	your	websites	with

limited	concerns.	For	developers	and

administrators,	the	PICTURE	element

raises	the	non-secondary	issue	of

maintaining	multiple	copies	of	the

same	image	to	be	used	depending	on

the	current	screen	size.	For	a	site	with

many	images	that	are	frequently

updated,	this	can	be	a	real	problem.

Another	option	for	multi-resolution

images	is	using	the	ImageEngine

platform.	Unlike	the	PICTURE

element,	the	ImageEngine	platform

doesn’t	pose	any	compatibility	issues.

The	ImageEngine	Platform

ImageEngine	is	a	commercial

image	resizing	tool	exposed	as	a

service.	(See	http://wurfl.io

(http://wurfl.io).)	It	is	particularly

well-suited	for	device-friendly

scenarios	where	it	can	significantly

reduce	the	image	payload	of	views,

thus	reducing	the	load	time.	The

platform	operates	as	a	sort	of

Content	Delivery	Network	because

it	sits	between	your	server

application	and	the	client	browser,

serving	images	intelligently	on

behalf	of	the	server.

The	primary	purpose	of	the

ImageEngine	platform	is	to	reduce	the

traffic	generated	by	images.	In	this

regard,	it	presents	itself	as	an	ideal

tool	for	mobile	websites.	However,

ImageEngine	is	not	limited	to	that.

First	and	foremost,	you	can	serve

resized	images	to	any	device,

regardless	of	type.	Second,	you	can

use	ImageEngine	as	an	online	resizer

tool	with	a	URL-based	programmatic

interface.	Finally,	you	can	use

ImageEngine	as	your	smart	image–

only	CDN	and	save	yourself	the

burden	of	maintaining	multiple

versions	of	the	same	image	to	speed

up	the	load	time	on	various	screen

sizes.

Resizing	Images	Automatically

To	use	ImageEngine,	you	first	need

to	get	an	account.	The	account

identifies	you	with	a	name	and

helps	the	server	keep	your	traffic

distinct	from	other	users.	Before

you	create	an	account,	though,	you

can	play	with	the	test	account.	In	a

Razor	view,	you	display	images	on

web	pages	as	below:

Click	here	to	view	code	image

When	you	use	ImageEngine,	you

replace	it	with	the	following	markup.

Click	here	to	view	code	image

<img	src="//try.imgeng.in/http://www.yoursite.com/content/images/
autumn.jpg">

Once	you	have	your	account,	you

simply	replace	try	with	your	account

name.	If	the	account	name	is	contoso,

then	the	URL	of	the	image	becomes:

Click	here	to	view	code	image

<img	src="//contoso.imgeng.in/http://www.yoursite.com/content/ima
ges/autumn.jpg">

In	other	words,	you	need	to	pass	the

full	URL	of	your	original	image	to	the

ImageEngine	back	end	so	that	the

image	can	be	silently	downloaded	and

cached.	ImageEngine	supports	a

number	of	parameters	including

cropping	and	sizing	to	given

dimensions.	ImageEngine	not	only

resizes	images	to	the	size	it	reckons

ideal	for	the	device,	but	it	can	also

accept	specific	suggestions,	as	in

Table	13-2.	Parameters	are	inserted	in

the	resulting	URL.

TABLE	13-2	URL	parameters	of	the

ImageEngine	tool

UR

L	

Pa

ra

me

ter

Description

w_

NN

N

Sets	the	desired	width	of	the	image	in	pixels.

Sample	URL:	

//contoso.imgeng.in/w_200/IMAGE_URL

h_

NN

N

Sets	the	desired	height	of	the	image	in	pixels.

Sample	URL:	

//contoso.imgeng.in/h_200/IMAGE_URL

pc_

NN

Sets	the	desired	percentage	of	reduction	for	the	

image.

Sample	URL:	

//contoso.imgeng.in/pc_30/IMAGE_URL

m_

XX

X

Sets	the	resize	mode	of	the	image.	Feasible	values	are:	

box	(default),	cropbox,	letterbox,	and	stretch.

Sample	URL:	

//contoso.imgeng.in/m_cropbox/w_300/h_300/IM

AGE_URL

f_

XX

X

Sets	the	desired	output	format	of	the	image.	Feasible	

values	are:	png,	jpg,	webp,	gif,	and	bmp.	By	default,	

the	image	is	returned	in	the	original	format.

Sample	URL:	

//contoso.imgeng.in/f_webp/IMAGE_URL

Note	that	width/height	and

percentage	are	mutually	exclusive.	If

none	is	indicated,	the	image	is	resized

to	the	dimensions	suggested	by	the

detected	user	agent.	Multiple

parameters	can	be	combined	as

segments	of	the	URL.	For	example,

the	URL	below	resizes	the	image	in	a

300x300	cropping	appropriately	from

the	center	of	the	image	in	case	the

original	dimensions	don’t	return	a

square.	The	order	of	parameters	is

unimportant.

Click	here	to	view	code	image

//contoso.imgeng.in/w_300/h_300/m_cropbox/IMAGE_URL

Figure	13-5	shows	the	benefits	of

using	ImageEngine.	When	the	page	is

served	to	a	smartphone,	the	size	is

different	from	the	original.	The	two

IMG	elements	in	the	sample	page

refer	to	the	same	physical	image

through	ImageEngine	and	are	served

directly.

Click	here	to	view	code	image

<img	id="img1"	src="http://try.imgeng.in/http://www.expoware.org/
images/tennis1.jpg"	/>

FIGURE	13-5	ImageEngine	in	action

Compared	to	the	upcoming	PICTURE

element,	ImageEngine	doesn’t	let	you

serve	really	different	images	so	if	art

direction	is	involved,	you	really	need

to	host	and	serve	physically	different

images	which	can	be	further

preprocessed	via	ImageEngine.	If	you

don’t	have	art	direction	concerns,

though,	ImageEngine	saves	you	the

burden	of	resizing	manually	and	saves

bandwidth.

DEVICE-ORIENTED
DEVELOPMENT	STRATEGIES

So	far,	we	have	discussed	quick

client-side	techniques	to	improve

the	rendering	of	pages,	and

behavior	thereof,	on	various

devices.	Let’s	extend	the	landscape

to	the	entire	website	and	review	the

approaches	you	can	take	to	serve

content	effectively	to	devices.

Client-centric	Strategies

So	far,	most	of	the	content	has

revolved	around	JavaScript

improvements	to	the	page

document	object	model.	Let’s	just

summarize	the	options.

Responsive	HTML	Templates

If	you	start	today	with	a	brand-new

website,	I’d	recommend	you	use

Bootstrap	to	have	a	responsive

template	for	all	your	views.	Using	a

responsive	HTML	template	ensures

that	your	views	display	nicely	when

the	user	resizes	the	desktop

browser	window	and	that	you	have

a	basic	coverage	of	mobile	users.	At

the	very	minimum,	in	fact,	mobile

users	will	receive	the	same	views

that	desktop	users	receive	when

they	resize	the	browser.

It	might	not	be	ideal	from	a

performance	perspective,	but	if

devices	are	new	and	fast	enough,	and

connectivity	is	not	really	bad,	the

effect	is	acceptable.	I	wouldn’t

recommend	this	route	for	the	website

in	which	mobile	interactivity	is	a	core

part	of	the	business;	but,	in	most

cases,	it	just	works.

When	it	comes	to	Bootstrap,	and

more	in	general	to	RWD,	the	primary

issue	you	face	is	the	definition	of

breakpoints—that	is,	the	width	of	the

screen	that	triggers	a	change	of	the

view.	Bootstrap	has	its	own	set	of

breakpoints	that	go	under	the	suffixes

of	XS,	SM,	MD,	and	LG.	Each

breakpoint	corresponds	to	a	fixed

width	in	pixels.	It	mostly	works,	but

it’s	far	from	perfect.	In	particular,	the

Bootstrap	system	of	breakpoints

doesn’t	properly	treat	smartphones

and	small-screen	devices.	The	XS

suffix	is	triggered	at	768	pixels,	which

is	way	too	wide	for	a	smartphone.	In

Bootstrap	4,	however,	a	new

breakpoint	is	added	that	sets	the

width	of	smallest	recognized	devices

around	500	pixels.	Again,	this	is	not

perfect,	but	it	is	a	much	better

compromise.

The	alternative	is	not	to	use	Bootstrap

at	all,	or	you	could	create	a	completely

custom	grid	system	that	replaces	the

Bootstrap’s	grid	with	application-

specific	measures.

Add	Client-side	Enhancements

If	you	have	time	and	budget,	you

might	want	to	improve	the	quality

of	responsive	views	and	optimize

the	way	certain	parts	of	it	(for

example,	images)	are	handled,	and

enable	some	mobile-specific

features	if	you	detect	appropriate

devices.	This	step	goes	in	the

general	direction	of	offering	the

best	possible	user	experience	and

encompasses	both	feature	and

device	detection.	The	following

demo	shows	how	to	optimize	the

apparently	trivial	task	of	picking	a

date	so	that	the	experience	is	ideal,

regardless	of	the	device.

Click	here	to	view	code	image

<div	class="col-xs-6">

				REGULAR	DATE-PICKER

				<input	type="text"	class="form-control"	date>

</div>

<div	class="col-xs-6">

				DEVICE-SPECIFIC	DATE-PICKER

				<input	type="text"	class="form-control"	id="mdate">

</div>

The	two	similar	INPUT	fields	above

are	modified	via	JavaScript.	The	one

with	the	custom	date	attribute	is

attached	to	a	date-picker	plugin.	The

other,	instead,	has	its	type	attribute

changed	to	date	only	if	the	detected

device	is	a	smartphone	or	a	feature

phone.	(Tablets,	for	example,	will	get

the	date-picker	plugin.)

Click	here	to	view	code	image

<script>

				//	Blindly	uses	a	date-picker.

				//	For	example,	https://uxsolutions.github.io/bootstrap-datep
icker	

				$("input[date]").datepicker({

								//	More	configuration

				});

				//	Datepicker	or	native

				if	(WURFL.form_factor	===	"Smartphone"	||

								WURFL.form_factor	===	"Feature	Phone")	{

								$("#mdate").attr("type",	"date");

				}	else	{

								$("#mdate").datepicker();

				}

</script>

FIGURE	13-6	Date-pickers	are	not	really	comfortable	to	use	on

smartphones

As	Figure	13-6	shows,	date-picker

components	are	not	particularly

comfortable	to	use	on	smartphones.

They	might	be	acceptable	on	tablets,

but	for	small	screen	devices,	the

native	picker	is	much	better.

However,	a	dynamic	change	of	the

value	of	the	type	attribute	is	necessary

to	distinguish	between	a	native	and	a

programmatic	date	picker,	and

detection	of	the	device	is	necessary.

This	is	one	of	most	concrete	examples

of	client-side	enhancements.

Routing	to	Views

Earlier	in	the	chapter,	I	hinted	at	a

technique	that	downloads

appropriate	HTML	depending	on

the	requesting	user	agent.	Using

WURFL.JS,	you	can	detect	the

form	factor	of	the	browser	and

download	the	most	appropriate

content	from	your	server.	This

entails	that	every	view	(or	just	most

critical	views)	are	available	in

multiple	copies,	for	example,	a

version	for	smartphones	and	a

version	for	desktop	browsers.

Here’s	some	code	that	determines

the	content	of	the	page

programmatically	based	on	the

detected	device.

Click	here	to	view	code	image

<html>

<head>

				<meta	charset="utf-8"	/>

				<meta	name="viewport"	content="width=device-width,	initial-sc
ale=1.0">

				<title>DEVICE	DISCOVERY</title>

				<link	href="content/styles/bootstrap.min.css"	rel="stylesheet
"	type="text/css"	/>

				<script	src="content/scripts/jquery-3.1.1.min.js"></script>

				<script	src="content/scripts/bootstrap.min.js"></script>

				<script	src="//wurfl.io/wurfl.js?debug=true"></script>

				<script	type="text/javascript">

								var	formFactor	=	WURFL.form_factor;

								var	agent	=	WURFL.complete_device_name;

								window.addEventListener("DOMContentLoaded",	function	()	{

												$("#title").html(formFactor	+	"
"	+	agent);

								});

				</script>

				<script	type="text/javascript">

								var	url	=	"/screen/default";

								$(document).ready(function	()	{

												switch	(formFactor)	{

												case	"Smartphone":

																				url	=	"/screen/smartphone";

																break;

												case	"Tablet":

																				url	=	"/screen/tablet";

																break;

												}

												$.ajax({

																url:	url,

																cache:	false,

																dataType:	"html",

																success:	function(data)	{

																				$("#body").html(data);

																}

												});

								});

				</script>

</head>

<body>

<!--	Some	more	content	here	-->

<div	class="text-center	text-warning">

				<div	id="title"></div>

</div>

<div	id="body">

				<div	class="text-center">

								LOADING	...

				</div>

</div>

<!--	Some	more	content	here	-->

</body>

</html>

The	final	blocks	of	script	in	the	HEAD

section	update	the	header	of	the	page

(using	the	plain	DOM	API)	and	the

actual	content	(using	the	jQuery	API).

The	use	of	different	APIs	is	only

meant	to	show	that	you	are	not

dependent	on	any	API	for	page

updates.	Based	on	the	detected	form

factor,	the	page	connects	to	a	site-

specific	endpoint	and	requests	the

chunk	of	HTML	that	is	most

appropriate.	Figure	13-7	shows	the

view	you	get	on	a	tablet.	(Note	that

the	figure	has	been	obtained	using	the

Microsoft	Edge	emulator	to	pass	an

Apple	iPad	user	agent	string.)

FIGURE	13-7	Tablet-specific	view	of	the	sample	page

The	technique	discussed	here	is

effective	in	the	sense	that	it	can

deliver	the	multi-view	benefits	you

want,	but	it	is	not	strictly	effective	in

terms	of	flexibility	and	manageability

of	the	solution.	You	still	need	to	create

and	maintain	multiple	copies	of	the

same	view,	and	you	must	update	all	of

them	when	something	needs	to

change.	For	years,	I’ve	been	a	fan	of

mobile-specific	views	but	in	the	long

run,	it	became	too	much	work,	and

RWD	(and	Bootstrap	as	the	herald	of

it)	is	probably	the	best	compromise

you	can	get	if	time	and	budget	are

serious	constraints.

Server-centric	Strategies

One	easy	way	to	improve	the

previous	approach—still	keeping	it

subject	to	multiple	versions	of	the

same	logical	view—is	performing

the	device	detection	on	the	server.

Also,	pure	server-side	detection	is

not	free	from	issues.

Server-side	Detection

At	the	very	end	of	the	day,	server-

side	detection	consists	of	analyzing

the	user	agent	string	sent	by	the

browser.	In	theory,	it	can	be	as	easy

as	running	the	user	agent	string

through	a	regex	expression.

However,	given	the	huge	number	of

devices	today—user	agents	and

edge	cases—if	device	detection	is

crucial	and	it	is	preferable	to	have

it	on	the	server,	then	you	must	be

ready	to	pay	for	a	professional

service.

	Note	The	framework	I	use	is	WURFL	OnSite,	but	other
options	exist,	such	as	Device	Atlas.	At	the	time	of	this	writing,	with	ASP.NET
Core	2.0	released,	the	major	problems	with	all	device	detection	server
frameworks	is	the	lack	of	support	for	.NET	Core.

While	waiting	for	server	frameworks

to	be	ported	to	.NET	Core,	the

realistic	options	you	have	are	listed	in

Table	13-3.

TABLE	13-3	Server-side	detection

options	from	within	ASP.NET	Core

applications

A

P

I

Description

W

U

R

F

L	

O

n

Si

te	

.

N

E

T	

A

PI

W

U

R

F

L	

Cl

o

u

d	

.

N

E

T	

A

PI

Within	an	ASP.NET	Core	application	

compiled	for	the	full	.NET	Framework.

Wrapping	the	API	in	a	microservice	

(standalone	web	service)	and	invoking	it	

from	ASP.NET	Core	via	HTTP.

For	more	information,	see	

http://www.scientiamobile.com.	

(http://www.scientiamobile.com.)

D

ev

ic

e	

A

tl

as	

.

N

E

T	

A

PI

Same	as	above.

W

U

R

F

L	

In

F

u

WURFL	InFuze	is	an	IIS	extension	module	that	adds	

configured	device	properties	to	each	request	via	HTTP	

headers.	In	this	regard,	it	is	completely	independent	of	

the	version	of	the	.NET	Framework.	See	

http://www.scientiamobile.com.	

(http://www.scientiamobile.com.)

ze	

m

o

d

ul

e

The	bottom	line	is	that	server-side

detection	provides	the	nicest

experience	for	users	because	they	get

the	most	appropriate	selection	of

content	and	layout	automatically	and

in	the	fastest	way.	With	server-side

detection,	in	fact,	no	unused	data	is

ever	downloaded,	and	no	additional

requests	are	placed	for	ad	hoc	views.

The	problem	is	the	maintenance	of

the	site	and	the	proliferation	of

configuration	parameters	and	partial

views.

If	offering	an	ad	hoc	experience	is

crucial	for	the	business,	then	having

an	ad	hoc	mobile	site	is	still	a	valid

option	to	consider.

Redirecting	to	Mobile	Websites

Suppose	now	you	have	two

websites—the	full	site,	whether

responsive	or	not,	and	the	mobile

site,	sometimes	referred	to	in	the

literature	as	an	m-site.	How	would

you	reach	them?	The	real	world	is

full	of	examples	that	approach	this

problem	in	different	ways,	while

still	achieving	good	business

results.

I	believe	we	might	all	agree	that

having	a	single	public	URL	for	the

website	would	be	great.	Users	have

only	to	remember	the	www	thing	and

the	software	does	the	magic	of	silently

switching	to	the	most	appropriate

content	available.	Companies	who

don’t	do	so—we	might	agree—might

be	facing	some	business	pain.	You	can

think	of	having	some	very	basic	and

simple	device	detection	that	redirects

to	a	physically	separated	website

under	a	different	URL.	In	this	case,

you	don’t	strictly	need	to	know	all

details	of	a	device	but	just	a	rough

heuristic	that	it	is	a	mobile	device	or

not.

From	a	development	perspective,	you

can	consider	the	ad	hoc	mobile

website	as	a	different	project.	Having

it	as	a	different	project	is	a	great

achievement	because	you	can	develop

it	with	ad	hoc	technologies	and

frameworks,	outsource	it	to	external

companies,	have	different	people

work	on	it,	and	have	it	done	at	any

later	time.	Also,	the	mobile	site	can	be

added	anytime.

SUMMARY

A	server-side	solution	is	inherently

more	flexible	than	a	purely	client-

side,	RWD-based	solution	because

it	allows	you	to	check	the	device

before	you	send	anything	down	the

wire.	In	this	way,	the	website	can

intelligently	decide	the	most

appropriate	content.	In	practice,

though,	serving	device-specific

views	is	never	an	easy	thing	and	the

core	issue	is	not	the	mechanism

used	to	detect	the	underlying

device.	The	problem	is	cost.

Device	detection	doesn’t	mean	serving

a	different	version	of	pages	for	each

browser	or	device.	It	more	realistically

means	maintaining	at	most	three	or

four	collections	of	views	for	most

common	form	factors:	desktops,

smartphones,	tablets,	legacy	phones,

or	perhaps	very	large	screens.

Multiple	pages	are	a	cost,	no	doubt.

The	approach	that	sounds	the	most

reasonable	today	consists	of	having	a

default	responsive	solution	and	a

separate	smartphone-specific	website

with	just	the	use-cases	that	are

relevant	to	mobile	users.	You	can

achieve	this	by	deploying	two	distinct

websites	and	using	some	client-side

detection	to	redirect.	Another	option

is	to	use	a	server-side	approach,	which

gives	you	more	control	over	the

behavior	and	also	scales	a	lot	more

easily	and	flexibly	in	case	you	decide

to	be	open	to	more	form	factors.

Either	way,	as	a	developer,	you	can’t

neglect	the	user	experience	on	mobile

devices,	and	you	can’t	even	conclude

that	a	responsive	template	is	all	you

need.	Responsive	design	is	just	one

answer,	and	probably,	it’s	not	even

entirely	correct.

PART	V

The	ASP.NET	Core
Ecosystem
You’re	now	well-prepared	to	build

modern	solutions	with	ASP.NET	Core.

Before	we	conclude,	it’s	time	to	widen

our	view	of	the	development	lifecycle.

This	final	Part	V	explores	crucial

issues	concerning	the	ASP.NET	Core

runtime	pipeline,	application

deployment,	and	moving	from	older

ASP.NET	frameworks.

Chapter	14,	The	ASP.NET	Core

Runtime	Environment,	takes	a	deeper

look	at	the	internal	architecture	of	the

ASP.NET	Core	runtime	environment,

its	Kestrel	server,	and	the	core

middleware.	These	fundamentally

new	technologies	establish	a	cross-

platform	runtime	that	is	fully

decoupled	from	the	web	server

environment.

Chapter	15,	Deploying	an	ASP.NET

Core	Application,	guides	you	through

ASP.NET	Core’s	more	diverse

application	deployment	options:	not

just	Windows	Server	or	Microsoft

Azure	app	services,	but	also	Linux	on-

premise	machines,	third-party	cloud

environments	such	as	Amazon	Web

Services	(AWS),	and	Docker

containers.

Finally,	in	Chapter	16,	Migration	and

Adoption	Strategies,	I’ll	help	you

parse	the	tradeoffs	you	face	in	moving

to	ASP.NET	Core.	I’ll	help	you	assess

ASP.NET	Core’s	value	in	the	very

different	scenarios	of	greenfield

development	and	brownfield

development,	as	well	as	many	projects

that	fit	in	between.	I’ll	also	introduce

some	practical	tools	and	techniques

for	planning	your

transition[md]including	opportunities

to	move	toward	microservices	and

containers.

—William	Shakespeare,	“Hamlet”

CHAPTER	14

The	ASP.NET	Core	Runtime
Environment
Conscience	does	make	cowards	of	us

all;	and	thus	the	native	hue	of

resolution	is	sicklied	over	with	the

pale	cast	of	thought.

In

Chapter	2,	“The	First	ASP.NET	Core

Project,”	we	opened	the	ASP.NET

Core	machine	hood	and	had	our	first

look	at	it.	In	doing	so,	we	learned	that

the	runtime	environment	and	the

pipeline	through	which	any	requests

pass	is	quite	different	from	what	is

found	in	past	versions	of	ASP.NET.

Also,	the	new	ASP.NET	Core	runtime

environment	is	empowered	by	a

system-provided,	embedded

Dependency	Injection	(DI)

infrastructure	that	silently	watches,	as

a	ghost	friend,	over	all	the	steps	of

processing	an	incoming	request.

In	this	chapter,	we	take	it	further	and

explore	more	in	depth	the	internal

architecture	of	the	ASP.NET	Core

runtime	environment	and	its

components,	primarily	the	Kestrel

server	and	request	middleware.

THE	ASP.NET	CORE	HOST

THE	ASP.NET	CORE	HOST

At	its	core,	an	ASP.NET	Core

application	consists	of	a	standalone

console	application	that	sets	up	the

host	environment	for	the	actual

application	model,	most	likely	an

MVC	application	model.	The	host	is

responsible	for	configuring	a	server

that	listens	for	incoming	HTTP

requests	and	passes	requests	to	the

processing	pipeline.	The	following

code	shows	the	default

implementation	of	the	host

program	of	a	typical	ASP.NET	Core

application	as	it	results	from	the

standard	Visual	Studio	2017

templates.	The	following	source

code	is	written	in	the	program.cs

file	of	an	ASP.NET	Core	project.

Click	here	to	view	code	image

public	class	Program

{

				public	static	void	Main(string[]	args)

				{

								BuildWebHost(args).Run();

				}

				public	static	IWebHost	BuildWebHost(string[]	args)	=>

								WebHost.CreateDefaultBuilder(args)

												.UseStartup<Startup>()

												.Build();

}

Let’s	find	out	more	about	the	web	host

component	and	the	other,	simpler,

options	you	have	to	start	the	host.

The	WebHost	Class

The	WebHost	Class

WebHost	is	a	static	class	that

provides	two	methods	for	creating

instances	of	classes	exposing	the

IWebHostBuilder	interface	with

predefined	settings.	The	class	also

comes	with	many	methods	to

quickly	start	the	environment

passing	just	the	URL	to	listen	to

and	a	delegate	for	the	behavior	to

implement.	Again,	this	is	the	living

proof	of	the	extreme	flexibility	of

the	ASP.NET	Core	runtime,	as	we’ll

see	in	the	next	example.

Configuring	the	Behavior	of	the	Host

The	Start	methods	on	the	WebHost

class	allow	you	to	set	up	a	web

application	in	a	variety	of	ways.

One	of	the	most	interesting	is	the

overload	that	sets	up	the

application	around	a	plain	lambda

function.

Click	here	to	view	code	image

using	(var	host	=	WebHost.Start(

					app	=>	app.Response.WriteAsync("Programming	ASP.NET	Core")))

{

				//	Wait	for	the	host	to	end

				...

}

All	the	application	does	is	run	the

specified	function,	regardless	of	the

URL	invoked.	The	instance	returned

by	the	Start	method	of	the	WebHost

class	is	of	type	IWebHost	and

represents	an	already	started	host

environment	for	the	application.

Inside	the	WebHost.Start	method,	the

following	pseudo-code	runs:

Click	here	to	view	code	image

public	static	IWebHost	Start(RequestDelegate	app)	

{

			var	defaultBuilder	=	WebHost.CreateDefaultBuilder();

			var	host	=	defaultBuilder.Build();

			//	This	line	actually	starts	the	host	

			host.Start();

			return	host;

}

Note	that	the	Start	method	runs	the

host	in	a	non-blocking	manner,	which

means	the	host	needs	some	additional

instruction	to	continue	listening	for

incoming	requests.	Here’s	an

example.	(See	Figure	14-1.)

Click	here	to	view	code	image

public	static	void	Main(string[]	args)

{

					using	(var	host	=	WebHost.Start(

									app	=>	app.Response.WriteAsync("Programming	ASP.NET	Core
")))

									{

												//	Wait	for	the	host	to	end

												Console.WriteLine("Courtesy	of	'Programming	ASP.NET	C
ore'\n====");

												Console.WriteLine("Use	Ctrl-C	to	shut	down	the	host..
.");

												host.WaitForShutdown();

									}

}

FIGURE	14-1	The	host	in	action

By	default,	the	host	listens	for

incoming	requests	on	port	5000.	As

you	can	see	from	the	figure,	the	logger

is	automatically	turned	on	even

though	no	apparent	line	in	our	user-

level	code	is	turned	it	on.	This	means

that	the	host	receives	some	default

configuration.	The

WebHost.CreateDefaultBuilder

method	is	internally	called	by	the

Start	method	and	is	responsible	for

the	receipt	of	the	default

configuration.	Let’s	find	out	more

about	the	default	settings.

The	Default	Settings

The	Default	Settings

In	ASP.NET	Core	2.0,	the	method

CreateDefaultBuilder	(defined	as	a

static	method	on	the	WebHost

class)	creates	and	returns	an

instance	of	the	host	object.	All	the

Start	methods	defined	on	WebHost

end	up	calling	the	default	builder

internally.	Here’s	what	happens

when	the	default	web	host	builder

is	invoked.

Click	here	to	view	code	image

public	static	IWebHostBuilder	CreateDefaultBuilder(string[]	args)

{

			return	new	WebHostBuilder()

											.UseKestrel()

											.UseContentRoot(Directory.GetCurrentDirectory())

											.ConfigureAppConfiguration(

													(Action<WebHostBuilderContext,	IConfigurationBuilder
>)	((context,	config)	=>

																{

																			var	env	=	context.HostingEnvironment;

																			config.AddJsonFile("appsettings.json",	true,	t
rue)

																									.AddJsonFile(string.Format("appsettings.
{0}.json",	

																																					env.EnvironmentName),	true,	
true);

																			if	(env.IsDevelopment())

																			{

																						var	assembly	=	Assembly.Load(new	AssemblyNa
me(env.ApplicationName));

																						if	(assembly	!=	null)

																									config.AddUserSecrets(assembly,	true);

																			}

																			config.AddEnvironmentVariables();

																			config.AddCommandLine(args);

																		}))

												.ConfigureLogging(

														(Action<WebHostBuilderContext,	ILoggingBuilder>)	((
context,	logging)	=>	

																	{

																						logging.AddConfiguration(context.Configurat
ion.GetSection("Logging"));

																						logging.AddConsole();

																						logging.AddDebug();

																	}))

												.UseIISIntegration()

												.UseDefaultServiceProvider(

																(Action<WebHostBuilderContext,	ServiceProviderOpt
ions>)	((context,	options)	=>		

																				{

																						options.ValidateScopes	=	context.HostingEnv
ironment.IsDevelopment()));

																				}

				}

In	summary,	the	default	builder	does

six	different	things,	as	outlined	in

Table	14-1.

TABLE	14-1	Actions	taken	by	the

default	builder

Ac

ti

on

Description

W

eb	

ser

ve

r

Adds	Kestrel	as	the	embedded	web	server	of	the	

ASP.NET	Core	pipeline.

Co

nt

en

t	

ro

ot

Sets	the	current	directory	as	the	root	folder	for	any	

file-based	content	accessed	by	the	web	application.

Co

nfi

gu

rat

io

n

Adds	a	few	configuration	providers:	appsettings.json,	

environment	variables,	command	line	arguments,	and	

user	secrets	(only	in	development	mode).

Lo

ggi

ng

Adds	a	few	logging	providers:	those	defined	in	the	

logging	section	of	the	configuration	tree	as	well	as	the	

console	and	debug	loggers.

II

S

Enables	integration	with	IIS	as	the	reverse	proxy.

Se

rvi

ce	

pr

ovi

de

r

Configures	the	default	service	provider.

It	is	key	to	note	that	all	those

operations	always	occur	outside	your

control	whenever	you	call	one	of	the

methods	on	the	WebHost	class	to	fire

up	the	host	for	the	web	application.	If

you	want	to	shape	up	a	custom

collection	of	settings	for	the	host,

please	read	on.	Before	we	look	into	a

custom	host	configuration,	however,

let’s	first	look	into	the	options	you

have	to	actually	run	the	host	and

make	it	listen	to	incoming	calls.

	Tip	To	investigate	the	source	code	of	a	class	in	Visual	Studio,	I	use
ReSharper,	which	includes	dotPeek	that	does	the	actual	decompile	work	as
soon	as	you	press	F12.	Without	ReSharper,	dotPeek—a	free	tool—can	still

be	configured	in	Visual	Studio	to	act	as	a	symbol	server.	More	information
can	be	found	here:	http://bit.ly/2AnTOvK	(http://bit.ly/2AnTOvK).	ILSpy	is	another	in-
place	decompiler	that	can	be	freely	used	in	Visual	Studio,	and	it	is	available
on	the	marketplace.

Starting	the	Host

Whenever	you	create	a	host

through	any	of	the	methods

exposed	by	the	WebHost	class,	you

receive	an	already-started	host	that

is	already	listening	on	the

configured	addresses.	As

mentioned,	the	Start	method	used

by	default	launches	the	host	in	a

non-blocking	manner,	but	other

options	exist,	too.

The	Run	method	starts	the	web

application	and	then	blocks	the	calling

thread	until	the	host	is	shut	down.

The	WaitForShutdown	method,

instead,	blocks	the	calling	thread	until

the	application	shutdown	is	triggered

manually,	for	example	via	Ctrl+C.

Custom	Hosting	Settings

Using	the	default	host	builder	is

easy	and	delivers	a	host	with	most

of	the	features	you	still	want	to

have.	You	can	further	extend	the

host	with	additional	aspects	such	as

the	startup	class	and	the	URLs	to

listen	to.	Or	you	can	have	a	host

that	features	fewer	capabilities	than

the	default	host.

Manually	Creating	the	Web	Host

The	following	code	shows	how	to

create	a	brand-new	host	from

scratch.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder().Build();

The	WebHostBuilder	class	has	a

number	of	extension	methods	to	add

features.	At	the	very	minimum,	you

need	to	specify	the	in-process	HTTP

server	implementation	to	be	used.

This	web	server	listens	for	HTTP

requests	and	forwards	them	to	the

application	wrapped	up	in	friendly

HttpContext	packages.	Kestrel	is	the

default	and	the	most	commonly	used

web	server	implementation.	To	enable

Kestrel,	you	call	the	UseKestrel

method.

To	make	your	web	application

compatible	with	IIS	hosting,	you	also

need	to	enable	the	feature	through	the

UseIISIntegration	extension	method.

Finally,	you	might	want	to	specify	the

content	root	folder	and	the	startup

class	to	use	to	finalize	the

configuration	of	the	runtime

environment.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

															.UseKestrel()	

															.UseIISIntegration()

															.UseContentRoot(Directory.GetCurrentDirectory())

															.Build();

Two	more	aspects	of	the	application

must	be	specified	at	this	point.	One	is

the	loading	of	the	application	settings,

and	the	other	is	the	terminating

middleware.	In	ASP.NET	Core	2.0,

you	can	use	the	new

ConfigureAppConfiguration	method

to	load	application	settings,	as	in	the

code	snippet	shown	above.	Instead,

you	use	the	Configure	method	to	add

the	terminating	middleware,	namely

the	code	that	will	process	any

incoming	requests.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

															.UseKestrel()	

															.UseIISIntegration()

															.UseContentRoot(Directory.GetCurrentDirectory())

															.Configure(app	=>	{

																				app.Run(async	(context)	=>	{

																								var	path	=	context.Request.Path;

																								await	context.Response.WriteAsync("<h1>"	
+	path	+	"</h1>");

																				});

																})

																.Build();

Application	settings,	terminating

middleware,	and	the	various	optional

middleware	components	can	also	be

more	comfortably	specified	in	the

startup	class.	And	the	startup	class	is

just	another	relevant	parameter	you

pass	to	the	web	host	builder	instance

via	the	UseStartup	method.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

															.UseKestrel()	

															.UseIISIntegration()

															.UseContentRoot(Directory.GetCurrentDirectory())

															.UseStartup<Startup>()

															.Build();

Functionally	speaking,	the	above	code

snippet	delivers	a	number	of

capabilities	sufficient	to	run	an

ASP.NET	Core	2.0	application.

Locating	the	Startup	Class

The	startup	class	can	be	specified

in	a	number	of	ways.	The	most

common	is	to	use	the	generic

version	of	the	UseStartup<T>

extension	method	where	type	T

identifies	the	startup	class.	This	is

demonstrated	by	the	previous	code

snippet.

You	can	also	use	a	non-generic	form

of	UseStartup	and	pass	the	.NET	type

reference	as	an	argument.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

															.UseKestrel()	

															.UseIISIntegration()

															.UseContentRoot(Directory.GetCurrentDirectory())

															.UseStartup(typeof(MyStartup))

															.Build();

Finally,	you	can	also	specify	the	type

of	the	startup	by	the	assembly	name.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

															.UseKestrel()	

															.UseIISIntegration()

															.UseContentRoot(Directory.GetCurrentDirectory())

															.UseStartup(Assembly.Load(new	AssemblyName("Ch14.B
uilder")).FullName)

															.Build();

If	you	choose	to	pass	UseStartup	an

assembly	name,	then	it	is	assumed	the

assembly	contains	a	class	named

Startup	or	StartupXxx	where	Xxx

matches	the	current	hosting

environment	(Development,

Production,	or	whatever	else).

Application	Lifetime

In	ASP.NET	Core	2.0,	three

application	lifetime	events	are

supported	for	developers	to

perform	startup	and	shutdown

tasks.	The	IApplicationLifetime

interface	defines	the	host	events

you	can	hook	up	in	the	code.

Click	here	to	view	code	image

public	interface	IApplicationLifetime

{

			CancellationToken	ApplicationStarted	{	get;	}

			CancellationToken	ApplicationStopping	{	get;	}

			CancellationToken	ApplicationStopped	{	get;	}

			void	StopApplication();

}

As	you	can	see,	in	addition	to	started,

stopping,	and	stopped	events,	the

interface	also	features	a	proactive

StopApplication	method.	You	add

event	handling	code	in	the	Configure

method	of	the	startup	class.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app,	IApplicationLifeti
me	life)

{

				//	Configures	a	graceful	shutdown	of	the	application

				life.ApplicationStarted.Register(OnStarted);

				life.ApplicationStopping.Register(OnStopping);

				life.ApplicationStopped.Register(OnStopped);

				//	More	runtime	configuration	here

				...

}

The	ApplicationStarted	event	reaches

your	code	when	the	host	is	up	and

running	and	waiting	for	a

programmatically	controlled

termination.	The	ApplicationStopping

event	indicates	that	a	programmatic

shutdown	of	the	application	has

started,	but	some	requests	might	still

be	in	the	queue.	The	host	is	essentially

about	to	shut	down.	Finally,	the

ApplicationStopped	event	is	triggered

when	no	more	pending	requests	are	in

the	queue.	The	actual	shutdown	of	the

host	will	take	place	as	soon	as	the

processing	of	the	event	terminates.

The	StopApplication	method	is	the

interface	method	that	starts	the

programmatic	shutdown	of	the	web

application	host.	The	method	is	also

silently	called	if	you	press	Ctrl+C	from

the	dotnet.exe	launcher	console

window.	If	you	use	the	following	code,

then	the	expected	output	is	shown	in

Figure	14-2.

Click	here	to	view	code	image

private	static	void	OnStarted()

{

				//	Perform	post-startup	activities	here

				Console.WriteLine("Started\n=====");

				Console.BackgroundColor	=	ConsoleColor.Blue;

}

private	static	void	OnStopping()

{

				//	Perform	on-stopping	activities	here

				Console.BackgroundColor	=	ConsoleColor.Black;

				Console.WriteLine("=====\nStopping\n=====\n");

}

private	static	void	OnStopped()

{

				//	Perform	post-stopped	activities	here

				var	defaultForeColor	=	Console.ForegroundColor;

				Console.ForegroundColor	=	ConsoleColor.Red;

				Console.WriteLine("Stopped.");

				Console.ForegroundColor	=	defaultForeColor;

				Console.WriteLine("Press	any	key.");

				Console.ReadLine();

}

FIGURE	14-2	Application	lifetime	events

As	you	can	see,	lifetime	events	wrap

around	any	activity	of	web

application.

Other	Settings

The	web	host	can	be	further

customized	by	a	collection	of

additional	settings	that	fine-tune

some	minor	aspects	of	the

behavior.	Table	14-2	lists	them	all.

TABLE	14-2	Additional	settings	of	a

web	host

E

xt

e

n

si

o

n	

m

et

h

o

d

Description

C

a

pt

ur

eS

ta

rt

u

p

E

rr

or

s

Boolean	value	to	control	the	capture	of	startup	errors.	The	default	

value	is	false	unless	the	overall	configuration	sets	Kestrel	running	

behind	IIS.	If	errors	are	not	captured,	then	any	exceptions	will	result	

in	the	host	exiting.	If	errors	are	being	captured,	then	startup	

exceptions	are	swallowed,	but	the	host	still	attempts	to	start	the	

configured	web	server.

U

se

E

n

vi

ro

n

m

en

t

Sets	the	application	running	environment	programmatically.	The	

method	takes	a	string	that	matches	predefined	environments	such	as	

Development,	Production,	Staging,	or	any	other	environment	name	

that	makes	sense	for	the	application.	Normally,	the	environment	

name	is	read	from	an	environment	variable	

(ASPNETCORE_ENVIRONMENT)	and,	when	using	Visual	Studio,	

environment	variables,	might	be	set	through	the	user	interface	or	in	

the	launchSettings.json	file.

U

se

Se

tti

n

g

The	universal	method	used	to	set	options	directly	through	an	

associated	key.	When	setting	a	value	with	this	method,	the	value	is	set	

as	a	string	(in	quotes)	regardless	of	the	type.	The	method	can	be	used	

to	configure	at	least	the	following	settings:

Det

aile

dEr

ror

sKe

y

Boolean	value	indicating	whether	detailed	errors	should	be	

captured	and	reported.	The	default	is	false.

Ho

stin

gSt

art

up

Ass

em

Semi-colon	delimited	string	of	additional	assembly	names	to	

be	loaded	at	startup.	The	default	is	the	empty	string.

blie

sKe

y

Pre

ven

tHo

stin

gSt

art

up

Key

Prevents	the	automatic	loading	of	startup	assemblies	

including	the	application’s	assembly.	The	default	is	false.

Shu

tdo

wn

Ti

me

out

Key

Specifies	the	number	of	seconds	the	web	host	will	wait	

before	shutting	down.	The	default	is	5	seconds.	Note	that	the	

same	setting	can	be	set	using	the	UseShutdownTimeout	

extension	method.	The	wait	gives	the	web	host	time	to	fully	

process	requests.

The	property	names	are	expressed	as	properties	of	the	

WebHostDefaults	enumeration.

WebHost.CreateDefaultBuilder(args)

				.UseSetting(WebHostDefaults.DetailedErrorsKey,	“true”);

U

se

S

h

ut

do

w

n

Ti

m

eo

ut

Specifies	the	amount	of	time	to	wait	for	the	web	host	to	shut	down.	

Default	is	5	seconds.	The	method	accepts	a	TimeSpan	value.

You	might	be	wondering	why	such	an

extremely	detailed	level	of	control	on

the	web	host	configuration	is	possible.

You	also	might	be	wondering	why

configuration	of	application	settings

can	be	done	in	the	program.cs	at	the

web	host	level,	far	before	the

application	actually	starts.	The

answers	are	twofold.	First,	is

completeness.	Second,	is	the	ability	to

facilitate	integration	tests.	Having	a

great	deal	of	flexibility	in	the	setup	of

the	web	host	lets	you	easily	create

duplicate	projects	in	which	all	is	the

same,	but	the	host	and	the

configuration	of	the	host	can	be

arranged	to	match	a	given	integration

scenario.

In	this	section,	I	deliberately	skipped

one	more	configuration	parameter:

the	list	of	URLs	the	web	server	will

listen	for	in	incoming	requests.	I’ll

discuss	this	in	the	next	section,	which

is	dedicated	to	the	selection	and

configuration	of	the	ASP.NET	Core

embedded	web	server.

	Note	When	it	comes	to	expressing	the	configuration	of	the
web	host,	the	order	of	settings	is	important,	but	overall,	it	obeys	a	basic	rule:
the	last	setting	wins.	Hence,	if	you,	say,	indicate	multiple	startup	classes	then
no	errors	are	thrown,	but	simply	the	last	setting	specified	takes	precedence.

THE	EMBEDDED	HTTP	SERVER

An	ASP.NET	Core	application

needs	an	in-process	HTTP	server	to

run.	The	web	host	fires	up	the

HTTP	server	and	makes	it	listen	to

any	configured	ports	and	URLs.

The	HTTP	server	is	expected	to

capture	incoming	requests	and

push	them	through	the	ASP.NET

Core	pipeline	where	the	configured

middleware	will	process	it.	Figure

14-3	presents	the	overall

architecture.

FIGURE	14-3	The	HTTP	Server	in	the	ASP.NET	Core	runtime

architecture

The	diagram	in	the	figure	shows	a

direct	connection	between	the

ASP.NET	Core	internal	HTTP	server

and	the	Internet	space.	In	reality,

such	a	direct	connection	is	optional.

You	can	choose,	in	fact,	to	put	a

reverse	proxy	in	the	middle	to	just

shield	the	internal	HTTP	server	from

being	accessed	from	the	open

Internet.	(I’ll	return	to	this	in	a

moment.)

Selection	of	the	HTTP	Server

Selection	of	the	HTTP	Server

The	internal	HTTP	server	of	Figure

14-3	comes	in	two	flavors.	It	can	be

based	on	Kestrel	or	on	a	kernel-

level	driver	named	http.sys.	In	both

cases,	the	implementation	will

listen	on	a	configured	set	of	ports

and	URLs,	and	it	will	dispatch	any

incoming	requests	to	the	ASP.NET

Core	2.0	pipeline.

Kestrel	vs.	Http.sys

The	most	common	choice	for	the

ASP.NET	Core	2.0	internal	HTTP

server	is	Kestrel,	which	is	a	cross-

platform	web	server	based	on	libuv.

In	particular,	libuv	is	a	cross-

platform	asynchronous	I/O	library.

When	you	create	a	new	ASP.NET

Core	project	from	within	Visual

Studio,	the	templates	deliver	code

using	Kestrel	as	the	web	server.	The

most	interesting	aspect	of	Kestrel	is

that	it	is	supported	on	all	platforms

and	versions	that	.NET	Core

supports.

An	alternative	to	Kestrel	is	using

http.sys,	namely	a	Windows-only

HTTP	server	that	relies	on	the

services	of	the	old	faithful	Windows

http.sys	kernel	driver.	In	general,	you

might	always	want	to	use	Kestrel

except	for	a	few	specific	situations.	Up

until	the	release	of	version	2.0,	Kestrel

was	not	recommended	for	scenarios

where	no	reverse	proxy	had	to	be	used

to	shield	the	application	from	public

Internet	access.	In	this	regard	http.sys

represents	a	more	reliable	choice

(though	limited	to	the	Windows

platform)	because	it	is	based	on	a

much	more	mature	technology.	Also,

http.sys	is	Windows	specific	and

supports	features	not	available—by

design—in	Kestrel,	such	as	Windows

authentication.

To	further	reinforce	the	point	about

the	robustness	of	http.sys,	you	should

consider	that	the	same	IIS	runs	as	an

HTTP	listener	on	top	of	http.sys.

However,	the	future	is	well	laid	out.

Kestrel	is	cross-platform	and	will	be

increasingly	improved	as	a	robust

enough	web	server	capable	of

sustaining	the	open	Internet	without

the	barrier	of	a	reverse	proxy.	My

recommendation	is	to	use	Kestrel,

unless	you	have	evidence	that	Kestrel

doesn’t	work	well	for	you.	The

following	code	shows	how	to	enable

http.sys	in	an	ASP.NET	Core

application.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder().UseHttpSys().Build();

When	Kestrel	is	not	fit,	then	you	go

with	a	reverse	proxy	outside	Windows

(for	example,	Nginx	or	Apache).

Under	Windows,	instead,	you	can

choose	http.sys	directly	or	IIS.

	Note	For	more	information	on	the	extra	configuration	required
to	use	http.sys,	refer	to	https://docs.microsoft.com/en-
us/aspnet/core/fundamentals/servers/httpsys.

Specifying	URLs

The	internal	HTTP	server	can	be

configured	to	listen	on	a	variety	of

URLs	and	ports.	You	specify	this

information	through	the	UseUrls

extension	method	defined	on	the

web	host	builder	type.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

																.UseKestrel()

																.UseUrls("...")

																...

																.Build();

The	UseUrls	method	indicates	the

host	addresses	with	ports	and

protocols	on	which	the	server	should

listen	for	incoming	requests.	If

multiple	URLs	are	to	be	specified,	you

separate	them	with	semi-colons.	By

default,	the	internal	web	server	is

instructed	to	listen	on	the	local	host

on	port	5000.	You	use	the	*	wildcard

to	indicate	that	the	server	should

listen	for	requests	on	any	hostname

using	the	specified	port	and	protocol.

As	an	example,	the	following	code	is

acceptable,	too.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

																.UseKestrel()

																.UseUrls("http://*:7000")

																...

																.Build();

Note	that	an	ASP.NET	Core	internal

HTTP	server	is	characterized	by	the

IServer	interface.	This	means	that	in

addition	to	Kestrel	and	http.sys,	you

could	even	create	your	own	custom

HTTP	server	by	implementing	the

interface.	The	IServer	interface

provides	members	to	configure

endpoints	to	which	the	server	should

listen	for	requests.	By	default,	the	list

of	URLs	to	listen	to	is	taken	from	the

web	host.	However,	you	can	force	the

server	to	accept	the	list	of	URLs

through	its	own	API.	You	can	do	that

by	using	the	PreferHostingUrls	web

host	extension	method.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

																.UseKestrel()

																.PreferHostingUrls(false)

																...

																.Build();				

The	hosting.json	File

The	hosting.json	File

The	use	of	the	UseUrls	method—or

even	the	use	of	the	server’s	specific

API	for	endpoints—presents	one

relevant	drawback:	The	names	of

the	URLs	are	hardcoded	in	the

source	code	of	the	application	and

require	a	new	compile	step	to	be

changed.	To	avoid	that,	you	can

load	the	HTTP	server	configuration

from	an	external	file,	the

hosting.json	file.

The	file	must	be	created	in	the	root	of

the	application’s	folder.	Here’s	an

example	that	shows	how	to	set	the

server’s	URLs.

Click	here	to	view	code	image

{

		"server.urls":	"http://localhost:7000;http://localhost:7001"

}

To	force	loading	the	hosting.json	file,

you	add	it	to	the	application	settings

via	a	call	to	AddJsonFile.

Configuring	a	Reverse	Proxy

Originally,	the	Kestrel	server	was

not	designed	to	be	exposed	to	the

open	Internet,	meaning	that	a

reverse	proxy	was	required	on	top

of	it	for	security	reasons	and	as	a

way	to	protect	the	application	from

possible	web	attacks.	Starting	with

ASP.NET	Core	2.0,	though,	a

thicker	defense	barrier	was	added,

resulting	in	more	configuration

options	to	take	into	account.

	Note	In	addition	to	security	reasons,	one	scenario	that
requires	a	reverse	proxy	is	when	you	have	multiple	applications	that	share	the
same	IP	and	port	running	on	the	same	server.	Kestrel	doesn’t	simply	support
this	scenario;	once	configured	to	listen	on	a	port;	Kestrel	handles	all	traffic
coming	through	regardless	of	the	host	header.

Reasons	for	Using	a	Reverse	Proxy

Reasons	for	Using	a	Reverse	Proxy

Whether	the	application	behind

Kestrel	is	designed	to	be	exposed	to

the	public	Internet	or	only	to	an

internal	network,	you	can	configure

the	HTTP	server	to	work	with	or

without	a	reverse	proxy.	In	general

terms,	a	reverse	proxy	is	a	proxy

server	that	retrieves	resources	on

behalf	of	a	client	from	one	or	more

servers.	(See	Figure	14-4.)

FIGURE	14-4	The	reverse	proxy	scheme

A	reverse	proxy	completely	shields	the

actual	web	server	(in	our	case,	the

Kestrel	server)	from	requests	coming

from	the	various	user	agents.	The

reverse	proxy	is	usually	a	full-fledged

web	server	that	captures	incoming

requests	and	serves	them	to	the	back-

end	server	after	some	preliminary

work.	The	user	agents	are	completely

unaware	of	the	actual	server	behind

the	proxy,	and	insofar	as	they	are

concerned,	they’re	really	connecting

to	the	actual	server.

As	previously	mentioned,	the	primary

reason	for	having	a	reverse	proxy	is

security	and	the	ability	to	prevent

potentially	harmful	requests	from

even	reaching	the	actual	web	server.

Another	reason	for	having	a	reverse

proxy	is	that	an	additional	layer	of

server	helps	set	up	the	most

appropriate	load	balancing

configuration.	You	can	configure	an

IIS	(or	perhaps	Nginx	server)	to	be

the	load	balancer	and	maintain

control	over	the	number	of	actual

servers	connected	to	an	ASP.NET

Core	installation.	For	example,	during

long	generation-2	garbage	collector

operations,	one	process	is	not	capable

of	processing	requests,	so	the	traffic

on	the	same	server	could	be	handled

by	other	instances	of	the	application.

Another	scenario	in	which	a	reverse

proxy	is	helpful	is	when	it	simplifies

the	SSL	setup.	In	fact,	only	the	reverse

proxy	requires	the	SSL	certificate.

After	that,	any	communication	with

your	application	server	can	take	place

using	plain	HTTP.	Finally,	using	a

reverse	proxy	can	provide	a	smoother

install	of	an	ASP.NET	Core	solution

onto	an	existing	server	infrastructure.

	Important	ASP.NET	Core	was	designed	from	the	ground
up	to	use	its	own	HTTP	server	to	ensure	consistent	behavior	across	multiple
platforms.	While	IIS,	Nginx,	and	Apache	can	all	be	used	as	reverse	proxies,
each	of	them	requires	its	own	environment,	which	would	have	required	some
sort	of	a	provider	model	built	into	ASP.NET	Core.	The	team	has	therefore
decided	to	expose	a	common	standalone	façade	out	of	ASP.NET	Core	that
other	web	servers	can	plug	into	at	the	cost	of	some	additional	configuration
work	or	writing	additional	plugins.

Configuring	IIS	as	a	Reverse	Proxy

Both	IIS	and	IIS	Express	can	be

used	as	a	reverse	proxy	for

ASP.NET	Core.	When	this	happens,

the	ASP.NET	Core	application	runs

in	a	process	separate	from	the	IIS

worker	process.	At	the	same	time,

though,	the	IIS	process	needs	an	ad

hoc	module	to	bridge	the	IIS

worker	process	and	the	ASP.NET

Core	process.	This	extra

component	is	known	as	the

ASP.NET	Core	ISAPI	module.

The	ASP.NET	Core	module	takes	care

of	starting	the	ASP.NET	Core

application	and	forwards	HTTP

requests	to	it.	Also,	it	blocks	at	the

gate	any	request	that	could	configure

a	denial	of	service	attack	or	a	request

whose	body	is	too	long	or	that	could

time	out.	Furthermore,	the	module	is

also	responsible	for	restarting	the

ASP.NET	Core	application	when	it

crashes	or	when	the	IIS	worker

process	detects	conditions	for	a

restart.

As	a	developer,	you	need	to	ensure

that	the	ASP.NET	Core	module	is

installed	on	the	IIS	machine.	Also,

you	need	to	place	a	call	to	the

UseIISIntegration	web	host	extension

method	while	configuring	the	host	of

the	ASP.NET	Core	application.

Configuring	Apache	as	a	Reverse	Proxy

The	exact	way	in	which	an	Apache

web	server	is	configured	to	run	as	a

reverse	proxy	depends	on	the

actual	Linux	operating	system.

However,	some	general	guidance

can	be	provided.	Once	Apache	is

properly	installed	and	working,	the

configuration	files	are	located

under	the	/etc/httpd/conf.d/

directory.	There	you	create	a	new

file	with	a	.conf	extension	with

content	analogous	to	the	following:

Click	here	to	view	code	image

<VirtualHost	*:80>

								ProxyPreserveHost	On

								ProxyPass	/	http://127.0.0.1:5000/

								ProxyPassReverse	/	http://127.0.0.1:5000/

</VirtualHost>

In	the	example,	the	file	sets	Apache	to

listen	for	any	IP	address,	using	port

80,	and	all	requests	received	through

the	machine	127.0.0.1	port	5000.

Communication	is	bidirectional

because	ProxyPass	and

ProxyPassReverse	are	specified.	This

step	is	sufficient	to	enable	forwarding

of	requests	but	not	to	have	Apache

manage	the	Kestrel	process.	To	have

Apache	manage	the	Kestrel	process,

you	need	to	create	a	service	file,	which

is	a	text	file	that	fundamentally	tells

Apache	what	to	do	for	certain	detected

requests.

Click	here	to	view	code	image

[Unit]

				Description=Programming	ASP.NET	Core	Demo

[Service]

				WorkingDirectory=/var/progcore/ch14/builder

				ExecStart=/usr/local/bin/dotnet	/var/progcore/ch14/builder.dl
l

				Restart=always

				#	Restart	service	after	10	seconds	in	case	of	errors

				RestartSec=10

				SyslogIdentifier=progcore-ch14-builder

				User=apache

				Environment=ASPNETCORE_ENVIRONMENT=Production	

[Install]

				WantedBy=multi-user.target

Note	that	the	specified	user	(if

different	from	apache)	must	be

created	first	and	given	ownership	for

files.	Finally,	the	service	must	be

enabled	from	the	command	line.	More

details	can	be	found	at

https://docs.microsoft.com/en-

us/aspnet/core/publishing/apache-

proxy.	The	instructions	you	find	are

also	very	similar	to	configure	Nginx	as

a	reverse	proxy.

Kestrel	Configuration	Parameters

In	ASP.NET	Core	2.0,	the	public

programming	interface	of	Kestrel

has	gotten	significantly	richer.	You

can	now	easily	configure	it	to

support	HTTPS,	bind	to	sockets

and	endpoints,	and	filter	incoming

requests.

Binding	to	Endpoints

Kestrel	provides	its	own	API	to

bind	to	URLs	for	listening	for

incoming	requests.	You	configure

those	endpoints	calling	the	method

Listen	on	the	KestrelServerOptions

class.

Click	here	to	view	code	image

var	ip	=	"...";

var	host	=	new	WebHostBuilder()

													.UseIISIntegration()	

													.UseKestrel(options	=>

													{

																options.Listen(IPAddress.Loopback,	5000);

																options.Listen(IPAddress.Parse(ip),	7000);

													});

The	Listen	method	accepts	an

instance	of	type	IPAddress.	Any	IP

address	can	be	parsed	to	an	instance

of	the	class	through	the	method

Parse.	Predefined	values	are

Loopback	for	the	local	host,	IPv6Any

for	all	IPv6	address,	or	Any	for	just

any	network	address.

Under	Nginx,	you	can	also	bind	to	a

Unix	socket	for	improved

performance.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

													.UseIISIntegration()	

													.UseKestrel(options	=>

													{

																options.ListenUnixSocket("/tmp/progcore-test.sock
");

													});

In	the	end,	there	are	three	ways	to	let

Kestrel	know	about	its	listening

endpoints:	You	can	use	the	UseUrls

extension	method,	the

ASPNETCORE_URLS	environment

variable,	or	the	Listen	API.	UseUrls

and	the	environment	variable	provide

a	programming	interface	that	is	not

specific	to	Kestrel,	and	that	can	be

used	with	custom	(or	alternate)	HTTP

servers.	Note,	though,	that	these	more

generic	binding	methods	suffer	some

limitations.	In	particular,	you	can’t

use	SSL	with	these	methods.	Also,	if

both	the	Listen	API	and	these

methods	are	used,	then	the	Listen

endpoints	will	take	priority.	Finally,

note	that	if	you	use	IIS	as	the	reverse

proxy,	then	URL	bindings	hardcoded

in	IIS	will	override	both	the	Listen

endpoints	and	endpoints	set	through

UseUrls	or	the	environment	variable.

Switching	to	HTTPS

It	then	turns	out	that	to	enable

Kestrel	to	work	over	HTTPS,	you

can	only	specify	endpoints	using

the	Listen	API.	Here’s	a	quick

example	of	how	it	could	work.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

													.UseIISIntegration()	

													.UseKestrel(options	=>

													{

																options.Listen(IPAddress.Loopback,	5000,	listenOp
tions	=>

																{

																			listenOptions.UseHttps("progcore.pfx");

																});

													}

										});

To	enable	HTTPS,	you	just	add	a	third

parameter	to	the	Listen	method	and

use	it	to	indicate	the	path	to	the

certificate.

Filtering	Incoming	Requests

In	ASP.NET	Core	2.0,	the	Kestrel

web	server	has	become	stronger	in

the	sense	that	it	now	supports	more

configuration	options	to

automatically	filter	out	incoming

requests	that	exceed	preset

constraints.	In	particular,	you	can

set	a	maximum	number	of	client

connections,	a	maximum	body	size

for	requests,	and	a	data	rate.

Click	here	to	view	code	image

var	host	=	new	WebHostBuilder()

													.UseIISIntegration()	

													.UseKestrel(options	=>

													{

																options.Limits.MaxConcurrentConnections	=	100;

																options.Limits.MaxRequestBodySize	=	10	*	1024;

																options.Limits.MinRequestBodyDataRate	=	

																			new	MinDataRate(bytesPerSecond:	100,	gracePeri
od:	TimeSpan.FromSeconds(10));

																options.Limits.MinResponseDataRate	=	

																			new	MinDataRate(bytesPerSecond:	100,	gracePeri
od:	TimeSpan.FromSeconds(10));

													}

										});

All	the	settings	set	above	apply	to	any

requests	for	the	entire	application.

There’s	virtually	no	limit	to	the

number	of	concurrent	connections,

but	setting	a	limit	is	recommended.

	Note	Requests	that	are	upgraded	from	HTTP	(or	HTTPS)	to
another	protocol	(likely	WebSockets)	are	no	longer	counted	against	the	total
of	concurrent	connections.

By	default,	the	maximum	request

body	size	is	set	to	more	than	30

million	bytes	(around	28	MB).

Whatever	default	is	set,	it	can	be

overridden	through	the

RequestSizeLimit	attribute	on	an

action	method.	Alternatively,	it	can

also	be	overridden	through	a

middleware	interceptor,	as	we’ll	see	in

a	moment.

Note	that	Kestrel	sets	a	minimum

data	rate	to	240	bytes	per	second.	If

the	request	doesn’t	send	enough	bytes

for	more	than	the	established	grace

period	(set	to	5	seconds	by	default),

then	the	request	is	timed	out.	You	are

welcome	to	adjust	your	own	minimum

and	maximum	data	rate	and	related

grace	period.

The	primary	reason	for	these	limits	is

to	make	Kestrel	more	robust	and

better	able	to	face	denial	of	service

attacks	when	facing	the	public

Internet	without	the	protection	of	a

reverse	proxy.	These	limits,	in	fact,

are	usual	defense	barriers	against

flood	attacks	for	a	web	server.

THE	ASP.NET	CORE
MIDDLEWARE

Every	request	that	hits	the

ASP.NET	Core	application	is

subject	to	the	action	of	the

configured	middleware	before	it

can	reach	the	portion	of	code	that

will	actually	process	it	and	generate

a	response.	The	term	middleware

refers	to	the	software	components

assembled	in	a	sort	of	a	chain

referred	to	as	the	application

pipeline.

Pipeline	Architecture

Each	component	in	the	chain	can

do	work	before	and/or	after	the

request	is	processed	to	generate	a

response	and	can	decide	in	total

liberty	whether	to	pass	the	request

to	the	next	component	in	the

pipeline.	(See	Figure	14-5.)

FIGURE	14-5	The	ASP.NET	Core	pipeline

As	in	the	figure,	the	pipeline	results

from	the	composition	of	middleware

components.	The	chain	of

components	ends	with	a	special

component	known	as	the	terminating

middleware.	The	terminating

middleware	is	the	component	that

triggers	the	actual	processing	of	the

request	and	the	turning	point	of	the

loop.	Middleware	components	are

invoked	in	the	order	they	have	been

registered	to	pre-process	the	request.

At	the	end	of	the	loop,	the	terminating

middleware	runs,	and	after	that,	the

same	middleware	components	are

given	a	chance	to	post-process	the

request	but	in	the	reverse	order.	(See

Figure	14-5.)

Structure	of	a	Middleware	Component

A	middleware	component	is	a	piece

of	code	fully	represented	by	the

request	delegate.	The	request

delegate	takes	the	form	below.

Click	here	to	view	code	image

public	delegate	Task	RequestDelegate(HttpContext	context);

In	other	words,	it	is	a	function	that

receives	an	HttpContext	object	and

does	some	work.	Depending	on	the

way	a	middleware	component	is

registered	with	the	application

pipeline,	it	can	process	all	incoming

requests	or	just	selected	requests.	The

default	way	to	register	a	middleware

component	is	the	following:

Click	here	to	view	code	image

app.Use(async	(context,	next)	=>

{

				//	First	chance	to	process	the	request.	No	response	has	been	
generated	for	

				//	request	yet.	

				<Perform	pre-processing	of	the	request>

				//	Yields	to	the	next	component	in	the	pipeline

				await	next();

				//	Second	chance	to	process	the	request.	When	here,	the	reque
st's	response

				//	has	been	generated.

				<Perform	post-processing	of	the	request>

});

You	can	use	flow	control	statements,

such	as	conditional	statements,	in	the

chunks	of	code	running	before	and

after	the	forward	pass	to	the	next

component	in	the	pipeline.

Middleware	components	can	take

multiple	forms.	The	request	delegate

discussed	earlier	is	just	the	simplest.

As	we’ll	see	later	in	the	chapter,

middleware	components	can	be

packaged	in	classes	and	bound	to

extension	methods.	Hence,	any

method	we	call	in	the	Configure

method	of	the	startup	class	is	likely	a

middleware	component.

The	Importance	of	the	Next	Middleware

Invoking	the	next	delegate	is

optional,	but	you	should	be	very

well	aware	of	the	consequences	of

not	calling	it.	If	any	middleware

component	omits	to	call	the	next

delegate,	the	entire	pipeline	for	that

request	is	short-circuited	and	the

default	terminating	middleware

might	not	be	invoked	at	all.

Whenever	a	middleware	component

returns	without	yielding	to	the	next

middleware,	the	response	generation

process	ends	there.	Therefore,	a

middleware	component	that	does	not

yield	to	the	next	component	is

acceptable	as	long	as	it	takes	the

responsibility	of	completing	the

generation	of	the	response	for	the

current	request.

A	couple	of	illustrative	examples	of

middleware	components	that	short-

circuit	the	request	are	UseMvc	and

UseStaticFiles.	The	former	parses	the

current	URL,	and	if	it	can	be	matched

to	one	of	the	supported	routes,	it

passes	the	control	to	the

corresponding	controller	to	generate

and	return	the	response.	The	latter

does	the	same	if	the	URL	corresponds

to	a	physical	file	located	in	a

configured	web	path.

Instead,	if	you’re	writing	your	own

middleware	component	as	a	third-

party	extension,	you	might	want	to	be

very	careful	about	what	you	do,

meaning	you	might	want	to	be	a	good

citizen	who	plays	by	the	rules.	On	the

other	hand,	if	the	business	logic	of

your	component	strictly	requires	you

short-circuit	the	request,	then	you

must	fully	document	the	behavior.

Registering	Middleware	Components

A	middleware	component	can	be

added	to	the	application’s	pipeline

in	a	number	of	ways,	as	illustrated

in	Table	14-3.

TABLE	14-3	Methods	to	register	a

middleware	component

M

et

h

o

d

Description

U

se

An	anonymous	method	passed	as	an	argument	that	is	

invoked	on	any	requests.

M

a

p

An	anonymous	method	passed	as	an	argument	that	is	

invoked	only	on	a	given	URL.

M

a

p

W

he

n

An	anonymous	method	passed	as	an	argument	that	is	

invoked	only	if	a	given	Boolean	condition	is	verified	for	

the	current	request.

R

u

n

An	anonymous	method	passed	as	an	argument	that	is	

set	to	be	the	terminating	middleware.	If	no	terminating	

middleware	is	found,	no	response	is	generated.

Note	that	the	method	Run	can	be

called	multiple	times,	but	only	the

first	one	is	processed.	This	is	because

the	Run	method	is	where	the	request

processing	ends	and	where	the	flow	of

the	pipeline	chain	is	inverted.	The

inversion	takes	place	the	first	time

that	the	running	middleware	is	found.

Any	running	middleware	defined	after

the	first	is	just	never	reached.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				//	Terminating	middleware

				app.Run(async	context	=>

				{

								await	context.Response.WriteAsync("Courtesy	of	'Programmi
ng	ASP.NET	Core'");

				});

				//	No	errors,	but	never	reached

				app.Run(async	context	=>

				{

								await	context.Response.WriteAsync("Courtesy	of	'Programmi
ng	ASP.NET	Core'	repeated");

				});

}

Middleware	components	are

registered	in	the	Configure	method	of

the	startup	class.	The	order	in	which

the	methods	in	Table	14-3	appear	sets

the	order	in	which	code	is	run.

	Note	The	Run	terminating	middleware	can	be	used	as	a
catch-all	route	in	applications	using	the	MVC	model.	As	mentioned,	UseMvc
short-circuits	incoming	requests,	redirecting	them	to	the	identified	controller
action	method.	However,	if	no	route	is	configured	for	a	given	request,	then	the
request	proceeds	through	the	rest	of	the	pipeline	until	it	finds	a	terminating
middleware,	if	any.

Writing	Middleware	Components

Let’s	see	some	examples	of	inline

middleware	components,	namely

middleware	code	expressed

through	anonymous	methods.

Before	the	end	of	the	chapter,	we’ll

also	see	how	to	pack	middleware

code	in	reusable	elements.

The	Use	Method

The	Use	Method

Here’s	a	basic	usage	of	the	Use

method	to	register	a	middleware

component.	The	method	simply

wraps	the	actual	output	of	the

request	processing	into	a

BEFORE/AFTER	log	message.	(See

Figure	14-6.)

FIGURE	14-6	Demonstrating	middleware	components

Here’s	the	necessary	code.	The

SomeWork	class	in	the	demo	just

returns	the	current	time	through	the

method	Now.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				app.Use(async	(context,	nextMiddleware)	=>

				{

								await	context.Response.WriteAsync("BEFORE");

								await	nextMiddleware();			

								await	context.Response.WriteAsync("AFTER");

				});

				app.Run(async	(context)	=>

				{

								var	obj	=	new	SomeWork();

								await	context

												.Response

												.WriteAsync("<h1	style='color:red;'>"	+	obj.Now()	+	"
</h1>");

				});

}

You	use	middleware	to	perform	some

nontrivial	tasks	or	to	configure	the

environment	to	measure.	Here’s

another	example.

Click	here	to	view	code	image

app.Use(async	(context,	nextMiddleware)	=>

{

				context.Features

								.Get<IHttpMaxRequestBodySizeFeature>()

								.MaxRequestBodySize	=	10	*	1024;

				await	nextMiddleware.Invoke();

});

Here	the	code	uses	the	information

within	the	HTTP	context	to	set	the

maximum	body	size	for	all	requests.

Taken	as	is,	the	code	is	not	really

interesting.	If	we’re	going	to	set	a

maximum	body	size	for	all	requests,

then	we’d	be	better	off	doing	it	at	the

Kestrel	level.	However,	the

middleware	infrastructure	allows	us

to	alter	the	state	of	the	request	only

for	certain	requests.

The	Map	Method

The	Map	method	works	as	the	Use

method	works	except	that	the

execution	of	the	code	is	subject	to

the	incoming	URL.

Click	here	to	view	code	image

app.Map("/now",	now	=>

{

				now.Run(async	context	=>

				{

								var	time	=	DateTime.UtcNow.ToString("HH:mm:ss	(UTC)");

								await	context

												.Response

												.WriteAsync("<h1	style='color:red;'>"	+	time	+	"</h1>
");

				});

});

The	code	above	runs	only	if	the

requested	URL	is	/now.	Therefore,

the	Map	method	allows	branching	the

pipeline	based	upon	the	path.	(See

Figure	14-7.)

FIGURE	14-7	Different	effects	because	of	different	middleware

components

If	you	combine	the	two	preceding

pieces	of	middleware,	the	order	in

which	you	register	them	can	change

the	output.	In	general,	Map	calls	are

placed	earlier	in	the	pipeline.

	Note	Middleware	components	are	the	conceptual	counterpart
of	HTTP	modules	in	classic	ASP.NET.	However,	the	Map	method	sets	a	key
difference	with	HTTP	modules.	HTTP	modules,	in	fact,	have	no	way	to	filter
URLs.	When	writing	an	HTTP	module,	you	have	to	check	the	URL	yourself
and	decide	whether	to	process	or	ignore	the	request.	There’s	no	way	to
register	the	module	only	for	certain	URLs.

The	MapWhen	Method

The	MapWhen	method	is	a

variation	of	Map	that	uses	a

generic	Boolean	expression	instead

of	a	URL	path.	The	following

example	triggers	the	specified	only

if	the	query	string	expression

contains	a	parameter	named	utc.

Click	here	to	view	code	image

app.MapWhen(

				context	=>	context.Request.Query.ContainsKey("utc"),

				utc	=>

				{

								utc.Run(async	context	=>

								{

												var	time	=	DateTime.UtcNow.ToString("HH:mm:ss	(UTC)")
;

												await	context

																.Response

																.WriteAsync("<h1	style='color:blue;'>"	+	time	+	"
</h1>");

								});

				});

Dealing	with	HTTP	Response

Middleware	components	are	a

delicate	piece	of	code	because	of	a

basic	rule	of	the	HTTP	protocol.

Writing	to	the	output	stream	is	a

sequential	operation.	Therefore,

once	the	body	of	the	response	has

been	written	(or	just	started	to	be

written),	HTTP	response	headers

cannot	be	added.	This	is	because,

in	an	HTTP	response,	headers

appear	before	the	body.

As	long	as	all	the	middleware	code	is

made	of	inline	functions	under	the

total	control	of	the	team,	this	is	not

necessarily	a	big	issue,	and	any	issues

with	the	response	headers	can	be

fixed	easily.	What	about,	instead,	if

you’re	writing	a	third-party

middleware	component	that	others

can	use?	In	this	case,	your	component

must	be	able	to	run	in	different

runtime	environments.	What	if	the

business	logic	of	your	components

requires	altering	the	response	body?

The	moment	your	code	starts	writing

to	the	output	stream,	it	stops	other

following	components	from	adding

HTTP	response	headers.	At	the	same

time,	if	you	need	to	add	an	HTTP

header,	then	other	components	might

occasionally	block	you.	To	solve	the

issue,	the	Response	object	in

ASP.NET	Core	exposes	a	OnStarting

event.	The	event	fires	just	before	the

first	component	attempts	to	write	to

the	output	stream.	Hence,	if	your

middleware	needs	to	write	a	response

header,	then	all	you	do	is	register	a

handler	for	the	OnStarting	event	and

append	the	header	from	there.

Click	here	to	view	code	image

app.Use(async	(context,	nextMiddleware)	=>

{

				context.Response.OnStarting(()	=>

				{

								context.Response.Headers.Add("courtesy",	"Programming	ASP
.NET	Core");

								return	Task.CompletedTask;

				});

				await	nextMiddleware();

});

So	far	in	the	chapter,	we	have

discussed	inline	middleware,

However,	in	the	previous	chapters,	we

have	met	many	ad	hoc	extension

methods	that	can	be	called	within	the

Configure	method	of	the	startup	class.

For	example,	we	have	used

UseMvcWithDefaultRoute	to

configure	the	MVC	application	model

and	UseExceptionHandler	to

configure	exception	handling.	These

were	all	middleware	components.	The

different	form	is	because	those

middleware	pieces	of	code	are

packaged	into	reusable	classes.	Let’s

see	how	to	package	our	own

middleware	into	reusable	classes.

	Note	Adding	response	headers	in	the	OnStarting	handler
works	most	of	the	time,	but	some	edge	cases	need	to	be	mentioned.	In
particular,	sometimes	you	might	need	to	wait	for	the	entire	response	to	be
generated	before	you	can	decide	which	headers	to	add,	as	well	as	their
content.	In	this	case,	you	might	consider	creating	a	sort	of	in-memory	buffer

around	the	Response.Body	property	that	receives	all	the	writings	without
physically	populating	the	response	output	stream.	When	all	middleware
components	have	completed,	it	copies	everything	back.	The	idea	is	well
illustrated	here:	https://stackoverflow.com/questions/43403941.

Packaging	Middleware	Components

Unless	you	just	need	some	quick

processing	to	take	place	during	the

preliminary	handling	of	an	HTTP

request,	it	is	always	a	good	idea	to

package	up	middleware	into

reusable	classes.	The	actual	code

you	would	write	for	the	Use	or	Map

methods	won’t	change;	it	is	just

being	wrapped	up.

Creating	a	Middleware	Class

A	middleware	class	is	a	plain	C#

class	with	a	constructor	and	a

public	method	named	Invoke.	No

base	class	and	no	known	contract	is

required.	The	system	invokes	the

class	dynamically.	The	code	below

demonstrates	a	middleware	class

that	attempts	to	determine	if	the

requesting	device	is	a	mobile

device.

Click	here	to	view	code	image

public	class	MobileDetectionMiddleware

{

			private	readonly	RequestDelegate	_next;

			public	MobileDetectionMiddleware(RequestDelegate	next)

			{

							_next	=	next;

			}

			public	async	Task	Invoke(HttpContext	context)

			{

							//	Parse	the	user-agent	to	"guess"	if	it's	a	mobile	device
.

							var	isMobile	=	context.IsMobileDevice();

							context.Items["MobileDetectionMiddleware_IsMobile"]	=	isMo
bile;

							//	Yields

							await	_next(context);

							//	Provide	some	UI	only	as	a	proof	of	existence

							var	msg	=	isMobile	?	"MOBILE	DEVICE"	:	"NOT	A	MOBILE	DEVIC
E";

							await	context.Response.WriteAsync("<hr>"	+	msg	+	"<hr>");

			}

}

The	constructor	receives	the

RequestDelegate	pointer	to	the	next

middleware	component	in	the

configured	chain	and	saves	it	to	an

internal	member.	The	Invoke	method

contains,	instead,	just	the	code	you

would	pass	to	the	Use	method,	where

you	register	the	middleware	inline.

The	signature	of	the	Invoke	method

must	match	the	signature	of	the

RequestDelegate	type.

The	example	above	scans	the	user-

agent	HTTP	header	to	find	out

whether	the	requesting	device	is	a

mobile	device.	In	the	demo,

IsMobileDevice	is	a	quite	naive

extension	method	on	the	HttpContext

class	that	simply	uses	a	regular

expression	to	locate	some	mobile-

flavored	substrings.	I	would	be	very

careful	before	using	this	code	in

production.	It	doesn’t	fail	with	most

devices,	but	it	might	miss	the	point

with	quite	a	few	of	them.	(In	general,

device	detection	is	quite	a	serious

matter,	so	you	might	want	to	consider

ad	hoc	libraries	for	the	job.	See

Chapter	13,	“Building	Device-friendly

Views.”)

For	our	purposes,	however,	it	works

nicely.	In	particular,	it	shows	a	trick	to

enable	middleware	components	to

share	information	in	the	context	of

the	same	request.	Right	after	having

figured	out	whether	the	requesting

device	is	mobile	or	not,	the

middleware	saves	the	Boolean	answer

to	an	aptly	created	entry	in	the	Items

dictionary	on	the	HttpContext

instance.	The	Items	dictionary	is

shared	in	memory	throughout	the

request	processing,	meaning	that	any

middleware	components	can	check	it

and	use	the	findings	for	internal

reasons.	For	this	to	work,	though,	it	is

required	that	middleware	components

are	aware	of	each	other.	The	net	effect

of	the	mobile	detection	middleware	is

to	store	in	the	Items	dictionary	a

Boolean	value	denoting	whether	the

device	is	considered	a	mobile	device.

Note	that	the	same	information	can	be

accessed	programmatically	from	any

place	in	the	application—say,	a

controller	method—where	you	have

access	to	the	HttpContext	object.

Registering	a	Middleware	Class

To	add	middleware	expressed

through	a	class,	you	need	to	use	a

slightly	different	method	from	the

IApplicationBuilder	abstraction.

Hence,	in	the	Configure	method	of

the	startup	class,	you	use	the

following	code:

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				//	Other	middleware	configured	here

				...

				//	Attach	the	mobile-detection	middleware

				app.UseMiddleware<MobileDetectionMiddleware>();

				

				//	Other	middleware	configured	here

				...

}

The	UseMiddleware<T>	method

registers	the	specified	type	as	a

middleware	component.

Registering	via	Extension	Methods

Although	not	strictly	required	from

a	purely	functional	point	of	view,	it

is	common	practice	to	define	an

extension	method	to	hide	the	use	of

UseMiddleware<T>.	The	effect	is

the	same,	but	the	readability	of	the

code	is	improved.

Click	here	to	view	code	image

public	static	class	MobileDetectionMiddlewareExtensions

{

				public	static	IApplicationBuilder	UseMobileDetection(this	IAp
plicationBuilder	builder)

				{

								return	builder.UseMiddleware<MobileDetectionMiddleware>()
;

				}

}

Writing	an	extension	method	to	the

IApplicationBuilder	type	only	takes	a

few	lines	of	code	and	only	requires

hiding	the	direct	call	to

UseMiddleware<T>	behind	a

friendlier-named	method.	Here’s	the

final	version	of	the	startup	class	when

the	extension	method	defined	above	is

used.

Click	here	to	view	code	image

public	void	Configure(IApplicationBuilder	app)

{

				//	Other	middleware	configured	here

				...

				//	Attach	the	mobile-detection	middleware

				app.UseMobileDetection();

				

				//	Other	middleware	configured	here

				...

}

Although	the	name	of	the	extension

method	is	arbitrary,	it	is

conventionally	given	a	name	in	the

form	UseXXX	where	XXX	is	the	name

of	middleware	class.

SUMMARY

If	you	look	at	ASP.NET	Core	from

the	perspective	of	an	application,

you	won’t	see	many	changes

compared	to	classic	ASP.NET	MVC.

ASP.NET	Core	supports	the	same

MVC	application	model	but	does

that	on	top	of	a	completely

different	runtime	environment.

ASP.NET	Core	doesn’t	support	the

Web	Forms	application	model,	but

this	is	not	a	plain	business	decision

—it	is	a	purely	technical	matter

instead.

The	new	ASP.NET	Core	runtime	is

designed	from	the	ground	up	to	be

cross-platform	and	decoupled	from

the	web	server	environment.	To

achieve	the	supreme	goal	of	running

on	multiple	platforms,	ASP.NET	Core

introduces	its	own	host	environment

and	an	interface	that	bridges	it	to	the

actual	host.	In	this	context,	a	key	role

is	played	by	the	dotnet.exe	tool	which

is	actually	connected	to	the	web	server

and	forwards	calls	to	the	ASP.NET

Core	pipeline	where	Kestrel—the

internal	HTTP	server—receives	and

processes	requests.

In	this	chapter,	we	first	analyzed	the

host	server	architecture	with	a

particular	focus	on	Kestrel,	and	then

we	moved	to	look	into	middleware

components.	Middleware	components

form	the	internal	request	pipeline,

namely	the	chain	that	processes	any

incoming	requests.	Although

conceptually	compatible	with	classic

ASP.NET	HTTP	modules,	middleware

components	have	a	different	structure

and	are	invoked	through	a	different

workflow.

In	the	next	chapter,	we	investigate	the

deployment	of	ASP.NET	Core

applications	and	the	necessary	steps

to	accommodate	a	platform-

independent	application	onto	a

specific	one.

—Robert	Pirsig,	“Zen	and	the	Art	of

Motorcycle	Maintenance”

CHAPTER	15

Deploying	an	ASP.NET	Core
Application
Sometimes	it’s	a	little	better	to	travel

than	to	arrive.

Writing	an	ASP.NET	Core

application	requires	the	creation	and

editing	of	a	variety	of	files,	not	all	of

which	are	really	necessary	to	put	the

application	live	on	a	production	or

staging	server.	Hence,	the	very	first

step	on	the	way	to	deploying	an

ASP.NET	Core	application	is

publishing	it	to	a	local	folder	so	that

all	necessary	files	are	compiled,	and

only	those	files	that	need	be	moved	to

the	live	environment	are	isolated

somewhere.	The	list	of	deployable

files	usually	includes	code	files

compiled	to	DLLs	plus	static	and

configuration	files.

Classic	ASP.NET	applications	could

only	be	deployed	to	IIS	under	a

Windows	server	operating	system	and

more	recently	to	a	Microsoft	Azure

app	service.	For	ASP.NET	Core

applications,	you	have	more	choices,

including	a	Linux	on-premise

machine	or	another	cloud

environment	such	as	Amazon	Web

Services	(AWS)	or	even	a	Docker

container.

In	this	chapter,	we’ll	explore	the

various	deployment	options	and	the

most	relevant	configuration	issues.

First,	however,	let’s	see	what	it	takes

to	publish	an	ASP.NET	Core

application.

PUBLISHING	THE	APPLICATION

PUBLISHING	THE	APPLICATION

I	recommend	you	start	your

understanding	of	the	deployment

model	with	a	basic	publish	step,

especially	if	you	are	new	to

ASP.NET	development	or	if	you	are

new	to	the	ASP.NET	MVC

application	model.	(I	assume	you

have	a	strong	ASP.NET	Web	Forms

background.)

Publishing	from	within	Visual	Studio

To	start	out,	let’s	assume	you	have

a	complete,	fully	tested	application

ready	for	deployment.	As	an

example,	you	can	take	the

SimplePage	application	in	the

companion	source	code	included

with	the	book	(see

https://github.com/despos/ProgC

ore/tree/master/Src/Ch15).	Figure

15-1	presents	the	Visual	Studio

menu	item	where	you	start	the

publishing	process.

FIGURE	15-1	Ready	to	publish	an	ASP.NET	Core	application

Choosing	the	Publishing	Target

Right	after	you	click	on	the	Publish

item	from	the	Build	menu	in	Visual

Studio,	you	are	presented	another

view	to	choose	the	destination	of

the	files	being	published.	(See

Figure	15-2.)

FIGURE	15-2	Choosing	the	host

You	have	a	few	possible	destinations

for	the	application	files,	summarized

in	Table	15-1.	Note	that	the	list	of

options	is	a	bit	longer	than	what

Figure	15-2	shows;	on	the	right	edge

of	the	view,	there’s	a	scrolling	arrow

to	see	more	options.

TABLE	15-1	Supported	publish	hosts

in	Visual	Studio	2017

Host Description

Microsoft	

Azure	

App	

Service

The	application	will	be	published	to	a	new	or	

existing	Microsoft	Azure	App	Service.

Microsoft	

Azure	

Virtual	

Machine

The	application	will	be	published	to	an	existing	

Microsoft	Azure	virtual	machine.

IIS The	application	will	be	published	to	the	

specified	IIS	instance	via	FTP,	WebDeploy,	or	

by	a	direct	copy	of	the	necessary	files.

Folder The	application	will	be	published	to	the	given	

file	system	folder	on	the	local	machine.

Import	

profile

The	application	will	be	published	using	the	

information	saved	to	a	.publishsettings	file.

To	form	an	idea	about	the	files	really

necessary	to	publish,	let’s	choose	the

Folder	option.

Be	aware	that	you’ll	only	see	what’s	in

Figure	15-2	if	the	project	doesn’t	yet

contain	a	publish	profile.	The	moment

you	act	on	any	of	the	presented

destinations,	a	publish	profile	is

created,	and	the	page	defaults	to	the

last	used	profile	and	offers	to	create	a

new	one.

The	Publish	Profile	File

The	Publish	Profile	File

The	publish	profile	is	a	.pubxml

XML	file	saved	under	the

Properties/PublishProfiles	folder

of	the	project.	This	file	should	not

be	checked	into	the	source	control

because	it	depends	on	the	.user

project	file	which,	in	turn,	can

contain	sensitive	information.	Both

files	are	for	use	only	on	the	local

machine.

The	.pubxml	file	is	an	MSBuild	file

and	is	automatically	invoked	during

the	build	process	in	Visual	Studio.	The

file	can	be	edited	to	tailor-make	the

expected	behavior.	A	typical	change

involves	including	or	excluding

project	files	from	deployment.	For

more	information,	check	out

https://docs.microsoft.com/en-

us/aspnet/core/publishing/web-

publishing-vs.

Publishing	Files	to	a	Local	Folder

Figure	15-3	shows	the	interface

you’re	presented	when	you	choose

to	publish	to	a	folder.	The	actual

folder	that	will	receive	the	files	is

selected	in	the	text	box.

FIGURE	15-3	Publishing	to	a	local	folder

The	publish	procedure	will	compile

from	scratch	the	application	in

Release	mode	and	copy	all	binaries	to

the	specified	folder.	It	also

automatically	creates	a	publish	profile

file	for	future	repeats	of	the	operation.

(See	Figure	15-4.)

FIGURE	15-4	Report	after	publishing	files.	Note	the	link	to	create	a

new	profile

If	you	inspect	the	folder,	for	the

sample	project,	you	find	the

WWWROOT	folder	and	the	binaries.

Note	that	the	sample	project	has	no

views;	it	uses	Razor	Pages	instead.	At

any	rate,	Figure	15-5	shows	no

evidence	of	a	folder	with	view	files,

whether	Pages	or	Views.	In	both

cases,	Razor	views	are	precompiled

into	a	DLL.	Precompiled	views	are

enabled	by	default	in	the	project

templates	for	ASP.NET	Core	2.0

created	by	Visual	Studio	2017.	To

change	it	back	to	dynamically

compiled	views,	you	need	to	add	the

following	line	to	the	CSPROJ	file	of

the	project.

Click	here	to	view	code	image

<PropertyGroup>

				<TargetFramework>netcoreapp2.0</TargetFramework>

				<MvcRazorCompileOnPublish>false</MvcRazorCompileOnPublish>

</PropertyGroup>

FIGURE	15-5	Published	files

As	you	can	see,	the	publish	folder	of

the	application	only	contains

application	binaries,	including	any

third-party	dependencies.	The

primary	DLL	file	can	be	launched	by

using	the	dotnet	utility	from	the

command	line	or	configuring	the	host

web	server	environment	to	do	the

same.

The	key	thing	to	notice	here	is	that	the

published	files	configure	a	portable,

framework-dependent	form	of

deployment.	In	other	words,	for	the

application	to	run	correctly,	the	.NET

Core	framework	libraries	for	the

target	platform	must	be	available	on

the	server.

Publishing	Self-contained	Applications

Publishing	a	portable	application

has	been	the	norm	for	the	entire

lifetime	of	the	ASP.NET	platform.

The	size	of	deployment	is	small	and

limited	to	the	sole	application

binaries	and	files.	On	the	server,

multiple	applications	share	the

same	framework	binaries.	With

.NET	Core,	the	alternative	to	a

portable	deployment	is	to	publish

self-contained	applications.

When	a	self-contained	application	is

published,	the	.NET	Core	binaries	for

the	specified	runtime	environment	are

also	copied	over.	This	makes	the	size

of	the	deployment	significantly	larger.

For	the	sample	application	discussed

here,	the	size	of	a	portable

deployment	is	less	than	2	MB,	but	it

can	grow	up	to	90	MB	for	a	self-

contained	install	that	targets	a	generic

Linux	platform.

The	upside	of	self-contained

applications,	however,	is	that	the

application	has	everything	it	needs	to

run	regardless	of	the	version(s)	of	the

.NET	Core	Framework	installed	on

the	server.	At	the	same	time,	you

should	be	aware	that	deploying

several	self-contained	applications	to

a	system	can	absorb	large	amounts	of

disk	space	because	the	entire	.NET

Core	Framework	is	duplicated	on	a

per-application	basis.

To	support	the	self-contained

deployment	of	a	given	application,

you	have	to	explicitly	add	the	runtime

identifiers	of	the	platforms	you	intend

to	support.	When	Visual	Studio

creates	a	new	.NET	Core	project,	this

information	is	missing	and	results	in	a

portable	deployment.	To	enable	self-

contained	deployment,	you	have	to

manually	edit	the	.csproj	project	file

and	add	a	RuntimeIdentifiers	node	to

it.	Here’s	the	.csproj	content	for	the

sample	project.

Click	here	to	view	code	image

<Project	Sdk="Microsoft.NET.Sdk.Web">

		<PropertyGroup>

				<TargetFramework>netcoreapp2.0</TargetFramework>

				<RuntimeIdentifiers>win10-x64;linux-x64</RuntimeIdentifiers>

		</PropertyGroup>

		<ItemGroup>

				<None	Remove="Properties\PublishProfiles\FolderProfile.pubxml
"	/>

		</ItemGroup>

		<ItemGroup>

				<PackageReference	Include="Microsoft.AspNetCore.All"	Version=
"2.0.0"	/>

		</ItemGroup>

		<ItemGroup>

				<DotNetCliToolReference	

									Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools
"	Version="2.0.0"	/>

		</ItemGroup>

		<ItemGroup>

				<Folder	Include="Pages\Shared\"	/>

				<Folder	Include="Properties\PublishProfiles\"	/>

		</ItemGroup>

</Project>

The	current	project	is	enabled	to

deploy	on	Windows	10	and	generic

Linux	x64	platforms.	The	monikers	to

be	used	in	the	RuntimeIdentifiers

node	are	taken	from	an	official	catalog

you	find	documented	here:

https://docs.microsoft.com/en-

us/dotnet/core/rid-catalog.

At	this	point,	when	publishing	the

application	to	a	folder,	the	wizard

offers	you	to	select	the	target	platform

from	the	settings	of	the	publish

profile.	Figure	15-6	presents	the	two

versions	of	the	view	for	portable	and

self-contained	scenarios.

FIGURE	15-6	Portable	versus	runtime-specific	publishing

Once	you	have	captured	in	a	folder	the

files	to	publish,	you	have	only	to

upload	them	to	the	final	destination.

If	you	choose	another	publish	option

(such	as	an	Azure	App	Service),	then

the	upload	happens	transparently.

Publishing	Using	CLI	Tools

The	same	operations	you	can

perform	from	within	Visual	Studio

2017	can	be	performed	from	the

command	line	using	CLI	tools.

When	working	from	the	command

line,	you	can	use	an	IDE	editor	of

your	choice	to	write	code.	If	you

use	Visual	Studio	Code,	you	can

open	a	command	console	via	the

Integrated	Terminal	item	under	the

View	menu.	(See	Figure	15-7.)

FIGURE	15-7	The	Visual	Studio	Code	terminal

Publishing	Framework-Dependent
Applications

Once	the	application	is	complete

and	fully	tested,	you	use	the

following	command	in	the	CSPROJ

folder	to	publish	it.

Click	here	to	view	code	image

dotnet	publish	-f	netcoreapp2.0	-c	Release

The	command	compiles	the	ASP.NET

Core	2.0	application	in	Release	mode

and	places	the	resulting	files	in	a

subdirectory	of	the	project’s	Bin	folder

named	Publish.	More	precisely,	the

folder	is

Click	here	to	view	code	image

\bin\Release\netcoreapp2.0\publish

Note	that	the	dotnet	tool	also	copies

PDB	files	(program	database)	along

with	necessary	binaries.	PDB	files	are

useful	primarily	for	debugging	and

should	not	be	distributed.	However,

those	files	should	be	saved	somewhere

because	they	could	come	in	handy	the

moment	you	need	to	debug	the

Release	build	of	your	application

because	of	unpredictable	exceptions,

errors,	or	other	misbehavior.

Publishing	Self-contained	Applications

For	self-contained	applications,	the

command	line	to	use	is	only	slightly

different.	Basically,	you	add	the

runtime	identifier	to	the	same

command	line	you	would	use	for

publishing	a	framework-dependent

application.

Click	here	to	view	code	image

dotnet	publish	-f	netcoreapp2.0	-c	Release	-r	win10-x64

The	command	line	above	would

publish	the	files	for	a	Windows	x64

platform.	The	total	size	is	more	than

96	MB.	The	target	folder	where	the

files	will	go	is:

Click	here	to	view	code	image

\bin\Release\netcoreapp2.0\win10-x64\publish

To	indicate	the	runtime	identifier,	you

use	the	official	ID	taken	from	the

.NET	Core	catalog	at

https://docs.microsoft.com/en-

us/dotnet/core/rid-catalog.

	Note	If	the	application	being	published	has	dependencies	on
third-party	components,	then	you	should	make	sure	the	dependencies	are
added	to	the	<ItemGroup>	section	of	the	.csproj	file,	and	the	actual	files	are
available	in	the	local	NuGet	cache	before	publishing.

DEPLOYING	THE	APPLICATION

DEPLOYING	THE	APPLICATION

The	publish	step	is	necessary	to

isolate	the	files	to	be	copied.	From

within	Visual	Studio,	you	have

plenty	of	tools	to	publish	files

locally	or	directly	to	IIS	or

Microsoft	Azure.	Other	options,

such	as	deploying	to	a	Linux	on-

premise	machine	or	another	cloud

platform	(such	as	Amazon	Web

Services)	require	specific	upload

and	configuration	work.

Let’s	see	more	in	detail	what’s

required	to	fully	deploy	an	application

to	IIS,	Azure,	and	a	Linux	machine.

Deploying	to	IIS

As	is	true	with	classic	ASP.NET

applications,	Any	ASP.NET	Core

application	runs	out	of	the	IIS	core

process	and	out	of	any	instance	of

the	IIS	worker	process	(w3wp.exe).

Technically,	an	ASP.NET	Core

application	doesn’t	even	need	a

web	server	on	the	forefront.	If	we

deploy	the	application	to	IIS	(or

Apache)	it	is	because	we	have

reasons	(primarily,	security	and

load	balancing)	to	put	on	a	façade

on	top	of	the	embedded	ASP.NET

Core	native	web	server.

The	Hosting	Architecture

As	mentioned,	a	classic	ASP.NET

application	is	hosted	inside	of	an

application	pool,	represented	by	an

instance	of	the	IIS	w3wp.exe

worker	process.	Some	.NET

facilities	built	into	IIS	take	care	of

creating	an	application-specific

instance	of	the	HttpRuntime	class.

This	object	is	used	to	receive

requests	captured	by	the	http.sys

driver	and	to	forward	them	to	the

appropriate	website	allocated	in	the

application	pool.

Figure	15-8	outlines	the	IIS	hosting

architecture	for	an	ASP.NET	Core

application.	An	ASP.NET	Core

application	is	a	plain	console

application	loaded	through	the	run

command	of	the	dotnet	launcher	tool.

ASP.NET	Core	applications	are	never

loaded	and	fired	up	from	within	an	IIS

worker	process.	Instead,	they	are

triggered	via	an	additional	IIS	native

ISAPI	module	known	as	the	ASP.NET

Core	Module.	This	module	ultimately

invokes	dotnet	to	trigger	the	console

application.

FIGURE	15-8	Hosting	ASP.NET	Core	applications	under	IIS

As	a	result,	to	host	ASP.NET	Core

applications	on	an	IIS	machine,	you

first	need	to	install	the	ASP.NET	Core

ISAPI	module.

	Note	The	ASP.NET	Core	ISAPI	module	only	works	with
Kestrel.	If	you	use	HttpSys	in	ASP.NET	Core	2.0	(or	WebListener	in	ASP.NET
Core	1.x),	it	just	won’t	work.	For	more	information,	see
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/aspnet-
core-module.	The	link	also	provides	download	details.

Configuration	of	the	ASP.NET	Core	Module

All	that	the	ASP.NET	Core	module

does	is	ensure	that	the	application

is	properly	fired	up	when	the	first

request	for	the	application	comes

in.	Also,	it	makes	sure	that	the

process	stays	in	memory	and	is

reloaded	if	the	application	crashes

and	the	pool	is	restarted.

You	might	have	noticed	that	the

publish	wizard	also	creates	a

web.config	file.	This	file	does	not

affect	the	actual	behavior	of	the

application,	but	it	serves	the	sole

purpose	of	configuring	the	ASP.NET

Core	module	under	IIS.	Here’s	a

sample.

Click	here	to	view	code	image

<?xml	version="1.0"	encoding="utf-8"?>

<configuration>

		<system.webServer>

				<handlers>

						<add	name="aspNetCore"	path="*"	verb="*"	

											modules="AspNetCoreModule"	resourceType="Unspecified"	
/>

				</handlers>

				<aspNetCore	processPath="dotnet"	arguments=".\Ch15.SimplePage
.dll"	

																stdoutLogEnabled="false"	stdoutLogFile=".\logs\st
dout"	/>

		</system.webServer>

</configuration>

The	configuration	file	adds	an	HTTP

handler	for	any	verbs	and	paths	that

filters	requests	through	the	code

written	in	the	module.	The	wildcard

on	the	path	means	that	only	any

requests	going	through	the

application	pool	are	being	processed

by	the	ASP.NET	Core	module

including,	say,	ASPX	requests.	For

this	reason,	it	is	recommended	that

you	don’t	mix	applications	relying	on

different	ASP.NET	frameworks	in	the

same	application	pool	or,	better	yet,

create	a	specific	ASP.NET	Core	set	of

application	pools.

The	aspNetCore	entry,	instead,

provides	arguments	for	the	module	to

work.	The	entry	states	that	the

module	has	to	run	dotnet	on	the

specified	application	main	DLL,	plus

some	logging	configuration.	This

web.config	file	must	be	part	of	the

deployment.

	Note	To	be	successfully	hosted	under	IIS,	an	ASP.NET	Core
application	must	configure	the	web	host	with	a	call	to	UseIISIntegration
extension	method.	The	method	checks	some	environment	variables	that
might	have	been	set	by	the	ASP.NET	Core	Module.	If	no	variables	are	found,
the	method	is	a	no-op.	For	this	reason,	you	might	want	to	always	have	a	call
to	it,	regardless	of	where	you	actually	end	up	hosting	the	application.

Final	Touches	to	the	IIS	Environment

Final	Touches	to	the	IIS	Environment

If	you	deploy	an	ASP.NET	Core

application	to	IIS,	then	you	intend

to	use	IIS	as	a	reverse	proxy.	This

means	that	you	don’t	expect	any

request	processing	work	being

done	by	IIS	other	than	forwarding

the	traffic	as	is.	For	this	reason,	you

can	configure	the	application	pool

so	that	it	doesn’t	use	managed	code

and	subsequently	doesn’t

instantiate	any	.NET	runtime.	(See

Figure	15-9.)

FIGURE	15-9	Creating	an	ad	hoc	application	pool

Another	aspect	of	the	IIS

configuration	you	might	want	to	focus

on	is	the	identity	behind	the

application	pool–hosted	the	ASP.NET

Core	application.	By	default,	the

identity	of	any	new	application	pool	is

set	to	ApplicationPoolIdentity.	This	is

not	the	real	account	name,	but	a

moniker	that	corresponds	to	a	local

machine	account	aptly	created	by	IIS

and	named	after	the	application	pool.

Hence,	should	you	need	to	define

access	control	rules	for	a	given

resource	(such	as	a	server	file	or

folder),	then	be	aware	that	the	real

account	name,	as	shown	previously	in

Figure	15-9,	is	IIS

APPPOOL\AspNetCore.	This	said,

you	are	not	forced	in	any	way	to	take

the	default	account.	By	using	the

usual	IIS	interface,	you	can	change

the	identity	behind	the	application

pool	at	any	time	to	any	user	account.

Deploying	to	Microsoft	Azure

In	an	alternative	to	deploying	on-

premise	to	a	server	machine

equipped	with	IIS,	you	can	host

your	ASP.NET	Core	application	on

Microsoft	Azure.	There	are	several

ways	to	host	a	website	on	Azure.

The	most	common	and

recommended	for	ASP.NET	Core

application	is	to	use	an	App

Service.	Under	some	particular

circumstances,	you	should	look	at

Service	Fabric	or	even	at	hosting	on

an	Azure	Virtual	Machine.	This

latter	option	is	the	closest	you	will

get	to	the	hosting	scenario	we’ve

considered	so	far—hosting	on-

premise	under	IIS.

Let’s	find	out	more	about	the	various

options.

Using	an	Azure	App	Service

The	Azure	App	Service	(AAS)

publish	target	is	the	first	option

that	the	Visual	Studio	2017	publish

wizard	offers,	as	shown	in	Figure

15-2.	A	new	App	Service	can	be

created,	or	you	can	even	publish	to

an	existing	App	Service.

AAS	is	a	hosting	service	that	can

accommodate	plain	web	applications

and	web	APIs	such	as	REST	APIs	and

mobile	back	ends.	It	is	not	limited	to

ASP.NET	and	ASP.NET	Core,	but	it

supports	a	variety	of	other	web

environments	such	as	Node.js,	PHP,

and	Java	on	both	Windows	and	Linux.

AAS	provides	built-in	security,	load

balancing,	high-availability,	SSL

certificates,	application	scaling,	and

management.	Furthermore,	it	can	be

combined	with	continuous

deployment	from	GitHub	and	Visual

Studio	Team	Services	(VSTS).

AAS	charges	you	by	the	computer

resources	you	use,	as	determined	by

the	App	Service	plan	you	choose.	AAS

also	niftily	integrates	with	the	Azure

WebJobs	service	to	add	background

job	processing	to	your	web

application.	Figure	15-10	shows	the

Create	App	Service	page,	which	is

where	you	start	when	publishing	to

AAS.	(See	Figure	15-10.)

FIGURE	15-10	Creating	a	new	Azure	App	Service

By	clicking	Publish,	Visual	Studio

will	use	WebDeploy	to	upload	all

necessary	files	to	AAS.	The

application	will	be	up	and	running	in

a	matter	of	(a	few)	minutes.	Figure	15-

11	shows	a	sample	application	that	is

up	and	running.

FIGURE	15-11	The	sample	application	now	up	and	running

Once	published,	the	AAS	dashboard

allows	you	to	set	application	settings

entries	(for	example,	all	data	you

would	take	from	user	secrets	during

development)	and	performs	any

necessary	fine-tuning.

To	gain	access	to	the	physical	files	of

the	application,	most	notably	Razor

views	or	pages	if	not	precompiled,	you

can	use	the	App	Service	Editor

service.	In	this	way,	you	gain

read/write	access	to	the	deployed	files

and	can	even	make	edits	on	the	fly.

(See	Figure	5-12.)

FIGURE	15-12	Using	the	App	Editor	service	to	edit	Razor	files	on

the	fly

Using	Service	Fabric

AAS	provides	a	lot	of	functionality

out	of	the	box,	such	auto-scale,

authentication,	limit	call	rates,	and

easy	integration	with	additional

software	services,	such	Azure

Active	Directory,	Application

Insights,	and	SQL.	Using	AAS	is

trivially	easy	and	ideal	for	many

teams,	especially	teams	with

limited	site	administering	and

deployment	experience.	Also,	AAS

is	ideal	for	compact,	monolithic,

and	nearly	stateless	applications.

What	if,	instead,	the	web

application	is	part	of	a	larger	and

distributed	system?

In	this	case,	you	likely	end	up	with	a

microservice	architecture	in	which

some	of	the	nodes	are	good	to	be

deployed	as	AAS	but	are	also	subject

to	be	strictly	interoperable	with	other

nodes.	Azure	Service	Fabric	(ASF)	just

makes	the	composition	of	application

nodes	easier.	Imagine	a	scenario

where	your	application	needs	two

different	data	stores	(relational	and

NoSQL),	caching,	and	maybe	a	service

bus.	Without	ASF,	every	node	is

independent	and	dealing	with,	say,

fault	tolerance	is	up	to	you.	Worse	yet,

fault	tolerance	must	be	dealt	with	for

every	service	you	publish.	With	ASF,

cache	and	everything	else	will	be	co-

located	with	the	main	application,

providing	for	faster	access	but	also

increased	reliability	and	simplified

deployment—single	shot	instead	of

multiple	shots,	one	per	node.

ASF	is	probably	a	better	choice	for

multi-machine	systems	that	form	a

pool.	ASF	allows	you	to	start	relatively

small	and	easily	scale	the	distribution

of	the	architecture	to	even	hundreds

of	machines.	This	said,	you	could	even

mix	AAS	and	ASF	and	have	the	main

application	deployed	as	AAS	and	the

back	end	at	some	point	re-architected

as	ASF.

Table	15-2	provides	a	list	of	functions

that	only	AAS	or	only	ASF	support.

Functions	not	listed	on	the	table	work

the	same	(or	don't	work	at	all)	in	both

scenarios.	From	a	pricing	perspective,

note	that	there	is	no	charge	for	the

Service	Fabric	itself.	All	you	pay	for

are	the	actual	computing	resources

you	enable	on	it.	In	this	regard,

pricing	follows	the	same	rules	as	an

Azure	virtual	machine.

TABLE	15-2	AAS	and	ASF

capabilities

Azure	App	Service	ONLY Azure	Service	Fabric	

ONLY

Automatic	operating	system	

updates

Remote	Desktop	access	to	

server	machines

Switch	the	runtime	

environment	from	32-bit	to	

64-bit

Freedom	to	install	any	

custom	MSI	package

Deploy	via	Git,	FTP,	and	

WebDeploy

Define	custom	startup	

tasks

Integrated	SaaS	available:	

MySQL	and	monitoring

Support	for	Event	Tracing	

for	Windows	(ETW)

Remote	debugging

	Important	To	be	deployed	in	an	Azure	Service	Fabric,
your	entire	application	must	be	converted	to	a	Service	Fabric	application.	This
entails	installing	the	Service	Fabric	SDK	and	using	ad	hoc	application	project
templates	from	within	Visual	Studio.	More	information	on	the	SDK	can	be
found	at	https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
get-started.	Note	also	that	Service	Fabric	is	similar	to	Cloud	Services,	but
Cloud	Services	is	considered	a	legacy	technology	that	has	been	fully
replaced	by	Service	Fabric.

Using	an	Azure	Virtual	Machine

Somewhat	between	AAS	and	ASF	is

an	Azure	Virtual	Machine	(AVM).

If	you	need	more	than	just	a	single

monolithic	application	but,	at	the

same	time,	the	application	requires

substantial	changes	to	be	packaged

up	to	be	ASF	compliant,	then	going

for	an	AVM	can	be	a	savvy	choice.

An	AVM	is	what	the	name	implies—a

server	machine	virtually	delivered	to

you	empty	and	at	your	full	disposal	as

far	as	configuration	and	setup	are

concerned.	At	its	core,	an	AVM	is	a

sample	of	Infrastructure-as-a-Service

(IaaS)	whereas	both	ASF	and	AAS	are

samples	of	a	platform	as	a	service.	All

Azure	virtual	machines	come	with	free

load	balancing	and	auto-scaling

capabilities.	Once	a	virtual	machine

has	been	created	on	Azure,	you	can

publish	your	application	directly	from

Visual	Studio.

Regarding	costs,	the	most	economical

AVM	starts	a	bit	over	$10/month

while	a	reasonable	one	costs	you	at

least	ten	times	more.	This	amount

should	be	added	to	the	costs	of	the

software	you	install,	such	as	the

license	of	your	own	SQL	Server.	All	in

all,	though,	an	AVM	represents	the

simplest	and	easiest	way	you	must

migrate	to	Azure	from	an	existing	on-

premise	configuration.

	Note	More	details	about	the	various	hosting	options	for
Microsoft	Azure	can	be	found	at	https://docs.microsoft.com/en-us/azure/app-
service/choose-web-site-cloud-service-vm.

Deploying	from	within	Visual	Studio	Code

Deploying	from	within	Visual	Studio	Code

As	discussed,	automatic	deploy	to

Azure	is	nearly	instantaneous	from

Visual	Studio.	If	you	use	Visual

Studio	Code,	instead,	you	need

some	additional	tooling	to	make	it

happen.	In	particular,	you	might

want	to	consider	the	Azure	Tools

for	Visual	Studio	Code	as	available

from	Visual	Studio	Marketplace.

(See

https://marketplace.visualstudio.c

om/items?

itemName=bradygaster.azuretool

sforvscode.)

Deploying	to	Linux

The	cross-platform	nature	of

ASP.NET	Core	makes	it	possible	to

host	the	same	application	on	a

Linux	machine,	too.	The	common

approach	is	to	publish	the

application	files	to	a	local	folder

and	then	upload	(via	FTP,	for

example)	the	image	to	the	server

machine.

There	are	two	main	hosting	scenarios

for	Linux:	hosting	on	a	machine

equipped	with	Apache	or	Nginx.

Another	option	is	to	use	Amazon	Web

Services	and	the	Elastic	Beanstalk

toolkit.	(See

https://aws.amazon.com/blogs/deve

loper/aws-and-net-core-2-0.)

Deploying	to	Apache

Deploying	an	ASP.NET	Core

application	to	an	instance	of	the

Apache	server	means	configuring

the	server	environment	to	act	as	a

reverse	proxy	server.	We	have

already	touched	on	this	aspect	in

Chapter	14,	“The	ASP.NET	Core

Runtime	Environment.”	Let’s

briefly	recap.

To	instruct	Apache	to	act	as	a	reverse

proxy,	you	need	to	have	a	.conf	file

located	under	the	/etc/httpd/conf.d/

directory.	The	sample	content	below

tells	Apache	to	listen	on	any	IP

addresses	through	port	80	and	all

requests	received	through	the

specified	proxy	machine.	In	the

example,	the	proxy	machine	is

127.0.0.1	on	port	5000.	In	this	case,

Apache	and	Kestrel	are	assumed	to

run	on	the	same	machine,	but	just

changing	the	proxy	pass	IP	address

makes	the	trick	of	using	distinct

machines.

Click	here	to	view	code	image

<VirtualHost	*:80>

								ProxyPreserveHost	On

								ProxyPass	/	http://127.0.0.1:5000/

								ProxyPassReverse	/	http://127.0.0.1:5000/

</VirtualHost>

You	also	need	a	service	file	to	tell

Apache	what	to	do	for	requests	aimed

at	the	hosted	ASP.NET	Core

application.	Here’s	a	sample	service

file.

Click	here	to	view	code	image

[Unit]

				Description=Programming	ASP.NET	Core	Demo

[Service]

				WorkingDirectory=/var/progcore/ch15/simpleplage

				ExecStart=/usr/local/bin/dotnet	/var/progcore/ch15/simpleplag
e.dll

				Restart=always

				#	Restart	service	after	10	seconds	in	case	of	errors

				RestartSec=10

				SyslogIdentifier=progcore-ch15-simplepage

				User=apache

				Environment=ASPNETCORE_ENVIRONMENT=Production	

[Install]

				WantedBy=multi-user.target

The	service	must	be	enabled	from	the

command	line.	If	the	above	service	file

is	named	progcore.service,	the

command	line	is	as	below:

Click	here	to	view	code	image

sudo	nano	/etc/systemd/system/progcore.service

For	more	details	refer	to

https://docs.microsoft.com/en-

us/aspnet/core/publishing/apache-

proxy.	In	particular,	you	might	want

to	look	at	the	aforementioned

documentation	for	aspects	like	adding

SSL	and	firewall	settings,	rate	limits,

monitoring,	and	load	balancing.

Deploying	to	Nginx

Nginx	is	an	open-source	HTTP

server	that	is	growing	in

popularity;	it	can	easily	serve	as	a

reverse	proxy	as	well	as	an

IMAP/POP3	proxy	server.	Its

primary	characteristic	is	the	use	of

an	asynchronous	architecture	to

process	requests	instead	of	a	more

traditional	thread-based

architecture	like	that	of	more

canonical	web	servers	such	as

Apache	and	older	versions	of	IIS.

For	this	reason,	Nginx	is	often	used

in	high-scalable	scenarios	and	as	a

proxy	as	opposed	to	highly

trafficked	websites.	(See

https://www.nginx.com.)

Let’s	see	how	to	configure	Nginx	to	a

server	as	a	reverse	proxy	to	host	an

ASP.NET	Core	application.	All	you	do

is	edit	the	content	of	the	file

/etc/nginx/sites-available/default,

which	is	a	JSON	file	with	content

similar	to	the	lines	below.

Click	here	to	view	code	image

server	{

				listen	80;

				location	/	{

								proxy_pass	http://localhost:5000;

								proxy_http_version	1.1;

								proxy_set_header	Upgrade	$http_upgrade;

								proxy_set_header	Connection	keep-alive;

								proxy_set_header	Host	$host;

								proxy_cache_bypass	$http_upgrade;

				}

}

By	changing	the	value	of	the

proxy_pass	property,	you	indicate	the

location	of	the	Kestrel	server,	if

outside	the	server	machine	or

listening	on	a	port	different	from

5000.

Like	we	have	seen	for	Apache,	this	is

only	the	first	step	toward	a	full

configuration	of	the	environment.	It’s

enough	to	forward	requests	to	Kestrel

but	not	to	manage	the	lifetime	of

Kestrel	and	its	.NET	Core	web	host.

You	need	a	service	file	to	start	and

monitor	the	underlying	ASP.NET

Core	application.	The	way	you	do	it	is

the	same	as	we’ve	seen	for	Apache.

For	more	information,	see

https://docs.microsoft.com/en-

us/aspnet/core/publishing/linuxprod

uction.

DOCKER	CONTAINERS

Containers	are	a	relatively	new

concept	that	attempts	to	replicate

the	role	of	containers	in	the

shipping	industry.	A	container	is	a

unit	of	software	that	contains	an

application	and	its	full	stack	of

dependencies	and	configuration.	A

container	can	be	deployed	to	a

given	host	operating	system	and

run	without	any	further

configuration.

For	developers,	containers	represent

the	dream	scenario	in	which	any	code

is	running	locally—on	the	mythical

“my	machine”	where	everything

works—and	it	also	runs	in	production.

The	operating	system	is	the	only

common	ground	to	guarantee

containers	to	work	once	deployed.

Containers	vs.	Virtual	Machines

At	first	sight,	a	container	has	a	lot

in	common	with	a	virtual	machine.

However,	a	fundamental	difference

exists	between	the	two.

A	virtual	machine	runs	on	top	of	some

virtualized	hardware	and	runs	its	own

copy	of	the	operating	system.	Also,	a

virtual	machine	needs	all	binaries	and

applications	required	for	the	scenario

for	which	it	is	built.	Subsequently,	a

virtual	machine	can	be	several

gigabytes	large	and	usually	takes

minutes	to	start.

A	container,	instead,	runs	on	top	of	a

given	physical	machine	and	uses	the

operating	system	installed	on	the

machine.	In	other	words,	a	container

is	just	expected	to	deliver	the	delta

from	the	host	operating	system	to	the

environment	you	need	to	have	for	the

applications	to	run.	As	a	result,	a

container	is	usually	only	a	few

megabytes	large	and	therefore	takes

seconds	to	start.

In	the	end,	both	containers	and

virtual	machines	isolate	an

application	and	its	dependencies	from

the	surrounding	environment,	but

multiple	containers	running	on	the

same	machine	all	share	the	host

operating	system	(see	Figure	15-13).

FIGURE	15-13	Containerized	architecture

From	Containers	to	Microservice
Architecture

Just	the	fact	that	multiple

applications	can	be	packaged	to	run

side	by	side	on	the	same	virtualized

operating	system	has	led	to	a	new

approach	to	software	development

known	as	containerization.

An	application	and	its	configuration

are	packaged	in	a	special	format—the

container	image—and	deployed	to	a

container-enabled	server.	In	DevOps

terms,	this	also	means	that	the

development	environment	can	be

“snapshotted”	and	turned	into	an

independently	deployable	piece	of

code	that	just	runs	on	a	given

operating	system.	More,	it	can	be

easily	ported	from	server	to	server,

and	it	keeps	on	working	as	long	it	is

transported	on	a	compatible

container-enabled	infrastructure,

whether	public	or	private	cloud	or

even	a	physical	on-premise	server.

The	slogan	of	containerization	is	then

“build	once,	run	anywhere.”

Containerization	leads	to	breaking	up

monolithic	applications	into	distinct

pieces,	each	deployed	to	a	distinct

container.	An	SQL	database	can	go	to

a	container,	a	Web	API	can	go	to

another,	and	a	Redis	cache	can	be	yet

another	distinct	container.

Furthermore,	distinct	containers	are

independently	deployable	parts	that

can	be	scaled	or	painlessly

updated/replaced	in	the	future.

Docker	and	Visual	Studio	2017

An	ASP.NET	Core	can	be	easily

made	compatible	to	Docker	by

simply	selecting	Enable	Docker

Support	while	creating	the

project,	as	shown	in	Figure	15-14.

The	effect	is	that	a	few	text	files	are

automatically	added	to	the	project.

FIGURE	15-14	Enable	Docker	support	for	an	ASP.NET	Core

application

The	most	important	of	those	files	is

dockerfile.	Here’s	sample	content.

Click	here	to	view	code	image

FROM	microsoft/aspnetcore:2.0

ARG	source

WORKDIR	/app

EXPOSE	80

COPY	${source:-obj/Docker/publish}	.

ENTRYPOINT	["dotnet",	"Ch15.SimplePageDocker.dll"]

The	project	also	contains	a	couple	of

other	files	in	a	new	folder	named

docker-compose.	When	the	folder	is

selected,	the	Build	menu	changes	to

show	the	Docker	build	option.

Clicking	it	causes	the	image	to	be

created	and	deployed	to	the	registry	of

the	underlying	container-enabled

server.	To	test	it	locally	on	a	Windows

machine,	you	need	to	install	Docker

for	Windows.

Once	the	Docker	image	has	been

created,	the	sample	application	runs

from	an	unusual	IP	address,	typically

172.x.x.x.	(See	Figure	15-15.)

FIGURE	15-15	Running	a	Docker	image

The	actual	files	of	the	Docker	image

can	be	inspected	in	the	obj/docker

folder.

SUMMARY

In	this	chapter,	we	went	through

the	various	options	you	have	to

deploy	your	ASP.NET	Core

application	to	production.	We	first

examined	what	it	means	to	publish

the	application	files	to	a	folder	and

how	to	deal	with	the	cross-platform

nature	of	ASP.NET	Core.	In	doing

so,	we	distinguished	between

framework-dependent	publishing

and	self-contained	applications.

Next,	we	went	into	more	details	about

hosting	on	Azure	and	explored	the

various	services,	including	Service

Fabric,	virtual	machines,	and	App

Services.	Finally,	we	briefly	touched

on	the	whole	theme	of	Docker	and

containers.

In	the	next	chapter,	we	conclude	our

journey	on	ASP.NET	Core	by	focusing

on	the	topic	of	migration	and

brownfield	development	versus	full

rewrite	of	applications.

—Ken	Follett,	“The	Pillars	of	the

Earth“

CHAPTER	16

Migration	and	Adoption
Strategies
The	most	expensive	part	of	a	building

is	the	mistakes.

ASP.NET	Core	is	not	the	newest

version	of	ASP.NET	4.x.	Despite	its

unfortunate	(but	deliberately	chosen)

name,	it’s	a	whole	new	framework,

albeit	deeply	inspired	by	the	current

ASP.NET	and	in	particular,	by	the

ASP.NET	MVC	framework.	Overall,

we	would	not	go	too	far	from	the	truth

by	saying	that	ASP.NET	Core	is

ASP.NET	just	as	one	would	rewrite	it

today.	It’s	more	modular	and	with	a

smaller	memory	footprint	than	classic

ASP.NET,	and	it	can	target	multiple

hardware/software	platforms.	For

example,	new	ASP.NET	Core

applications	also	can	now	run	natively

on	a	variety	of	Linux	and	Mac	OS

platforms.

ASP.NET	Core	is	not	simply	a	new

web-oriented	framework.	It	is	a	web

framework,	but	it	still	needs	an

underlying	general-purpose

framework.	It’s	the	underlying

framework—the	.NET	Core

framework—that	ultimately	provides

the	cross-platform	capability.

Regarding	development	impact,

ASP.NET	Core	plus	.NET	Core	is	a

combined	platform	of	the	same	order

of	magnitude	as	ASP.NET	and	the

.NET	Framework	released	in	2002.

Luckily	enough,	the	gap	between	the

new	platform	and	the	current	is	much

smaller	today	than	it	was	back	in

2002.

At	any	rate,	ASP.NET	Core	changes

the	way	web	applications	are

developed	on	the	Microsoft	stack.

Refreshing	some	skills	is	inevitable	for

the	entire	team.	Hence,	writing	for	the

ASP.NET	Core	platform	is	a	cost	to

consider,	beyond	the	budget	for	the

application	to	build.	How	then	do	you

approach	ASP.NET	Core	if	you’re	a

decision	maker	within	your	company

and	how	to	sell	it	if	you’re	a	consultant

willing	to	help?

In	this	chapter,	we’ll	try	to	nail	down

the	promises	of	the	new	framework	to

the	real	benefits.

IN	SEARCH	OF	BUSINESS	VALUE

Let’s	be	honest.	No	customer	would

pay	to	change	an	application	that

works	for	another	application	that

just	works.	At	the	same	time,	no

software	is	a	dead	thing	that

remains	static	and	immutable	once

in	production.	Business	changes

and	so	applications	should	ideally

change	with	it;	sometimes,	that

means	radical	rewrites.	A	big

rewrite	is	an	option	when	radically

new	business	opportunities	appear

on	the	horizon	or	when	attractive

new	technologies	make	their

debuts.

ASP.NET	Core	doesn’t	create	new

business	opportunities,	but	it’s	quite

an	interesting	technology	to	look	at.

Determining	how	interesting	and

beneficial	it	could	be,	is	the	question.

ASP.NET	Core	has	little	to	do	with

enhancing	an	existing	application	to

cope	with	new	business	requirements.

However,	the	moment	new	business

requirements	come	along,	upgrading

to	ASP.NET	Core	is	an	option	to

seriously	consider.

Looking	for	Benefits

Looking	for	Benefits

All	in	all,	I	believe	there’s	a	lot	of

unnecessary	hype	around	ASP.NET

Core.	As	I	see	it,	the	hype	amounts

to	pure	enthusiasm	without	clearly

explaining	the	business	benefits	of

the	switch.	When	it	comes	to

making	this	decision,	though,

finding	good	business	reasons	to

drop	a	relatively	new	system	for	a

brand	new	one	that	works	the	same

as	the	old	one	gets	tricky	fast.

One	heavily	emphasized	benefit	is

that	ASP.NET	Core	enables	your	code

to	run	on	multiple	platforms.	This	is

true,	but	only	if	you	rewrite	all	of	your

code	to	address	the	.NET	Core

framework.	Most	literature	also

emphasizes	other	benefits	such	as

performance	improvements,

modularity	of	the	code,	and	open

source	code.	The	really	geeky	points

such	as	the	brand-new	middleware

and	the	extensive	use	of	dependency

injection	through	the	framework	are

also	emphasized.

While	I	am	far	from	saying	these	are

not	benefits	at	all,	the	real	impact	they

might	have	on	the	business	just

depends	on	the	business	itself.	Paying

for	a	faster	application	when	you	are

not	experiencing	slow	response	is

pointless.	Paying	for	the	potential	to

scale	up	when	you	have	an	established

business	and	no	expectations	to	grow

exponentially	is	pointless,	too.	What’s

the	value	in	having	Microsoft	open-

sourcing	the	code	of	ASP.NET	for	a

company	that	outsources	most	of	the

development?	And	the	list	can	go	on.

Let’s	try	to	view	the	most	popularized

benefits	of	ASP.NET	Core	with	a	more

critical	eye.

Multiple	Platform	Support

Multiple	Platform	Support

The	.NET	Core	framework	is	a	full

rewrite	of	the	.NET	Framework

specifically	created	to	compile	on	a

few	different	platforms	in	addition

to	Windows.	Hence,	an	ASP.NET

Core	application	that	targets	the

.NET	Core	framework	can	also	be

hosted	on	a	variety	of	Linux	server

platforms.	To	be	precise,	the	.NET

Core	framework	can	also	run	on

Mac	OS,	but	for	the	purpose	of

hosting,	it	makes	no	difference	at

the	moment	because	no	hosting

platform	is	based	on	Mac	OS.	At

the	same	time,	though,	having	the

.NET	Core	framework	also	target

Mac	OS	at	least	enables	developers

to	compile	their	ASP.NET	Core

application	on	their	Mac	laptops

natively.

As	I	see	things,	the	cross-platform

nature	of	ASP.NET	Core	applications

is	the	most	relevant	business	value	it

has.	Some	might	argue	that	because

it’s	still	a	web	application,	it	can

already	be	reached	from	whatever

platforms	and	operating	systems.	The

true	point,	though,	is	hosting	more

than	reach.	There	are	a	lot	of

companies	out	there	who	just	don’t

consider	ASP.NET	because	of	the

license	necessary	to	run	Windows

Server	or	are	restricted	to	use	open

platforms	like	Linux.	(This	sometimes

happens	with	some	public

government	agencies	because	of	the

false	perception	that	adopting	open

platforms	is	really	“free	as	in	beer.“)

Furthermore,	Windows	hosting	is	still

more	expensive	than	Linux	hosting.

It’s	not	a	huge	difference,	and	the

difference	is	likely	shrinking,	but

Linux	tends	to	be	a	bit	cheaper,	which

makes	ASP.NET	worth	considering.

Finally,	a	cross-platform	ASP.NET	is

beneficial	for	companies	because	it

enables	them	to	save	some	further

money	running	applications	on

cheaper	Linux	machines	at	least	for

(integration)	testing	purposes.	Also,

the	Linux	hosting	ecosystem	is	larger

than	on	Windows	(see	Mesos,

Marathon,	and	Aurora)	and	doesn’t

lock	you	down	to	a	single	vendor.

Improved	Performance

It	would	really	be	surprising	if	a

totally	rewritten	framework	weren’t

significantly	faster	than	one	that	is

15	years	older.	So,	by	all	means,

ASP.NET	Core	is	faster	than	classic

ASP.NET.	Let’s	see	why	first	and

then	have	a	look	at	some	quick

objective	numbers.

First	and	foremost,	the	ASP.NET	Core

pipeline	is	async,	and	this	guarantees

that	the	minimum	number	of	pooled

threads	are	busy	at	any	time.	Also,	the

pipeline	is	redesigned	and	extremely

modular.	Finally,	Kestrel	is	really

amazingly	fast	in	dispatching

requests.	Next,	there’s	the	whole	point

of	the	memory	footprint	per	request

which	is	about	five	times	smaller	in

ASP.NET	Core.

The	memory	footprint	point	deserves

some	further	attention.	As	discussed

in	Chapter	14,	the	HTTP	runtime

pipeline	has	been	completely

restructured.	Until	ASP.NET	Core,

ASP.NET	application	requests	were

processed	in	the	same	runtime

devised	two	decades	ago	for	what	has

now	become	ASP.NET	Web	Forms.

The	beating	heart	of	the	old	pipeline

was	the	notorious	system.web

assembly.	Many	suggest	the

system.web	assembly	as	the	main

culprit	for	the	poor	performance	of

classic	ASP.NET	applications,	though

I	only	partially	subscribe	to	this	view.

The	system.web	assembly	was	tailor-

made	for	ASP.NET	Web	Forms,	and	it

was	so	beautifully	done	that	it

survived	for	two	decades.	When

Microsoft	introduced	ASP.NET	MVC,

it	opted	for	adding	only	the	necessary

runtime	extensions	to	the	same

runtime.	Because	of	this	design

decision,	ASP.NET	MVC	never	had

the	thin	and	tailor-made	runtime	it

deserved.	By	design,	it	was	given	a

larger	runtime	summing	up	the

capabilities	of	two	radically	different

application	models—Web	Forms	and

MVC.

Worse	yet,	a	few	years	after

introducing	ASP.NET	MVC,	Microsoft

also	launched	Web	API.	Web	API	was

designed	from	the	ground	up	and

given	its	own	runtime	for	processing

requests,	but	it	still	relies	on	the

ASP.NET	runtime	for	hosting.	As

Figure	16-1	shows,	any	application

that	uses	ASP.NET	MVC	and	Web	API

has	probably	three	times	the	memory

footprint	it	really	needs.	And	this	is

not	caused	by	the	notorious

system.web	assembly.

FIGURE	16-1	The	notorious	composition	of	ASP.NET	frameworks

Another	aspect	of	the	improved

performance	of	ASP.NET	Core	is	its

modularity.	The	entire	framework

ships	in	the	form	of	NuGet	packages,

which	allows	you	to	cherry-pick	just

the	features	you	really	need.	In	classic

ASP.NET,	the	runtime	was	only	partly

customizable	because	some	HTTP

modules	could	be	disabled,	but	the

entire	request	processing	pipeline

was,	for	the	most	part,	hard-coded.	In

you	run	only	ASP.NET,	your	code	can

have	a	chance	to	run	sooner	than	in

ASP.NET	Core.

As	far	as	numbers	to	support	the

improved	capabilities	are	concerned,

you	might	want	to	look	at	the

benchmarks	published	at

https://github.com/aspnet/benchma

rks.	The	numbers	there	might	not	give

an	absolute	measure	of	how	fast	your

application	can	be.	It’s	still	a

benchmark,	so	the	numbers	will

realistically	be	much	smaller	for	a

realistic	application.	However,	the

ratio	between	of	the	benchmarks	for

ASP.NET	and	ASP.NET	Core	will

likely	be	the	same.	And	that	ratio	says

ASP.NET	Core	is	about	five	times

faster	in	the	number	of	requests	it	can

serve	in	a	unit	of	time.	This	said,

though,	keep	in	mind	that	every

application	is	different	in	terms	of	the

number	of	actual	requests	it	handles.

Finally,	a	little-known	point	about

performance	is	the	actual	power	of

application	fine-tuning.	By	simply

swapping	AddMvc	with	AddMvcCore,

you	can	almost	double	the	speed	of	a

request,	at	least	for	the	initial	part	of

the	processing.	One	experiment

demonstrated	that	the	time	to	serve	1

million	requests	with	ASP.NET	Core

dropped	from	more	than	two	seconds

to	1.2	seconds	simply	using	the	core

configuration.	For	more	details,	see

http://bit.ly/2wuvhDl

(http://bit.ly/2wuvhDl).

Improved	Deployment	Experience

Improved	Deployment	Experience

Classic	ASP.NET	supports	a

deployment	experience	that

ASP.NET	Core	marketing	defines

as	framework-dependent.	In	other

words,	the	application	ships	only

with	its	own	binaries,	which	means

the	necessary	framework	is

expected	to	be	already	installed	on

the	server.	Multiple	applications

can	share	the	same	framework

though	some	applications	might

need	different	versions	of	the	same

framework.	In	this	case,	both

frameworks	must	be	installed,	and

subtle	issues	might	arise.	It’s	the

notorious	“DLL	hell,”	or	something

very	similar	to	it.

ASP.NET	Core	brings	an	additional

deployment	experience—self-

contained	deployment.	In	this	case,

the	application	ships	with	its	own

binaries	as	well	as	the	entire

framework.	The	application	takes	its

own	space	and	could	run	in	total

isolation	no	matter	what	it	installed

on	the	server.	This	solution

guarantees	unparalleled	isolation	at

the	cost	of	increasing	the	necessary

disk	space	by	an	order	of	magnitude,

typically	growing	from	a	few

megabytes	to	a	few	dozens	of

megabytes.

As	discussed	in	the	previous	chapter,

you	can	host	ASP.NET	Core

applications	on	a	variety	of	web

servers,	most	notably	IIS	and	Apache

on	Linux.	However,	the	deployment

experience	is	not	limited	to	the

options	we	already	covered	in	Chapter

15.	Although	not	really	common,	you

can	still	host	an	ASP.NET	application

in	a	completely	custom	minimal	web

server	possibly	forking	an	open-

source	web	server	project.	At	the	very

minimum,	such	a	web	server	must

implement	IHttpRequestFeature	and

IHttpResponseFeature	interfaces.	A

starting	point	can	be	found	at

https://github.com/Bobris/Nowin.

	Note	If	you	are	using	Windows	and	if	the	ASP.NET	Core
application	targets	the	full	.NET	Framework,	you	can	even	host	it	as	a
Windows	service.	An	example	is	https://docs.microsoft.com/en-
us/aspnet/core/hosting/windows-service.

Improved	Development	Experience

The	ASP.NET	Core	programming

experience	is	simply	awesome.	The

redesigned	framework	is	really

good	and	well-architected.	It’s

probably	a	little	bit	too	over-

engineered,	but	all	current	best

ASP.NET	programming	practices

have	been	incorporated.	You	will

hardly	find	a	better	framework—for

a	few	years	at	least.

Also,	you	are	no	longer	limited	to

Visual	Studio	as	the	programming

environment.	You	can	now	use	Visual

Studio	Code	to	develop	your

application,	which	is	free	and

lightweight	in	comparison	to	Visual

Studio	or	even	to	JetBrains’	Rider.

Visual	Studio	Code,	just	like	Rider,

can	be	used	on	different	platforms	as

well.

From	a	purely	programming

perspective,	Microsoft	unified	the

MVC	and	Web	API	controller	model

and	added	native	dependency

injection.	Also,	the	modularity	of	the

middleware	is	extreme,	and	you	really

have	the	unprecedented	chance	to

write	just	the	code	you	need	and	no

additional	line.

Open	Source

Open	Source

The	entire	source	code	of	ASP.NET

Core	can	be	found	at

https://github.com/aspnet.	From

there	you	can	navigate	in	a	number

of	repositories	to	find	the	various

packages	that	form	the	framework

as	well	as	documentation	and

samples.	All	projects	are	frequently

updated	by	hundreds	of	Microsoft

contributors	and	members	of	the

community.

The	open-source	movement	is	a

strong	statement	about	the	Microsoft

commitment	to	ASP.NET	Core.	And	if

you	have	doubts	about	the	framework,

consider	that	there	hasn’t	been	a	new

version	of	classic	ASP.NET	MVC	since

February	2015.	Sure,	classic	ASP.NET

MVC	is	pretty	much	done,	and	there’s

not	really	much	to	add,	yet	that	is	a

sign	that	the	entire	development

effort	has	been	moved	to	ASP.NET

Core.	So,	in	the	end,	embracing

ASP.NET	core	is	a	purely	a	matter	of

time.	And	in	the	short	run,	it’s	also	a

matter	of	finding	some	concrete

business	value	in	it.

Favoring	the	Microservice	Architecture

Favoring	the	Microservice	Architecture

The	microservice	architecture	is

quite	popular	these	days	because	it

combines	well	the	core	idea	of	a

service-oriented	architecture

without	the	bureaucracy	of	the	SOA

tenets.	Essentially,	a	microservice

is	an	independently	deployable

software	application	that	is

autonomous	and	with	a	well-

defined	boundary.	A	microservice

can	be	written	in	whatever

language	and	using	whatever

technology	because	it’s

independently	developed	and

deployed,	and	it	communicates

through	standard	channels,

whether	HTTP/TCP,	message

queues,	or	even	shared	databases

or	files.

ASP.NET	Core	lends	itself	to

implementing	microservices	because

of	its	lightweight	nature,	speed,	and

flexibility.	Also,	the	support	for

Docker	contributes	to	making

ASP.NET	Core	even	more	interesting

in	a	microservice	perspective.

Brownfield	Development

Brownfield	Development

It	should	be	clear	by	now	that

adopting	ASP.NET	Core	is	not	a

matter	of	upgrading	to	the	next

version	of	a	framework	or	product

already	in	use.	As	an	example,

upgrading	to	ASP.NET	is	not	the

same	as	upgrading	from	SQL

Server	2014	to	SQL	Server	2016.

When	upgrading	SQL,	all	your

tables,	views,	and	procedures	will

remain	fully	functional,	and	you

have	additional	features	(such	as

native	JSON	and	versioned	tables)

to	leverage	at	your	earliest

convenience.	Upgrading	to

ASP.NET	Core	provides	no	such

smooth	transition.	At	the	very

minimum,	you	spend	money	to

rewrite	the	same	system	as	before,

not	to	mention	the	costs	of	training

developers—any	developers—for

that	and	the	subsequent,	though

temporary,	dip	in	productivity.	You

also	need	to	possibly	consider	costs

of	adapting	the	continuous

integration	(CI)	pipeline	to	.NET

Core	CLI	tools	if	you	use	CI.	You

have	the	same	system	as	before	on

a	new	framework	at	a	price	that

depends	on	the	skills	and	attitude

to	learn	from	the	team	members.

An	easy	consideration	is	that	no

customer	would	reasonably	pay	to

replace	a	system	that	works	with

another	system	that	works.	This	idea

leads	us	straight	to	brownfield

development.

In	software,	the	term	brownfield

development	denotes	a	scenario	in

which	a	new	system	is	developed

taking	into	careful	account	existing

systems.	In	other	words,	brownfield

development	is	about	developing	new

software	under	the	constraints	of

existing	systems	and	technologies.

You	might	want	to	be	very	cautious

before	adopting	a	disruptive

framework	like	ASP.NET	Core	in	a

brownfield	development	scenario.

To	add	ASP.NET	Core	in	a	brownfield

scenario,	you	have	to	first	move

toward	a	more	distributed

architecture	in	which	the	overall

behavior	of	the	system	results	from

the	composition	of	multiple

independent	components

(microservices).	In	this	context,	you

can	seriously	consider	replacing	one

or	more	components	with	new

components	that	just	plug	in	and	use

a	new,	even	disruptive,	framework.	In

summary,	in	front	of	a	disruptive

framework	change,	you	must	decide

what’s	legacy	and	what’s	not.	And	you

need	to	consider	replacing	non-legacy

components.	On	the	topic	of	evolving

a	.NET	architecture	toward

microservices,	see	the	e-book	at

https://aka.ms/microservicesebook.

In	the	end,	brownfield	development

with	ASP.NET	Core	is	realistic,	but

often	quite	expensive.	The	balance	is

all	in	the	concrete	business	value	it

delivers.	This	can	only	be	seen	case	by

case	and	business	by	business.

Finally,	consider	that	if	you	use

brownfield	development,	the	sole	fact

that	you	are	forced	to	select	what’s

legacy	and	what’s	not	is	a	step	on	the

way	to	reduce	the	technical	debt.

	Note	Just	to	remain	in	the	ASP.NET	space,	note	that
component	vendors	still	make	most	of	their	revenues	out	of	ASP.NET	Web
Forms	products	because	companies	focus	on	their	own	businesses	and	use
software	really	as	a	service.	Companies	would	reasonably	consider	deep
refactoring	or	rewriting	only	when	the	business	scenario	changes	(for
example,	because	of	scalability	issues	or	new	opportunities	to	seize).
Scalability	is	one	of	the	most	abused	words,	especially	regarding	ASP.NET
Core.	I	don’t	think	that	every	company	out	there	has	scalability	issues.	I	would
rather	stress	that	good	code	scales	reasonably	well	by	default.	So,	when	you
realize	you	have	scalability	issues,	often	it’s	because	your	code	is	of	poor
quality.

Greenfield	Development

Greenfield	Development

Greenfield	development	is	the

opposite	of	brownfield

development,	and	it	occurs	when	a

new	software	system	is	developed

without	constraints	of	any	kind.	As

an	architect,	you	are	free	to	make

best	decisions	without

compromises.	In	this	scenario,	the

point	of	determining	whether	to

adopt	ASP.NET	Core	becomes	a

purely	technical	matter.

Let’s	see	a	summary	of	the	technical

challenges	that	adopting	ASP.NET

Core	poses	to	ASP.NET	developers.

Developers	with	no	past	ASP.NET

experience	might	find	this	summary

of	the	delta	with	previous	versions	of

the	framework	to	be	of	little	interest.

Before	we	get	there,	though,	it’s

important	to	look	at	the	.NET

Standard	story.

The	.NET	Standard	Specification

The	.NET	Standard	specification

attempts	to	solve	the	problem	of

sharing	.NET	code	across	multiple

versions	of	the	same	application—

mobile,	web,	and	desktop.	The

same	class	library	might	be	shared

by	multiple	applications	with	each

targeting	a	specific	version	of	the

.NET	Framework,	and	there’s	no

guarantee	that	the	class	library	only

calls	functions	the	framework

supports.

The	.NET	Standard	provides	a	nifty

way	to	name	and	version	a	particular

snapshot	of	the	.NET	Framework.	So

every	version	of	the	.NET	Standard

defines	the	API	that	any

implementation	of	.NET	must	provide

to	be	compliant.	Put	another	way;

once	a	class	library	complies	with	a

version	of	the	.NET	Standard,	it	can

be	safely	used	by	whatever	application

that	targets	a	version	of	the	.NET

Framework	compatible	with	the

standard.

The	latest	incarnation	of	the	.NET

Standard	is	.NET	Standard	2.0,	and	it

goes	hand	in	hand	with	.NET	Core

2.0.	That	should	be	the	minimum

requirement	for	any	new	greenfield

development	involving	ASP.NET

Core.	The	.NET	Standard	2.0

comprises	a	lot	more	classes	than	any

of	the	previous	versions	(even

ADO.NET	classes	are	back).

According	to	Microsoft,	numbers

more	than	70	percent	of	the	libraries

on	NuGet	only	use	the	API	part	of	the

.NET	Standard	2.0.

Here’s	the	framework	signature	in	the

CSPROJ	file	for	an	ASP.NET	Core

application	that	targets	ASP.NET	Core

2.0.

Click	here	to	view	code	image

<PropertyGroup>

				<TargetFramework>netcoreapp2.0</TargetFramework>

</PropertyGroup>

And	here’s	the	signature	of	a	.NET

Standard	class	library.

Click	here	to	view	code	image

<PropertyGroup>

		<TargetFramework>netstandard2.0</TargetFramework>

</PropertyGroup>

Note	that	to	create	a	.NET	Standard

class	library	you	have	to	choose	a

specific	template	in	Visual	Studio

from	a	different	node	than	regular

.NET	Core	applications.	(See	Figure

16-2.)

FIGURE	16-2	Creating	a	.NET	Standard	class	library

What	Is	Different	for	ASP.NET	Developers

What	Is	Different	for	ASP.NET	Developers

In	ASP.NET	Core,	a	few

programming	chores	require	a

different	approach	than	in	past

versions	of	ASP.NET	and

familiarity	with	a	new	set	of	APIs.

Table	16-1	lists	the	differences.

TABLE	16-1	Programming	tasks

different	in	ASP.NET	Core

T

a

s

k

Description

S

t

a

rt

i

n

g	

u

p	

t

h

e	

a

p

p

li

c

a

ti

o

n

The	global.asax	file	is	gone,	and	so	it	is	the	web.config	

file.	The	initial	configuration	of	the	application	takes	

place	in	the	startup	file	and	also	comprises	tasks	

(setting	up	the	web	host)	that	were	hidden	in	the	folds	

of	IIS	and	ASP.NET	setup.	The	application	is	made	of	a	

collection	of	properly	configured	services.	Furthermore,	

the	framework	introduces	the	notion	of	the	hosting	

environment,	namely	an	object	that	carries	information	

about	the	current	runtime	environment.

S

e

r

v

i

n

g	

st

a

ti

c	

fi

le

s

An	ASP.NET	Core	application	serves	static	files	directly	

without	the	intermediation	of	the	web	server.	This	

behavior	must	be	configured	explicitly,	but	the	

configuration	is	so	flexible	that	you	can	serve	static	files	

from	whatever	path	and	data	source.

P

a

s

si

n

g	

d

e

p

e

n

d

e

n

ci

e

s	

a

r

o

u

n

Most	classic	ASP.NET	applications	use	an	IoC	provider	

of	choice	to	pass	dependencies	around.	ASP.NET	Core	

comes	with	its	own	DI	subsystem	that	can’t	be	

deactivated,	though	it	can	be	replaced	with	a	

compatible	IoC	that	has	been	ported	to	.NET	Core	and	

also	endowed	with	a	special	connector	to	the	ASP.NET	

Core	DI	system.

d

R

e

a

d

i

n

g	

c

o

n

fi

g

u

r

a

ti

o

n	

d

a

t

a

ASP.Net	Core	no	longer	contains	a	web.config	file	to	

contain	basic	application	settings.	The	configuration	

data	is	displayed	as	a	hierarchical	object	model	

populated	by	a	variety	of	data	providers	(JSON,	text	

files,	and	database).	Configuration	data	is	passed	

around	via	DI.

A

u

t

h

e

n

ti

c

a

ti

o

n

The	authentication	scheme	is	now	based	on	claims	and	

is	no	longer	strictly	based	on	a	cookie.	Concepts	like	

identity	and	principal	remain,	but	the	API	is	different	

though	conceptually	compatible.

A

u

t

h

o

ri

z

a

ti

o

n

The	authorization	API	works	as	in	classic	ASP.NET,	but	

ASP.NET	Core	provides	a	valuable	extension	in	the	

form	of	authorization	policies.	You	might	want	

seriously	consider	policies.

As	you	can	see,	the	vast	majority	of

those	changes	apply	before	the	control

flow	reaches	the	layer	of	controller

classes.	Controllers	are	substantially

the	same,	and	so	it	is	for	views.	There

are	some	extra	features	and

improvements,	but	99	percent	of	the

code	you	have	around	controllers	and

views	usually	works	unchanged	in

ASP.NET	Core	or	with	only	minor

fixes.	And	so	it	is	for	your

programming	skills.

Should	I	Go	with	ASP.NET	Core?

Here’s	the	key	question:	For

greenfield	development,	is

ASP.NET	Core	2.x	a	viable	option?

My	current	answer	is	simply	yes.	My

forecast	since	the	early	beta	days	of

the	framework	was	that	it	would

become	a	serious	option	to	consider

by	the	end	of	2018.	What	was	a

lighthearted	forecast	in	late	2015,	now

seems	to	be	quite	well	addressed	by

facts	and	sentiment	across	the

industry.	And	even	a	bit	ahead	of

expectation.	Fanboys	and	marketing

people	aside,	the	framework	is	really

good,	but	this	is	not	enough	when	it

comes	to	real-world	business	and

physical	budgets.

In	2018,	I	expect	the	basic	framework

and,	more	importantly,	a	couple	of

satellite	frameworks	to	reach	an	even

higher	level	of	maturity.	In	particular,

I’m	referring	to	Entity	Framework

Core	and	especially	SignalR	Core.

For	data	access,	if	you	find	the	latest

EF	Core	problematic,	you	have	plenty

of	other	options	as	we	discussed	in

Chapter	9.	A	good	alternative	is	to	use

micro	O/RM	frameworks.	As	for

SignalR,	it	has	been	an	official	part	of

the	ASP.NET	Core	family	since

version	2.1.

Is	there	anything	missing?	On	the

Microsoft	front,	I	miss	OData	(there

are	no	rumors	about	future	support),

and	I	would	like	to	see	an	EF	Core

that	supports	system-versioned	tables

like	SQL	Server	2016	and	newer.

However,	you	will	have	to	look	at	your

own	list	of	third-party	dependencies

to	see	which	are	not	yet	.NET	Core–

compliant	that	might	jeopardize

adoption.

OUTLINING	A	YELLOWFIELD

OUTLINING	A	YELLOWFIELD
STRATEGY

Let’s	say	that	you	want	to	take	an

existing	application	and	rewrite	it

for	ASP.NET	Core.	The	scenario	is

a	line-of-business	application	that

needs	a	refresh	and	possibly	a	new

architecture.	In	other	words,	the

scenario	is	about	rewriting	the

same	line-of-business	application

to	make	it	serve	the	same	business

needs	plus	something	more.

I	would	not	classify	this	as	either	plain

greenfield	development	or	brownfield

development.	It’s	a	kind	of	middle

way	we	could	call	“yellowfield”

development.	Essentially,	it’s	a	new

application	with	no	architectural

constraints,	but	we	are	observing	the

nonfunctional	requirement	of

preserving	as	much	as	possible	of	the

code	and	expertise	of	the	current

production	system.

Dealing	with	Missing	Dependencies

When	you	embark	on	a	big	rewrite

project,	the	architectural	pillars

might	be	different	but	to	flesh	it	out

with	actual	code	you	may	wish	to

reuse	the	old	code	as	much	as

possible	to	save	development	time

and	preserve	some	of	the

investments	made.	This	is

reasonable	so	long	as	it’s	worth	the

cost.

When	it	comes	to	this,	you	may	face

any	of	the	following.

You	use	some	NuGet	packages	that	have	not	been	ported	to	.NET

Core.

You	use	custom	DLLs	you	don’t	fully	control	that	are	not	(yet?)

available	for	.NET	Core.

You	have	layers	of	code	depending	on	some	obsolete	Microsoft

frameworks	including	ASP.NET	Web	Forms,	Entity	Framework	6,

ASP.NET	SignalR,	OData,	and	Windows	Foundation	Services.

You	have	portions	of	plain	C#	code	that	uses	API	calls	no	longer

supported.

For	any	of	those	issues,	you	have	two

possible	routes:	reuse/adapt	the

source	code	or	completely	rewrite	the

source	code	underneath	the	same

observable	behavior.	In	the	rest	of	this

chapter,	we’ll	develop	a	couple	of

optional	strategies	for

reusing/adapting	the	existing	code.	A

first	good	step,	though,	is	to	analyze

what	you	have.	Enter	the	.NET

Portability	Analyzer	tool.

The	.NET	Portability	Analyzer

The	.NET	Portability	Analyzer	is	a

Visual	Studio	extension	you	grab

from	the	Visual	Studio

marketplace.	(See

https://marketplace.visualstudio.c

om.)	The	tool	takes	an	assembly

name	in	input	(or	even	the	entire

current	solution	path)	and

produces	a	report	in	the	form	of	an

Excel	file.	(See	Figure	16-3.)

FIGURE	16-3	Results	of	a	.NET	Core	portability	analysis	of	a	.NET

4.5	solution

The	report	gives	you	an	idea	of	the

effort	required	to	make	the	code	work

successfully	on	.NET	Core.	To	be

precise,	though,	the	tool	is	not	just	for

.NET	Core	and	can	be	configured	for

various	targets,	including	multiple

versions	of	the	.NET	Framework	and

.NET	Standard	specifications.	(See

Figure	16-4.)

FIGURE	16-4	Settings	supported	by	the	.NET	Portability	Analyzer

Not	only	does	the	tool	show	a

percentage	of	the	code	that	works,	but

it	also	lists	what’s	wrong	and,	in	some

cases,	it	even	suggests	changes	to

perform.

In	general,	the	.NET	Core	team

following	two	key	guidelines.	First,

they	only	included	classes	really	used

by	most	developers.	Second,	for	each

necessary	functionality,	they	only

provided	one	implementation.	In	the

full	.NET	Framework,	for	example,

you	have	at	least	three	different

classes	to	place	an	HTTP	call:

WebClient,	HttpWebRequest,	and

HttpClient.	Only	the	last	one	is

available	in	.NET	Core.	Hence,	any

assembly	that	uses,	say,	WebClient

lowers	the	percentage	reported	by	the

analyzer,	though	fixing	it	is	nearly

straightforward.	In	general,	a

compatibility	level	reported	by	the

.NET	Analyzer	that	is	superior	to	70

percent	is	a	very	good	response.

	Note	The	.NET	Portability	Analyzer	is	also	available	as	a
console	application.	You	can	get	it	at	https://github.com/Microsoft/dotnet-
apiport.

The	Windows	Compatibility	Pack

The	Windows	Compatibility	Pack

(WCP)	is	a	NuGet	package	which

provides	access	to	more	than

20,000	API	not	included	in	.NET

Core	2.0.	At	least	half	of	these

functions	are	Windows-only

functions	and	touch	on	areas	such

as	cryptography,	I/O	ports,

registry,	and	some	low-level

diagnostics.	To	check	if	the	code	is

currently	running	on	the	Windows

platform	and	then	see	if	the	call	is

safe,	you	can	do	as	below.

Click	here	to	view	code	image

if	(RuntimeInformation.IsOSPlatform(OSPlatform.Windows))

{

				//	Call	some	Windows-only	function	added	with	the	WC
P

				...

}

Also,	you	find	in	the	WCP	also	some

new	APIs	that	are	in	not	in	.NET	Core

2.0	and	that	enjoy	a	cross-platform

implementation.	In	this	list,	you	find

System.Drawing,	the	CodeDom	API,

and	the	memory	cache.

Postponing	the	Cross-platform	Challenge

The	portability	analyzer	is	a	tool

you	might	want	to	run	to	measure

the	effort	of	porting	or,	at	least,

have	a	rough	estimate	of	the	effort

it	will	entail.	The	effect	of	the

analyzer,	though,	is	significant	only

for	the	code	components	you

directly	control.	If	your	existing

application	relies	on	external

dependencies,	there’s	not	much	you

can	do	at	the	source	code	level.

Common	situations	are

dependencies	on	third-party	NuGet

packages	or	plain	class	library

DLLs	and	dependencies	on	some

Microsoft	frameworks	that	for

various	reasons	are	not	available

as-is	in	.NET	Core.	Table	16-2	lists

most	common	and	popular	.NET

frameworks	not	currently	available,

at	least	in	their	original	form,	in

.NET	Core.

TABLE	16-2	Popular	Microsoft

frameworks	not	directly	supported	in

.NET	Core

Fra

me

wor

k

State	of	the	art

Entit

y	

Fra

mew

ork	

6.x	

and	

older

Replaced	by	Entity	Framework	Core	2.0	and	newer.

ASP.

NET	

Sign

alR

Replaced	by	ASP.NET	Signal	Core

ODa

ta	

exte

nsio

ns	

for	

Web	

API

Not	planned

Win

dows	

Com

mun

icati

on	

Foun

datio

n

ASP.NET	Core	applications	can	consume	existing	

WCF	services	through	an	additional	dedicated	client	

library	(https://github.com/dotnet/wcf)	but	

exposing	WCF	services	is	not	supported.	This	

extension	is	currently	being	considered.

Win

dows	

Wor

kflo

w	

Foun

datio

n

Not	planned

If	maintaining	the	dependency	on

some	of	those	frameworks	or	libraries

is	crucial	for	you	then	you	only	have

two	routes	ahead.	One	is	just	keeping

up	the	good	work	with	the	current

non-.NET	Core	platform	you’re	using.

The	other	is	moving	the	frontend	to

ASP.NET	Core	but	postponing	the

cross-platform	challenge.	(See	Figure

16-5.)

When	it	comes	to	creating	an

ASP.NET	Core	project,	you	can

choose	to	target	either	the	.NET	Core

framework	or	the	full	.NET

Framework.	By	choosing	the	latter,

you	preserve	the	existing	code	in	its

entirety,	at	least	the	parts	of	it	that

deal	with	dependencies.	In	fact,	you

still	have	to	rewrite	the	startup	of	the

application	dropping	global.asax,

web.config,	and	other	classic

ASP.NET	practices.

ASP.NET	Core	unleashes	its	true

power	if	the	.NET	Core	framework	is

targeted.	However,	the	general

recommendation	is	to	target	the	full

.NET	Framework	only	when

necessary.	But,	at	the	same	time,	if

targeting	the	full	.NET	Framework	is

necessary,	you	can	probably	move

forward	even	without	porting	the	code

to	ASP.NET	Core.

FIGURE	16-5	Choosing	the	target	.NET	Framework

Moving	Towards	a	Microservice
Architecture

Targeting	the	full	.NET	Framework

for	the	sake	of	preserving	existing

critical	code	is	an	option,	but	it’s	an

option	that	tends	to	maintain	a

monolithic	structure	in	the

resulting	application.	Let’s	delve	a

bit	deeper	into	a	quite	concrete

scenario:	preserving	the	investment

made	on	EF6	data	access	code.

EF6	and	Bounded	Contexts

Entity	Framework	Core	and	Entity

Framework	6	look	enticingly

similar,	yet	they	are	quite	different

under	the	covers.	The	most

relevant	fact	is	that,	in	any	case,

you	don’t	have	to	re-learn

everything	because	the	two

frameworks	share	the	same	goals.

Personally,	because	I	always	used	a

very	limited	set	of	functions	from

EF6	anytime	I	dropped	EF6	code	to

an	EF	Core	project,	it	always

worked	fine	quite	soon	and	only

with	minimal	adjustments.	I’m

talking,	however,	of	Code	First	code

with	no	lazy	loading,	no	grouping,

no	scaffolding	and	migrations,	and

no	transactions—just	plain	queries

and	updates.

EF	Core	is	steadily	progressing,	but

it’s	a	big	rewrite	and,	as	you	might

have	already	experienced	in	your

career,	any	big	rewrite	takes	a	lot	of

time.	As	of	EF	Core	2.0,	the	team	still

doesn’t	recommend	moving	an	EF6

application	to	EF	Core	unless	you

have	a	compelling	reason	to	try	the

change.	The	recommended	approach

is	to	rewrite	the	data	access	layer	with

EF	Core	from	the	ground	up,	finding

workarounds	whenever	you	run	into	a

feature	that	either	doesn’t	exist	or

works	differently.	This	approach	to

very	basic	CRUD	code	works

acceptably	well	today.	You	can	read

the	current	roadmap	of	EF	Core	at

http://github.com/aspnet/EntityFra

meworkCore/wiki/Roadmap

(http://github.com/aspnet/EntityFrameworkCo

re/wiki/Roadmap).	I	particularly

recommend	the	section	Critical

O/RM	features	in	the	Backlog	area.

Overall,	what	should	you	do	with	a

significant	EF6	data	access	layer	when

the	application	is	being	ported	to

ASP.NET	Core?	Here’s	where

bounded	contexts	come	handy.	Figure

16-6	shows	the	first	approach.	You

keep	the	application	as	a	monolith

and	just	postpone	the	cross-platform

challenge	and	opt	for	the	full	.NET

Framework	as	the	target.

FIGURE	16-6	Moving	to	ASP.NET	Core	but	targeting	the	.NET

Framework	to	preserve	EF6	code

Alternatively,	you	might	want	to

isolate	the	EF6	data	access	layer	to	a

standalone	API	and	detach	it	from	the

main	application,	which	could	be

developed	for	ASP.NET	Core	and	the

.NET	Core	framework.	In	doing	so,

you	could	also	have	EF	Core	and	EF6

code	partitioning	the	functionalities	of

the	data	access	layer.	(See	Figure	16-

7.)

FIGURE	16-7	Separating	the	context	of	the	main	application	and

the	context	of	EF6

This	pattern,	which	ultimately	leads	to

a	microservice	architecture,	can	be

used	as	often	as	you	wish,	and	it	also

finds	a	match	in	the	container

technology.

One	More	Word	on	Containers

When	it	comes	to	partitioning	the

application	into	smaller	pieces,	you

start	having	a	microservice

architecture.	Should	the	industry

ever	agree	on	a	shared	definition

for	the	term	microservice,	then	the

definition	wouldn’t	be	too	different

from	the	following:	A	microservice

is	an	independently	deployable

application	that	runs	autonomously

and	uses	its	own	technologies,

languages,	and	infrastructure.

Independently	deployable,	per	se,

simply	means	that	the	microservice

can	be	deployed	without	affecting

the	rest	of	the	application.	The

deployment	can	take	place	in	many

ways,	including	via	containers.

Today,	containers	are	often	used

within	a	microservice	architecture.	In

general,	you	can	containerize	any	web

application	or	web	API	regardless	of

its	architecture	and	technologies.	All

technologies	are	equal	to	the

container’s	eyes,	but	inevitably,	some

are	more	equal	than	others.	For

example,	you	can	containerize	any

.NET	Framework	application,	but	that

would	be	only	possible	on	Windows

containers.	Instead,	a	.NET	Core

application	can	be	containerized	in

both	Windows	and	Linux.	Moreover,

the	size	of	.NET	Core	container	image

is	much	smaller	than	the	same	image

for	a	non-.NET	Core	application.

Finally,	because	a	.NET	Core

application	is	cross-platform,	the

image	can	be	dropped	to	a	Linux

container	as	well	as	a	Windows

container.

SUMMARY

Nobody	should	adopt	ASP.NET

Core	just	because	it	is	a	new

version	of	the	old	familiar	ASP.NET

framework.	Instead,	you	should

look	to	see	if	there	is	business	value

for	you	in	ASP.Net	Core.	The

primary	value	of	ASP.NET	Core	is

in	its	cross-platform	nature,	which

concretely	allows	companies	to

save	money	by	hosting	applications

—for	production	or	testing—on

cheaper	Linux	servers.	Another

factor	to	consider	is	the	improved

performance	of	the	ASP.NET	Core

runtime	and,	at	the	same	time,	the

extreme	modularity	of	the

framework	that	makes	good	fodder

for	highly	scalable	applications.

All	this	said,	if	you’re	not	experiencing

performance	issues	today	and	don’t

have	significant	extensions	and

architecture	changes	in	sight,	porting

for	the	sake	of	porting	is	never	a	savvy

choice.

Index
SYMBOLS

@page	directive,	implementing	Razor

pages,	122–123

NUMBERS

3-tier	architectures,	data	access,

209–210

A

AAS	(Azure	App	Service),	deploying

applications	to

Azure,	354–355,	356

access	control,	web	API	security,

249–250

action	methods,	65

controllers	and,	82

basic	data	retrieval,	82–83

model	binding,	84–90

serving	HTML	as	plain	text,	102

views,	refreshing	with	HTML,

279–280

actions

action	invoker,	65–66

ASP.NET	MVC

action	invoker,	65–66

filters,	66

processing	results,	66

defined,	65

AddMvc	method,	adding	services	to

ASP.NET	MVC,	50–51

ADO.NET	adapters,	data	access,	216

fetching	via	adapters,	218–219

issuing	direct	SQL	commands,

217–218

loading	data	in	disconnected

containers,	218

Adventures	of	Tom	Sawyer,	The,	69

anchor	tag	helpers	(Razor),	139

Angular,	building	web	apps,	293

Animal	Farm,	15

Apache,	deploying	applications,

357–358

application	and	system	services,

ASP.NET	Core,	25–26

application	layer	(application

architecture),	168–169

applications

data	access

3-tier	architectures,	209–210

ADO.NET	adapters,	216

ADO.NET	adapters,	fetching	via

adapters,	218–219

ADO.NET	adapters,	issuing	direct

SQL

commands,	217–218

ADO.NET	adapters,	loading	data	in

disconnected

containers,	218

connections,	sharing,	231–232

CQRS	design,	211–213

EF	Core,	222

EF	Core,	database	modeling,	222–226

EF	Core,	EF6,	214–216

infrastructure	layer	(application

architecture),	213–214

layered	archtectures,	209–210

layered	archtectures,	CQRS	design,

211

layered	archtectures,	infrastructure

layer,	213–214

Micro	O/RM	frameworks,	219,	220

monolithic	applications,	210–211

NoSQL	stores,	221

NoSQL	stores,	in-memory	stores,

221–222

NoSQL	stores,	physical	stores,	221

persistence,	209

transactions,	controlling,	230–231

transactions,	sharing,	231–232

deploying,	343,	350–351

to	Apache,	357–358

ASP.NET	Core,	benefits	of,	366

to	Azure,	354–357

Docker	containers,	359–361

to	IIS,	351–353

to	Linux,	357–359

to	Nginx,	358–359

framework-dependent	applications,

publishing	with

CLI	tools,	350

Hello	World	application,	35–36

layered	architecture,	166–167

application	layer,	168–169

domain	layer,	169–170

infrastructure	layer,	170,	213–214

input	model,	168

presentation	layer,	167–168

view	model,	168

lifetimes	of,	ASP.NET	Core	Host

runtime

environments,	323–324

monolithic	applications,	data	access,

210–211

publishing,	343

with	CLI	tools,	349–350

from	Visual	Studio,	343–349

security,	177,	178

self-contained	applications,

publishing

from	Visual	Studio,	348–349

with	CLI	tools,	350

starting,	ASP.NET	Core	greenfield

development,	370

areas,	107

ASF	(Azure	Service	Fabric),	deploying

applications	to

Azure,	356

Asimov,	Isaac,	295

ASP.NET	Core,	9–10,	15,	363

applications,	starting,	370

async	data	processing,	232–233,	234

benefits	of,	364

deploying	applications,	366

development	experience,	367

microservices,	367

multi-platform	support,	364–365

open	source	coding,	367

performance,	365–366

brownfield	development,	368

business	value	of,	363–364

content	root	folders,	18

creating	projects,	15–17,	20

content	root	folders,	18

host	extension	methods,	20

host	instances,	21

operational	overview	of,	19–20

program	files,	19–21

startup	files,	21–22

wwwroot	folders,	18–19

default	web	files,	supporting,	44

dependency	injection,	28–29

external	DI	libraries,	32,	33–34

injection	points,	32–33

lifetime	of	objects,	32

registering	types,	30

resolving	types	based	on	runtime

conditions,	30

resolving	types	on	demand,	31

deploying	applications,	366

development	experience,	367

empty	projects,	viewing,	17–18

global	data	and,	75

greenfield	development,	369

ASP.NET	Core	as	a	viable	solution,

371

NET	Standard	specification,	369–370

programming	tasks,	370–371

hosts

extension	methods,	20

instances,	21

microservices,	367

containers	and,	376–377

EF	Core	and,	375–376

EF6,	375–376

middleware,	332

next	middleware,	333–334

packaging	components,	338–340

pipeline	architecture,	332–335

registering	components,	334–335

structure	of	middleware	components,

333

writing	components,	335–338

MIME	types,	44–45

mini	websites,	building,	34

multi-platform	support,	364–365

multiple	web	roots,	42–44

NET	frameworks	and,	374–375,	376

open	source	coding,	367

operational	overview	of,	19–20

performance,	365–366

program	files,	19–21

REST	and,	245

action	results,	245–246

content	negotiation,	247–248

skeleton	of	common	actions,	246–247

runtime	environments,	22,	317–318

ASP.NET	pipeline,	27–28

environment-specific	configuration

methods,	26–27

hosting	environment,	23–25

resolving	the	startup	type,	23

system	and	application	services,

25–26

single	endpoint	websites,	building,	34

startup	files,	21–22

static	file	service,	41–42

unsupported	Microsoft	frameworks,

374

web	server	files,	accessing,	34

wwwroot	folders,	18–19

yellowfield	development,	371

ASP.NET	Core	Host,	runtime

environments

application	lifetimes,	323–324

configuring

host	behavior,	318–319

Kestrel	parameters,	330–332

reverse	proxies,	328–330

HTTP	servers	(embedded),	325–328

manually	creating	hosts,	321–322

starting	hosts,	321

Startup	class,	322

web	host	settings,	324–325

WebHost	class,	318–321

ASP.NET	framework	(classic),	4–5,	7

ASP.NET	MVC,	5–6

content	root	folders,	19

decoupling	from	IIS,	8–9

goals	of,	5

guidelines,	7

Integrated	Pipeline	mode,	9

Web	Forms	model,	5

web	services,	need	for	simple	services,

6–7

ASP.NET	Identity

user	authentication,	191–192

configuring	ASP.NET	Identity,

194–195

user	identity	abstraction,	192–193

User	Manager	and,	192

user	store	abstraction,	193–194

User	Manager,	195–196

creating	users,	196–197

fetching	users,	197

user	authentication,	199

user	passwords,	197–198

user	roles,	198

ASP.NET	MVC,	5–6,	49

actions

action	invoker,	65–66

filters,	66

processing	results,	66

areas,	107

controllers,	69

action	filters,	96

action	filters,	anatomy	of,	93

action	filters,	classification	of	filters,

95–96

action	filters,	custom	headers,	97

action	filters,	native	implementation

of,	93–95

action	filters,	visibility	of	filters,	96

action	methods,	82

action	methods,	basic	data	retrieval,

82–83

action	methods,	model	binding,

84–90

action	methods,	restricting	methods

to	AJAX

calls	only,	99–100

action	methods,	setting	request

cultures,	97–99

action	results,	90

action	results,	predefined	action	result

types,	90–91

action	results,	security	action	result

types,	92

action	results,	Web	API	action	result

types,	92–93

action	selectors,	99–100

actions,	75

actions,	mapping	to	methods,	75–78

attribute	routing,	79–82

classes,	69

inherited	controllers,	71

inherited	controllers,	class	names

with

suffixes,	71

inherited	controllers,	class	names

without

suffixes,	71–72

name	discovery,	69

name	discovery,	attribute	routing,

70–71

name	discovery,	convention-based

routing,	70,	71

name	discovery,	mixed	routing

strategies,	71

POCO	controllers,	72

POCO	controllers,	HTTP	content,

74–75

POCO	controllers,	returning	HTML

content,	73

POCO	controllers,	returning	HTML

views,	73–74

POCO	controllers,	returning	plain

data,	72–73

serving	HTML	content	from,	102–103

view	engine	and,	105

HTML	markup,	101

map	of	ASP.NET	MVC	machinery,

64–65

MVC	service	registration,	49–50

activating	services,	51–52

adding	MVC	service,	50

adding	services,	50–51

Razor	pages,	103

routing,	52,	61

accessing	data	programmatically,

60–61

adding	default	routes,	52–53

constraints,	56,	62–63

constraints,	predefined,	63–64

custom	routes,	56–59

data	tokens,	64

dataTokens,	56

defining	routes,	55–56

map	of	ASP.NET	MVC	machinery,

64–65

no	configured	routes,	53–54

order	of	routes,	59

routing	service/pipeline,	55

routing	tables,	55

templates,	56

view	engine,	104

controllers	and,	105

invoking,	104–105

Razor	view	engine,	106–111

templates	and,	105

View	method,	104

ViewResult	objects,	104–105

ASP.NET	pipeline,	ASP.NET	Core,

27–28

async	data	processing,	232

ASP.NET	Core	and,	232–233,	234

data	access,	233–234

attribute	routing,	controllers,	70–71,

79–82

authentication,	178

ASP.NET	Core	greenfield

development,	370

cookie-based	authentication,	178–179

authentication	options,	180

enabling	authentication	middleware,

179–180

external	authentication,	186

adding	support	for,	187–189

information	gathering,	189–190

issues	with,	190–191

middleware

enabling,	179–180

multiple	authentication	schemes,

181–182

multiple	authentication	schemes,

180–181

applying	authentication	middleware,

181–182

enabling	multiple	authentication

handlers,	181

token-based	authentication,	web	API

security,	249–250

user	authentication,	User	Manager

and	ASP.NET

Identity,	199

user	authentication	with	ASP.NET

Identity,	191–192

configuring	ASP.NET	Identity,

194–195

user	identity	abstraction,	192–193

User	Manager	and,	192

user	store	abstraction,	193–194

web	API	security

basic	authentication,	249

token-based	authentication,	249–250

authorization,	199

ASP.NET	Core	greenfield

development,	370

filters,	role-based	authorization,	202

policy-based	authorization,	203

custom	requirements,	206–208

defining	authorization	policies,

203–204

Razor	views,	205–206

registering	policies,	204–205

role-based	authorization,	200

authorization	filters,	202

Authorize	attribute,	200–202

overrules,	202–203

permissions,	202–203

AVM	(Azure	Virtual	Machine),

deploying	applications

to	Azure,	357

Azure

AAS,	deploying	applications	to	Azure,

354–355,	356

ASF,	deploying	applications	to	Azure,

356

AVM,	deploying	applications	to	Azure,

357

deploying	applications,	354

AAS,	354–355,	356

ASF,	356

AVM,	357

Visual	Studio,	357

B

basic	data	retrieval,	82–83

BCL	(Base	Class	Libraries),	4

body	binding,	controller	action

methods,	86–87

booleans,	Razor	programming

language,	131–132

bounded	contexts,	375–376

Bradbury,	Ray,	209

brownfield	development,	ASP.NET

Core,	368

business	value	of	ASP.NET	Core,

363–364

buttons,	submit	buttons	(multiple),

HTML

forms,	260–261

C

check	boxes,	Razor	programming

language,	131–132

child	actions	versus	view	components

(Razor),	148

claims,	modeling	user	identities,	183

assumptions,	184–185

claims	in	code,	183–184

reading	claim	content,	185–186

CLI	(Command-Line	Interface)

Net	Core	CLI	tools,	10,	11

installing,	10

predefined	dotnet	commands,	12

publishing	applications,	349

framework-dependent	applications,

350

self-contained	applications,	350

Client	Hints,	304

client-side	data

binding,	277

Angular,	building	web	apps,	293

KnockoutJS	library,	288–292

Mustache.JS	library,	284–288

refreshing	views	with	HTML,

277–283

refreshing	views	with	JSON,	284

HTML	forms,	259

defining,	259–263

large	forms,	261–263

placing	HTTP	requests	with

JavaScript,	267–268

posting	with	JavaScript,	266

refreshing	screen	after	posting	forms

with

JavaScript,	270–272

serializing	with	JavaScript,	266–267

submit	buttons	(multiple),	260–261

uploading	form	content	with

JavaScript,	266–270

uploading	to	web	servers,	272–275

user	feedback	with	JavaScript,

268–270

PRG	pattern,	263–266

client-side	device	detection,	301

responsive	pages	and,	303–304

user	agent	sniffing,	301–302

WURFL.JS,	302–304

CLR	(Common	Language	Runtime),

3–4

code	blocks,	Razor	programming

language,	128–129

coding

missing	dependencies,	371–372

open	source	coding	and	ASP.NET

Core,	367

portability,	NET	Portability	Analyzer,

372–373,	374

COM	(Component	Object	Model),	3

comments,	Razor	programming

language,	132

compatibility,	WCP,	373–374

complex	views,	breaking	up,	135–136

configuration	data,	collecting,	159

configuration	DOM,	161

configuration	files,	162–163

configuration	roots,	162

reading	configuration	data,	163–164

custom	configuration	providers,

160–161

data	sources,	159–160

environment	variables	provider,	160

injecting	data,	164–165

JSON	data	provider,	160

mapping	configuration	to	POCO

classes,	165–166

in-memory	providers,	160

passing	data,	164

injecting	configuration	data,	164–165

mapping	configuration	to	POCO

classes,	165–166

configuration	data,	reading,	ASP.NET

Core	greenfield

development,	370

configuration	DOM	(Document

Object	Models),	161

configuration	files,	162–163

configuration	roots,	162

reading	configuration	data,	163–164

configuring

ASP.NET	Core	Host,	318–319

ASP.NET	Core	module,	deploying

applications	to

IIS,	352–353

ASP.NET	Identity,	194–195

exception	filters,	174

Conrad,	Joseph,	127

constraints	(routing)

ASP.NET	MVC,	56,	63–64

IntRouteConstraint	class,	ASP.NET

MVC

routing,	62–63

containers

ADO.NET	adapters	and	data	access,

loading	data

in	disconnected	containers,	218

containerization,	defined,	360

DI	containers,	157

Docker	containers,	359

microservices	and,	360

Visual	Studio	and,	360–361

VM	versus,	359–360

microservices	and,	376–377

content	root	folders

ASP.NET	Core	projects,	18

ASP.NET	framework	(classic),	19

Controller	class,	ASP.NET	MVC

routing,	60–61

controllers,	69

action	filters,	96

anatomy	of,	93

classification	of	filters,	95–96

custom	headers,	97

native	implementation	of,	93–95

visibility	of	filters,	96

action	methods,	82

basic	data	retrieval,	82–83

model	binding,	84–90

restricting	methods	to	AJAX	calls

only,	99–100

setting	request	cultures,	97–99

action	results,	90

predefined	action	result	types,	90–91

security	action	result	types,	92

Web	API	action	result	types,	92–93

action	selectors,	99–100

actions,	75,	78

attribute	routing,	79–82

classes,	69

inherited	controllers,	71

class	names	with	suffixes,	71

class	names	without	suffixes,	71–72

name	discovery,	69

attribute	routing,	70–71

convention-based	routing,	70,	71

mixed	routing	strategies,	71

POCO	controllers,	72

HTTP	content,	74–75

returning	HTML	content,	73

returning	HTML	views,	73–74

returning	plain	data,	72–73

routing,	attribute	routing,	79–82

service	injection	(DI)	in,	158–159

serving	HTML	content	from,	102–103

view	engine	and,	105

convention-based	routing,	controller

name

discovery,	70,	71

cookie-based	authentication,	178–179

authentication	middleware,	enabling,

179–180

authentication	options,	180

country	servers,	building	single

endpoint	websites

from	ASP.NET	Core,	37–40

CQRS	design

data	access,	211–212,	213

layered	archtectures,	211

working	with	distinct	databases,	212

PRG	pattern,	263–264

custom	configuration	providers,

configuration	data,

collecting,	160–161

custom	dependencies	(DI),

registering,	154–155

custom	routes,	ASP.NET	MVC,	56–59

customizing

tag	helpers	(Razor),	142–144

view	location	formats,	108–109

D

data	access

3-tier	architectures,	209–210

ADO.NET	adapters,	216

fetching	via	adapters,	218–219

issuing	direct	SQL	commands,

217–218

loading	data	in	disconnected

containers,	218

async	data	processing,	233–234

connections,	sharing,	231–232

CQRS	design,	211–212,	213

layered	archtectures,	211

working	with	distinct	databases,	212

EF	Core,	222

database	modeling,	222–226

EF6,	214–216

infrastructure	layer	(application

architecture),	213

caching	layers,	214

external	services,	214

persistence	layer,	213–214

layered	archtectures,	209–210

CQRS	design,	211

infrastructure	layer,	213–214

Micro	O/RM	frameworks,	219

Micro	O/RM	versus	full	O/RM,

219–220

sample	Micro	O/RM,	220

monolithic	applications,	210–211

NoSQL	stores,	221

in-memory	stores,	221–222

physical	stores,	221

persistence,	209,	213–214

table	data,	EF	Core	and

adding	records,	228–229

deleting	records,	230

fetching	records,	226–227

table	relationships,	228

updating	records,	229

transactions

controlling,	230–231

sharing,	231–232

data	binding	(client-side),	277

Angular,	building	web	apps,	293

KnockoutJS	library,	288,	291–292

binding	commands,	288–289

flow	control,	290–291

observable	properties,	289–290

Mustache.JS	library,	284

JSON,	passing	to	templates,	286–288

syntax	of,	284–286

views,	refreshing	with	HTML,

277–278

action	methods,	279–280

defining	refreshable	areas,	278

limitations	of,	280–281

multiple	view	action	result	type,

281–283

views,	refreshing	with	JSON,	284

data	tokens,	ASP.NET	MVC,	56,	64

databases

CQRS	design,	212

EF	Core,	database	modeling

automatically	creating	databases,

225–226

defining	database	and	model,

222–223

injecting	connection	strings,	223–224

injecting	DbContext	object,	224–225

DateController	class,	ASP.NET	MVC

custom	routes,	57

DbContext	object,	EF	Core	database

modeling,	224–225

DDD	(Domain-Driven	Design),	209

decoupling,	ASP.NET	framework

(classic)	from	IIS,	8–9

DefaultModelBinder	class,	84

deleting	records,	230

dependencies

decoupling	application	codes	from,

152

isolating	by	refactoring,	151–154

lifetime	of	dependencies,	156

missing	dependencies,	371–372

passing,	ASP.NET	Core	greenfield

development,	370

predefined	dependencies,	154

registering	custom	dependencies,

154–155

Dependency	Injection	(DI),	151

ASP.NET	Core,	28–29

external	DI	libraries,	32,	33–34

injection	points,	32–33

lifetime	of	objects,	32

registering	types,	30

resolving	types	based	on	runtime

conditions,	30

resolving	types	on	demand,	31

containers,	157

dependencies

decoupling	application	codes	from,

152

isolating	by	refactoring,	151–154

lifetime	of	dependencies,	156

predefined	dependencies,	154

registering	custom	dependencies,

154–155

EF6	integration,	216

frameworks,	153,	156–157

global	data	and,	75

injection	techniques,	157–158

service	injection

into	controllers,	158–159

in	pipelines,	158

into	views,	159

Service	Locator	patterns,	153–154

views	and,	121

deploying	applications,	343,	350–351

ASP.NET	Core,	benefits	of,	366

Docker	containers,	359

microservices	and,	360

Visual	Studio	and,	360–361

VM	versus,	359–360

to	Apache,	357–358

to	Azure,	354

AAS,	354–355,	356

ASF,	356

AVM,	357

Visual	Studio,	357

to	IIS,	351

ASP.NET	Core	module	configuration,

352–353

deploying	applications,	353

hosting	architectures,	351–352

to	Linux,	357

to	Apache,	357–358

to	Nginx,	358–359

to	Nginx,	358–359

detecting	devices

client-side	device	detection,	301–304

server-side	detection,	312–313

development	experience,	ASP.NET

Core	and,	367

development	strategies	(ASP.NET

Core)

brownfield	development,	368

greenfield	development,	369

ASP.NET	Core	as	a	viable	solution,

371

NET	Standard	specification,	369–370

programming	tasks,	370–371

yellowfield	development,	371

devices

client-side	device	detection,	301

responsive	pages	and,	303–304

user	agent	sniffing,	301–302

WURFL.JS,	302–304

detecting,	301

responsive	pages	and,	303–304

user	agent	sniffing,	301–302

WURFL.JS,	302–304

views

adapting	to	devices,	295

Client	Hints,	304

client-centric	development	strategies,

308–312

client-side	device	detection,	301–304

device-friendly	images,	305–308

feature	detection,	Modernizr	and,

299–301

HTML5,	geolocation,	298–299

HTML5,	input	types,	296–298

redirecting	to	mobile	websites,

313–314

responsive	HTML	templates,	309

routing	to	views,	311–312

server-centric	development

strategies,	312–314

server-side	detection,	312–313

DI	(Dependency	Injection),	151

ASP.NET	Core,	28–29

external	DI	libraries,	32,	33–34

injection	points,	32–33

lifetime	of	objects,	32

registering	types,	30

resolving	types	based	on	runtime

conditions,	30

resolving	types	on	demand,	31

containers,	157

dependencies

decoupling	application	codes	from,

152

isolating	by	refactoring,	151–154

lifetime	of	dependencies,	156

predefined	dependencies,	154

registering	custom	dependencies,

154–155

EF6	integration,	216

frameworks,	153,	156–157

global	data	and,	75

injection	techniques,	157–158

service	injection

into	controllers,	158–159

in	pipelines,	158

into	views,	159

Service	Locator	patterns,	153–154

views	and,	121

di	Lampedusa,	Giuseppe	Tomasi,	3

discovery,	controllers,	69

attribute	routing,	70–71

convention-based	routing,	70,	71

mixed	routing	strategies,	71

Docker	containers,	359

containerizarion,	defined,	360

microservices	and,	360

Visual	Studio	and,	360–361

VM	versus,	359–360

DOM	(Document	Object	Models),

configuration

DOM,	161

configuration	files,	162–163

configuration	roots,	162

reading	configuration	data,	163–164

domain	layer	(application

architecture),	169–170

dotnet	driver	tool,	11

common	options,	12

host	options,	11

predefined	dotnet	commands,	12

dynamic	objects,	pasing	data	to	views,

118–119

E

EF	(Entity	Framework)	Core,	222,

375–376

database	modeling

automatically	creating	databases,

225–226

defining	database	and	model,

222–223

injecting	connection	strings,	223–224

injecting	DbContext	object,	224–225

EF6,	214–215

integrating	with	DI,	216

retrieving	connection	strings,	215

wrapping	code	in	a	seperate	class

library,	215

table	data

adding	records,	228–229

deleting	records,	230

fetching	records,	226–227

table	relationships,	228

updating	records,	229

EF6	(Entity	Framework	6),	214–215,

375–376

integrating	with	DI,	216

retrieving	connection	strings,	215

wrapping	code	in	a	seperate	class

library,	215

email	tag	helpers	(Razor),	142–144

encryption,	HTTPS,	177,	178

endpoints

ASP.NET	Core	Host	runtime

environments,

binding	with	Kestrel,	330–331

binding	with	Kestrel,	330–331

single	endpoint	websites,	building

from	ASP.NET

Core,	34

country	servers,	37–40

Hello	World	application,	35–36

launching	websites,	36–37

microservices,	40–41

environment	variables	provider,

collecting

configuration	data,	160

Evans	and	DDD,	Eric,	209

exception	handling,	170

exception	filters,	174

configuring,	174

startup	exceptions,	174–175

logging	exceptions,	175

creating	logs,	175–176

linking	logging	providers,	175

middleware,	170–171

capturing	status	codes,	172

error	handling	in	development,

172–173

error	handling	in	production,	171

retrieving	exception	details,	171–172

external	authentication,	186

adding	support	for,	187–189

information	gathering,	189–190

issues	with,	190–191

external	DI	frameworks,	connecting

to,	156–157

external	DI	libraries,	ASP.NET	Core,

32,	33–34

F

Fahrenheit	451,	209

feature	detection,	Modernizr	and,

299–301

feedback	(user),	HTML	forms,

268–270

file	servers	and	web	API,	terminating

middleware	to

catch	requests,	240–241

finding	Razor	pages,	103

Fitzgerald,	Francis	Scott,	151

flow	control,	KnockoutJS	library,

290–291

Follett,	Ken,	363

forced	binding,	controller	action

methods,	85–86

forms	(HTML),	259

defining,	259–263

JavaScript	and

placing	HTTP	requests,	267–268

posting	forms,	266

refreshing	screen	after	posting	forms,

270–272

serializing	forms,	266–267

uploading	form	content,	266–270

uploading	HTML	forms	to	web

servers,	274

user	feedback,	268–270

large	forms,	261–263

submit	buttons	(multiple),	260–261

uploading	to	web	servers,	272–275

forms	(Razor	pages)

adding	to	Razor	pages,	123–124

form	tag	helpers,	140

initializing	forms,	124

processing	input,	124

frameworks

applications	(framework-dependent),

publishing

with	CLI	tools,	350

ASP.NET	Core,	9–10,	15

content	root	folders,	18

creating	projects,	15–17,	20

creating	projects,	content	root	folders,

18

creating	projects,	host	extension

methods,	20

creating	projects,	host	instances,	21

creating	projects,	operational

overview,	19–20

creating	projects,	program	files,	19–21

creating	projects,	startup	files,	21–22

creating	projects,	wwwroot	folders,

18–19

default	web	files,	supporting,	44

dependency	injection,	28–29

dependency	injection,	external	DI

libraries,	32,	33–34

dependency	injection,	injection

points,	32–33

dependency	injection,	lifetime	of

objects,	32

dependency	injection,	registering

types,	30

dependency	injection,	resolving	types

based

on	runtime	conditions,	30

dependency	injection,	resolving	types

on

demand,	31

global	data	and,	75

host	extension	methods,	20

host	instances,	21

MIME	types,	44–45

mini	websites,	building,	34

multiple	web	roots,	42–44

operational	overview	of,	19–20

program	files,	19–21

runtime	environments,	22

runtime	environments,	ASP.NET

pipeline,	27–28

runtime	environments,	environment-

specific

configuration	methods,	26–27

runtime	environments,	hosting

environment,	23–25

runtime	environments,	resolving	the

startup

type,	23

runtime	environments,	system	and

application

services,	25–26

single	endpoint	websites,	building,

34–41

startup	files,	21–22

static	file	service,	41–42

viewing	empty	projects,	17–18

web	server	files,	accessing,	41–45

wwwroot	folders,	18–19

ASP.NET	framework	(classic),	4–5,	7

ASP.NET	MVC,	5–6

content	root	folders,	19

decoupling	from	IIS,	8–9

goals	of,	5

guidelines,	7

Integrated	Pipeline	mode,	9

need	for	simple	web	services,	6–7

Web	Forms	model,	5

DI	framework,	153

connecting	to	external	DI	frameworks,

156–157

global	data	and,	75

EF	Core,	375–376

EF6,	375–376

Micro	O/RM	frameworks,	data	access,

219

Micro	O/RM	versus	full	O/RM,

219–220

sample	Micro	O/RM,	220

Microsoft	frameworks	(unsupported),

374

NET	Core,	7–8

CLI	tools,	10,	11

CLI	tools,	installing,	10

CLI	tools,	predefined	dotnet

commands,	12

dotnet	driver	tool,	11

dotnet	driver	tool,	common	options,

12

dotnet	driver	tool,	host	options,	11

dotnet	driver	tool,	predefined	dotnet

commands,	12

Github	links,	8

NET	Core	2.0,	8

NET	framework	versus,	8

NET	framework,	4

ASP.NET	Core	and,	374–375,	376

BCL,	4

NET	Core	versus,	8

Web	API	framework,	6

G

geolocation,	HTML5,	298–299

Github,	NET	Core	links,	8

global	data,	DI	framework	and,	75

Great	Gatsby,	The,	151

greenfield	development,	369

ASP.NET	Core	as	a	viable	solution,

371

NET	Standard	specification,	369–370

programming	tasks,	370–371

Guthrie,	Scott,	15

H

Hamlet,	317

Harry	Potter	and	the	Goblet	of	Fire,

259

header	binding,	controller	action

methods,	86

Hello	World	application,	35–36

HomeController	class,	mapping

controller	actions	to

methods,	75

hosting	environment,	ASP.NET	Core,

23–25

hosting.json	files,	HTTP	servers

(embedded)	and

ASP.NET	Core	Host	runtime

environments,	327–328

HTML	(Hypertext	Markup	Language)

ASP.NET	MVC,	HTML	markup,	101

device-friendly	views,	responsive

HTML

templates,	309

forms,	259

defining,	259–263

large	forms,	261–263

placing	HTTP	requests	with

JavaScript,	267–268

posting	with	JavaScript,	266

refreshing	screen	after	posting	forms

with

JavaScript,	270–272

serializing	with	JavaScript,	266–267

submit	buttons	(multiple),	260–261

uploading	form	content	with

JavaScript,	266–270

uploading	to	web	servers,	272–275

user	feedback	with	JavaScript,

268–270

HTML	helper

methods,	130

Razor	programming	language,

130–131

Razor	tag	helpers	versus,	145

HTML5

geolocation,	298–299

input	types,	296–298

partial	views,	134–135

breaking	up	complex	views,	135–136

passing	data	to,	136

reusable	HTML	snippets,	135

POCO	controllers

HTTP	content,	74–75

returning	HTML	content,	73

returning	HTML	views,	73–74

Razor	programming	language,	output

encoding,	129–130

reusable	HTML	snippets,	Razor

partial	views,	135

serving	as	plain	text	from	action

methods,	102

serving	content	from

controllers,	102–103

Razor	pages,	103

Razor	templates,	103

terminating	middleware,	101–102

tag	helpers	(Razor),	attaching	to

HTML

elements,	137–138

views,	refreshing,	277–283

action	methods,	279–280

defining	refreshable	areas,	278

limitations	of,	280–281

multiple	view	action	result	type,

281–283

HTTP	(Hypertext	Transfer	Protocol)

ASP.NET	Core	Host	runtime

environments,

embedded	HTTP	servers,	325–328

ASP.NET	Core	middleware

components,	HTTP

responses,	337–338

embedded	HTTP	servers,	ASP.NET

Core	Host

runtime	environments,	325–328

HTML	forms,	placing	HTTP	requests

with

JavaScript,	267–268

HTTP	endpoints	and	web	API,	237

requesting	data	in	particular	formats,

239–240

restricting	verbs,	240

returning	data	types,	238–239

returning	JSON	data	from	action

methods,	238

POST	requests,	PRG	pattern,

263–266

verbs

intended	meanings	of,	242–243

mapping	controller	actions	to

methods,	77–78

restricting	in	web	API	design,	240

Http.sys,	HTTP	servers	(embedded),

ASP.NET	Core

Host	runtime	environments,	326–327

HTTPS	(Hypertext	Transfer	Protocol

Secure)

encryption,	177,	178

Kestrel,	switching	to,	331

security	certificates,	178

I

I,	Robot,	295

IActionContextAccessor	service,	61

identity	management	servers,	web

API	security,	250–251,	256–257

adapting	web	API	to	identity	server,

255–256

adding

API	resources,	253–254

clients,	252–253

building	host	environments,	251–252

persistence	of	clients/resources,

254–255

signing	credentials,	255

IIS	(Internet	Information	Services)

ASP.NET	framework	(classic),

decoupling

from	IIS,	8–9

deploying	applications,	351,	353

ASP.NET	Core	module	configuration,

352–353

hosting	architectures,	351–352

Integrated	Pipeline	mode,	9

images

device-friendly	images,	305

ImageEngine	platform,	306

PICTURE	element,	305–306

resizing	images	automatically,

306–308

ImageEngine	platform,	306

resizing	images	automatically,

306–308

infrastructure	layer	(application

architecture),	170

initializing	forms,	Razor	pages,	124

injection	points,	ASP.NET	Core	DI,

32–33

inline	expressions,	Razor

programming	language,	128

input	model	(layered	architecture	of

applications),	168

input	tag	helpers	(Razor),	140–141

Integrated	Pipeline	mode,	9

IntRouteConstraint	class,	ASP.NET

MVC

routing,	62–63

J

JavaScript,	HTML	forms

placing	HTTP	requests,	267–268

posting	forms,	266

refreshing	screen	after	posting	forms,

270–272

serializing	forms,	266–267

uploading

content,	266–270

to	web	servers,	274

user	feedback	with	JavaScript,

268–270

JSON	(JavaScript	Object	Notation)

collecting	configuration	data,	160

hosting.json	files,	HTTP	servers

(embedded),

ASP.NET	Core	Host	runtime

environments,	327–328

passing	JSON	to	templates,	286–288

refreshing	views,	284

K

Kafka,	Franz,	101

Kennedy,	President	John	F.	15

Kestrel,	10

ASP.NET	Core	Host	runtime

environments

binding	endpoints,	330–331

configuring	Kestrel	parameters,

330–332

filtering	incoming	requests,	331–332

HTTP	servers	(embedded),	ASP.NET

Core	Host

runtime	environments,	326–327

HTTPS,	switching	to,	331

KnockoutJS	library,	288,	291–292

binding	commands,	288–289

flow	control,	290–291

observable	properties,	289–290

L

Lady	Chatterley’s	Lover,	237

Lawrence,	D.H.237

layered	architectures,	166–167

application	layer,	168–169

data	access,	209–210,	211

domain	layer,	169–170

infrastructure	layer,	170

input	model,	168

presentation	layer,	167

view	model,	168

layout	templates	(Razor),	132

custom	sections,	defining,	134

layout	guidelines,	132–133

layouts

passing	data	to	via	layout	templates

(Razor),	133

view	model	classes,	133

Leopard,	The,	3

libraries

BCL,	4

external	DI	libraries,	ASP.NET	Core,

32,	33–34

KnockoutJS	library,	288,	291–292

binding	commands,	288–289

flow	control,	290–291

observable	properties,	289–290

Mustache.JS	library,	284

JSON,	passing	to	templates,	286–288

syntax	of,	284–286

linking	logging	providers,	175

Linux,	deploying	applications,	357

to	Apache,	357–358

to	Nginx,	358–359

logging	exceptions,	175

creating	logs,	175–176

linking	logging	providers,	175

M

Map	method,	writing	ASP.NET	Core

middleware

components,	336–337

mapping

configuration	data	to	POCO	classes,

165–166

controller	actions	to	methods,	75–76,

77–78

Razor	pages	to	URL,	123

MapRoute	method,	59

MapWhen	method,	writing	ASP.NET

Core	middleware

components,	337

Melville,	Herman,	49

Memoirs	of	Hadrian,	277

memory,	in-memory	providers,

collecting

configuration	data,	160

methods

actions	and,	65

controller	actions,	mapping	to

methods,	75–76,	77–78

Micro	O/RM	frameworks,	data	access,

219

Micro	O/RM	versus	full	O/RM,

219–220

sample	Micro	O/RM,	220

microservices

ASP.NET	Core	benefits,	367

containers,	376–377

Docker	containers	and,	360

EF	Core,	375–376

EF6,	375–376

single	endpoint	websites,	building

from	ASP.NET

Core,	40–41

Microsoft	frameworks	(unsupported),

374

middleware

ASP.NET	Core	middleware,	332

creating	middleware	classes,	338–339

next	middleware,	333–334

packaging	components,	338–340

pipeline	architecture,	332–335

registering	components,	334–335

registering	middleware	classes,

339–340

structure	of	middleware	components,

333

writing	components,	335–338

authentication	middleware

enabling,	179–180

multiple	authentication	schemes,

181–182

exception	handling,	170–171

capturing	status	codes,	172

error	handling	in	development,

172–173

error	handling	in	production,	171

retrieving	exception	details,	171–172

serving	HTML	content	from,	101–102

web	API	file	servers,	terminating

middleware	to

catch	requests,	240–241

MIME	types,	ASP.NET	Core,	44–45

mini	websites,	building	from

ASP.NET	Core,	34

missing	dependencies,	371–372

mobile	websites,	redirecting	device

views	to,	313–314

Moby	Dick,	49

model	binding,	controller	action

methods,	84

body	binding,	86–87

complex	types,	87,	89–90

controlling	binding	names,	89

DefaultModelBinder	class,	84

forced	binding,	85–86

header	binding,	86

primitive	types,	84–85,	87–89

Modernizr,	feature	detection	in	views,

299–301

multi-platform	support,	ASP.NET

Core,	364–365

Mustache.JS	library,	284

JSON,	passing	to	templates,	286–288

syntax	of,	284–286

MVC	application	model,	49

actions

action	invoker,	65–66

filters,	66

processing	results,	66

controllers,	69

action	filters,	96

action	filters,	anatomy	of,	93

action	filters,	classification	of	filters,

95–96

action	filters,	custom	headers,	97

action	filters,	native	implementation

of,	93–95

action	filters,	visibility	of	filters,	96

action	methods,	82

action	methods,	basic	data	retrieval,

82–83

action	methods,	model	binding,

84–90

action	methods,	restricting	methods

to	AJAX

calls	only,	99–100

action	methods,	setting	request

cultures,	97–99

action	results,	90

action	results,	predefined	action	result

types,	90–91

action	results,	security	action	result

types,	92

action	results,	Web	API	action	result

types,	92–93

action	selectors,	99–100

actions,	75

actions,	mapping	to	methods,	75–78

attribute	routing,	79–82

classes,	69

inherited	controllers,	71

inherited	controllers,	class	names

with

suffixes,	71

inherited	controllers,	class	names

without

suffixes,	71–72

name	discovery,	69

name	discovery,	attribute	routing,

70–71

name	discovery,	convention-based

routing,	70,	71

name	discovery,	mixed	routing

strategies,	71

POCO	controllers,	72

POCO	controllers,	HTTP	content,

74–75

POCO	controllers,	returning	HTML

content,	73

POCO	controllers,	returning	HTML

views,	73–74

POCO	controllers,	returning	plain

data,	72–73

map	of	ASP.NET	MVC	machinery,

64–65

MVC	service	registration,	49–50

activating	services,	51–52

adding	MVC	service,	50

adding	services,	50–51

routing,	52,	61

accessing	data	programmatically,

60–61

adding	default	routes,	52–53

constraints,	56,	62–63

constraints,	predefined,	63–64

custom	routes,	56–59

data	tokens,	64

dataTokens,	56

defining	routes,	55–56

map	of	ASP.NET	MVC	machinery,

64–65

no	configured	routes,	53–54

order	of	routes,	59

routing	service/pipeline,	55

routing	tables,	55

templates,	56

MvcRouteHandler	class,	routing

service/pipeline,	55

MvcRouteHandler	service,	49–50

N

name	discovery,	controllers,	69

attribute	routing,	70–71

convention-based	routing,	70,	71

mixed	routing	strategies,	71

NET	Core,	7–8

ASP.NET	Core,	9–10,	15

content	root	folders,	18

creating	projects,	15–17,	20

creating	projects,	content	root	folders,

18

creating	projects,	host	extension

methods,	20

creating	projects,	host	instances,	21

creating	projects,	operational

overview,	19–20

creating	projects,	program	files,	18

creating	projects,	startup	files,	21–22

creating	projects,	wwwroot	folders,

18–19

default	web	files,	supporting,	44

dependency	injection,	28–29

dependency	injection,	external	DI

libraries,	32,	33–34

dependency	injection,	injection

points,	32–33

dependency	injection,	lifetime	of

objects,	32

dependency	injection,	registering

types,	30

dependency	injection,	resolving	types

based

on	runtime	conditions,	30

dependency	injection,	resolving	types

on

demand,	31

host	extension	methods,	20

host	instances,	21

MIME	types,	44–45

mini	websites,	building,	34

multiple	web	roots,	42–44

operational	overview	of,	19–20

program	files,	19–21

runtime	environments,	22

runtime	environments,	ASP.NET

pipeline,	27–28

runtime	environments,	environment-

specific

configuration	methods,	26–27

runtime	environments,	hosting

environment,	23–25

runtime	environments,	resolving	the

startup

type,	23

runtime	environments,	system	and

application

services,	25–26

single	endpoint	websites,	building,

34–41

startup	files,	21–22

static	file	service,	41–42

viewing	empty	projects,	17–18

web	server	files,	accessing,	41–45

wwwroot	folders,	18–19

CLI	tools,	10,	11

installing,	10

predefined	dotnet	commands,	12

dotnet	driver	tool,	11

common	options,	12

host	options,	11

predefined	dotnet	commands,	12

Github	links,	8

NET	Core	2.0,	8

NET	framework	versus,	8

NET	framework,	NET	Core	versus,	8

NET	framework,	4

ASP.NET	Core	and,	374–375,	376

BCL,	4

NET	Core	versus,	8

NET	platform,	3

ASP.NET	framework	(classic),	4–5,	7

ASP.NET	MVC,	5–6

content	root	folders,	19

decoupling	from	IIS,	8–9

goals	of,	5

guidelines,	7

Integrated	Pipeline	mode,	9

need	for	simple	web	services,	6–7

Web	Forms	model,	5

CLR,	3–4

NET	framework,	4

Web	API	framework,	6

NET	Portability	Analyzer,	372–373,

374

NET	Standard	specification,	ASP.NET

Core	greenfield

development,	369–370

Nginx,	deploying	applications,

358–359

NoSQL	stores,	data	access,	221

in-memory	stores,	221–222

physical	stores,	221

O

O/RM	frameworks

Micro	O/RM	frameworks

data	access,	219

data	access,	Micro	O/RM	versus	full

O/RM,	219–220

data	access,	sample	Micro	O/RM,	220

observables	(KnockoutJS	library),

289–290

open	source	coding,	ASP.NET	Core

and,	367

Orwell,	George,	15

output	encoding,	Razor	programming

language,	129–130

overrules,	role-based	authorization,

202–203

OWIN	(Open	Web	Interface)

architecture,	decoupling

ASP.NET	framework	(classic)	from

IIS,	8–9

P

packaging	ASP.NET	Core	middleware

components

creating	middleware	classes,	338–339

registering	middleware	classes,

339–340

@page	directive,	implementing	Razor

pages,	122–123

Pages	folders,	implementing	Razor

pages,	123

parsing	Razor	templates,	112–113

partial	views,	134–135

complex	views,	breaking	up,	135–136

passing	data	to,	136

reusable	HTML	snippets,	135

passing	dependencies,	ASP.NET	Core

greenfield

development,	370

passwords	(user),	User	Manager	and

ASP.NET

Identity,	197–198

performance,	ASP.NET	Core,

365–366

permissions,	role-based

authorization,	202–203

persistence

data	access,	209,	213–214

identity	management	servers	and	web

API

security,	254–255

PICTURE	element,	device-friendly

images,	305–306

Pillars	of	the	Earth,	The,	363

pipelines

ASP.NET	Core	middleware,	332–335

ASP.NET	MVC,	routing

service/pipeline,	55

ASP.NET	pipeline,	ASP.NET	Core,

27–28

Integrated	Pipeline	mode,	9

service	injection	(DI)	in,	158

Pirsig,	Robert,	343

plain	text,	serving	HTML	as,	102

planning

tag	helpers	(Razor),	143

web	API	security,	248–249

POCO	classes,	mapping	configuration

data	to,	165–166

POCO	controllers,	72

HTTP	content,	74–75

returning

HTML	content,	73

HTML	views,	73–74

plain	data,	72–73

policy-based	authorization,	203

custom	requirements,	206–208

defining	authorization	policies,

203–204

Razor	views,	205–206

registering	policies,	204–205

portability,	NET	Portability	Analyzer,

372–373,	374

POST	requests,	PRG	pattern,

263–266

precompiled	Razor	views,	115–116

predefined	action	result	types,	90–91

predefined	dependencies	(DI),	154

presentation	layer	(application

architecture),	167

input	model,	168

view	model,	168

PRG	(Post-Request-Get)	pattern,

263–266

program	files,	ASP.NET	Core	projects,

19–21

programming	tasks	in	greenfield

developments,	370–371

proxies	(reverse),	ASP.NET	Core	Host

runtime

environments,	328–330

publishing	applications,	343

from	Visual	Studio,	343–344

choosing	publishing	targets,	344–345

publish	profile	file,	345

publishing	files	to	local	folders,

345–347

publishing	self-contained

applications,	348–349

self-contained	applications

with	CLI	tools,	350

from	Visual	Studio,	348–349

with	CLI	tools,	349

publishing	framework-dependent

applications,	350

publishing	self-contained

applications,	350

Q

queries,	SQL	(Structured	Query

Language)

direct	SQL	commands,	issuing,

217–218

NoSQL	stores

data	access,	221

data	access,	in-memory	stores,

221–222

data	access,	physical	stores,	221

R

Razor	pages,	121–122

complexity	of,	125

finding,	103

forms

adding	to	Razor	pages,	123–124

initializing,	124

processing	input,	124

implementing,	122

@page	directive,	122–123

mapping	to	URL,	123

Pages	folders,	123

mapping	to	URL,	123

serving	HTML	content	from,	103

Razor	programming	language,	127

code	expressions,	128

booleans,	131–132

check	boxes,	131–132

code	blocks,	128–129

comments,	132

HTML	helper,	130–131

inline	expressions,	128

output	encoding,	129–130

statements,	129

layout	templates,	132

defining	custom	sections,	134

layout	guidelines,	132–133

passing	data	to	layouts,	133

pages,	121–122

complexity	of,	125

finding,	103

forms,	adding	to	Razor	pages,

123–124

forms,	initializing,	124

forms,	processing	input,	124

implementing,	122

implementing,	@page	directive,

122–123

implementing,	mapping	to	URL,	123

implementing,	Pages	folders,	123

mapping	to	URL,	123

serving	HTML	content	from,	103

partial	views,	134–135

breaking	up	complex	views,	135–136

passing	data	to,	136

reusable	HTML	snippets,	135

tag	helpers,	137

anchor	tag	helpers,	139

attaching	to	HTML	elements,	137–138

built-in	tag	helpers,	138–142

custom	tag	helpers,	142–144

email	tag	helpers,	142–144

form	tag	helpers,	140

HTML	helpers	versus,	145

implementing,	143–144

input	tag	helpers,	140–141

planning,	143

registering,	137

select	list	tag	helpers,	141–142

structure	of,	138–139

validation	tag	helpers,	141

templates,	112–113,	115

layout	templates,	132

layout	templates,	defining	custom

sections,	134

layout	templates,	guidelines,	132–133

layout	templates,	passing	data	to

layouts,	133

parsing,	112–113

serving	HTML	content	from,	103

view	objects,	building	from	Razor

templates,	113–115

view	components,	145

aggregating	data,	147–148

child	actions	versus,	148

Composition	UI	pattern,	146–148

connecting	to	Razor	views,	146

impact	of,	148

implementing,	145–146

invoking	view	components,	146

UI	templates,	147–148

writing	view	components,	145–146

view	engine,	106

view	location	expanders,	109–111

view	location	formats,	106–107,

108–109

view	objects,	112

views

authorization	policies,	205–206

connecting	view	components	to,	146

directives,	115

passing	data	to,	116

passing	data	to,	ViewBag	dynamic

object,	118–119

passing	data	to,	ViewData	dictionary,

116–118

precompiled	Razor	views,	115–116

Razor	templates,	112–113,	115

redirecting	device	views	to	mobile

websites,	313–314

refreshing

screen	after	posting	HTML	forms	with

JavaScript,	270–272

views	with	HTML,	277–278

action	methods,	279–280

defining	refreshable	areas,	278

limitations	of,	280–281

multiple	view	action	result	type,

281–283

views	with	JSON,	284

registering

ASP.NET	Core	middleware

components,	334–335

authorization	policies,	204–205

custom	dependencies	(DI),	154–155

middleware	classes,	ASP.NET	Core

middleware

components,	339–340

tag	helpers	(Razor),	137

resizing	images	automatically,

306–308

resolving	the	startup	type,	23

responsive	pages	and	client-side

device

detection,	303–304

REST	(Representational	State

Transfer)

ASP.NET	Core	and,	245

action	results,	245–246

content	negotiation,	247–248

skeleton	of	common	actions,	246–247

web	API,	241–242,	245

action	results,	245–246

benefits	of	REST,	244

content	negotiation,	247–248

HTTP	verbs,	242–243

REST	requests,	243–244

skeleton	of	common	actions,	246–247

SOAP	and,	242

reusable	HTML	snippets,	Razor

partial	views,	135

reverse	proxies,	ASP.NET	Core	Host

runtime

environments,	328–330

roles	(user)

role-based	authorization,	200

authorization	filters,	202

Authorize	attribute,	200–202

overrules,	202–203

permissions,	202–203

User	Manager	and	ASP.NET	Identity,

198

routing

ASP.NET	MVC,	52,	61

accessing	data	programmatically,

60–61

adding	default	routes,	52–53

constraints,	56,	62–63

constraints,	predefined,	63–64

custom	routes,	56–59

data	tokens,	64

dataTokens,	56

defining	routes,	55–56

map	of	ASP.NET	MVC	machinery,

64–65

no	configured	routes,	53–54

order	of	routes,	59

routing	service/pipeline,	55

routing	tables,	55

templates,	56

attribute	routing

controller	name	discovery,	70–71

controllers,	79–82

controllers

name	discovery,	attribute	routing,

70–71

name	discovery,	convention-based

routing,	70,	71

name	discovery,	mixed	routing

strategies,	71

convention-based	routing,	controller

name

discovery,	70,	71

MapRoute	method,	59

RouteData,	60

routing	tables,	ASP.NET	MVC,	55

Rowling,	J.K.	259

runtime	environments,	ASP.NET	Core

Host,	317–318

application	lifetimes,	323–324

configuring

host	behavior,	318–319

Kestrel	parameters,	330–332

reverse	proxies,	328–330

HTTP	servers	(embedded),	325–328

manually	creating	hosts,	321–322

starting	hosts,	321

Startup	class,	322

web	host	settings,	324–325

WebHost	class,	318–321

S

screens,	refreshing	after	posting

HTML	forms	with

JavaScript,	270–272

security

applications,	177,	178

authentication,	178

cookie-based	authentication,	178–180

external	authentication,	186

external	authentication,	adding

support

for,	187–189

external	authentication,	information

gathering,	189–190

external	authentication,	issues	with,

190–191

multiple	authentication	schemes,

180–182

user	authentication,	User	Manager

and

ASP.NET	Identity,	199

user	authentication	with	ASP.NET

Identity,	191–195

authorization,	199

policy-based	authorization,	203–208

role-based	authorization,	200–203

controllers,	security	action	result

types,	92

HTTPS

encryption,	177,	178

security	certificates,	178

security	certificates,	HTTPS,	178

SSL,	177

user	identities,	modeling,	182

claims,	183

claims,	assumptions,	184–185

claims,	in	code,	183–184

claims,	reading	claim	content,

185–186

signing	in/out,	185

web	API,	248

access	control,	249–250

basic	authentication,	249

identity	management	servers,

250–257

planning,	248–249

token-based	authentication,	249–250

select	list	tag	helpers	(Razor),	141–142

self-contained	applications,

publishing

with	CLI	tools,	350

from	Visual	Studio,	348–349

serializing	HTML	forms	with

JavaScript,	266–267

servers

country	servers,	building	single

endpoint	websites

from	ASP.NET	Core,	37–40

device	detection,	312–313

HTTP	servers	(embedded),	ASP.NET

Core	Host

runtime	environments,	325–328

identity	management	servers,	web

API

security,	250–257

web	servers,	uploading	HTML	forms

to,	272–275

Service	Fabric	(ASF),	deploying

applications	to

Azure,	356

service	injection	(DI)

in	pipelines,	158

into	controllers,	158–159

into	views,	159

Service	Locator,	DI	and,	153–154

services

AAS,	deploying	applications	to	Azure,

354–355,	356

ASP.NET	MVC

activating	services,	51–52

adding	services,	50–51

IActionContextAccessor	service,	61

MvcRouteHandler	service,	49–50

routing	service,	ASP.NET	MVC,	55

Shadow	Line,	The,	127

Shakespeare,	William,	317

sharing,	transactions,	231–232

signing	in/out,	user	identities,	185

single	endpoint	websites,	building

from	ASP.NET

Core,	34

country	servers,	37–40

Hello	World	application,	35–36

launching	websites,	36–37

microservices,	40–41

SOAP	(Simple	Object	Access

Protocol),	REST	and	web

API,	242

source	code,	missing	dependencies,

371–372

SQL	(Structured	Query	Language)

direct	SQL	commands,	issuing,

217–218

NoSQL	stores

data	access,	221

data	access,	in-memory	stores,

221–222

data	access,	physical	stores,	221

SSL	(Secure	Sockets	Layer),	177

starting	applications,	ASP.NET	Core

greenfield

development,	370

Startup	class,	ASP.NET	Core	Host

runtime

environments,	322

startup	exceptions,	handling,	174–175

startup	files,	ASP.NET	Core	projects,

21–22

statements,	Razor	programming

language,	129

static	file	service,	41–42,	370

submit	buttons	(multiple),	HTML

forms,	260–261

support,	multi-platform	support,

ASP.NET

Core,	364–365

system	and	application	services,

ASP.NET	Core,	25–26

T

tables

EF	Core	and	table	data

adding	records,	228–229

deleting	records,	230

fetching	records,	226–227

table	relationships,	228

updating	records,	229

routing	tables,	ASP.NET	MVC,	55

tag	helpers	(Razor),	137

anchor	tag	helpers,	139

attaching	to	HTML	elements,	137–138

built-in	tag	helpers,	138–142

custom	tag	helpers,	142–144

email	tag	helpers,	142–144

form	tag	helpers,	140

HTML	helpers	versus,	145

implementing,	143–144

input	tag	helpers,	140–141

planning,	143

registering,	137

select	list	tag	helpers,	141–142

structure	of,	138–139

validation	tag	helpers,	141

templates

device-friendly	views,	responsive

HTML

templates,	309

HTML	templates,	device-friendly

views,	309

layout	templates	(Razor),	132

defining	custom	sections,	134

layout	guidelines,	132–133

passing	data	to	layouts,	133

Razor	templates

building	view	objects	from,	113–115

layout	templates,	132

layout	templates,	defining	custom

sections,	134

layout	templates,	guidelines,	132–133

layout	templates,	passing	data	to

layouts,	133

parsing,	112–113

serving	HTML	content	from,	103

routing	templates,	ASP.NET	MVC,	56

text	templates,	Mustache.JS	library,

284–288

UI	templates	and	view	components

(Razor),	147–148

view	engine	and,	105

terminating	middleware,	serving

HTML	content

from,	101–102

text	templates,	Mustache.JS	library,

284

JSON,	passing	to	templates,	286–288

syntax	of,	284–286

Time	Machine,	The,	177

token-based	authentication,	web	API

security,	249–250

transactions

controlling,	230–231

sharing,	231–232

Trial,	The,	101

Twain,	Mark,	69

U

UI	templates,	view	components

(Razor)	and,	147–148

unsupported	Microsoft	frameworks,

374

updating	records,	229

uploading,	HTML	forms	to	web

servers,	272–275

URL	(Uniform	Resource	Locators)

HTTP	servers	(embedded),	ASP.NET

Core	Host

runtime	environments,	327

MapRoute	method,	59

Razor	pages,	mapping	to	URL,	123

Use	method,	writing	ASP.NET	Core

middleware

components,	335–336

UseMvc	method,	routing

no	configured	routes,	53–54

routing	service/pipeline,	55

UseMvcWithDefaultRoute	method,

adding	default

routes	to	ASP.NET	MVC,	52–53

user	agents,	client-side	device

detection,	301–302

user	identities,	modeling,	182

claims,	183

assumptions,	184–185

claims	in	code,	183–184

reading	claim	content,	185–186

signing	in/out,	185

users

authentication,	User	Manager	and

ASP.NET

Identity,	199

authentication	with	ASP.NET

Identity,	191–192

configuring	ASP.NET	Identity,

194–195

user	identity	abstraction,	192–193

User	Manager	and,	192

user	store	abstraction,	193–194

creating,	User	Manager	and	ASP.NET

Identity,	196–197

fetching,	User	Manager	and	ASP.NET

Identity,	197

HTML	forms,	user	feedback	with

JavaScript,	268–270

passwords,	User	Manager	and

ASP.NET

Identity,	197–198

roles,	User	Manager	and	ASP.NET

Identity,	198

User	Manager	and	ASP.NET	Identity,

195–196

creating	users,	196–197

fetching	users,	197

user	authentication,	199

user	passwords,	197–198

user	roles,	198

V

validation	tag	helpers	(Razor),	141

verbs	(HTTP)

intended	meanings	of,	242–243

restricting	in	web	API	design,	240

view	components	(Razor),	145

aggregating	data,	147–148

child	actions	versus,	148

Composition	UI	pattern,	146–148

connecting	to	Razor	views,	146

impact	of,	148

implementing,	145–146

invoking	view	components,	146

writing,	145–146

view	engine,	104

controllers	and,	105

custom	view	engines,	111–112

invoking,	104

View	method,	104

ViewResult	objects,	104–105

Razor	view	engine,	106

view	location	expanders,	109–111

view	location	formats,	106–107

view	location	formats,	customizing,

108–109

templates	and,	105

view	location	expanders,	109–111

view	location	formats,	Razor	view

engine,	106–107,	108–109

View	method,	invoking	view	engine,

104

view	model	(layered	architecture	of

applications),	168

view	objects,	Razor	views,	112

ViewBag	dynamic	object,	passing	data

to

views,	118–119

ViewData	dictionary,	passing	data	to

views,	116–118

ViewResult	objects,	invoking	view

engine,	104–105

views

adapting	to	devices,	295

centralizing	data	flow,	120–121

client-side	device	detection,	301

responsive	pages	and,	303–304

user	agent	sniffing,	301–302

WURFL.JS,	302–304

complex	views,	breaking	up,	135–136

device-friendly	views

adapting	views	to	devices,	295

Client	Hints,	304

client-centric	development	strategies,

308–312

client-side	device	detection,	301–304

feature	detection,	Modernizr	and,

299–301

HTML5,	geolocation,	298–299

HTML5,	input	types,	296–298

images,	305–308

redirecting	to	mobile	websites,

313–314

responsive	HTML	templates,	309

routing	to	views,	311–312

server-centric	development

strategies,	312–314

server-side	detection,	312–313

DI	systems	and,	121

feature	detection,	Modernizr	and,

299–301

HTML5

geolocation,	298–299

input	types,	296–298

partial	views,	134–135

breaking	up	complex	views,	135–136

passing	data	to,	136

reusable	HTML	snippets,	135

passing	data	to,	116

ViewBag	dynamic	object,	118–119

ViewData	dictionary,	116–118

Razor	views

authorization	policies,	205–206

connecting	view	components	to,	146

directives,	115

pasing	data	to,	116–119

precompiled	Razor	views,	115–116

Razor	templates,	building	view	objects

from,	113–115

Razor	templates,	parsing,	112–113

view	objects,	112

refreshing

with	HTML,	277–283

with	JSON,	284

service	injection	(DI)	in,	159

view	model	classes,	119

guidelines,	119–120

Visual	Studio

creating	ASP.NET	Core	projects,

16–17

deploying	applications	to	Azure,	357

Docker	containers	and,	360–361

NET	Portability	Analyzer,	372–373,

374

publishing	applications,	343–344

choosing	publishing	targets,	344–345

publish	profile	file,	345

publishing	files	to	local	folders,

345–347

publishing	self-contained

applications,	348–349

VM	(Virtual	Machines)

AVM,	deploying	applications	to	Azure,

357

Docker	containers	versus,	359–360

W

WCP	(Windows	Compatibility	Pack),

373–374

web	API,	6

action	result	types,	controllers,	92–93

authentication

basic	authentication,	249

token-based	authentication,	249–250

file	servers

terminating	middleware	to	catch

requests,	240–241

terminating	middleware	to	catch

some

requests,	241

HTTP	endpoints,	237

requesting	data	in	particular	formats,

239–240

restricting	verbs,	240

returning	data	types,	238–239

returning	JSON	data	from	action

methods,	238

REST,	241–242,	245

action	results,	245–246

benefits	of,	244

content	negotiation,	247–248

HTTP	verbs,	242–243

REST	requests,	243–244

skeleton	of	common	actions,	246–247

SOAP	and,	242

security,	248

access	control,	249–250

basic	authentication,	249

identity	management	servers,

250–257

planning,	248–249

token-based	authentication,	249–250

web	apps,	building	with	Angular,	293

Web	Forms	model,	5

web	roots,	ASP.NET	Core,	42–44

web	servers

ASP.NET	Core

static	file	service,	41–42

web	server	files,	accessing,	41–45

Kestrel,	10

uploading	HTML	forms	to,	272–275

web	services,	need	for	simple	services,

6–7

WebHost	class,	ASP.NET	Core	Host

runtime

environments,	318

configuring	host	behavior,	318–319

default	settings,	319–320

starting	hosts,	321

websites

mini	websites,	building	from

ASP.NET	Core,	34

mobile	websites,	redirecting	device

views	to,	313–314

single	endpoint	websites,	building

from	ASP.NET

Core,	34

country	servers,	37–40

Hello	World	application,	35–36

launching	websites,	36–37

microservices,	40–41

Wells,	H.G.	177

writing	ASP.NET	Core	middleware

components

HTTP	responses,	337–338

Map	method,	336–337

MapWhen	method,	337

Use	method,	335–336

WURFL.JS,	client-side	device

detection,	302–304

wwwroot	folders,	18–19

X	-	Y

yellowfield	development,	greenfield

development,	371

Yeoman	project	generator,	creating

ASP.NET	Core

projects,	15–16

Yourcenar,	Marguerite,	277

Z

Zen	and	the	Art	of	Motorcycle

Maintenance,	343

Code	Snippets

Many	titles	include	programming

code	or	configuration	examples.	To

optimize	the	presentation	of	these

elements,	view	the	eBook	in	single-

column,	landscape	mode	and	adjust

the	font	size	to	the	smallest	setting.	In

addition	to	presenting	code	and

configurations	in	the	reflowable	text

format,	we	have	included	images	of

the	code	that	mimic	the	presentation

found	in	the	print	book;	therefore,

where	the	reflowable	format	may

compromise	the	presentation	of	the

code	listing,	you	will	see	a	“Click	here

to	view	code	image”	link.	Click	the

link	to	view	the	print-fidelity	code

image.	To	return	to	the	previous	page

viewed,	click	the	Back	button	on	your

device	or	app.

