
Getting Started 
with Visual 
Studio 2019

Learning and Implementing 
New Features
—
Dirk Strauss



Getting Started with 
Visual Studio 2019
Learning and Implementing 

New Features

Dirk Strauss



Getting Started with Visual Studio 2019: Learning and Implementing 
New Features

ISBN-13 (pbk): 978-1-4842-5448-6		  ISBN-13 (electronic): 978-1-4842-5449-3
https://doi.org/10.1007/978-1-4842-5449-3

Copyright © 2020 by Dirk Strauss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5448-6. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dirk Strauss
Uitenhage, South Africa

https://doi.org/10.1007/978-1-4842-5449-3


To Adele, Tristan, and Irénéé.  
My everything for you, always!



v

Chapter 1: Getting to Know Visual Studio 2019��������������������������������������1

Installing Visual Studio�������������������������������������������������������������������������������������������2

Visual Studio 2019 System Requirements��������������������������������������������������������4

Using Workloads�����������������������������������������������������������������������������������������������6

Exploring the IDE����������������������������������������������������������������������������������������������������9

The Solution Explorer���������������������������������������������������������������������������������������9

Toolbox�����������������������������������������������������������������������������������������������������������19

The Code Editor����������������������������������������������������������������������������������������������21

Navigating Code���������������������������������������������������������������������������������������������������26

Navigate Forward and Backward Commands������������������������������������������������26

Navigation Bar������������������������������������������������������������������������������������������������27

Find All References�����������������������������������������������������������������������������������������28

Reference Highlighting�����������������������������������������������������������������������������������30

Go To Commands��������������������������������������������������������������������������������������������31

Go To Definition�����������������������������������������������������������������������������������������������33

Peek Definition�����������������������������������������������������������������������������������������������34

Table of Contents
About the Author����������������������������������������������������������������������������������ix

About the Technical Reviewer��������������������������������������������������������������xi

Acknowledgments������������������������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv



vi

Features and Productivity Tips�����������������������������������������������������������������������������35

Track Active Item in Solution Explorer������������������������������������������������������������36

Hidden Editor Context Menu���������������������������������������������������������������������������37

Open in File Explorer��������������������������������������������������������������������������������������38

Finding Keyboard Shortcut Mappings������������������������������������������������������������39

Clipboard History��������������������������������������������������������������������������������������������39

Go To Window�������������������������������������������������������������������������������������������������40

Navigate to Last Edit Location������������������������������������������������������������������������41

Multi-caret Editing������������������������������������������������������������������������������������������41

Features in Visual Studio 2019����������������������������������������������������������������������������44

Visual Studio Search���������������������������������������������������������������������������������������44

Solution Filters�����������������������������������������������������������������������������������������������45

Visual Studio IntelliCode���������������������������������������������������������������������������������51

Visual Studio Live Share���������������������������������������������������������������������������������55

Chapter 2: Working with Visual Studio 2019����������������������������������������61

Visual Studio Project Types����������������������������������������������������������������������������������62

Various Project Templates������������������������������������������������������������������������������67

Managing NuGet Packages����������������������������������������������������������������������������������73

Using NuGet in Visual Studio��������������������������������������������������������������������������74

Hosting Your Own NuGet Feeds����������������������������������������������������������������������81

Creating Project Templates����������������������������������������������������������������������������������82

Creating and Using Code Snippets�����������������������������������������������������������������������87

Creating Code Snippets����������������������������������������������������������������������������������90

Using Bookmarks and Code Shortcuts�����������������������������������������������������������������95

Bookmarks�����������������������������������������������������������������������������������������������������95

Code Shortcuts�����������������������������������������������������������������������������������������������98

Adding Custom Tokens���������������������������������������������������������������������������������101

Table of ContentsTable of Contents



vii

The Server Explorer�������������������������������������������������������������������������������������������104

Running SQL Queries������������������������������������������������������������������������������������111

Visual Studio Windows���������������������������������������������������������������������������������������116

C# Interactive�����������������������������������������������������������������������������������������������117

Code Metrics Results������������������������������������������������������������������������������������118

Send Feedback���������������������������������������������������������������������������������������������122

Chapter 3: Debugging Your Code�������������������������������������������������������123

Working with Breakpoints����������������������������������������������������������������������������������124

Setting a Breakpoint�������������������������������������������������������������������������������������124

Conditional Breakpoints and Actions������������������������������������������������������������130

Manage Breakpoints with Labels�����������������������������������������������������������������135

Exporting Breakpoints����������������������������������������������������������������������������������138

Using DataTips���������������������������������������������������������������������������������������������������139

Visualizing Complex Data Types�������������������������������������������������������������������140

Using the Watch Window������������������������������������������������������������������������������144

The DebuggerDisplay Attribute��������������������������������������������������������������������������144

Evaluate Functions Without Side Effects������������������������������������������������������������147

Format Specifiers�����������������������������������������������������������������������������������������151

Diagnostic Tools�������������������������������������������������������������������������������������������������152

CPU Usage����������������������������������������������������������������������������������������������������155

Memory Usage���������������������������������������������������������������������������������������������157

The Events View�������������������������������������������������������������������������������������������159

The Right Tool for the Right Project Type������������������������������������������������������160

Immediate Window��������������������������������������������������������������������������������������������161

Attaching to a Running Process�������������������������������������������������������������������������163

Attach to a Remote Process�������������������������������������������������������������������������165

Reattaching to a Process������������������������������������������������������������������������������166

Table of ContentsTable of Contents



viii

Remote Debugging��������������������������������������������������������������������������������������������167

System Requirements����������������������������������������������������������������������������������167

Download and Install Remote Tools��������������������������������������������������������������168

Running Remote Tools����������������������������������������������������������������������������������169

Start Remote Debugging������������������������������������������������������������������������������170

Chapter 4: Unit Testing����������������������������������������������������������������������175

Creating and Running Unit Tests������������������������������������������������������������������������175

Create and Run a Test Playlist����������������������������������������������������������������������182

Testing Timeouts������������������������������������������������������������������������������������������184

Using Live Unit Tests������������������������������������������������������������������������������������������186

Using IntelliTest to Generate Unit Tests��������������������������������������������������������������191

Focus IntelliTest Code Exploration����������������������������������������������������������������202

How to Measure Code Coverage in Visual Studio����������������������������������������������204

Chapter 5: Source Control�����������������������������������������������������������������209

Create a GitHub Account������������������������������������������������������������������������������������210

Create and Clone a Repository���������������������������������������������������������������������������214

Cloning a Repository������������������������������������������������������������������������������������228

Create a Branch from Your Code������������������������������������������������������������������������233

Creating and Handling Pull Requests�����������������������������������������������������������������240

Working with Stashes����������������������������������������������������������������������������������������255

Index��������������������������������������������������������������������������������������������������261

Table of ContentsTable of Contents



ix

About the Author

Dirk Strauss is a software developer 

from South Africa with over 13 years of 

programming experience. He has extensive 

experience in SYSPRO Customization, with C# 

and web development being his main focus. 

He studied at the Nelson Mandela University 

where he wrote software part-time to gain a 

better understanding of the technology. He 

remains passionate about writing code and 

imparting what he learns with others.  



xi

About the Technical Reviewer

James McCaffrey works for Microsoft Research 

in Redmond, Wash. James has a PhD in 

cognitive psychology and computational 

statistics from the University of Southern 

California, a BA in psychology, a BA in 

applied mathematics, and an MS in computer 

science. James worked on several key products 

including Azure and Bing. James is also the 

Senior Technical Editor for Microsoft MSDN 

Magazine, the most widely read technical 

journal in the world.  



xiii

Acknowledgments

First off, I would like to thank my wife and children for their support  

while writing this book. I would not have been able to do it without you on 

my side.

I would also like to thank the team at Apress for their support of this 

book and for turning my vision into reality. It is a topic that I have wanted 

to write about for a very long time.

I want to thank James McCaffrey for his help and dedication during 

the review of this book. Technically reviewing a book such as this is not 

easy, and his feedback and suggestions are always appreciated and highly 

valued.

Last, but not least, I want to thank you for reading this book. Your 

passion to know more is what drives me to learn more, and impart what 

I learn. It’s a symbiotic relationship that benefits us as we both grow and 

become better at what we do.



xv

Introduction

Visual Studio 2019 is the next version of the stellar development tool we 

love to use. This book is for folks ready to get to know the IDE a little bit 

better. It aims to get you started on the road to exploring Visual Studio 

2019, beyond what you are already comfortable with.

The book starts off with installing Visual Studio and adding workloads. 

Then you explore the IDE a bit more before having a look at the existing 

(and some new) features in Visual Studio. After that, a few productivity tips 

are thrown in for good measure.

Being able to effectively work with different project types and knowing 

when to use which are explored in a bit more detail in Chapter 2. We will 

also have a look at using NuGet packages and how to manage them. We 

then see how to make use of project templates and then explore using and 

creating code snippets. This chapter covers many of the basics that are 

essential to working with Visual Studio and include using bookmarks, code 

shortcuts, the Server Explorer, and other Visual Studio Windows.

In Chapter 3, we will take a closer look at debugging techniques such 

as using breakpoints, setting conditional breakpoints, breakpoint actions, 

and labels. We will see how to effectively use data tips as well as the 

DebuggerDisplay attribute. We then take a closer look at diagnostic tools 

and the Immediate Window. Finally, to close off the debugging chapter, we 

see how to attach to a running process and how to use remote debugging.

The next chapter will introduce you to creating and running unit 

tests. We will also see how to create live unit tests, how to use IntelliTest to 

generate unit tests, and how to measure code coverage in Visual Studio.

Finally, we look at working with Git and GitHub. We see how to create 

a GitHub account and what creating and cloning a repository involves. 



xvi

You will learn how to commit changes in code to the repository and how 

to create a branch of your code when you need to work on a new feature in 

isolation. Then we will look at creating a pull request and how these pull 

requests are handled. Lastly, we have a look at the benefit of working with 

stashes.

If you need a nice reference book that deals exclusively with (and only 

with) Visual Studio, then have a look at what this book has to offer you. If 

you spend any time using Visual Studio or want to learn how working with 

Visual Studio 2019 can increase your productivity, then this book will make 

a perfect reference book for your office.

IntroductionIntroduction



1© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3_1

CHAPTER 1

Getting to Know 
Visual Studio 2019
Visual Studio is an amazing bit of software. If you have been using Visual 

Studio for a number of years, you will certainly agree that the IDE offers 

developers a host of tools and features to make them more productive. 

You will also be aware that it has grown a lot during the past couple of 

years and is an absolute powerhouse when it comes to providing tools to 

develop world-class software.

Initially released as Visual Studio 97 in February 1997, this was the 

first attempt at using a single development environment for multiple 

languages. The evolution of Visual Studio is detailed in Table 1-1.

(continued)

Table 1-1.  The evolution of Visual Studio

Release Version .NET Framework Release Date

Visual Studio 2019 16.0 3.5–4.8 April 2, 2019

Visual Studio 2017 15.0 3.5–4.7 March 7, 2017

Visual Studio 2015 14.0 2.0–4.6 July 20, 2015

Visual Studio 2013 12.0 2.0–4.5.2 October 17, 2013

Visual Studio 2012 11.0 2.0–4.5.2 September 12,  2012

Visual Studio 2010 10.0 2.0–4.0 April 12,  2010



2

There is so much to see and learn when it comes to Visual Studio. 

Therefore, in this chapter, we will start by having a look at the following:

•	 Installing Visual Studio

•	 What workloads are

•	 Exploring the IDE (integrated development environment)

•	 Existing and new features available in Visual Studio 2019

•	 Productivity tips

If you are using a macOS or a Windows machine, Visual Studio will happily 

run on both. Let us see where to find the Visual Studio Installer and get going.

�Installing Visual Studio
At the time of this writing, Visual Studio 2019 is available for Windows 

machines as well as for macOS machines. You can download Visual  

Studio 2019 for Windows from https://visualstudio.microsoft.com/vs/, 

 and if you are on macOS, you will need to head on over to https://

visualstudio.microsoft.com/vs/mac/ to download the installer.

Release Version .NET Framework Release Date

Visual Studio 2008 9.0 2.0, 3.0, 3.5 November 19, 2007

Visual Studio 2005 8.0 2.0, 3.0 November 7, 2005

Visual Studio .NET 2003 7.1 1.1 April 24, 2003

Visual Studio .NET 2002 7.0 1.0 February 13, 2002

Visual Studio 6.0 6.0 N/A June 1998

Visual Studio 97 5.0 N/A February 1997

Table 1-1.  (continued)

Chapter 1  Getting to Know Visual Studio 2019

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/mac/
https://visualstudio.microsoft.com/vs/mac/


3

Clicking the Download Visual Studio button, you will see a list drop-

down with the options as displayed in Figure 1-1.

Figure 1-1.  Versions of Visual Studio available

If you would like to compare the Visual Studio 2019 versions, you can 

have a look at https://visualstudio.microsoft.com/vs/compare/ for a 

detailed comparison. The bottom line is that if you want Visual Studio 2019 

for free, download Visual Studio Community 2019.

Visual Studio Community 2019 is aimed at students, open source, and 

individual developers. The paid tiers include Visual Studio Professional 

2019 which is aimed toward small teams and Visual Studio Enterprise 2019 

aimed at large development teams.

Microsoft specifies enterprise organizations as those having more 
than 250 PCs or more than $1 million US dollars in annual revenue.

Let us have a brief look at the recommended system requirements for 

installing Visual Studio on your machine. For a comprehensive list, browse 

to https://docs.microsoft.com/en-us/visualstudio/releases/2019/

system-requirements and have a read through that.

Chapter 1  Getting to Know Visual Studio 2019

https://visualstudio.microsoft.com/vs/compare/
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements


4

�Visual Studio 2019 System Requirements
The system requirements for installing Visual Studio 2019 might 

differ from those of previous versions of Visual Studio. Refer to the 

documentation on https://docs.microsoft.com to review the system 

requirements for previous versions of Visual Studio.

Visual Studio Enterprise 2019, Visual Studio Professional 2019, Visual 

Studio Community 2019, and Visual Studio Team Foundation Server Office 

Integration 2019 all support the following minimum system requirements.

�Operating Systems

The following Windows operating systems (64-bit recommended) are 

supported:

•	 Windows 10 version 1703 or higher

•	 Windows Server 2019 – Standard and Datacenter

•	 Windows Server 2016 – Standard and Datacenter

•	 Windows 8.1 with update 2919355

•	 Windows Server 2012 R2 with update 2919355

•	 Windows 7 SP1 with latest Windows updates

�Hardware

There is obviously a line here that developers generally don’t like to cross 

when it comes to the minimum hardware specs. Many developers I know 

will geek out on system RAM and favor SSDs over HDDs. Nevertheless, 

here are the minimum recommended requirements:

•	 1.8 GHz or faster processor (quad-core or better 

recommended).

•	 2 GB of RAM (8 GB of RAM recommended).

Chapter 1  Getting to Know Visual Studio 2019

https://docs.microsoft.com


5

•	 2.5 GB of RAM minimum if running on a Virtual 

Machine.

•	 Between 800 MB and 210 GB of available hard disk 

space (depending on installed features, 20–50 GB of 

free space is typically required).

•	 For improved performance, install Windows and Visual 

Studio on an SSD.

•	 Minimum display resolution of 720p (1280x720) but 

works best at WXGA (1366x768) or higher.

�Supported Languages

Visual Studio and the Visual Studio Installer is available in 14 languages as 

follows:

•	 English

•	 Chinese (Simplified)

•	 Chinese (Traditional)

•	 Czech

•	 French

•	 German

•	 Italian

•	 Japanese

•	 Korean

•	 Polish

•	 Portuguese (Brazil)

•	 Russian

Chapter 1  Getting to Know Visual Studio 2019



6

•	 Spanish

•	 Turkish

�Additional Notes

There are several additional requirements to take note of that I will 

briefly list here. There are however other requirements that might be 

of importance to your unique development environment. For a full 

list, refer to the system requirements at the following link: https://

docs.microsoft.com/en-us/visualstudio/releases/2019/system-

requirements

•	 Administrator rights are required to install Visual 

Studio.

•	 .NET Framework 4.5 is required to run the Visual 

Studio Installer and install Visual Studio.

•	 Visual Studio requires .NET Framework 4.7.2 and is 

installed during setup.

�Using Workloads
After Visual Studio has been installed, you can customize the installation 

by selecting feature sets, also known as workloads. Think of workloads as 

a collection of individual features that belong together. This allows you to 

easily modify Visual Studio to include only what you need.

To launch the workloads screen, find the Visual Studio Installer as can 

be seen in Figure 1-2.

Chapter 1  Getting to Know Visual Studio 2019

https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements


7

Clicking the Visual Studio Installer will launch the installer from where 

you can modify your installation of Visual Studio as seen in Figure 1-3.

Figure 1-2.  Find the Visual Studio Installer

Figure 1-3.  Installing additional workloads

Chapter 1  Getting to Know Visual Studio 2019



8

If you want to start doing Python development, you can simply check 

the Python development workload and install that. As can be seen in 

Figure 1-4, this will update the installation details section and show you 

exactly what is being installed and how much additional space you will 

need to install the selected workload.

Figure 1-4.  Workload installation details

The workloads also contain tabs, namely, Workloads, Individual 

components, Language packs, and Installation locations. If you needed to 

install an additional component such as Service Fabric Tools, you can do 

so by selecting the component on the Individual components tab.

Chapter 1  Getting to Know Visual Studio 2019



9

When you have checked all the workloads and individual components 

you would like to install, you can choose to do the installation while 

downloading or to download everything before installing as can be seen in 

Figure 1-5.

Figure 1-5.  Installation options

This will modify your existing installation of Visual Studio 2019 and 

apply the changes you selected.

�Exploring the IDE
The Visual Studio IDE is full of features and tools that help developers do 

what they need to do, efficiently and productively. Developers start off 

creating one or more projects that contain the logic for their code. These 

projects are contained in what we call a solution. Let’s have a look at the 

Solution Explorer first.

�The Solution Explorer
In Visual Studio, the notion of solutions and projects is used. A solution 

contains one or more projects. Each project contains code that runs the 

logic you need in order for your application to do what it does.

Consider the example of a Shipment Locator application as can be 

seen in Figure 1-6.

Chapter 1  Getting to Know Visual Studio 2019



10

It is to this solution that you will add all the required projects in order 

to create your application. From the example in Figure 1-6, we can see that 

the solution contains three projects. The projects are as follows:

•	 ShipmentLocator – WinForms application – C#

•	 ShipMethodLogic – Class Library – C#

•	 Tracking – Class Library – VB.NET

Of particular interest, you will notice that you can have a solution that 

contains a mix of C# projects and VB.NET projects. You are therefore not 

limited by a particular language and can create applications containing a 

mix of .NET languages.

Figure 1-6.  The Shipment Locator Solution

Chapter 1  Getting to Know Visual Studio 2019



11

The reason that we can mix .NET languages in the same solution is 
due to something we call IL (Intermediate Language). IL is used by 
the .NET Framework to create machine-independent code from the 
source code used in your projects.

The WinForms application will contain the UI needed to track and 

trace shipments. In order for the WinForms application to be able to use 

the logic contained in the other two class libraries, we need to add what is 

called a reference to the other projects.

This is done by right-clicking the project that you want to add the 

reference to and selecting Add Reference from the context menu (Figure 1-7).

Figure 1-7.  Adding a project reference

Chapter 1  Getting to Know Visual Studio 2019



12

When you click the Add Reference menu item, you will be presented 

with the Reference Manager screen as seen in Figure 1-8.

Figure 1-8.  The Reference Manager screen

Under the Projects tab, you will find the other two Class Library 

projects in your solution. By checking each one and clicking the OK 

button, you will add a reference to the code in these projects.

If you had to expand the References section under the 

ShipmentLocator project, you will see that there are two references to our 

Class Library projects ShipMethodLogic and Tracking as can be seen in 

Figure 1-9.

Chapter 1  Getting to Know Visual Studio 2019



13

This will now make all the code you write in the ShipMethodLogic and 

Tracking projects, available to the ShipmentLocator project. Having a look 

at the toolbar on the Solution Explorer (Figure 1-10), you will notice that it 

contains several buttons.

Figure 1-9.  Added references

Figure 1-10.  The Solution Explorer toolbar

Chapter 1  Getting to Know Visual Studio 2019



14

The buttons contained here are displayed as needed. The View Code 

button, for example, will only show up in the toolbar when a file containing 

code is selected in the Solution Explorer. These buttons give you quick 

access to the following features as outlined in the following:

	 1.	 Preview Selected Items

	 2.	 Properties

	 3.	 View Code

	 4.	 Show All Files

	 5.	 Collapse All

	 6.	 Pending Changes Filter

	 7.	 Toggle between Solution and Folder views

I will not go through each one in detail, but of particular interest, you 

will notice that the Show All Files will display unnecessary files and folders 

such as the bin folder in your Solution Explorer. Go ahead and click the 

Show All Files button, and look at the Solution Explorer again.

By looking at Figure 1-11, you can see that it now displays the bin 

folder and the obj folder. These folders are not necessary for your code but 

are important to your solution.

The obj folder contains bits of files that will be combined to produce 
the final executable. The bin folder contains the binary files that are 
the executable code for the application you are writing.

Each obj and bin folder will contain a Debug and Release folder that 

simply matches the currently selected build configuration of your project.

Chapter 1  Getting to Know Visual Studio 2019



15

You can now right-click the bin folder as seen in Figure 1-12 and 

click the Open Folder in File Explorer menu to quickly have a look at the 

contents of the folder.

Figure 1-11.  Solution Explorer displaying all files

Chapter 1  Getting to Know Visual Studio 2019



16

This is a nice shortcut for anyone needing to navigate to the location of 

the Visual Studio files in the solution.

If you open the bin folder and click the Debug folder contained in the 

bin folder, you will see the main exe as well as any referenced dll files in the 

project (Figure 1-13).

Figure 1-12.  Open Folder in File Explorer

Chapter 1  Getting to Know Visual Studio 2019



17

These files will be updated each time you build or run your project. If 

this folder is blank, perform a build of your solution by pressing F6 or by 

right-clicking the solution and clicking Build Solution from the context 

menu as seen in Figure 1-14.

Figure 1-13.  The contents of the Debug folder

Chapter 1  Getting to Know Visual Studio 2019



18

You might be wondering what the difference between Build Solution, 

Rebuild Solution, and Clean Solution is? The differences are as follows:

•	 Build Solution will do an incremental build of the 

solution of anything that has changed since the last 

build.

•	 Rebuild Solution will clean the solution and then 

rebuild the solution from scratch.

Figure 1-14.  Right-click solution options

Chapter 1  Getting to Know Visual Studio 2019



19

•	 Clean Solution will only clean the solution by removing 

any build artifacts left over by the previous builds.

If you are receiving funny build errors that do not seem to be errors in 

your code editor, try cleaning your solution and building it again.

�Toolbox
When dealing with a UI file such as a web application or a WinForm 

application, you will notice that you have a Toolbox at your disposal 

(Figure 1-15).

Figure 1-15.  The WinForms Toolbox in Visual Studio

Chapter 1  Getting to Know Visual Studio 2019



20

The Toolbox allows you to add controls to your application such as 

text boxes, buttons, drop-down lists, and so on. This allows developers 

to design the UI of the application by dragging and dropping the relevant 

controls on the design surface.

You can also open the Toolbox by clicking the View menu and selecting 

the Toolbox menu item. It is worth noting that for some project types, you 

will not see any items in the Toolbox.

If you do not like the default layout of the Toolbox, you can right-click 

the tab or on an individual item in the Toolbox and perform one of several 

actions from the context menu as seen in Figure 1-16.

Figure 1-16.  Toolbox context menu

Chapter 1  Getting to Know Visual Studio 2019



21

The context menu allows you to do the following:

•	 Rename an item

•	 Choose additional items

•	 Remove items

•	 Move items up and down

•	 Sort items

•	 Add a new tab

If you have third-party controls installed such as DevExpress or Telerik, 

you will find the controls specific to the installed components under their 

own tab in the Toolbox.

�The Code Editor
Let’s add some basic UI components to our WinForm application as seen 

in Figure 1-17. To this code-behind, we will add some code to our project, 

just to get the ball rolling. All that this application will do is take a given 

waybill number and return some location data for it.

Chapter 1  Getting to Know Visual Studio 2019



22

The location data will be hard-coded in a Location class that was 

added to the project.

After adding the UI elements to the designer, swing over to the code 

window for the main WinForm application called Form1.cs. Add the 

following code in Listing 1-1 to the code-behind.

You will notice after adding the code that Visual Studio starts to 

underline some of the added code as seen in Figure 1-18. This is because 

Visual Studio is making suggestions to improve the quality of your code.

Figure 1-17.  The application design

Chapter 1  Getting to Know Visual Studio 2019



23

Listing 1-1.  The Code-Behind Form1.cs

private void BtnTrack_Click(object sender, EventArgs e)

{

    if (!(string.IsNullOrWhiteSpace(txtWaybill.Text)))

    {

        string waybillNum = txtWaybill.Text;

        if (WaybillValid())

        {

            Package package = new Package(waybillNum);

            Location packLoc = package.TrackPackage();

            if (packLoc != null)

            {

                txtLocationDetails.Text = $"Package location: " +

                    $"{packLoc.LocationName} with coordinates " +

                    $"Long: {packLoc.Long} and " +

                    $"Lat: {packLoc.Lat}";

            }

        }

        else

            �MessageBox.Show("You have entered an invalid 

Waybill number");

    }

}

private bool WaybillValid()

{

    return txtWaybill.Text.ToLower().Contains("acme-");

}

Chapter 1  Getting to Know Visual Studio 2019



24

To view the details of the suggestion, hover your mouse over one of the 

underlined lines of code. Visual Studio will now display the details of the 

suggested change as seen in Figure 1-19.

Figure 1-18.  Visual Studio code improvement suggestions

The underlined code is code that Visual Studio is making suggestions 

for improvement on.

Chapter 1  Getting to Know Visual Studio 2019



25

Here we can see that Visual Studio is suggesting the use of the var 

keyword. At the bottom of the code editor, you will also see that Visual 

Studio displays the count of errors and warnings as seen in Figure 1-20.

Figure 1-19.  Code change suggestion

Figure 1-20.  Errors and warnings

You are able to navigate between the warnings and errors by clicking 

the left and right arrows. You can also perform a code cleanup by clicking 

the little brush icon or by holding down Ctrl+K, Ctrl+E.

After cleaning up the code and adding the code suggestions that Visual 

Studio suggested, the code looks somewhat different as can be seen in 

Figure 1-21.

Chapter 1  Getting to Know Visual Studio 2019



26

With all the code suggestions applied, Visual Studio displays a clean 

bill of health in the status indicator at the bottom of the code editor.

�Navigating Code
Visual Studio provides several features allowing developers to navigate 

code throughout the solution. Knowing how to use these navigation 

features will save you a lot of time.

�Navigate Forward and Backward Commands
If you look at the toolbar in Visual Studio, you will see the Navigate 

Forward (Ctrl+Shift+-) and Navigate Backward (Ctrl+-) buttons. These 

allow developers to return to the last 20 locations that the developer was at.

Figure 1-21.  Code suggestions applied

Chapter 1  Getting to Know Visual Studio 2019



27

You can also find these commands from the View menu under 

Navigate Backward and Navigate Forward.

�Navigation Bar
The navigation bar in Visual Studio as seen in Figure 1-23 provides drop-

down boxes that allow you to navigate the code in the code base. You can 

choose a type or member to jump directly to it in the code editor.

Figure 1-22.  Navigate forward and backward

Chapter 1  Getting to Know Visual Studio 2019



28

It is useful to take note that members defined outside the current code 

file will be displayed but will be disabled and appear gray. You can cycle 

through the drop-down boxes in the navigation bar by pressing the tab key.

Each drop-down also has its own individual function. The left drop-

down will allow you to navigate to another project that the current file 

belongs to. To change the focus to another class or type, use the middle 

drop-down to select it. To navigate to a specific procedure or another 

member in a particular class, select it from the right drop-down.

�Find All References
Visual Studio allows you to find all the references for a particular element 

in your code editor. You can do this by selecting the code element and 

pressing Shift+F12 or by right-clicking and selecting Find All References 

from the context menu.

Figure 1-23.  Visual Studio navigation bar

Chapter 1  Getting to Know Visual Studio 2019



29

The find results are displayed in a tool window as seen in Figure 1-24. 

The toolbar for the find results tool window as seen in Figure 1-25 is also 

really helpful.

Figure 1-24.  Find All References results

Figure 1-25.  References window toolbar

From here you can do the following:

•	 Change the search scope

•	 Copy the selected referenced item

•	 Navigate forward or backward in the list

•	 Clear any applicable search filters (filters are added 

by hovering over a column in the results window and 

clicking the filter icon that is displayed)

•	 Change the grouping of the returned results

Chapter 1  Getting to Know Visual Studio 2019



30

•	 Keep the search results (new searches are opened in a 

new tool window)

•	 Search the returned results by entering text in the 

Search Find All References text box

Hovering your mouse of a returned search result will pop up a preview 

screen of the code. To navigate to a search result, press the Enter key on a 

reference or double-click it.

�Reference Highlighting
Visual Studio makes it really easy to see selected items in the code editor. 

If you click a variable, for example, you will see all the occurrences of that 

variable highlighted in the code editor as seen in Figure 1-26.

Figure 1-26.  Default reference highlighting

But did you know that you can change the color of the highlight from 

the Options in Visual Studio? Go to Tools, Options, Environment, Fonts and 

Colors, Highlighted Reference as seen in Figure 1-27.

Chapter 1  Getting to Know Visual Studio 2019



31

Change the color to yellow and click OK. All the references to the 

variable you just selected will now be highlighted in yellow.

�Go To Commands
I’ll admit that these are probably the commands that I use the least in 

Visual Studio. All with the exception of Ctrl+G. Go ahead and open Visual 

Studio, and type Ctrl+G.

Figure 1-27.  Change the Highlighted Reference color

Figure 1-28.  Go To Line

Chapter 1  Getting to Know Visual Studio 2019



32

As can be seen in Figure 1-28, a window pops up that allows you to jump 

to a specific line of code. This is incredibly useful when trying to explain 

something to another developer not sitting in the same room as you.

The list of Go To commands are as follows:

•	 Ctrl+G – Go To Line which allows you to move to the 

specified line number in the currently active document

•	 Ctrl+T or Ctrl+, – Go To All which allows you to move to 

the specified line, type, file, member, or symbol

•	 Ctrl+1, Ctrl+F – Go To File that allows you to move to a 

specified file in the solution

•	 Ctrl+1, Ctrl+R – Go To Recent File allows you to move to 

a recently visited file in the solution

•	 Ctrl+1, Ctrl+T – Go To Type allows you to move to a 

specific type in the solution

•	 Ctrl+1, Ctrl+M – Go To Member allows you to move to 

the specific member in the solution

•	 Ctrl+1, Ctrl+S – Go To Symbol allows you to move to the 

specific symbol in the solution

•	 Alt+PgDn – Go To Next Issue in File

•	 Alt+PgUp – Go To Previous Issue in File

•	 Ctrl+Shift+Backspace – Go To Last Edit Location

While typing Ctrl+1 might seem slightly finicky, you soon get used to 

it, and the commands start to feel more natural. Ctrl+Shift+Backspace 

is another command that I find very useful. This is especially true when 

editing large code files.

Chapter 1  Getting to Know Visual Studio 2019



33

�Go To Definition
Go To Definition allows you to jump to the definition of the selected 

element. Go to the example project for this chapter, and find the click 

event for the Track button.

Just a reminder that the code for this book can be downloaded from 
GitHub.

In there you will see that we are working with a class called Package 

that creates a new package we would like to track.

Figure 1-29.  Go To Definition

Place your cursor on Package, and hit F12 to jump to the class 

definition. You can also hold down the Ctrl button and hover over the class 

name. You will notice that Package becomes a link you can click on. Lastly, 

if you have your feet up and you only have your mouse to navigate with 

(the other hand is holding a cup of coffee), you can right-click and select 

Go To Definition from the context menu.

Chapter 1  Getting to Know Visual Studio 2019



34

�Peek Definition
Where Go To Definition navigates to the particular definition in question, 

Peek Definition simply displays the definition of the selected element in 

a pop-up. Place your cursor on Package and right-click. From the context 

menu, select Peek Definition.

Figure 1-30.  Peek Definition pop-up

As can be seen in Figure 1-30, the pop-up window displays the code 

for the Package class. You can navigate through the code displayed in 

this pop-up as you would any other code window. You can even use Peek 

Definition or Go To Definition inside this pop-up.

In the pop-up window, right-click Location, and select Peek 

Definition from the context menu. The second Peek Definition will start a 

breadcrumb path as seen in Figure 1-31.

Chapter 1  Getting to Know Visual Studio 2019



35

You can now navigate using the circles and arrows that appear above 

the Peek Definition pop-up window. The arrows only appear when you 

hover your mouse over the circles, but this definitely makes it much easier 

to move between the code windows.

�Features and Productivity Tips
Visual Studio is full of existing productivity tips that have been around for 

years and that some developers do not know about. In this section, we will 

be looking at some of those.

Figure 1-31.  Breadcrumb path

Chapter 1  Getting to Know Visual Studio 2019



36

�Track Active Item in Solution Explorer
In Visual Studio, this option is not on by default. As you change the code 

file you are working in, the file isn’t highlighted in the Solution Explorer. 

You will know this is the case when you see the following arrows in the 

toolbar of the Solution Explorer as seen in Figure 1-32.

Figure 1-32.  Track Active Item in Solution Explorer

Clicking these arrows will highlight the file that you are currently 

editing in the Solution Explorer. I find this extremely useful, so I let Visual 

Studio permanently track the current file. To set this, click Tools, Options, 

Projects and Solutions, General, and check Track Active Item in Solution 

Explorer.

Figure 1-33.  Track Active Item Setting

Chapter 1  Getting to Know Visual Studio 2019



37

With this setting enabled, the arrows are not displayed in the toolbar of 

the Solution Explorer.

�Hidden Editor Context Menu
When you are in a code file, you can access a variety of menu items by 

right-clicking and selecting the menu items in the context menu. But did 

you know that you can hold down Alt+` to bring up a special context menu 

(that is different from right-click)? It has more editor commands in it as 

seen in Figure 1-34.

Figure 1-34.  Special context menu

This gives you a little more control over navigating through errors, 

methods, etc., in your current code file.

Chapter 1  Getting to Know Visual Studio 2019



38

�Open in File Explorer
Sometimes you need to quickly get to the actual Visual Studio files of your 

solution. This might be to go and copy a file from the bin folder or to open 

a file in another text editor. To do this, you don’t even need to leave Visual 

Studio. As seen in Figure 1-35, you can right-click the solution and click 

Open Folder in File Explorer.

Figure 1-35.  Open Folder in File Explorer

This will open a new File Explorer window where your Visual Studio 

solution is located.

Chapter 1  Getting to Know Visual Studio 2019



39

�Finding Keyboard Shortcut Mappings
Sometimes when you use a keyboard shortcut, and nothing happens, you 

might be using it in the wrong context. To see what keyboard shortcuts 

are mapped to, head on over to Tools, Options, Environment, Keyboard as 

seen in Figure 1-36.

Figure 1-36.  Find keyboard shortcut mappings

Press the shortcut keys, and Visual Studio will show you what the 

shortcut is currently used for. This is also very useful for assigning new 

keyboard shortcuts to check that the keyboard shortcut you have in mind 

is not already bound to another command.

�Clipboard History
Visual Studio allows you to access your clipboard history. This is very 

useful if you have to copy and paste several items repeatedly.

Chapter 1  Getting to Know Visual Studio 2019



40

Instead of going back and forth between copy and paste, simply hold 

down Ctrl+Shift+V to bring up the clipboard history as seen in Figure 1-37.

Figure 1-37.  Clipboard history

Now you can just select the copied text that you want to paste and 

carry on with editing your code. The copied item also remains in the 

clipboard history after pasting.

�Go To Window
So this could actually have gone under the Navigating Code section, 

but I wanted to add it here because it made more sense to discuss it as a 

productivity tip.

Hold down Ctrl+T and you will see the Go To window pop up. Now 

type a question mark, and see the options available to you as seen in 

Figure 1-38.

Figure 1-38.  Go To Window

Chapter 1  Getting to Know Visual Studio 2019



41

You can view the recent files by typing in an r instead of a question 

mark. Also nice to note is the ability to jump to a specific line of code. 

You will remember earlier in the chapter that we discussed the Go To 

commands and Ctrl+G in particular. Here, you can do the same thing by 

typing in : followed by the line number.

�Navigate to Last Edit Location
Earlier on in this chapter, we discussed the Navigate Backward 

and Navigate Forward commands. This is great, but if you want to 

navigate to the last place you made an edit in the code file, hold down 

Ctrl+Shift+Backspace. This will jump to the last place that you made an 

edit in one of your code files.

�Multi-caret Editing
This is a feature that I absolutely love using. Consider the following SQL 

Create Table Statement:

Listing 1-2.  Create SQL Table Statement

CREATE TABLE [dbo].[menu](

        [itemName] [varchar](50) NOT NULL,

        [category] [varchar](50) NOT NULL,

        [description] [varchar](50) NOT NULL,

 CONSTRAINT [PK_menu] PRIMARY KEY CLUSTERED

This is a rather small table, but sometimes we have very large tables 

that we need to work with. I want to create a simple C# class for this table 

and need to create some C# properties. Why type out everything when you 

can copy, paste, and edit all at once.

Paste the column names into a C# class file, and then hold down 

Ctrl+Alt, and click in front of the first square bracket of each column as can 

be seen in Figure 1-39.

Chapter 1  Getting to Know Visual Studio 2019



42

The cursor is placed at each line at the position you placed it. Now start 

typing the property definition. All the lines are edited. After typing public 

string, hit delete to remove the first square bracket.

I now want to add the { get; set; } portion of my property. I can 

either do the same multi-caret selection or I can also select one or more 

characters and hold down Shift+Alt+. to select matching selections as seen 

in Figure 1-40.

Figure 1-39.  Multi-caret selection

Figure 1-40.  Selecting matching selections

This now allows me to easily select exactly all the lines I want to edit at 

the same time and allows me to paste the { get; set; } needed for my 

properties. I now end up with the completed code as seen in Figure 1-41.

Figure 1-41.  Completed code properties

Chapter 1  Getting to Know Visual Studio 2019



43

Being able to easily select code or place a caret in several places on the 

same line or across lines allows developers to be really flexible when editing 

code. Speaking about placing the caret on several places on the same line, it 

is, therefore, possible to do the following as seen in Figure 1-42.

Figure 1-42.  Multi-caret selection on the same line

We can now edit everything at once (even if we have selected multiple 

places on the same line) as seen in Figure 1-43.

Figure 1-43.  Multi-caret editing on the same line

Holding down Ctrl+Z will also work to undo everything at once. If you 

want to insert carets at all matching selections, you can select some text 

and hold down Shift+Alt+; to select everything that matches your current 

selection as seen in Figure 1-44.

Chapter 1  Getting to Know Visual Studio 2019



44

I selected the text “cat” and held down Shift+Alt+; and Visual Studio 

selected everything that matches. As you can see, it also selected the 

category property, which I don’t want to be selected. In this instance, 

Shift+Alt+. will allow me to be more specific in my selection.

If you find yourself forgetting the keyboard shortcuts, you can find 

them under the Edit menu. Click Edit, Multiple Carets to see the keyboard 

shortcuts.

�Features in Visual Studio 2019
Visual Studio 2019 comes packed with a few very nice productivity 

features. A lot of thought has been put into making Visual Studio easy to 

navigate and to find things in Visual Studio 2019. The first feature I want to 

have a look at is Visual Studio Search.

�Visual Studio Search
I think that we can all agree that more speed equals improved productivity. 

The faster I can access a menu item, and the less time I have to spend 

looking for something, the more my productivity increases. This is where 

Visual Studio Search comes in.

Figure 1-44.  Insert carets at all matching selections

Chapter 1  Getting to Know Visual Studio 2019



45

If you hold down Ctrl+Q you will jump to the search bar where you can 

immediately start typing as seen in Figure 1-45.

Figure 1-45.  Visual Studio Search

Visual Studio will perform the required search and display the results 

to you that you can further filter by clicking the Menus, Components, or 

Templates tabs. Visual Studio performs a fuzzy search, which means that 

even if you misspell a word, chances are that Visual Studio will know what 

you intended to type and return the correct results for you.

�Solution Filters
Sometimes we have to work on Solutions that contain a lot of projects. 

More often than not, you as a developer will not be working on every 

project in that specific solution. This is where Solution Filters come in. 

They allow you to only load the projects that you care about or are actively 

working on. Consider the currently loaded solution as seen in Figure 1-46.

Chapter 1  Getting to Know Visual Studio 2019



46

You can see that all the projects are loaded in this solution. If we only 

work on the ShipmentLocator and ShipMethodLogic projects, we can 

create a Solution Filter to only load those projects. Right-click the projects 

that you don’t work on, and click Unload Project from the context menu. 

Your solution will now look as in Figure 1-47.

Figure 1-46.  AcmeCorpShipping Solution Unfiltered

Chapter 1  Getting to Know Visual Studio 2019



47

Now, with the projects unloaded that you do not work on, right-click 

the solution and select Save As Solution Filter as seen in Figure 1-48.

Figure 1-47.  AcmeCorpShipping Solution with unloaded projects

Chapter 1  Getting to Know Visual Studio 2019



48

Visual Studio will now create a new type of solution file with an .slnf 

file extension as seen in Figure 1-49.

Figure 1-48.  Save As Solution Filter

Chapter 1  Getting to Know Visual Studio 2019



49

When you open your project using the Solution Filter, you will see as in 

Figure 1-50 that only the projects you selected to keep will be loaded.

Figure 1-49.  Save as Solution Filter file

Figure 1-50.  Filtered solution

Chapter 1  Getting to Know Visual Studio 2019



50

Now with the filtered solution, if you click the solution, you will see 

that you can Load App Projects, Show Unloaded Projects, or Load Project 

Dependencies from the context menu as seen in Figure 1-51.

Figure 1-51.  Filtered solution context menu

You still have full control of the filtered solution from the context menu 

and can easily load the full solution as needed.

Chapter 1  Getting to Know Visual Studio 2019



51

�Visual Studio IntelliCode
Visual Studio IntelliCode is a really nice feature that has been added to 

Visual Studio. Microsoft calls it AI-assisted development because it uses 

machine learning to figure out what you are most likely to use next and 

putting that suggestion at the top of your completion list. These are usually 

displayed as starred recommendations.

Without IntelliCode, when you dot on an object such as our package 

object in the AcmeCorpShipping solution, you will see the usual 

completion list that Visual Studio pops up as seen in Figure 1-52.

Figure 1-52.  Visual Studio completion list

In Visual Studio 2019, hit Ctrl+Q and type IntelliCode to search for 

IntelliCode. Select IntelliCode Model Management from the search results. 

You can also go to View, Other Windows and click IntelliCode Model 

Management. You will then see the Visual Studio IntelliCode window pop-

up inside Visual Studio as seen in Figure 1-53.

Chapter 1  Getting to Know Visual Studio 2019



52

Click Create new model to allow Visual Studio IntelliCode to analyze 

your code and create the model. When Visual Studio has completed the 

analysis and created the model, you will be able to share the model with 

other developers (which is great for teams), delete the model, or retrain the 

model as seen in Figure 1-54.

Figure 1-53.  Visual Studio IntelliCode

Chapter 1  Getting to Know Visual Studio 2019



53

This time around, if you dot on the package in the AcmeCorpShipping 

solution, you will see the starred recommendations from IntelliCode as 

seen in Figure 1-55.

Figure 1-54.  Visual Studio IntelliCode model completed

Figure 1-55.  IntelliCode starred recommendations

Chapter 1  Getting to Know Visual Studio 2019



54

Compare this to the Visual Studio completion list in Figure 1-52. You 

can see that IntelliCode has identified the TrackPackage method as the 

most likely method that you will want to use.

IntelliCode uses open source GitHub projects with 100 stars or 

more to distill the wisdom of the community in order to generate 

recommendations for your code. To demonstrate how clever Visual Studio 

IntelliCode is, have a look at Figure 1-56.

Figure 1-56.  IntelliCode acting on a string

Figure 1-57.  IntelliCode acting on a string array

IntelliCode knows the most likely things I would want to do with a 

string variable and places those methods at the top of the suggestion list. 

The suggestions look quite a bit different when I am working with a string 

array as seen in Figure 1-57.

Chapter 1  Getting to Know Visual Studio 2019



55

This means that IntelliCode takes the current context into account 

when suggesting methods in the completion list. If you would like 

to view the model generated by IntelliCode, you can head on over to 

%TEMP%\Visual Studio IntelliCode. In one of the created folders, you 

will find a subfolder called “UsageOutput.” Look for a JSON file in the 

“UseageOutput” folder. This is where the contents of the extracted data is 

stored for your model.

It is important to note that Microsoft does not receive any of your 
code. IntelliCode only uploads data and information about your code 
to Microsoft’s servers. All your code remains on your computer.

IntelliCode is a productivity feature that will definitely benefit 

developers on a day-to-day basis.

�Visual Studio Live Share
During my years of writing code, I have often had the need to explain 

some portion of logic or feature of the code I am working with, to another 

developer. This usually involves them having to get a copy of the code base 

from source control and us having to direct each other over a Skype call 

and quote line numbers in order to collaborate properly.

To find out more about Visual Studio Live Share, or to download a 
copy for Visual Studio Code or Visual Studio 2017, go to https://
visualstudio.microsoft.com/services/live-share/.

Visual Studio Live Share is included by default in Visual Studio 2019. 

Visual Studio Live Share does not require developers to be all “set up” in 

order to assist each other or to collaborate on projects. This means that a 

Chapter 1  Getting to Know Visual Studio 2019

https://visualstudio.microsoft.com/services/live-share/
https://visualstudio.microsoft.com/services/live-share/


56

developer running Visual Studio Code on a Linux machine can collaborate 

with another developer running Visual Studio 2019 on a Windows 10 

machine.

To start a Visual Studio Live Share session, you need to click the Live 

Share icon in the top right corner of Visual Studio 2019 as can be seen in 

Figure 1-58.

Figure 1-58.  Visual Studio Live Share Icon

When you click the icon, Visual Studio starts up Live Share, and the 

progress is indicated as can be seen in Figure 1-59.

Figure 1-59.  Visual Studio Live Share In Progress

Figure 1-60.  Visual Studio Live Share Link Generated

When the sharing link has been generated, Visual Studio will display a 

notification as seen in Figure 1-60.

Chapter 1  Getting to Know Visual Studio 2019



57

In this example, I am sharing the link with a developer that is 

running Visual Studio Code on Linux Mint. Linux then pops up a Launch 

Application notification as seen in Figure 1-62.

Figure 1-61.  Starting Visual Studio Live Share session

It is copied to the clipboard by default, but you can copy it again, make 

it read-only, or learn more about secure sharing. When you share the link 

with a fellow developer, they simply have to paste the link into a browser 

to start the collaboration. Figure 1-61 shows the browser after pasting the 

link.

Chapter 1  Getting to Know Visual Studio 2019



58

Visual Studio Code is already installed on the Linux machine; 

therefore, the Launch Application notification offers that as the default 

choice for opening vsls links. When you click the Open Link button, Visual 

Studio Code launches, and your Live Share session is initiated as seen 

in Figure 1-63. Visual Studio Code then has a copy of the code that I am 

sharing on my machine.

Figure 1-62.  Launch Application Notification on Linux

Chapter 1  Getting to Know Visual Studio 2019



59

As Jason navigates his way around the code, I can see this in my code 

via a marker that pops up momentarily displaying his name as seen in 

Figure 1-64.

Figure 1-63.  Visual Studio Live Share session

Figure 1-64.  I can see Jason's current position in the code

Chapter 1  Getting to Know Visual Studio 2019



60

Over in Visual Studio Code, Jason can see where I am via a similar 

marker that momentarily pops up my name as seen in Figure 1-65.

Figure 1-66.  Live Share tab in Visual Studio 2019

This allows us to know what the other is doing and where we are 

working at any given time. In Visual Studio 2019, I now also have a new 

Live Share tab displayed as seen in Figure 1-66.

Figure 1-65.  Jason can see my current position in the code

From there, I can end the Live Share session, share the terminal, manage 

shared servers, focus participants, or copy the sharing link again. At any 

time, I am in total control of what I share. It is also important to note that my 

code lives on my machine. It is not saved on the participant’s machine.

Chapter 1  Getting to Know Visual Studio 2019



61© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3_2

CHAPTER 2

Working with Visual 
Studio 2019
If you have been working with previous versions of Visual Studio, you will 

find that Visual Studio 2019 definitely does not break the mold. What I 

mean to say is that Visual Studio 2019 feels much the same as previous 

versions, and that’s a good thing.

While there are new features and enhancements in Visual Studio 2019, 

developers will find it really easy to work with from the start. If, however, 

you are new to Visual Studio, there are a few topics that deserve a closer 

look. This is what Chapter 2 is all about. We will be taking a look at the 

following:

•	 Visual Studio project types and when to use them

•	 Managing NuGet packages

•	 Creating project templates

•	 Creating and using code snippets

•	 Using bookmarks and code shortcuts

•	 The Server Explorer window

•	 Visual Studio Windows



62

Chapter 2 is actually an extension of Chapter 1 in many respects. 

Things that didn’t make it into Chapter 1 are being discussed in Chapter 2. 

I do believe, however, that these are essential to working with Visual Studio 

and will benefit developers in their day-to-day coding.

�Visual Studio Project Types
Visual Studio 2019 allows developers to create a new project in a couple of 

ways. The most obvious is when you start Visual Studio 2019. You will be 

presented with the Start screen as seen in Figure 2-1.

Figure 2-1.  Visual Studio 2019 Start screen

Chapter 2  Working with Visual Studio 2019



63

You can remove the project from the list, pin or unpin it from the list, 

or copy the path to the project. Visual Studio 2019 has also made it quite 

easy to get to where you need to when working with projects. As seen in 

Figure 2-3, developers have a few options available to them when they are 

ready to start working with code.

Here you will see recent projects that you can pin to the Start screen 

to always keep them available. If you right-click any of the recent projects, 

you will see a context menu pop up as shown in Figure 2-2.

Figure 2-2.  Context menu options on recent projects

Chapter 2  Working with Visual Studio 2019



64

Here you can start by grabbing code from GitHub or Azure DevOps, 

open a local Visual Studio project, open a local folder to edit code files, 

create a new project, or continue without code.

If Visual Studio is already open, you can create a new project from the 

menu bar by clicking the New Project button as seen in Figure 2-4. You can 

also hold down Ctrl+Shift+N.

Figure 2-3.  Get started section

Chapter 2  Working with Visual Studio 2019



65

The Create a new project screen is displayed as seen in Figure 2-5, and 

you have a whole new experience here too when it comes to finding the 

project type that you want to create.

Figure 2-4.  New Project Toolbar button

Figure 2-5.  Create a new project

Chapter 2  Working with Visual Studio 2019



66

You will see recent project templates displayed which is great should 

you need to get up and running with similar projects as what you have 

created before. You can also search for and filter project templates by 

language, platform, or project type as seen in Figure 2-6.

Figure 2-6.  Filter project templates

This allows you to quickly find what you are looking for.

Take note, though, that if you do not find what you are looking for, you 
may need to install a workload. To do this, click Install more tools and 
features. Refer to Chapter 1 to see how to use workloads in Visual 
Studio.

There are several project templates that you can choose from. Let’s see 

which ones there are and what project is suitable for specific situations.

Chapter 2  Working with Visual Studio 2019



67

�Various Project Templates
Visual Studio 2019 has a whole host of project templates to choose from. I 

would even go as far as to say that it’s now even easier to find the template 

you need to use due to the filters in the Create a new project window. Let’s 

have a look at a few of these project templates net.

�Console Applications

I remember that the first time that I wrote a single line of code was in a 

Console Application. This is a great template to use when you don’t need a 

UI for your application. The Console Application project template running 

on the .NET Framework can be seen in Figure 2-7.

Figure 2-7.  Console App (.NET Framework)

You will notice that this application is suited for running on Windows 

machines. But what if you need to run the Console Application across 

platforms such as Windows, Linux, and macOS? This is where .NET Core 

comes into play.

The Console Application project template running on .NET Core can 

be seen in Figure 2-8.

Figure 2-8.  Console App (.NET Core)

Chapter 2  Working with Visual Studio 2019



68

A few years ago (long before .NET Core was ever a thing), I needed 

to create an application that could be triggered on a schedule. The 

application’s executable would then be passed one of the several 

parameters that the application used to determine which database to 

connect to.

The application had to run without any user intervention to perform 

some sort of maintenance task. Due to the fact that no user intervention 

was needed, a Console Application best suited the use case. Be aware that 

a Console Application can accept user input, but for my purposes with this 

application, it was not necessary.

�Windows Forms Application

In contrast to the Console Application, the Windows Forms application 

template is used when you need to create an app that has a UI. The project 

template (like the Console Application) can run on the .NET Framework or 

on .NET Core as seen in Figure 2-9.

Figure 2-9.  Windows Forms App (.NET Core and .NET 
Framework)

It is important to note that Windows Forms apps built on .NET Core 

will still only be able to run on Windows and is not able to run on Linux or 

macOS.

Chapter 2  Working with Visual Studio 2019



69

This means that WPF and Windows Forms apps built on .NET 
Core will only run on Windows. There are no plans to make these 
application types cross-platform.

Why then use .NET Core for Windows Forms applications? Well, .NET 

Core applications are very, very fast. So it is well worth thinking about 

using .NET Core for Windows Forms applications.

It is possible to port Windows Forms applications to .NET Core 3.0. 

You will need to run a tool called the .NET Portability Analyzer to check 

if your application uses any APIs not currently supported in .NET Core. 

If it does, you will need to refactor your code to avoid those unsupported 

dependencies.

For a detailed step-by-step, refer to the Microsoft Developer channel 

on YouTube, and look for the video “How to Port Desktop Applications to 

.NET Core 3.0”. At the time of writing this book, the URL to this video was 

www.youtube.com/watch?v=upVQEUc_KwU.

Scott Hunter and Olia Gavrysh discuss this topic at the 7:56 minute 

mark.

�Windows Service

If you ever need to create a Windows application that continually runs in 

the background, performing some specific task, your best choice would be 

to use a Windows Service template as seen in Figure 2-10.

Figure 2-10.  Windows Service (.NET Framework)

Chapter 2  Working with Visual Studio 2019

http://www.youtube.com/watch?v=upVQEUc_KwU


70

Imagine that the application needs to monitor specific activity (be that 

in a database or file system) and then write messages to an event log. A 

Windows Service is perfectly suited for this purpose.

Windows Services have an OnStart method that allows you to define what 

needs to happen when the service starts. By definition, Windows Services are 

long-running applications that need to poll or monitor the system it runs on. 

To enable the polling functionality, you will need to use a Timer component.

A common mistake is to use a Windows Forms Timer for a Windows 
Service. You must ensure that you use the timer in the System.
Timers.Timer namespace instead.

The System.Timers timer (Figure 2-11) that you add to the Windows 

Service will raise an Elapsed event at specific intervals.

Figure 2-11.  Various Timer Namespaces

Chapter 2  Working with Visual Studio 2019



71

It is in this Elapsed event that you can write the code that your service 

needs to run in order to do what it needs to do.

�Web Applications

If you need to create applications that are web-based, you will definitely 

be creating an ASP.NET Web Application. If you have a look at the project 

templates, you will notice that you can create an ASP.NET Web Application 

that runs on .NET Core as seen in Figure 2-12.

Figure 2-12.  ASP.NET Core Web Application template

Figure 2-13.  ASP.NET Web Application template

If you do not need to create an ASP.NET Core Web Application, you 

can create a web application that runs on the .NET Framework as seen in 

Figure 2-13.

As can be seen in the template description, these templates will allow 

you to create a regular Web Forms application, an MVC application or 

Web API application. If you need to run your application in a browser, then 

create an ASP.NET Web Forms or ASP.NET MVC application.

A Web API, on the other hand (sometimes also referred to as Web 

Services), is an application programming interface (API) that allows 

communication between various clients such as browsers, mobile devices, 

Chapter 2  Working with Visual Studio 2019



72

etc., and other software components such as a database. It can be used 

as a stand-alone application or as part of an ASP.NET Web Forms or MVC 

application.

�Class Library

The last project template we will be looking at is the Class Library. It is 

worth noting that the Class Library will create a DLL that you can reuse in 

your applications. This is the purpose of a Class Library project.

There are many more project templates available in Visual Studio and 
are dependant on the workloads you have installed.

As you see in Figure 2-14, the Class Library can be based on .NET Core, 

.NET Framework, or .NET Standard.

Figure 2-14.  Class Library Projects

You might be wondering what the differences are between the various 

project templates. You will find a hint when you look at the tags. The Class 

Library running the .NET Framework will create a DLL that will only work 

on Windows machines.

Chapter 2  Working with Visual Studio 2019



73

The Class Library running .NET Core will create a library that will run 

on Windows, Linux, and macOS (it’s therefore cross-platform).

The Class Library running on .NET Standard will create a library that 

is guaranteed to run on all of the platforms supported in Visual Studio. 

The .NET Standard is a specification of all the APIs that work on all of the 

platforms. Therefore, if you create a Class Library on .NET Standard, it is 

guaranteed to run on desktop, mobile, Web, etc.

For more information regarding .NET Standard, have a look at the 

following article on Microsoft Docs: https://docs.microsoft.com/en-

us/dotnet/standard/net-standard

There are many more project templates to choose from, and the 

project templates you see will depend on the workloads that you have 

installed. Explore some of the different workloads available to you, and 

see what project templates are available to you after installing a particular 

workload.

�Managing NuGet Packages
As a software developer, being able to reuse code is essential to any 

modern development effort. In fact, being able to share code is the 

cornerstone of a healthy development community. There are many 

developers that create extremely useful code libraries that can add 

functionality to your particular application.

This is where NuGet becomes an essential tool for developers to 

create, share, and consume useful code. As a developer, you can package 

a DLL along with other required content needed for the DLL to function 

correctly, into a NuGet package.

Essentially, NuGet is just a ZIP file with a .nupkg extension that 

contains the DLLs you have created for distribution. Included inside this 

package is a manifest file that contains additional information such as the 

version number of the NuGet package.

Chapter 2  Working with Visual Studio 2019

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard


74

Packages uploaded to nuget.org are public and available to all 

developers that use NuGet in their projects. Developers can, however, 

create NuGet packages that are exclusive to a particular organization and 

not available publicly. We will have a look at hosting your own NuGet feeds 

later on. For now, let’s have a look at how to use NuGet in your own Visual 

Studio project.

�Using NuGet in Visual Studio
Developers can access NuGet right from within Visual Studio, but you can 

also browse www.nuget.org to find packages to use in your applications. In 

the following example, we will be using NuGet from within Visual Studio to 

add functionality to our ShipmentLocator application.

I have added a login form to the ShipmentLocator application as seen 

in Figure 2-15. What I want to do is encrypt the password typed in by the 

user and compare that to the encrypted password in the database.

As a rule, you should never be able to decrypt a password. If you can 
decrypt a password, then so can others that have more malicious 
intentions. After user registration, the encrypted password is stored 
in a database. Login requests are then encrypted and compared with 
the encrypted password in the database. If it’s a match, they are 
successfully authenticated.

This is a very basic login screen but serves the purpose of illustrating 

how to use NuGet in your projects.

Chapter 2  Working with Visual Studio 2019

http://www.nuget.org


75

You can definitely roll your own solution when it comes to encryption. 

Another route to take is to check NuGet to see if there are any solutions 

available that you can use.

To add a NuGet package to your project, right-click the project in the 

Solution Explorer, and click Manage NuGet Packages from the context 

menu as seen in Figure 2-16.

Figure 2-15.  Login form added

Chapter 2  Working with Visual Studio 2019



76

From the NuGet Package Manager screen that is displayed, you can 

search for a NuGet package based on keywords you enter. As can be seen 

in Figure 2-17, I will be using a NuGet package called EncryptValidate that 

I created that provides encryption functionality.

Figure 2-16.  Manage NuGet Packages

Chapter 2  Working with Visual Studio 2019



77

The NuGet Package Manager screen provides a lot of information 

about the package you are going to install. The current version number 

is displayed, license information, project URL, as well as the author and 

download count for the particular package.

The NuGet Package Manager also makes it easy for you to install 

previous versions of the NuGet package (Figure 2-18) if you find that the 

latest package does not work properly with your code.

Figure 2-17.  NuGet Package Manager

Chapter 2  Working with Visual Studio 2019



78

This allows you to easily roll back to a previous version should you 

need to. After installing the package, the NuGet Package Manager will 

indicate that this package has been installed as seen in Figure 2-19.

Figure 2-18.  Installing previous versions

Chapter 2  Working with Visual Studio 2019



79

Figure 2-20 shows the NuGet package in the Visual Studio references.

Figure 2-19.  NuGet Package Installed

Figure 2-20.  References

Chapter 2  Working with Visual Studio 2019



80

With NuGet, everything you need to use the package is added to your 

project. Now that we have added the EncryptValidate package to our 

project, let’s start adding some code.

Listing 2-1.  ValidateLogin method

private bool ValidateLogin()

{

    var blnLogin = false;

    try

    {

        var password = txtPassword.Text;

        �// This encrypted password would be read from a 

database

        var storedEncrPassw = ReadEncryptedValueFromDatabase;

        if (ValidateEncryptedData(password, storedEncrPassw))

        {

            blnLogin = true;

        }

    }

    catch (Exception ex)

    {

        _ = MessageBox.Show(ex.Message);

    }

    return blnLogin;

}

The encrypted password is stored in the database. It is read in and 

stored in the storedEncrPassw variable. The clear-text password and the 

stored encrypted password are then validated. If validation succeeds, the 

user is logged in.

Chapter 2  Working with Visual Studio 2019



81

Remember, the code for this project is available on GitHub.

By adding a single NuGet package, we have added functionality 

to encrypt passwords, validate encrypted passwords, and encrypt and 

decrypt text using Rijndael, converting text to a SecureString object, 

reading the value from the SecureString object, and more. All this 

functionality has been added without having to write the logic ourselves.

This is the power that NuGet provides. It is definitely something you as 

a developer need to consider using if you do not already do so.

�Hosting Your Own NuGet Feeds
Sometimes, you might need to create and share packages that are only 

available to a limited audience. Think of the developers inside your 

organization. Perhaps the company you work with does not allow the 

sharing of code with a public audience. Perhaps the code you want to 

share is really specific to your organization and not suitable for a public 

audience. Whatever the situation, NuGet supports private feeds in the 

following ways:

•	 Local feed – On a network file share

•	 NuGet.Server – On a local HTTP server

•	 NuGet gallery – Hosted on an Internet server using 

the NuGet Gallery project, you can manage users and 

features to allow searching and exploring available 

packages similar to nuget.org.

Chapter 2  Working with Visual Studio 2019



82

There are also other NuGet hosting solutions that do support the 

creation of remote private feeds. Some of these are

•	 Azure Artifacts

•	 MyGet – https://myget.org/

•	 ProGet – https://inedo.com/proget

•	 TeamCity – www.jetbrains.com/teamcity/

For a full list of NuGet hosting products and for more information 

on creating your own NuGet feeds, have a look at the following link on 

Microsoft Docs: https://docs.microsoft.com/en-us/nuget/hosting-

packages/overview

�Creating Project Templates
Sometimes developers create class libraries and code that they need to use 

over and over again across various new projects. What developers end up 

doing is copy and paste code into new class libraries. There is, however, 

an easier way to create projects that reuse code that you have previously 

written.

Enter Visual Studio project templates. These templates allow 

developers to speed up their development by including previously written 

code in new projects. Let’s assume that we have created a project called 

ProjectUtilities (as seen in Figure 2-21) that contains various helper 

methods.

Chapter 2  Working with Visual Studio 2019

https://myget.org/
https://inedo.com/proget
http://www.jetbrains.com/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://docs.microsoft.com/en-us/nuget/hosting-packages/overview
https://docs.microsoft.com/en-us/nuget/hosting-packages/overview


83

This Class Library is something that we will need to use over and over 

in various projects. So I have decided to create a project template from it.

Figure 2-21.  ProjectUtilities Project

Chapter 2  Working with Visual Studio 2019



84

From the Project menu, click Export Template as seen in Figure 2-22.

Figure 2-22.  Export Template

Chapter 2  Working with Visual Studio 2019



85

The Export Template Wizard is displayed as seen in Figure 2-23. This 

allows you to specify which template you need to create. The options are to 

create a Project template or to create an Item template. A Project template 

is what we are after in this example, but you can also create an Item 

template. This will allow you to add the code via the Add New Item dialog 

box in Visual Studio.

For this example, however, we keep the Project template option 

selected and select the project to export from the drop-down list. This 

drop-down lists all the projects in my Visual Studio solution. Select the 

ProjectUtilities project, and click the Next button.

Figure 2-23.  Export Template Wizard

Chapter 2  Working with Visual Studio 2019



86

The next window displayed is where one can enter various template 

options (Figure 2-24). Here I can give the template a suitable name and 

description, specify the icon and preview images, and select to import the 

template into Visual Studio automatically. Click Finish to create the new 

project template.

Figure 2-24.  Add Template Options

Chapter 2  Working with Visual Studio 2019



87

The next time I create a new project in Visual Studio, I can search for 

my Custom project template (Figure 2-25) and have it available for me to 

select.

�Creating and Using Code Snippets
Code snippets in Visual Studio are small blocks of reusable code that you 

can insert into your code file by using a shortcut and tabbing twice or by 

using the right-click menu.

As an example (Figure 2-26), open a C# code file in Visual Studio and 

type the word try and hit the tab key twice.

Figure 2-25.  Add a new project

Chapter 2  Working with Visual Studio 2019



88

This will insert a try-catch into your code file and allow you to enter the 

specific exception type being handled as seen highlighted in Figure 2-27.

Figure 2-26.  Inserting a try code snippet

Figure 2-27.  The inserted try-catch block

If you want to see all the available code snippets, you can open the 

Code Snippets Manager (Figure 2-28) by going to the Tools menu and 

clicking Code Snippets Manager.

Chapter 2  Working with Visual Studio 2019



89

You can also hold down Ctrl+K, Ctrl+B to open the Code Snippets 

Manager window. Clicking each code snippet will display the description, 

shortcut, snippet type (expansion or surrounds with), and author. While 

some shortcuts are obvious (do, else, enum, for, and so on), others are not 

and might take some getting used to remembering to enter the shortcut 

and tabbing twice to insert the snippet.

If you can’t remember the shortcut, you can invoke the snippets by 

hitting Ctrl+K, Ctrl+X (as seen in Figure 2-29) while inside the code file you 

are editing. This will display a menu in place that will allow you to search 

for and select the specific code snippet you want to use.

Figure 2-28.  Code Snippets Manager

Chapter 2  Working with Visual Studio 2019



90

You can also right-click and select Snippets and then Insert Snippet 

from the context menu. The last way that you can insert a code snippet is 

via the menu bar by going to Edit, IntelliSense and clicking Insert Snippet. 

Visual Studio also allows developers to create their own code snippets. 

Let’s have a look at that process next.

�Creating Code Snippets
If there is one thing I wish, is that there was a nice interface baked into 

Visual Studio for creating and adding code snippets. Perhaps one day, but 

for now we have to do it the old-fashioned way.

This is through the use of an XML file. The basic snippet template XML 

looks as in Listing 2-2.

Listing 2-2.  Basic Snippet Template

<?xml version="1.0" encoding="utf-8"?>

<CodeSnippets xmlns="http://schemas.microsoft.com/

VisualStudio/2005/CodeSnippet">

    <CodeSnippet Format="1.0.0">

        <Header>

            <Title></Title>

        </Header>

Figure 2-29.  Ctrl+K, Ctrl+X to invoke a code snippet

Chapter 2  Working with Visual Studio 2019



91

        <Snippet>

            <Code Language="">

                <![CDATA[]]>

            </Code>

        </Snippet>

    </CodeSnippet>

</CodeSnippets>

Let’s assume that we have created a Custom project template that 

includes a logging class in our helper classes.

Refer to the previous section regarding Creating Project Templates.

This logging class will always be added to all new projects going 

forward, and I have to include it in the catch block of every try. The code 

for the logging class is basically as in Listing 2-3.

Listing 2-3.  Basic Logging Class

public static class Logger

{

    public static void Log(string message)

    {

        // Perform some sort of logging

    }

}

Inside my code, I would like to be able to automatically add the code to 

log the error every time I insert a try-catch. The code snippet (Listing 2-4) file 

I create must, therefore, import the namespace as well as expand or surround 

the required code. Replacement parameters have also been defined in 

the snippet file for the Exception type by surrounding the word to replace 

(namely, expression) with the $ characters.

Chapter 2  Working with Visual Studio 2019



92

Listing 2-4.  Custom Try-Catch Snippet

<?xml version="1.0" encoding="utf-8"?>

<CodeSnippets xmlns="http://schemas.microsoft.com/

VisualStudio/2005/CodeSnippet">

    <CodeSnippet Format="1.0.0">

        <Header>

            <Title>Try Catch Log</Title>

            <Author>Dirk Strauss</Author>

            �<Description>Creates a try catch that includes 

logging.</Description>

            <Shortcut>tryl</Shortcut>

            <SnippetTypes>

                <SnippetType>Expansion</SnippetType>

                <SnippetType>SurroundsWith</SnippetType>

            </SnippetTypes>

        </Header>

        <Snippet>

            <Declarations>

              <Literal>

                 <ID>expression</ID>

                 <ToolTip>Exception type</ToolTip>

                 �<Function>SimpleTypeName(global::System.

Exception)</Function>

              </Literal>

            </Declarations>

             <Code Language="CSharp">

                <![CDATA[

                try

                {

                    $selected$

                }

Chapter 2  Working with Visual Studio 2019



93

                catch ($expression$ ex)

                {

                    Logger.Log(ex.Message);

                    $end$

                          throw;

                }

                ]]>

            </Code>

            <Imports>

                <Import>

                    <Namespace>ProjectUtilities</Namespace>

                </Import>

            </Imports>

        </Snippet>

    </CodeSnippet>

</CodeSnippets>

It is also worth noting that the code snippet might be XML, but the file 

extension must be .snippet for Visual Studio to be able to import it. If you 

refer back to Figure 2-28, you will notice an Import button on the Code 

Snippets Manager screen.

Click that button; browse for and import your newly created code 

snippet for the custom try-catch. You will notice that I have defined the 

shortcut as tryl for try-catch log.

This time, if you type the tryl shortcut into your code window, you 

will see that the description and title of the custom try-catch is displayed as 

seen in Figure 2-30.

Figure 2-30.  Custom try-catch to include logging

Chapter 2  Working with Visual Studio 2019



94

When you hit the tab key twice, the custom code snippet is inserted, 

and the required namespace, ProjectUtilities, which we created earlier as 

a project template, is imported along with the code snippet. This can be 

seen in Figure 2-31.

Figure 2-31.  Added try-catch including namespace

This new code snippet is now available in all your future projects. Your 

C# code snippets live in the Documents folder in C:\Users\[USERNAME]\

Documents\Visual Studio 2019\Code Snippets\Visual C#\My Code 

Snippets.

Chapter 2  Working with Visual Studio 2019



95

The code snippet schema reference is available on Microsoft 
Docs at the following link: https://docs.microsoft.com/
en-us/visualstudio/ide/code-snippets-schema-
reference?view=vs-2019

More often than not, you will be creating your own code snippets 

based off of an existing code snippet. This allows you to reuse functionality 

you know is working in the existing snippet and include it in your own.

Code snippets are definitely a very powerful productivity feature in 

Visual Studio.

�Using Bookmarks and Code Shortcuts
At some point in your career, you will most likely be working on a very 

large code base. Do this for a while, and you will get bogged down with 

remembering where a specific bit of code is or where you need to go to get 

to a specific portion of logic.

Visual Studio can assist developers in bookmarking certain sections of 

code as well as adding shortcuts to other areas of code. Let’s have a look at 

what bookmarks and shortcuts are and when to use which.

�Bookmarks
Let’s say that you are busy finishing up for the day, but just before you 

check in your code, you notice that there is some code that doesn’t look 

quite right. It is a method that has a single return statement and you know 

that you can use an expression body for methods.

You really don’t have the time to play around further because you have 

already passed the point that you needed to leave for home. So in order to 

not forget to have a closer look at this tomorrow, you decide to bookmark 

the method.

Chapter 2  Working with Visual Studio 2019

https://docs.microsoft.com/en-us/visualstudio/ide/code-snippets-schema-reference?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/code-snippets-schema-reference?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/code-snippets-schema-reference?view=vs-2019


96

Place your cursor at the line of code you want to return to, and hold 

down Ctrl+K, Ctrl+K and Visual Studio will add a bookmark as seen in 

Figure 2-32.

Figure 2-32.  Bookmark in Visual Studio

Figure 2-33.  Bookmarks window

The bookmark is added to the side of the code editor and is indicated 

by a single black bookmark icon.

In order to see all the bookmarks in your project, you can hold down 

Ctrl+K, Ctrl+W or go to the View menu item and select Other Windows and 

then click Bookmark window.

Chapter 2  Working with Visual Studio 2019



97

The Bookmarks window is displayed as seen in Figure 2-33. From the 

toolbar in the Bookmarks window, you can group bookmarks in folders, 

navigate between bookmarks, navigate between bookmarks in the current 

folder, toggle a bookmark on the currently selected line in code, disable all 

bookmarks, and delete bookmarks.

There is however another feature not so obvious by looking at this 

Bookmarks window, and that is the ability to rename bookmarks. To 

rename a bookmark, click a selected bookmark, and you will see that the 

name (in this case “Bookmark4”) becomes editable.

Figure 2-34.  Renamed bookmark

Now you can rename your bookmark to something more relevant to 

what you need to remember as seen in Figure 2-34. Go ahead and add 

some more bookmarks to other random areas of code. Your Bookmarks 

window will end up looking rather full.

Chapter 2  Working with Visual Studio 2019



98

Now click the delete button on the Bookmarks toolbar. The bookmark 

is deleted without any confirmation from the user.

This is something I can sort of understand. Imagine how irritating 

it would be having to confirm every delete, especially when you want to 

remove only a subsection of bookmarks from your collection.

It is for this reason that I use bookmarks only as a short-term solution 

to remind me to go and perform some action in code or to refactor 

something I think needs refactoring.

For me, a bookmark is something I will come back to within the 

next day or so. Something I don’t want to put off doing. It is, therefore, a 

temporary placeholder to something I need to revisit.

But what if I wanted to go and add a more permanent pointer to some 

logic in code? This is where code shortcuts come in. Let’s have a look at 

this next.

�Code Shortcuts
The ability to add code shortcuts in Visual Studio is more helpful when 

you need to quickly jump to a certain section of code regularly. To add a 

shortcut to a specific section of code in Visual Studio, you need to place 

your cursor on the line of code you need to revisit and type Ctrl+K, Ctrl+H.

Figure 2-35.  Bookmarks collection

Chapter 2  Working with Visual Studio 2019



99

Visual Studio will then add the shortcut as seen in Figure 2-36. To view 

all the shortcuts added to your project, hold down Ctrl+\, Ctrl+T or go to 

the View menu, and select Task List to open the Task List window as seen 

in Figure 2-37.

Figure 2-36.  Code Shortcut Added Indicator

Figure 2-37.  The Task List

In some ways, I prefer the Task List more than using bookmarks 

because I can quickly add items to revisit by adding //TODO: in my code. 

With your Task List open, go to any place in your code, and add the 

following comment.

Chapter 2  Working with Visual Studio 2019



100

Listing 2-5.  TODO Comment

// TODO: Remember to do something here

Now have a look at your Task List. You will notice that the TODO 

comment has been added to your Task List as seen in Figure 2-38.

Figure 2-38.  TODO comments in the Task List

This is a nice and quick method for adding reminders to your code so 

that you can easily refer to them and navigate to them by double-clicking 

the item in the Task List. You can, therefore, use the Task List to take you 

directly to the predefined location in code.

In Visual Studio, TODO is what we call a predefined token. Therefore, 

a comment in your code that uses a predefined token will appear in your 

Task List. The tokenized comment is made up of the following:

•	 The comment marker, which is //

•	 The predefined token (TODO in our example)

•	 The rest of the comment

Chapter 2  Working with Visual Studio 2019



101

The code in Listing 2-5 is, therefore, a valid comment using a token 

and will appear in the Task List. Visual Studio includes the following 

default tokens:

•	 HACK

•	 TODO

•	 UNDONE

•	 UnresolvedMergeConflict

These are by no means case sensitive and will appear in your Task List 

if following the form in Listing 2-5. You can also add your own custom 

tokens. Let’s see how to do that next.

�Adding Custom Tokens
I like the idea of TODO to add items to my Task List, but I would also like to 

add a custom token to add an entry in my Task List that is a nice to have 

feature. Something that is less restrictive than a TODO, because that implies 

that this action must be completed.

I do not want to have a bunch of TODO entries for items that are simply 

nice to have features. For this reason, I want to add a custom token called 

NOTE that is simply a reminder to look at something, if and when I have the 

time.

To add the custom token, go to the Tools menu, and click Options. 

Under Environment, select Task List as seen in Figure 2-39.

Chapter 2  Working with Visual Studio 2019



102

In the Name text box, add the word NOTE and set the priority to Low. 

Then click the Add button. The custom token NOTE is added as can be seen 

in Figure 2-40.

Figure 2-39.  Add Custom Tokens

Chapter 2  Working with Visual Studio 2019



103

Adding a NOTE to your code will pop up in your Task List as a low 

priority task as seen in Figure 2-41.

Figure 2-40.  The Custom Token Added

Figure 2-41.  Adding a NOTE token comment

Chapter 2  Working with Visual Studio 2019



104

Being able to add custom tokens in Visual Studio, as well as applying 

a priority to each, allows you to be very specific with comments that 

contain tokens. This way you can greatly increase the ease and efficiency of 

navigating through a large code base.

�The Server Explorer
As the name suggests, the Server Explorer provides a quick and easy way of 

accessing servers. You can use it to test connections and view SQL Server 

databases or any databases that have the ADO.NET provider installed.

You can access the Server Explorer by holding down Ctrl+Alt+S or by 

going to the View menu and clicking Server Explorer.

Figure 2-42.  Server Explorer

Chapter 2  Working with Visual Studio 2019



105

As seen in Figure 2-42, the Server Explorer offers access to Event 

Logs, Message Queues, Performance Counters, and Services on my local 

machine (MSI). It also provides access to my Azure subscriptions.

I have a local instance of SQL Server installed, so now I can connect 

to this instance right from within Visual Studio by clicking Connect to 

Database.

Figure 2-43.  Choose Data Source

This will display a window allowing you to choose a data source as 

seen in Figure 2-43. You can connect to various types of data sources, but 

we are only interested in Microsoft SQL Server for now. Select that from 

the list and click Continue.

The next window (Figure 2-44) allows you to define your connection to 

the database. Here you need to specify the server name, the authentication 

type, and if SQL Server Authentication is selected, provide the username 

and password.

Chapter 2  Working with Visual Studio 2019



106

This will then allow you to select a database from the list to connect 

to. To check if the connection settings are correct, you can click the Test 

Connection button.

Figure 2-44.  Add Connection

Chapter 2  Working with Visual Studio 2019



107

After adding the database to your Server Explorer, you will see the 

instance added to your list from where you can expand the various nodes 

to view Tables, Views, Stored Procedures, etc., as seen in Figure 2-45.

Figure 2-45.  Database Added to Server Explorer

By double-clicking a table, Visual Studio will display the table designer 

for you along with a create table T-SQL statement as seen in Figure 2-46.

Chapter 2  Working with Visual Studio 2019



108

From this window, you can easily update the table. The create table 

statement in Figure 2-46 is listed in Listing 2-6.

Listing 2-6.  Create Table Statement

CREATE TABLE [dbo].[menu] (

    [itemName] VARCHAR (50)   NOT NULL,

    [category] VARCHAR (50)   NOT NULL,

    [price]    DECIMAL (5, 2) NULL,

    CONSTRAINT [PK_menu] PRIMARY KEY CLUSTERED ([itemName] ASC)

);

We can now modify the menu table by altering the T-SQL statement as 

follows (Listing 2-7).

Figure 2-46.  Table Designer

Chapter 2  Working with Visual Studio 2019



109

Listing 2-7.  Modified Create Table Statement

CREATE TABLE [dbo].[menu] (

    [itemName] VARCHAR (50)   NOT NULL,

    [category] VARCHAR (50)   NOT NULL,

    [price]    DECIMAL (5, 2) NULL,

    [priceCategory]    VARCHAR (5) NULL,

    CONSTRAINT [PK_menu] PRIMARY KEY CLUSTERED ([itemName] ASC)

);

I want to add a price category field to the table. When I modify the 

create table statement, I see the changes reflected in the table designer as 

seen in Figure 2-47.

Figure 2-47.  Table Design Updated

The changes have not been applied to my table yet. For this to update 

the table, I need to click the Update button.

Chapter 2  Working with Visual Studio 2019



110

This will now allow me to preview the database updates about to 

be applied as seen in Figure 2-48. If you do not want to let Visual Studio 

update the table, you can have it generate the script by clicking the 

Generate Script button. Alternatively, you can go ahead and click the 

Update Database button.

This will then start the process of updating the database table with the 

changes you made.

Figure 2-48.  Preview Database Updates

Chapter 2  Working with Visual Studio 2019



111

After the update is complete, you can see the results in the Data Tools 

Operations window as seen in Figure 2-49. From here, you can view the 

script as well as view the results.

�Running SQL Queries
The Server Explorer also allows developers to run SQL queries, right from 

within Visual Studio. Go ahead and right-click a table (Figure 2-50), and 

click New Query from the context menu.

Take note that the context menu changes depending on what item 
you have right-clicked in the Server Explorer. When right-clicking a 
table, you will see items related to a SQL table. When right-clicking 
a View, you will see items specific to the View such as Show Results 
and Open View Definition. When right-clicking a Stored Procedure, the 
context menu will display the Execute command.

Figure 2-49.  Data Tools Operations

Chapter 2  Working with Visual Studio 2019



112

Copy the SQL query in Listing 2-8. You will obviously have had to 

create the table first using the CREATE statement in Listing 2-7.

Listing 2-8.  SQL Select Statement

SELECT

        itemName

        , category

        , price

        , priceCategory

FROM menu

Figure 2-50.  Run a SQL Query

Chapter 2  Working with Visual Studio 2019



113

When you have pasted the SQL statement (Figure 2-51), execute it by 

clicking the run button, by holding down Ctrl+Shift+E or executing it with 

the debugger by holding down Alt+F5.

Figure 2-51.  Running a Select Statement

If you are used to pressing F5 in SQL Server Management Studio, you 

might find yourself starting the Visual Studio debugger instead of running 

the query. I simply find it easier to click the run button and avoid my 

muscle memory faux pas.

Adding an additional item to the table is easily done by running the 

INSERT statement in Listing 2-9.

Chapter 2  Working with Visual Studio 2019



114

Listing 2-9.  Insert Statement

INSERT INTO [dbo].[menu]

        �([itemName],[category],[price],[priceCategory])

        VALUES

        ('bread','breads',2.50,'baker')

If we run the SELECT statement again, you will see that the entry has 

been added to the table as seen in Figure 2-52.

Figure 2-52.  New Item Inserted

From the results displayed in Figure 2-52, we can see that by adding 

the priceCategory column, we have a few NULL fields in the menu table. 

Let’s change that by running the SQL statement in Listing 2-10.

Chapter 2  Working with Visual Studio 2019



115

Listing 2-10.  SQL Update Statement

UPDATE menu

SET priceCategory = 'DELI'

WHERE category IN ('meats', 'salads', 'soups')

When we look at the table data after the UPDATE statement (Figure 2-53),  

you will see that the table has been updated to display the correct 

priceCategory values for the items contained in the table.

Figure 2-53.  Table Updated

While running SQL statements isn’t mind-blowing, it is very 

convenient being able to do all this without ever leaving Visual Studio. The 

Server Explorer definitely offers much more functionality than illustrated 

in this chapter. Dig around it a bit more, and see what the Server Explorer 

can do for your productivity.

Chapter 2  Working with Visual Studio 2019



116

�Visual Studio Windows
I have often maintained that developers get stuck in a rut when it comes to 

working with Visual Studio. They tend to stick to what they know and keep 

on doing things that way until the cows come home.

This isn’t necessarily a bad thing, but developers might miss out on 

some of the awesome tools and features available to them that Visual 

Studio provides right out of the box. In this section, I want to briefly discuss 

two of the items found under the View, Other Windows menu as seen in 

Figure 2-54.

Figure 2-54.  Other Windows in Visual Studio

Chapter 2  Working with Visual Studio 2019



117

Here are too many windows to discuss all in this chapter, but I will 

touch on two that I find very useful.

�C# Interactive
How often have you wanted to test a small bit of code just to see if it works 

correctly? Well, with C# Interactive, you can do just that without having to 

debug your entire solution. Found toward the bottom of the View, Other 

Windows menu, C# Interactive is almost hidden. But gems usually are and 

you’re going to love using it if you don’t already.

Click C# Interactive, and paste the following code in Listing 2-11. After 

pasting the code into C# Interactive, hit the Enter key to run the code.

Listing 2-11.  Running a LINQ Query

var numList = new List<int>() { 153, 114, 116, 213, 619, 18, 

176, 317, 212, 510 };

var numResults = numList.Where(x => x > 315);

foreach(var num in numResults)

{

   Console.WriteLine(num);

}

The results are immediately displayed below the code you pasted. Your 

C# Interactive window should now look as in Figure 2-55.

Chapter 2  Working with Visual Studio 2019



118

C# Interactive is what we refer to as a REPL (Read-Eval-Print Loop). 

Being able to input expressions that are evaluated and results returned 

makes on the spot debugging possible in Visual Studio.

C# Interactive supports IntelliSense, so you get the same kind of editor 

experience as in Visual Studio. For a list of available keyboard shortcuts, 

REPL commands, and Script directives that C# Interactive supports, just 

type in #help and press the Enter key.

�Code Metrics Results
The project that we have been using in this chapter is really not complex at 

all. It is really just to illustrate the concepts in this book. If you take a more 

complex project, one of the projects you have worked on at work, this next 

screen will look a lot different.

Code Metric Results (Figure 2-56) is a set of measurements that allow 

developers to gain a better insight into the code that they are producing.

Figure 2-55.  C# Interactive Code Results

Chapter 2  Working with Visual Studio 2019



119

The image in Figure 2-56 are the results for the ShipmentLocator 

application we have been using throughout this chapter. It’s not really 

complex at all, so the metrics might seem all fine.

Please note that when you first open the Code Metrics Results 
screen, it will be blank. You need to click the Calculate Code Metrics 
for Solution button in the top left corner of the window.

Looking at the same screen (Figure 2-57) for a more complex project 

(one of my old legacy projects), the metrics are quite different.

Figure 2-56.  Code Metrics Results

Chapter 2  Working with Visual Studio 2019



120

Figure 2-57.  Code Metrics Results on a large project

Each metric in the window refers to a specific software measurement 

that was performed. These are the code metrics that Visual Studio 

calculates:

•	 Maintainability Index

•	 Cyclomatic Complexity

•	 Depth of Inheritance

•	 Class Coupling

•	 Lines of Code

The advantage of these metrics makes it possible for developers 

to understand what portions of code need to be worked on or more 

rigorously tested. It also allows developers to identify potential risks 

in their software. Ratings in this window are also color coded so that 

developers can quickly identify trouble spots.

Chapter 2  Working with Visual Studio 2019



121

�Maintainability Index

This will be a value between 0 and 100 and represents how easy it is to 

maintain the code. The higher the value, the more maintainable your code is.

�Cyclomatic Complexity

This metric measures the structure of your code and how complex it is. 

It uses the number of code paths it finds that flow through the program 

to calculate this score. A higher number indicates a complex control flow 

and is, therefore, harder to test and maintain. The numbers displayed in 

Figure 2-56 and Figure 2-57 are totaled for each project in the solution. 

Here it makes sense to expand the hierarchy and drill down to the 

individual methods to see where the problem areas lie.

�Depth of Inheritance

As the name suggests, this metric measures the number of classes that 

inherit from each other. This goes all the way down to the base class. This 

means that a high number indicates a deep inheritance which is bad. 

This is because any changes to a base class have the potential to result 

in breaking changes further up in the derived classes. Here you will be 

wanting to see a lower score.

�Class Coupling

Class Coupling basically measures how many classes a single class uses. 

Here, a high number is bad, and a low number is good. Class Coupling has 

been shown to accurately predict software failures. With a high coupling 

score, the maintenance and reusability of the class become really difficult 

because it depends on too many other types.

Chapter 2  Working with Visual Studio 2019



122

�Lines of Code

The lines of code here are based on the count of the IL code. So this isn’t 

a true count of lines of code in the source file. Nevertheless, you will 

probably agree with me that a high count indicates that a lot is happening. 

Expanding the projects and viewing the code counts for individual 

methods will allow you to see which methods are trying to do too much. 

A high line count will indicate a method that is harder to maintain. Try to 

refactor these methods and simplify them.

�Send Feedback
The Visual Studio team definitely takes feedback seriously. So much so 

that it drives much of what they do to improve Visual Studio.

If you are experiencing a problem in Visual Studio 2019, click the 

feedback button as seen in Figure 2-58.

Figure 2-58.  Send Feedback button

You can now report a problem or suggest a feature right from inside 

Visual Studio 2019.

As a developer, we should take the time to report issues we come 

across. This can be anything from crashes to slow performance or 

something else unexpected.

Chapter 2  Working with Visual Studio 2019



123© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3_3

CHAPTER 3

Debugging Your Code
Debugging code is probably one of the most essential tasks that a 

developer performs. Being able to run your application and pause 

the execution of code midway is a lifesaver. But there is a lot more to 

debugging than just setting breakpoints and viewing results.

In this chapter, we will be discussing the options available to you as 

a developer that needs to effectively debug their code. We will be looking at

•	 Using breakpoints, conditional breakpoints, breakpoint 

actions, and labels and exporting breakpoints

•	 Using data tips

•	 The DebuggerDisplay attribute

•	 Diagnostic tools and Immediate Window

•	 Attaching to a running process

•	 Remote Debugging

Visual Studio gives developers all the required tools in order to 

effectively debug the code you are experiencing problems with. Without 

being able to debug your code, it will be virtually impossible to resolve any 

issues you might be experiencing.

Not being able to effectively debug your application (not knowing how 

to effectively use the tools you have) is just as bad as not having the tools to 

debug with in the first place.



124

�Working with Breakpoints
If you are familiar with debugging in Visual Studio, this chapter might 

seem like old hat for you. Stick around, there might be sections discussed 

here that you didn’t know about.

If you are new to Visual Studio, the concept of debugging in Visual 

Studio is when you run your application with the debugger attached. 

Debugging allows you to step through the code and view the values stored 

in variables. More importantly, you can see how those values change.

�Setting a Breakpoint
The most basic task of debugging is setting a breakpoint. Breakpoints mark 

the lines of code that you want Visual Studio to pause at, allowing you to 

take a closer look at what the code is doing at that particular point in time. 

To place a breakpoint in code, click the margin to the left of the line of code 

you want to inspect as seen in Figure 3-1.

Figure 3-1.  Setting a breakpoint

This line of code is contained in the ValidateLogin() method. The 

method is called when the user clicks the login button. Press F5 or click 

Debug, Start Debugging to run your application. You can also just click the 

Start button as shown in Figure 3-2.

Chapter 3  Debugging Your Code



125

After you start debugging, and a breakpoint is hit, the debug toolbar in 

Visual Studio changes as seen in Figure 3-3.

Figure 3-2.  The Start button

Figure 3-3.  Debug Toolbar when breakpoint hit

The Start button now changes to display Continue. Remember, at this 

point, your code execution is paused in Visual Studio at the breakpoint you 

set earlier.

In order to step through your code, you can click the step buttons as 

displayed in Figure 3-4.

Figure 3-4.  Step Buttons

From left to right, these buttons are as follows:

•	 Step Into (F11)

•	 Step Over (F10)

•	 Step Out (Shift+F11)

Chapter 3  Debugging Your Code



126

When you step into a method, you jump to the point in the editor 

where that method’s code is. If you do not want to step into the method, 

you can click the Step Over button or press F10 to carry on with the next 

line of code. If you are inside a method and want to step out and continue 

debugging the calling code, click the Step Out button or press Shift+F11.

�Step into Specific

Imagine that we need a method that generates a waybill number based on 

specific business rules. Then, when the application starts, the text box field 

is auto-populated with the generated waybill number.

The code used to generate the random waybill functionality is listed in 

Listing 3-1.

Listing 3-1.  Waybill Generation Code

private string GenerateWaybill(string partA, int rndNum) => 

$"{partA}-{rndNum}-{DateTime.Now.Year}-{DateTime.Now.Month}";

private string WBPartA() => "acme-";

private int WBPartB(int min, int max)

{

    var rngCrypto = new RNGCryptoServiceProvider();

    var bf = new byte[4];

    rngCrypto.GetBytes(bf);

    var result = BitConverter.ToInt32(bf, 0);

    return new Random(result).Next(min, max);

}

In the form load of the tracking application, we then make a call to the 

GenerateWaybill() method and pass it the other two methods WBPartA() 

and WBPartB() as parameters as seen in Listing 3-2.

Chapter 3  Debugging Your Code



127

Listing 3-2.  Form Load

private void Form1_Load(object sender, EventArgs e)

{

    var frmLogin = new Login();

    _ = frmLogin.ShowDialog();

    �txtWaybill.Text = GenerateWaybill(WBPartA(), 

WBPartB(100,2000));

}

If you had placed a breakpoint on the line of code that contains the 

GenerateWaybill() method and step into the methods by pressing F11, 

you would first step into method WBPartA(), then into method WBPartB() 

and lastly into the GenerateWaybill() method.

Did you know that you can choose which method to step into? When 

the breakpoint is hit, hold down Alt+Shift+F11 and Visual Studio will pop 

up a menu for you to choose from as seen in Figure 3-5.

Figure 3-5.  Step Into Specific

Simply select the method you want to step into and off you go.

Chapter 3  Debugging Your Code



128

�Run to Click

When you start debugging and you hit a breakpoint, you can jump around 

quickly within the code by clicking the Run to Click button. While in the 

debugger, hover your mouse over a line of code as seen in Figure 3-6, and 

click the Run to Click button that pops up.

Figure 3-6.  Run to Click

This will advance the debugger to the line of code where you clicked, 

allowing you to continue stepping through the code from the new location. 

Quite handy if you do not want to be pressing F10 a gazillion times.

Chapter 3  Debugging Your Code



129

�Run to Cursor

Run to Cursor works in a similar fashion to Run to Click. The difference 

being that with Run to Cursor you are not debugging. With the debugger 

stopped, you can right-click a line of code and click Run to Cursor from the 

context menu as seen in Figure 3-7.

Figure 3-7.  Run to Cursor

Chapter 3  Debugging Your Code



130

Doing this will start the debugger and set a temporary breakpoint on 

the line you right-clicked on. This is useful for quickly setting a breakpoint 

and starting the debugger at the same time. When you reach the 

breakpoint, you can continue debugging as normal.

Be aware though that you will be hitting any other breakpoints set 

before the temporary breakpoint first. So you will need to keep on pressing 

F5 until you reach the line of code you set the temporary breakpoint on.

�Conditional Breakpoints and Actions
Sometimes you need to use a condition to catch a bug. Let’s say that you 

are in a for loop, and the bug seems to be data related. The erroneous data 

only seems to enter the loop after several hundred iterations. If you set 

a regular breakpoint, you will be pressing F10 until your keyboard stops 

working.

This is a perfect use case for using conditional breakpoints. You can 

now tell the debugger to break when a specific condition is true. To set a 

conditional breakpoint, right-click the breakpoint, and click Conditions 

from the context menu as seen in Figure 3-8.

Figure 3-8.  Breakpoint context menu

Chapter 3  Debugging Your Code



131

You can now select a conditional expression and select to break if this 

condition is true or when changed as seen in Figure 3-9.

We will discuss Actions shortly.

Figure 3-9.  Conditional Expression

You can also select to break when the Hit Count is equal to, a multiple 

of, or greater or equal to a value you set as seen in Figure 3-10.

Figure 3-10.  Hit Count Condition

Chapter 3  Debugging Your Code



132

The last condition you can set on a conditional breakpoint is a Filter as 

seen in Figure 3-11.

Figure 3-11.  Filter Condition

You will have noticed the Actions checkbox from the Breakpoint 

Settings. You will also see the Actions menu on the context menu in 

Figure 3-8. Here you can add an expression to log to the Output Window 

using specific keywords that are accessed using the $ symbol.

The special keywords are as follows:

•	 $ADDRESS – Current Instruction

•	 $CALLER – Previous function name

•	 $CALLSTACK – Call stack

•	 $FILEPOS – The current file and line position

•	 $FUNCTION – Current function name

•	 $PID – Process ID

•	 $PNAME – Process name

•	 $TICK – Milliseconds elapsed since the system was 

started, up to 49.7 days

•	 $TID – Thread ID

•	 $TNAME – Thread name

Chapter 3  Debugging Your Code



133

You can now use these special keywords to write an entry to the Output 

Window. You can include the value of a variable by placing it between 

curly braces (think of Interpolated Strings). Listing 3-3 shows an example 

of an expression that uses the $FUNCTION keyword.

Listing 3-3.  Action Expression

The value of the counter = {iCount} in $FUNCTION

Placing this Breakpoint Action in the constructor of the Login() form 

of the ShipmentLocator application will be indicated by a diamond instead 

of a circle as seen in Figure 3-12.

Figure 3-12.  Breakpoint Action

When you run your application, you will see the expression output in 

the Output Window as seen in Figure 3-13.

Chapter 3  Debugging Your Code



134

This is great for debugging because if you don’t select a condition, 

the Action will be displayed in the Output Window without hitting the 

breakpoint and pausing the code. The Breakpoint Action can be seen in 

Figure 3-14.

Figure 3-13.  Action Expression in Output Window

Figure 3-14.  The Breakpoint Action

If you want to pause the code execution, then you need to uncheck the 

Continue execution checkbox.

Chapter 3  Debugging Your Code



135

�Manage Breakpoints with Labels
As you continue debugging your application, you will be setting many 

breakpoints throughout the code. Different developers have different ways of 

debugging. Personally, I add and remove breakpoints as needed, but some 

developers might end up with a lot of set breakpoints as seen in Figure 3-15.

Figure 3-15.  Many Breakpoints Set

This is where the Breakpoints window comes in handy. Think of 

it as mission control for managing complex debugging sessions. This 

is especially helpful in large solutions where you might have many 

breakpoints set at various code files throughout your solution.

The Breakpoints window allows developers to manage the breakpoints 

that they have set by allowing them to search, sort, filter, enable, disable, 

and delete breakpoints. The Breakpoints window also allows developers to 

specify conditional breakpoints and actions.

Chapter 3  Debugging Your Code



136

To open the Breakpoints window, click the Debug menu, Windows, 

and then Breakpoints. You can also press Ctrl+D, Ctrl+B. The Breakpoints 

window will now be displayed as seen in Figure 3-16.

Figure 3-16.  Breakpoints window

Figure 3-17.  Edit Breakpoint Labels

Compare the line numbers of the breakpoints listed in Figure 3-16 with 

the breakpoints displayed in Figure 3-15. You will see that this accurately 

reflects the breakpoints displayed in the Breakpoints window.

The only problem with this window is that it doesn’t help you much in 

the way of managing your breakpoints. At the moment, the only information 

displayed in the Breakpoints window is the class name and the line number.

This is where breakpoint labels are very beneficial. To set a breakpoint 

label, right-click a breakpoint, and click Edit labels from the context menu 

as seen in Figure 3-17.

Chapter 3  Debugging Your Code



137

The Edit breakpoint labels window is then displayed as seen in 

Figure 3-18.

Figure 3-18.  Add a new breakpoint label

Figure 3-19.  Breakpoints window with Labels Set

You can type in a new label or choose from any of the existing labels 

available. If you swing back to the Breakpoints window, you will see that 

these labels are displayed, making the identification and management of 

your breakpoints much easier.

Chapter 3  Debugging Your Code



138

You are in a better position now with the breakpoint labels set to 

manage your breakpoints more effectively.

�Exporting Breakpoints
If you would like to save the current state and location of the breakpoints 

you have set, Visual Studio allows you to export and import breakpoints. 

This will create an XML file with the exported breakpoints that you can 

then share with a colleague.

I foresee the use of Visual Studio Live Share replacing the need to 
share breakpoints with a colleague just for the sake of aiding in 
debugging an application. There are, however, other situations I can 
see exporting breakpoints as being beneficial.

To export your breakpoints, you can right-click a breakpoint and 

click Export from the context menu, or you can click the export button 

in the Breakpoints window. You can also import breakpoints from the 

Breakpoints window by clicking the export or import button as highlighted 

in Figure 3-20.

Figure 3-20.  Import or Export Breakpoints

I’m not too convinced that the icons used on the import and export 

buttons are indicative of importing and exporting something, but that is 

just my personal opinion.

Chapter 3  Debugging Your Code



139

�Using DataTips
DataTips in Visual Studio allows developers to view information about 

variables during a debug session. You can only view DataTips in break 

mode, and DataTips only work with variables that are currently in scope.

This means that before you are able to see a DataTip, you are going 

to have to debug your code. Place a breakpoint somewhere in your code 

and start debugging. When you hit the breakpoint that you have set, you 

can hover your mouse cursor over a variable. The DataTip now appears 

showing the name of the variable and the value it currently holds. You can 

also pin this DataTip as seen in Figure 3-21.

Figure 3-21.  Debugger DataTip

When you pin a DataTip, a pin will appear in the gutter next to the line 

number. You can now move this DataTip around to another position on 

the screen. If you look below the pin icon on the DataTip, you will see a 

“double down-arrow” icon. If you click this, you are able to add a comment 

to your DataTip as seen in Figure 3-22.

Chapter 3  Debugging Your Code



140

DataTips also allow you to edit the value of the variable, as long as 

the value isn’t a read-only value. To do this, simply select the value in the 

DataTip and enter a new value. Then press the Enter key to save the new 

value.

�Visualizing Complex Data Types
DataTips also allows you to visualize complex data in a more meaningful 

way. To illustrate this, we will need to write a little bit of code. We are going 

to create a class, then create a list of that class, and then create a data table 

from that list that we will view in the DataTip. I have just created a small 

Console Application. Start off by creating the class in Listing 3-4.

Listing 3-4.  The Subject Class

public class Subject

{

    public int SubjectCode { get; set; }

    public string SubjectDescription { get; set; }

}

We are going to create a list of the Subject class. Before we do this, 

however, we need to write the code that is going to create a DataTable of 

the values in List<Subject>. This code is illustrated in Listing 3-5.

Figure 3-22.  DataTip Comment

Chapter 3  Debugging Your Code



141

Listing 3-5.  Convert List to DataTable

static DataTable ConvertListToDataTable<T>(List<T> list)

{

    var table = new DataTable();

    var properties = typeof(T).GetProperties();

    foreach (var prop in properties)

    {

        _ = table.Columns.Add(prop.Name);

    }

    foreach (var item in list)

    {

        var row = table.NewRow();

        foreach (var property in properties)

        {

            var name = property.Name;

            var value = property.GetValue(item, null);

            row[name] = value;

        }

        table.Rows.Add(row);

    }

    return table;

}

In the Main method, add the code in Listing 3-6. We will then place a 

breakpoint on the call to the ConvertListToDataTable() method and step 

over that so that we can inspect the table variable’s DataTip.

Chapter 3  Debugging Your Code



142

Listing 3-6.  Create the List<Subject> and the DataTable

static void Main(string[] args)

{

    var lstSubjects = new List<Subject>();

    for (var i = 0; i <= 5; i++)

    {

        var sub = new Subject();

        sub.SubjectCode = i;

        sub.SubjectDescription = $"Subject-{i}";

        lstSubjects.Add(sub);

    }

    var table = ConvertListToDataTable<Subject>(lstSubjects);

}

When you hover over the table variable, you will see that the DataTip 

displays a magnifying glass icon as seen in Figure 3-23.

Figure 3-23.  The table variable DataTip

If you click the magnifying glass icon, you will see the contents of the 

table variable displayed in a nice graphical way as seen in Figure 3-24.

Chapter 3  Debugging Your Code



143

The magnifying glass icon tells us that one or more visualizers are 

available for the particular variable. In this example, the DataTable 

Visualizer.

�Bonus Tip

If you are feeling adventurous, pin the DataTip that is displayed when 

hovering over the table variable, and right-click the pinned DataTip. You 

can now copy the value, copy the expression, add a new expression, and 

remove the expression previously added. Go ahead and add the following 

expression in Listing 3-7.

Listing 3-7.  Add a DataTip Expression

table.Rows.Count

This is great if you forgot to add a variable watch or just want to see 

some additional info regarding the variable in the DataTip.

Figure 3-24.  DataTable Visualizer

Chapter 3  Debugging Your Code



144

�Using the Watch Window
The Watch window allows us to keep track of the value of one or more 

variables and also allows us to see how these variable values change as one 

steps through the code.

You can easily add a variable to the Watch window by right-clicking 

the variable and selecting Add Watch from the context menu. Doing this 

with the table variable in the previous section will add it to the Watch 1 

window as illustrated in Figure 3-25.

Figure 3-25.  The Watch 1 window

Here you can open the visualizer by clicking the magnifying glass icon 

or expand the table variable to view the other properties of the object.  

I use the Watch window often as it is a really convenient way to keep track 

of several variables at once.

�The DebuggerDisplay Attribute
In the previous section, we discussed how to add a variable to the Watch 

window in Visual Studio. We saw that we can view the value of a variable or 

variables easily from this single window.

Chapter 3  Debugging Your Code



145

Using the same code we wrote in the previous section, add the 

variable called lstSubjects to the Watch window, and expand the 

variable. You will see the values of the lstSubjects variable listed as 

{VisualStudioDebugging.Subject} in the Value column as seen in 

Figure 3-26.

Figure 3-26.  The lstSubjects Variable Values

Figure 3-27.  View list items values

To view the values of each item in the list, we need to expand the list 

item (Figure 3-27) and inspect the values.

This will quickly become rather tedious, especially when you are 

dealing with a rather large list and you are looking for a specific value.

Chapter 3  Debugging Your Code



146

This is where the DebuggerDisplay attribute comes into play. We are 

going to modify the Subject class.

Ensure that you add the statement using System.Diagnostics to your 
code file.

Modify your Subject class as in Listing 3-8.

Listing 3-8.  Modified Subject Class

[DebuggerDisplay("Code: {SubjectCode, nq}, Subject: 

{SubjectDescription, nq}")]

public class Subject

{

    public int SubjectCode { get; set; }

    public string SubjectDescription { get; set; }

}

Start debugging your code again, and have a look at your Watch 

window after adding the DebuggerDisplay attribute. Your item values are 

more readable as seen in Figure 3-28.

Figure 3-28.  The lstSubjects Variable Values with 
DebuggerDisplay

Chapter 3  Debugging Your Code



147

The use of “nq” in the DebuggerDisplay attribute will remove the 

quotes when the final value is displayed. The “nq” means “no quotes.”

�Evaluate Functions Without Side Effects
While debugging an application, we probably do not want the state of the 

application to change because of an expression we are evaluating. It is, 

unfortunately, a fact that evaluating some expressions might cause side effects.

To illustrate this, we will need to write some more code. We will be 

creating a class called Student that contains a List of Subject as seen in 

Listing 3-9.

Listing 3-9.  The Student Class

public class Student

{

    private List<Subject> _subjectList;

    public Student() { }

    �public Student(List<Subject> subjects) => _subjectList = 

subjects;

    public bool HasSubjects() => _subjectList != null;

    public List<Subject> StudentSubjects

    {

        get

        {

            if (_subjectList == null)

            {

                _subjectList = new List<Subject>();

            }

Chapter 3  Debugging Your Code



148

            return _subjectList;

        }

    }

}

In this class, we have a HasSubjects() method that simply returns a 

Boolean indicating if the Student class contains a list of subjects. We also 

have a property called StudentSubjects that returns the list of subjects. 

If the list of subjects is null, it creates a new instance of List<Subject>.

It is here that the side effect is caused. If the HasSubjects() method 

returns false, calling the StudentSubjects property will change the value 

of HasSubjects().

This is better illustrated in the following screenshots. Create a new 

instance of Student, and place a breakpoint right after that line of code 

(Figure 3-29).

Figure 3-29.  Place Breakpoint after Student

If we now use the Watch window to look at the value returned by the 

HasSubjects() method, we will see that it returns false (Figure 3-30).

Chapter 3  Debugging Your Code



149

When we call the StudentSubjects property, we see this side effect 

come into play in Figure 3-31. As soon as this property is called, the value 

of the HasSubjects() method changes.

This means that the state of our Student class has changed because of 

an expression that we ran in the Watch window.

This can cause all sorts of issues further down the debugging path, and 

sometimes the change might be so subtle that you don’t even notice it. You 

could end up chasing “bugs” that never really were bugs to begin with.

Figure 3-30.  HasSubjects() method returns false

Chapter 3  Debugging Your Code



150

To prevent any side effects from an expression just add, nse to the end 

of the expression as seen in Figure 3-32.

Figure 3-31.  HasSubjects() method value has changed

Figure 3-32.  Adding nse to Expression to Evaluate

This time, the value of the HasSubjects() method remains the same 

which means that the state of your class remains unchanged. As you have 

probably guessed by now, the nse added after the expression stands for 

“No Side Effects.”

Chapter 3  Debugging Your Code



151

�Format Specifiers
Format specifiers allow you to control the format in which a value is 

displayed in the Watch window. Format specifiers can also be used in the 

Immediate and Command window. Using a format specifier is as easy 

as entering the variable expression and typing a comma followed by the 

format specifier you want to use. The following are the C# format specifiers 

for the Visual Studio debugger:

�ac

Force evaluation of an expression decimal integer

�d

Decimal integer

�dynamic

Displays the specified object using a Dynamic View

�h

Hexadecimal integer

�nq

String with no quotes

�nse

Evaluates expressions without side effects where “nse” means “No Side 

Effects”

Chapter 3  Debugging Your Code



152

�hidden

Displays all public and nonpublic members

�raw

Displays item as it appears in the raw node. Valid on proxy objects only

�results

Used with a variable that implements IEnumerable or IEnumerable<T>. 

Displays only members that contain the query result

You will recall that we used the “nq” format specifier with the 

DebuggerDisplay attribute discussed in a previous section.

�Diagnostic Tools
Visual Studio gives developers access to performance measurement and 

profiling tools. The performance of your application should, therefore, 

be high on your priority list. An application that suffers from significant 

performance issues is as good as broken (especially from an end user’s 

perspective).

Visual Studio Diagnostic Tools might be enabled by default. If not, 

enable Diagnostic Tools by going to the Tools menu and clicking Options, 

Debugging, and then General. Ensure that Enable Diagnostic Tools while 

debugging is checked as seen in Figure 3-33.

Chapter 3  Debugging Your Code



153

This will ensure that the Diagnostic Tools window opens automatically 

when you start debugging. When we start debugging our ShipmentLocator 

Windows Forms application, the Diagnostic Tools window will be 

displayed as seen in Figure 3-34.

Figure 3-33.  Enable Diagnostic Tools

Chapter 3  Debugging Your Code



154

Figure 3-34.  Diagnostic Tools

With our Windows Forms application, you can use Diagnostic Tools to 

monitor memory or CPU usage as seen in Figure 3-35.

Chapter 3  Debugging Your Code



155

As you debug your application, you can see the CPU usage, memory 

usage, and other performance-related information.

�CPU Usage
A great place to start your performance analysis is the CPU Usage tab. 

Place two breakpoints in your Form1_Load at the start and end of the 

function (Figure 3-36), and start debugging.

Figure 3-35.  Select what to analyze

Figure 3-36.  Setting breakpoints to analyze CPU Usage

When the debugger reaches the second breakpoint, you will have 

detailed profiling data for the region of code you analyzed as seen in 

Figure 3-37.

Chapter 3  Debugging Your Code



156

If any of the functions in the CPU Usage pane seem to be problematic, 

double-click the function to view a more detailed three-pane view of 

the analysis. As seen in Figure 3-38, the left pane will contain the calling 

function, the middle will contain the selected function, and any called 

functions will be displayed in the right pane.

Figure 3-37.  CPU Usage Analysis Results

Chapter 3  Debugging Your Code



157

In the Current Function pane, you will see the Function Body section 

which details the time spent in the function body. Because this excludes 

the calling and called functions, you get a better understanding of the 

function you are evaluating and can determine if it is the performance 

bottleneck or not.

�Memory Usage
Visual Studio Diagnostic Tools allows developers to see what the change 

in memory usage is. This is done by taking snapshots. When you start 

debugging, place a breakpoint on a method you suspect is causing 

a memory issue. Then you step over the method and place another 

breakpoint. An increase is indicated with a red up arrow as seen in 

Figure 3-39.

Figure 3-38.  Butterfly View of BtnLogin_Click

Chapter 3  Debugging Your Code



158

This is often the best way to analyze memory issues. Two snapshots 

will give you a nice diff and allow you to see exactly what has changed.

Figure 3-39.  Memory Usage Snapshots

Figure 3-40.  Comparing Snapshots

You can also compare two snapshots by clicking one of the links in the 

Memory Usage snapshots (Figure 3-39) and viewing the comparison in the 

snapshot window that opens up (Figure 3-40). By selecting a snapshot in 

the Compare to drop-down list, you are able to see what has changed.

Chapter 3  Debugging Your Code



159

�The Events View
As you step through your application, the Events view will show you the 

different events that happen during your debug session. This can be setting 

a breakpoint or stepping through code. It also shows you the duration of 

the event as seen in Figure 3-41.

Figure 3-41.  The Events View

Figure 3-42.  PerfTips in the Code Editor

This means that as you step through your code, the Events tab will 

display the time the code took to run from the previous step operation 

to the next. You can also see the same events displayed as PerfTips in the 

Visual Studio Code Editor as seen in Figure 3-42.

Chapter 3  Debugging Your Code



160

IntelliTrace events are available in this tab if you have Visual Studio 

Enterprise.

For a comparison of the Visual Studio 2019 Editions, head on over to 
https://visualstudio.microsoft.com/vs/compare/ and 
see what each edition has to offer.

Perftips allows developers to quickly identify potential issues in your code.

�The Right Tool for the Right Project Type
The following table shows which tool Visual Studio offers and the project 

types that can make use of these tools.

Table 3-1.  Performance Tools for Project Types

Performance Tool Windows 
Desktop

UWP ASP.NET/ASP.NET 
Core

.CPU Usage Yes Yes Yes

Memory Usage Yes Yes Yes

GPU Usage Yes Yes No

Application Timeline Yes Yes No

PerfTips Yes Yes for XAML Yes

Performance Explorer Yes No Yes

IntelliTrace VS Enterprise only VS Enterprise only VS Enterprise only

Network Usage No Yes No

HTML UI 

Responsiveness

No Yes for HTML No

JavaScript Memory No Yes for HTML No

Chapter 3  Debugging Your Code

https://visualstudio.microsoft.com/vs/compare/


161

�Immediate Window
The Immediate Window in Visual Studio allows you to debug and evaluate 

expressions, execute statements, and print the values of variables. If you 

don’t see the Immediate Window, go to the Debug menu, and select 

Windows, and click Immediate or hold down Ctrl+D, Ctrl+I.

Let’s place a breakpoint in one of our for loops as seen in Figure 3-43.

Figure 3-43.  Breakpoint hit

Opening up the Immediate Window and typing in sub.

SubjectDescription will display its value as seen in Figure 3-44. You can 

also use ? sub.SubjectDescription to view the value of the variable.

Figure 3-44.  Immediate Window

Chapter 3  Debugging Your Code



162

If you had entered sub.SubjectDescription = "Math" you would be 

updating the value from “Subject-0” to “Math” as seen in Figure 3-45.

Figure 3-45.  Variable value changed

You can also execute a function at design time (i.e., while not 

debugging) using the Immediate Window. Add the code in Listing 3-10 to 

your project.

Listing 3-10.  DisplayMessage Function

static string DisplayMessage()

{

    return "Hello World";

}

In the Immediate Window, type ?DisplayMessage() and press Enter. 

The Immediate Window will run the function and return the result as seen 

in Figure 3-46.

Chapter 3  Debugging Your Code



163

Any breakpoints contained in the function will break the execution at 

the breakpoint. Use the debugger to examine the program state.

�Attaching to a Running Process
Attaching to a process allows the Visual Studio Debugger to attach to a 

running process on the local machine or a remote computer. With the 

process you want to debug already running, select Debug and click Attach 

to Process as seen in Figure 3-47. You can also hold down Ctrl+Alt+P to 

open the Attach to Process window.

Figure 3-46.  Execute the DisplayMessage Function

Chapter 3  Debugging Your Code



164

The Attach to Process window is then displayed (Figure 3-48). The 

connection type must be set to Default, and the connection target must be 

set to your local machine name.

Figure 3-47.  Attach to Process

Chapter 3  Debugging Your Code



165

The available processes list allows you to select the process you want to 

attach to. You can quickly find the process you want by typing the name in 

the filter process text box.

You can, for example, attach to the w3wp.exe process to debug a web 

application running on IIS. To debug a C#, VB.NET, or C++ application 

on the local machine, you can use the Attach to Process by selecting the 

<appname>.exe from the available processes list (where <appname> is the 

name of your application).

�Attach to a Remote Process
To debug a process running on a remote computer, select Debug and 

click Attach to Process menu, or hold down Ctrl+Alt+P to open the Attach 

to Process window. This time, select the remote computer name in the 

Figure 3-48.  Attach to Process

Chapter 3  Debugging Your Code



166

Connection target by selecting it from the drop-down list or typing the 

name in the connection target text box and pressing Enter.

If you are unable to connect to the remote computer using the 

computer name, use the IP and port address.

�Remote Debugger Port Assignments

The port assignments for the Visual Studio Remote Debugger are as 

follows:

•	 Visual Studio 2019: 4024

•	 Visual Studio 2017: 4022

•	 Visual Studio 2015: 4020

•	 Visual Studio 2013: 4018

•	 Visual Studio 2012: 4016

The port assigned to the Remote Debugger is incremented by 2 for 

each release of Visual Studio.

�Reattaching to a Process
Starting with Visual Studio 2017, you can quickly reattach to a process 

you previously attached to. To do this, you can click the Debug menu and 

select Reattach to Process or hold down Shift+Alt+P. The debugger will 

try to attach to the last process you attached to my matching the previous 

process ID to the list of running processes. If that fails, it tries to attach 

to a process by matching the name. If neither is successful, the Attach to 

Process window is displayed and lets you select the correct process.

Chapter 3  Debugging Your Code



167

�Remote Debugging
Sometimes you need to debug an application that has already been 

deployed to a different computer. Visual Studio allows you to do this via 

Remote Debugging. To start, you need to download and install remote 

tools for Visual Studio 2019 on the remote computer.

Remote Tools for Visual Studio 2019 enables app deployment, remote 

debugging, testing, profiling, and unit testing on computers that don’t have 

Visual Studio 2019 installed.

�System Requirements
The supported operating systems for the remote computer must be one of 

the following:

•	 Windows 10

•	 Windows 8 or 8.1

•	 Windows 7 SP 1

•	 Windows Server 2016

•	 Windows Server 2012 or Windows Server 2012 R2

•	 Windows Server 2008 SP 2, Windows Server 2008 R2 

Service Pack 1

The supported hardware configurations to enable remote debugging 

are detailed in the following list:

•	 1.6 GHz or faster processor

•	 1 GB of RAM (1.5 GB if running on a VM)

•	 1 GB of available hard disk space

Chapter 3  Debugging Your Code



168

•	 5400-RPM hard drive

•	 DirectX 9-capable video card running at 1024 x 768 or 

higher display resolution

The remote computer and your local machine (the machine 

containing Visual Studio) must both be connected over a network, 

workgroup, or homegroup. The two machines can also be connected 

directly via an Ethernet cable.

Take note that trying to debug two computers connected through a 
proxy is not supported.

It is also not recommended to debug via a dial-up connection (do 

those still exist?), or over the Internet across geographical locations. The 

high latency or low bandwidth will make debugging unacceptably slow.

�Download and Install Remote Tools
Connect to the remote machine, and download and install the correct 

version of the remote tools required for your version of Visual Studio. 

The link to download the remote tools compatible with all versions 

of Visual Studio 2019 is https://visualstudio.microsoft.com/

downloads#remote-tools-for-visual-studio-2019.

If you are using Visual Studio 2017, for example, download the latest 
update of remote tools for Visual Studio 2017.

Also, be sure to download the remote tools with the same architecture 

as the remote computer. This means that even if your app is a 32-bit 

application, and your remote computer is running a 64-bit operating 

system, download the 64-bit version of the remote tools.

Chapter 3  Debugging Your Code

https://visualstudio.microsoft.com/downloads#remote-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads#remote-tools-for-visual-studio-2019


169

Install the remote tools, and click Install after agreeing to the license 

terms and conditions (Figure 3-49).

Figure 3-49.  Remote tools for Visual Studio 2019

�Running Remote Tools
After the installation has completed on the remote machine, run the 

Remote Tools application as Administrator if you can. To do this, right-

click the Remote Debugger app, and click Run as Administrator.

At this point, you might be presented with a Remote Debugging 

Configuration dialog box. I did not encounter this window, but if you do, it 

possibly means that there is a configuration issue that you need to resolve. 

The Remote Debugging Configuration dialog box will prompt you to 

correct configuration errors it picks up.

When the configuration issues have been resolved, click the Configure 

remote debugging button in the dialog box to open the Remote Debugger 

window as seen in Figure 3-50.

Chapter 3  Debugging Your Code



170

You are now ready to start remote debugging your application.

�Start Remote Debugging
The great thing about the Remote Debugger on the remote computer is 

that it tells you the server name to connect to. In Figure 3-50, you can see 

that the server is named DESKTOP-H1MDEFE:4024 where 4024 is the port 

assignment for Visual Studio 2019. Make a note of this server name and 

port number.

In your application, set a breakpoint somewhere in the code such as 

in a button click event handler. Now right-click the project in the Solution 

Explorer, and click Properties. The project properties page opens up as 

seen in Figure 3-51.

Figure 3-50.  Visual Studio 2019 Remote Debugger

Chapter 3  Debugging Your Code



171

Now, perform the following steps to remotely debug your application:

	 1.	 Click the Debug tab, and check the Use remote 

machine checkbox, and enter the remote machine 

name and port noted earlier. In our example, this is 

DESKTOP-H1MDEFE:4024.

	 2.	 Make sure that you leave the Working directory text 

box empty and do not check Enable native code 

debugging.

	 3.	 When all this is done, save the properties and build 

your project.

	 4.	 You now need to create a folder on the remote 

computer that is exactly the same path as the Debug 

folder on your local machine (the Visual Studio 

machine). For example, the path to the project 

Figure 3-51.  Project properties page

Chapter 3  Debugging Your Code



172

Debug folder on my local machine is <source path> 

ShipmentLocatorApp\VisualStudioRemoteDebug\

bin\Debug. Create this exact same path on the 

remote machine.

	 5.	 Copy the executable that was just created by the 

build you performed in step 3 to the newly created 

Debug folder on the remote computer.

Be aware that any changes to your code or rebuilds to your project 
will require you to repeat step 5.

	 6.	 Ensure that the Remote Debugger is running on the 

remote computer. The description should state that 

it is waiting for new connections.

	 7.	 On your local machine, start debugging your 

application and if prompted to enter the credentials 

for the remote machine to log on. Once logged 

on, you will see that the Remote Debugger on the 

remote computer displays that the remote debug 

session is now active (Figure 3-52).

Figure 3-52.  Remote Debug Session Connected

Chapter 3  Debugging Your Code



173

	 8.	 After a few seconds, you will see your application’s 

main window displayed on the remote machine 

(Figure 3-53). Yep, breakfast is the most important 

meal of the day.

Figure 3-53.  Application main screen

	 9.	 On the remote machine, take whatever action is 

needed to hit the breakpoint you set earlier. I simply 

set a breakpoint behind the Start button click event 

handler. When you hit the breakpoint, it will be hit 

on your local machine (Visual Studio machine).

If you need any project resources to debug your application, you will 

have to include these in your project. The easiest way is to create a project 

folder in Visual Studio and then add the files to that folder. For each 

resource you add to the folder, ensure that you set the Copy to Output 

Directory property to Copy always.

Chapter 3  Debugging Your Code



175© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3_4

CHAPTER 4

Unit Testing
Many developers will have strong opinions on unit testing. If you are 

considering using unit tests in your code, then start by understanding why 

unit tests are useful and sometimes necessary.

Breaking down your code’s functionality into smaller, testable units of 

behavior allows you to create and run unit tests. Unit tests will increase the 

likelihood that your code will continue to work as expected, even though you 

have made changes to the source code. In this chapter, we will have a look at

•	 Creating and running unit tests

•	 Using live unit tests

•	 Using IntelliTest to generate unit tests

•	 How to measure Code Coverage in Visual Studio

Unit tests allow you to maintain the health of your code and find errors 

quickly, before shipping your application to your customers. To introduce 

you to unit testing, we will start off with a very basic example of creating a 

unit test.

�Creating and Running Unit Tests
Assume that you have a method that calculates the temperature in 

Fahrenheit for a given temperature in Celsius. The code that we want to 

create a unit test for will look as in Listing 4-1.



176

Listing 4-1.  Convert Celsius to Fahrenheit

public static class ConversionHelpers

{

    private const double F_MULTIPLIER = 1.8;

    private const int F_ADDITION = 32;

    public static double ToFahrenheit(double celsius)

    {

        return celsius * F_MULTIPLIER + F_ADDITION;

    }

}

We have constant values for the multiplier and addition to the 

conversion formula. This means that we can easily write a test to check 

that the conversion is an expected result.

Figure 4-1.  Add a new Unit Test project

Chapter 4  Unit Testing



177

Start off by adding a new Unit Test project to your solution. You will see 

(Figure 4-1) that you have the option to add a Unit Test project template for 

the test framework you prefer to use.

Figure 4-2.  Unit Test project added to the solution

Once you have added your Unit Test project to your solution, it will 

appear in the solution with a different icon indicating that it is a Unit Test 

project (Figure 4-2).

Chapter 4  Unit Testing



178

To effectively test the class that contains the method that converts 

Celcius to Fahrenheit, we need to reference that class in our Unit Test 

project. Right-click the Unit Test project and add a reference to the project 

containing the class we need to test (Figure 4-3).

When the reference has been added to your test project, create the test 

as seen in Listing 4-2.

Listing 4-2.  Unit Test for Fahrenheit

[TestClass]

public class ConversionHelperTests

{

    [TestMethod]

    public void Test_Fahrenheit_Calc()

    {

        // arrange - setup

        var celsius = -7.0;

        var expectedFahrenheit = 19.4;

        // act - test

        var result = ConversionHelpers.ToFahrenheit(celsius);

Figure 4-3.  Reference class to test

Chapter 4  Unit Testing



179

        // assert - check

        Assert.AreEqual(expectedFahrenheit, result);

    }

}

When you look at the code in Listing 4-2, you will notice that we do 

three things in a given test. These are

•	 Arrange – Where we set up the test

•	 Act – Where we test the code to get a result

•	 Assert – Where we check the actual result against the 

expected result

From the Test menu, select Windows and then Test Explorer, or hold 

down Ctrl E, T. In Test Explorer, click the green play button to run the test 

and see the test results displayed (Figure 4-4).

Figure 4-4.  Running your Unit Test

Chapter 4  Unit Testing



180

From the results displayed in the Test Explorer, you can easily see 

which tests failed and which have passed. From our rather simple test 

in Listing 4-2, you can see that the test passed easily and that the result 

we expected was indeed the actual result of the test. Note that our test 

compares two type double values for exact equality. The Assert.AreEqual 

method has an overload that accepts an error tolerance parameter.

To see what happens when a test fails, modify the Integer value for the 

constant F_ADDITION variable as seen in Listing 4-3.

Listing 4-3.  Modify the Fahrenheit Constant

private const double F_MULTIPLIER = 1.8;

private const int F_ADDITION = 33;

public static double ToFahrenheit(double celsius)

{

    return celsius * F_MULTIPLIER + F_ADDITION;

}

Running the tests again after the change will result in a failed test as 

seen in Figure 4-5. The change we made was a small change, but it’s easy to 

miss this if we work in a team and on a big code base.

Chapter 4  Unit Testing



181

What the Unit Test does is to keep an eye on the quality of the code as 

it changes throughout development. This is especially important when 

working in a team. It will allow other developers to see if any code changes 

they have made has broken some intended functionality in the code.

In Visual Studio 2019, you can also run the tests by right-clicking the 
test project and selecting Run Tests from the context menu.

The Test Explorer offers a lot of functionality, and you can see this from 

looking at the labels on the image in Figure 4-6.

Figure 4-5.  Failed test results for Fahrenheit calculation

Chapter 4  Unit Testing



182

From the Test Explorer, you can

•	 Run all tests or just the last test

•	 Only run failed tests (great if you have many tests in 

your project)

•	 Filter the test results

•	 Group tests

•	 Start Live unit Testing (more on this later)

•	 Create and run a test playlist

•	 Modify test settings

Let’s have a look at creating a test playlist.

�Create and Run a Test Playlist
If your project contains many tests, and you want to run those tests as a 

group, you can create a playlist. To create a playlist, select the tests that 

you want to group from the Test Explorer, and right-click them. From the 

context menu that pops up, select Add to Playlist, New Playlist as seen in 

Figure 4-7.

Figure 4-6.  Test Explorer Menu

Chapter 4  Unit Testing



183

This will open a new Test Explorer window where you can run the tests 

and save the tests you selected under a new playlist name. This will create 

a .playlist file for you.

I created a new playlist called Temperature_Tests.playlist from the 

Celsius and Fahrenheit temperature conversion tests. The playlist file it 

creates is simply an XML file that in my example looks as in Listing 4-4.

Listing 4-4.  Temperature_Tests.playlist file contents

<Playlist Version="1.0">

<Add Test="VisualStudioTests.ConversionHelperTests.Test_

Fahrenheit_Calc" />

<Add Test="VisualStudioTests.ConversionHelperTests.Test_

Celsius_Calc" />

</Playlist>

Figure 4-7.  Create a Playlist

Chapter 4  Unit Testing



184

To open and run a playlist again, click the Create or run test playlist 

button and select the playlist file you want to run.

�Testing Timeouts
The speed of your code is also very important. If you are using the MSTest 

framework, you can set a timeout attribute to set a timeout after which a 

test should fail. This is really convenient because as you write code for a 

specific method, you can immediately identify if the code you are adding 

to a method is causing a potential bottleneck. Consider the  

Test_Fahrenheit_Calc test we created earlier.

Listing 4-5.  Adding a timeout attribute

[TestMethod]

[Timeout(2000)]

public void Test_Fahrenheit_Calc()

{

    // arrange - setup

    var celsius = -7.0;

    var expectedFahrenheit = 19.4;

    // act - test

    var result = ConversionHelpers.ToFahrenheit(celsius);

    // assert - check

    Assert.AreEqual(expectedFahrenheit, result);

}

As seen in Listing 4-5, I have added a timeout of 2000 milliseconds. 

If you run your tests now, it will pass because the calculation it performs 

is all it does. To see the timeout attribute in action, swing back to the 

ToFahrenheit method in the ConversionHelpers class and modify it by 

sleeping the thread for 2.5 seconds as seen in Listing 4-6.

Chapter 4  Unit Testing



185

Listing 4-6.  Sleeping the Thread

public static double ToFahrenheit(double celsius)

{

    Thread.Sleep(2500);

    return celsius * F_MULTIPLIER + F_ADDITION;

}

Run your tests again and see that this time, your test has failed because 

it has exceeded the specified timeout value set by the Timeout attribute 

(Figure 4-8).

Figure 4-8.  Test timeout exceeded

Identifying critical methods in your code and setting a specific timeout 

on that method will allow developers to catch issues early on when tests 

start exceeding the timeout set. You can then go back and immediately 

refactor the code that was recently changed in order to improve the 

execution time.

Chapter 4  Unit Testing



186

�Using Live Unit Tests
First introduced in Visual Studio 2017, Live Unit Testing runs your unit 

tests automatically as you make changes to your code. You can then see the 

results of your unit tests in real time.

Live Unit Testing is only available in Visual Studio Enterprise edition 
for C# and Visual Basic projects targeting the .NET Framework or 
.NET Core. For a full comparison between the editions of Visual 
Studio, refer to the following link: https://visualstudio.
microsoft.com/vs/compare/.

The benefits of Live Unit Testing are

•	 You will immediately see failing tests allowing you to 

easily identify breaking code changes

•	 Indicates Code Coverage allowing you to see what code 

is not covered by any unit tests

Live Unit Testing persists the data of the status of the tests it ran. It then 

uses the persisted data to dynamically run your tests as your code changes. 

Live Unit Testing supports the following test frameworks:

•	 xUnit.net – Minimum version xunit 1.9.2

•	 NUnit – Minimum version NUnit version 3.5.0

•	 MSTest – Minimum version MSTest.TestFramework 

1.0.5-preview

Chapter 4  Unit Testing

https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
http://xunit.net


187

Once you have configured the Live Unit Testing options, you can 

enable it from Test, Live Unit Testing, Start. To see the Live Unit Testing 

window, click the Live Unit Testing button as seen in Figure 4-6.

The Live Unit Testing window is displayed as seen in Figure 4-10.

Figure 4-9.  Configure Live Unit Testing

Before you can start using Live Unit Testing, you need to configure Live 

Unit Testing from Tools, Options and selecting Live Unit Testing in the left 

pane (Figure 4-9).

Chapter 4  Unit Testing



188

Make some breaking changes to your code and save the file. You will 

see that the Live Unit Testing window is updated to display the failing tests 

as seen in Figure 4-11.

Figure 4-10.  Live Unit Testing window

Figure 4-11.  Live Unit Testing results updated

Chapter 4  Unit Testing



189

Live Unit Testing gives you a good insight into the stability of the code 

you write, as you write the code. Let’s go a little further. Add the following 

class to your project under test (Listing 4-7):

Listing 4-7.  Container Class implementing ICloneable

public class Container : ICloneable

{

    public string ContainerNumber { get; set; }

    public string ShipNumber { get; set; }

    public double Weight { get; set; }

    �public object Clone() => throw new 

NotImplementedException();

}

Don’t add any implementation to the Clone method. Swing back to the 

test project and add a Unit Test for the Container class as in Listing 4-8.

Listing 4-8.  Unit Test for Container Class

[TestMethod]

public void Test_Container()

{

    var containerA = new Container();

    var containerB = containerA.Clone();

    var result = (containerA == containerB);

    Assert.IsFalse(result);

}

Start Live Unit Testing, and you will notice that your test fails as seen in 

Figure 4-12.

Chapter 4  Unit Testing



190

Have a look at the Container class, and you will notice that Live Unit 

Testing has also updated the code file with the faulting method (Figure 4-13).

Figure 4-12.  Live Unit Test Results Failed

Figure 4-13.  Container Class Live Unit Test results

As soon as you add implementation to the Clone method, your Live 

Unit Test results are updated as seen in Figure 4-14.

Chapter 4  Unit Testing



191

With Live Unit Testing, areas of code indicated by a dash are not 

covered by any tests. A green tick indicates that the code is covered by a 

passing test. A red X indicates that the code is covered by a failing test.

�Using IntelliTest to Generate Unit Tests
IntelliTest helps developers generate and get started using Unit Tests. This 

saves a lot of time writing tests and increases code quality.

IntelliTest is only available in Visual Studio Enterprise edition.

The default behavior of IntelliTest is to go through the code and try 

to create a test that gives you maximum Code Coverage. To illustrate how 

IntelliTest works, I will create a simple class that calculates shipping costs 

as seen in Listing 4-9.

Figure 4-14.  Implementing the Clone method

Chapter 4  Unit Testing



192

Listing 4-9.  Calculate ShippingCost Method

public class Calculate

{

    �public enum ShippingType { Overnight = 0, Priority = 1, 

Standard = 2 }

    private const double VOLUME_FACTOR = 0.75;

    �public double ShippingCost(double length, double width, 

double height, ShippingType type)

    {

        var volume = length * width * height;

        var cost = volume * VOLUME_FACTOR;

        switch (type)

        {

            case ShippingType.Overnight:

                cost = cost * 2.25;

                break;

            case ShippingType.Priority:

                cost = cost * 1.75;

                break;

            case ShippingType.Standard:

                cost = cost * 1.05;

                break;

            default:

                break;

        }

        return cost;

    }

}

Chapter 4  Unit Testing



193

To run IntelliTest against the ShippingCost method, right-click the 

method, and click IntelliTest, Run IntelliTest from the context menu. The 

results will be displayed in the IntelliTest window that pops up as seen in 

Figure 4-15. You can also see the details of the generated Unit Test in the 

Details pane.

Figure 4-15.  IntelliTest Results

IntelliTest has taken each parameter going to the method and generated 

a parameter value for it. In this example, all the tests succeeded, but there is 

still a problem. This is evident from the result value which is always zero.

We can never allow a parcel to be shipped with a zero shipping cost, 

no matter how small it is. What becomes clear here is that we need to 

implement minimum dimensions. We, therefore, need to modify the 

Calculate class as in Listing 4-10.

Listing 4-10.  Modified Calculate Class

public class Calculate

{

    �public enum ShippingType { Overnight = 0, Priority = 1, 

Standard = 2 }

    private const double VOLUME_FACTOR = 0.75;

    private const double MIN_WIDTH = 1.5;

Chapter 4  Unit Testing



194

    private const double MIN_LENGTH = 2.5;

    private const double MIN_HEIGHT = 0.5;

    �public double ShippingCost(double length, double width, 

double height, ShippingType type)

    {

        if (length <= 0.0) length = MIN_LENGTH;

        if (width <= 0.0) width = MIN_WIDTH;

        if (height <= 0.0) height = MIN_HEIGHT;

        var volume = length * width * height;

        var cost = volume * VOLUME_FACTOR;

        switch (type)

        {

            case ShippingType.Overnight:

                cost = cost * 2.25;

                break;

            case ShippingType.Priority:

                cost = cost * 1.75;

                break;

            case ShippingType.Standard:

                cost = cost * 1.05;

                break;

            default:

                break;

        }

        return cost;

    }

}

Chapter 4  Unit Testing



195

This time you can see that no matter what the value of the parcel 

dimensions are, we will always have a result returned for the shipping 

costs. To create the Unit Tests generated by IntelliTest, click the Save 

button in the IntelliTest window.

This will create a new Unit Test project for you in your solution as seen 

in Figure 4-17.

Figure 4-16.  IntelliTest Results on modified class

Running IntelliTest again yields a completely different set of results as 

seen in Figure 4-16.

Chapter 4  Unit Testing



196

Figure 4-17.  Generated Unit Tests

You can now run the generated Unit Tests as you normally would 

with Test Explorer. As you continue coding and adding more logic to the 

Calculate class, you can regenerate the Unit Tests by running IntelliTest 

Chapter 4  Unit Testing



197

again. IntelliTest will then crawl through your code again and generate 

new Unit Tests for you to match the logic of your code at that time.

The underlying engine that IntelliTest uses to crawl through your 
code and generate the Unit Tests is Pex. Pex is a Microsoft Research 
project that was never productized or supported until IntelliTest 
started using it.

For a moment, I want you to think back to the code in Listing 4-10. 

Remember how we modified the code to include constant values to cater 

for Intellitest setting the default parameter values to zero? Imagine for a 

minute that we will never receive a zero as a parameter and that this check 

is built into the calling code. We can tell IntelliTest to assume values for 

these parameters.

Have a look at Figure 4-17, and locate the CalculateTest partial 

class generated for you by IntelliTest. The code generated for you is in 

Listing 4-11.

Listing 4-11.  Generated CalculateTest Partial Class

[TestClass]

[PexClass(typeof(Calculate))]

[PexAllowedExceptionFromTypeUnderTest(typeof(ArgumentException), 

AcceptExceptionSubtypes = true)]

[PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperation 

Exception))]

public partial class CalculateTest

{

    [PexMethod]

    public double ShippingCost(

        [PexAssumeUnderTest]Calculate target,

Chapter 4  Unit Testing



198

        double length,

        double width,

        double height,

        Calculate.ShippingType type

    )

    {

double result = target.ShippingCost(length, width, height, 

type);

        return result;

        �// TODO: add assertions to method CalculateTest.

ShippingCost(Calculate, Double, Double, Double, 

ShippingType)

    }

}

We are now going to tell the Pex engine that we want to assume certain 

values for the parameters. We do this by using PexAssume.

PexAssume is a static helper class containing a set of methods to 
express preconditions in parameterized Unit Tests.

Modify the code in the CalculateTest partial class’ ShippingCost 

method by adding PexAssume.IsTrue as a precondition for each 

parameter as illustrated in Listing 4-12.

Listing 4-12.  Modified CalculateTest Partial Class

[PexMethod]

public double ShippingCost(

    [PexAssumeUnderTest]Calculate target,

    double length,

Chapter 4  Unit Testing



199

    double width,

    double height,

    Calculate.ShippingType type

)

{

    PexAssume.IsTrue(length > 0);

    PexAssume.IsTrue(width > 0);

    PexAssume.IsTrue(height > 0);

    �double result = target.ShippingCost(length, width, height, 

type);

    return result;

    �// TODO: add assertions to method CalculateTest.

ShippingCost(Calculate, Double, Double, Double, 

ShippingType)

}

By doing this, I can now modify my Calculate class to remove the 

constant values ensuring that the length, width, and height parameters 

are greater than zero. The Calculate class will now look as in Listing 4-13.

Listing 4-13.  Modified Calculate Class

public class Calculate

{

    �public enum ShippingType { Overnight = 0, Priority = 1, 

Standard = 2 }

    private const double VOLUME_FACTOR = 0.75;

    �public double ShippingCost(double length, double width, 

double height, ShippingType type)

    {

        var volume = length * width * height;

        var cost = volume * VOLUME_FACTOR;

Chapter 4  Unit Testing



200

        switch (type)

        {

            case ShippingType.Overnight:

                cost = cost * 2.25;

                break;

            case ShippingType.Priority:

                cost = cost * 1.75;

                break;

            case ShippingType.Standard:

                cost = cost * 1.05;

                break;

            default:

                break;

        }

        return cost;

    }

}

Run IntelliTest again, and see that the parameter values passed 

through are never zero (Figure 4-18).

Figure 4-18.  IntelliTest Results with PexAssume

Chapter 4  Unit Testing



201

You can modify the CalculateTest partial class by adding assertions to 

the ShippingCost method. When you expand CalculateTest in the Solution 

Explorer (Figure 4-19), you will see several ShippingCost Test methods listed.

Figure 4-19.  ShippingCost Generated Tests

Chapter 4  Unit Testing



202

These correspond to the IntelliTest results as seen in Figure 4-18. Do 

not modify these code files, as your changes will be lost when IntelliTest is 

run again and it regenerates those tests.

�Focus IntelliTest Code Exploration
Sometimes IntelliTest needs a bit of help focusing code exploration. This can 

happen if you have an Interface as a parameter to a method and more than 

one class implements that Interface. Consider the code in Listing 4-14.

Listing 4-14.  Focusing Code Exploration

public class ShipFreight

{

    public void CalculateFreightCosts(IShippable box)

    {

    }

}

class Crate : IShippable

{

    public bool CustomsCleared { get; }

}

class Package : IShippable

{

    public bool CustomsCleared { get; }

}

public interface IShippable

{

    bool CustomsCleared { get; }

}

Chapter 4  Unit Testing



203

If you ran IntelliTest on the CalculateFreightCosts method, then you 

will receive the following warnings as can be seen in Figure 4-20.

Figure 4-21.  Tell IntelliTest which class to use

You can tell IntelliTest which class to use to test the interface. Assume 

that I want to use the Package class to test the Interface. Now, just select 

the second warning and click the Fix button on the menu as seen in 

Figure 4-21.

Figure 4-20.  Focus Code Exploration

Chapter 4  Unit Testing



204

IntelliTest now updates the PexAssemblyInfo.cs file by adding 

[assembly: PexUseType(typeof(Package))] to the end of the file to tell 

IntelliTest which class to use. Running IntelliTest again results in no more 

warnings being displayed.

�How to Measure Code Coverage in Visual 
Studio
Code Coverage indicates what portion of your code is covered by Unit 

Tests. To guard against bugs, it becomes obvious that the more code is 

covered by Unit Tests, the better tested it is.

IntelliTest is only available in Visual Studio Enterprise edition.

The Code Coverage feature in Visual Studio will give you a good idea 

of your current Code Coverage percentage. To run the Code Coverage 

analysis, open up Test Explorer, and click the drop-down next to the play 

button (Figure 4-22).

Chapter 4  Unit Testing



205

Click Analyze Code Coverage for All Tests in the menu.

You can also go to the Test menu, click Windows, and click Test 
Explorer.

The Code Coverage Results are then displayed in a new window 

(Figure 4-23). You can access this window from the Test menu and then select 

Windows, Code Coverage Results or hold down Ctrl + E, C on the keyboard.

Figure 4-23.  Code Coverage Results

Figure 4-22.  Analyze Code Coverage

Chapter 4  Unit Testing



206

In the Code Coverage Results window, you can Export the results, 

Import Results, Merge Results, Show Code Coverage Color, or Remove the 

results.

Figure 4-25.  Change Fonts and Colors

Figure 4-24.  Toggle Code Coverage Coloring

This will toggle colors in your code editor to highlight areas touched, 

partially touched, and not touched at all by tests. The colors used to 

highlight the code can also be changed. To do this, head on over to Tools, 

Options, Environment, Fonts and Colors (Figure 4-25).

Chapter 4  Unit Testing



207

This should give you a good understanding of how much code is 

covered by Unit Tests. Developers should typically aim for at least 80% 

Code Coverage. If the Code Coverage is low, then modify your code to 

include more tests. Once you are done modifying your code, run the Code 

Coverage tool again as the results are not automatically updated as you 

modify your code.

Code Coverage is typically measured in blocks. A block of code is a 

section of code that has exactly one entry point and one exit point. If you 

prefer to see the Code Coverage in terms of lines covered, you can change 

the results by choosing Add/Remove Columns in the results table header 

(Figure 4-26).

Figure 4-26.  Code Coverage Expressed in Lines

Code Coverage is a great tool to allow you to check if your code is 

sufficiently covered by Unit Tests. If you aim for 80% Code Coverage, you 

should be able to produce well-tested code. The 80% Code Coverage is not 

always attainable. This is especially true if the code base you’re working on 

has a lot of generated code. In instances such as these, a lower percentage 

of code cover is acceptable.

Chapter 4  Unit Testing



209© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3_5

CHAPTER 5

Source Control
If you have worked on projects in a team environment, or if you need a 

place to keep your own code safe, then you’ll agree that using a source 

control solution is essential. It doesn’t matter if it’s a large enterprise 

solution or a small Pet project, Visual Studio makes it extremely easy for 

developers to use Git and GitHub.

Git is a tool that developers install locally on their machine. GitHub is 
an online service that stores code safely that has been pushed to it 
from computers using the Git tool.

In 2018, Microsoft acquired GitHub for $7.5 billion in Microsoft stock. 

This acquisition of GitHub brought about changes to their pricing tiers. 

Previously, developers could only create public repos on the free tier. In 

January 2019, however, GitHub announced that developers can now create 

unlimited private repositories on the free tier.



210

This is really great, especially if you are working on a side project that 

you do not want to share with anyone just yet. In this chapter, we will be 

looking at using Git and GitHub inside Visual Studio 2019. We will see how to

•	 Create a GitHub account

•	 Create and clone a repository

•	 How to commit changes to a repository

•	 Create a branch from your code

•	 Creating and handling pull requests

These are all things that developers will do on a daily basis when 

working with Git and GitHub. While the process might change slightly if 

you use a different source control strategy, the concepts remain the same.

�Create a GitHub Account
Let’s start off with creating a GitHub account. Point your browser to  

www.github.com, and create an account by clicking the signup button.

Chapter 5  Source Control

http://www.github.com


211

Enter a username (Figure 5-1), e-mail address, and password. After 

entering your details, you will need to select a subscription. GitHub offers 

two subscriptions, the free subscription that offers the basics suitable 

for most developers and a pro subscription. The free subscription is 

very generous and will appeal to most developers. The free subscription 

includes

•	 Unlimited public and private repositories

•	 Three collaborators for private repositories

Figure 5-1.  Sign up for GitHub

Chapter 5  Source Control



212

•	 Issues and bug tracking

•	 Project management

The pro subscription, on the other hand, offers more but will be 

more suited to large teams of developers in an organization. The pro 

subscription includes

•	 Unlimited public and private repositories

•	 Unlimited collaborators

•	 Issues and bug tracking

•	 Project management

•	 Advanced tools and insights

This will allow a team of developers to work on a private repository for 

a nominal monthly subscription.

For more info on all GitHub’s products, browse to the following 
URL https://help.github.com/en/articles/githubs-
products.

After creating your account on GitHub, you will be sent an e-mail to 

verify your account with. Clicking the link in this e-mail will take you back 

to GitHub, to the Create a new repository page. If not, you can access your 

repositories from the menu under your profile image. This will take you to 

your repositories page from where you can create your first repository as 

seen in Figure 5-2.

Chapter 5  Source Control

https://help.github.com/en/articles/githubs-products
https://help.github.com/en/articles/githubs-products
https://help.github.com/en/articles/githubs-products


213

The next logical step is to create a repository for your new project. Let’s 

have a look at that in the next section.

Figure 5-2.  Create a new repository

Chapter 5  Source Control



214

�Create and Clone a Repository
Before you start, you need to see if you have installed the GitHub extension 

for Visual Studio. To do this, you need to run the Visual Studio Installer. To 

find the Visual Studio Installer, search for it in Windows, or find it under 

the Windows start menu as seen in Figure 5-3.

Figure 5-3.  Visual Studio Installer

Sometimes, the Visual Studio Installer needs to update before running, 

so you need to give it a few minutes to do this depending on the speed of 

your Internet connection.

Chapter 5  Source Control



215

When the Visual Studio Installer has launched, you will see an option 

to modify your installation of Visual Studio. Click Modify and have a look 

at the installation details for Visual Studio. The GitHub extension for Visual 

Studio should be displayed under the Individual components. If you don’t 

see the GitHub extension here, you will need to install it. To do this, change 

to the Individual components tab, and check the option to install the 

GitHub extension for Visual Studio under Code tools.

Once you have installed the GitHub extension, start Visual Studio and 

open up your solution. For this example, I have just created a small project 

called MyPetProject as seen in Figure 5-5.

Figure 5-4.  GitHub extension for Visual Studio

Chapter 5  Source Control



216

To get started adding this to a new repository, right-click the solution, 

and click Add Solution to Source Control as seen in Figure 5-6.

Figure 5-5.  MyPetProject solution in Visual Studio

Chapter 5  Source Control



217

This will then create a new Git repository for your solution. Open 

up the Output Window (Ctrl+Alt+O) from the View menu, and click 

Output. Here you will see that a new local Git repository has been created 

(Figure 5-7).

Figure 5-6.  Add Solution to Source Control

Chapter 5  Source Control



218

It is important to remember that this project is now under source 

control using Git. Remember that we mentioned earlier that Git is the 

source control plumbing, the tool that developers install locally on their 

machines.

If you never want a backup of your code in the cloud, or never want to 

collaborate with other developers, you can just use Git. This is, however, a 

quite unlikely scenario. Especially now that GitHub allows you free private 

repositories.

It is, therefore, the logical next step to push your code to a GitHub 

repository. To do this, you need to open the GitHub tab as seen in 

Figure 5-8.

Figure 5-7.  New Git repository created

Chapter 5  Source Control



219

If you do not see the GitHub tab, click the View menu, then click Other 

Windows, and then click GitHub. The tab will tell you that the repository is 

not yet in GitHub. Change to the Team Explorer tab as seen in Figure 5-9. If 

you do not see the Team Explorer tab (Ctrl+\, Ctrl+M), go to the View menu, 

and click Team Explorer.

Figure 5-8.  The GitHub tab

Chapter 5  Source Control



220

With Team Explorer now open, you will see your local Git repository 

created earlier on. Under the Hosted Service Providers, you will see 

the option to sign up to GitHub or connect to GitHub. We have already 

created a GitHub account in the previous section, so here we will only be 

connecting to GitHub. Click the Connect link to open up the Connect to 

GitHub screen as seen in Figure 5-10.

Figure 5-9.  Team Explorer

Chapter 5  Source Control



221

Once you have connected to GitHub, change to the Synchronization 

section of the Team Explorer window by clicking the Connect header and 

selecting Sync from the drop-down menu (Figure 5-11).

Figure 5-10.  Connect to GitHub

Chapter 5  Source Control



222

The Synchronization screen is now displayed as seen in Figure 5-12.

Figure 5-11.  Change to Sync

Chapter 5  Source Control



223

From this screen, we will be publishing our code to GitHub.

If you do not see the option to publish to GitHub, then restart Visual 
Studio, and go to the Synchronization tab again. The option to publish 
to GitHub should be displayed after the restart.

To start the process, click the Publish to GitHub button (refer to 

Figure 5-12). This will then display the publish settings as seen in 

Figure 5-13.

Figure 5-12.  Publish to GitHub

Chapter 5  Source Control



224

Here we can select the account we want to use. In my case, it is the 

account that I created in the previous section and the one that I signed in 

to my GitHub account with earlier (refer to Figure 5-10).

The repository name should be pre-populated for you from your local 

repository. You can also add an optional description. Importantly, be sure 

to check the private repository checkbox if you want to keep your code 

private. When you are ready, click the Publish button.

Note  that if you have two-factor authentication set up, you will be 
prompted at this point to provide the authentication code from your 
authenticator application on your mobile phone.

Figure 5-13.  Publish Settings

Chapter 5  Source Control



225

After the repository has been published to GitHub, you will see the 

new repository if you view your GitHub repositories online as seen in 

Figure 5-14.

Figure 5-14.  GitHub Repository Created Online

Chapter 5  Source Control



226

I have some staged changes in my repo. Now I want to commit my 

code to my new GitHub repository. Switch to the Changes view in Team 

Explorer, and enter a commit message, and click the Commit Staged 

button (Figure 5-15).

Figure 5-15.  Commit Staged Code

This will commit the changes locally (Figure 5-16).

Chapter 5  Source Control



227

Remember, your commit is to your local Git repo. To push the changes 

to our GitHub repository, change to the Sync view. Do this by clicking the 

Changes header to view the drop-down menu, and select Sync as seen in 

Figure 5-17.

Figure 5-16.  Commit created Locally

Figure 5-17.  Switch to Sync

The Synchronization view is now displayed (Figure 5-18). Here you will 

see all the outgoing commits that are yet to be pushed to the server.

Chapter 5  Source Control



228

Clicking Push will send all the code to the GitHub repository. On 

GitHub, if you view the code for the repository, you will see the latest 

changes displayed there.

�Cloning a Repository
What I want to do now is have another colleague of mine contribute to 

my project. Seeing as this is a private repository, I need to invite him to 

collaborate. In GitHub, go to the settings tab in your repository. Then click 

Collaborators as seen in Figure 5-19.

Figure 5-18.  Sync your changes with the server

Chapter 5  Source Control



229

The free account can have three collaborators, so this will be using 

one of your allotted collaborators. In this example, John has invited me to 

collaborate on his Pet Project. I will now receive a notification in my inbox 

that John wants me to work on his project with him (Figure 5-20).

Figure 5-19.  Add Collaborators

Figure 5-20.  Invitation to Collaborate

Chapter 5  Source Control



230

Once I accept the invitation, I will have push access to the project. 

John will now see me as a collaborator under the collaborator’s tab in 

GitHub. To start working on the code, I need to clone the repository to my 

local machine. Start Visual Studio, and then click the Clone or check out 

code option under the Get started section of the Visual Studio start screen 

(Figure 5-21).

Figure 5-21.  Clone or check out code

This will take you to the Clone or check out code screen (Figure 5-22).

Chapter 5  Source Control



231

From this screen, you can enter the repository location to get the code 

from, but because I am a collaborator on John’s GitHub project, I can 

simply click the GitHub option (Figure 5-22).

This will display the Open from GitHub screen (Figure 5-23).

Figure 5-22.  Clone from GitHub

Chapter 5  Source Control



232

It is here that I will see the project that John invited me to under the 

Collaborator repositories. Select the project, ensure that the local path is 

correct, and click the Clone button. The Visual Studio project is then cloned 

to my local machine and displayed in my Team Explorer (Figure 5-24).

Figure 5-23.  Open from GitHub

Chapter 5  Source Control



233

I can now collaborate with John on his Pet project and share my 

changes with him easily.

�Create a Branch from Your Code
John has a new feature that needs to be added to his Pet project. It would 

be better for me to work on the changes to the project in an isolated 

manner. To do this, I can create a branch in Git. A branch allows me 

to make changes to the code without changing the code in the main 

Figure 5-24.  The cloned project in Team Explorer

Chapter 5  Source Control



234

branch, also called the master branch. In Visual Studio, I can see that I am 

currently working on the master branch if I look at the bottom right status 

bar in Visual Studio (Figure 5-25).

Figure 5-25.  Working in the master branch

To create a new branch, switch to the Branches view in Team Explorer 

(Figure 5-26).

Figure 5-26.  Branches view

Chapter 5  Source Control



235

I will now create a local branch in Visual Studio. To do this, click the 

New Branch link in the Branches view.

Figure 5-27.  Create a new Branch

I can now give my new branch a suitable name (Figure 5-27) and tell it 

to create the branch from the master branch. I keep the Checkout branch 

selected to check out my new branch and click the Create Branch button.

Chapter 5  Source Control



236

As seen in Figure 5-28, my new local branch is created and checked 

out. When I look at the bottom right status bar in Visual Studio, I see that 

the new feature branch is checked out (Figure 5-29).

Figure 5-28.  Feature branch created

Figure 5-29.  Feature branch checked out

This means that from now on, all changes made to the code will stay in 

this particular branch. Let’s add some new code to the project.

Chapter 5  Source Control



237

As seen in Figure 5-30, I have added a new class called CoolFeatureClass 

that contains the new code I added. I must now commit the changes to my 

branch. In Team Explorer, change to the Changes view. This will show me all 

the code that I have changed in my branch (Figure 5-31).

Figure 5-30.  New feature code added

Chapter 5  Source Control



238

You can see that the SuperCoolFeature branch is still selected. Under 

the changes section, you will see all the files that you have changed. Before 

you commit your code, you need to add a suitable commit message. Then I 

can click the drop-down next to the Commit All button and select Commit 

All and Push (Figure 5-32).

Figure 5-31.  Changes to feature branch

Chapter 5  Source Control



239

This will commit the changes to the local repo and then push them to 

the remote repo. If you switch to the Branches view in Team Explorer and 

expand the remotes/origin folder, you will see that your feature branch 

has been pushed to the server (Figure 5-33).

Figure 5-32.  Commit All and Push

Figure 5-33.  Branch pushed to the server

Chapter 5  Source Control



240

The code is now safely on the GitHub repo. How do I get my changes 

into the master branch? For this, we will be creating a pull request.

�Creating and Handling Pull Requests
The term pull request might sound strange to some folks that aren’t used 

to working with a source control system. The “pull” means to request that 

your code be pulled into the main working branch of the source code. 

Some developers also refer to a pull request as a merge request.

In Visual Studio, we can easily create a pull request. By doing this, we 

are telling the team that our code is ready to be peer-reviewed and, if it’s 

good, merged into the main master branch.

You will remember that in the previous section, we created a branch 

and added all our new features to the branch. Then we committed those 

changes to Git (locally) before pushing them up to the server on GitHub.

To create a pull request, change to the GitHub tab. If you do not see the 

GitHub tab, click the View menu, then click Other Windows, and then click 

GitHub.

Chapter 5  Source Control



241

You will see that (Figure 5-34) you can now create a pull request by 

clicking the “Create a pull request” link. Clicking the pull request link 

will bring you to a section where you can fill in your pull request details 

(Figure 5-35).

Figure 5-34.  Create a Pull Request

Chapter 5  Source Control



242

When you have added all the required details, you click the Create pull 

request button. This pull request will now go to John where he can review 

my code, add comments, and hopefully approve my changes.

Figure 5-35.  Pull Request Details

Chapter 5  Source Control



243

When the pull request is successfully created, you will see the 

notification in Visual Studio.

Figure 5-36.  Pull Request created

Figure 5-37.  New Pull Request Notification

Chapter 5  Source Control



244

On the other side of the continent, John has just finished working on some 

code and sees my pull request in his GitHub tab in Visual Studio (Figure 5-37).

Seeing and approving pull requests in Visual Studio  are brand new to 
2019. If you are using an older version of Visual Studio, you will need 
to handle all pull requests in GitHub online.

John can now click the pull request that I created to view the details 

(Figure 5-38).

Figure 5-38.  View Pull Request Details

Chapter 5  Source Control



245

In Figure 5-38, John can see that I only added a new class called 

CoolFeatureClass. He can also see that the .csproj file has changed.

Figure 5-39.  View Differences

Clicking the .csproj file will display the diff between the file in master 

and the file in the pull request (Figure 5-39). In fact, John can do this with 

every file that has been modified. This way, he can clearly see what code 

has changed and do a review of the code I have added.

Clicking the new class I added, John will not see a diff (because this is a 

new class), but he is still able to review the code.

Chapter 5  Source Control



246

Hovering your mouse over the code, John will see a plus sign appear 

(Figure 5-40).

Figure 5-40.  Review code in Pull Request

Chapter 5  Source Control



247

Clicking the plus sign will allow John to add a comment to the code I 

have added. Once the comments have been added, I can see these in the 

pull request in Visual Studio (Figure 5-42).

Figure 5-41.  Adding Comments to Pull Requests

Chapter 5  Source Control



248

Under Reviewers in Visual Studio, I can see that John has added a 

comment. I can click the comment to view the details of it (Figure 5-43).

Figure 5-42.  View Pull Request Comments

Chapter 5  Source Control



249

This allows me to see the comments John added and take any action 

if needed. Referring back to Figure 5-38, John can now click the Add your 

review link under Reviewers and then approve the pull request (Figure 5-44).

Figure 5-43.  View review comments

Chapter 5  Source Control



250

When John clicks the Approve link, the pull request is approved, and 

we can now merge the changes into the master branch. For this, we need 

to go to GitHub to do the merge.

Figure 5-44.  Approving a Pull Request

Chapter 5  Source Control



251

By clicking the View on GitHub link (Figure 5-45), John will be taken to 

GitHub to perform the merge. GitHub will open on the pull request page 

where he can see the comments that were added. From there he can merge 

the changes into the master branch (Figure 5-46).

Figure 5-45.  Click View on GitHub to perform the Merge

Chapter 5  Source Control



252

After the merge is complete in GitHub, I can safely delete my branch. 

When I go and refresh my GitHub tab, I will see that the Pull Request has 

been merged into the master branch.

Figure 5-46.  Merge Pull Request

Figure 5-47.  Pull Request Merged into the master branch

I can now switch to my master branch and pull the changes to get the 

new feature into my local master branch. Switch to your master branch by 

clicking the branch name in the bottom right toolbar of Visual Studio and 

selecting master from there.

You can also switch to the Branches view in Team Explorer and 

double click the local master branch to switch to it. Then, under the 

Chapter 5  Source Control



253

Synchronization tab in Team Explorer, I will see all the incoming commits 

as seen in Figure 5-48.

Figure 5-48.  View Incoming Commits

Notice that the branch displayed is the master branch. This is because 

we switched to our local master branch in Git. The new feature was 

merged with the remote master branch on GitHub by John a few minutes 

ago. I need to pull those changes into my local master branch to get it up to 

date. To do this, I click the Pull link.

Chapter 5  Source Control



254

Fetch only downloads the changes from the remote repository 
(GitHub) but does not integrate the code into your local branch. Fetch 
just really shows you what changes there are that need to be merged 
into your local branch.

Pull is used to update your local branch with the latest changes on 
the remote repository. This merge might potentially result in merge 
conflicts that you need to resolve before continuing.

After the Pull has completed and the changes have been merged into 

my local master branch, my Solution Explorer will show the new class I 

added earlier to my feature branch, in my local master (Figure 5-49).

Figure 5-49.  Local master branch merged

At this point, because the changes have been merged into the master 

branch, and my local master branch has been updated, I can safely delete 

the feature branch I created earlier.

Chapter 5  Source Control



255

Using pull requests allow developers to have a lot more control over 

the code that gets merged into the main working branch of the project. 

Using branches allow me to make changes to the code in an isolated 

manner without risking the stability of the master branch.

�Working with Stashes
Sometimes you might be working on some changes, and you continue to 

make a whole range of changes without noticing that you are working on 

the wrong branch.

In Figure 5-50, you can see that we are currently working on the 

master branch. I should actually be making all my changes on the 

NewFeatures branch. This is a very easy mistake to make (perhaps not 

with the master branch), especially if you are working in several different 

branches in your code.

Figure 5-50.  Working in the master branch

Switching to the changes tab in Team Explorer, I notice that I have 

made all my changes on the master branch (Figure 5-51) instead of on the 

correct NewFeatures branch.

Chapter 5  Source Control



256

Stashing takes all the changes I have made and puts them away locally 

(Figure 5-52). It then reverts all the changes I had made to the master 

branch. This means that I have my master branch back to the way it was 

before the changes were made.

Figure 5-51.  Changes in incorrect branch

Enter a world of pain, because I now need to backtrack everything I did 

and remove the code and then go and apply these to the correct branch. 

This is where stashes come in very handy.

Chapter 5  Source Control



257

When I stash my changes, they appear under the Stashes section 

(Figure 5-53).

Figure 5-52.  Stash the changes on master

Chapter 5  Source Control



258

I can then go and switch to the correct branch as seen in Figure 5-54.

Figure 5-53.  Changes stashed

Figure 5-54.  Change to correct branch

Chapter 5  Source Control



259

With my correct branch selected (Figure 5-55), I can view the changes, 

apply them, pop them, or drop the changes. The options are

•	 Apply – Apply the changes to the branch and keep the 

stash.

•	 Pop – Apply the changes to the branch and drop the 

stash.

•	 Drop – This will delete the stash without applying 

anything.

Figure 5-55.  Apply, Pop, or Drop the stash

Chapter 5  Source Control



260

Stashing allows me to pause the changes I was working with and carry 

on with something else for a while. Another great example of using stashes 

is when I am working on a branch and I need to make a bug fix. I can stash 

my changes which will revert the code in my branch. Then I can make the 

bug fix and push that up to the server before popping my stash back to my 

branch. Stashing allows developers to be very flexible when working with 

code changes.

Chapter 5  Source Control



261© Dirk Strauss 2020 
D. Strauss, Getting Started with Visual Studio 2019,  
https://doi.org/10.1007/978-1-4842-5449-3

Index

A, B
Breakpoints, 124

conditional and actions, 130
action expression, 133, 134
conditional expression, 131
context menu, 130
filter condition, 132
hit count condition, 131
keywords, 132

cursor works, 129–131
debug Toolbar, 125
export option, 138
GenerateWaybill()  

method, 126
labels

edit labels, 136
new label window, 137
set breakpoints, 135
window, 136

run to click button, 128
setting, 124
start button, 125
step buttons, 125
step into specific, 127
ValidateLogin()  

method, 124
Waybill generation code, 126

C
C# Interactive, 117, 118

D, E, F
Debugging code

breakpoint (see Breakpoints)
DataTips, 139

bonus tip, 143
comment, 140
ConvertListToDataTable() 

method, 141
DataTable visualizer, 143
source window, 139
visualize complex  

data, 140–143
watch window, 144

DebuggerDisplay attribute, 144
item values, 146
lstSubjects variable  

values, 145
subject class  

modification, 146
view list items, 145

diagnostic tools, 152
butterfly view, 157
CPU usage tab, 155–157

https://doi.org/10.1007/978-1-4842-5449-3


262

enable option, 152
events view, 159, 160
memory usage, 157–159
monitor memory, 154
performance tools, 160
tools window, 153, 154

functions without side  
effects, 147

adding nse value, 150
format specifiers, 151
HasSubjects()  

method, 149, 150
screenshots, 148
student class, 147

immediate window
breakpoint, 161
DisplayMessage  

function, 162, 163
variable value, 162

points, 123
remote tools

application steps of, 171–173
download and  

installation, 168, 169
main screen, 173
project properties page, 171
running tools, 169, 170
system requirements, 167, 168

running process
port assignments, 166
process window, 163–165
reattach to process, 166
remote process, 165

G
Git and GitHub account

pro subscription, 212
repository creation, 213
sign up, 211

H
Handling pull requests

approve, 249
comments, 247, 248
creation, 241, 243
details, 242, 244
local master branch, 254
master branch, 252
merge action, 250, 252
notification, 243
review code, 246
review comments, 249
view differences, 245
view incoming  

commits, 253

I, J, K
Integrated development 

environment (IDE), 9
code editor, 21

application design, 22
code-behind, 22, 23
code suggestions, 26
errors and warnings, 25
improvement  

suggestions, 24

Debugging code (cont.)

INDEX



263

solution explorer
add references, 13
context menu, 11
debug folder, 17
differences, 18
features, 14
file explorer, 16
obj and bin folder, 14, 15
project reference, 11
projects, 10
reference manager screen, 12
shipment locator 

application, 9
solution options, 18
toolbar, 13
WinForms application, 11

toolbox, 19–21
context menu, 20
WinForm application, 19

Intermediate Language (IL), 11

L, M
Live unit tests

benefits of, 186
Clone method, 190, 191
configuration, 186, 187
container class, 189
faulting method, 190
ICloneable class, 189
results, 190
results updated, 188
test frameworks, 186
window, 187, 188

N, O, P, Q, R
NuGet packages, 73

EncryptValidate, 76
hosting solutions, 82, 83
installation, 79
login form, 74, 75
manage packages, 75, 76
manager screen, 77
references, 79
ValidateLogin method, 80
versions, 78
ZIP file, 73

S, T
Source control solution, 209

branch code
changes feature, 238
commit all and push, 239
creation, 233
feature, 236, 237
new creation, 235
server, 239
team explorer, 234

clone repository, 214
add collaborators, 228
add solution, 217
changes local, 226, 227
check out code, 230
commit staged code, 226
connection, 221
GitHub, 231
GitHub extension, 215

Index



264

GitHub tab, 219
invitation, 229
MyPetProject solution, 216
online creation, 225
output window, 217, 218
publish settings, 223
synchronization screen, 222
synchronization  

view, 227, 228
Sync selection, 227
team explorer, 220, 233
window screen, 231
Windows start menu, 214

Git and GitHub, 210–213
pull requests (see Handling pull 

requests)
stashes, 255–260

Stashes, 255
apply/pop/drop, 259
correct branch, 258
incorrect branch, 256
master branch, 255
stash changes, 257, 258

U
Unit testing, 175

code coverage, 204
change fonts and colors, 206
feature, 204
lines, 207
results, 205
toggle coloring, 206

creation and run code
add project, 176
code conversion, 176
failed test results, 181
modification, 180
reference class to test, 178
results, 179
solution, 177
test explorer menu, 182
testing timeouts, 184, 185
test playlist, 182–184
test project, 178

IntelliTest, 191
calculate class, 199, 200
calculate class  

modification, 193, 195
CalculateTest partial  

class, 197, 198
focusing code  

exploration, 202–204
generation, 195, 196
PexAssume, 198, 200
results, 193
ShippingCost method,  

192, 198
ShippingCost tests, 201

Live (see Live unit tests)

V, W, X, Y, Z
Visual Studio

bookmarks
collection, 98
icon, 95, 96

Source control solution (cont.)

INDEX



265

renamed bookmark, 97
window, 96

code metrics results
class coupling, 121
cyclomatic complexity, 121
depth of inheritance, 121
large project, 120
lines of code, 122
maintainability index, 121
measurements of, 118

code shortcuts, 98
indicator, 99
task list, 99
TODO comments, 100

code snippets
insert, 87, 88
logging, 93
logging Class, 91
namespace, 94
tools menu, 88, 89
try-catch block, 88
try-catch snippet, 92–94
XML file, 90

custom tokens, 101
adding option, 101
NOTE token comment, 103

evolution of, 1, 2
IDE (see Integrated 

development environment 
(IDE))

installation, 2, 3
IntelliCode, 51

completion list, 51

model completion, 53
recommendations, 53
string array, 54
window pop-up note, 51

Live Share
code current  

position, 60
icon session, 55, 56
Jason navigation, 59
launch application 

notification, 58
in progress, 56
session, 57, 59
sharing link, 56
tab, 60

multi-caret editing
code properties, 42
insert option, 44
line/across lines, 43
matching selections, 42
selection, 42
SQL table statement, 41

navigate code, 26
bar, 27, 28
breadcrumb path, 35
forward and backward  

commands, 26, 27
Go To commands, 31, 32
Go To definition, 33, 34
highlighting references,  

30, 31
peek definition, 34–36
references, 28–30

Index



266

NuGet (see NuGet packages)
productivity and features

clipboard history, 39, 40
context menu, 37
edit location, 41
file explorer, 38, 39
Go To window, 40, 41
keyboard shortcut, 39, 40
multi-caret editing, 41–44
track active item, 36, 37

project types
class library, 72, 73
console applications,  

67, 68
context menu  

options, 63
creation, 65
filter templates, 66
screen, 62
section, 64
service, 69–71
timer namespaces, 70
toolbar button, 65
web applications, 71, 72
windows forms  

application, 68, 69
search option, 44, 45
server explorer

connection, 106
database, 107
data source, 105
data tools operations, 111

preview database, 110
SQL queries, 111–115
statement creation, 108
table designer, 108
updated design, 109
view menu, 104

solution filters, 45
AcmeCorpShipping  

project, 47
context menu, 50
explorer, 45, 46
file name, 48, 49
project selection, 49
Save As option  

window, 47, 48
SQL queries

context menu, 111, 112
Insert statement, 114
select statement, 112, 113
table updated, 115

system requirements, 4
additional notes, 6
hardware, 4
languages, 5
operating systems, 4

templates
add options, 86
export template, 84
new project  

template, 86, 87
ProjectUtilities  

project, 82, 83
wizard, 85

Visual Studio (cont.)

INDEX



267

versions of, 3
Windows menu, 116

C# Interactive, 117, 118
code metrics  

results, 118–122
send feedback, 122

workloads
details, 8
installation of, 7
options, 9
Python development, 8
screen, 6

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting to Know Visual Studio 2019
	Installing Visual Studio
	Visual Studio 2019 System Requirements
	Operating Systems
	Hardware
	Supported Languages
	Additional Notes

	Using Workloads

	Exploring the IDE
	The Solution Explorer
	Toolbox
	The Code Editor

	Navigating Code
	Navigate Forward and Backward Commands
	Navigation Bar
	Find All References
	Reference Highlighting
	Go To Commands
	Go To Definition
	Peek Definition

	Features and Productivity Tips
	Track Active Item in Solution Explorer
	Hidden Editor Context Menu
	Open in File Explorer
	Finding Keyboard Shortcut Mappings
	Clipboard History
	Go To Window
	Navigate to Last Edit Location
	Multi-caret Editing

	Features in Visual Studio 2019
	Visual Studio Search
	Solution Filters
	Visual Studio IntelliCode
	Visual Studio Live Share


	Chapter 2: Working with Visual Studio 2019
	Visual Studio Project Types
	Various Project Templates
	Console Applications
	Windows Forms Application
	Windows Service
	Web Applications
	Class Library


	Managing NuGet Packages
	Using NuGet in Visual Studio
	Hosting Your Own NuGet Feeds

	Creating Project Templates
	Creating and Using Code Snippets
	Creating Code Snippets

	Using Bookmarks and Code Shortcuts
	Bookmarks
	Code Shortcuts
	Adding Custom Tokens

	The Server Explorer
	Running SQL Queries

	Visual Studio Windows
	C# Interactive
	Code Metrics Results
	Maintainability Index
	Cyclomatic Complexity
	Depth of Inheritance
	Class Coupling
	Lines of Code

	Send Feedback


	Chapter 3: Debugging Your Code
	Working with Breakpoints
	Setting a Breakpoint
	Step into Specific
	Run to Click
	Run to Cursor

	Conditional Breakpoints and Actions
	Manage Breakpoints with Labels
	Exporting Breakpoints

	Using DataTips
	Visualizing Complex Data Types
	Bonus Tip

	Using the Watch Window

	The DebuggerDisplay Attribute
	Evaluate Functions Without Side Effects
	Format Specifiers
	ac
	d
	dynamic
	h
	nq
	nse
	hidden
	raw
	results


	Diagnostic Tools
	CPU Usage
	Memory Usage
	The Events View
	The Right Tool for the Right Project Type

	Immediate Window
	Attaching to a Running Process
	Attach to a Remote Process
	Remote Debugger Port Assignments

	Reattaching to a Process

	Remote Debugging
	System Requirements
	Download and Install Remote Tools
	Running Remote Tools
	Start Remote Debugging


	Chapter 4: Unit Testing
	Creating and Running Unit Tests
	Create and Run a Test Playlist
	Testing Timeouts

	Using Live Unit Tests
	Using IntelliTest to Generate Unit Tests
	Focus IntelliTest Code Exploration

	How to Measure Code Coverage in Visual Studio

	Chapter 5: Source Control
	Create a GitHub Account
	Create and Clone a Repository
	Cloning a Repository

	Create a Branch from Your Code
	Creating and Handling Pull Requests
	Working with Stashes

	Index



