
©Manning Publications Co. To comment go to liveBook

After making all these changes, you’ll have the best of both worlds—you can update the
default UI Razor Pages HTML, without taking on the responsibility of maintaining the default UI
code behind.

TIP In the source code for the book you can see these changes in action, where the Register view has been

customized to remove the references to external identity providers.

Unfortunately, it’s not always possible to use the default UI PageModel. Sometimes, you need
to update the page handlers, such as when you want to change the functionality of your
Identity area, rather than just the look and feel. A common requirement is needing to store
additional information about a user, as you’ll see in the next section.

14.6 Managing users: adding custom data to users
In this section you’ll see how to customize the ClaimsPrincipal assigned to your users by
adding additional claims to the AspNetUserClaims table when the user is created. You’ll also
see how to access these claims in your Razor Pages and templates.

Very often, the next step after adding Identity to an application is to customize it. The
default templates only require an email and password to register. What if you need more
details, like a friendly name for the user? Also, I’ve mentioned that we use claims for security,
so what if you want to add a claim called IsAdmin to certain users?

You know that every user principal has a collection of claims so, conceptually, adding any
claim just requires adding it to the user’s collection. There are two main times that you would
want to grant a claim to a user:

• For every user, when they first register on the app. For example, you might want to
add a “Name” field to the Register form and add that as a claim to the user when they
register.

• Manually, after the user has already registered. This is common for claims used as
“permissions,” where an existing user might want to add an IsAdmin claim to a specific
user after they have registered on the app.

In this section, I show you the first approach, automatically adding new claims to a user when
they’re created. The latter approach is the more flexible and, ultimately, is the approach many
apps will need, especially line-of-business apps. Luckily, there’s nothing conceptually difficult
to it; it requires a simple UI that lets you view users and add a claim through the same
mechanism I’ll show here.

TIP Another common approach is to customize the IdentityUser entity, by adding a Name property for

example. This approach is sometimes easier to work with if you want to give users the ability to edit that

property. The documentation describes the steps required to achieve that:

https://docs.microsoft.com/aspnet/core/security/authentication/add-user-data.

495

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/authentication/add-user-data

©Manning Publications Co. To comment go to liveBook

Let’s say you want to add a new Claim to a user called FullName. A typical approach would
be:

1. Scaffold the Register.cshtml Razor Page, as you did in section 14.5.
2. Add a “Name” field to the InputModel in the Register.cshtml.cs PageModel.
3. Add a “Name” input field to the Register.cshtml Razor view template.
4. Create the new ApplicationUser entity as before in the OnPost() page handler, by

calling CreateAsync on UserManager<ApplicationUser>.
5. Add a new Claim to the user by calling UserManager.AddClaimAsync().
6. Continue the method as before, sending a confirmation email, or signing the user in if

email confirmation is not required.

Steps 1-3 are fairly self-explanatory and just require updating the existing templates with the
new field. Steps 4-6 all take place in Register.cshtml.cs in the OnPost() page handler, which
is summarized in the following listing. In practice the page handler has more error checking
and boilerplate; our focus here is on the additional lines that add the extra Claim to the
ApplicationUser.

Listing 14.8 Adding a custom claim to a new user in the Register.cshtml.cs page

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { #A
 UserName = Input.Email, Email = Input.Email }; #A
 var result = await _userManager.CreateAsync(#B
 user, Input.Password); #B
 if (result.Succeeded)
 {
 var claim = new Claim("FullName", Input.Name); #C
 await _userManager.AddClaimAsync(user, claim); #D

 var code = await _userManager #E
 .GenerateEmailConfirmationTokenAsync(user); #E
 await _emailSender.SendEmailAsync(#E
 Input.Email, "Confirm your email", code); #E
 await _signInManager.SignInAsync(user); #F
 return LocalRedirect(returnUrl);
 }
 foreach (var error in result.Errors) #G
 { #G
 ModelState.AddModelError(#G
 string.Empty, error.Description); #G
 } #G
 }
 return Page(); #G
}

#A Creates an instance of the ApplicationUser entity, as usual
#B Validates that the provided password is valid and creates the user in the database
#C Creates a claim, with a string name of "FullName" and the provided value
#D Adds the new claim to the ApplicationUser’s collection

496

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#E Sends a confirmation email to the user, if you have configured the email sender
#F Signs the user in by setting the HttpContext.User, the principal will include the custom claim
#G There was a problem creating the user. Add the errors to the ModelState, and redisplay the page

This is all that’s required to add the new claim, but you’re not using it anywhere currently.
What if you want to display it? Well, you’ve added a claim to the ClaimsPrincipal, which was
assigned to the HttpContext.User property when you called SignInAsync. That means you
can retrieve the claims anywhere you have access to the ClaimsPrincipal—including in your
page handlers and in view templates. For example, you could display the user’s FullName
claim anywhere in a Razor template with the following statement:

@User.Claims.FirstOrDefault(x=>x.Type == "FullName")?.Value

This finds the first claim on the current user principal with a Type of "FullName" and prints
the assigned value (if the claim is not found, it prints nothing). The Identity system even
includes a handy extension method that tidies up this LINQ expression (found in the
System.Security.Claims namespace):

@User.FindFirstValue("FullName")

And with that last tidbit, we’ve reached the end of this chapter on ASP.NET Core Identity. I
hope you’ve come to appreciate the amount of effort using Identity can save you, especially
when you make use of the default Identity UI package.

Adding user accounts and authentication to an app is typically the first step to customizing
your app further. Once you have authentication, you can have authorization, which lets you
lock down certain actions in your app, based on the current user. In the next chapter, you’ll
learn about the ASP.NET Core authorization system and how you can use it to customize your
apps, in particular, the recipe application, which is coming along nicely!

14.7 Summary
• Authentication is the process of determining who you are and authorization is the

process of determining what you’re allowed to do. You need to authenticate users
before you can apply authorization.

• Every request in ASP.NET Core is associated with a user, also known as a principal. By
default, without authentication, this is an anonymous user. You can use the claims
principal to behave differently depending on who made a request.

• The current pr1incipal for a request is exposed on HttpContext.User. You can access
this value from your Razor Pages and views to find out properties of the user such as
their, ID, Name or Email.

• Every user has a collection of claims. These claims are single pieces of information
about the user. Claims could be properties of the physical user, such as Name and
Email, or they could be related to things the user has, such as HasAdminAccess or
IsVipCustomer.

497

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:@User.Claims.FirstOrDefault
mailto:@User.FindFirstValue

©Manning Publications Co. To comment go to liveBook

• Earlier versions of ASP.NET used roles instead of claims. You can still use roles if you
need to, but you should use claims where possible.

• Authentication in ASP.NET Core is provided by AuthenticationMiddleware and a
number of authentication services. These services are responsible for setting the
current principal when a user logs in, saving it to a cookie, and loading the principal
from the cookie on subsequent requests.

• The AuthenticationMiddleware is added by calling UseAuthentication() in your
middleware pipeline. This must be placed after the call to UseRouting() and before
UseAuthorization() and UseEndpoints().

• ASP.NET Core includes support for consuming bearer tokens for authenticating API calls
and includes helper libraries for configuring IdentityServer. For more details see
https://docs.microsoft.com/aspnet/core/security/authentication/identity-api-
authorization.

• ASP.NET Core Identity handles low-level services needed for storing users in a
database, ensuring their passwords are stored safely, and for logging users in and out.
You must provide the UI for the functionality yourself and wire it up to the Identity sub-
system.

• The Microsoft.AspNetCore.Identity.UI package provides a default UI for the Identity
system, and includes email confirmation, 2FA, and external login provider support. You
need to do some additional configuration to enable these features.

• The default template for a Web Application with Individual Account Authentication uses
ASP.NET Core Identity to store users in the database with EF Core. It includes all the
boilerplate code required to wire the UI up to the Identity system.

• You can use the UserManager<T> class to create new user accounts, load them from
the database, and change their passwords. SignInManager<T> is used to sign a user in
and out, by assigning the principal for the request and by setting an authentication
cookie. The default UI uses these classes for you to facilitate user registration and
login.

• You can update an EF Core DbContext to support Identity by deriving from
IdentityDbContext<TUser> where TUser is a class that derives from IdentityUser.

• You can add additional claims to a user using the
UserManager<TUser>.AddClaimAsync(TUser user, Claim claim) method. These
claims are added to the HttpContext.User object when the user logs in to your app.

• Claims consist of a type and a value. Both values are strings. You can use standard
values for types exposed on the ClaimTypes class, such as ClaimTypes .GivenName
and ClaimTypes.FirstName, or you can use a custom string, such as "FullName".

498

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/authentication/identity-api-authorization
https://docs.microsoft.com/aspnet/core/security/authentication/identity-api-authorization

©Manning Publications Co. To comment go to liveBook

15
Authorization: securing your

application

This chapter covers

• Using authorization to control who can use your app
• Using claims-based authorization with policies
• Creating custom policies to handle complex requirements
• Authorizing a request depending upon the resource being accessed
• Hiding elements from a Razor template that the user is unauthorized to access

In chapter 14, I showed how to add users to an ASP.NET Core application by adding
authentication. With authentication, users can register and log in to your app using an email
and password. Whenever you add authentication to an app, you inevitably find you want to be
able to restrict what some users can do. The process of determining whether a user can
perform a given action on your app is called authorization.

On an e-commerce site, for example, you may have admin users who are allowed to add
new products and change prices, sales users who are allowed to view completed orders, and
customer users who are only allowed to place orders and buy products.

In this chapter, I show how to use authorization in an app to control what your users can
do. In section 15.1, I introduce authorization and put it in the context of a real-life scenario
you’ve probably experienced: an airport. I describe the sequence of events, from checking in,
passing through security, to entering an airport lounge, and how these relate to the
authorization concepts you’ll see in this chapter.

In section 15.2, I show how authorization fits into an ASP.NET Core web application and
how it relates to the ClaimsPrincipal class that you saw in the previous chapter. You’ll see

499

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

how to enforce the simplest level of authorization in an ASP.NET Core app, ensuring that only
authenticated users can execute a Razor Page or MVC action.

We’ll extend that approach in section 15.3 by adding in the concept of policies. These let
you make specific requirements about a given authenticated user, requiring that they have
specific pieces of information in order to execute an action or Razor Page.

You’ll use policies extensively in the ASP.NET Core authorization system, so in section
15.4, we explore how to handle more complex scenarios. You’ll learn about authorization
requirements and handlers, and how you can combine them to create specific policies that you
can apply to your Razor Pages and actions.

Sometimes, whether a user is authorized depends on which resource or document they’re
attempting to access. A resource is anything that you’re trying to protect, so it could be a
document or a post in a social media app for example.

For example, you may allow users to create documents, or to read documents from other
users, but only to edit documents that they created themselves. This type of authorization,
where you need the details of the document to determine if the user is authorized, is called
resource-based authorization, and is the focus of section 15.5.

In the final section of this chapter, I show how you can extend the resource-based
authorization approach to your Razor view templates. This lets you modify the UI to hide
elements that users aren’t authorized to interact with. In particular, you’ll see how to hide the
Edit button when a user isn’t authorized to edit the entity.

We’ll start by looking more closely at the concept of authorization, how it differs from
authentication, and how it relates to real-life concepts you might see in an airport.

15.1 Introduction to authorization
In this section, I provide an introduction to authorization, and how it compares to
authentication. I use the real-life example of an airport as a case study to understand how
claims-based authorization works.

For people who are new to web apps and security, authentication and authorization can
sometimes be a little daunting. It certainly doesn’t help that the words look so similar! The
two concepts are often used together, but they’re definitely distinct:

• Authentication—The process of determining who made a request
• Authorization—The process of determining whether the requested action is allowed

Typically, authentication occurs first, so that you know who is making a request to your app.
For traditional web apps, your app authenticates a request by checking the encrypted cookie
that was set when the user logged in (as you saw in the previous chapter). Web APIs typically
use a header instead of a cookie for authentication, but the process is the same.

Once a request is authenticated and you know who is making the request, you can
determine whether they’re allowed to execute an action on your server. This process is called
authorization and is the focus of this chapter.

500

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Before we dive into code and start looking at authorization in ASP.NET Core, I’ll put these
concepts into a real-life scenario you’re hopefully familiar with: checking in at an airport. To
enter an airport and board a plane, you must pass through several steps: an initial step to
prove who you are (authentication); and subsequent steps that check whether you’re allowed
to proceed (authorization). In simplified form, these might look like:

1. Show passport at check-in desk. Receive a boarding pass.
2. Show boarding pass to enter security. Pass through security.
3. Show frequent flyer card to enter the airline lounge. Enter lounge.
4. Show boarding pass to board flight. Enter airplane.

Obviously, these steps, also shown in figure 15.1, will vary somewhat (I don’t have a frequent
flyer card!), but we’ll go with them for now. Let’s explore each step a little further.

501

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 15.1 When boarding a plane at an airport, you pass through several authorization steps. At each
authorization step, you must present a claim in the form of a boarding pass or a frequent flyer card. If you’re not
authorized, then access will be denied.

When you arrive at the airport, the first thing you do is go to the check-in counter. Here, you
can purchase a plane ticket, but to do so, you need to prove who you are by providing a
passport; you authenticate yourself. If you’ve forgotten your passport, you can’t authenticate,
and you can’t go any further.

502

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Once you’ve purchased your ticket, you’re issued a boarding pass, which says which flight
you’re on. We’ll assume it also includes a BoardingPassNumber. You can think of this number
as an additional claim associated with your identity.

DEFINITION A claim is a piece of information about a user that consists of a type and an optional value.

The next step is security. The security guards will ask you to present your boarding pass for
inspection, which they’ll use to check that you have a flight and so are allowed deeper into the
airport. This is an authorization process: you must have the required claim (a
BoardingPassNumber) to proceed.

If you don’t have a valid BoardingPassNumber, there are two possibilities for what happens
next:

• If you haven’t yet purchased a ticket—You’ll be directed back to the check-in desk,
where you can authenticate and purchase a ticket. At that point, you can try to enter
security again.

• If you have an invalid ticket—You won’t be allowed through security and there’s nothing
else you can do. If, for example, you show up with a boarding pass a week late for your
flight, they probably won’t let you through. (Ask me how I know!)

Once you’re through security, you need to wait for your flight to start boarding, but
unfortunately there aren’t any seats free. Typical! Luckily, you’re a regular flier, and you’ve
notched up enough miles to achieve a “Gold” frequent flyer status, so you can use the airline
lounge.

You head to the lounge, where you’re asked to present your Gold Frequent Flyer card to
the attendant, and they let you in. This is another example of authorization. You must have a
FrequentFlyerClass claim with a value of Gold to proceed.

NOTE You’ve used authorization twice so far in this scenario. Each time, you presented a claim to proceed. In

the first case, the presence of any BoardingPassNumber was sufficient, whereas for the

FrequentFlyerClass claim, you needed the specific value of Gold.

When you’re boarding the airplane, you have one final authorization step, in which you must
present the BoardingPassNumber claim again. You presented this claim earlier, but boarding
the aircraft is a distinct action from entering security, so you have to present it again.

This whole scenario has lots of parallels with requests to a web app:

• Both processes start with authentication.
• You have to prove who you are in order to retrieve the claims you need for

authorization.
• You use authorization to protect sensitive actions like entering security and the airline

lounge.

503

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

I’ll reuse this airport scenario throughout the chapter to build a simple web application that
simulates the steps you take in an airport. We’ve covered the concept of authorization in
general, so in the next section, we’ll look at how authorization works in ASP.NET Core. You’ll
start with the most basic level of authorization, ensuring only authenticated users can execute
an action, and look at what happens when you try to execute such an action.

15.2 Authorization in ASP.NET Core
In this section you’ll see how the authorization principles described in the previous section
apply to an ASP.NET Core application. You’ll learn about the role of the [Authorize] attribute
and AuthorizationMiddleware in authorizing requests to Razor Pages and MVC actions.
Finally, you’ll learn about the process of preventing unauthenticated users from executing
endpoints, and what happens when users are unauthorized.

The ASP.NET Core framework has authorization built in, so you can use it anywhere in your
app, but it’s most common in .NET Core 3.1 to apply authorization using the
AuthorizationMiddleware. The AuthorizationMiddleware should be placed after both the
routing middleware and the authentication middleware, but before the endpoint middleware,
as shown in figure 15.2.

REMINDER In ASP.NET Core, an endpoint refers to the handler selected by the routing middleware, which

will generate a response when executed. It is typically a Razor Page, or a Web API action method.

504

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 15.2 Authorization occurs after an endpoint has been selected, and after the request is authenticated,
but before the action method or Razor Page endpoint is executed.

With this configuration, the RoutingMiddleware selects an endpoint to execute based on the
request’s URL, for example a Razor Page, as you saw in chapter 5. Metadata about the
selected endpoint is available to all middleware that occurs after the routing middleware. This
metadata includes details about any authorization requirements for the endpoint, and is
typically attached by decorating an action or Razor Page with an [Authorize] attribute.

The AuthenticationMiddleware deserializes the encrypted cookie (or bearer token for
APIs) associated with the request to create a ClaimsPrincipal. This object is set as the
HttpContext.User for the request, so all subsequent middleware can access this value. It
contains all the Claims that were added to the cookie when the user authenticated.

Now we come to the AuthorizationMiddleware. This middleware checks if the selected
endpoint has any authorization requirements, based on the metadata provided by the
RoutingMiddleware. If the endpoint has authorization requirements, the
AuthorizationMiddleware uses the HttpContext.User to determine if the current request is
authorized to execute the endpoint.

505

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

If the request is authorized, the next middleware in the pipeline executes as normal. If the
request is not authorized, the AuthorizationMiddleware short-circuits the middleware
pipeline, and the endpoint middleware is never executed.

REMINDER The order of middleware in your pipeline is very important. The call to UseAuthorization()

must come after UseRouting() and UseAuthentication(), but before UseEndpoints().

Changes to authorization in ASP.NET Core 3.0
The authorization system changed significantly in ASP.NET Core 3.0. Prior to this release, the
AuthorizationMiddleware did not exist. Instead, the [Authorize] attribute executed the authorization logic as
part of the MVC filter pipeline.
In practice, from the point of view of using authorization in your actions and Razor Pages, there is no real difference
from a developer’s point of view. Why change it then?
The new design, using the AuthorizationMiddleware in conjunction with endpoint routing (introduced at the
same time), enables additional scenarios. The changes make it easier to apply authorization to non-MVC/Razor Page
endpoints. You’ll see how to create these types of endpoints in chapter 19. You can also read more about the
authorization changes here: https://docs.microsoft.com/aspnet/core/migration/22-to-30#authorization.

The AuthorizationMiddleware is responsible for applying authorization requirements and
ensuring that only authorized users can execute protected endpoints. In section 15.2.1 you’ll
learn how to apply the simplest authorization requirement, and in section 15.2.2 you’ll see
how the framework responds when a user is not authorized to execute an endpoint.

15.2.1 Preventing anonymous users from accessing your application

When you think about authorization, you typically think about checking whether a particular
user has permission to execute an endpoint. In ASP.NET Core you normally achieve this by
checking whether a user has a given claim.

There’s an even more basic level of authorization we haven’t considered yet—only allowing
authenticated users to execute an endpoint. This is even simpler than the claims scenario
(which we’ll come to later) as there are only two possibilities:

• The user is authenticated—The action executes as normal.
• The user is unauthenticated—The user can’t execute the endpoint.

You can achieve this basic level of authorization by using the [Authorize] attribute, which
you saw in chapter 13, when we discussed authorization filters. You can apply this attribute to
your actions, as shown in the following listing, to restrict them to authenticated (logged-in)
users only. If an unauthenticated user tries to execute an action or Razor Page protected with
the [Authorize] attribute in this way, they’ll be redirected to the login page.

Listing 15.1 Applying [Authorize] to an action

public class RecipeApiController : ControllerBase

506

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/migration/22-to-30#authorization

©Manning Publications Co. To comment go to liveBook

{
 public IActionResult List() #A
 {
 return Ok();
 }

 [Authorize] #B
 public IActionResult View() #C
 {
 return Ok();
 }
}

#A This action can be executed by anyone, even when not logged in.
#B Applies [Authorize] to individual actions, whole controllers, or Razor Pages.
#C This action can only be executed by authenticated users.

Applying the [Authorize] attribute to an endpoint attaches metadata to it, indicating only
authenticated users may access the endpoint. As you saw in figure 15.2, this metadata is
made available to the AuthorizationMiddleware when an endpoint is selected by the
RoutingMiddleware.

You can apply the [Authorize] attribute at the action scope, controller scope, Razor Page
scope, or globally, as you saw in chapter 13. Any action or Razor Page that has the
[Authorize] attribute applied in this way can be executed only by an authenticated user.
Unauthenticated users will be redirected to the login page.

TIP There are several different ways to apply the [Authorize] attribute globally. You can read about the

different options, and when to choose which option here: https://andrewlock.net/setting-global-authorization-

policies-using-the-defaultpolicy-and-the-fallbackpolicy-in-aspnet-core-3/.

Sometimes, especially when you apply the [Authorize] attribute globally, you might need to
“poke holes” in this authorization requirement. If you apply the [Authorize] attribute
globally, then any unauthenticated request will be redirected to the login page for your app.
But if the [Authorize] attribute is global, then when the login page tries to load, you’ll be
unauthenticated and redirected to the login page again. And now you’re stuck in an infinite
redirect loop.

To get around this, you can designate specific endpoints to ignore the [Authorize]
attribute by applying the [AllowAnonymous] attribute to an action or Razor Page, as shown
next. This allows unauthenticated users to execute the action, so you can avoid the redirect
loop that would otherwise result.

Listing 15.2 Applying [AllowAnonymous] to allow unauthenticated access

[Authorize] #A
public class AccountController : ControllerBase
{
 public IActionResult ManageAccount() #B
 {
 return Ok();

507

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/setting-global-authorization-policies-using-the-defaultpolicy-and-the-fallbackpolicy-in-aspnet-core-3/
https://andrewlock.net/setting-global-authorization-policies-using-the-defaultpolicy-and-the-fallbackpolicy-in-aspnet-core-3/

©Manning Publications Co. To comment go to liveBook

 }
 [AllowAnonymous] #C
 public IActionResult Login() #D
 {
 return Ok();
 }
}

#A Applied at the controller scope, so user must be authenticated for all actions on the controller.
#B Only authenticated users may execute ManageAccount.
#C [AllowAnonymous] overrides [Authorize] to allow unauthenticated users.
#D Login can be executed by anonymous users.

WARNING If you apply the [Authorize] attribute globally, be sure to add the [AllowAnonymous]

attribute to your login actions, error actions, password reset actions, and any other actions that you need

unauthenticated users to execute. If you’re using the default Identity UI described in chapter 14, then this is

already configured for you.

If an unauthenticated user attempts to execute an action protected by the [Authorize]
attribute, traditional web apps will redirect them to the login page. But what about web APIs?
And what about more complex scenarios, where a user is logged in but doesn’t have the
necessary claims to execute an action? In section 15.2.2, we’ll look at how the ASP.NET Core
authentication services handle all of this for you.

15.2.2 Handling unauthorized requests

In the previous section, you saw how to apply the [Authorize] attribute to an action to
ensure only authenticated users can execute it. In section 15.3, we’ll look at more complex
examples that require you to also have a specific claim. In both cases, you must meet one or
more authorization requirements (for example, you must be authenticated) to execute the
action.

If the user meets the authorization requirements, then the request passes unimpeded
through the AuthorizationMiddleware, and the endpoint is executed in the
EndpointMiddleware. If they don’t meet the requirements for the selected endpoint, the
authorization middleware will short-circuit the request. Depending on why the request failed
authorization, the authorization middleware generates one of two different types of response:

• Challenge—This response indicates the user was not authorized to execute the action,
because they weren’t yet logged in.

• Forbid—This response indicates that the user was logged in but didn’t meet the
requirements to execute the action. They didn’t have a required claim, for example.

NOTE If you apply the [Authorize] attribute in basic form, as you did in section 15.2.1, then you will only

generate challenge responses. In this case, a challenge response will be generated for unauthenticated users,

but authenticated users will always be authorized.

508

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 15.3. The three types of response to an authorization attempt. In the left example, the request contains
an authentication cookie, so the user is authenticated in the AuthenticationMiddleware. The
AuthorizationMiddleware confirms the authenticated user can access the selected endpoint, so the
endpoint is executed. In the centre example, the request is not authenticated, so the
AuthorizationMiddleware generates a Challenge response. In the right example, the request is
authenticated, but the user does not have permission to execute the endpoint, so a Forbid response is
generated.

The exact HTTP response generated by a challenge or forbid response typically depends on the
type of application you’re building and so the type of authentication your application uses: a
traditional web application with Razor Pages, or an API application.

For traditional web apps using cookie authentication, such as when you use ASP.NET Core
Identity, as in chapter 14, the challenge and forbid responses generate an HTTP redirect to a
page in your application. A challenge response indicates the user isn’t yet authenticated, so
they’re redirected to the login page for the app. After logging in, they can attempt to execute
the protected resource again.

509

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

A forbid response means the request was from a user that already logged in, but they’re
still not allowed to execute the action. Consequently, the user is redirected to a Forbidden or
Access Denied web page, as shown in figure 15.4, which informs them they can’t execute the
action or Razor Page.

Figure 15.4 In traditional web apps using cookie authentication. If you don’t have permission to execute a Razor
Page and you’re already logged in, you’ll be redirected to an Access Denied page.

The preceding behavior is standard for traditional web apps, but Web APIs typically use a
different approach to authentication, as you saw in chapter 14. Instead of logging in and using
the API directly, you’d typically log in to a third-party application that provides a token to the
client-side SPA or mobile app. The client-side app sends this token when it makes a request to
your Web API.

Authenticating a request for a Web API using tokens is essentially identical to a traditional
web app that uses cookies; AuthenticationMiddleware deserializes the cookie or token to
create the ClaimsPrincipal. The difference is in how a Web API handles authorization
failures.

When a web API app generates a challenge response, it returns a 401 Unauthorized error
response to the caller. Similarly, when the app generates a forbid response, it returns a 403
Forbidden response. The traditional web app essentially handled these errors by automatically
redirecting unauthorized users to the login or “access denied” page, but the web API doesn’t
do this. It’s up to the client-side SPA or mobile app to detect these errors and handle them as
appropriate.

TIP The difference in authorization behavior is one of the reasons I generally recommend creating separate

apps for your APIs and Razor pages apps—it’s possible to have both in the same app, but the configuration is

more complex.

The different behavior between traditional web apps and SPAs can be confusing initially, but
you generally don’t need to worry about that too much in practice. Whether you’re building a

510

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Web API or a traditional MVC web app, the authorization code in your app looks the same in
both cases. Apply [Authorize] attributes to your endpoints, and let the framework take care
of the differences for you.

NOTE In chapter 14, you saw how to configure ASP.NET Core Identity in a Razor Pages app. This chapter

assumes you’re building a Razor Pages app too, but the chapter is equally applicable if you’re building a web

API. Authorization policies are applied in the same way, whichever style of app you’re building. It’s only the

final response of unauthorized requests that differ.

You’ve seen how to apply the most basic authorization requirement—restricting an endpoint to
authenticated users only—but most apps need something more subtle than this all-or-nothing
approach.

Consider the airport scenario from section 15.1. Being authenticated (having a passport)
isn’t enough to get you through security. Instead, you also need a specific claim:
BoardingPassNumber. In the next section, we’ll look at how you can implement a similar
requirement in ASP.NET Core.

15.3 Using policies for claims-based authorization
In the previous section, you saw how to require that users are logged in to access an
endpoint. In this section, you’ll see how to apply additional requirements. You’ll learn to use
authorization policies to perform claims-based authorization, to require that a logged in user
has the required claims to execute a given endpoint.

In chapter 14, you saw that authentication in ASP.NET Core centers around a
ClaimsPrincipal object, which represents the user. This object has a collection of claims that
contain pieces of information about the user, such as their name, email, and date of birth.

You can use these to customize the app for each user, by displaying a welcome message
addressing the user by name for example, but you can also use claims for authorization. For
example, you might only authorize a user if they have a specific claim (such as
BoardingPassNumber) or if a claim has a specific value (FrequentFlyerClass claim with the
value Gold).

In ASP.NET Core, the rules that define whether a user is authorized are encapsulated in a
policy.

DEFINITION A policy defines the requirements you must meet for a request to be authorized.

Policies can be applied to an action using the [Authorize] attribute, similar to the way you
saw in section 15.2.1. This listing shows a Razor Page PageModel that represents the first
authorization step in the airport scenario. The AirportSecurity.cshtml Razor Page is protected
by an [Authorize] attribute, but you’ve also provided a policy name: "CanEnterSecurity".

511

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Listing 15.3 Applying an authorization policy to a Razor Page

[Authorize("CanEnterSecurity")] #A
public class AirportSecurityModel : PageModel
{
 public void OnGet() #B
 {

 }
}

#A Applying the "CanEnterSecurity" policy using [Authorize]
#B Only users that satisfy the "CanEnterSecurity" policy can execute the Razor Page.

If a user attempts to execute the AirportSecurity.cshtml Razor Page, the authorization
middleware will verify whether the user satisfies the policy’s requirements (we’ll look at the
policy itself shortly). This gives one of three possible outcomes:

• The user satisfies the policy.—The middleware pipeline continues, and the
EndpointMiddleware executes the Razor Page as normal.

• The user is unauthenticated.—The user is redirected to the login page.
• The user is authenticated but doesn’t satisfy the policy.—The user is redirected to a

“Forbidden” or “Access Denied” page.

These three outcomes correlate with the real-life outcomes you might expect when trying to
pass through security at the airport:

• You have a valid boarding pass.—You can enter security as normal.
• You don’t have a boarding pass.—You’re redirected to purchase a ticket.
• Your boarding pass is invalid (you turned up a day late, for example).—You’re blocked

from entering.

Listing 15.3 shows how you can apply a policy to a Razor Page using the [Authorize]
attribute, but you still need to define the CanEnterSecurity policy.

You add policies to an ASP.NET Core application in the ConfigureServices method of
Startup.cs, as shown in listing 15.4. First, you add the authorization services using
AddAuthorization(), and then you can add policies by calling AddPolicy() on the
AuthorizationOptions object. You define the policy itself by calling methods on a provided
AuthorizationPolicyBuilder (called policyBuilder here).

Listing 15.4 Adding an authorization policy using AuthorizationPolicyBuilder

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options => #A
 {
 options.AddPolicy(#B
 "CanEnterSecurity", #C
 policyBuilder => policyBuilder #D
 .RequireClaim("BoardingPassNumber")); #D
 });

512

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 // Additional service configuration
}

#A Calls AddAuthorization to configure AuthorizationOptions.
#B Adds a new policy.
#C Provides a name for the policy.
#D Defines the policy requirements using AuthorizationPolicyBuilder.

When you call AddPolicy you provide a name for the policy, which should match the value
you use in your [Authorize] attributes, and you define the requirements of the policy. In this
example, you have a single simple requirement: the user must have a claim of type
BoardingPassNumber. If a user has this claim, whatever its value, then the policy will be
satisfied, and the user will be authorized.

REMEMBER A claim is information about the user, as a key-value pair. A policy defines the requirements

for successful authorization. A policy can require that a user has a given claim, as well as more complex

requirements, as you’ll see shortly.

AuthorizationPolicyBuilder contains several methods for creating simple policies like this,
as shown in table 15.1. For example, an overload of the RequireClaim() method lets you
specify a specific value that a claim must have. The following would let you create a policy
where the "BoardingPassNumber" claim must have a value of "A1234":

policyBuilder => policyBuilder.RequireClaim("BoardingPassNumber", "A1234");

Table 15.1 Simple policy builder methods on AuthorizationPolicyBuilder

Method Policy behavior

RequireAuthenticatedUser() The required user must be authenticated. Creates a policy similar

to the default [Authorize] attribute, where you don’t set a

policy.

RequireClaim(claim, values) The user must have the specified claim. If provided, the claim

must be one of the specified values.

RequireUsername(username) The user must have the specified username.

RequireAssertion(function) Executes the provided lambda function, which returns a bool,

indicating whether the policy was satisfied.

513

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Role-based authorization vs. claims-based authorization
If you look at all of the methods available on the AuthorizationPolicyBuilder type using IntelliSense, you might
notice that there’s a method I didn’t mention in table 15.1, RequireRole(). This is a remnant of the role-based
approach to authorization used in previous versions of ASP.NET, and I don’t recommend using it.
Before Microsoft adopted the claims-based authorization used by ASP.NET Core and recent versions of ASP.NET, role-
based authorization was the norm. Users were assigned to one or more roles, such as Administrator or Manager,
and authorization involved checking whether the current user was in the required role.
This role-based approach to authorization is possible in ASP.NET Core, but it’s primarily for legacy compatibility reasons.
Claims-based authorization is the suggested approach. Unless you’re porting a legacy app that uses roles, I suggest you
embrace claims-based authorization and leave those roles behind!

You can use these methods to build simple policies that can handle basic situations, but often
you’ll need something more complicated. What if you wanted to create a policy that enforces
only users over the age of 18 can execute an endpoint?

The DateOfBirth claim provides the information you need, but there’s not a single correct
value, so you couldn’t use the RequireClaim() method. You could use the
RequireAssertion() method and provide a function that calculates the age from the
DateOfBirth claim, but that could get messy pretty quickly.

For more complex policies that can’t be easily defined using the RequireClaim() method, I
recommend you take a different approach and create a custom policy, as you’ll see in the
following section.

15.4 Creating custom policies for authorization
You’ve already seen how to create a policy by requiring a specific claim, or requiring a specific
claim with a specific value, but often the requirements will be more complex than that. In this
section you’ll learn how to create custom authorization requirements and handlers. You’ll also
see how to configure authorization requirements where there are multiple ways to satisfy a
policy, any of which are valid.

Let’s return to the airport example. You’ve already configured the policy for passing
through security, and now you’re going to configure the policy that controls whether you’re
authorized to enter the airline lounge.

As you saw in figure 15.1, you’re allowed to enter the lounge if you have a
FrequentFlyerClass claim with a value of Gold. If this was the only requirement, you could
use AuthorizationPolicyBuilder to create a policy using:

options.AddPolicy("CanAccessLounge", policyBuilder =>
 policyBuilder.RequireClaim("FrequentFlyerClass", "Gold");

But what if the requirements are more complicated than this? For example, you can enter the
lounge if

514

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• You’re a gold-class frequent flyer (have a FrequentFlyerClass claim with value
"Gold")

• Or you’re an employee of the airline (have an EmployeeNumber claim)
• And you’re at least 18 years old (as calculated from the DateOfBirth claim)

If you’ve ever been banned from the lounge (you have an IsBannedFromLounge claim), then
you won’t be allowed in, even if you satisfy the other requirements.

There’s no way of achieving this complex set of requirements with the basic usage of
AuthorizationPolicyBuilder you’ve seen so far. Luckily, these methods are a wrapper
around a set of building blocks that you can combine to achieve the desired policy.

15.4.1 Requirements and handlers: the building blocks of a policy

Every policy in ASP.NET Core consists of one or more requirements, and every requirement
can have one or more handlers. For the airport lounge example, you have a single policy
("CanAccessLounge"), two requirements (MinimumAgeRequirement and
AllowedInLoungeRequirement), and several handlers, as shown in figure 15.5.

Figure 15.5 A policy can have many requirements, and every requirement can have many handlers. By
combining multiple requirements in a policy, and by providing multiple handler implementations, you can create
complex authorization policies that meet any of your business requirements.

For a policy to be satisfied, a user must fulfill all the requirements. If the user fails any of the
requirements, the authorize middleware won’t allow the protected endpoint to be executed. In
this example, a user must be allowed to access the lounge and must be over 18 years old.

515

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Each requirement can have one or more handlers, which will confirm that the requirement
has been satisfied. For example, as shown in figure 15.5, AllowedInLoungeRequirement has
two handlers that can satisfy the requirement:

• FrequentFlyerHandler

• IsAirlineEmployeeHandler

If the user satisfies either of these handlers, then AllowedInLoungeRequirement is satisfied.
You don’t need all handlers for a requirement to be satisfied, you just need one.

NOTE Figure 15.5 shows a third handler, BannedFromLoungeHandler, which I’ll cover in section 15.4.2.

It’s slightly different, in that it can only fail a requirement, not satisfy it.

You can use requirements and handlers to achieve most any combination of behavior you
need for a policy. By combining handlers for a requirement, you can validate conditions using
a logical OR: if any of the handlers are satisfied, the requirement is satisfied. By combining
requirements, you create a logical AND: all the requirements must be satisfied for the policy to
be satisfied, as shown in figure 15.6.

Figure 15.6 For a policy to be satisfied, every requirement must be satisfied. A requirement is satisfied if any of
the handlers are satisfied.

TIP You can also add multiple policies to a Razor Page or action method by applying the [Authorize]

attribute multiple times, for example [Authorize("Policy1"), Authorize("Policy2")]. All

policies must be satisfied for the request to be authorized.

I’ve highlighted requirements and handlers that will make up your "CanAccessLounge" policy,
so in the next section, you’ll build each of the components and apply them to the airport
sample app.

516

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

15.4.2 Creating a policy with a custom requirement and handler

You’ve seen all the pieces that make up a custom authorization policy, so in this section, we’ll
explore the implementation of the "CanAccessLounge" policy.

CREATING AN IAUTHORIZATIONREQUIREMENT TO REPRESENT A REQUIREMENT

As you’ve seen, a custom policy can have multiple requirements, but what is a requirement in
code terms? Authorization requirements in ASP.NET Core are any class that implements the
IAuthorizationRequirement interface. This is a blank, marker interface, which you can apply
to any class to indicate that it represents a requirement.

If the interface doesn’t have any members, you might be wondering what the requirement
class needs to look like. Typically, they’re simple, POCO classes. The following listing shows
AllowedInLoungeRequirement, which is about as simple as a requirement can get! It has no
properties or methods; it implements the required IAuthorizationRequirement interface.

Listing 15.5 AllowedInLoungeRequirement

public class AllowedInLoungeRequirement
 : IAuthorizationRequirement { } #A

#A The interface identifies the class as an authorization requirement.

This is the simplest form of requirement, but it’s also common for them to have one or two
properties that make the requirement more generalized. For example, instead of creating the
highly specific MustBe18YearsOldRequirement, you could instead create a parametrized
MinimumAgeRequirement, as shown in the following listing. By providing the minimum age as
a parameter to the requirement, you can reuse the requirement for other policies with
different minimum age requirements.

Listing 15.6 The parameterized MinimumAgeRequirement

public class MinimumAgeRequirement : IAuthorizationRequirement #A
{
 public MinimumAgeRequirement(int minimumAge) #B
 {
 MinimumAge = minimumAge;
 }
 public int MinimumAge { get; } #C
}

#A The interface identifies the class as an authorization requirement.
#B The minimum age is provided when the requirement is created.
#C Handlers can use the exposed minimum age to determine whether the requirement is satisfied.

The requirements are the easy part. They represent each of the components of the policy that
must be satisfied for the policy to be satisfied overall.

517

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

CREATING A POLICY WITH MULTIPLE REQUIREMENTS

You’ve created the two requirements, so now you can configure the "CanAccessLounge" policy
to use them. You configure your policies as you did before, in the ConfigureServices method
of Startup.cs. Listing 15.7 shows how to do this by creating an instance of each requirement
and passing them to AuthorizationPolicyBuilder. The authorization handlers will use these
requirement objects when attempting to authorize the policy.

Listing 15.7 Creating an authorization policy with multiple requirements

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 { #A
 options.AddPolicy(#A
 "CanEnterSecurity", #A
 policyBuilder => policyBuilder #A
 .RequireClaim(Claims.BoardingPassNumber)); #A
 options.AddPolicy(#B
 "CanAccessLounge", #B
 policyBuilder => policyBuilder.AddRequirements(#C
 new MinimumAgeRequirement(18), #C
 new AllowedInLoungeRequirement() #C
));
 });
 // Additional service configuration
}

#A Adds the previous simple policy for passing through security
#B Adds a new policy for the airport lounge, called CanAccessLounge
#C Adds an instance of each IAuthorizationRequirement object

You now have a policy called "CanAccessLounge" with two requirements, so you can apply it
to a Razor Page or action method using the [Authorize] attribute, in exactly the same way
you did for the "CanEnterSecurity" policy:

[Authorize("CanAccessLounge")]
public class AirportLoungeModel : PageModel
{
 public void OnGet() { }
}

When a request is routed to the AirportLounge.cshtml Razor Page, the authorize middleware
executes the authorization policy and each of the requirements are inspected. But you saw
earlier that the requirements are purely data; they indicate what needs to be fulfilled, they
don’t describe how that has to happen. For that, you need to write some handlers.

CREATING AUTHORIZATION HANDLERS TO SATISFY YOUR REQUIREMENTS

Authorization handlers contain the logic of how a specific IAuthorizationRequirement can be
satisfied. When executed, a handler can do one of three things:

518

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• Mark the requirement handling as a success
• Not do anything
• Explicitly fail the requirement

Handlers should implement AuthorizationHandler<T>, where T is the type of requirement
they handle. For example, the following listing shows a handler for
AllowedInLoungeRequirement that checks whether the user has a claim called
FrequentFlyerClass with a value of Gold.

Listing 15.8 FrequentFlyerHandler for AllowedInLoungeRequirement

public class FrequentFlyerHandler :
 AuthorizationHandler<AllowedInLoungeRequirement> #A
{
 protected override Task HandleRequirementAsync(#B
 AuthorizationHandlerContext context, #C
 AllowedInLoungeRequirement requirement) #D
 {
 if(context.User.HasClaim("FrequentFlyerClass", "Gold")) #E
 {
 context.Succeed(requirement); #F
 }
 return Task.CompletedTask; #G
 }
}

#A The handler implements AuthorizationHandler<T>.
#B You must override the abstract HandleRequirementAsync method.
#C The context contains details such as the ClaimsPrincipal user object.
#D The requirement instance to handle
#E Checks whether the user has the FrequentFlyerClass claim with the Gold value
#F If the user had the necessary claim, then mark the requirement as satisfied by calling Succeed.
#G If the requirement wasn’t satisfied, do nothing.

This handler is functionally equivalent to the simple RequireClaim()handler you saw at the
start of section 15.4, but using the requirement and handler approach instead.

When a request is routed to the AirportLounge.cshtml Razor Page, the authorization
middleware sees the [Authorize] attribute on the endpoint with the "CanAccessLounge"
policy. It loops through all the requirements in the policy, and all the handlers for each
requirement, calling the HandleRequirementAsync method for each.

The authorization middleware passes the current AuthorizationHandlerContext and the
requirement to be checked to each handler. The current ClaimsPrincipal being authorized is
exposed on the context as the User property. In listing 15.8, FrequentFlyerHandler uses the
context to check for a claim called FrequentFlyerClass with the Gold value, and if it exists,
concludes that the user is allowed to enter the airline lounge, by calling Succeed().

NOTE Handlers mark a requirement as being successfully satisfied by calling context.Succeed() and

passing the requirement as an argument.

519

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

It’s important to note the behavior when the user doesn’t have the claim.
FrequentFlyerHandler doesn’t do anything if this is the case (it returns a completed Task to
satisfy the method signature).

NOTE Remember, if any of the handlers associated with a requirement pass, then the requirement is a

success. Only one of the handlers must succeed for the requirement to be satisfied.

This behavior, whereby you either call context.Succeed() or do nothing, is typical for
authorization handlers. The following listing shows the implementation of
IsAirlineEmployeeHandler, which uses a similar claim check to determine whether the
requirement is satisfied.

Listing 15.9 IsAirlineEmployeeHandler handler

public class IsAirlineEmployeeHandler :
 AuthorizationHandler<AllowedInLoungeRequirement> #A
{
 protected override Task HandleRequirementAsync(#B
 AuthorizationHandlerContext context, #B
 AllowedInLoungeRequirement requirement) #B
 {
 if(context.User.HasClaim(c => c.Type == "EmployeeNumber")) #C
 {
 context.Succeed(requirement); #D
 }
 return Task.CompletedTask; #E
 }
}

#A The handler implements AuthorizationHandler<T>.
#B You must override the abstract HandleRequirementAsync method.
#C Checks whether the user has the EmployeeNumber claim
#D If the user has the necessary claim, then mark the requirement as satisfied by calling Succeed.
#E If the requirement wasn’t satisfied, do nothing.

TIP It’s possible to write very generic handlers that can be used with multiple requirements, but I suggest

sticking to handling a single requirement only. If you need to extract some common functionality, move it to an

external service and call that from both handlers.

This pattern of authorization handler is common,66 but in some cases, instead of checking for
a success condition, you might want to check for a failure condition. In the airport example,
you don’t want to authorize someone who was previously banned from the lounge, even if
they would otherwise be allowed to enter.

66I’ll leave the implementation of MinimumAgeHandler for MinimumAgeRequirement as an exercise for the reader. You can find an example in

the code samples for the chapter.

520

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

You can handle this scenario by using the context.Fail() method exposed on the
context, as shown in the following listing. Calling Fail() in a handler will always cause the
requirement, and hence the whole policy, to fail. You should only use it when you want to
guarantee failure, even if other handlers indicate success.

Listing 15.10 Calling context.Fail() in a handler to fail the requirement

public class BannedFromLoungeHandler :
 AuthorizationHandler<AllowedInLoungeRequirement> #A
{
 protected override Task HandleRequirementAsync(#B
 AuthorizationHandlerContext context, #B
 AllowedInLoungeRequirement requirement) #B
 {
 if(context.User.HasClaim(c => c.Type == "IsBanned")) #C
 {
 context.Fail(); #D
 }

 return Task.CompletedTask; #E
 }
}

#A The handler implements AuthorizationHandler<T>.
#B You must override the abstract HandleRequirementAsync method.
#C Checks whether the user has the IsBanned claim
#D If the user has the claim, then fail the requirement by calling Fail. The whole policy will fail.
#E If the claim wasn’t found, do nothing.

In most cases, your handlers will either call Succeed() or will do nothing, but the Fail()
method is useful when you need this kill-switch to guarantee that a requirement won’t be
satisfied.

NOTE Whether a handler calls Succeed(), Fail(), or neither, the authorization system will always execute

all of the handlers for a requirement, and all the requirements for a policy so you can be sure your handlers will

always be called.

The final step to complete your authorization implementation for the app is to register the
authorization handlers with the DI container, as shown in listing 15.11.

Listing 15.11 Registering the authorization handlers with the DI container

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 {
 options.AddPolicy(
 "CanEnterSecurity",
 policyBuilder => policyBuilder
 .RequireClaim(Claims.BoardingPassNumber));
 options.AddPolicy(
 "CanAccessLounge",

521

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 policyBuilder => policyBuilder.AddRequirements(
 new MinimumAgeRequirement(18),
 new AllowedInLoungeRequirement()
));
 });
 services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();
 services.AddSingleton<IAuthorizationHandler, FrequentFlyerHandler>();
 services
 .AddSingleton<IAuthorizationHandler, BannedFromLoungeHandler>();
 Services
 .AddSingleton<IAuthorizationHandler, IsAirlineEmployeeHandler>();
 // Additional service configuration
}

For this app, the handlers don’t have any constructor dependencies, so I’ve registered them as
singletons with the container. If your handlers have scoped or transient dependencies (the EF
Core DbContext, for example), then you might want to register them as scoped instead, as
appropriate.

REMINDER Services are registered with a lifetime of either transient, scoped, or singleton, as discussed in

chapter 10.

 You can combine the concepts of policies, requirements, and handlers in many ways to
achieve your goals for authorization in your application. The example in this section, although
contrived, demonstrates each of the components you need to apply authorization declaratively
at the action method or Razor Page level, by creating policies and applying the [Authorize]
attribute as appropriate.

As well as applying the [Authorize] attribute explicitly to actions and Razor Pages, you
can also configure it globally, so that a policy is applied to every Razor Page or controller in
your application. Additionally, for Razor Pages, you can apply different authorization policies to
different folders. You can read more about applying authorization policies using conventions
here https://docs.microsoft.com/aspnet/core/security/authorization/razor-pages-
authorization.

There’s one area, however, where the [Authorize] attribute falls short: resource-based
authorization. The [Authorize] attribute attaches metadata to an endpoint, so the
authorization middleware can authorize the user before an endpoint is executed, but what if
you need to authorize the action during the action method or Razor Page handler?

This is common when you’re applying authorization at the document or resource level. If
users are only allowed to edit documents they created, then you need to load the document
before you can tell whether you’re allowed to edit it! This isn’t easy with the declarative
[Authorize] attribute approach, so you must use an alternative, imperative approach. In the
next section, you’ll see how to apply this resource-based authorization in a Razor Page
handler.

522

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/authorization/razor-pages-authorization
https://docs.microsoft.com/aspnet/core/security/authorization/razor-pages-authorization

©Manning Publications Co. To comment go to liveBook

15.5 Controlling access with resource-based authorization
In this section you’ll learn about resource-based authorization. This is used when you need to
know details about the resource being protected to determine if a user is authorized. You’ll
learn how to apply authorization policies manually using the IAuthorizationService, and
how to create resource-based AuthorizationHandlers.

Resource-based authorization is a common problem for applications, especially when you
have users that can create or edit some sort of document. Consider the recipe application you
built in the previous 3 chapters. This app lets users create, view, and edit recipes.

Up to this point, everyone can create new recipes, and anyone can edit any recipe, even if
they haven’t logged in. Now you want to add some additional behavior:

• Only authenticated users should be able to create new recipes.
• You can only edit the recipes you created.

You’ve already seen how to achieve the first of these requirements; decorate the
Create.cshtml Razor Page with an [Authorize] attribute and don’t specify a policy, as shown
in this listing. This will force the user to authenticate before they can create a new recipe.

Listing 15.12 Adding AuthorizeAttribute to the Create.cshtml Razor Page

[Authorize] #A
public class CreateModel : PageModel
{
 [BindProperty]
 public CreateRecipeCommand Input { get; set; }

 public void OnGet() #B
 { #B
 Input = new CreateRecipeCommand(); #B
 } #B

 public async Task<IActionResult> OnPost() #C
 { #C
 // Method body not shown for brevity #C
 } #C
}

#A Users must be authenticated to execute the Create.cshtml Razor Page.
#B All page handlers are protected. You can only apply [Authorize] to the PageModel, not handlers
#C …

TIP As with all filters, you can only apply the [Authorize] attribute to the Razor Page, not to individual

page handlers. The attribute applies to all page handlers in the Razor Page.

Adding the [Authorize] attribute fulfills your first requirement, but unfortunately, with the
techniques you’ve seen so far, you have no way to fulfill the second. You could apply a policy
that either permits or denies a user the ability to edit all recipes, but there’s currently no easy
way to restrict this so that a user can only edit their own recipes.

523

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In order to find out who created the Recipe, you must first load it from the database. Only
then can you attempt to authorize the user, taking the specific recipe (resource) into account.
The following listing shows a partially implemented page handler for how this might look,
where authorization occurs part way through the method, after the Recipe object has been
loaded.

Listing 15.13 The Edit.cshtml page must load the Recipe before authorizing the request

public IActionResult OnGet(int id) #A
{
 var recipe = _service.GetRecipe(id); #B
 var createdById = recipe.CreatedById; #B
 // Authorize user based on createdById #C
 if(isAuthorized) #D
 { #D
 return View(recipe); #D
 } #D
}

#A The id of the recipe to edit is provided by model binding.
#B You must load the Recipe from the database before you know who created it.
#C You must authorize the current user, to verify they’re allowed to edit this specific Recipe.
#D The action method can only continue if the user was authorized.

You need access to the resource (in this case, the Recipe entity) to perform the authorization,
so the declarative [Authorize] attribute can’t help you. In section 15.5.1, you’ll see the
approach you need to take to handle these situations and to apply authorization inside the
action method or Razor Page.

WARNING Be careful when exposing the integer ID of your entities in the URL, as in listing 15.13. Users will

be able to edit every entity by modifying the ID in the URL to access a different entity. Be sure to apply

authorization checks, otherwise you could expose a security vulnerability called Insecure Direct Object

Reference.67

15.5.1 Manually authorizing requests with IAuthorizationService

All of the approaches to authorization so far have been declarative. You apply the
[Authorize] attribute, with or without a policy name, and you let the framework take care of
performing the authorization itself.

For this recipe-editing example, you need to use imperative authorization, so you can
authorize the user after you’ve loaded the Recipe from the database. Instead of applying a

67 You can read about this vulnerability and ways to counteract it on the Open Web Application Security Project (OWASP):

www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference.

524

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference

©Manning Publications Co. To comment go to liveBook

marker saying, “Authorize this method,” you need to write some of the authorization code
yourself.

DEFINITION Declarative and imperative are two different styles of programming. Declarative programming

describes what you’re trying to achieve, and lets the framework figure out how to achieve it. Imperative

programming describes how to achieve something by providing each of the steps needed.

ASP.NET Core exposes IAuthorizationService, which you can inject into your Razor Pages
and controllers for imperative authorization. This listing shows how you can update the
Edit.cshtml Razor Page (shown partially in listing 15.13) to use the IAuthorizationService
and verify whether the action is allowed to continue execution.

Listing 15.14 Using IAuthorizationService for resource-based authorization

[Authorize] #A
public class EditModel : PageModel
{
 [BindProperty]
 public Recipe Recipe { get; set; }

 private readonly RecipeService _service;
 private readonly IAuthorizationService _authService; #B

 public EditModel(
 RecipeService service,
 IAuthorizationService authService) #B
 {
 _service = service;
 _authService = authService; #B
 }

 public async Task<IActionResult> OnGet(int id)
 {
 Recipe = _service.GetRecipe(id); #C
 var authResult = await _authService #D
 .AuthorizeAsync(User, Recipe, "CanManageRecipe"); #D
 if (!authResult.Succeeded) #E
 { #E
 return new ForbidResult(); #E
 } #E

 return Page(); #F
 }
}

#A Only authenticated users should be allowed to edit recipes.
#B IAuthorizationService is injected into the class constructor using DI.
#C Load the recipe from the database.
#D Calls IAuthorizationService, providing ClaimsPrinicipal, resource, and the policy name
#E If authorization failed, returns a Forbidden result
#F If authorization was successful, continues displaying the Razor Page

525

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

IAuthorizationService exposes an AuthorizeAsync method, which requires three things to
authorize the request:

• The ClaimsPrincipal user object, exposed on the PageModel as User.
• The resource being authorized: Recipe.
• The policy to evaluate: "CanManageRecipe".

The authorization attempt returns an AuthorizationResult object, which indicates whether
the attempt was successful via the Succeeded property. If the attempt wasn’t successful, then
you should return a new ForbidResult, which will be converted either into an HTTP 403
Forbidden response or will redirect the user to the “access denied” page, depending on if
you’re building a traditional web app with Razor Pages or a Web API.

NOTE As mentioned in section 15.2.2, which type of response is generated depends on which authentication

services are configured. The default Identity configuration, used by Razor Pages, generates redirects. The JWT

bearer token authentication typically used with Web APIs generates HTTP 401 and 403 responses instead.

You’ve configured the imperative authorization in the Edit.cshtml Razor Page itself, but you
still need to define the "CanManageRecipe" policy that you use to authorize the user. This is
the same process as for declarative authorization, so you have to:

• Create a policy in ConfigureServices by calling AddAuthorization()
• Define one or more requirements for the policy
• Define one or more handlers for each requirement
• Register the handlers in the DI container

With the exception of the handler, these steps are all identical to the declarative authorization
approach with the [Authorize] attribute, so I’ll only run through them briefly here.

First, you can create a simple IAuthorizationRequirement. As with many requirements,
this contains no data and simply implements the marker interface.

public class IsRecipeOwnerRequirement : IAuthorizationRequirement { }

Defining the policy in ConfigureServices is similarly simple, as you have only this single
requirement. Note that there’s nothing resource-specific in any of this code so far:

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options => {
 options.AddPolicy("CanManageRecipe", policyBuilder =>
 policyBuilder.AddRequirements(new IsRecipeOwnerRequirement()));
 });
}

You’re halfway there; all you need to do now is create an authorization handler for
IsRecipeOwnerRequirement and register it with the DI container.

526

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

15.5.2 Creating a resource-based AuthorizationHandler

Resource-based authorization handlers are essentially the same as the authorization handler
implementations you saw in section 15.4.2. The only difference is that the handler also has
access to the resource being authorized.

To create a resource-based handler, you should derive from the
AuthorizationHandler<TRequirement, TResource> base class, where TRequirement is the
type of requirement to handle, and TResource is the type of resource that you provide when
calling IAuthorizationService. Compare this to the AuthorizationHandler<T> class you
implemented previously, where you only specified the requirement.

This listing shows the handler implementation for your recipe application. You can see that
you’ve specified the requirement as IsRecipeOwnerRequirement, the resource as Recipe, and
have implemented the HandleRequirementAsync method.

Listing 15.15 IsRecipeOwnerHandler for resource-based authorization

public class IsRecipeOwnerHandler :
 AuthorizationHandler<IsRecipeOwnerRequirement, Recipe> #A
{
 private readonly UserManager<ApplicationUser> _userManager; #B
 public IsRecipeOwnerHandler(#B
 UserManager<ApplicationUser> userManager) #B
 { #B
 _userManager = userManager; #B
 } #B
 protected override async Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 IsRecipeOwnerRequirement requirement,
 Recipe resource) #C
 {
 var appUser = await _userManager.GetUserAsync(context.User);
 if(appUser == null) #D
 {
 return;
 }
 if(resource.CreatedById == appUser.Id) #E
 {
 context.Succeed(requirement); #F
 }
 }
}

#A Implements the necessary base class, specifying the requirement and resource type
#B Injects an instance of the UserManager<T> class using DI
#C As well as the context and requirement, you’re also provided the resource instance.
#D If you aren’t authenticated, then appUser will be null.
#E Checks whether the current user created the Recipe by checking the CreatedById property
#F If the user created the document, Succeed the requirement; otherwise, do nothing.

This handler is slightly more complicated than the examples you’ve seen previously, primarily
because you’re using an additional service, UserManager<>, to load the ApplicationUser
entity based on ClaimsPrincipal from the request.

527

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

NOTE In practice, the ClaimsPrincipal will likely already have the Id added as a claim, making the extra

step unnecessary in this case. This example shows the general pattern if you need to use dependency injected

services.

The other significant difference is that the HandleRequirementAsync method has provided the
Recipe resource as a method argument. This is the same object that you provided when
calling AuthorizeAsync on IAuthorizationService. You can use this resource to verify
whether the current user created it. If so, you Succeed() the requirement, otherwise you do
nothing.

The final task is to add IsRecipeOwnerHandler to the DI container. Your handler uses an
additional dependency, UserManager<>, which uses EF Core, so you should register the
handler as a scoped service:

services.AddScoped<IAuthorizationHandler, IsRecipeOwnerHandler>();

TIP If you’re wondering how to know whether you register a handler as scoped or a singleton, think back to

chapter 10. Essentially, if you have scoped dependencies, then you must register the handler as scoped;

otherwise, singleton is fine.

With everything hooked up, you can take the application for a spin. If you try to edit a recipe
you didn’t create by clicking the Edit button on the recipe, you’ll either be redirected to the
login page (if you hadn’t yet authenticated) or you’ll be presented with an Access Denied
page, as shown in figure 15.7.

528

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 15.7 If you’re logged in but not authorized to edit a recipe, you’ll be redirected to an Access Denied page.
If you’re not logged in, you’ll be redirected to the login page.

By using resource-based authorization, you’re able to enact more fine-grained authorization
requirements that you can apply at the level of an individual document or resource. Instead of
only being able to authorize that a user can edit any recipe, you can authorize whether a user
can edit this recipe.

All the authorization techniques you’ve seen so far have focused on server-side checks.
Both the [Authorize] attribute and resource-based authorization approaches focus on
stopping users from executing a protected action on the server. This is important from a

529

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

security point of view, but there’s another aspect you should consider too: the user experience
when they don’t have permission.

Now you’ve protected the code executing on the server, but arguably, the Edit button
should never have been visible to the user if they weren’t going to be allowed to edit the
recipe! In the next section, we’ll look at how you can conditionally hide the Edit button by
using resource-based authorization in your view models.

15.6 Hiding elements in Razor templates from unauthorized users
All the authorization code you’ve seen so far has revolved around protecting action methods or
Razor Pages on the server side, rather than modifying the UI for users. This is important and
should be the starting point whenever you add authorization to an app.

WARNING Malicious users can easily circumvent your UI, so it’s important to always authorize your actions

and Razor Pages on the server, never on the client alone.

From a user-experience point of view, however, it’s not friendly to have buttons or links that
look like they’re available, but which present you with an Access Denied page when they’re
clicked. A better experience would be for the links to be disabled, or not visible at all.

You can achieve this in several ways in your own Razor templates. In this section, I’m
going to show you how to add an additional property to the PageModel, called CanEditRecipe,
which the Razor view template will use to change the rendered HTML.

TIP An alternative approach would be to inject IAuthorizationService directly into the view template

using the @inject directive, as you saw in chapter 10, but you should prefer to keep logic like this in the page

handler.

When you’re finished, the rendered HTML will look unchanged for recipes you created, but the
Edit button will be hidden when viewing a recipe someone else created, as shown in figure
15.8.

Figure 15.8 Although the HTML will appear unchanged for recipes you created, the Edit button is hidden when
you view recipes created by a different user.

530

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

The following listing shows the PageModel for the View.cshtml Razor Page, which is used to
render the recipe page shown in figure 15.8. As you’ve already seen for resource-based
authorization, you can use the IAuthorizationService to determine whether the current
user has permission to edit the Recipe by calling AuthorizeAsync, You can then set this value
as an additional property on the PageModel, called CanEditRecipe.

Listing 15.16 Setting the CanEditRecipe property in the View.cshtml Razor Page

public class ViewModel : PageModel
{
 public Recipe Recipe { get; set; }
 public bool CanEditRecipe { get; set; } #A

 private readonly RecipeService _service;
 private readonly IAuthorizationService _authService;
 public ViewModel(
 RecipeService service,
 IAuthorizationService authService)
 {
 _service = service;
 _authService = authService;
 }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Recipe = _service.GetRecipe(id); #B
 var isAuthorised = await _authService #C
 .AuthorizeAsync(User, recipe, "CanManageRecipe"); #C
 CanEditRecipe = isAuthorised.Succeeded; #D
 return Page();
 }
}

#A The CanEditRecipe property will be used to control whether the Edit button is rendered.
#B Loads the Recipe resource for use with IAuthorizationService
#C Verifies whether the user is authorized to edit the Recipe
#D Sets the CanEditRecipe property on the PageModel as appropriate

Instead of blocking execution of the Razor Page (as you did previously in the Edit action), use
the result of the call to AuthorizeAsync to set the CanEditRecipe value on the PageModel.
You can then make a simple change to the View.chstml Razor template: add an if clause
around the rendering of the edit link.

@if(Model.CanEditRecipe)
{
 <a asp-action="Edit" asp-route-id="@Model.Id"
 class="btn btn-primary">Edit
}

This ensures that only users who will be able to execute the Edit.cshtml Razor Page can see
the link to that page.

531

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

WARNING Note that you didn’t remove the server-side authorization check from the Edit action. This is

important for preventing malicious users from circumventing your UI.

With that final change, you’ve finished adding authorization to the recipe application.
Anonymous users can browse the recipes created by others, but they must log in to create
new recipes. Additionally, authenticated users can only edit the recipes that they created and
won’t see an edit link for other people’s recipes.

Authorization is a key aspect of most apps, so it’s important to bear it in mind from an
early point. Although it’s possible to add authorization later, as you did with the recipe app,
it’s normally preferable to consider authorization sooner rather than later in the app’s
development.

In the next chapter, we’re going to be looking at your ASP.NET Core application from a
different point of view. Instead of focusing on the code and logic behind your app, we’re going
to look at how you prepare an app for production. You’ll see how to specify the URLs your
application uses, and how to publish an app so that it can be hosted in IIS. Finally, you’ll learn
about the bundling and minification of client-side assets, why you should care, and how to use
BundlerMinifier in ASP.NET Core.

15.7 Summary
• Authentication is the process of determining who a user is. It’s distinct from

authorization, the process of determining what a user can do. Authentication typically
occurs before authorization.

• You can use the authorization services in any part of your application, but it’s typically
applied using the AuthorizationMiddleware by calling UseAuthorization(). This
should be placed after the calls to UseRouting() and UseAuthentication(), and
before the call to UseEndpoints() for correct operation.

• You can protect Razor Pages and MVC actions by applying the [Authorize] attribute.
The routing middleware records the presence of the attribute as metadata with the
selected endpoint. The authorization middleware uses this metadata to determine how
to authorize the request.

• The simplest form of authorization requires that a user is authenticated before
executing an action. You can achieve this by applying the [Authorize] attribute to a
Razor Page, action, controller, or globally. You can also apply attributes conventionally
to a sub-set of Razor Pages.

• Claims-based authorization uses the current user’s claims to determine whether they’re
authorized to execute an action. You define the claims needed to execute an action in a
policy.

• Policies have a name and are configured in Startup.cs as part of the call to
AddAuthorization() in ConfigureServices. You define the policy using AddPolicy(),
passing in a name and a lambda that defines the claims needed.

532

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• You can apply a policy to an action or Razor Page by specifying the policy in the
authorize attribute, for example [Authorize("CanAccessLounge")]. This policy will be
used by the AuthorizationMiddleware to determine if the user is allowed to execute
the selected endpoint.

• In a Razor Pages app, if an unauthenticated user attempts to execute a protected
action, they’ll be redirected to the login page for your app. If they’re already
authenticated, but don’t have the required claims, they’ll be shown an Access Denied
page instead.

• For complex authorization policies, you can build a custom policy. A custom policy
consists of one or more requirements, and a requirement can have one or more
handlers. You can combine requirements and handlers to create policies of arbitrary
complexity.

• For a policy to be authorized, every requirement must be satisfied. For a requirement
to be satisfied, one or more of the associated handlers must indicate success, and none
must indicate explicit failure.

• AuthorizationHandler<T> contains the logic that determines whether a requirement is
satisfied. For example, if a requirement requires that users be over 18, the handler
could look for a DateOfBirth claim and calculate the user’s age.

• Handlers can mark a requirement as satisfied by calling
context.Succeed(requirement). If a handler can’t satisfy the requirement, then it
shouldn’t call anything on the context, as a different handler could call Succeed() and
satisfy the requirement.

• If a handler calls context.Fail(), then the requirement will fail, even if a different
handler marked it as a success using Succeed(). Only use this method if you want to
override any calls to Succeed() from other handlers, to ensure the authorization policy
will fail authorization.

• Resource-based authorization uses details of the resource being protected to determine
whether the current user is authorized. For example, if a user is only allowed to edit
their own documents, then you need to know the author of the document before you
can determine whether they’re authorized.

• Resource-based authorization uses the same policy, requirements, and handler system
as before. Instead of applying authorization with the [Authorize] attribute, you must
manually call IAuthorizationService and provide the resource you’re protecting.

• You can modify the user interface to account for user authorization by adding additional
properties to your PageModel. If a user isn’t authorized to execute an action, you can
remove or disable the link to that action method in the UI. You should always authorize
on the server, even if you’ve removed links from the UI.

533

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

16
Publishing and deploying your

application

This chapter covers

• Publishing an ASP.NET Core application
• Hosting an ASP.NET Core application in IIS
• Customizing the URLs for an ASP.NET Core app
• Optimizing client-side assets with bundling and minification

We’ve covered a vast amount of ground so far in this book. We’ve gone over the basic
mechanics of building an ASP.NET Core application, such as configuring dependency injection,
loading app settings, and building a middleware pipeline. We’ve looked at the UI side, using
Razor templates and layouts to build an HTML response. And we’ve looked at higher-level
abstractions, such as EF Core and ASP.NET Core Identity, that let you interact with a database
and add users to your application.

In this chapter, we’re taking a slightly different route. Instead of looking at ways to build
bigger and better applications, we focus on what it means to deploy your application so that
users can access it. You’ll learn about

• The process of publishing an ASP.NET Core application so that it can be deployed to a
server.

• How to prepare a reverse proxy (IIS) to host your application.
• How to optimize your app so that it’s performant once deployed.

We start by looking again at the ASP.NET Core hosting model in section 16.1 and examining
why you might want to host your application behind a reverse proxy instead of exposing your
app directly to the internet. I show you the difference between running an ASP.NET Core app

534

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

in development using dotnet run and publishing the app for use on a remote server. Finally, I
describe some of the options available to you when deciding how and where to deploy your
app.

In section 16.2, I show you how to deploy your app to one such option, a Windows server
running IIS (Internet Information Services). This is a typical deployment scenario for many
developers already familiar with ASP.NET, so it acts as a useful case study, but it’s certainly
not the only possibility. I won’t go into all the technical details of configuring the venerable IIS
system, but I’ll show the bare minimum required to get it up and running. If your focus is
cross-platform development, then don’t worry, I don’t dwell on IIS for too long!

In section 16.3, I provide an introduction to hosting on Linux. You’ll see how it differs from
hosting applications on Windows, learn the changes you need to make to your apps, and find
out about some gotchas to look out for. I describe how reverse proxies on Linux differ from
IIS and point you to some resources you can use to configure your environments, rather than
giving exhaustive instructions in this book.

If you’re not hosting your application using IIS, then you’ll likely need to set the URL that
your ASP.NET Core app is using when you deploy your application. In section 16.4, I show two
approaches to this: using the special ASPNETCORE_URLS environment variable and using
command line arguments. Although generally not an issue during development, setting the
correct URLs for your app is critical when you need to deploy it.

In the final section of this chapter, we look at a common optimization step used when
deploying your application. Bundling and minification are used to reduce the number and size
of requests that browsers must make to your app to fully load a page. I show you how to use
a simple tool to create bundles when you build your application, and how to conditionally load
these when in production to optimize your app’s page size.

This chapter covers a relatively wide array of topics, all related to deploying your app. But
before we get into the nitty-gritty, I’ll go over the hosting model for ASP.NET Core so that
we’re all on the same page. This is significantly different from the hosting model of the
previous version of ASP.NET, so if you’re coming from that background, it’s best to try to
forget what you know!

16.1 Understanding the ASP.NET Core hosting model
In this section I discuss the various ways to deploy your ASP.NET Core applications to
production. I start by describing the role of a reverse proxy in deployments, and whether you
should use one. I then describe the difference between running an app during development
and publishing an app for production. Finally, I briefly discuss the various options available for
deploying your application to a production server.

If you think back to chapter 1, you may remember that we discussed the hosting model of
ASP.NET Core. ASP.NET Core applications are, essentially, console applications. They have a
static void Main function that serves as the entry point for the application, like a standard
.NET console app would.

535

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

What makes an app an ASP.NET Core app is that it runs a web server, typically Kestrel,
inside the console app process. Kestrel provides the HTTP functionality to receive requests and
return responses to clients. Kestrel passes any requests it receives to the body of your
application to generate a response, as shown in figure 16.1. This hosting model decouples the
server and reverse proxy from the application itself, so that the same application can run
unchanged in multiple environments.

Figure 16.1 The hosting model for ASP.NET Core. Requests are received by the reverse proxy and are forwarded
to the Kestrel web server. The same application can run behind various reverse proxies without modification.

536

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In this book, we’ve focused on the lower half of figure 16.1—the ASP.NET Core application
itself—but the reality is that you’ll often want to place your ASP.NET Core apps behind a
reverse proxy, such as IIS on Windows, or NGINX or Apache on Linux. The reverse proxy is
the program that listens for HTTP requests from the internet and then makes requests to your
app as though the request had come from the internet directly.

DEFINITION A reverse proxy is software that’s responsible for receiving requests and forwarding them to

the appropriate web server. The reverse proxy is exposed directly to the internet, whereas the underlying web

server is exposed only to the proxy.

If you’re running your application using a Platform as a Service (PAAS) offering, such as Azure
App Service, then you’re using a reverse proxy there too, one that is managed by Azure.
Using a reverse proxy has many benefits:

• Security—Reverse proxies are specifically designed to be exposed to malicious internet
traffic, so they’re typically well-tested and battle-hardened.

• Performance—You can configure reverse proxies to provide performance improvements
by aggressively caching responses to requests.

• Process management—An unfortunate reality is that apps sometimes crash. Some
reverse proxies can act as a monitor/scheduler to ensure that if an app crashes, the
proxy can automatically restart it.

• Support for multiple apps—It’s common to have multiple apps running on a single
server. Using a reverse proxy makes it easier to support this scenario by using the host
name of a request to decide which app should receive the request.

I don’t want to make it seem like using a reverse proxy is all sunshine and roses. There are
some downsides:

• Complexity— One of the biggest complaints is how complex reverse proxies can be. If
you’re managing the proxy yourself (as opposed to relying on a PaaS implementation)
there can be lots of proxy-specific pitfalls to look out for.

• Inter process communication—Most reverse proxies require two processes: a reverse
proxy and your web app. Communicating between the two is often slower than if you
directly expose your web app to requests from the internet.

• Restricted features—Not all reverse proxies support all the same features as an
ASP.NET Core app. For example, Kestrel supports HTTP/2, but if your reverse proxy
doesn’t, then you won’t see the benefits.

Whether you choose to use a reverse proxy or not, when the time comes to host your app,
you can’t copy your code files directly on to the server. First, you need to publish your
ASP.NET Core app, to optimize it for production. In section 16.1.1, we look at building an
ASP.NET Core app so it can be run on your development machine, compared to publishing it
so that it can be run on a server.

537

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

16.1.1 Running vs. publishing an ASP.NET Core app

One of the key changes in ASP.NET Core from previous versions of ASP.NET is making it easy
to build apps using your favorite code editors and IDEs. Previously, Visual Studio was required
for ASP.NET development, but with the .NET CLI and the OmniSharp plugin, you can now build
apps with the tools you’re comfortable with, on any platform.

As a result, whether you build using Visual Studio or the .NET CLI, the same tools are
being used under the hood. Visual Studio provides an additional GUI, functionality, and
wrappers for building your app, but it executes the same commands as the .NET CLI behind
the scenes.

As a refresher, you’ve used four main .NET CLI commands so far to build your apps:

• dotnet new—Creates an ASP.NET Core application from a template
• dotnet restore—Downloads and installs any referenced NuGet packages for your

project
• dotnet build—Compiles and builds your project
• dotnet run—Executes your app, so you can send requests to it

If you’ve ever built a .NET application, whether it’s an ASP.NET app or a .NET Framework
Console app, then you’ll know that the output of the build process is written to the bin folder.
The same is true for ASP.NET Core applications.

If your project compiles successfully when you call dotnet build, then the .NET CLI will
write its output to a bin folder in your project’s directory. Inside this bin folder are several files
required to run your app, including a dll file that contains the code for your application. Figure
16.2 shows part of the output of the bin folder for an ASP.NET Core application:

Figure 16.2 The bin folder for an ASP.NET Core app after running dotnet build. The application is compiled
into a single dll, ExampleApp.dll.

NOTE On Windows, you will also have an executable .exe file, ExampleApp.exe. This is a simple wrapper file

for convenience that makes it easier to run the application contained in ExampleApp.dll.

538

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

When you call dotnet run in your project folder (or run your application using Visual Studio),
the .NET CLI uses the DLL to run your application. But this doesn’t contain everything you
need to deploy your app.

To host and deploy your app on a server, you first need to publish it. You can publish your
ASP.NET Core app from the command line using the dotnet publish command. This builds
and packages everything your app needs to run. The following command packages the app
from the current directory and builds it to a subfolder called publish. I’ve used the Release
configuration, instead of the default Debug configuration, so that the output will be fully
optimized for running in production:

dotnet publish --output publish --configuration release

TIP Always use the release configuration when publishing your app for deployment. This ensures the compiler

generates optimized code for your app.

Once the command completes, you’ll find your published application in the publish folder, as
shown in figure 16.3.

Figure 16.3 The publish folder for the app after running dotnet publish. The app is still compiled into a
single dll, but all the additional files, such as wwwroot and appsettings.json are also copied to the output.

As you can see, the ExampleApp.dll file is still there, along with some additional files. Most
notably, the publish process has copied across the wwwroot folder of static files. When running
your application locally with dotnet run, the .NET CLI uses these files from your application’s
project folder application directly. Running dotnet publish copies the files to the output
directory, so they’re included when you deploy your app to a server.

If your first instinct is to try running the application in the publish folder using the dotnet
run command you already know and love, then you’ll be disappointed. Instead of the

539

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

application starting up, you’re presented with a somewhat confusing message: “Couldn't find a
project to run.”

To run a published application, you need to use a slightly different command. Instead of
calling dotnet run, you must pass the path to your application’s dll file to the dotnet
command. If you’re running the command from the publish folder, then for the example app in
figure 16.3, that would look something like

dotnet ExampleApp.dll

This is the command that your server will run when running your application in production.
When you’re developing, the dotnet run command does a whole load of work to make things
easier on you: it makes sure your application is built, looks for a project file in the current
folder, works out where the corresponding dlls will be (in the bin folder), and finally, runs your
app.

In production, you don’t need any of this extra work. Your app is already built, it only
needs to be run. The dotnet <dll> syntax does this alone, so your app starts much faster.

NOTE The dotnet command used to run your published application is part of the .NET Core Runtime,

whereas the dotnet command used to build and run your application during development is part of the .NET

Core SDK.

Framework-dependent deployments vs. self-contained deployments
.NET Core applications can be deployed in two different ways: runtime-dependent deployments (RDD) and self-
contained deployments (SCD).
Most of the time, you’ll use an RDD. This relies on the .NET Core runtime being installed on the target machine that
runs your published app, but you can run your app on any platform—Windows, Linux, or macOS—without having to
recompile.
In contrast, an SCD contains all the code required to run your app, so the target machine doesn’t need to have .NET
Core installed. Instead, publishing your app will package up the .NET Core runtime with your app’s code and libraries.
Each approach has its pros and cons, but in most cases I tend to create RDDs. The final size of RDDs is much smaller,
as they only contain your app code, instead of the whole .NET Core framework, as for SCDs. Also, you can deploy your
RDD apps to any platform, whereas SCDs must be compiled specifically for the target machine’s operating system,
such as Windows 10 64-bit or Red Hat Enterprise Linux 64-bit.
In this book, I’ll only discuss RDDs, but if you want to create an SCD, provide a runtime identifier, in this case Windows
10 64-bit, when you publish your app:

dotnet publish -c Release -r win10-x64 -o publish_folder

The output will contain an exe file, which is your application, and a ton of dlls (almost 100 MB of dlls for a sample app),
which are the .NET Core framework. You need to deploy this whole folder to the target machine to run your app. For
more details, see the documentation at https://docs.microsoft.com/dotnet/core/deploying/.

540

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/dotnet/core/deploying/

©Manning Publications Co. To comment go to liveBook

We’ve established that publishing your app is important for preparing it to run in production,
but how do you go about deploying it? How do you get the files from your computer on to a
server so that people can access your app? You have many, many options for this, so in the
next section, I’ll give you a brief list of approaches to consider.

16.1.2 Choosing a deployment method for your application

To deploy any application to production, you generally have two fundamental requirements:

• A server that can run your app
• A means of loading your app on to the server

Historically, putting an app into production was a laborious, and error-prone, process. For
many people, this is still true. If you’re working at a company that hasn’t changed practices in
recent years, then you may need to request a server or virtual machine for your app and
provide your application to an operations team who will install it for you. If that’s the case,
you may have your hands tied regarding how you deploy.

For those who have embraced continuous integration (CI) or continuous
delivery/deployment (CD), there are many more possibilities. CI/CD is the process of
detecting changes in your version control system (for example Git, SVN, Mercurial, Team
Foundation Version Control) and automatically building, and potentially deploying, your
application to a server, with little to no human intervention.68

You can find many different CI/CD systems out there: Azure DevOps, GitHub actions,
Jenkins, TeamCity, AppVeyor, Travis, and Octopus Deploy, to name a few. Each can manage
some or all of the CI/CD process and can integrate with many different systems.

Rather than pushing any particular system, I suggest trying out some of the services
available and seeing which works best for you. Some are better suited to open source
projects, some are better when you’re deploying to cloud services—it all depends on your
particular situation.

If you’re getting started with ASP.NET Core and don’t want to have to go through the setup
process of getting CI working, then you still have lots of options. The easiest way to get
started with Visual Studio is to use the built-in deployment options. These are available from
Visual Studio via the Build > Publish AppName menu option, which presents you with the
screen shown in figure 16.4.

68 There are important but subtle differences between these terms. You can find a good comparison here: https://www.atlassian.com/continuous-

delivery/principles/continuous-integration-vs-delivery-vs-deployment

541

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

©Manning Publications Co. To comment go to liveBook

Figure 16.4 The Publish application screen in Visual Studio 2019. This provides easy options for publishing your
application directly to Azure App Service, to IIS, to an FTP site, or to a folder on the local machine.

From here, you can publish your application directly from Visual Studio to many different
locations.69 This is great when you’re getting started, though I recommend looking at a more
automated and controlled approach for larger applications, or when you have a whole team
working on a single app.

Given the number of possibilities available in this space, and the speed with which these
options change, I’m going to focus on one specific scenario in this chapter: you’ve built an
ASP.NET Core application and you need to deploy it; you have access to a Windows server

69For guidance on choosing your Visual Studio publishing options, see https://docs.microsoft.com/visualstudio/deployment/deploying-applications-

services-and-components-resources.

542

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/visualstudio/deployment/deploying-applications-services-and-components-resources
https://docs.microsoft.com/visualstudio/deployment/deploying-applications-services-and-components-resources

©Manning Publications Co. To comment go to liveBook

that’s already serving (previous version) ASP.NET applications using IIS and you want to run
your ASP.NET Core app alongside them.

In the next section, you’ll see an overview of the steps required to run an ASP.NET Core
application in production, using IIS as a reverse proxy. It won’t be a master class in
configuring IIS (there’s so much depth to the 20-year-old product that I wouldn’t know where
to start!), but I’ll cover the basics needed to get your application serving requests.

16.2 Publishing your app to IIS
In this section, I briefly show how to publish your first app to IIS. You’ll add an application
pool and website to IIS, and ensure your app has the necessary configuration to work with IIS
as a reverse proxy. The deployment itself will be as simple as copying your published app to
IIS’s hosting folder.

In section 16.1, you learned about the need to publish an app before you deploy it, and
the benefits of using a reverse proxy when you run an ASP.NET Core app in production. If
you’re deploying your application to Windows, then IIS will be your reverse proxy, and will be
responsible for managing your application.

IIS is an old and complex beast, and I can’t possibly cover everything related to
configuring it in this book. Nor would you want me to—it would be very boring! Instead, in this
section, I provide an overview of the basic requirements for running ASP.NET Core behind IIS,
along with the changes you may need to make to your application to support IIS.

If you’re on Windows and want to try out these steps locally, then you’ll need to manually
enable IIS on your development machine. If you’ve done this with older versions of Windows,
nothing much has changed. You can find a step-by-step guide to configuring IIS and
troubleshooting tips in the ASP.NET Core documentation at
https://docs.microsoft.com/aspnet/core/publishing/iis.

16.2.1 Configuring IIS for ASP.NET Core

The first step in preparing IIS to host ASP.NET Core applications is to install the .NET Core
Windows Hosting Bundle.70 This includes several components needed to run .NET Core apps:

• The .NET Core Runtime—Runs your .NET Core application
• The ASP.NET Core Runtime—Required to run ASP.NET Core apps
• The IIS AspNetCore Module—Provides the link between IIS and your app, so that IIS

can act as a reverse proxy

If you’re going to be running IIS on your development machine, then make sure to install the
bundle as well, otherwise you’ll get strange errors from IIS.

70You can download the bundle from https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer.

543

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/publishing/iis
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer

©Manning Publications Co. To comment go to liveBook

TIP You only need the Windows Hosting Bundle for running ASP.NET Core behind IIS. However, wherever

you’re hosting your app, whether in IIS on Windows, or NGINX on Linux, you’ll need to have the .NET Core

Runtime and ASP.NET Core runtime installed to run runtime-dependent ASP.NET Core apps.

Once you’ve installed the bundle, you need to configure an application pool in IIS for your
ASP.NET Core apps. Previous versions of ASP.NET would run in a managed app pool that used
.NET Framework, but for ASP.NET Core you should create a No Managed Code pool. The native
ASP.NET Core Module runs inside the pool, which boots the .NET Core runtime itself.

DEFINITION An application pool in IIS represents an application process. You can run each app in IIS in a

separate application pool to keep them isolated from one another.

To create an unmanaged application pool, right-click Application Pools in IIS and choose Add
Application Pool. Provide a name for the app pool in the resulting dialog, for example NetCore,
and set the .NET CLR version to No Managed Code, as shown in figure 16.5.

Figure 16.5 Creating an app pool in IIS for your ASP.NET Core app. The .NET CLR version should be set to No
Managed Code.

Now you have an app pool, you can add a new website to IIS. Right-click the Sites node and
choose Add Website. In the Add Website dialog, shown in figure 16.6, you provide a name for
the website and the path to the folder where you’ll publish your website. I’ve created a folder
that I’ll use to deploy the Recipe app from previous chapters. It’s important to change the
Application pool for the app to the new NetCore app pool you created. In production, you’d
also provide a hostname for the application, but I’ve left it blank for now and changed the port
to 81, so the application will bind to the URL http://localhost:81.

544

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://localhost:81

©Manning Publications Co. To comment go to liveBook

Figure 16.6 Adding a new website to IIS for your app. Be sure to change the Application pool to the No Managed
Code pool created in the previous step. You also provide a name, the path where you’ll publish your app files,
and the URL IIS will use for your app.

NOTE When you deploy an application to production, you need to register a host name with a domain

registrar, so your site is accessible by people on the internet. Use that hostname when configuring your

application in IIS, as shown in figure 16.6.

Once you click OK, IIS creates the application and attempts to start it. But you haven’t
published your app to the folder, so you won’t be able view it in a browser yet.

You need to carry out one more critical setup step before you can publish and run your
app: you must grant permissions for the NetCore app pool to access the path where you’ll
publish your app. To do this, right-click the folder that will host your app in Windows Explorer
and choose Properties. In the Properties dialog, choose Security > Edit > Add… Enter IIS
AppPool\NetCore in the textbox, as shown in figure 16.7, where NetCore is the name of your
app pool, and click OK. Close all the dialog boxes by clicking OK and you’re all set.

545

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 16.7 Adding permission for the NetCore app pool to the website publish folder.

Out of the box, the ASP.NET Core templates are configured to work seamlessly with IIS, but if
you’ve created an app from scratch, then you may need to make a couple of changes. In the
next section, I briefly show the changes you need to make and explain why they’re necessary.

16.2.2 Preparing and publishing your application to IIS

As I discussed in section 16.1, IIS acts as a reverse proxy for your ASP.NET Core app. That
means IIS needs to be able to communicate directly with your app to forward incoming
requests and outgoing responses to and from your app.

IIS handles this with the ASP.NET Core Module, but there’s a certain degree of negotiation
required between IIS and your app. For this to work correctly, you need to configure your app
to use IIS integration.

IIS integration is added by default when you use the
IHostBuilder.ConfigureWebHostDefaults() helper method used in the default templates. If
you’re customizing your own HostBuilder, then you need to ensure you add IIS integration
with the UseIIS() or UseIISIntegration() extension method.

Listing 16.1 Adding IIS Integration to a host builder

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHost(webBuilder => #A
 {
 webBuilder.UseKestrel();
 webBuilder.UseStartup<Startup>();
 webBuilder.UseIIS(); #B
 webBuilder.UseIISIntegration(); #C

 });
}

546

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#A Using a custom builder, instead of the default ConfigureWebHostDefaults used in templates
#B Configures your application for use with IIS with an in-process hosting model
#C Configures your application for use with IIS with an out-of-process hosting model

NOTE If you’re not using your application with IIS, the UseIIS() and UseIISIntegration() methods

will have no effect on your app, so it’s safe to include them anyway.

In-process vs. out-of-process hosting in IIS
The reverse-proxy description I gave in section 16.1 assumes that your application is running in a separate process to
the reverse proxy itself. That is the case if you’re running on Linux and was the default for IIS up until ASP.NET Core 3.0.
In ASP.NET Core 3.0, ASP.NET Core switched to using an in-process hosting model by default for applications deployed
to IIS. In this model, IIS hosts your application directly in the IIS process, reducing inter-process communication, and
boosting performance.
You can switch to the out-of-process hosting model with IIS if you wish, which can sometimes be useful for
troubleshooting problems. Rick Strahl has an excellent post on the differences between the hosting models, how to
switch between them, and the advantages of each: https://weblog.west-wind.com/posts/2019/Mar/16/ASPNET-Core-
Hosting-on-IIS-with-ASPNET-Core-22.
In general, you shouldn’t need to worry about the differences between the hosting models, but it’s something to be
aware of if you’re deploying to IIS. If you choose to use the out-of-process hosting model then you should use the
UseIISIntegration() extension method. If you use the in-process model, use UseIIS(). Alternatively, play it safe
and use both—the correct extension method will be activated based on the hosting model used in production. And
neither extension does anything if you don’t use IIS!

When running behind IIS, these extension methods configure your app to pair with IIS so that
it can seamlessly accept requests. Among other things, the extensions:

• Define the URL that IIS will use to forward requests to your app and configure your app
to listen on this URL

• Configure your app to interpret requests coming from IIS as coming from the client by
setting up header forwarding

• Enable Windows authentication if required

Adding the IIS extension methods is the only change you need to make to your application to
be able to host in IIS, but there's one additional aspect to be aware of when you publish your
app.

As with previous versions of ASP.NET, IIS relies on a web.config file to configure the
applications it runs. It’s important your application includes a web.config file when it’s

547

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://weblog.west-wind.com/posts/2019/Mar/16/ASPNET-Core-Hosting-on-IIS-with-ASPNET-Core-22
https://weblog.west-wind.com/posts/2019/Mar/16/ASPNET-Core-Hosting-on-IIS-with-ASPNET-Core-22

©Manning Publications Co. To comment go to liveBook

published to IIS, otherwise you could get broken behavior, or even expose files that shouldn’t
be exposed.71

If your ASP.NET Core project already includes a web.config file, the .NET CLI or Visual
Studio will copy it to the publish directory when you publish your app. If your app doesn’t
include a web.config file, the publish command will create the correct one for you. If you don’t
need to customize the web.config file, it’s generally best not to include one in your project and
let the CLI create the correct file for you.

With these changes, you’re finally in a position to publish your application to IIS. Publish
your ASP.NET Core app to a folder, either from Visual Studio, or with the .NET CLI by running

dotnet publish --output publish_folder --configuration release

This will publish your application to the publish_folder folder. You can then copy your
application to the path specified in IIS as shown in figure 16.6. At this point, if all has gone
smoothly, you should be able to navigate to the URL you specified for your app
(http://localhost:81, in my case) and see it running, as shown in figure 16.8.

Figure 16.8 The published application, using IIS as a reverse proxy listening at the URL http://localhost:81.

And there you have it, your first application running behind a reverse proxy. Even though
ASP.NET Core uses a different hosting model to previous versions of ASP.NET, the process of
configuring IIS is similar.

71 For details on using web.config to customize the IIS AspNetCore Module, see https://docs.microsoft.com/aspnet/core/host-and-deploy/aspnet-core-

module.

548

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/host-and-deploy/aspnet-core-module
https://docs.microsoft.com/aspnet/core/host-and-deploy/aspnet-core-module
http://localhost:81
http://localhost:81

©Manning Publications Co. To comment go to liveBook

As is often the case when it comes to deployment, the success you have is highly
dependent on your precise environment and your app itself. If, after following these steps, you
find you can’t get your application to start, I highly recommend checking out the
documentation at https://docs.microsoft.com/aspnet/core/publishing/iis. This contains many
troubleshooting steps to get you back on track if IIS decides to throw a hissy fit.

This section was deliberately tailored to deploying to IIS, as it provides a great segue for
developers who are already used to deploying ASP.NET apps and want to deploy their first
ASP.NET Core app. But that’s not to say that IIS is the only, or best, place to host your
application.

In the next section, I’ll provide a brief introduction to hosting your app on Linux, behind a
reverse proxy like NGINX or Apache. I won’t go into configuration of the reverse proxy itself,
but will provide an overview of things to consider, and resources you can use to run your
applications on Linux.

16.3 Hosting an application on Linux
One of the great new features in ASP.NET Core is the ability to develop and deploy
applications cross-platform, whether that be on Windows, Linux, or macOS. The ability to run
on Linux, in particular, opens up the possibility of cheaper deployments to cloud hosting,
deploying to small devices like a Raspberry Pi or to Docker containers.

One of the characteristics of Linux is that it’s almost infinitely configurable. Although that’s
definitely a feature, it can also be extremely daunting, especially if coming from the Windows
world of wizards and GUIs. This section provides an overview of what it takes to run an
application on Linux. It focuses on the broad steps you need to take, rather than the
somewhat tedious details of the configuration itself. Instead, I point to resources you can refer
to as necessary.

16.3.1 Running an ASP.NET Core app behind a reverse proxy on Linux

You’ll be glad to hear that running your application on Linux is broadly the same as running
your application on Windows with IIS:

1. Publish your app using dotnet publish. If you’re creating an RDD, the output is the
same as you’d use with IIS. For an SCD, you must provide the target platform moniker,
as described in section 16.1.1.

2. Install the necessary prerequisites on the server. For an RDD deployment, you must
install the .NET Core Runtime and the necessary prerequisites. You can find details on
this in the docs at https://docs.microsoft.com/dotnet/core/install/dependencies.

3. Copy your app to the server. You can use any mechanism you like, FTP, USB stick,
whatever you need to get your files onto the server!

4. Configure a reverse proxy and point it to your app. As you know by now, you may want
to run your app behind a reverse proxy, for the reasons described in section 16.1. On

549

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/publishing/iis
https://docs.microsoft.com/dotnet/core/install/dependencies

©Manning Publications Co. To comment go to liveBook

Windows, you’d use IIS, but on Linux you have more options. NGINX, Apache, and
HAProxy are all commonly used options.

5. Configure a process-management tool for your app. On Windows, IIS acts both as a
reverse proxy and a process manager, restarting your app if it crashes or stops
responding. On Linux, you typically need to configure a separate process manager to
handle these duties; the reverse proxies won’t do it for you.

The first three points are generally the same whether you’re running on Windows with IIS or
on Linux, but the last two points are more interesting. In contrast to the monolithic IIS, Linux
has a philosophy of small applications with a single responsibility.

IIS runs on the same server as your app and takes on multiple duties—proxying traffic
from the internet to your app, but also monitoring the app process itself. If your app crashes
or stops responding, IIS will restart the process to ensure you can keep handling requests.

In Linux, the reverse proxy might be running on the same server as your app, but it’s also
common for it to be running on a different server entirely, as shown in figure 16.9. This is
similarly true if you choose to deploy your app to Docker; your app would typically be
deployed in a container without a reverse proxy, and a reverse proxy on a server would point
to your Docker container.

As the reverse proxies aren’t necessarily on the same server as your app, they can’t be
used to restart your app if it crashes. Instead, you need to use a process manager such as
systemd to monitor your app. If you’re using Docker, you’d typically use a container
orchestrator such as Kubernetes (https://kubernetes.io) to monitor the health of your
containers.

Figure 16.9 On Linux, it’s common for a reverse proxy to be on a different server to your app. The reverse proxy
forwards incoming requests to your app, while the process manager, for example systemd, monitors your apps
for crashes and restarts it as appropriate.

Running ASP.NET Core applications in Docker
Docker is the most commonly used engine for containerizing your applications. A container is like a small, lightweight
virtual machine, specific to your app. It contains an operating system, your app, and any dependencies for your app.

550

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://kubernetes.io/
https://kubernetes.io

©Manning Publications Co. To comment go to liveBook

This container can then be run on any machine that runs Docker, and your app will run exactly the same, regardless of
the host operating system and what’s installed on it. This makes deployments highly repeatable: you can be confident
that if the container runs on your machine, it will run on the server too.
ASP.NET Core is well-suited to container deployments, but moving to Docker involves a big shift in your deployment
methodology, and may or may not be right for you and your apps. If you’re interested in the possibilities afforded by
Docker and want to learn more, I suggest checking out the following resources:
• Docker in Practice, Second Edition by Ian Miell and Aidan Hobson Sayers (Manning, 2017) provides a vast array of

practical techniques to help you get the most out of Docker (https://livebook.manning.com/book/docker-in-
practice-second-edition/).

• Even if you’re not deploying to Linux, you can use Docker with Docker for Windows. Check out the free e-book,
Introduction to Windows Containers by John McCabe and Michael Friis (Microsoft Press, 2017) from
https://aka.ms/containersebook.

• You can find a lot of details on building and running your ASP.NET Core applications on Docker in the .NET
documentation at https://docs.microsoft.com/aspnet/core/host-and-deploy/docker.

• Steve Gordon has an excellent blog post series on Docker for ASP.NET Core developers at
https://www.stevejgordon.co.uk/docker-dotnet-developers.

Configuring these systems is a laborious task that makes for dry reading, so I won’t detail
them here. Instead, I recommend checking out the ASP.NET Core docs. They have a guide for
NGINX and systemd (https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx),
and a guide for configuring Apache with systemd
(https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-apache).

Both guides cover the basic configuration of the respective reverse proxy and systemd
supervisor, but more importantly, they also show how to configure them securely. The reverse
proxy sits between your app and the unfettered internet, so it’s important to get it right!

Configuring the reverse proxy and the process manager is typically the most complex part
of deploying to Linux, and isn’t specific to .NET development: the same would be true if you
were deploying a Node.js web app. But you need to consider a few things inside your
application when you’re going to be deploying to Linux, as you’ll see in the next section.

16.3.2 Preparing your app for deployment to Linux

Generally speaking, your app doesn’t care which reverse proxy it sits behind, whether it’s
NGINX, Apache, or IIS—your app receives requests and responds to them without the reverse
proxy affecting things. Just as when you’re hosting behind IIS, you need to add
UseIISIntegration(); when you’re hosting on Linux, you need to add a similar extension
method to your app setup.

When a request arrives at the reverse proxy, it contains some information that is lost after
the request is forwarded to your app. For example, the IP address of the client/browser
connecting to your app: once the request is forwarded from the reverse proxy, the IP address
is that of the reverse proxy, not the browser. Also, if the reverse proxy is used for SSL
offloading (see chapter 18) then a request that was originally made using HTTPS may arrive at
your app as an HTTP request.

551

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/book/docker-in-practice-second-edition/
https://livebook.manning.com/book/docker-in-practice-second-edition/
https://aka.ms/containersebook
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker
https://www.stevejgordon.co.uk/docker-dotnet-developers
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-apache
https://aka.ms/containersebook

©Manning Publications Co. To comment go to liveBook

The standard solution to these issues is for the reverse proxy to add additional headers
before forwarding requests to your app. For example, the X-Forwarded-For header identifies
the original client’s IP address, while the X-Forwarded-Proto header indicates the original
scheme of the request (http or https).

For your app to behave correctly, it needs to look for these headers in incoming requests
and modify the request as appropriate. A request to http://localhost with the X-Forwarded-
Proto header set to https should be treated the same as if the request was to
https://localhost.

You can use ForwardedHeadersMiddleware in your middleware pipeline to achieve this.
This middleware overrides Request.Scheme and other properties on HttpContext to
correspond to the forwarded headers. If you’re using the default
Host.CreateDefaultBuilder() method in Program.cs, then this is partially handled for you—
the middleware is automatically added to the pipeline in a disabled state. To enable it, set the
environment variable ASPNETCORE_FORWARDEDHEADERS_ENABLED=true.

If you’re using your own HostBuilder instance, instead of the default builder, you can add
the middleware to the start of your middleware pipeline manually, as shown in listing 16.2,
and configure it with the headers to look for.

WARNING It’s important that ForwardedHeadersMiddleware is placed early in the middleware

pipeline to correct Request.Scheme before any middleware that depends on the scheme runs.

Listing 16.2 Configuring an app to use forwarded headers in Startup.cs

public class Startup
{
 public class Configure(IApplicationBuilder app)
 {
 app.UseForwardedHeaders(new ForwardedHeadersOptions #A
 {
 ForwardedHeaders = ForwardedHeaders.XForwardedFor | #B
 ForwardedHeaders.XForwardedProto #B
 });

 app.UseHttpsRedirection(); #C
 app.UseRouting(); #C

 app.UseAuthentication(); #C
 app.UseMvc(); #C
 }
}

#A Adds ForwardedHeadersMiddleware early in your pipeline
#B Configures the headers the middleware should look for and use
#C The forwarded headers middleware must be placed before all other middleware.

NOTE This behavior isn’t specific to reverse proxies on Linux; the UseIis() extension adds

ForwardedHeadersMiddleware under the hood as part of its configuration when your app is running

behind IIS.

552

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://localhost
https://localhost

©Manning Publications Co. To comment go to liveBook

Aside from considering the forwarded headers, you need to consider a few minor things when
deploying your app to Linux that may trip you up if you’re used to deploying to Windows
alone:

• Line endings (LF on Linux versus CRLF on Windows). Windows and Linux use different
character codes in text to indicate the end of a line. This isn’t often an issue for
ASP.NET Core apps, but if you’re writing text files on one platform and reading them on
a different platform, then it’s something to bear in mind.

• Path directory separator ("\" on Windows, "/" on Linux). This is one of the most
common bugs I see when Windows developers move to Linux. Each platform uses a
different separator in file paths, so while loading a file using the
"subdir\myfile.json" path will work fine on Windows, it won’t on Linux. Instead, you
should use Path.Combine to create the appropriate separator for the current platform,
for example Path.Combine("subdir", "myfile.json").

• Environment variables can’t contain ":". On some Linux distributions, the colon
character, ":", isn’t allowed in environment variables. As you saw in chapter 11, this
character is typically used to denote different sections in ASP.NET Core configuration,
so you often need to use it in environment variables. Instead, you can use a double
underscore in your environment variables ("__") and ASP.NET Core will treat it the
same as if you’d used a colon.

As long as you set up ForwardedHeadersMiddleware and take care to use cross-platform
constructs like Path.Combine, you shouldn’t have any problems running your applications on
Linux. But configuring a reverse proxy isn’t the simplest of activities, so wherever you’re
planning on hosting your app, I suggest checking the documentation for guidance at
https://docs.microsoft.com/aspnet/core/publishing.

16.4 Configuring the URLs for your application
At this point, you’ve deployed an application, but there’s one aspect you haven’t configured:
the URLs for your application. When you’re using IIS as a reverse proxy, you don’t have to
worry about this inside your app. IIS integration with the ASP.NET Core Module works by
dynamically creating a URL that’s used to forward requests between IIS and your app. The
hostname you configure in IIS (in figure 16.6) is the URL that external users see for your app;
the internal URL that IIS uses when forwarding requests is never exposed.

If you’re not using IIS as a reverse proxy, maybe you’re using NGINX or exposing your app
directly to the internet, you may find you need to configure the URLs your application listens
to directly.

By default, ASP.NET Core will listen for requests on the URL http://localhost:5000. There
are lots of ways to set this URL, but in this section I’ll describe two: using environment
variables or using command line arguments. These are the two most common approaches I
see (outside of IIS) to control which URLs your app uses.

553

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/publishing
http://localhost:5000

©Manning Publications Co. To comment go to liveBook

TIP For further ways to set your application’s URL, see https://andrewlock.net/5-ways-to-set-the-urls-for-an-

aspnetcore-app/.

In chapter 10, you learned about configuration in ASP.NET Core, and in particular about the
concept of hosting environments so that you can use different settings when running in
development compared to production. You choose the hosting environment by setting an
environment variable on your machine called ASPNETCORE_ENVIRONMENT. The ASP.NET Core
framework magically picks up this variable when your app starts and uses it to set the hosting
environment.

You can use a similar special environment variable to specify the URL that your app uses;
this variable is called ASPNETCORE_URLS. When your app starts up, it looks for this value and
uses it as the application’s URL. By changing this value, you can change the default URL used
by all ASP.NET Core apps on the machine.

For example, you could set a temporary environment variable in Windows from the
command window using

set ASPNETCORE_URLS=http://localhost:8000

Running a published application using dotnet <app.dll> within the same command window,
as shown in figure 16.10, shows that the app is now listening on the URL provided in the
ASPNETCORE_URLS variable.

Figure 16.10 Change the ASPNETCORE_URLS environment variable to change the URL used by ASP.NET Core
apps.

You can instruct an app to listen on multiple URLs by separating them with a semicolon, or
you can listen to a specific port, without specifying the localhost hostname. If you set the
ASPNETCORE_URLS environment variable to

http://localhost:5001;http://*:5002

then your ASP.NET Core apps would listen for requests to:

554

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/5-ways-to-set-the-urls-for-an-aspnetcore-app/
https://andrewlock.net/5-ways-to-set-the-urls-for-an-aspnetcore-app/
http://localhost:8000
http://localhost:5001

©Manning Publications Co. To comment go to liveBook

• http://localhost:5001. This address is only accessible on your local computer, so it will
not accept requests from the wider internet.

• http://*:5002. Any URL on port 5002. External request from the internet can access
the app on port 5002, using any URL that maps to your computer.

Note that you can’t specify a different hostname, like tastyrecipes.com for example. ASP.NET
Core will listen to all requests on a given port. The exception is the localhost hostname, which
only allows requests that came from your own computer.

NOTE If you find the ASPNETCORE_URLS variable isn’t working properly, ensure you don’t have a

launchSettings.json file in the directory. When present, the values in this files takes presence. By default,

launchSettings.json isn’t included in the publish output, so this generally won’t be an issue in production.

Setting the URL of an app using a single environment variable works great for some scenarios,
most notably when you’re running a single application in a virtual machine, or within a Docker
container.72

If you’re not using Docker containers, the chances are you’re hosting multiple apps side-
by-side on the same machine. A single environment variable is no good for setting URLs in this
case, as it would change the URL of every app.

In chapter 11 you saw that you could set the hosting environment using the
ASPNETCORE_ENVIRONMENT variable, but you could also set the environment using the --
environment flag when calling dotnet run:

dotnet run --no-launch-profile --environment Staging

You can set the URLs for your application in a similar way, using the --urls parameter. Using
command line arguments enables you to have multiple ASP.NET Core applications running on
the same machine, listening to different ports. For example, the following command would run
the recipe application, set it to listen on port 8081, and set the environment to Staging, as
shown in figure 16.11:

dotnet RecipeApplication.dll --urls "http://*:8081" --environment Staging

72ASP.NET Core is well-suited to running in containers, but working with containers is a separate book in its own right. For details on hosting and publishing

apps using Docker, see https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/.

555

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/
http://localhost:5001

©Manning Publications Co. To comment go to liveBook

Figure 16.11 Setting the hosting environment and URLs for an application using command line arguments. The
values passed at the command line override values provided from appSettings.json or environment variables.

Remember, you don’t need to set your URLs in this way if you’re using IIS as a reverse
proxy; IIS integration handles this for you. Setting the URLs is only necessary when you’re
manually configuring the URL your app is listening on, for example if you’re using NGINX or
are exposing Kestrel directly to clients.

WARNING If running your ASP.NET Core application without a reverse proxy, you should use host filtering

for security reasons, to ensure your app only responds to requests for hostnames you expect. For more details,

see https://andrewlock.net/adding-host-filtering-to-kestrel-in-aspnetcore/.

Continuing the theme of deployment-related tasks, in the next section, we take a look at
optimizing some of your client-side assets for production. If you’re building a Web API, then
this isn’t something you’ll have to worry about in your ASP.NET Core app, but for traditional
web apps it’s worth considering.

16.5 Optimizing your client-side assets using BundlerMinifier
In this section, we’ll explore the performance of your ASP.NET Core application in terms of the
number and size of requests. You’ll see how to improve the performance of your app using
bundling and minification, but ensuring your app is still easy to debug while you’re building it.
Finally, we’ll look at a common technique for improving app performance in production: using
a content delivery network (CDN).

Have you ever used a web app or opened a web page that seemed to take forever to load?
Once you stray off the beaten track of Amazon, Google, or Microsoft, it’s only a matter of time
before you’re stuck twiddling your thumbs while the web page slowly pops into place.

Next time this happens to you, open the browser developer tools (for example, press F12
in Edge or Chrome) and take a look at the number, and size, of the requests the web app is
making. In many cases, a high number of requests generating large responses will be
responsible for the slow loading of a web page.

We’ll start by exploring the problem of performance by looking at a single page from your
recipe application: the login page. This is a simple page, and it isn’t inherently slow, but even
this is sufficient to investigate the impact of request size.

556

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/adding-host-filtering-to-kestrel-in-aspnetcore/

©Manning Publications Co. To comment go to liveBook

As a user, when you click the login button, the browser sends a request to
/Identity/Account/Login. Your ASP.NET Core app executes the Login.cshtml Razor Page in
the default UI, which executes a Razor template and returns the generated HTML in the
response, as shown in figure 16.12. That’s a single request-response; a single round-trip.

Figure 16.12 Loading a complete page for your app. The initial request returns the HTML for the page, but this
may include links to other resources, such as CSS and JavaScript files. The browser must make additional
requests to your app for all the outstanding resources before the page can be fully loaded.

But that’s not it for the web page. The HTML returned by the page includes links to CSS files
(for styling the page), JavaScript files (for client-side functionality—client-side form validation,
in this case), and, potentially, images and other resources (though you don’t have any others
in this recipe app).

The browser must request each of these additional files and wait for the server to return
them before the whole page is loaded. When you’re developing locally, this all happens
quickly, as the request doesn’t have far to go at all, but once you deploy your app to
production, it’s a different matter.

557

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Users will be requesting pages from your app from a wide variety of distances from the
server, and over a wide variety of network speeds. Suddenly, the number and size of the
requests and responses for your app will have a massive impact on the overall perceived
speed of your app. This, in turn, can have a significant impact on how users perceive your site
and, for e-commerce sites, even how much money they spend.73

A great way to explore how your app will behave for non-optimal networks is to use the
network-throttling feature in Chrome’s developer tools. This simulates the delays and network
speeds associated with different types of networks, so you can get an idea of how your app
behaves in the wild. In figure 16.13, I’ve loaded the login page for the recipe app, but this
time with the network set to a modest Fast 3G speed.

NOTE I’ve added additional files to the template, navigation.css and global.js, to make the page more

representative of a real app.

Figure 16.13 Exploring the effect of network speed on application load times. Chrome and Edge let you simulate
a slower network, so you can get an impression of the experience users will get when loading your application
once it’s in production.

Throttling the network doesn’t change anything about the page or the data requested—there
are 10 separate requests and 1MB loaded for this single page—but it dramatically impacts the
time for the page to load. Without throttling, the login page loads locally in 200ms; with Fast
3G throttling, the login page takes 5.47 seconds to load!

73There has been a lot of research done on this, including stats such as “a 0.1-second delay in page load time equals 7% loss in conversions” from

https://www.soasta.com/your-2017-guide-to-retail-performance-success/.

558

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.soasta.com/your-2017-guide-to-retail-performance-success/

©Manning Publications Co. To comment go to liveBook

NOTE Don’t be too alarmed by these numbers. I’m making a point of reloading all the files with every request

to emphasize the point, whereas in practice, browsers go to great lengths to cache files to avoid having to send

this amount of data.

The time it takes to fully load a page of your app is based primarily on two things:

• The total size of the responses—This is straight-up math; you can only return data at a
certain speed, so the more data you need to return, the longer it takes.

• The number of requests—In general, the more requests the browser must make, the
longer it takes to fully load the page. In HTTP/1.0 and HTTP/1.1, you can only make six
concurrent requests to a server, so any requests after the sixth must wait for an earlier
request to finish before they can even start. HTTP/2.0, which is supported by Kestrel,
doesn’t have this limit, but you can’t always rely on clients using it.

How can you improve your app speed, assuming all the files you’re serving are needed? In
general, this is a big topic, with lots of possibilities, such as using a CDN to serve your static
files. Two of the simplest ways to improve your site’s performance are to use bundling and
minification to reduce the number and size of requests the browser must make to load your
app.

16.5.1 Speeding up an app using bundling and minification

In figure 16.13 for the recipe app, you made a total of 10 requests to the server:

• One initial request for the HTML
• Three requests for CSS files
• Six requests for JavaScript files

Some of the CSS and JavaScript files are standard vendor libraries, like Bootstrap and jQuery,
that are included as part of the default Razor templates, and some (navigation.css, site.css,
global.js, and site.js) are files specific to your app. In this section, we’re going to look at
optimizing your custom CSS and JavaScript files.

If you’re trying to reduce the number of requests for your app, then an obvious first
thought is to avoid creating multiple files in the first place! For example, instead of creating a
navigation.css file and a site.css file, you could use a single file that contains all the CSS,
instead of separating it out.

That’s a valid solution but putting all your code into one file may make it harder to manage
and debug. As developers, we generally try to avoid this sort of monster file. A better solution
is to let you split your code into as many files as you want, and then bundle the files when you
come to deploy your code.

DEFINITION Bundling is the process of concatenating multiple files into a single file, to reduce the number

of requests.

559

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Similarly, when you write JavaScript, you should use descriptive variables names, comments
where necessary, and whitespace to create easily readable and debuggable code. When you
come to deploy your scripts, you can process and optimize them for size, instead of
readability. This process is called minification.

DEFINITION Minification involves processing code to reduce its size, without changing the behavior of the

code. Processing has many different levels, which typically includes removing comments and whitespace, and

can extend to renaming variables to give them shorter names or removing whole sections of code entirely if

they’re unused.

As an example, look at the JavaScript in the following listing. This (very contrived) function
adds up some numbers and returns them. It includes (excessively) descriptive variable names,
comments, and plenty of use of whitespace, but is representative of the JavaScript you might
find in your own app.

Listing 16.3 Example JavaScript function before minification

function myFunc() {
 // this function doesn't really do anything,
 // it's just here so that we can show off minifying!
 function innerFunctionToAddTwoNumbers(
 thefirstnumber, theSecondNumber) {
 // i'm nested inside myFunc
 return thefirstnumber + theSecondNumber;
 }
 var shouldAddNumbers = true;
 var totalOfAllTheNumbers = 0;

 if (shouldAddNumbers == true) {
 for (var index = 0; i < 10; i++) {
 totalOfAllTheNumbers =
 innerFunctionToAddTwoNumbers(totalOfAllTheNumbers, index);
 }
 }
 return totalOfAllTheNumbers;
}

This function takes a total of 588 bytes as it’s currently written, but after minification, that’s
reduced to 95 bytes—16% of its original size. The behavior of the code is identical, but the
output, shown in the following listing, is optimized to reduce its size. It’s clearly not something
you’d want to debug, but you’d only use minified versions of your file in production; you’d use
the original source files when developing.

Listing 16.4 Example JavaScript function after minification

function myFunc(){function r(n,t){return n+t}var
n=0,t;if(1)for(t=0;i<10;i++)n=r(n,t);return n}

560

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Optimizing your static files using bundling and minification can provide a free boost to your
app’s performance when you deploy your app to production, while letting you develop using
easy-to-read and separated files.

Figure 16.14 shows the impact of bundling and minifying the files for the login page of
your recipe app. Each of the vendor files has been minified to reduce its size, and your custom
assets have been bundled and minified to reduce both their size and the number of requests.
This reduced the number of requests from 10 to 8, the total amount of data from 580 KB to
270 KB, and the load time from 6.45 s to 3.15 s.

Figure 16.14 By bundling and minifying your client-side resources, you can reduce both the number of requests
required and the total data to transfer, which can significantly improve performance. In this example, bundling
and minification cut the time to fully load in half.

NOTE The vendor assets, such as jQuery and Bootstrap, aren’t bundled with your custom scripts in figure

16.16. This lets you load those files from a CDN, as I’ll touch on in section 16.5.4.

This performance improvement can be achieved with little effort on your part, and no impact
on your development process. In the next section, I’ll show how you can include bundling and
minification as part of your ASP.NET Core build process, and how to customize the bundling
and minification processes for your app.

16.5.2 Adding BundlerMinifier to your application

Bundling and minification isn’t a new idea, so you have many ways to achieve the same result.
The previous version of ASP.NET performed bundling and minification in managed code,
whereas JavaScript task runners such as gulp, grunt, and webpack are commonly used for
these sorts of tasks. In fact, if you’re writing a SPA, then you’re almost certainly already
performing bundling and minification as a matter of course.

561

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

ASP.NET Core includes support for bundling and minification via a NuGet package called
BuildBundlerMinifier or a Visual Studio extension version called Bundler & Minifier. You don’t
have to use either of these, and if you’re already using other tools such as gulp or webpack,
then I suggest you continue to use them instead. But if you’re getting started with a new
project, then I suggest considering BundlerMinifier; you can always switch to a different tool
later.

You have two options for adding BundlerMinifier to your project:

• You can install the Bundler & Minifier Visual Studio extension from Tools > Extensions
and Updates.

• You can add the BuildBundlerMinifier NuGet package to your project.

Whichever approach you use, they both use the same underlying BundlerMinifier library.74 I
prefer to use the NuGet package approach as it’s cross-platform and will automatically bundle
your resources for you, but the extension is useful for performing ad-hoc bundling. If you do
use the Visual Studio extension, make sure to enable Bundle on build, as you’ll see shortly.

You can install the BuildBundlerMinifier NuGet package in your project with this command:

dotnet add package BuildBundlerMinifier

With the BuildBundlerMinifier package installed, whenever you build your project the
BundlerMinifier will check your CSS and JavaScript files for changes. If something has
changed, new bundled and minified files are created, as shown in figure 16.15, where I
modified a JavaScript file.

Figure 16.15 Whenever the project is built, the BuildBundlerMinifier tool looks for changes in the input files and
builds new bundles as necessary.

74The library and extension are open source on GitHub https://github.com/madskristensen/BundlerMinifier/.

562

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/madskristensen/BundlerMinifier/

©Manning Publications Co. To comment go to liveBook

As you can see in figure 16.15, the bundler minified your JavaScript code and created a new
file at wwwroot/js/site.min.js. But why did it pick this name? Well, because you told it to in
bundleconfig.json. You add this JSON file to the root folder of your project, and it controls the
BundlerMinifier process.

Listing 16.5 shows a typical bundleconfig.json configuration for a small app. This defines
which files to include in each bundle, where to write each bundle, and what minification
options to use. Two bundles are configured here: one for CSS and one for JavaScript. You can
add bundles to the JSON array, or you can customize the existing provided bundles.

Listing 16.5 A typical bundleconfig.json file

[
 {
 "outputFileName": "wwwroot/css/site.min.css", #A
 "inputFiles": [#B
 "wwwroot/css/site.css" #B
 "wwwroot/css/navigation.css" #B
] #B
 },
 {
 "outputFileName": "wwwroot/js/site.min.js", #C
 "inputFiles": [#D
 "wwwroot/js/site.js"
 "wwwroot/js/*.js", #E
 "!wwwroot/js/site.min.js" #F
],
 "minify": { #G
 "enabled": true, #G
 "renameLocals": true #G
 },
 "sourceMap": false #H
 }
]

#A The bundler will create a file with this name.
#B The files listed in inputFiles are minified and concatenated into outputFileName.
#C You can specify multiple bundles, each with an output filename.
#D You should create separate bundles for CSS and JavaScript.
#E You can use globbing patterns to specify files to include.
#F The ! symbol excludes the matching file from the bundle.
#G The JavaScript bundler has some additional options.
#H You can optionally create a source map for the bundled JavaScript file.

For each bundle you can list a specific set of files to include, as specified in the inputFiles
property. If you add a new CSS or JavaScript file to your project, you have to remember to
come back to bundleconfig.json and add it to the list.

Alternatively, you can use globbing patterns to automatically include new files by default.
This isn’t always possible, for example when you need to ensure that files are concatenated in
a given order, but I find it preferable in many cases. The example in the previous listing uses
globbing for the JavaScript bundle: the pattern includes all .js files in the wwwroot/js folder
but excludes the minified output file itself.

563

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

DEFINITION Globbing patterns use wildcards to represent many different characters. For example, *.css

would match all files with a .css extension, whatever the filename.

When you build your project, the BundlerMinifier optimizes your css files into a single
wwwroot/css/site.min.css file, and your JavaScript into a single wwwroot/js/ site.min.js file,
based on the settings in bundleconfig.json. In the next section, we’ll look at how to include
these files when you run in production, continuing to use the original files when developing
locally.

NOTE The BundlerMinifier package is great for optimizing your CSS and JavaScript resources. But images are

another important resource to consider for optimization and can easily constitute the bulk of your page’s size.

Unfortunately, there aren’t any built-in tools for this, so you’ll need to look at other options;

https://tinypng.com is one.

16.5.3 Using minified files in production with the environment tag helper

Optimizing files using bundling and minification is great for performance, but you want to use
the original files during development. The easiest way to achieve this split in ASP.NET Core is
to use the Environment Tag Helper to conditionally include the original files when running in
the Development hosting environment, and to use the optimized files in other environments.

You learned about the Environment Tag Helper in chapter 8, in which we used it to show a
banner on the homepage when the app was running in the Testing environment. Listing 16.6
shows how you can achieve a similar approach in the _Layout .cshtml page for the CSS files of
your Recipe app by using two Environment Tag Helpers: one for when you’re in Development,
and one for when you aren’t in Development (you’re in Production or Staging, for example).
You can use similar Tag Helpers for the JavaScript files in the app.

Listing 16.6 Using Environment Tag Helpers to conditionally render optimized files

<environment include="Development"> #A
 <link rel="stylesheet" #B
 href="~/lib/bootstrap/dist/css/bootstrap.css" /> #B
 <link rel="stylesheet" href="~/css/navigation.css" /> #C
 <link rel="stylesheet" href="~/css/site.css" /> #C
</environment>
<environment exclude="Development"> #D
 <link rel="stylesheet" #E
 href="~/lib/bootstrap/dist/css/bootstrap.min.css" /> #E
 <link rel="stylesheet" href="~/css/site.min.css" /> #F
</environment>

#A Only render these links when running in Development environment.
#B The development version of Bootstrap
#C The development version of your styles
#D Only render these links when not in Development, such as in Staging or Production.
#E The minified version of Bootstrap
#F The bundled and minified version of your styles

564

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://tinypng.com/
https://tinypng.com

©Manning Publications Co. To comment go to liveBook

When the app detects it isn’t running in the Development hosting environment (as you learned
in chapter 11), it will switch to rendering links for the optimized files. This gives you the best
of both worlds: performance in production and ease of development.

The example in listing 16.6 also included a minified version of Bootstrap, even though you
didn’t configure this as part of the BundlerMinifier. It’s common for CSS and JavaScript
libraries like Bootstrap to include a pre-minified version of the file for you to use in Production.
For those that do, it’s often better to exclude them from your bundling process, as this allows
you to potentially serve the file from a public CDN.

16.5.4 Serving common files from a CDN

A public CDN is a website that hosts commonly used files, such as Bootstrap or jQuery, which
you can reference from your own apps. They have several advantages:

• They’re normally fast.
• They save your server having to serve the file, saving bandwidth.
• Because the file is served from a different server, it doesn’t count toward the six

concurrent requests allowed to your server in HTTP/1.0 and HTTP/1.1.75
• Many different apps can reference the same file, so a user visiting your app may have

already cached the file by visiting a different website, and may not need to download it
at all.

It’s easy to use a CDN in principle: reference the CDN file instead of the file on your own
server. Unfortunately, you need to cater for the fact that, like any server, CDNs can
sometimes fail. If you don’t have a fallback mechanism to load the file from a different
location, such as your server, then this can result in your app looking broken.

Luckily, ASP.NET Core includes several tag helpers to make working with CDNs and
fallbacks easier. Listing 16.7 shows how you could update your CSS Environment Tag Helper
to serve Bootstrap from a CDN when running in production, and to include a fallback. The
fallback test creates a temporary HTML element and applies a Bootstrap style to it. If the
element has the expected CSS properties, then the fallback test passes, because Bootstrap
must be loaded. If it doesn’t have the required properties, Bootstrap will be loaded from the
alternative, local link instead.

Listing 16.7 Serving Bootstrap CSS styles from a CDN with a local fallback

<environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/navigation.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>

75 This limit is not fixed in stone but modern browsers all use the same limit:

https://docs.pushtechnology.com/cloud/latest/manual/html/designguide/solution/support/connection_limitations.html

565

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.pushtechnology.com/cloud/latest/manual/html/designguide/solution/support/connection_limitations.html

©Manning Publications Co. To comment go to liveBook

<environment exclude="Development">
 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/ #A
[CA] bootstrap/4.3.1/css/bootstrap.min.css" #A
 asp-fallback-test-class="sr-only" #B
 asp-fallback-test-property="position" #C
 asp-fallback-test-value="absolute" #C
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css" /> #D

 <link rel="stylesheet" href="~/css/site.min.css" />
</environment>

#A By default, Bootstrap is loaded from a CDN.
#B The fallback test applies the sr-only class to an element …
#C … and checks the element has a CSS position of absolute. This indicates Bootstrap was loaded.
#D If the fallback check fails, the CDN must have failed, so Bootstrap is loaded from the local link.

Optimizing your static files is an important step to consider before you put your app into
production, as it can have a significant impact on performance. Luckily, the
BuildBundlerMinifier package makes it easy to optimize your CSS and JavaScript files. If you
couple that with serving common files from a CDN, your app will be as speedy as possible for
users in production.

That brings us to the end of this chapter on publishing your app. This last mile of app
development, deploying an application to a server where users can access it, is a notoriously
thorny issue. Publishing an ASP.NET Core application is easy enough, but the multitude of
hosting options available makes providing concise steps for every situation difficult.

Whichever hosting option you choose, there’s one critical topic which is often overlooked,
but is crucial for resolving issues quickly: logging. In the next chapter, you’ll learn about the
logging abstractions in ASP.NET Core, and how you can use them to keep tabs on your app
once it’s in production.

16.6 Summary
• ASP.NET Core apps are console applications that self-host a web server. In production,

you typically use a reverse proxy which handles the initial request and passes it to your
app. Reverse proxies can provide additional security, operations, and performance
benefits, but can also add complexity to your deployments.

• .NET Core has two parts: the .NET Core SDK (also known as the .NET CLI) and the
.NET Core Runtime. When you’re developing an application, you use the .NET CLI to
restore, build, and run your application. Visual Studio uses the same .NET CLI
commands from the IDE.

• When you want to deploy your app to production, you need to publish your application,
using dotnet publish. This creates a folder containing your application as a DLL, along
with all its dependencies.

• To run a published application, you don’t need the .NET CLI as you won’t be building
the app. You only need the .NET Core Runtime to run a published app. You can run a

566

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://stackpath.bootstrapcdn.com/#A
https://stackpath.bootstrapcdn.com/#A
https://stackpath.bootstrapcdn.com/#A

©Manning Publications Co. To comment go to liveBook

published application using the dotnet app.dll command, where app.dll is the
application dll created by the dotnet publish command.

• To host ASP.NET Core applications in IIS, you must install the ASP.NET Core Module.
This allows IIS to act as a reverse proxy for your ASP.NET Core app.

• IIS can host ASP.NET Core applications using one of two modes: in-process and out-of-
process. The out-of-process mode runs your application as a separate process, as is
typical for most reverse proxies. The in-process mode runs your application as part of
the IIS process. This has performance benefits, as no inter-process communication is
required.

• To prepare your application for publishing to IIS with ASP.NET Core, ensure you call
UseIISIntegration() and UseIIS() on WebHostBuilder. The
ConfigureWebHostDefaults static helper method does this automatically.

• When you publish your application using the .NET CLI, a web.config file will be added to
the output folder. It’s important that this file is deployed with your application when
publishing to IIS, as it defines how your application should be run.

• The URL that your app will listen on is specified by default using the environment
variable ASPNETCORE_URLS. Setting this value will change the URL for all the apps on
your machine. Alternatively, pass the --urls command line argument when running
your app, for example dotnet app.dll --urls http://localhost:80.

• It’s important to optimize your client-side assets to reduce the size and number of files
that must be downloaded by a client’s web browser when a page loads. You can
achieve this by bundling and minifying your assets.

• You can use the BuildBundlerMinifier package to combine multiple JavaScript or CSS
files together in a process called bundling. You can reduce the size of the files in a
process called minification, in which unnecessary whitespace is removed and variables
are renamed while preserving the function of the file.

• You can install a Visual Studio extension to control bundling and minification, or you
can install the BuildBundlerMinifier package to automatically perform bundling and
minification on each build of the project. Using the extension allows you to minify on an
ad-hoc basis, but using the NuGet package allows you to automate the process.

• The settings for bundling and minification are stored in the bundleconfig.json file,
where you can define the different output bundle files and choose which files to include
in the bundle. You can explicitly specify files, or you can use globbing patterns to
include multiple files using wildcard characters. Globbing is typically easier and less
error prone, but you will need to specify files explicitly if they must be bundled in a
specific order.

• Use the Environment Tag Helper to conditionally render your bundles in production
only. This lets you optimize for performance in production and readability in
development.

567

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://localhost:80

©Manning Publications Co. To comment go to liveBook

• For common files shared by multiple apps, such as jQuery or Bootstrap, you can serve
files from a CDN. These are websites that host the common files, so your app doesn’t
need to serve them itself.

• Use Link and Script Tag Helpers to check that the file has loaded correctly from the
CDN. These can test that a file has been downloaded by a client and ensures that your
server is used as a fallback should the CDN fail.

568

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Part 3
Extending your applications

We covered a huge amount of content in parts 1 and 2: we looked at all the main functional
components you’ll use to build both traditional server-rendered Razor Pages apps, as well as
Web APIs. In part 3, we look at six different topics that build on what you’ve learned so far:
logging, security, custom components, interacting with third-party HTTP APIs, background
services, and testing.

Adding logging to your application is one of those activities that’s often left until after you
discover a problem in production. Adding sensible logging from the get-go will help you quickly
diagnose and fix errors as they arise. Chapter 17 introduces the logging framework built in to
ASP.NET Core. You’ll see how you can use it to write log messages to a wide variety of
locations, whether it’s the console, a file, or a third-party remote-logging service.

Correctly securing your app is an important part of web development these days. Even if
you don’t feel you have any sensitive data in your application, you have to make sure you
protect your users from attacks by adhering to security best practices. In chapter 18, I
describe some common vulnerabilities, how attackers can exploit them, and what you can do
to protect your applications.

In part 1, you learned about the middleware pipeline, and how it is fundamental to all
ASP.NET Core applications. In chapter 19 you’ll learn how to create your own custom
middleware, as well as simple endpoints, for when you don’t need the full power of Razor
Pages or a Web API controller. You’ll also learn how to handle some complex chicken-and-egg
configuration issues that often arise in real-life applications. Finally, you’ll learn how to replace
the built-in dependency injection container with a third-party alternative.

In chapter 20 you’ll learn how to create custom components for working with Razor Pages
and API controllers. You’ll learn how to create custom Tag Helpers and validation attributes,
and I introduce a new component—view components—for encapsulating logic with Razor view
rendering. You’ll also learn how to replace the attribute-based validation framework used by
default in ASP.NET Core with an alternative.

569

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Most apps you build aren’t designed to stand on their own. It’s very common for your app
to need to interact with third-party APIs, whether that’s APIs for sending emails, fetching
exchange rates, or taking payments. In chapter 21 you’ll learn how to interact with third-party
APIs using the IHttpClientFactory abstraction to simplify configuration, to add transient
fault handling, and to avoid common pitfalls.

This book deals primarily with serving HTTP traffic, both server-rendered web pages using
Razor Pages, and Web APIs commonly used by mobile and single-page applications. However,
many apps require long-running background tasks that execute jobs on a schedule or process
items from a queue. In chapter 22 I show how you can create these long background tasks in
your ASP.NET Core applications. I also show how to create standalone services that only have
background tasks, without any HTTP handling, and how to install them as a Windows Service
or as a Linux systemd daemon.

Chapter 23, the final chapter, covers testing your application. The exact role of testing in
application development can sometimes lead to philosophical arguments, but in chapter 23, I
stick to the practicalities of testing your app using the xUnit test framework. You’ll see how to
create unit tests for your apps, how to test code that’s dependent on EF Core using an in-
memory database provider, and how to write integration tests that can test multiple aspects of
your application at once.

570

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

17
Monitoring and troubleshooting

errors with logging

This chapter covers

• Understanding the components of a log message
• Writing logs to multiple output locations
• Controlling log verbosity in different environments using filtering
• Using structured logging to make logs searchable

Logging is one of those topics that seems unnecessary, right up until the point when you
desperately need it! There’s nothing more frustrating than finding an issue that you can only
reproduce in production, and then discovering there are no logs to help you debug it.

Logging is the process of recording events or activities in an app and often involves writing
a record to a console, a file, the Windows Event Log, or some other system. You can record
anything in a log message, though there are generally two different types of message:

• Informational messages—A standard event occurred: a user logged in, a product was
placed in a shopping cart, or a new post was created on a blogging app.

• Warnings and errors—An error or unexpected condition occurred: a user had a negative
total in the shopping cart, or an exception occurred.

Historically, a common problem with logging in larger applications was that each library and
framework would generate logs in a slightly different format, if at all. When an error occurred
in your app and you were trying to diagnose it, this inconsistency made it harder to connect
the dots in your app to get the full picture and understand the problem.

Luckily, ASP.NET Core includes a new, generic logging interface that you can plug into. It’s
used throughout the ASP.NET Core framework code itself, as well as by third-party libraries,

571

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

and you can easily use it to create logs in your own code. With the ASP.NET Core logging
framework, you can control the verbosity of logs coming from each part of your code,
including the framework and libraries, and you can write the log output to any destination that
plugs into the framework.

In this chapter, I cover the ASP.NET Core logging framework in detail and explain how you
can use it to record events and diagnose errors in your own apps. In section 17.1, I describe
the architecture of the logging framework. You’ll learn how DI makes it easy for both libraries
and apps to create log messages, as well as to write those logs to multiple destinations.

In section 17.2, you’ll learn how to write your own log messages in your apps with the
ILogger interface. We’ll break down the anatomy of a typical log record and look at its
properties, such as the log level, category, and message.

Writing logs is only useful if you can read them, so in section 17.3, you’ll learn how to add
logging providers to your application. Logging providers control where your app writes your
log messages. This could be to the console, to a file, or even an external service. I’ll show you
how to add a logging provider that writes logs to a file, and how to configure a popular third-
party logging provider called Serilog in your app.

Logging is an important part of any application, but determining how much logging is
enough can be a tricky question. On the one hand, you want to provide sufficient information
to be able to diagnose any problems. On the other, you don’t want to fill your logs with data
that makes it hard to find the important information when you need it. Even worse, what is
sufficient in development might be far too much once you’re running in production.

In section 17.4, I explain how you can filter log messages from various sections of your
app, such as the ASP.NET Core infrastructure libraries, so that your logging providers only
write the important messages. This lets you keep that balance between extensive logging in
development and only writing important logs in production.

In the final section of this chapter, I touch on some of the benefits of structured logging,
an approach to logging that you can use with some providers for the ASP.NET Core logging
framework. Structured logging involves attaching data to log messages as key-value pairs to
make logs more easily searched and queried. You might attach a unique customer ID to every
log message generated by your app, for example. Finding all the log messages associated with
a user is much simpler with this approach, compared to recording the customer ID in an
inconsistent manner as part of the log message.

We’ll start this chapter by digging into what logging involves, and why your future self will
thank you for using logging effectively in your application. Then we’ll look at the pieces of the
ASP.NET Core logging framework you’ll use directly in your apps, and how they fit together.

17.1 Using logging effectively in a production app
In this section I discuss the concept of logging at a high level. You’ll see why writing custom
log messages can help you diagnose problems in production applications and get a taste for
the logging built into the ASP.NET Core framework libraries. Finally, you’ll learn about the
logging abstractions built into .NET Core that you can use in your own applications.

572

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Imagine you’ve just deployed a new app to production, when a customer calls saying that
they’re getting an error message using your app.

How would you identify what caused the problem? You could ask the customer what steps
they were taking, and potentially try to recreate the error yourself, but if that doesn’t work
then you’re left trawling through the code, trying to spot errors with nothing else to go on.

Logging can provide the extra context you need to quickly diagnose a problem. Arguably,
the most important logs capture the details about the error itself, but the events that led to
the error can be just as useful in diagnosing the cause of an error.

There are many reasons for adding logging to an application, but typically, the reasons fall
into one of two categories:

• Logging for auditing or analytics reasons, to trace when events have occurred
• Logging errors, or to provide a breadcrumb trail of events when an error does occur

The first of these reasons is simple. You may be required to keep a record of every time a user
logs in, for example, or you may want to keep track of how many times a particular API
method is called. Logging is an easy way to record the behavior of your app, by writing a
message to the log every time an interesting event occurs.

I find the second reason for logging to be the most common. When an app is working
perfectly, logs often go completely untouched. It’s when there’s an issue and a customer
comes calling that logs become invaluable. A good set of logs can help you understand the
conditions in your app that caused an error, including the context of the error itself, but also
the context in previous requests.

TIP Even with extensive logging in place, you may not realize you have an issue in your app unless you look

through your logs regularly! For any medium to large app this becomes impractical, so monitoring services

such as https://raygun.io or https://sentry.io can be invaluable for notifying you of issues quickly.

If this sounds like a lot of work, then you’re in luck. ASP.NET Core does a ton of the
“breadcrumb” logging for you so that you can focus on creating high-quality log messages that
provide the most value when diagnosing problems.

17.1.1 Highlighting problems using custom log messages

ASP.NET Core uses logging throughout its libraries. Depending on how you configure your app,
you’ll have access to the details of each request and EF Core query, even without adding
additional logging messages to your own code. In figure 17.1 you can see the log messages
created when you view a single recipe in the recipe application.

573

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://raygun.io/
https://sentry.io/

©Manning Publications Co. To comment go to liveBook

Figure 17.1 The ASP.NET Core Framework libraries use logging throughout. A single request generates multiple
log messages that describe the flow of the request through your application.

This gives you a lot of useful information. You can see which URL was requested, the Razor
Page and page handler that was invoked, the EF Core database command, the action result
invoked, and the response. This information can be invaluable when trying to isolate a
problem, whether a bug in a production app or a feature in development when you’re working
locally.

This infrastructure logging can be useful, but log messages that you create yourself can
have even greater value. For example, you may be able to spot the cause of the error from
the log messages in figure 17.1—we're attempting to view a recipe with an unknown RecipeId
of 5, but it’s far from obvious. If you explicitly add a log message to your app when this
happens, as in figure 17.2, then the problem is much more apparent.

574

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.2 You can write your own logs. These are often more useful for identifying issues and interesting
events in your apps.

This custom log message easily stands out, and clearly states both the problem (the recipe
with the requested ID doesn’t exist) and the parameters/variables that led to the issue (the ID
value of 5). Adding similar log messages to your own applications will make it easier for you to
diagnose problems, track important events, and generally give you an idea of what your app is
doing.

Hopefully, you’re now motivated to add logging to your apps, so we’ll dig into the details of
what that involves. In section 17.1.2, you’ll see how to create a log message, and how to
define where the log messages are written. We’ll look in detail at these two aspects in section
17.2 and 17.3; for now, we’ll only look at where they fit in terms of the ASP.NET Core logging
framework as a whole.

17.1.2 The ASP.NET Core logging abstractions

The ASP.NET Core logging framework consists of a number of logging abstractions (interfaces,
implementations, and helper classes), the most important of which are shown in figure 17.3:

• ILogger—This is the interface you’ll interact with in your code. It has a Log() method,
which is used to write a log message.

• ILoggerProvider—This is used to create a custom instance of an ILogger, depending
on the provider. A “console” ILoggerProvider would create an ILogger that writes to
the console, whereas a “file” ILoggerProvider would create an ILogger that writes to
a file.

• ILoggerFactory—The glue between the ILoggerProvider instances and the ILogger
you use in your code. You register ILoggerProvider instances with an
ILoggerFactory and call CreateLogger() on the ILoggerFactory when you need an
ILogger. The factory creates an ILogger that wraps each of the providers, so when
you call the Log() method, the log is written to every provider.

575

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.3 The components of the ASP.NET Core logging framework. You register logging providers with an
ILoggerFactory, which are used to create implementations of ILogger. You write logs to the ILogger,
which uses the ILogger implementations to output logs to the console or a file. This design allows you to send
logs to multiple locations, without having to configure those locations when you create a log message.

This design in figure 17.3 makes it easy to add or change where your application writes the
log messages, without having to change your application code. This listing shows all the code
required to add an ILoggerProvider that writes logs to the console.

576

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Listing 17.1 Adding a console log provider to IHost in Program.cs

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 new HostBuilder()
 .ConfigureLogging(builder =>builder.AddConsole()) #A
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

#A Add new providers with the ConfigureLogging extension method on HostBuilder.

NOTE The console logger is added by default in the CreateDefaultBuilder method, as you’ll see in

section 17.3.

Other than this configuration on IHostBuilder, you don’t interact with ILoggerProvider
instances directly. Instead, you write logs using an instance of ILogger, as you’ll see in the
next section.

17.2 Adding log messages to your application
In this section, we’ll look in detail at how to create log messages in your own application.
You’ll learn how to create an instance of ILogger, and how to use it to add logging to an
existing application. Finally, we’ll look at the properties that make up a logging record, what
they mean, and what you can use them for.

Logging, like almost everything in ASP.NET Core, is available through DI. To add logging to
your own services, you only need to inject an instance of ILogger<T>, where T is the type of
your service.

NOTE When you inject ILogger<T>, the DI container indirectly calls

ILoggerFactory.CreateLogger<T>() to create the wrapped ILogger of figure 17.3. In section 17.2.2,

you’ll see how to work directly with ILoggerFactory if you prefer. The ILogger<T> interface also

implements the non-generic ILogger interface but also adds additional convenience methods.

You can use the injected ILogger instance to create log messages, which writes the log to
each configured ILoggerProvider. The following listing shows how to inject an ILogger<>
instance into the PageModel of the Index.cshtml Razor Page for the recipe application from
previous chapters and write a log message indicating how many recipes were found.

Listing 17.2 Injecting ILogger into a class and writing a log message

public class IndexModel : PageModel

577

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

{
 private readonly RecipeService _service;
 private readonly ILogger<IndexModel> _log; #A

 public ICollection<RecipeSummaryViewModel> Recipes { get; set; }

 public IndexModel(
 RecipeService service,
 ILogger<IndexModel> log) #A
 {
 _service = service;
 _log = log; #A
 }

 public void OnGet()
 {
 Recipes = _service.GetRecipes();
 _log.LogInformation(#B
 "Loaded {RecipeCount} recipes", Recipes.Count); #B
 }
}

#A Injects the generic ILogger<T> using DI, which implements ILogger
#B This writes an Information-level log. The RecipeCount variable is substituted in the message.

In this example, you're using one of the many extension methods on ILogger to create the
log message, LogInformation(). There are many extension methods on ILogger that let you
easily specify a LogLevel for the message.

DEFINITION The log level of a log is how important it is and is defined by the LogLevel enum. Every log

message has a log level.

You can also see that the message you pass to the LogInformation method has a placeholder
indicated by braces, {RecipeCount}, and you pass an additional parameter, Recipes.Count,
to the logger. The logger will replace the placeholder with the parameter at runtime.
Placeholders are matched with parameters by position, so if you include two placeholders for
example, the second placeholder is matched with the second parameter.

TIP You could have used normal string interpolation to create the log message, for example, $"Loaded

{Recipes.Count} recipes". But I recommend always using placeholders, as they provide additional

information for the logger that can be used for structured logging, as you’ll see in section 17.5.

When the OnGet page handler in the IndexModel executes, ILogger writes a message to any
configured logging providers. The exact format of the log message will vary from provider to
provider, but figure 17.4 shows how the console provider would display the log message from
listing 17.2.

578

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.4 An example log message, as it's written to the default console provider. The Log Level category
provides information about how important the message is and where it was generated. The EventId provides a
way to identify similar log messages.

The exact presentation of the message will vary depending on where the log is written, but
each log record includes up to six common elements:

• Log level—The log level of the log is how important it is and is defined by the LogLevel
enum.

• Event category—The category may be any string value, but it’s typically set to the
name of the class creating the log. For ILogger<T>, the full name of the type T is the
category.

• Message—This is the content of the log message. It can be a static string, or it can
contain placeholders for variables, as shown in listing 17.2. Placeholders are indicated
by braces, {}, and are substituted with the provided parameter values.

• Parameters—If the message contains placeholders, then they’re associated with the
provided parameters. For the example in listing 17.2, the value of Recipes.Count is
assigned to the placeholder called RecipeCount. Some loggers can extract these values
and expose them in your logs, as you’ll see in section 17.5.

• Exception—If an exception occurs, you can pass the exception object to the logging
function along with the message and other parameters. The logger will log the
exception, in addition to the message itself.

• EventId—This is an optional integer identifier for the error, which can be used to
quickly find all similar logs in a series of log messages. You might use an EventId of
1000 when a user attempts to load a non-existent recipe, and an EventId of 1001 when
a user attempts to access a recipe they don’t have permission to access. If you don’t
provide an EventId, the value 0 will be used.

Not every log message will have all these elements—you won’t always have an Exception or
parameters for example. There are various overloads to the logging methods that take these
as additional method parameters. Besides these, each message will have, at the very least, a
level, category, and message. These are the key features of the log, so we’ll look at each in
turn.

579

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

17.2.1 Log level: how important is the log message?

Whenever you create a log using ILogger, you must specify the log level. This indicates how
serious or important the log message is and is an important factor when it comes to filtering
which logs get written by a provider, as well as finding the important log messages after the
fact.

You might create an Information level log when a user starts to edit a recipe. This is
useful for tracing the application’s flow and behavior, but it’s not important, because
everything is normal. But if an exception is thrown when the user attempts to save the recipe,
you might create a Warning or Error level log.

The log level is typically set by using one of several extension methods on the ILogger
interface, as shown in listing 17.3. This example creates an Information level log when the
View method executes, and a Warning level error if the requested recipe isn’t found.

Listing 17.3 Specifying the log level using extension methods on ILogger
private readonly ILogger _log; #A
public async IActionResult OnGet(int id)
{
 _log.LogInformation(#B
 "Loading recipe with id {RecipeId}", id); #B

 Recipe = _service.GetRecipeDetail(id);
 if (Recipe is null)
 {
 _log.LogWarning(#C
 "Could not find recipe with id {RecipeId}", id); #C
 return NotFound();
 }
 return Page();
}

#A An ILogger instance is injected into the controller using constructor injection.
#B Writes an Information level log message
#C Writes a warning level log message

The LogInformation and LogWarning extension methods create log messages with a log level
of Information and Warning, respectively. There are six log levels to choose from, ordered
here from most to least serious:

• Critical—For disastrous failures that may leave the app unable to function correctly,
such as out of memory exceptions, if the hard drive is out of disk space, or the server
is on fire.

• Error—For errors and exceptions that you can’t handle gracefully, for example,
exceptions thrown when saving an edited entity in EF Core. The operation failed, but
the app can continue to function for other requests and users.

• Warning—For when an unexpected or error condition arises that you can work around.
You might log a Warning for handled exceptions, or when an entity isn't found, as in
listing 17.3.

580

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• Information—For tracking normal application flow, for example, logging when a user
logs in, or when they view a specific page in your app. Typically, these log messages
provide context when you need to understand the steps leading up to an error
message.

• Debug—For tracking detailed information that’s particularly useful during development.
Generally, this only has short-term usefulness.

• Trace—For tracking very detailed information, which may contain sensitive information
like passwords or keys. It’s rarely used, and not used at all by the framework libraries.

Think of these log levels in terms of a pyramid, as shown in figure 17.5. As you progress down
the log levels, the importance of the messages goes down, but the frequency goes up.
Generally, you'll find many Debug level log messages in your application, but (hopefully) few
Critical or Error level messages.

Figure 17.5 The pyramid of log levels. Logs with a level near the base of the pyramid are used more frequently
but are less important. Logs with a level near the top should be rare but are important.

This pyramid shape will become more meaningful when we look at filtering in section 17.4.
When an app is in production, you typically don’t want to record all the Debug level messages
generated by your application. The sheer volume of messages would be overwhelming to sort
through and could end up filling your disk with messages that say, “Everything’s OK!”

581

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Additionally, Trace messages shouldn’t be enabled in production, as they may leak sensitive
data. By filtering out the lower log levels, you can ensure that you generate a sane number of
logs in production, while still having access to all the log levels in development.

In general, logs of a higher level are more important than lower-level logs, so a Warning
log is more important than an Information log, but there’s another aspect to consider. Where
the log came from, or who created the log, is a key piece of information that’s recorded with
each log message and is called the category.

17.2.2 Log category: which component created the log

As well as a log level, every log message also has a category. You set the log level
independently for every log message, but the category is set when you create the ILogger
instance. Like log levels, the category is particularly useful for filtering, as you’ll see in section
17.4, but it’s also written to every log message, as shown in figure 17.6

Figure 17.6 Every log message has an associated category, which is typically the class name of the component
creating the log. The default console logging provider outputs the log category for every log.

The category is a string, so you can set it to anything, but the convention is to set it to the
fully qualified name of the type that’s using ILogger. In section 17.2, I achieved this by
injecting ILogger<T> into RecipeController; the generic parameter T is used to set it to the
category of the ILogger.

Alternatively, you can inject ILoggerFactory into your methods and pass an explicit
category when creating an ILogger instance. This lets you change the category to an arbitrary
string.

Listing 17.4 Injecting ILoggerFactory to use a custom category

public class RecipeService
{
 private readonly ILogger _log;

582

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 public RecipeService(ILoggerFactory factory) #A
 {
 _log = factory.CreateLogger("RecipeApp.RecipeService"); #B
 }
}

#A Injects an ILoggerFactory instead of an ILogger directly
#B Passes a category as a string when calling CreateLogger

There is also an overload of CreateLogger() with a generic parameter that uses the provided
class to set the category. If the RecipeService in listing 17.4 was in the RecipeApp
namespace, then the CreateLogger call could be written equivalently as

_log = factory.CreateLogger<RecipeService>();.

Similarly, the final ILogger instance created by this call would be the same as if you’d directly
injected ILogger<RecipeService> instead of ILoggerFactory.

TIP Unless you’re using heavily customized categories for some reason, favor injecting ILogger<T> into your

methods over ILoggerFactory.

The final compulsory part of every log entry is fairly obvious: the log message. At the simplest
level, this can be any string, but it’s worth thinking carefully about what information would be
useful to record—anything that will help you diagnose issues later on!

17.2.3 Formatting messages and capturing parameter values

Whenever you create a log entry, you must provide a message. This can be any string you
like, but as you saw in listing 17.2, you can also include placeholders indicated by braces, {},
in the message string:

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

Including a placeholder and a parameter value in your log message effectively creates a key-
value pair, which some logging providers can store as additional information associated with
the log. The previous log message would assign the value of Recipes.Count to a key,
RecipeCount, and the log message itself is generated by replacing the placeholder with the
parameter value, to give (if Recipes.Count=3):

"Loaded 3 recipes"

You can include multiple placeholders in a log message, and they’ll be associated with the
additional parameters passed to the log method. The order of the placeholders in the format
string must match the order of the parameters you provide.

WARNING You must pass at least as many parameters to the log method as there are placeholders in the

message. If you don’t pass enough parameters, you’ll get an exception at runtime.

583

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

For example, the log message

_log.LogInformation("User {UserId} loaded recipe {RecipeId}", 123, 456)

would create the parameters UserId=123 and RecipeId=456. Structured logging providers
could store these values, in addition to the formatted log message "User 123 loaded recipe
456". This makes it easier to search the logs for a particular UserId or RecipeId.

DEFINITION Structured or semantic logging attaches additional structure to log messages to make them

more easily searchable and filterable. Rather than storing only text, it stores additional contextual information,

typically as key-value pairs. JSON is a comment format used for structured log messages, as it has all of these

properties.

Not all logging providers use semantic logging. The default console logging provider doesn’t,
for example—the message is formatted to replace the placeholders, but there’s no way of
searching the console by key-value.

But even if you’re not using structured logging initially, I recommend writing your log
messages as though you are, with explicit placeholders and parameters. That way, if you
decide to add a structured logging provider later, then you’ll immediately see the benefits.
Additionally, I find that thinking about the parameters that you can log in this way prompts
you to record more parameter values, instead of only a log message. There’s nothing more
frustrating than seeing a message like "Cannot insert record due to duplicate key" but
not having the key value logged!

TIP Generally speaking, I’m a fan of C# 6’s interpolated strings, but don’t use them for your log messages

when a placeholder and parameter would also make sense. Using placeholders instead of interpolated strings

will give you the same output message but will also create key-value pairs that can be searched later.

We’ve looked a lot at how you can create log messages in your app, but we haven’t focused
on where those logs are written. In the next section, we’ll look at the built-in ASP.NET Core
logging providers, how they’re configured, and how you can replace the defaults with a third-
party provider.

17.3 Controlling where logs are written using logging providers
In this section you’ll learn how to control where your log messages are written by adding
additional ILoggerProviders to your application. As an example, you’ll see how to add a
simple file logger provider that writes your log messages to a file, in addition to the existing
console logger provider. In section 17.3.2 you’ll learn how to swap out the default logging
infrastructure entirely for an alternative implementation using the open source Serilog library.

Up to this point, we’ve been writing all our log messages to the console. If you’ve run any
ASP.NET Core sample apps locally, you’ll have probably already seen the log messages written
to the console window.

584

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

NOTE If you’re using Visual Studio and debugging using the IIS Express option (the default), then you won’t

see the console window (though the log messages are written to the Debug Output window instead). For that

reason, I normally ensure I select the app name from the dropdown in the debug toolbar, instead of IIS

Express.

Writing log messages to the console is great when you’re debugging, but it’s not much use for
production. No one’s going to be monitoring a console window on a server, and the logs
wouldn’t be saved anywhere or be searchable. Clearly, you’ll need to write your production
logs somewhere else when in production.

As you saw in section 17.1, logging providers control the destination of your log messages
in ASP.NET Core. They take the messages you create using the ILogger interface and write
them to an output location, which varies depending on the provider.

NOTE This name always gets to me—the log provider effectively consumes the log messages you create and

outputs them to a destination. You can probably see the origin of the name from figure 17.3, but I still find it

somewhat counterintuitive!

Microsoft have written several first-party log providers for ASP.NET Core, which are available
out-of-the-box in ASP.NET Core. These include

• Console provider—Writes messages to the console, as you’ve already seen.
• Debug provider—Writes messages to the debug window when you’re debugging an app

in Visual Studio or Visual Studio Code, for example.
• EventLog provider—Writes messages to the Windows Event Log. Only outputs log

messages when running on Windows, as it requires Windows-specific APIs.
• EventSource provider—Writes messages using Event Tracing for Windows (ETW) or

LTTng tracing on Linux.

There are also many third-party logging provider implementations, such as an Azure App
Service provider, an elmah.io provider, and an ElasticSearch provider. On top of that, there
are integrations with other pre-existing logging frameworks like NLog and Serilog. It’s always
worth looking to see whether your favorite .NET logging library or service has a provider for
ASP.NET Core, as most do.

You configure the logging providers for your app in Program.cs using HostBuilder. The
CreateDefaultBuilder helper method configures the console and debug providers for your
application automatically, but it’s likely you’ll want to change or add to these.

You have two options when you need to customize logging for your app:

• Use your own HostBuilder instance, instead of Host.CreateDefaultBuilder and
configure it explicitly.

• Add an additional ConfigureLogging call after CreateDefaultBuilder.

If you only need to customize logging, then the latter approach is simpler. But if you find you
also want to customize the other aspects of the HostBuilder created by

585

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

CreateDefaultBuilder (such as your app configuration settings), then it may be worth
ditching the CreateDefaultBuilder method and creating your own instance instead.

In section 17.3.1, I show how to add a simple third-party logging provider to your
application that writes log messages to a file, so that your logs are persisted. In section
17.3.2, I’ll show how to go one step further and replace the default ILoggerFactory in
ASP.NET Core with an alternative implementation using the popular open source Serilog
library.

17.3.1 Adding a new logging provider to your application

In this section, we’re going to add a logging provider that writes to a rolling file, so our
application writes logs to a new file each day. We’ll continue to log using the console and
debug providers as well, because they will be more useful than the file provider when
developing locally.

To add a third-party logging provider in ASP.NET Core, you must

1. Add the logging provider NuGet package to the solution. I’m going to be using a
provider called NetEscapades.Extensions.Logging.RollingFile, which is available on
NuGet and GitHub. You can add it to your solution using the NuGet Package Manager in
Visual Studio, or using the .NET CLI by running

dotnet add package NetEscapades.Extensions.Logging.RollingFile

from your application’s project folder.

NOTE This package is a simple file logging provider, available at

https://github.com/andrewlock/NetEscapades.Extensions.Logging which is based on the Azure App Service

logging provider. If you would like more control over your logs, such as the file format, consider using Serilog

instead, as described in section 17.3.2.

2. Add the logging provider using the IHostBuilder.ConfigureLogging() extension
method. You can add the file provider by calling AddFile(), as shown in the next
listing. This is an extension method, provided by the logging provider package, to
simplify adding the provider to your app.

Listing 17.5 Adding a third-party logging provider to IHostBuilder

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args) #A
 .ConfigureLogging(builder => builder.AddFile()) #B
 .ConfigureWebHostDefaults(webBuilder =>

586

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/andrewlock/NetEscapades.Extensions.Logging

©Manning Publications Co. To comment go to liveBook

 {
 webBuilder.UseStartup<Startup>();
 });
}

#A The CreateDefaultBuilder method configures the console and debug providers as normal.
#B Adds the new file logging provider to the logger factory.

NOTE Adding a new provider doesn’t replace existing providers. Listing 17.5 uses the

CreateDefaultBuilder helper method, so the console and debug logging providers have already been

added. To remove them, call builder.ClearProviders() at the start of the ConfigureLogging

method, or use a custom HostBuilder.

With the file logging provider configured, you can run the application and generate logs. Every
time your application writes a log using an ILogger instance, ILogger writes the message to
all configured providers, as shown in figure 17.7. The console messages are conveniently
available, but you also have a persistent record of the logs stored in a file.

587

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.7 Logging a message with ILogger writes the log using all of the configured providers. This lets you,
for example, log a convenient message to the console while also persisting the logs to a file.

TIP By default, the rolling file provider will write logs to a subdirectory of your application. You can specify

additional options such as filenames and file size limits using overloads of AddFile(). For production, I

recommend using a more established logging provider, such as Serilog.

The key takeaway from this listing is that the provider system makes it easy to integrate
existing logging frameworks and providers with the ASP.NET Core logging abstractions.
Whichever logging provider you choose to use in your application, the principles are the same:
call ConfigureLogging on IHostBuilder and add a new logging provider using extension
methods like AddConsole(), or AddFile() in this case.

Logging your application messages to a file can be useful in some scenarios, and it’s
certainly better than logging to a non-existent console window in production, but it may still
not be the best option.

588

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

If you discovered a bug in production and you needed to quickly look at the logs to see
what happened, for example, you’d need to log on to the remote server, find the log files on
disk, and trawl through them to find the problem. If you have multiple web servers, then
suddenly you’d have a mammoth job to fetch all the logs before you could even start to tackle
the bug. Not fun. Add to that the possibility of file permission or drive space issues and file
logging seems less attractive.

Instead, it’s often better to send your logs to a centralized location, separate from your
application. Exactly where this location may be is up to you; the key is that each instance of
your app sends its logs to the same location, separate from the app itself.

If you’re running your app on Azure, then you get centralized logging for free because you
can collect logs using the Azure App Service provider. Alternatively, you could send your logs
to a third-party log aggregator service such as Loggr (http://loggr.net/), elmah.io
(https://elmah.io/), or Seq (https://getseq.net/). You can find ASP.NET Core logging providers
for each of these services on NuGet, so adding them is the same process as adding the file
provider you’ve seen already.

Another popular option is to use the open source Serilog library to simultaneously write to
a variety of different locations. In the next section, I’ll show how you can replace the default
ILoggerFactory implementation with Serilog in your application, opening up a wide range of
possible options for where your logs are written.

17.3.2 Replacing the default ILoggerFactory with Serilog

In this section, we’ll replace the default ILoggerFactory in the Recipe app with
an implementation that uses Serilog. Serilog (https://serilog.net) is an open source project
that can write logs to many different locations, such as files, the console, an Elasticsearch
cluster,76 or a database. This is similar to the functionality you get with the default
ILoggerFactory, but due to the maturity of Serilog, you may find you can write to more
places.

Serilog predates ASP.NET Core, but thanks to the logging abstractions around
ILoggerFactory and ILoggerProvider, you can easily integrate with Serilog while still using
the ILogger abstractions in your application code.

Serilog uses a similar design philosophy to the ASP.NET Core logging abstractions—you
write logs to a central logging object and the log messages are written to multiple locations,
such as the console or a file. Serilog calls each of these locations a sink.77

When you use Serilog with ASP.NET Core, you’ll typically replace the default
ILoggerFactory with a custom factory that contains a single logging provider,
SerilogLoggerProvider. This provider can write to multiple locations, as shown in figure

76Elasticsearch is a REST-based search engine that’s often used for aggregating logs. You can find out more at www.elastic.co/elasticsearch/.
77For a full list of available sinks, see https://github.com/serilog/serilog/wiki/Provided-Sinks. There are 93 different sinks at the time of writing!

589

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://loggr.net/
https://elmah.io/
https://getseq.net/
https://serilog.net/
http://www.elastic.co/elasticsearch/
https://github.com/serilog/serilog/wiki/Provided-Sinks

©Manning Publications Co. To comment go to liveBook

17.8. This configuration is a bit of a departure from the standard ASP.NET Core logging setup,
but it prevents Serilog’s features from conflicting with equivalent features of the default
LoggerFactory, such as filtering (see section 17.4).

Figure 17.8 Configuration differences when using Serilog with ASP.NET Core compared to the default logging
configuration. You can achieve the same functionality with both approaches, but you may find Serilog provides
additional libraries for adding extra features.

TIP If you’re familiar with Serilog, you can use the examples in this section to easily integrate a working

Serilog configuration with the ASP.NET Core logging infrastructure.

590

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In this section, we’ll add a single sink to write the log messages to the console, but using the
Serilog logging provider instead of the built-in console provider. Once you’ve set this up,
adding additional sinks to write to other locations is trivial. Adding the Serilog logging provider
to an application involves three steps:

1. Add the required Serilog NuGet packages to the solution.
2. Create a Serilog logger and configure it with the required sinks.
3. Call UseSerilog() on IHostBuilder to replace the default ILoggerFactory

implementation with SerilogLoggerFactory. This configures the Serilog provider
automatically and hooks up the already-configured Serilog logger.

To install Serilog into your ASP.NET Core app, you need to add the base NuGet package and
the NuGet packages for any sinks you need. You can do this through the Visual Studio NuGet
GUI, using the PMC, or using the .NET CLI. To add the Serilog ASP.NET Core package and a
sink for writing to the console, run

dotnet add package Serilog.AspNetCore
dotnet add package Serilog.Sinks.Console

This adds the necessary NuGet packages to your project file and restores them. Next, create a
Serilog logger and configure it to write to the console by adding the console sink, as shown in
listing 17.6. This is the most basic of Serilog configurations, but you can add extra sinks and
configuration here too.78 I’ve also added a try-catch-finally block around our call to
CreateHostBuilder, to ensure that logs are still written if there’s an error starting up the web
host or there’s a fatal exception. Finally, the Serilog logger factory is configured by calling
UseSerilog() on the IHostBuilder.

Listing 17.6 Configuring a Serilog logging provider to use a console sink

public class Program
{
 public static void Main(string[] args)
 {
 Log.Logger = new LoggerConfiguration() #A
 .WriteTo.Console() #B
 .CreateLogger(); #C
 try
 {
 CreateHostBuilder(args).Build().Run();
 }
 catch (Exception ex)
 {
 Log.Fatal(ex, "Host terminated unexpectedly");
 }
 finally

78You can customize Serilog until the cows come home, so it’s worth consulting the documentation to see what’s possible. The wiki is particularly useful:

https://github.com/serilog/serilog/wiki/Configuration-Basics.

591

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/serilog/serilog/wiki/Configuration-Basics

©Manning Publications Co. To comment go to liveBook

 {
 Log.CloseAndFlush();
 }
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .UseSerilog() #D
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

#A Creates a LoggerConfiguration for configuring the Serilog logger.
#B Serilog will write logs to the console.
#C This creates a Serilog logger instance on the static Log.Logger property.
#D Registers the SerilogLoggerFactory and connects the Log.Logger as the sole logging provider.

With the Serilog logging provider configured, you can run the application and generate some
logs. Every time the app generates a log, ILogger writes the message to the Serilog provider,
which writes it to every sink. In the example, you’ve only configured the console sink, so the
output will look something like figure 17.9. The Serilog console sink colorizes the logs more
than the built-in console provider, so I find it’s somewhat easier to parse the logs visually.

Figure 17.9 Example output using the Serilog provider and a console sink. The output has more colorization
than the built-in console provider, though by default it doesn’t display the log category for each log.79

TIP Serilog has many great features in addition to this. One of my favorites is the ability to add enrichers.

These automatically add additional information to all your log messages, such as the process ID or

environment variables, which can be useful when diagnosing problems. For an in-depth look at the

79If you wish to display the log category in the console sink, you can customize the outputTemplate and add {SourceContext}. For details, see

https://github.com/serilog/serilog-sinks-console#output-templates.

592

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/serilog/serilog-sinks-console#output-templates

©Manning Publications Co. To comment go to liveBook

recommended way to configure Serilog for ASP.NET Core apps, see this post by Nicholas Blumhardt, the

creator of Serilog: https://nblumhardt.com/2019/10/serilog-in-aspnetcore-3/.

Serilog lets you easily plug in additional sinks to your application, in much the same way as
you do with the default ASP.NET Core abstractions. Whether you choose to use Serilog or stick
to other providers is up to you; the feature sets are quite similar, though Serilog is more
mature. Whichever you choose, once you start running your apps in production, you’ll quickly
discover a different issue: the sheer number of log messages your app generates!

17.4 Changing log verbosity with filtering
In this section you’ll see how to reduce the number of log messages written to the logger
providers. You’ll learn how to apply a base level filter, filter out messages from specific
namespaces, and use logging provider-specific filters.

If you’ve been playing around with the logging samples, then you’ll probably have noticed
that you get a lot of log messages, even for a single request like the one in figure 17.2:
messages from the Kestrel server, messages from EF Core, not to mention your own custom
messages. When you’re debugging locally, having access to all that detailed information is
extremely useful, but in production you’ll be so swamped by noise that it’ll make picking out
the important messages difficult.

ASP.NET Core includes the ability to filter out log messages before they’re written based on
a combination of three things:

• The log level of the message
• The category of the logger (who created the log)
• The logger provider (where the log will be written)

You can create multiple rules using these properties, and for each log that’s created, the most
specific rule will be applied to determine whether the log should be written to the output. You
could create the following three rules:

• The default minimum log level is Information. If no other rules apply, only logs with a
log level of Information or above will be written to providers.

• For categories that start with Microsoft, the minimum log level is Warning. Any logger
created in a namespace that starts with Microsoft will only write logs that have a log
level of Warning or above. This would filter out the “noisy” framework messages you
saw in figure 17.6.

• For the console provider, the minimum log level is Error. Logs written to the console
provider must have a minimum log level of Error. Logs with a lower level won’t be
written to the console, though they might be written using other providers.

Typically, the goal with log filtering is to reduce the number of logs written to certain
providers, or from certain namespaces (based on the log category). Figure 17.10 shows a
possible set of filtering rules that apply filtering rules to the console and file logging providers.

593

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://nblumhardt.com/2019/10/serilog-in-aspnetcore-3/

©Manning Publications Co. To comment go to liveBook

In this example, the console logger explicitly restricts logs written in the Microsoft
namespace to Warning or above, so the console logger ignores the log message shown.
Conversely, the file logger doesn’t have a rule that explicitly restricts the Microsoft
namespace, so it uses the configured minimum level of Information and writes the log to the
output.

Figure 17.10 Applying filtering rules to a log message to determine whether a log should be written. For each
provider, the most specific rule is selected. If the log exceeds the rule’s required minimum level, the provider
writes the log, otherwise it discards it.

TIP Only a single rule is chosen when deciding whether a log message should be written; they aren’t

combined. In figure 17.10, rule 1 is considered more specific than rule 5, so the log is written to the file

provider, even though both could technically apply.

You typically define your app’s set of logging rules using the layered configuration approach
discussed in chapter 11, because this lets you easily have different rules when running in

594

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

development and production. You do this by calling AddConfiguration when configuring
logging in Program.cs, but CreateDefaultBuilder() also does this for you automatically.

This listing shows how you’d add configuration rules to your application when configuring
your own HostBuilder, instead of using the CreateDefaultBuilder helper method.

Listing 17.7 Loading logging configuration in ConfigureLogging

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 new HostBuilder()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration(config => #A
 config.AddJsonFile("appsettings.json")) #A
 .ConfigureLogging((ctx, builder) =>
 {
 builder.AddConfiguration(#B
 ctx.Configuration.GetSection("Logging")); #B
 builder.AddConsole(); #C
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

#A Loads configuration values from appsettings.json
#B Loads the log filtering configuration from the Logging section and adds to ILoggingBuilder
#C Adds a console provider to the app

In this example, I’ve loaded the configuration from a single file, appsettings.json, which
contains all of our app configuration. The logging configuration is specifically contained in the
"Logging" section of the IConfiguration object, which is available when you call
Configurelogging().

TIP As you saw in chapter 11, you can load configuration settings from multiple sources, like JSON files and

environment variables, and can load them conditionally based on the IHostingEnvironment. A common

practice is to include logging settings for your production environment in appsettings.json, and overrides for

your local development environment in appsettings.Development.json.

The logging section of your configuration should look similar to the following listing, which
shows how you could define the rules shown in figure 17.10.

Listing 17.8 The log filtering configuration section of appsettings.json

{
 "Logging": {

595

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 "LogLevel": { #A
 "Default": "Debug", #A
 "System": "Warning", #A
 "Microsoft": "Warning" #A
 },
 "File": { #B
 "LogLevel": { #B
 "Default": "Information" #B
 }
 },
 "Console": { #C
 "LogLevel": { #C
 "Default": "Debug", #C
 "Microsoft": "Warning" #C
 }
 }
 }
}

#A Rules to apply if there are no applicable rules for a provider
#B Rules to apply to the File provider
#C Rules to apply to the Console provider

When creating your logging rules, the important thing to bear in mind is that if you have any
provider-specific rules, these will take precedence over the category-based rules defined in the
"LogLevel" section. Therefore, for the configuration defined in listing 17.8, if your app only
uses the file or console logging providers, then the rules in the "LogLevel" section will
effectively never apply.

If you find this confusing, don’t worry, so do I. Whenever I’m setting up logging, I check
the algorithm used to determine which rule will apply for a given provider and category, which
is as follows:

1. Select all rules for the given provider. If no rules apply, select all rules that don’t define
a provider (the top "LogLevel" section from listing 17.8).

2. From the selected rules, select rules with the longest matching category prefix. If no
selected rules match the category prefix, select the "Default" if present.

3. If multiple rules are selected, use the last one.
4. If no rules are selected, use the global minimum level, "LogLevel:Default" (Debug in

listing 17.8).

Each of these steps (except the last) narrows down the applicable rules for a log message,
until you’re left with a single rule. You saw this in effect for a "Microsoft" category log in
figure 17.10. Figure 17.11 shows the process in more detail.

WARNING Log filtering rules aren't merged together; a single rule is selected. Including provider-specific

rules will override global category-specific rules, so I tend to stick to category-specific rules in my apps to make

the overall set of rules easier to understand.

596

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.11 Selecting a rule to apply from the available set for the console provider and an Information
level log. Each step reduces the number of rules that apply until you’re left with only one.

With some effective filtering in place, your production logs should be much more manageable,
as shown in figure 17.12. Generally, I find it’s best to limit the logs from the ASP.NET Core
infrastructure and referenced libraries to Warning or above, while keeping logs that my app
writes to Debug in development and Information in production.

597

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 17.12 Using filtering to reduce the number of logs written. In this example, category filters have been
added to the Microsoft and System namespaces, so only logs of Warning and above are recorded. That
increases the number of logs that are directly relevant to your application.

This is close to the default configuration used in the ASP.NET Core templates. You may find
you need to add additional category-specific filters, depending on which NuGet libraries you
use and the categories they write to. The best way to find out is generally to run your app and
see if you get flooded with uninteresting log messages!

Even with your log verbosity under your control, if you stick to the default logging
providers like the file or console loggers, then you’ll probably regret it in the long run. These
log providers work perfectly well, but when it comes to finding specific error messages, or
analyzing your logs, you’ll have your work cut out for you. In the next section, you’ll see how
structured logging can help tackle this problem.

17.5 Structured logging: creating searchable, useful logs
In this section you’ll learn how structured logging makes working with log messages easier.
You’ll learn to attach key-value pairs to log messages, and how to store and query for key
values using the structured logging provider, Seq. Finally, you’ll learn how to use scopes to
attach key value pairs to all log messages within a block.

Let’s imagine you’ve rolled out the recipe application we’ve been working on into
production. You’ve added logging to the app so that you can keep track of any errors in your
application, and you’re storing the logs in a file.

One day, a customer calls and says they can’t view their recipe. Sure enough, when you
look through the log messages you a see a warning:

warn: RecipeApplication.Controllers.RecipeController[12]
 Could not find recipe with id 3245

This piques your interest—why did this happen? Has it happened before for this customer? Has
it happened before for this recipe? Has it happened for other recipes? Does it happen
regularly?

How would you go about answering these questions? Given that the logs are stored in a
text file, you might start doing basic text searches in your editor of choice, looking for the
phrase "Could not find recipe with id". Depending on your notepad-fu skills, you could

598

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

probably get a fair way in answering your questions, but it would likely be a laborious, error-
prone, and painful process.

The limiting factor is that the logs are stored as unstructured text, so text processing is the
only option available to you. A better approach is to store the logs in a structured format, so
that you can easily query the logs, filter them, and create analytics. Structured logs could be
stored in any format, but these days they’re typically represented as JSON. For example, a
structured version of the same recipe warning log might look something like

{
 "eventLevel": "Warning",
 "cateogry": "RecipeApplication.Controllers.RecipeController",
 "eventId": "12",
 "messageTemplate": "Could not find recipe with {recipeId}",
 "message": "Could not find recipe with id 3245",
 "recipeId": "3245"
}

This structured log message contains all the same details as the unstructured version, but in a
format that would easily let you search for specific log entries. It makes it simple to filter logs
by their EventLevel, or to only show those logs relating to a specific recipe ID.

NOTE This is only an example of what a structured log could look like. The format used for the logs will vary

depending on the logging provider used and could be anything. The key point is that properties of the log are

available as key-value pairs.

Adding structured logging to your app requires a logging provider that can create and store
structured logs. Elasticsearch is a popular general search and analytics engine that can be
used to store and query your logs. Serilog includes a sink for writing logs to Elasticsearch that
you can add to your app in the same way as you added the console sink in section 17.3.2.

TIP If you want to learn more about Elasticsearch, Relevant Search by Doug Turnbull and John Berryman

(Manning, 2016) is a great choice, and will show how you can make the most of your structured logs.

Elasticsearch is a powerful production-scale engine for storing your logs, but setting it up isn’t
for the faint of heart. Even after you’ve got it up and running, there’s a somewhat steep
learning curve associated with the query syntax. If you’re interested in something more user-
friendly for your structured logging needs, then Seq (https://getseq.net) is a great option. In
the next section, I’ll show how adding Seq as a structured logging provider makes analyzing
your logs that much easier.

17.5.1 Adding a structured logging provider to your app

To demonstrate the advantages of structured logging, in this section, you’ll configure an app
to write logs to Seq. You’ll see that configuration is essentially identical to unstructured
providers, but that the possibilities afforded by structured logging make considering it a no-
brainer.

599

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://getseq.net/

©Manning Publications Co. To comment go to liveBook

Seq is installed on a server or your local machine and collects structured log messages
over HTTP, providing a web interface for you to view and analyze your logs. It is currently
available as a Windows app or a Linux Docker container. You can install a free version for
development,80 which will allow you to experiment with structured logging in general.

From the point of view of your app, the process for adding the Seq provider should be
familiar:

1. Install the Seq logging provider using Visual Studio or the .NET CLI with

dotnet add package Seq.Extensions.Logging

2. Add the Seq logging provider in Program.cs inside the ConfigureLogging method. To
add the Seq provider in addition to the console and debug providers included as part of
CreateDefaultBuilder, use

Host.CreateDefaultBuilder(args)
 .ConfigureLogging(builder => builder.AddSeq())
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

That’s all you need to add Seq to your app. This will send logs to the default local URL when
you have Seq installed in your local environment. The AddSeq() extension method includes
additional overloads to customize Seq when you move to production, but this is all you need
to start experimenting locally.

If you haven’t already, install Seq on your development machine and navigate to the Seq
app at http://localhost:5341. In a different tab, open up your app and start browsing around
and generating logs. Heading back to Seq, if you refresh the page, you’ll see a list of logs,
something like in figure 17.13. Clicking on a log expands it and shows you the structured data
recorded for the log.

80You can download the Windows installer for Seq from https://getseq.net/Download.

600

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://getseq.net/Download
http://localhost:5341

©Manning Publications Co. To comment go to liveBook

Figure 17.13 The Seq UI. Logs are presented as a list. You can view the structured logging details of individual
logs, view analytics for logs in aggregates, and search by log properties.

ASP.NET Core supports structured logging by treating each captured parameter from your
message format string as a key-value-pair. If you create a log message using the format
string

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

then the logging provider will create a RecipeCount parameter with a value of
Recipes.Count. These parameters are added as properties to each structured log, as you can
see in figure 17.13.

Structured logs are generally easier to read than your standard-issue console output, but
their real power comes when you need to answer a specific question. Consider the problem
from before, where you see the error

Could not find recipe with id 3245

and you want to get a feel for how widespread the problem is. The first step would be to
identify how many times this error has occurred, and to see whether it’s happened to any

601

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

other recipes. Seq lets you filter your logs, but it also lets you craft SQL queries to analyze
your data, so finding the answer to the question takes a matter of seconds, as shown in figure
17.14.

NOTE You don’t need query languages like SQL for simple queries, but it makes digging into the data easier.

Other structured logging providers may provide query languages other than SQL, but the principal is the same

as this Seq example.

Figure 17.14 Querying logs in Seq. Structured logging makes log analysis like this example easy.

A quick search shows that you’ve recorded the log message with EventId.Id=12 (the EventId
of the warning we’re interested in) 13 times, and every time the offending RecipeId was
3245. This suggests that there may be something wrong with that recipe in particular, which
points you in the right direction to find the problem.

More often than not, figuring out errors in production involves logging detective work like
this to isolate where the problem occurred. Structured logging makes this process significantly
easier, so it’s well worth considering, whether you choose Seq, Elasticsearch, or a different
provider.

I’ve already described how you can add structured properties to your log messages using
variables and parameters from the message, but as you can see in figure 17.13, there are far
more properties visible than exist in the message alone.

Scopes provide a way to add arbitrary data to your log messages. They’re available in
some unstructured logging providers, but they shine when used with structured logging
providers. In the final section of this chapter, I’ll demonstrate how you can use them to add
additional data to your log messages.

602

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

17.5.2 Using scopes to add additional properties to your logs

You’ll often find in your apps that you have a group of operations that all use the same data,
which would be useful to attach to logs. For example, you might have a series of database
operations that all use the same transaction ID, or you might be performing multiple
operations with the same user ID or recipe ID. Logging scopes provide a way of associating
the same data to every log message in such a group.

DEFINITION Logging scopes are used to group multiple operations by adding the same data to each log

message.

Logging scopes in ASP.NET Core are created by calling ILogger.BeginScope<T>(T state)
and providing the state data to be logged. You create scopes inside a using block; any log
messages written inside the scope block will have the associated data, whereas those outside
won’t.

Listing 17.9 Adding scope properties to log messages with BeginScope

_logger.LogInformation("No, I don’t have scope"); #A

using(_logger.BeginScope("Scope value")) #B
using(_logger.BeginScope(new Dictionary<string, object> #C
 {{ "CustomValue1", 12345 } })) #C
{
 _logger.LogInformation("Yes, I have the scope!"); #D
}

_logger.LogInformation("No, I lost it again"); #A

#A Log messages written outside the scope block don’t include the scope state.
#B Calling BeginScope starts a scope block, with a scope state of “Scope value”.
#C You can pass anything as the state for a scope.
#D Log messages written inside the scope block include the scope state.

The scope state can be any object at all: an int, a string, or a Dictionary, for example. It’s
up to each logging provider implementation to decide how to handle the state you provide in
the BeginScope call, but typically it will be serialized using ToString().

TIP The most common use for scopes I’ve found is to attach additional key-value pairs to logs. To achieve this

behavior in Seq and Serilog, you need to pass Dictionary<string, object> as the state object.81

81Nicholas Blumhardt, the creator of Serilog and Seq, has examples and the reasoning for this on his blog: https://nblumhardt.com/2016/11/ilogger-

beginscope/.

603

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://nblumhardt.com/2016/11/ilogger-beginscope/
https://nblumhardt.com/2016/11/ilogger-beginscope/

©Manning Publications Co. To comment go to liveBook

When the log messages inside the scope block are written, the scope state is captured and
written as part of the log, as shown in figure 17.15. The Dictionary<> of key-value pairs is
added directly to the log message (CustomValue1), and the remaining state values are added
to the Scope property. You will likely find the dictionary approach the more useful of the two,
as the added properties are more easily filtered on, as you saw in figure 17.14.

Figure 17.15 Adding properties to logs using scopes. Scope state added using the dictionary approach is added
as structured logging properties, but other state is added to the Scope property. Adding properties makes it
easier to associate related logs with one another.

That brings us to the end of this chapter on logging. Whether you use the built-in logging
providers or opt to use a third-party provider like Serilog or NLog, ASP.NET Core makes it
easy to get detailed logs not only for your app code, but for the libraries that make up your
app’s infrastructure, like Kestrel and EF Core. Whichever you choose, I encourage you to add
more logs than you think you’ll need—future-you will thank me when it comes to tracking
down a problem!

In the next chapter, we’ll look in detail at a variety of web security problems that you
should consider when building your apps. ASP.NET Core takes care of some of these issues for

604

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

you automatically, but it’s important to understand where your app’s vulnerabilities lie, so you
can mitigate them as best you can.

17.6 Summary
• Logging is critical to quickly diagnosing errors in production apps. You should always

configure logging for your application so that logs are written to a durable location.
• You can add logging to your own services by injecting ILogger<T>, where T is the

name of the service. Alternatively, inject ILoggerFactory and call CreateLogger().
• The log level of a message is how important it is and ranges from Trace to Critical.

Typically, you’ll create many low-importance log messages, and a few high-importance
log messages.

• You specify the log level of a log by using the appropriate extension method of ILogger
to create your log. To write an Information level log, use
ILogger.LogInformation(message).

• The log category indicates which component created the log. It is typically set to the
fully qualified name of the class creating the log, but you can set it to any string if you
wish. ILogger<T> will have a log category of T.

• You can format messages with placeholder values, similar to the string.Format
method, but with meaningful names for the parameters. Calling
logger.LogInfo("Loading Recipe with id {RecipeId}", 1234) would create a log
reading "Loading Recipe with id 1234", but would also capture the value
RecipeId=1234. This structured logging makes analyzing log messages much easier.

• ASP.NET Core includes many logging providers out of the box. These include the
console, debug, EventLog, and EventSource providers. Alternatively, you can add third-
party logging providers.

• You can configure multiple ILoggerProvider instances in ASP.NET Core, which define
where logs are output. The CreateDefaultBuilder method adds the console and
debug providers, and you can add additional providers by calling ConfigureLogging().

• Serilog is a mature logging framework that includes support for a large number of
output locations. You can add Serilog to your app with the Serilog.AspNetCore package.
This replaces the default ILoggerFactory with a Serilog-specific version.

• You can control logging output verbosity using configuration. The
CreateDefaultBuilder helper uses the "Logging" configuration section to control
output verbosity. You typically will filter out more logs in production compared to when
developing your application.

• Only a single log filtering rule is selected for each logging provider when determining
whether to output a log message. The most specific rule is selected based on the
logging provider and the category of the log message.

• Structured logging involves recording logs so that they can be easily queried and
filtered, instead of the default unstructured format that's output to the console. This
makes analyzing logs, searching for issues, and identifying patterns easier.

605

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• You can add additional properties to a structured log by using scope blocks. A scope
block is created by calling ILogger.BeginScope<T>(state) in a using block. The state
can be any object and is added to all log messages inside the scope block.

606

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

18
Improving your application’s

security

This chapter covers

• Encrypting traffic using HTTPS and configuring local SSL certificates
• Defending against cross-site scripting attacks
• Protecting from cross-site request forgery attacks
• Allowing calls to your API from other apps using CORS

Web application security is a hot topic at the moment. Practically every week another breach
is reported, or confidential details are leaked. It may seem like the situation is hopeless, but
the reality is that the vast majority of breaches could’ve been avoided with the smallest
amount of effort.

In this chapter, we look at a few different ways to protect your application and your
application’s users from attackers. Because security is an extremely broad topic that covers
lots of different avenues, this chapter is by no means an exhaustive guide. It’s intended to
make you aware of some of the most common threats to your app and how to counteract
them, and to highlight areas where you can inadvertently introduce vulnerabilities if you’re not
careful.

TIP I strongly advise exploring additional resources around security after you’ve read this chapter. The Open

Web Application Security Project (OWASP) (www.owasp.org) is an excellent resource, though it can be a little

dry. Alternatively, Troy Hunt (www.troyhunt.com/) has some excellent courses and workshops on security,

geared towards .NET developers.

607

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.owasp.org/
https://www.troyhunt.com/

©Manning Publications Co. To comment go to liveBook

We’ll start by looking at how to add HTTPS encryption to your website so that users can access
your app without the risk of third parties spying on or modifying the content as it travels over
the internet. This is effectively mandatory for production apps these days, and it is heavily
encouraged by the makers of modern browsers such as Chrome and Firefox. You’ll see how to
use the .NET Core development certificate to use HTTPS locally, how to configure an app for
HTTPS in production, and how to enforce HTTPS across your whole app.

In sections 18.2 and 18.3, you’ll learn about two potential attacks that should be on your
radar: cross-site scripting (XSS) and cross-site request forgery (CSRF). We’ll explore how the
attacks work and how you can prevent them in your apps. ASP.NET Core has built-in
protection against both types of attack, but you have to remember to use the protection
correctly and resist the temptation to circumvent it, unless you’re certain it’s safe to do so.

Section 18.4 deals with a common scenario—you have an application that wants to use
JavaScript AJAX (Asynchronous JavaScript and XML) requests to retrieve data from a second
app. By default, web browsers block requests to other apps, so you need to enable cross-
origin resource sharing (CORS) in your API to achieve this. We’ll look at how CORS works, how
to create a CORS policy for your app, and how to apply it to specific action methods.

The final section of this chapter, section 18.5, is a collection of common threats to your
application. Each one represents a potentially critical flaw that an attacker could use to
compromise your application. The solutions to each threat are generally relatively simple; the
important thing is to recognize where the flaws could exist in your own apps so that you can
ensure you don’t leave yourself vulnerable.

We’ll start by looking at HTTPS and why you should use it to encrypt the traffic between
your users’ browsers and your app. Without HTTPS, attackers could subvert many of the
safeguards you add to your app, so it’s an important first step to take.

18.1 Adding HTTPS to an application
In this section you’ll learn about HTTPS, what it is, and why you need to be aware of it for all
your production applications. You’ll see two approaches to adding HTTPS to your application:
supporting HTTPS directly in your application and using SSL/TLS-offloading with a reverse-
proxy. You’ll then learn how to use the development certificate to work with HTTPS on your
local machine, and how to add an HTTPS certificate to your app in production. Finally, you’ll
learn how to enforce HTTPS in your app using best practices such as security headers, and
HTTP redirection.

So far in this book, I’ve shown how the user’s browser sends a request across the internet
to your app using the HTTP protocol. We haven’t looked too much into the details of that
protocol, other than to establish that it uses verbs to describe the type of request (such as
GET and POST), that it contains headers with metadata about the request, and optionally a
body payload of data.

By default, HTTP requests are unencrypted; they’re plain text files being sent over the
internet. Anyone on the same network as a user (such as using the same public Wi-Fi in a

608

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

coffee shop) can read the requests and responses sent back and forth. Attackers can even
modify the requests or responses as they’re in transit.

Using unencrypted web apps in this way presents both a privacy and a security risk to your
users. Attackers could read the data sent in forms and returned by your app, inject malicious
code into your responses to attack users, or steal authentication cookies and impersonate the
user on your app.

To protect your users, your app should encrypt the traffic between the user’s browser and
your app as it travels over the network by using the HTTPS protocol. This is similar to HTTP
traffic, but it uses an SSL/TLS82 certificate to encrypt requests and responses, so attackers
cannot read or modify the contents. In browsers, you can tell a site is using HTTPS by the
https:// prefix to URLs (notice the “s”), or sometimes, by a padlock, as shown in figure 18.1.

TIP For details about how the SSL/TLS protocols work, see Real-World Cryptography by David Wong (Manning,

2021) https://livebook.manning.com/book/real-world-cryptography/chapter-9/.

Figure 18.1 Encrypted apps using HTTPS and unencrypted apps using HTTP in Edge. Using HTTPS protects your
application from being viewed of tampered with by attackers.

The reality is that, these days, you should always serve your production websites over HTTPS.
The industry is pushing toward HTTPS by default, with most browsers moving to mark HTTP

82SSL is an older standard that facilitates HTTPS, but the SSL protocol has been superseded by Transport Layer Security (TLS) so I’ll be using TLS

preferentially throughout this chapter.

609

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/book/real-world-cryptography/chapter-9/
https://prefix

©Manning Publications Co. To comment go to liveBook

sites as explicitly “not secure.” Skipping HTTPS will hurt the perception of your app in the long
run, so even if you’re not interested in the security benefits, it’s in your best interest to set up
HTTPS.

In order to configure HTTPS, you need to obtain and configure a TLS certificate for your
server. Unfortunately, although that process is a lot easier than it used to be, and is now
essentially free thanks to Let’s Encrypt (https://letsencrypt.org/), it’s still far from simple in
many cases. If you’re setting up a production server, I recommend carefully following the
tutorials on the Let’s Encrpyt site. It’s easy to get it wrong, so take your time!

TIP If you’re hosting your app in the cloud, then most providers will provide “one-click” TLS certificates so that

you don’t have to manage certificates yourself. This is extremely useful, and I highly recommend it for

everyone.83

As an ASP.NET Core application developer, you can often get away without directly supporting
HTTPS in your app by taking advantage of the reverse proxy architecture, as shown in figure
18.2, in a process called SSL/TLS offloading/termination. Instead of your application handling
requests using HTTPS directly, it continues to use HTTP. The reverse proxy is responsible for
encrypting and decrypting HTTPS traffic to the browser. This often gives you the best of both
worlds—data is encrypted between the user’s browser and the server, but you don’t have to
worry about configuring certificates in your application.84

83You don’t even have to be hosting your application in the cloud to take advantage of this. Cloudflare (www.cloudflare.com) provides a CDN service that you

can add SSL to. You can even use it for free.
84If you’re concerned that the traffic is unencrypted between the reverse proxy and your app, then I recommend reading this post by Troy Hunt:

http://mng.bz/eHCi. It discusses the pros and cons of the issue as it relates to using Cloudflare to provide HTTPS encryption.

610

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://letsencrypt.org/
http://www.cloudflare.com/
http://mng.bz/eHCi

©Manning Publications Co. To comment go to liveBook

Figure 18.2 You have two options when using HTTPS with a reverse proxy: SSL/TLS passthrough and SSL/TLS
offloading. In SSL/TLS passthrough, the data is encrypted all the way to your ASP.NET Core app. For SSL/TLS
termination, the reverse proxy handles decrypting the data, so your app doesn’t have to.

Depending on the specific infrastructure where you’re hosting your app, SSL/TLS could be
offloaded to a dedicated device on your network, a third-party service like Cloudflare, or a
reverse proxy (such as IIS, NGINX, or HAProxy), running on the same or a different server.

Nevertheless, in some situations, you may need to handle SSL/TLS directly in your app, for
example:

• If you’re exposing Kestrel to the internet directly, without a reverse proxy. This became
more common with ASP.NET Core 3.0 due to hardening of the Kestrel server. It is also
often the case when you’re developing your app locally.

• If having HTTP between the reverse proxy and your app is not acceptable. While
securing traffic inside your network is less critical compared to external traffic, it is
undoubtedly more secure to use HTTPS for internal traffic too.

• If you’re using technology that requires HTTPS. Some newer network protocols, such as
gRPC (discussed in chapter 20) and HTTP/2 require an HTTPS connection.

In each of these scenarios, you need to configure a TLS certificate for your application, so
Kestrel can receive HTTPS traffic. In section 18.1.1 you’ll see the easiest way to get started
with HTTPS when developing locally, and in section 18.1.2 you’ll see how to configure your
application for production.

611

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

18.1.1 Using the .NET Core and IIS Express HTTPS development certificates

Working with HTTPS certificates is easier than it used to be, but unfortunately it can still be
confusing topic, especially as a newcomer to the web. The .NET Core SDK, Visual Studio, and
IIS Express try and improve this experience by handling a lot of the grunt-work for you.

The first time you run a dotnet command using the .NET Core SDK, the SDK installs an
HTTPS development certificate onto your machine. Any ASP.NET Core application you create
using the default templates (or for which you don’t explicitly configure certificates) will use
this development certificate to handle HTTPS traffic. However, the development certificate is
not trusted by default. That means you’ll get a browser warning, as shown in figure 18.3 when
accessing a site after first installing the .NET Core SDK.

Figure 18.3. The developer certificate is not trusted by default, so apps serving HTTPS traffic using it will be
marked as insecure by browsers. Although you can bypass the warnings if necessary, you should instead update
the certificate to be trusted.

A brief primer on certificates and signing
HTTPS uses public key cryptography as part of the data-encryption process. This uses two keys: a public key that anyone
can see, and a private key that only your server can see. Anything encrypted with the public key can only be decrypted
with the private key. That way, a browser can encrypt something with your server’s public key, and only your server can
decrypt it. A complete TLS certificate consists of both the public and private parts.
When a browser connects to your app, the server sends the public key part of the TLS certificate. But how does the
browser know that it was definitely your server that sent the certificate? To achieve this, your TLS certificate contains
additional certificates, including a certificate from a third party, a certificate authority (CA). This trusted certificate is
called a root certificate.
CAs are special trusted entities. Browsers are hardcoded to trust certain root certificates. So, in order for the TLS
certificate for your app to be trusted, it must contain (or be signed by) a trusted root certificate.
When you use the .NET Core development certificate, or if you create your own self-signed certificate, your site’s HTTPS
is missing that trusted root certificate. That means browsers won’t trust your certificate and won’t connect to your
server by default. To get around this, you need to tell your development machine to explicitly trust the certificate.

612

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In production, you can’t use a development or self-signed certificate, as a user’s browser won’t trust it. Instead, you
need to obtain a signed HTTPS certificate from a service like Let’s Encrpyt, or from a cloud provider like AWS, Azure, or
Cloudflare. These certificates will already be signed by a trusted CA, so will be automatically trusted by browsers.

To solve these browser warnings, you need to trust the certificate. Trusting a certificate is a
sensitive operation, as it’s saying “I know this certificate doesn’t look quite right, but just
ignore that”, so it’s hard to do automatically. If you’re running on Windows or macOS, you can
trust the development certificate by running

dotnet dev-certs https --trust

This command trusts the certificate, by registering it in the operating system “certificate
store”. After you run this command, you should be able to access your websites without
seeing any warnings or “not secure” labels, as shown in figure 16.4.

TIP You may need to close your browser after trusting the certificate to clear the browser’s cache.

Figure 18.4. Once the development certificate is trusted, you will no longer see browser warnings about the
connection.

The developer certificate works smoothly on Windows and macOS. Unfortunately, trusting the
certificate in Linux is a little trickier, and depends on the particular flavor you’re using. On top
of that, software on Linux often uses its own certificate store, so you’ll probably need to add
the certificate directly to your favorite browser. I suggest looking at the documentation for
your favorite browser to figure out the best approach. For advice on other platforms, such as
Docker, see the documentation at https://docs.microsoft.com/aspnet/core/security/enforcing-
ssl#how-to-set-up-a-developer-certificate-for-docker.

If you’re using Windows, Visual Studio, and IIS Express for development, then you may
not find the need to trust the development certificate. IIS Express acts as a reverse proxy
when you’re developing locally, so handles the SSL/TLS setup itself. On top of that, Visual
Studio should trust the IIS development certificate as part of installation, so you may never
see the browser warnings at all!

613

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl#how-to-set-up-a-developer-certificate-for-docker
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl#how-to-set-up-a-developer-certificate-for-docker

©Manning Publications Co. To comment go to liveBook

The .NET Core and IIS development certificates make it easy to use Kestrel with HTTPS
locally, but those certificates won’t help you once you move to production. In the next section,
I show how to configure Kestrel to use a production TLS certificate.

18.1.2 Configuring Kestrel with a production HTTPS certificate

Creating a TLS certificate for production is often a laborious process, as it requires proving to a
third-party certificate authority (CA) that you own the domain you’re creating the certificate
for. This an important step in the “trust” process and ensures that attackers can’t impersonate
your servers. The result of the process is one or more files, which is the HTTPS certificate you
need to configure for your app.

TIP The specifics of how to obtain a certificate vary by provider, and by your OS platform, so follow your

provider’s documentation carefully. The vagaries and complexities of this process is one of the reasons I

strongly favor the SSL/TLS-offloading or “one-click” approaches described previously. Those approaches mean

my apps don’t need to deal with certificates, and I don’t need to use the approaches described in section

18.1.2; I delegate that responsibility to another piece of the network, or the underlying platform.

Once you have a certificate, you need to configure Kestrel to use it to serve HTTPS traffic. In
chapter 16, you saw how to set the port your application listens on with the ASPNETCORE_URLS
environment variable or via the command line, and you saw that you could provide an https
URL. As you didn’t provide any certificate configuration, Kestrel used the development
certificate by default. In production, you need to tell Kestrel which certificate to use.

Kestrel is very configurable, allowing you to configure your certificates in multiple ways.
You can use different certificates for different ports, you can load from a .pfx file or from the
OS certificate store, or you can have different configuration for each URL endpoint you expose.
For full details, see the documentation at
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-
configuration.

The following listing shows one possible way to set a custom HTTPS certificate for your
production app, by configuring the default certificate Kestrel uses for HTTPS connections. You
can add the "Kestrel:Certificates:Default" section to your appsettings.json file (or using
any other configuration source, as described in chapter11) to define the pfx file of the
certificate to use. You must also provide the password for accessing the certificate.

Listing 18.1 Configuring the default HTTPS certificate for Kestrel using a pfx file

{
 "Kestrel": { #A
 "Certificates": { #A
 "Default": { #A
 "Path": "localhost.pfx", #B
 "Password": "testpassword" #C
 }
 }
 }

614

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-configuration
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-configuration

©Manning Publications Co. To comment go to liveBook

}

#A Create a configuration section at Kestrel:Certificates:Default
#B The relative or absolute path to the certificate
#C The password for opening the certificate

The example above is the simplest way to replace the HTTPS certificate, as it doesn’t require
changing any of Kestrel’s defaults. You can use a similar approach to load the HTTPS
certificate from the OS certificate store (on Windows or macOS), as shown in the
documentation:
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-
configuration.

WARNING Listing 18.1 has hardcoded the certificate filename and password for simplicity, but you should

either load these from a configuration store like user-secrets, as you saw in Chapter 11, or load the certificate

from the local store. Never put production passwords in your appsettings.json files.

All the default ASP.NET Core templates configure your application to serve both HTTP and
HTTPS traffic, and with the configuration you’ve seen so far, you can ensure your application
can handle both HTTP and HTTPS in development and in production.

However, whether you use HTTP or HTTPS may depend on the URL users use when they
first browse to your app. For example, if your app listens using the default URLS,
http://localhost:5000 for HTTP traffic and https://localhost:5001 for HTTPS traffic, then if a
user navigates to the HTTP URL, then their traffic will be unencrypted. Seeing as you’ve gone
to all the trouble to set up HTTPS, it’s probably best that you force users to use it!

18.1.3 Enforcing HTTPS for your whole app

Enforcing HTTPS across your whole website is practically required these days. Browsers are
beginning to explicitly label HTTP pages as insecure, for security reasons you must use TLS
any time you’re transmitting sensitive data across the internet, and thanks to HTTP/2,85
adding TLS can improve your app’s performance.

There are multiple approaches to enforcing HTTPS for your application. If you’re using a
reverse proxy with SSL/TLS-offloading, then that might be handled for you anyway, without
having to worry about it within your apps. Nevertheless, it doesn’t hurt to enforce SSL/TLS in
your applications too, regardless of what the reverse may be doing.

NOTE If you’re building a Web API, rather than a Razor Pages app, then it’s common to just reject HTTP

requests, without using the approaches described in this section. These protections apply primarily when

85HTTP/2 offers many performance improvements over HTTP/1.x, and all modern browsers require HTTPS to enable it. For a great introduction to HTTP/2,

see https://developers.google.com/web/fundamentals/performance/http2/.

615

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-configuration
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#endpoint-configuration
https://developers.google.com/web/fundamentals/performance/http2/
http://localhost:5000
https://localhost:5001

©Manning Publications Co. To comment go to liveBook

building apps to be consumed in a browser. For more details, see

https://docs.microsoft.com/aspnet/core/security/enforcing-ssl.

One approach to improving the security of your app is to use HTTP security headers. These are
HTTP headers, sent as part of your HTTP response, which tell the browser how it should
behave. There are many different headers available, most of which restrict the features your
app can use in exchange for increased security86. In the next chapter, you’ll see how to add
your own custom headers to your HTTP responses by creating custom middleware.

One of these security headers, the HTTP Strict Transport Security (HSTS) header, can help
ensure browsers use HTTPS where it’s available, instead of defaulting to HTTP.

ENFORCING HTTPS WITH HTTP STRICT TRANSPORT SECURITY HEADERS

It’s unfortunate, but by default, browsers always load apps over HTTP, unless otherwise
specified. That means your apps typically must support both HTTP and HTTPS, even if you
don’t want to serve any traffic over HTTP. One mitigation for this (and a security best
practice), is to add HTTP Strict Transport Security headers to your responses.

DEFINITION HTTP Strict Transport Security (HSTS) is a header that instructs the browser to use HTTPS for

all subsequent requests to your application. The browser will no longer send HTTP requests to your app and will

only use HTTPS instead. It can only be sent with responses to HTTPS requests.

HSTS headers are strongly recommended for production apps. You generally don’t want to
enable them for local development, as that would mean you can never run a non-HTTPS app
locally! In a similar fashion, you should only use HSTS sites for which you always intend to use
HTTPS, as it’s hard (sometimes impossible) to “turn-off” HTTPS once it’s enforced with HSTS!

ASP.NET Core comes with a built-in middleware for setting HSTS headers, which is
included in some of the default templates automatically. The following listing shows how you
can configure the HSTS headers for your application using the HstsMiddleware in Startup.cs.

Listing 18.2 Using HstsMiddleware to add HSTS headers to an application

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 services.AddHsts(options => #A
 { #A
 options.MaxAge = TimeSpan.FromHours(1); #A
 }); #A
 }

86Scott Helme has some great guidance on, this and other security headers you can add to your site: https://scotthelme.co.uk/hardening-your-http-

response-headers/ .

616

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl
https://scotthelme.co.uk/hardening-your-http-response-headers/
https://scotthelme.co.uk/hardening-your-http-response-headers/

©Manning Publications Co. To comment go to liveBook

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsProduction()) #B
 {
 app.UseHsts(); #C
 }

 app.UseStaticFiles(); #D
 app.UseRouting(); #D
 app.UseAuthorization(); #D
 app.UseEndpoints(endpoints => #D
 { #D
 endpoints.MapRazorPages(); #D
 }); #D
 }
}

#A Configure your HSTS header settings. This changes the MaxAge from the default of 30 days.
#B You shouldn’t use HSTS in local environments
#C Adds the HstsMiddleware.
#D The HstsMiddleware should be very early in the middleware pipeline.

TIP The example above shows how to change the MaxAge sent in the HSTS header. It’s a good idea to start

with a small value initially. Once you’re sure your app’s HTTPS is functioning correctly, increase the age for

greater security. For more details, on HSTS see https://scotthelme.co.uk/hsts-the-missing-link-in-tls/.

HSTS is a great option for forcing users to use HTTPS on your website. But one problem with
the header is that it can only be added to HTTPS requests. That means you must have already
made an HTTPS request before HSTS kicks-in: if the initial request is HTTP, then no HSTS
header is sent, and you stay on HTTP! That’s unfortunate, but you can mitigate it by
redirecting insecure requests to HTTPS immediately.

REDIRECTING FROM HTTP TO HTTPS WITH THE HTTPS REDIRECTION MIDDLEWARE

The HstsMiddleware should generally be used in conjunction with middleware that redirects
all HTTP requests to HTTPS.

TIP It’s possible to apply HTTPS redirection to only parts of your application, for example to specific Razor

Pages, but I don’t recommend that, as it’s too easy to open up a security hole in your application.

ASP.NET Core comes with HttpsRedirectionMiddleware, which you can use to enforce
HTTPS across your whole app. You add it to the middleware pipeline in the Configure section
of Startup, and it ensures that any requests that pass through it are secure. If an HTTP
request reaches the HttpsRedirectionMiddleware, the middleware immediately short-circuits
the pipeline with a redirect to the HTTPS version of the request. The browser will then repeat
the request using HTTPS instead of HTTP.

617

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://scotthelme.co.uk/hsts-the-missing-link-in-tls/

©Manning Publications Co. To comment go to liveBook

NOTE The eagle-eyed among you will notice that even with the HSTS and redirection middleware, there is still

an inherent weakness. By default, browsers will always make an initial, insecure, request over HTTP to your

app. The only way to avoid this is by HSTS-preloading, which tells browsers to always use HTTPS. You can find a

great guide to HSTS, including preloading, here https://www.forwardpmx.com/insights/blog/the-ultimate-

guide-to-hsts-protocol/.

The HttpsRedirectionMiddleware is added in the default ASP.NET Core templates. It is
typically placed after the error handling and HstsMiddleware, as shown in the following
listing. By default, the middleware redirects all HTTP requests to the secure endpoint, using an
HTTP 307 Temporary Redirect status code.

Listing 18.3 Using RewriteMiddleware to enforce HTTPS for an application

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseExceptionHandler("/Error");
 if (env.IsProduction())
 {
 app.UseHsts();
 }

 app.UseHttpsRedirection(); #A
 app.UseStaticFiles();
 app.UseRouting();
 app.UseAuthorization();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

#A Adds the HttpsRedirectionMiddleware to the pipeline. Redirects all HTTP requests to HTTPS.

The HttpsRedirectionMiddleware will automatically redirect HTTP requests to the first
configured HTTPS endpoint for your application. If your application isn’t configured for HTTPS,
the middleware won’t redirect, and instead will log a warning:

warn: Microsoft.AspNetCore.HttpsPolicy.HttpsRedirectionMiddleware[3]
 Failed to determine the https port for redirect.

If you want the middleware to redirect to a different port than Kestrel knows about, you can
configure that by setting the ASPNETCORE_HTTPS_PORT environment variable. This is
sometimes necessary if you’re using a reverse-proxy, and can be set in alternative ways, as
described in https://docs.microsoft.com/aspnet/core/security/enforcing-ssl.

618

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.forwardpmx.com/insights/blog/the-ultimate-guide-to-hsts-protocol/
https://www.forwardpmx.com/insights/blog/the-ultimate-guide-to-hsts-protocol/
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl

©Manning Publications Co. To comment go to liveBook

SSL/TLS offloading, header forwarding, and detecting secure requests
At the start of section 18.1, I encouraged you to consider terminating HTTPS requests at a reverse proxy. That way, the
user uses HTTPS to talk to the reverse proxy, and the reverse proxy talks to your app using HTTP. With this setup, your
users are protected but your app doesn’t have to deal with TLS certificates itself.
In order for the HttpsRedirectionMiddleware to work correctly, Kestrel needs some way of knowing whether the
original request that the reverse proxy received was over HTTP or HTTPS. The reverse proxy communicates to your app
over HTTP, so Kestrel can’t figure that out without extra help.
The standard approach used by most reverse proxies (such as IIS, NGINX, and HAProxy) is to add additional headers to
the request before forwarding it to your app. Specifically, a header called X-Forwarded-Proto is added, indicating
whether the original request protocol was HTTP or HTTPS.
ASP.NET Core includes the ForwardedHeadersMiddleware to look for this header (and others) and update the
request accordingly, so your app treats a request that was originally secured by HTTPS as secure for all intents and
purposes.
If you’re using IIS with the UseIisIntegration() extension, the header forwarding is handled for you
automatically. If you’re using a different reverse proxy, such as NGINX or HAProxy, then you can enable the middleware
by setting the environment variable ASPNETCORE_FORWARDEDHEADERS_ENABLED=true, as you saw in chapter 16.
Alternatively, you can manually add the middleware to your application, as shown in section 16.3.2.
When the reverse proxy forwards a request, ForwardedHeadersMiddleware will look for the X-Forwarded-
Proto header and will update the request details as appropriate. For all subsequent middleware, the request is
considered secure. When adding the middleware manually, it’s important you place
ForwardedHeadersMiddleware before the call to UseHsts() or UseHttpsRedirection(), so that the
forwarded headers are read and the request is marked secure, as appropriate.

HTTPS is one of the most basic requirements for adding security to your application these
days. It can be tricky to set up initially, but once you’re up and running, you can largely forget
about it, especially if you’re using SSL/TLS termination at a reverse proxy.

Unfortunately, most other security practices require rather more vigilance to ensure you
don’t accidentally introduce vulnerabilities into your app as it grows and develops. Many
attacks are conceptually simple and have been known about for years, yet they’re still
commonly found in new applications. In the next section, we look at one such attack and see
how to defend against it when building apps using Razor Pages.

18.2 Defending against cross-site scripting (XSS) attacks
In this section, I describe cross-site scripting attacks and how attackers can use them to
compromise your users. I show how the Razor Pages framework protects you from these
attacks, how to disable the protections when you need to, and what to look out for. I also
discuss the difference between HTML-encoding and JavaScript-encoding, and the impact of
using the wrong encoder.

619

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Attackers can exploit a vulnerability in your app to create cross-site scripting (XSS)
attacks87 that execute code in another user’s browser. Commonly, attackers submit content
using a legitimate approach, such as an input form, which is later rendered somewhere to the
page. By carefully crafting malicious input, the attacker can execute arbitrary JavaScript on a
user’s browsers, and so can steal cookies, impersonate the user, and generally do bad things.

Figure 18.5 shows a basic example of an XSS attack. Legitimate users of your app can
send their name to your app by submitting a form. The app then adds the name to an internal
list and renders the whole list to the page. If the names are not rendered safely, then a
malicious user can execute JavaScript in the browser of every other user that views the list.

Figure 18.5 How an XSS vulnerability is exploited. An attacker submits malicious content to your app, which is
displayed in the browser of other users. If the app doesn’t encode the content when writing to the page, the
input becomes part of the HTML of the page and can run arbitrary JavaScript.

In figure 18.5, the user entered a snippet of HTML such as their name. When users view the
list of names, the Razor template renders the names using @Html.Raw(), which writes the
<script> tag directly to the document. The user’s input has become part of the page’s HTML

87For a detailed discussion, see OWASP at https://owasp.org/www-community/attacks/xss/.

620

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://owasp.org/www-community/attacks/xss/
mailto:@Html.Raw

©Manning Publications Co. To comment go to liveBook

structure. As soon as the page is loaded in the user’s browser, the <script> tag executes,
and the user is compromised. Once an attacker can execute arbitrary JavaScript on a user’s
browser, they can do pretty much anything.

The vulnerability here is due to rendering the user input in an unsafe way. If the data isn’t
encoded to make it safe before it’s rendered, then you could open your users to attack. By
default, Razor protects against XSS attacks by HTML-encoding any data written using Tag
Helpers, HTML Helpers, or the @ syntax. So, generally, you should be safe, as you saw in
chapter 7.

Using @Html.Raw() is where the danger lies—if the HTML you’re rendering contains user
input (even indirectly), then you could have an XSS vulnerability. By rendering the user input
with @ instead, the content is encoded before it’s written to the output, as shown in figure
18.6.

Figure 18.6 Protecting against XSS attacks by HTML encoding user input using @ in Razor templates. The
<script> tag is encoded so that it is no longer rendered as HTML, and can’t be used to compromise your app.

This example demonstrates using HTML encoding to prevent elements being directly added to
the HTML DOM, but it’s not the only case you have to think about. If you’re passing untrusted
data to JavaScript, or using untrusted data in URL query values, you must make sure you
encode the data correctly.

621

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:@Html.Raw

©Manning Publications Co. To comment go to liveBook

A common scenario is when you’re using jQuery or JavaScript with Razor pages, and you
want to pass a value from the server to the client. If you use the standard @ symbol to render
the data to the page, then the output will be HTML-encoded. Unfortunately, if you HTML
encode a string and inject it directly into JavaScript, you probably won’t get what you expect.

For example, if you have a variable in your Razor file called name, and you want to make it
available in JavaScript, you might be tempted to use something like

<script>var name = '@name'</script>

If the name contains special characters, Razor will encode them using HTML encoding, which
probably isn’t what you want in this JavaScript context. For example, if name was Arnold
"Arnie" Schwarzenegger, then rendering it as you did previously would give:

<script>var name = 'Arnold "Arnie" Schwarzenegger';</script>

Note how the quotation marks " have been HTML-encoded to ". If you use this value in
JavaScript directly, expecting it to be a “safe” encoded value, then it’s going to look wrong, as
shown in figure 18.7.

Figure 18.7 Comparison of alerts when using JavaScript encoding compared to HTML encoding

Instead, you should encode the variable using JavaScript encoding so that the " is rendered as
a safe Unicode character, \u0022. You can achieve this by injecting a Java-ScriptEncoder
into the view (as you saw in chapter 10) and calling Encode() on the name variable:

@inject System.Text.Encodings.Web.JavaScriptEncoder encoder;
<script>var name = '@encoder.Encode(name)'</script>

To avoid having to remember to use JavaScript encoding, I recommend you don’t write values
into JavaScript like this. Instead, write the value to an HTML element’s attributes, and then
read that into the JavaScript variable later. That avoids the need for the JavaScript encoder
entirely.

Listing 18.4 Passing values to JavaScript by writing them to HTML attributes

<div id="data" data-name="@name"></div> #A
<script>

622

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:'@encoder.Encode

©Manning Publications Co. To comment go to liveBook

var ele = document.getElementById('data'); #B
var name = ele.getAttribute('data-name'); #C
</script>

#A Write the value you want in JavaScript to a data-* attribute. This will HTML encode the data.
#B Gets a reference to the HTML element
#C Reads the data-* attribute into JavaScript, which will convert it to JavaScript encoding

XSS attacks are still common, and it’s easy to expose yourself to them whenever you allow
users to input data. Validation of the incoming data can sometimes help, but it’s often a tricky
problem. For example, a naive name validator might require that you only use letters, which
would prevent most attacks. Unfortunately, that doesn’t account for users with hyphens or
apostrophes in their name, let alone users with non-western names. People get
(understandably) upset when you tell them their name is invalid, so be wary of this approach!

Whether or not you use strict validation, you should always encode the data when you
render it to the page. Think carefully whenever you find yourself writing @Html.Raw(). Is there
any way for a user to get malicious data into that field? If so, you’ll need to find another way
to display the data.

XSS vulnerabilities allow attackers to execute JavaScript on a user’s browser. The next
vulnerability we’re going to consider lets them make requests to your API as though they’re a
different logged-in user, even when the user isn’t using your app. Scared? I hope so!

18.3 Protecting from cross-site request forgery (CSRF) attacks
In this section you’ll learn about cross-site request forgery attacks, how attackers can use
them to impersonate a user on your site, and how to protect against them using anti-forgery
tokens. Razor Pages protects you from these attacks by default, but you can disable these
verifications, so it’s important to understand the implications of doing so.

Cross-site request forgery (CSRF) attacks can be a problem for websites or APIs that use
cookies for authentication. A CSRF attack involves a malicious website making an
authenticated request to your API on behalf of the user, without the user initiating the
request. In this section, we’ll explore how these attacks work and how you can mitigate them
with anti-forgery tokens.

The canonical example of this attack is a bank transfer/withdrawal. Imagine you have a
banking application that stores authentication tokens in a cookie, as is common (especially in
traditional server-side rendered applications). Browsers automatically send the cookies
associated with a domain with every request, so the app knows whether a user is
authenticated.

Now imagine your application has a page that lets a user transfer funds from their account
to another account, using a POST request to the Balance Razor Page. You have to be logged
in to access the form (you’ve protected the Razor Page with the [Authorize] attribute), but
otherwise you post a form that says how much you want to transfer, and where you want to
transfer it.

623

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:@Html.Raw

©Manning Publications Co. To comment go to liveBook

Imagine a user visits your site, logs in, and performs a transaction. They then visit a
second website that the attacker has control of. The attacker has embedded a form on their
website that performs a POST to your bank’s website, identical to the transfer funds form on
your banking website. This form does something malicious, such as transfer all the user’s
funds to the attacker, as shown in figure 18.8. Browsers automatically send the cookies for the
application when the page does a full form post, and the banking app has no way of knowing
that this is a malicious request. The unsuspecting user has given all their money to the
attacker!

Figure 18.8 A CSRF attack occurs when a logged-in user visits a malicious site. The malicious site crafts a form
that matches one on your app and POSTs it to your app. The browser sends the authentication cookie
automatically, so your app sees the request as a valid request from the user.

The vulnerability here revolves around the fact that browsers automatically send cookies when
a page is requested (using a GET request) or a form is POSTed. There’s no difference between
a legitimate POST of the form in your banking app and the attacker’s malicious POST.

624

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Unfortunately, this behavior is baked into the web; it’s what allows you to navigate websites
seamlessly after initially logging in.

A common solution to the attack is the synchronizer token pattern,88 which uses user-
specific, unique, anti-forgery tokens to enforce a difference between a legitimate POST and a
forged POST from an attacker. One token is stored in a cookie and another is added to the
form you wish to protect. Your app generates the tokens at runtime based on the current
logged-in user, so there’s no way for an attacker to create one for their forged form.

When the Balance Razor Page receives a form POST, it compares the value in the form
with the value in the cookie. If either value is missing, or they don’t match, then the request is
rejected. If an attacker creates a POST, then the browser will post the cookie token as usual,
but there won’t be a token in the form itself, or the token won’t be valid. The Razor Page will
reject the request, protecting from the CSRF attack, as in figure 18.9.

Figure 18.9 Protecting against a CSRF attack using anti-forgery tokens. The browser automatically forwards the
cookie token, but the malicious site can’t read it, and so can’t include a token in the form. The app rejects the
malicious request as the tokens don’t match.

88The OWASP site gives a thorough discussion of the CSRF vulnerability, including the synchronizer token pattern:

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.

625

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet

©Manning Publications Co. To comment go to liveBook

The good news is that Razor Pages automatically protects you against CSRF attacks! The Form
Tag Helper automatically sets an anti-forgery token cookie and renders the token to a hidden
field called __RequestVerificationToken for every <form> element in your app (unless you
specifically disable them). For example, take this simple Razor template that posts back to the
same Razor Page:

<form method="post">
 <label>Amount</label>
 <input type="number" name="amount" />
 <button type="submit">Withdraw funds</button>
</form>

When rendered to HTML, the anti-forgery token is stored in the hidden field and posted back
with a legitimate request:

<form method="post">
 <label>Amount</label>
 <input type="number" name="amount" />
 <button type="submit" >Withdraw funds</button>
 <input name="__RequestVerificationToken" type="hidden"
 value="CfDJ8Daz26qb0hBGsw7QCK">
</form>

ASP.NET Core automatically adds the anti-forgery tokens to every form, and Razor Pages
automatically validates them. The framework ensures the anti-forgery tokens exist in both the
cookie and the form data, ensures that they match, and will reject any requests where they
don’t.

If you’re using MVC controllers with views instead of Razor Pages, ASP.NET Core still adds
the anti-forgery tokens to every form. Unfortunately, it doesn’t validate them for you. Instead,
you have to decorate your controllers and actions with [ValidateAntiForgeryToken]
attributes. These ensure the anti-forgery tokens exist in both the cookie and the form data,
ensures they match, and will reject any requests where they don’t.

WARNING ASP.NET Core doesn’t automatically validate anti-forgery tokens if you’re using MVC controllers

with Views. You must make sure you mark all vulnerable methods with [ValidateAntiForgeryToken]

attributes instead, as described in the documentation: https://docs.microsoft.com/aspnet/core/security/anti-

request-forgery. Note that if you’re using Web API controllers and are not using cookies for authentication, then

you are not vulnerable to CSRF attacks.

Generally, you only need to use anti-forgery tokens for POST, DELETE, and other dangerous
request types that are used for modifying state. GET requests shouldn’t be used for this
purpose, so the framework doesn’t require valid anti-forgery tokens to call them. Razor Pages
validates anti-forgery tokens for dangerous verbs like POST and ignores safe verbs like GET.
As long as you create your app following this pattern (and you should!), then the framework
will do the right thing to keep you safe.

If you need to explicitly ignore anti-forgery tokens on a Razor Page for some reason, you
can disable the validation by applying the [IgnoreAntiforgeryToken] attribute to a Razor

626

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/aspnet/core/security/anti-request-forgery

©Manning Publications Co. To comment go to liveBook

Page’s PageModel. This bypasses the framework protections, for those cases where you’re
doing something that you know is safe and doesn’t need protecting, but in most cases it’s
better to play it safe and validate, just in case.

CSRF attacks can be a tricky thing to get your head around from a technical point of view,
but for the most part everything should work without much effort on your part. Razor will add
anti-forgery tokens to your forms, and the Razor Pages framework will take care of validation
for you.

Where things get trickier is if you’re making a lot of requests to an API using JavaScript
and you’re posting JSON objects rather than form data. In these cases, you won’t be able to
send the verification token as part of a form (as you’re sending JSON), so you’ll need to add it
as a header in the request instead.89

TIP If you’re not using cookie authentication, and instead have an SPA that sends authentication tokens in a

header, then good news—you don’t have to worry about CSRF at all! Malicious sites can only send cookies, not

headers, to your API, so they can’t make authenticated requests.

Generating unique tokens with the Data Protection APIs
The anti-forgery tokens used to prevent CSRF attacks rely on the ability of the framework to use strong symmetric
encryption to encrypt and decrypt data. Encryption algorithms typically rely on one or more keys, which are used to
initialize the encryption and to make the process reproducible. If you have the key, you can encrypt and decrypt data;
without it, the data is secure.
In ASP.NET Core, encryption is handled by the Data Protection APIs. They’re used to create the anti-forgery tokens, to
encrypt authentication cookies, and to generate secure tokens in general. Crucially, they also control the management
of the key files that are used for encryption.
A key file is a small XML file that contains the random key value used for encryption in ASP.NET Core apps. It’s critical
that it’s stored securely—if an attacker got hold of it, they could impersonate any user of your app, and generally do bad
things!
The Data Protection system stores the keys in a safe location, depending on how and where you host your app. For
example:
• Azure Web App—In a special synced folder, shared between regions.
• IIS without user profile—Encrypted in the registry.
• Account with user profile—In %LOCALAPPDATA%\ASP.NET\DataProtection-Keys on Windows, or

~/.aspnet/DataProtection-Keys on Linux or macOS.
• All other cases—In memory. When the app restarts, the keys will be lost.
So why do you care? In order for your app to be able to read your users’ authentication cookies, it must decrypt them
using the same key that was used to encrypt them. If you’re running in a web-farm scenario, then, by default, each
server will have its own key and won’t be able to read cookies encrypted by other servers.
To get around this, you must configure your app to store its data protection keys in a central location. This could be a
shared folder on a hard drive, a Redis instance, or an Azure blob storage instance, for example.

89Exactly how you do this varies depending on the JavaScript framework you’re using. The documentation contains examples using JQuery and AngularJS, but

you should be able to extend this to your JavaScript framework of choice: http://mng.bz/54Sl.

627

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/54Sl

©Manning Publications Co. To comment go to liveBook

The documentation on the data protection APIs is extremely detailed, but it can be overwhelming. I recommend reading
the section on configuring data protection, (http://mng.bz/d40i) and configuring a key storage provider for use in a
web-farm scenario (http://mng.bz/5pW6).

It’s worth clarifying that the CSRF vulnerability discussed in this section requires that a
malicious site does a full form POST to your app. The malicious site can’t make the request to
your API using client-side only JavaScript, as browsers will block JavaScript requests to your
API that are from a different origin.

This is a safety feature, but it can often cause you problems. If you’re building a client-side
SPA, or even if you have a little JavaScript on an otherwise server-side rendered app, you may
find you need to make such cross-origin requests. In the next section, I’ll describe a common
scenario you’re likely to run into and show how you can modify your apps to work around it.

18.4 Calling your web APIs from other domains using CORS
In this section you’ll learn about cross-origin resource sharing (CORS), a protocol to allow
JavaScript to make requests from one domain to another. CORS is a frequent area of
confusion for many developers, so this section describes why it’s necessary, and how CORS
headers work. You’ll then learn how to add CORS to both your whole application and specific
Web API actions, and how to configure multiple CORS policies for your application.

As you’ve already seen, CSRF attacks can be powerful, but they would be even more
dangerous if it weren’t for browsers implementing the same-origin policy. This policy blocks
apps from using JavaScript to call a web API at a different location unless the web API
explicitly allows it.

DEFINITION Origins are deemed the same if they match the scheme (HTTP or HTTPS), domain

(example.com), and port (80 by default for HTTP, and 443 for HTTPS). If an app attempts to access a resource

using JavaScript and the origins aren’t identical, the browser blocks the request.

The same-origin policy is strict—the origins of the two URLs must be identical for the request
to be allowed. For example, the following origins are the same:

• http://example.com/home
• http://example.com/site.css

The paths are different for these two URLs (/home and /sites.css), but the scheme, domain,
and port (80) are identical. So, if you were on the homepage of your app, you could request
the /sites.css file using JavaScript without any issues.

In contrast, the origins of the following sites are all different, so you couldn’t request any
of these URLs using JavaScript from the http://example.com origin:

• https://example.com—Different scheme (https)
• http://www.example.com—Different domain (includes a subdomain)

628

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/d40i
http://mng.bz/5pW6
http://example.com/home
http://example.com/site.css
http://example.com
https://example.com%E2%80%94Different
http://www.example.com%E2%80%94Different

©Manning Publications Co. To comment go to liveBook

• http://example.com:5000—Different port (default HTTP port is 80)

For simple apps, where you have a single web app handling all of your functionality, this
limitation might not be a problem, but it’s extremely common for an app to make requests to
another domain.

For example, you might have an e-commerce site hosted at http://shopping.com, and
you’re attempting to load data from http://api.shopping.com to display details about the
products available for sale. With this configuration, you’ll fall foul of the same-origin policy.
Any attempt to make a request using JavaScript to the API domain will fail, with an error
similar to figure 18.10.

Figure 18.10 The console log for a failed cross-origin request. Chrome has blocked a cross-origin request from
the app http://shopping.com:6333 to the API at http://api.shopping.com:5111.

The need to make cross-origin requests from JavaScript is increasingly common with the rise
of client-side SPAs and the move away from monolithic apps. Luckily, there’s a web standard
that lets you work around this in a safe way; this standard is called cross-origin resource
sharing (CORS). You can use CORS to control which apps can call your API, so you can enable
scenarios like the one described earlier.

18.4.1 Understanding CORS and how it works

CORS is a web standard that allows your Web API to make statements about who can make
cross-origin requests to it. For example, you could make statements such as

• Allow cross-origin requests from http://shopping.com and https://app.shopping.com
• Only allow GET cross-origin requests
• Allow returning the Server header in responses to cross-origin requests
• Allow credentials (such as authentication cookies or authorization headers) to be sent

with cross-origin requests

You can combine these rules into a policy and apply different policies to different endpoints of
your API. You could apply a policy to your entire application, or a different policy to every API
action.

629

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://example.com:5000%E2%80%94Different
http://shopping.com
http://api.shopping.com
http://shopping.com:6333
http://api.shopping.com:5111
http://shopping.com
https://app.shopping.com

©Manning Publications Co. To comment go to liveBook

CORS works using HTTP headers. When your Web API application receives a request, it
sets special headers on the response to indicate whether cross-origin requests are allowed,
which origins they’re allowed from, and which HTTP verbs and headers the request can use—
pretty much everything about the request.

In some cases, before sending a real request to your API, the browser sends a preflight
request. This is a request sent using the OPTIONS verb, which the browser uses to check
whether it’s allowed to make the real request. If the API sends back the correct headers, the
browser will send the true cross-origin request, as shown in figure 18.11.

Figure 18.11 Two cross-origin-requests. The response to the first request doesn’t contain any CORS headers, so
the browser blocks the app from reading it. The second request requires a preflight OPTIONS request, to check if
CORS is enabled. As the response contains CORS headers, the real request can be made, and the response
provided to the JavaScript app.

TIP For a more detailed discussion of CORS, see CORS in Action by Monsur Hossain (Manning, 2014),

available at http://mng.bz/aD41.

630

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/aD41

©Manning Publications Co. To comment go to liveBook

The CORS specification, as with many technical documents, is pretty complicated,90 with a
variety of headers and processes to contend with. Thankfully, ASP.NET Core handles the
details of the specification for you, so your main concern is working out exactly who needs to
access your API, and under what circumstances.

18.4.2 Adding a global CORS policy to your whole app

Typically, you shouldn’t set up CORS for your APIs until you need it. Browsers block cross-
origin communication for a reason—it closes an avenue of attack—they’re not being awkward!
Wait until you have an API on a different domain to an app that needs to access it.

Adding CORS support to your application requires four things:

• Add the CORS services to your app.
• Configure at least one CORS policy.
• Add the CORS middleware to your middleware pipeline.
• Either set a default CORS policy for your entire app or decorate your Web API actions

with the [EnableCors] attribute to selectively enable CORS for specific endpoints.

Adding the CORS services to your application involves calling AddCors() in your
Startup.ConfigureServices method:

services.AddCors();

The bulk of your effort in configuring CORS will go into policy configuration. A CORS policy
controls how your application will respond to cross-origin requests. It defines which origins are
allowed, which headers to return, which HTTP methods to allow, and so on. You normally
define your policies inline when you add the CORS services to your application.

For example, consider the previous e-commerce site example. You want your API that is
hosted at http://api.shopping.com to be available from the main app via client-side JavaScript,
hosted at http://shopping.com. You therefore need to configure the API to allow cross-origin
requests.

NOTE Remember, it’s the main app that will get errors when attempting to make cross-origin requests, but

it’s the API you’re accessing that you need to add CORS to, not the app making the requests.

The following listing shows how to configure a policy called "AllowShoppingApp" to enable
cross-origin requests from http://shopping.com to the API. Additionally, we explicitly allow any
HTTP verb type; without this call, only simple methods (GET, HEAD, and POST) are allowed.
The policies are built up using the familiar “fluent builder” style you’ve seen throughout this
book.

90If that’s the sort of thing that floats your boat, you can read the spec here: https://fetch.spec.whatwg.org/#http-cors-protocol.

631

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://fetch.spec.whatwg.org/#http-cors-protocol
http://api.shopping.com
http://shopping.com
http://shopping.com

©Manning Publications Co. To comment go to liveBook

Listing 18.5 Configuring a CORS policy to allow requests from a specific origin

public void ConfigureServices(IServiceCollection services)
{
 services.AddCors(options => { #A
 options.AddPolicy("AllowShoppingApp", policy => #B
 policy.WithOrigins("http://shopping.com") #C
 .AllowAnyMethod()); #D
 });
 // other service configuration
}

#A The AddCors method exposes an Action<CorsOptions> overload.
#B Every policy has a unique name.
#C The WithOrigins method specifies which origins are allowed. Note the URL has no trailing /.
#D Allows all HTTP verbs to call the API

WARNING When listing origins in WithOrigins(), ensure that they don’t have a trailing "/", otherwise

the origin will never match and your cross-origin requests will fail.

Once you’ve defined a CORS policy, you can apply it to your application. In the following
listing, apply the "AllowShoppingApp" policy to the whole application using CorsMiddleware
by calling UseCors() in the Configure method of Startup.cs.

Listing 18.6 Adding the CORS middleware and configuring a default CORS policy

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting(); #A

 app.UseCors("AllowShoppingApp"); #B
 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints => #C
 {
 endpoints.MapControllers();
 });
}

#A The CORS middleware must come after the call to UseRouting()
#B Adds the CORS middleware and uses AllowShoppingApp as the default policy
#B Place the CORS middleware before the endpoint middleware

NOTE As with all middleware, the order of the CORS middleware is important. You must place the call to

UseCors() after UseRouting() and before UseEndpoints().The CORS middleware needs to intercept

cross-origin requests to your Web API actions, so it can generate the correct responses to preflight requests

and add the necessary headers. It’s typical to place the CORS middleware before the call to

UseAuthentication().

With the CORS middleware in place for the API, the shopping app can now make cross-origin
requests. You can call the API from the http://shopping.com site and the browser lets the

632

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://shopping.com
http://shopping.com

©Manning Publications Co. To comment go to liveBook

CORS request through, as shown in figure 18.12. If you make the same request from a
domain other than http://shopping.com, the request continues to be blocked.

Figure 18.12 With CORS enabled, as in the lower image, cross-origin requests can be made and the browser will
make the response available to the JavaScript. Compare this to the upper image, in which the request was
blocked.

Applying a CORS policy globally to your application in this way may be overkill. If there’s only
a subset of actions in your API that need to be accessed from other origins, then it’s prudent
to only enable CORS for those specific actions. This can be achieved with the [EnableCors]
attribute.

18.4.3 Adding CORS to specific Web API actions with EnableCorsAttribute

Browsers block cross-origin requests by default for good reason—they have the potential to be
abused by malicious or compromised sites. Enabling CORS for your entire app may not be
worth the risk if you know that only a subset of actions will ever need to be accessed cross-
origin.

If that’s the case, it’s best to only enable a CORS policy for those specific actions. ASP.NET
Core provides the [EnableCors] attribute, which lets you select a policy to apply to a given
controller or action method.

This approach lets you apply different CORS policies to different action methods. For
example, you could allow GET requests access to your entire API from the

633

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://shopping.com

©Manning Publications Co. To comment go to liveBook

http://shopping.com domain, but only allow other HTTP verbs for a specific controller, while
allowing anyone to access your product list action method.

You define these policies in ConfigureServices using AddPolicy() and giving the policy a
name, as you saw in listing 18.5. However, instead of calling UseCors("AllowShoppingApp")
as you saw in listing 18.6, add the middleware without a default policy, by calling UseCors()
only.

 To apply a policy to a controller or an action method, apply the [EnableCors] attribute,
as shown in the following listing. An [EnableCors] attribute on an action takes precedence
over an attribute on a controller, or you can use the [DisableCors] attribute to disable cross-
origin access to the method entirely.

Listing 18.7 Applying the EnableCors attribute to a controller and action

[EnableCors("AllowShoppingApp")] #A
public class ProductController: Controller
{
 [EnableCors("AllowAnyOrigin") #B
 public IActionResult GeteProducts() { /* Method */ }

 public IActionResult GeteProductPrice(int id) { /* Method */ } #C

 [DisableCors]
 public IActionResult DeleteProduct(int id) { /* Method */ } #D
}

#A Applies the AllowShoppingApp CORS policy to every action method
#B The AllowAnyOrigin policy is “closer” to the action, so it takes precedence.
#C The AllowShoppingApp policy (from the controller) will be applied.
#D The DisableCors attribute disables CORS for the action method completely.

If you want to apply a CORS policy to most of your actions, but want to use a different policy
or disable CORS entirely for some actions, you can pass a default policy when configuring the
middleware using UseCors("AllowShoppingApp") for example. Actions decorated with
[EnableCors("OtherPolicy")] will apply OtherPolicy preferentially, and actions decorated
with [DisableCors] will not have CORS enabled at all.

Whether you choose to use a single, a default CORS policy or multiple policies, you need to
configure the CORS policies for your application in ConfigureServies. Many different options
are available when configuring CORS. In the next section, I provide an overview of the
possibilities.

18.4.4 Configuring CORS policies

Browsers implement the cross-origin policy for security reasons, so you should carefully
consider the implications of relaxing any of the restrictions they impose. Even if you enable
cross-origin requests, you can still control what data cross-origin requests can send, and what
your API will return. For example, you can configure:

• The origins that may make a cross-origin request to your API

634

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://shopping.com

©Manning Publications Co. To comment go to liveBook

• The HTTP verbs (such as GET, POST, and DELETE) that can be used
• The headers the browser can send
• The headers that the browser can read from your app’s response
• Whether the browser will send authentication credentials with the request

You define all of these options when creating a CORS policy in your call to AddCors() using
the CorsPolicyBuilder, as you saw in listing 18.5. A policy can set all, or none of these
options, so you can customize the results to your heart’s content. Table 18.1 shows some of
the options available, and their effects.

Table 18.1 The methods available for configuring a CORS policy, and their effect on the policy

CorsPolicyBuilder method example Result

WithOrigins("http://shopping.com") Allows cross-origin requests from http://shopping .com.

AllowAnyOrigin() Allows cross-origin requests from any origin. This means

any website can make JavaScript requests to your API.

WithMethods()/AllowAnyMethod() Sets the allowed methods (such as GET, POST, and

DELETE) that can be made to your API.

WithHeaders()/AllowAnyHeader() Sets the headers that the browser may send to your API.

If you restrict the headers, you must include at least

"Accept", "Content-Type", and "Origin" to allow

valid requests.

WithExposedHeaders() Allows your API to send extra headers to the browser. By

default, only the Cache-Control, Content-

Language, Content-Type, Expires, Last-

Modified, and Pragma headers are sent in the

response.

AllowCredentials() By default, the browser won’t send authentication details

with cross-origin requests unless you explicitly allow it.

You must also enable sending credentials client-side in

JavaScript when making the request.

One of the first issues in setting up CORS is realizing you have a cross-origin problem at all.
Several times I’ve been stumped trying to figure out why a request won’t work, until I realize
the request is going cross-domain, or from HTTP to HTTPS, for example.

Whenever possible, I recommend avoiding cross-origin requests completely. You can end
up with subtle differences in the way browsers handle them, which can cause more
headaches. In particular, avoid HTTP to HTTPS cross-domain issues by running all of your
applications behind HTTPS. As discussed in section 18.1, that’s a best practice anyway, and
it’ll help avoid a whole class of CORS headaches.

635

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://shopping.com
http://shopping

©Manning Publications Co. To comment go to liveBook

Once I’ve established I definitely need a CORS policy, I typically start with the
WithOrigins() method. I then expand or restrict the policy further, as need be, to provide
cross-origin lock-down of my API, while still allowing the required functionality. CORS can be
tricky to work around, but remember, the restrictions are there for your safety.

Cross-origin requests are only one of many potential avenues attackers could use to
compromise your app. Many of these are trivial to defend against, but you need to be aware of
them, and know how to mitigate them.91 In the next section, we’ll look at common threats
and how to avoid them.

18.5 Exploring other attack vectors
So far in this chapter, I’ve described two potential ways attackers can compromise your
apps—XSS and CSRF attacks—and how to prevent them. Both of these vulnerabilities regularly
appear on the OWASP top ten list of most critical web app risks,92 so it’s important to be
aware of them, and to avoid introducing them into your apps. In this section, I provide an
overview of some of the other most common vulnerabilities and how to avoid them in your
apps.

18.5.1 Detecting and avoiding open redirect attacks

A common OWASP vulnerability is due to open redirect attacks. An open redirect attack is
where a user clicks a link to an otherwise safe app and ends up being redirected to a malicious
website; for example, one that serves malware. The safe app contains no direct links to the
malicious website, so how does this happen?

Open redirect attacks occur where the next page is passed as a parameter to an action
method. The most common example is when logging in to an app. Typically, apps remember
the page a user is on before redirecting them to a login page by passing the current page as a
returnUrl query string parameter. After the user logs in, the app redirects the user to the
returnUrl to carry on where they left off.

Imagine a user is browsing an e-commerce site. They click Buy on a product and are
redirected to the login page. The product page they were on is passed as the returnUrl, so
after they log in, they’re redirected to the product page, instead of being dumped back to the
home screen.

An open redirect attack takes advantage of this common pattern, as shown in figure 18.13.
A malicious attacker creates a login URL where the returnUrl is set to the website they want
to send the user and convinces the user to click the link to your web app. After the user logs
in, a vulnerable app will then redirect the user to the malicious site.

91For an example of how incorrectly configured CORS policies could expose vulnerabilities in your app, see http://mng.bz/211b.
92OWASP publishes the list online, with descriptions of each attack and how to prevent those attacks. You can view the lists dating back to 2003 at

http://mng.bz/yXd3, and a cheat sheet for staying safe here: https://cheatsheetseries.owasp.org/.

636

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/211b
http://mng.bz/yXd3
https://cheatsheetseries.owasp.org/

©Manning Publications Co. To comment go to liveBook

Figure 18.13 An open redirect makes use of the common return URL pattern. This is typically used for login
pages but may be used in other areas of your app too. If your app doesn’t verify the URL is safe before
redirecting the user, it could redirect users to malicious sites.

The simple solution to this attack is to always validate that the returnUrl is a local URL that
belongs to your app before redirecting users to it. The default Identity UI does this already, so
you shouldn’t have to worry about the login page if you’re using Identity, as described in
chapter 14.

If you have redirects in other parts of your app, ASP.NET Core provides a couple of helper
methods for staying safe, the most useful of which is Url.IsLocalUrl(). The following listing
shows how you could verify a provided return URL is safe, and if it isn’t, redirect to the app’s
homepage. You can also use the LocalRedirect() helper method on the ControllerBase and
Razor Page PageModel classes, which throws an exception if the provided URL isn’t local.

Listing 18.8 Detecting open redirect attacks by checking for local return URLs

[HttpPost]
public async Task<IActionResult> Login(
 LoginViewModel model, string returnUrl = null) #A
{
 // Verify password, and sign user in

 if (Url.IsLocalUrl(returnUrl)) #B
 {
 return Redirect(returnUrl); #C

637

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 }
 else
 {
 return RedirectToAction("Index", "Home"); #D
 }
}

#A The return URL is provided as an argument to the action method.
#B Returns true if the return URL starts with / or ~/
#C The URL is local, so it’s safe to redirect to it.
#D The URL was not local, could be an open redirect attack, so redirect to the homepage for safety.

This simple pattern protects against open redirect attacks that could otherwise expose your
users to malicious content. Whenever you’re redirecting to a URL that comes from a query
string or other user input, you should use this pattern.

Open redirect attacks present a risk to your users rather than to your app directly. The
next vulnerability represents a critical vulnerability in your app itself.

18.5.2 Avoiding SQL injection attacks with EF Core and parameterization

SQL injection attacks represent one of the most dangerous threats to your application.
Attackers craft simple malicious input, which they send to your application as traditional form-
based input or by customizing URLs and query strings to execute arbitrary code against your
database. An SQL injection vulnerability could expose your entire database to attackers, so it’s
critical that you spot and remove any such vulnerabilities in your apps.

Hopefully, I’ve scared you a little with that introduction, so now for the good news—if
you’re using EF Core (or pretty much any other ORM) in a standard way, then you should be
safe. EF Core has built-in protections against SQL injection, so as long as you’re not doing
anything funky, you should be fine.

SQL injection vulnerabilities occur when you build SQL statements yourself and include
dynamic input that an attacker provides, even indirectly. EF Core provides the ability to create
raw SQL queries using the FromSqlRaw() method, so you must be careful when using this
method.

Imagine your recipe app has a search form that lets you search for a recipe by name. If
you write the query using LINQ extension methods (as discussed in chapter 12), then you
would have no risk of SQL injection attacks. However, if you decide to write your SQL query by
hand, you open yourself up to such a vulnerability.

Listing 18.9 An SQL injection vulnerability in EF Core due to string concatenation

public IList<User> FindRecipe(string search) #A
{
 return _context.Recipes #B
 .FromSqlRaw("SELECT * FROM Recipes" + #C
 "WHERE Name = '" + search + "'") #D
 .ToList();
}

638

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#A The search parameter comes from user input, so it’s unsafe.
#B The current EF Core DbContext is held in the _context field.
#C You can write queries by hand using the FromSqlRaw extension method.
#D This introduces the vulnerability—including unsafe content directly in an SQL string.

In this listing, the user input held in search is included directly in the SQL query. By crafting
malicious input, users can potentially perform any operation on your database. Imagine an
attacker searches your website using the text

'; DROP TABLE Recipes; --

Your app assigns this to the search parameter, and the SQL query executed against your
database becomes

SELECT * FROM Recipes WHERE Name = ''; DROP TABLE Recipes; --'

By simply entering text into the search form of your app, the attacker has deleted the entire
Recipes table from your app! That’s catastrophic, but an SQL injection vulnerability provides
more or less unfettered access to your database. Even if you’ve set up database permissions
correctly to prevent this sort of destructive action, attackers will likely be able to read all the
data from your database, including your users’ details.

The simple way to avoid this happening is to avoid creating SQL queries by hand like this.
If you do need to write your own SQL queries, then don’t use string concatenation, as you did
in listing 18.9. Instead, use parameterized queries, in which the (potentially unsafe) input data
is separate from the query itself, as shown here.

Listing 18.10 Avoiding SQL injection by using parameterization

public IList<User> FindRecipe(string search)
{
 return _context.Recipes
 .FromSqlRaw("SELECT * FROM Recipes WHERE Name = '{0}'", #A
 search) #B
 .ToList();
}

#A The SQL query uses a placeholder {0} for the parameter.
#B The dangerous input is passed as a parameter, separate from the query.

Parameterized queries are not vulnerable to SQL injection attacks, so the same attack
presented earlier won’t work. If you use EF Core (or other ORMs) to access data using
standard LINQ queries, you won’t be vulnerable to injection attacks. EF Core will automatically
create all SQL queries using parameterized queries to protect you.

NOTE I’ve only talked about SQL injection attacks in terms of a relational database, but this vulnerability can

appear in NoSQL and document databases too. Always use parameterized queries (or equivalent) and don’t

craft queries by concatenating strings with user input.

639

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Injection attacks have been the number one vulnerability on the web for over a decade, so it’s
crucial that you’re aware of them and how they arise. Whenever you need to write raw SQL
queries, make sure you always use parameterized queries.

The next vulnerability is also related to attackers accessing data they shouldn’t be able to.
It’s a little subtler than a direct injection attack but is trivial to perform—the only skill the
attacker needs is the ability to count.

18.5.3 Preventing insecure direct object references

Insecure direct object reference is a bit of a mouthful, but it means users accessing things
they shouldn’t by noticing patterns in URLs. Let’s revisit our old friend the recipe app. As a
reminder, the app shows you a list of recipes. You can view any of them, but you can only edit
recipes you created yourself. When you view someone else’s recipe, there’s no Edit button
visible.

For example, a user clicks the edit button on one of their recipes and notices the URL is
/Recipes/Edit/120. That “120” is a dead giveaway as the underlying database ID of the
entity you’re editing. A simple attack would be to change that ID to gain access to a different
entity, one that you wouldn’t normally have access to. The user could try entering
/Recipes/Edit/121. If that lets them edit or view a recipe that they shouldn’t be able to, you
have an insecure direct object reference vulnerability.

The solution to this problem is simple—you should have resource-based authentication and
authorization in your action methods. If a user attempts to access an entity they’re not
allowed to access, they should get a permission denied error. They shouldn’t be able to bypass
your authorization by typing a URL directly into the search bar of their browser.

In ASP.NET Core apps, this vulnerability typically arises when you attempt to restrict users
by hiding elements from your UI, for example, by hiding the Edit button. Instead, you should
use resource-based authorization, as discussed in chapter 15.

WARNING You must always use resource-based authorization to restrict which entities a user can access.

Hiding UI elements provides an improved user experience, but it isn’t a security measure.

You can sidestep this vulnerability somewhat by avoiding integer IDs for your entities in the
URLs; for example, using a pseudorandom GUID (for instance, C2E296BA-7EA8-4195-9CA7-
C323304CCD12) instead. This makes the process of guessing other entities harder as you can’t
just add one to an existing number, but it’s only masking the problem rather than fixing it.
Nevertheless, using GUIDs can be useful when you want to have publicly accessible pages
(that don’t require authentication), but you don’t want their IDs to be easily discoverable.

The final section in this chapter doesn’t deal with a single vulnerability. Instead, I discuss a
separate, but related, issue: protecting your users’ data.

640

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

18.5.4 Protecting your users’ passwords and data

For many apps, the most sensitive data you’ll be storing is the personal data of your users.
This could include emails, passwords, address details, or payment information. You should be
careful when storing any of this data. As well as presenting an inviting target for attackers,
you may have legal obligations for how you handle it, such as data protection laws and PCI
compliance requirements.

The easiest way to protect yourself is to not store data that you don’t need. If you don’t
need your user’s address, don’t ask for it. That way, you can’t lose it! Similarly, if you use a
third-party identity service to store user details, as described in chapter 14, then you won’t
have to work as hard to protect your users’ personal information.

If you store user details in your own app, or build your own identity provider, then you
need to make sure to follow best practices when handling user information. The new project
templates that use ASP.NET Core Identity follow most of these practices by default, so I highly
recommend you start from one of these. You need to consider many different aspects—too
many to go into detail here93—but they include:

• Never store user passwords anywhere directly. You should only store cryptographic
hashes, computed using an expensive hashing algorithm, such as BCrypt or PBKDF2.

• Don’t store more data than you need. You should never store credit card details.
• Allow users to use two-factor authentication (2FA) to sign in to your site.
• Prevent users from using passwords that are known to be weak or compromised.
• Mark authentication cookies as “http” (so they can’t be read using JavaScript) and

“secure” so they’ll only be sent over an HTTPS connection, never over HTTP.
• Don’t expose whether a user is already registered with your app or not. Leaking this

information can expose you to enumeration attacks.94

These are all guidelines, but they represent the minimum you should be doing to protect your
users. The most important thing is to be aware of potential security issues as you’re building
your app. Trying to bolt on security at the end is always harder than thinking about it from the
start, so it’s best to think about it earlier rather than later.

This chapter has been a whistle-stop tour of things to look out for. We’ve touched on most
of the big names in security vulnerabilities, but I strongly encourage you to check out the
other resources mentioned in this chapter. They provide a more exhaustive list of things to
consider complementing the defenses mentioned in this chapter. On top of that, don’t forget
about input validation and mass assignment/over-posting, as discussed in chapter 6. ASP.NET

93The NIST (National Institute of Standards and Technology) recently released their Digital Identity Guidelines on how to handle user details:

https://pages.nist.gov/800-63-3/sp800-63-3.html.

94You can learn more about website enumeration in this video tutorial from Troy Hunt: http://mng.bz/PAAA.

641

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://pages.nist.gov/800-63-3/sp800-63-3.html
http://mng.bz/PAAA

©Manning Publications Co. To comment go to liveBook

Core includes basic protections against some of the most common attacks, but you can still
shoot yourself in the foot. Make sure it’s not your app making headlines for being breached!

18.6 Summary
• HTTPS is used to encrypt your app’s data as it travels from the server to the browser

and back. This prevents third parties from seeing or modifying it.
• HTTPS is virtually mandatory for production apps, as modern browsers like Chrome and

Firefox mark non-HTTPS apps as explicitly “not secure.”
• In production, you can avoid handling the TLS in your app by using SSL/TLS offloading.

This is where a reverse proxy uses HTTPS to talk to the browser, but the traffic is
unencrypted between your app and the reverse proxy. The reverse proxy could be on
the same or a different server, such as IIS or NGINX, or it could be a third-party
service, such as Cloudflare.

• You can use the .NET Core developer certificate or the IIS express developer certificate
to enable HTTPS during development. This can’t be used for production, but it’s
sufficient for testing locally. You must run dotnet dev-certs https --trust when
you first install .NET Core to trust the certificate.

• You can configure an HTTPS certificate for Kestrel in production using the
Kestrel:Certificates:Default configuration section. This does not require any
changes to your application—Kestrel will automatically load the certificate when your
app starts and use it to serve HTTPS requests.

• You can use the HstsMiddleware to set HTTP Strict Transport Security (HSTS) headers
for your application, to ensure the browser sends HTTPS requests to your app instead
of HTTP requests. This can only be enforced once an HTTPS request is made to your
app, so is best used in conjunction with HTTP to HTTPS redirection.

• You can enforce HTTPS for your whole app using the HttpsRedirectionMiddleware.
This will redirect HTTP requests to HTTPS endpoints.

• Cross-site scripting (XSS) attacks involve malicious users injecting content into your
app, typically to run malicious JavaScript when users browse your app. You can avoid
XSS injection attacks by always encoding unsafe input before writing it to a page.
Razor Pages do this automatically unless you use the @Html.Raw() method, so use it
sparingly and carefully.

• Cross-site request forgery (CSRF) attacks are a problem for apps that use cookie-based
authentication, such as ASP.NET Core Identity. It relies on the fact that browsers
automatically send cookies to a website. A malicious website could create a form that
POSTs to your API, and the browser will send the authentication cookie with the
request. This allows malicious websites to send requests as though they’re the logged-
in user.

• You can mitigate CSRF attacks using anti-forgery tokens. These involve writing a
hidden field in every form that contains a random string based on the current user. A
similar token is stored in a cookie. A legitimate request will have both parts, but a

642

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:@Html.Raw

©Manning Publications Co. To comment go to liveBook

forged request from a malicious website will only have the cookie half; they cannot
recreate the hidden field in the form. By validating these tokens, your API can reject
forged requests.

• The Razor Pages framework automatically adds anti-forgery tokens to any forms you
create using Razor and validates the tokens for inbound requests. You can disable the
validation check if necessary, using the [IgnoreAntiForgeryToken] attribute.

• Browsers won’t allow websites to make JavaScript AJAX requests from one app to
others at different origins. To match the origin, the app must have the same scheme,
domain, and port. If you wish to make cross-origin requests like this, you must enable
cross-origin resource sharing (CORS) in your API.

• CORS uses HTTP headers to communicate with browsers and defines which origins can
call your API. In ASP.NET Core, you can define multiple policies, which can be applied
either globally to your whole app, or to specific controllers and actions.

• You can add the CORS middleware by calling UseCors() in Startup.Configure and
optionally providing the name of the default CORS policy to apply. You can also apply
CORS to a Web API action or controller by adding the [EnableCors] attribute and
providing the name of the policy to apply.

• Open redirect attacks use the common returnURL mechanism after logging in to
redirect users to malicious websites. You can prevent this attack by ensuring you only
redirect to local URLs, URLs that belong to your app.

• Insecure direct object references are a common problem where you expose the ID of
database entities in the URL. You should always verify that users have permission to
access or change the requested resource by using resource-based authorization in your
action methods.

• SQL injection attacks are a common attack vector when you build SQL requests
manually. Always use parameterized queries when building requests, or instead use a
framework like EF Core, which isn’t vulnerable to SQL injection.

• The most sensitive data in your app is often the data of your users. Mitigate this risk by
only storing data that you need. Ensure you only store passwords as a hash, protect
against weak or compromised passwords, and provide the option for 2FA. ASP.NET
Core Identity provides all of this out of the box, so it’s a great choice if you need to
create an identity provider.

643

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

19
Building custom components

This chapter covers

• Building custom middleware
• Creating simple endpoints that generate a response using middleware
• Using configuration values to set up other configuration providers
• Replacing the built-in DI container with a third-party container

When you’re building apps with ASP.NET Core, most of your creativity and specialization goes
into the services and models that make up your business logic, and the Razor Pages and
controllers that expose them through views or APIs. Eventually, however, you’re likely to find
that you can’t quite achieve a desired feature using the components that come out of the box.
At that point, you may need to build a custom component.

This chapter shows how to create some ASP.NET Core components that you’re likely to
need as your app grows. You probably won’t need to use all of them, but each solves a specific
problem you may run into.

We start by looking at the middleware pipeline. You saw how to build pipelines by piecing
together existing middleware in chapter 3, but in this chapter, you’ll create your own custom
middleware. You’ll explore the basic middleware constructs of the Map, Use, and Run methods,
and how to create standalone middleware classes. You’ll use these to build middleware
components that can add headers to all your responses as well as middleware that return
responses.

In section 19.2, you’ll see how to use your custom middleware to create simple endpoints
using endpoint routing. By using endpoint routing, you can take advantage of the power of the
routing and authorization systems that you learned about in chapters 5 and 15, without
needing the additional complexity that comes with using API controllers.

644

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Chapter 11 described the configuration provider system used by ASP.NET Core, but in
section 19.3, we look at more complex scenarios. In particular, I show you how to handle the
situation where a configuration provider itself needs some configuration values. For example,
a configuration provider that reads values from a database might need a connection string.
You’ll also see how to use DI when configuring strongly typed IOptions objects, something
not possible using the methods you’ve seen so far.

We stick with DI in section 19.4 where I show how to replace the built-in DI container with
a third-party alternative. The built-in container is fine for most small apps, but your
ConfigureServices function can quickly get bloated as your app grows and you register more
services. I show you how to integrate the third-party library, Lamar, into an existing app, so
you can make use of extra features such as automatic service registration by convention.

The components and techniques shown in this chapter are common across all ASP.NET
Core applications. For example, I use the subject of the first topic—custom middleware—in
almost every project I build. In chapter 20 we look at some additional components that are
specific to Razor Pages and API controllers.

19.1 Customizing your middleware pipeline
In this section you’ll learn how to create custom middleware. You’ll learn how to use the Map,
Run, and Use extension methods to create simple middleware using lambda expressions. You’ll
then see how to create equivalent middleware components using dedicated classes. You’ll also
learn how to split the middleware pipeline into branches, and find out when this is useful.

The middleware pipeline is one of the fundamental building blocks of ASP.NET Core apps,
so we covered it in depth in chapter 3. Every request passes through the middleware pipeline,
and each middleware component in turn gets an opportunity to modify the request, or to
handle it and return a response.

ASP.NET Core includes middleware out of the box for handling common scenarios. You’ll
find middleware for serving static files, for handling errors, for authentication, and many
more. However, you’ll spend most of your time during development working with Razor Pages
and Web API controllers. These are exposed as the endpoints for most of your app’s business
logic and call methods on your app’s various business services and models.

Sometimes, however, you don’t need all the power (and associated complexity) that comes
with Razor Pages and API controllers. You might want to create a very simple app that, when
called, returns the current time. Or you might want to add a health-check URL to an existing
app, where calling the URL doesn’t do any significant processing, but checks that the app is
running. Although you could use API controllers for these, you could also create small,
dedicated middleware components to handle these requirements.

Other times, you might have requirements that lie outside the remit of Razor Pages and
API controllers. For example, you might want to ensure all responses generated by your app
include a specific header. This sort of cross-cutting concern is a perfect fit for custom
middleware. You could add the custom middleware early in your middleware pipeline to ensure

645

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

that every response from your app includes the required header, whether it comes from the
static file middleware, the error-handling middleware, or a Razor Page.

In this section, I show three ways to create custom middleware components, as well as
how to create branches in your middleware pipeline where a request can flow down either one
branch or another. By combining the methods demonstrated in this section, you’ll be able to
create custom solutions to handle your specific requirements.

We’ll start by creating a middleware component that returns the current time as plain text,
whenever the app receives a request. From there, we’ll look at branching the pipeline, creating
general-purpose middleware components, and finally, how to encapsulate your middleware
into standalone classes. In section 19.2. you’ll see an alternative approach to exposing
response-generating middleware using endpoint routing.

19.1.1 Creating simple endpoints with the Run extension

As you’ve seen in previous chapters, you define the middleware pipeline for your app in the
Configure method of your Startup class. You add middleware to a provided
IApplicationBuilder object, typically using extension methods. For example:

public void Configure(IApplicationBuilder)
{
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
}

When your app receives a request, the request passes through each middleware, which gets a
chance to modify the request, or to handle it by generating a response. If a middleware
component generates a response, it effectively short-circuits the pipeline; no subsequent
middleware in the pipeline will see the request. The response passes back through the earlier
middleware components on its way back to the browser.

You can use the Run extension method to build a simple middleware component that
always generates a response. This extension takes a single lambda function that runs
whenever a request reaches the component. The Run extension always generates a response,
so no middleware placed after it will ever execute. For that reason, you should always place
the Run middleware last in a middleware pipeline.

TIP Remember, middleware runs in the order you add them to the pipeline. If a middleware handles a request

and generates a response, later middleware will never see the request.

The Run extension method provides access to the request in the form of the HttpContext
object you saw in chapter 3. This contains all the details of the request via the Request
property, such as the URL path, the headers, and the body of the request. It also contains a
Response property you can use to return a response.

The following listing shows how you could build a simple middleware that returns the
current time. It uses the provided HttpContext context object and the Response property to

646

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

set the Content-Type header of the response and writes the body of the response using
WriteAsync(text).

Listing 19.1 Creating simple middleware using the Run extension

public void Configure(IApplicationBuilder app)
{
 app.Run(async (HttpContext context) => #A
 {
 context.Response.ContentType = "text/plain"; #B
 await context.Response.WriteAsync(#C
 DateTime.UtcNow.ToString()); #C
 });

 app.UseStaticFiles(); #D
}

#A Uses the Run extension to create a simple middleware that always returns a response
#B You should set the content-type of the response you’re generating.
#C Returns the time as a string in the response. The 200 OK status code is used if not explicitly set.
#D Any middleware added after the Run extension will never execute.

The Run extension is useful for building simple middleware. You can use it to create very basic
endpoints that always generate a response. But as the component always generates some sort
of response, you must always place it at the end of the pipeline, as no middleware placed after
it will execute.

A more common scenario is where you want your middleware component to only respond
to a specific URL path. In the next section, you’ll see how you can combine Run with the Map
extension method to create simple branching middleware pipelines.

19.1.2 Branching middleware pipelines with the Map extension

So far, when discussing the middleware pipeline, we’ve always considered it as a single
pipeline of sequential components. Each request passes through every middleware, until a
component generates a response, which passes back through the previous middleware.

The Map extension method lets you change that simple pipeline into a branching structure.
Each branch of the pipeline is independent; a request passes through one branch or the other,
but not both, as shown in figure 19.1.

647

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 19.1 A sequential middleware pipeline compared to a branching pipeline created with the Map extension.
In branching middleware, requests only pass through one of the branches at most. Middleware on the other
branch never see the request and aren’t executed.

The Map extension method looks at the path of the request’s URL; if the path matches the
required pattern, the request travels down the branch of the pipeline, otherwise it remains on
the main trunk. This lets you have completely different behavior in different branches of your
middleware pipeline.

NOTE The URL matching used by Map is conceptually similar to the routing you’ve seen since chapter 6, but it

is much more basic, with many limitations. For example, it uses a simple string-prefix match, and you can’t use

route parameters. Generally you should favor creating endpoints instead of branching using Map, as you’ll see

in section 19.2.

For example, imagine you want to add a simple health-check endpoint to your existing app.
This endpoint is a simple URL you can call that indicates whether your app is running correctly.
You could easily create a health-check middleware using the Run extension, as you saw in
listing 19.1, but then that’s all your app can do. You only want the health-check to respond to
a specific URL, /ping; your Razor Pages should handle all other requests as normal.

TIP The health-check scenario is a simple example to demonstrate the Map method, but ASP.NET Core

includes built-in support for health-check endpoints which you should use instead of creating your own. You

648

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

can learn more about creating health checks at https://docs.microsoft.com/aspnet/core/host-and-

deploy/health-checks.

One solution to this would be to create a branch using the Map extension method and to place
the health-check middleware on that branch, as shown next. Only those requests that match
the Map pattern /ping will execute the branch, all other requests will be handled by the
standard routing middleware and Razor Pages on the main trunk instead.

Listing 19.2 Using the Map extension to create branching middleware pipelines

public void Configure(IApplicationBuilder app)
{
 app.UseDeveloperExceptionPage(); #A

 app.Map("/ping", (IApplicationBuilder branch) => #B
 {
 branch.UseExceptionHandler(); #C

 branch.Run(async (HttpContext context) => #D
 { #D
 context.Response.ContentType = "text/plain"; #D
 await context.Response.WriteAsync("pong"); #D
 }); #D
 });

 app.UseStaticFiles(); #E
 app.UseRouting(); #E
 app.UseEndpoints(endpoints => #E
 { #E
 endpoints.MapRazorPages(); #E
 }); #E
}

#A Every request will pass though this middleware.
#B The Map extension method will branch if a request starts with /ping.
#C This middleware will only run for requests matching the /ping branch.
#D The Run extension always returns a response, but only on the /ping branch.
#E The rest of the middleware pipeline will run for requests that don’t match the /ping branch.

The Map middleware creates a completely new IApplicationBuilder (called branch in the
listing), which you can customize as you would your main app pipeline. Middleware added to
the branch builder are only added to the branch pipeline, not the main trunk pipeline.

In this example, you add the Run middleware to the branch, so it will only execute for
requests that start with /ping, such as /ping, /ping/go, or /ping?id=123. Any requests that
don’t start with /ping are ignored by the Map extension. Those requests stay on the main
trunk pipeline and execute the next middleware in the pipeline after Map (in this case, the
StaticFilesMiddleware).

If you need to, you can create sprawling branched pipelines using Map, where each branch
is independent of every other. You could also nest calls to Map, so you have branches coming
off branches.

649

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/aspnet/core/host-and-deploy/health-checks

©Manning Publications Co. To comment go to liveBook

The Map extension can be useful, but if you try to get too elaborate, it can quickly get
confusing. Remember, you should use middleware for implementing cross-cutting concerns or
very simple endpoints. The endpoint routing mechanism of controllers and Razor Pages is
better suited to more complex routing requirements, so don’t be afraid to use it.

TIP In section 19.2 you’ll see how to create endpoints that use the endpoint routing system.

The final point you should be aware of when using the Map extension is that it modifies the
effective Path seen by middleware on the branch. When it matches a URL prefix, the Map
extension cuts off the matched segment from the path, as shown in figure 19.2. The removed
segments are stored on a property of HttpContext called PathBase, so they’re still accessible
if you need them.

NOTE ASP.NET Core’s link generator (used in Razor for example, as discussed in chapter 5) uses PathBase

to ensure it generates URLs that include the PathBase as a prefix.

Figure 19.2 When the Map extension diverts a request to a branch, it removes the matched segment from the
Path property and adds it to the PathBase property.

You’ve seen the Run extension, which always returns a response, and the Map extension which
creates a branch in the pipeline. The next extension we’ll look at is the general-purpose Use
extension.

650

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

19.1.3 Adding to the pipeline with the Use extension

You can use the Use extension method to add a general-purpose piece of middleware. You can
use it to view and modify requests as they arrive, to generate a response, or to pass the
request on to subsequent middleware in the pipeline.

Similar to the Run extension, when you add the Use extension to your pipeline, you specify
a lambda function that runs when a request reaches the middleware. The app passes two
parameters to this function:

• The HttpContext representing the current request and response. You can use this to
inspect the request or generate a response, as you saw with the Run extension.

• A pointer to the rest of the pipeline as a Func<Task>. By executing this task, you can
execute the rest of the middleware pipeline.

By providing a pointer to the rest of the pipeline, you can use the Use extension to control
exactly how and when the rest of the pipeline executes, as shown in figure 19.3. If you don’t
call the provided Func<Task> at all, then the rest of the pipeline doesn’t execute for the
request, so you have complete control.

Figure 19.3 Three pieces of middleware, created with the Use extension. Invoking the provided Func<Task>
using next() invokes the rest of the pipeline. Each middleware can run code before and after calling the rest
of the pipeline, or it can choose to not call next() at all to short-circuit the pipeline.

Exposing the rest of the pipeline as a Func<Task> makes it easy to conditionally short-circuit
the pipeline, which opens up many different scenarios. Instead of branching the pipeline to
implement the health-check middleware with Map and Run, as you did in listing 19.2, you
could use a single instance of the Use extension. This provides the same required functionality
as before but does so without branching the pipeline.

651

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Listing 19.3 Using the Use extension method to create a health-check middleware

public void Configure(IApplicationBuilder app)
{
 app.Use(async (HttpContext context, Func<Task> next) => #A
 {
 if (context.Request.Path.StartsWithSegments("/ping")) #B
 {
 context.Response.ContentType = "text/plain"; #C
 await context.Response.WriteAsync("pong"); #C
 }
 else
 {
 await next(); #D
 }
 });

 app.UseStaticFiles();
}

#A The Use extension takes a lambda with HttpContext (context) and Func<Task> (next) parameters.
#B The StartsWithSegments method looks for the provided segment in the current path.
#C If the path matches, generate a response, and short-circuit the pipeline
#D If the path doesn’t match, call the next middleware in the pipeline, in this case UseStaticFiles().

If the incoming request starts with the required path segment (/ping), then the middleware
responds and doesn’t call the rest of the pipeline. If the incoming request doesn’t start with
/ping, then the extension calls the next middleware in the pipeline, no branching necessary.

With the Use extension, you have control over when, and if, you call the rest of the
middleware pipeline. But it’s important to note that you generally shouldn’t modify the
Response object after calling next(). Calling next() runs the rest of the middleware pipeline,
so a subsequent middleware may start streaming the response to the browser. If you try to
modify the response after executing the pipeline, you may end up corrupting the response or
sending invalid data.

WARNING Don’t modify the Response object after calling next(). Also, don’t call next() if you’ve

written to the Response.Body: writing to this Stream can trigger Kestrel to start streaming the response to

the browser and you could cause invalid data to be sent. You can generally read from the Response object

safely, to inspect the final StatusCode or ContentType of the response, for example.

Another common use for the Use extension method is to modify every request or response
that passes through it. For example there are various HTTP headers that you should send with
all your applications for security reasons. These headers often disable old, insecure, legacy

652

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

behaviors by browsers, or restrict the features enabled by the browser. You learned about the
HSTS header in chapter 18, but there are other headers you can add for additional security.95

Imagine you’ve been tasked with adding one such header, X-Content-Type-Options:
nosniff (which provides added protection against XSS attacks), to every response generated
by your app. This sort of cross-cutting concern is perfect for middleware. You can use the Use
extension method to intercept every request, set the response header, and then execute the
rest of the middleware pipeline. No matter what response the pipeline generates, whether it’s
a static file, an error, or a Razor Page, the response will always have the security header.

Listing 19.4 shows a robust way to achieve this. When the middleware receives a request,
it registers a callback that runs before Kestrel starts sending the response back to the
browser. It then calls next() to run the rest of the middleware pipeline. When the pipeline
generates a response, likely in some later middleware, Kestrel executes the callback and adds
the header. This approach ensures the header isn’t accidentally removed by other middleware
in the pipeline and also that you don’t try to modify the headers after the response has started
streaming to the browser.

Listing 19.4 Adding headers to a response with the Use extension

public void Configure(IApplicationBuilder app)
{
 app.Use(async (HttpContext context, Func<Task> next) => #A
 {
 context.Response.OnStarting(() => #B
 {
 context.Response.Headers["X-Content-Type-Options"] = #C
 "nosniff"; #C
 return Task.CompletedTask; #D
 });
 await next(); #E
 }

 app.UseStaticFiles(); #F
 app.UseRouting(); #F
 app.UseEndpoints(endpoints => #F
 { #F
 endpoints.MapControllers(); #F
 }); #F
}

#A Adds the middleware at the start of the pipeline
#B Sets a function that should be called before the response is sent to the browser
#C Adds an HSTS header. For 60 seconds the browser will only send HTTPS requests to your app
#D The function passed to OnStarting must return a Task
#E Invokes the rest of the middleware pipeline
#F No matter what response is generated, it’ll have the security header added

95 You can test the security headers for your app using https://securityheaders.com/, which also provides information about what headers you should add

to your application and why.

653

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://securityheaders.com/

©Manning Publications Co. To comment go to liveBook

Simple cross-cutting middleware like the security header example are common, but they can
quickly clutter your Configure method, and make it difficult to understand the pipeline at a
glance. Instead, it’s common to encapsulate your middleware into a class that’s functionally
equivalent to the Use extension, but which can be easily tested and reused.

19.1.4 Building a custom middleware component

Creating middleware with the Use extension, as you did in listings 19.3 and 19.4, is
convenient but it’s not easy to test, and you’re somewhat limited in what you can do. For
example, you can’t easily use DI to inject scoped services inside of these basic middleware
components. Normally, rather than calling the Use extension directly, you’ll encapsulate your
middleware into a class that’s functionally equivalent.

Custom middleware components don’t have to derive from a specific base class or
implement an interface, but they have a certain shape, as shown in listing 19.5. ASP.NET Core
uses reflection to execute the method at runtime. Middleware classes should have a
constructor that takes a RequestDelegate object, which represents the rest of the middleware
pipeline, and they should have an Invoke function with a signature similar to

public Task Invoke(HttpContext context);

The Invoke() function is equivalent to the lambda function from the Use extension, and is
called when a request is received. Here’s how you could convert the headers middleware from
listing 19.4 into a standalone middleware class.96

Listing 19.5 Adding headers to a Response using a custom middleware component

public class HeadersMiddleware
{
 private readonly RequestDelegate _next; #A
 public HeadersMiddleware(RequestDelegate next) #A
 { #A
 _next = next; #A
 } #A

 public async Task Invoke(HttpContext context) #B
 {
 context.Response.OnStarting(() => #C
 { #C
 context.Response.Headers["X-Content-Type-Options"] = #C
 "nosniff"; #C
 return Task.CompletedTask; #C
 }); #C

 await _next(context); #D

96Using this “shape” approach makes the middleware more flexible. In particular, it means you can easily use DI to inject services into the Invoke

method. This wouldn’t be possible if the Invoke method were an overridden base class method or an interface. However, if you prefer, you can
implement the IMiddleware interface, which defines the basic Invoke method.

654

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 }
}

#A The RequestDelegate represents the rest of the middleware pipeline
#B The Invoke method is called with HttpContext when a request is received
#C Adds the HSTS header response as before
#D Invokes the rest of the middleware pipeline. Note that you must pass in the provided HttpContext

This middleware is effectively identical to the example in listing 19.4 but encapsulated in a
class called HeadersMiddleware. You can add this middleware to your app in
Startup.Configure by calling

app.UseMiddleware<HeadersMiddleware>();

A common pattern is to create helper extension methods to make it easy to consume your
extension method from Startup.Configure (so that IntelliSense reveals it as an option on the
IApplicationBuilder instance). Here’s how you could create a simple extension method for
HeadersMiddleware.

Listing 19.6 Creating an extension method to expose HeadersMiddleware

public static class MiddlewareExtensions
{
 public static IApplicationBuilder UseSecurityHeaders(#A
 this IApplicationBuilder app) #A
 {
 return app.UseMiddleware<HeadersMiddleware>(); #B
 }
}

#A By convention, the extension method should return an IApplicationBuilder to allow chaining
#B Adds the middleware to the pipeline

With this extension method, you can now add the headers middleware to your app using

app.UseSecurityHeaders();

TIP There is a NuGet package available that makes it easy to add security headers using middleware, without

having to write your own. The package provides a fluent interface for adding the recommend security headers

to your app. You can find instructions on how to install it at

https://github.com/andrewlock/NetEscapades.AspNetCore.SecurityHeaders.

Listing 19.5 is a simple example, but you can create middleware for many different purposes.
In some cases, you may need to use DI to inject services and use them to handle a request.
You can inject singleton services into the constructor of your middleware component, or you
can inject services with any lifetime into the Invoke method of your middleware, as
demonstrated in the following listing.

655

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/andrewlock/NetEscapades.AspNetCore.SecurityHeaders

©Manning Publications Co. To comment go to liveBook

Listing 19.7 Using DI in middleware components

public class ExampleMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ServiceA _a; #A
 public HeadersMiddleware(RequestDelegate next, ServiceA a) #A
 {
 _next = next;
 _a = a; #A
 }

 public async Task Invoke(
 HttpContext context, ServiceB b, ServiceC c) #B
 {
 // use services a, b, and c
 // and/or call _next.Invoke(context);
 }
}

#A You can inject additional services in the constructor. These must be singletons
#B You can inject services into the Invoke method. These may have any lifetime

WARNING ASP.NET Core creates the middleware only once for the lifetime of your app, so any

dependencies injected in the constructor must be singletons. If you need to use scoped or transient

dependencies, inject them into the Invoke method.

That covers pretty much everything you need to start building your own middleware
components. By encapsulating your middleware into custom classes, you can easily test their
behavior, or distribute them in NuGet packages, so I strongly recommend taking this
approach. Apart from anything else, it will make your Startup.Configure() method less
cluttered and easier to understand.

19.2 Creating custom endpoints with endpoint routing
In this section you’ll learn how to create custom endpoints from your middleware using
endpoint routing. We take the simple middleware branches used in section 19.1 and convert
them to use endpoint routing, and demonstrate the additional features this enables, such as
routing and authorization.

In section 19.1 I described creating a simple “endpoint” using the Map and Run extension
methods, that returns a plain-text pong response whenever a /ping request is received, by
branching the middleware pipeline. This is fine because it’s so simple, but what if you have
more complex requirements?

Consider a basic enhancement of the ping-pong example: how would you add
authorization to the request? The AuthorizationMiddleware added to your pipeline by
UseAuthorization() looks for metadata on endpoints like Razor Pages to see if there’s an
[Authorize] attribute, but it doesn’t know how to work with your ping-pong Map extension.

656

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Similarly, what if you wanted to use more complex routing? Maybe you want to be able to
call /ping/3 and have your ping-pong middleware reply pong-pong-pong (no, I can’t think
why you would either!). You now have to try and parse that integer from the URL, make sure
it’s valid and so on. That’s sounding like a lot more work!

When your requirements start ramping up like this, one option is to move to using Web
API controllers or Razor Pages. These provide the greatest flexibility in your app and have the
most features, but they’re also comparatively heavy weight compared to middleware. What if
you want something in-between?

In ASP.NET Core 3.0, the routing system was re-written to use endpoint routing, to
provide exactly this balance. Endpoint routing allows you to create endpoints that can use the
same routing and authorization framework as you get with Web API controllers and Razor
Pages, but with the simplicity of middleware.

REMINDER I discussed endpoint routing in detail in chapter 5.

In this section you’ll see how to convert the simple branch-based middleware from the
previous section to a custom endpoint. You’ll see how taking this approach makes it easy to
apply authorization to the endpoint, using the declarative approaches you’re already familiar
with from chapter 15.

19.2.1 Creating a custom endpoint routing component

As I described in chapter 5, endpoint routing splits the process of executing an endpoint into
two steps, implemented by two separate pieces of middleware:

1. RoutingMiddleware. Uses the incoming request to select an endpoint to execute.
Exposes the metadata about the selected endpoint on HttpContext, such as
authorization requirements applied using the [Authorize] attribute.

2. EndpointMiddleware. Executes the selected endpoint to generate a response.

The advantage of using a two-step process is that you can place middleware between the
middleware that selects the endpoint and the middleware that executes it to generate a
response. For example, the AuthorizationMiddleware uses the selected endpoint to
determine whether to short-circuit the pipeline, before the endpoint is executed.

Let’s imagine that you need to apply authorization to the simple ping-pong endpoint you
created in section 19.1.2. This is much easier to achieve with endpoint routing than using
simple middleware branches like Map or Use. The first step is to create a middleware
component for the functionality, using the approach you saw in section 19.1.4, as shown in
the following listing.

Listing 19.8 The PingPongMiddleware implemented as a middleware component

public class PingPongMiddleware
{
 public PingPongMiddleware(RequestDelegate next) #A

657

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 {
 }

 public async Task Invoke(HttpContext context) #B
 {
 context.Response.ContentType = "text/plain"; #C
 await context.Response.WriteAsync("pong"); #C
 }
}

#A Even though it isn’t used in this case, you must inject a RequestDelegate in the constructor
#B Invoke is called to execute the middleware
#C The middleware always returns a “pong” response

Note that this middleware always returns a "pong" response, regardless of the request URL—
we will configure the "/ping" path later. We can use this class to convert a middleware
pipeline from the “branching” version shown in figure 19.1, to the “endpoint” version shown in
figure 19.4.

Figure 19.4. Endpoint routing separates the selection of an endpoint from the execution of an endpoint. The
routing middleware selects an endpoint based on the incoming request and exposes metadata about the

658

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

endpoint. Middleware placed before the endpoint middleware can act based on the selected endpoint, such as
short-circuiting unauthorized requests. If the request is authorized, the endpoint middleware executes the
selected endpoint and generates a response.

Converting the ping-pong middleware to an endpoint doesn’t require any changes to the
middleware itself. Instead, you need to create a “mini” middleware pipeline, containing your
ping-pong middleware only.

TIP Converting a response-generating middleware to an endpoint essentially requires converting it into its

own mini-pipeline, so you can include additional middleware in the “endpoint pipeline” if you wish.

You must create your endpoint pipeline inside the UseEndpoints() lambda argument as
shown in the following listing. Use CreateApplicationBuilder() to create a new
IApplicationBuilder, add your middleware that makes up your endpoint, and then call
Build() to create the pipeline.

Listing 19.9 Mapping the ping-pong endpoint in UseEndpoints

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 var endpoint = endpoints #A
 .CreateApplicationBuilder() #A
 .UseMiddleware<PingPongMiddleware>() #B
 .Build(); #B

 endpoints.Map("/ping", endpoint); #C
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
 });
}}

#A Create a miniature, standalone, IApplicationBuilder to build your endpoint
#B Add the middleware and build the final endpoint. This is executed when the endpoint is executed
#C Add the new endpoint to the endpoint collection associated with the route template “/ping”

Once you have a pipeline, you can associate it with a given route by calling Map() on the
IEndpointRouteBuilder instance, and passing in a route template.

TIP Note that the Map() function on IEndpointRouteBuilder creates a new endpoint (consisting of your

mini-pipeline) with an associated route. Although it has the same name, this is conceptually different to the

Map function on IApplicationBuilder from section 19.1.2 which is used to branch the middleware

pipeline.

659

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

If you have many custom endpoints, the UseEndpoints() method can quickly get cluttered. I
like to extract this functionality into an extension method, to make the UseEndpoints()
method cleaner and easier to read. The following listing extracts the code to create an
endpoint from listing 19.9 into a separate class, taking the route template to use as a method
parameter.

Listing 19.10 An extension method for using the PingPongMiddleware as an endpoint

public static class EndpointRouteBuilderExtensions
{
 public static IEndpointConventionBuilder MapPingPong(#A
 this IEndpointRouteBuilder endpoints, #A
 string route) #B
 {
 var pipeline = endpoints.CreateApplicationBuilder() #C
 .UseMiddleware<PingPongMiddleware>() #C
 .Build(); #C

 return endpoints #D
 .Map(route, pipeline) #D
 .WithDisplayName("Ping-pong"); #E
 }
}

#A Create an extension method for registering the PingPongMiddleware as an endpoint
#B Allows the caller to pass in a route template for the endpoint
#C Create the endpoint pipeline
#D Add the new endpoint to the provided endpoint collection, using the provide route template
#E You can add additional metadata here directly, or the caller can add metadata themselves

Now that you have an extension method, MapPingPong(), you can update your
UseEndpoints() method in Startup.Configure() to be simpler and easier to understand.

app.UseEndpoints(endpoints =>
{
 endpoints.MapPingPong("/ping");
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz");
});

Congratulations, you’ve created your first custom endpoint! You haven’t added any additional
functionality yet, but by using the endpoint routing system it’s now much easier to satisfy the
additional authorization requirements, as you’ll see in section 19.2.2.

TIP This example used a very basic route template, "/ping", but you can also use templates that contain

route parameters, for example "/ping/{count}", using the same routing framework you learned in chapter

5. For examples of how to access this data from your middleware, as well as best practice advice, see

https://andrewlock.net/accessing-route-values-in-endpoint-middleware-in-aspnetcore-3/.

Converting a branching middleware to use endpoint routing can be useful for taming a
middleware pipeline with lots of branches, but you won’t necessarily always want to use it.

660

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/accessing-route-values-in-endpoint-middleware-in-aspnetcore-3/

©Manning Publications Co. To comment go to liveBook

Using simple branches can be faster than using the routing infrastructure, so in some cases it
may be best to avoid endpoint routing.

A good example of this trade-off is the built-in StaticFileMiddleware. This middleware
serves static files based on the request’s URL, but it doesn’t use endpoint routing due to the
performance impact of adding many (potentially hundreds) of routes for each static file in your
application. The downside to that choice is that adding authorization to static files is not easy
to achieve: if endpoint routing were used, adding authorization would be simple.

19.2.2 Applying authorization to endpoints

One of the main advantages of endpoint routing is the ability to easily apply authorization to
your endpoint. For Razor Pages and API controllers, this is achieved by adding the
[Authorize] attribute, as you saw in chapter 15.

For other endpoints, such as the ping-pong endpoint you created in section 19.2.1, you
can apply authorization declaratively when you add the endpoint to your application, by calling
RequireAuthorization() on the IEndpointConventionBuilder, as shown in the following
listing.

Listing 19.11 Applying authorization to an endpoint using RequireAuthorization()

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapPingPong("/ping") #A
 .RequireAuthorization(); #A
 endpoints.MapRazorPages();
 endpoints.MapHealthChecks("/healthz") #B
 .RequireAuthorization("HealthCheckPolicy") #B
 });
}}

#A Require authorization. This is equivalent to applying the [Authorize] attribute.
#B Require authorization using a specific policy, HealthCheckPolicy.

Listing 19.11 shows two examples of applying authorization to endpoints

• RequireAuthorization(). If you don’t provide a method argument, this applies the
default authorization policy to the endpoint. It is equivalent to applying the
[Authorize] attribute to a Razor Page or API controller endpoint.

• RequireAuthorization(policy). If you provide a policy name, the chosen
authorization policy will be used. The policy must be configured in ConfigureServices,
as you saw in chapter 15. This is equivalent to applying
[Authorize("HealthCheckPolicy")] to a Razor Page or API controller endpoint.

661

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

If you are globally applying authorization to your application (as described in chapter 15), then
you can “punch a hole” in the global policy with the complimentary AllowAnonymous()
method, for example:

endpoints.MapPingPong("/ping").AllowAnonymous();

This is equivalent to using the [AllowAnonymous] attribute on your Razor Pages and actions.

NOTE The AllowAnonymous() method for endpoints is new in .NET 5.

Authorization is the canonical example of adding metadata to endpoints to add functionality,
but there are other options available too. Out of the box you can use the following methods:

• RequireAuthorization(). Applies authorization policies to the endpoint, as you’ve
already seen.

• AllowAnonymous(). Overrides a global authorization policy to allow anonymous access
to an endpoint

• RequireCors(policy). Apply a CORS policy to the endpoint, as described in chapter
18.

• RequireHost(hosts). Only allow routing to the endpoint if the incoming request
matches one of the provided hostnames.

• WithDisplayName(name). Sets the friendly name for the endpoint. Used primarily in
logging to describe the endpoint.

• WithMetadata(items). Add arbitrary values as metadata to the endpoint. You can
access these values in middleware after an endpoint is selected by the routing
middleware.

These features allow various functionality, such as CORS and authorization, to work
seamlessly across Razor Pages, API controllers, built in endpoints like the health check
endpoints, and custom endpoints like your ping-pong middleware. They should allow you to
satisfy most requirements you get around custom endpoints. And if you find you need
something more complex, like model-binding for example, then you can always fall back to
using API controllers instead. The choice is yours!

In the next section we move away from the middleware pipeline and look at how to handle
complex configuration requirements. In particular, you’ll see how to set up complex
configuration providers that require their own configuration values, and how to use DI services
to build your strongly typed IOptions objects.

19.3 Handling complex configuration requirements
In this section I describe how to handle two complex configuration requirements: configuration
providers that need configuring themselves; and using services to configure IOptions objects.
In the first scenario, you will see how to partially build your configuration to allow building the

662

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

provider. In the second scenario, you will see how to use the IConfigureOptions interface to
allow accessing services when configuring your options objects.

In chapter 11, we discussed the ASP.NET Core configuration system in depth. You saw how
an IConfiguration object is built from multiple layers, where subsequent layers can add to or
replace configuration values from previous layers. Each layer is added by a configuration
provider, which can read values from a file, from environment variables, from User Secrets, or
from any number of possible locations.

You also saw how to bind configuration values to strongly typed POCO objects, using the
IOptions interface. You can inject these strongly typed objects into your classes to provide
easy access to your settings, instead of having to read configuration using string keys.

In this section, we’ll look at two scenarios that are slightly more complex. In the first
scenario, you’re trying to use a configuration provider that requires some configuration itself.

As an example, imagine you want to store some configuration in a database table. In order
to load these values, you’d need some sort of connection string, which would most likely also
come from your IConfiguration. You’re stuck with a chicken-and-egg situation: you need to
build the IConfiguration object to add the provider, but you can’t add the provider without
building the IConfiguration object!

In the second scenario, you want to configure a strongly typed IOptions object with
values returned from a service. But the service won’t be available until after you’ve configured
all of the IOptions objects. In section 19.3.2, you’ll see how to handle this by implementing
the IConfigureOptions interface.

19.3.1 Partially building configuration to configure additional providers

ASP.NET Core includes many configuration providers, such as file and environment variable
providers, that don’t require anything more than basic details to set up. All you need to read a
JSON file, for example, is the path to that file.

But the configuration system is highly extensible, and more complex configuration
providers may require some degree of configuration themselves. For example, you may have
a configuration provider that loads configuration values from a database, a provider that loads
values from a remote API, or a provider that loads secrets from Azure Key Vault.97

Each of these providers require some sort of configuration themselves: a connection string
for the database, a URL for the remote service, or a key to decrypt the data from Key Vault.
Unfortunately, this leaves you with a circular problem: you need to add the provider to build
your configuration object, but you need a configuration object to add the provider!

The solution is to use a two-stage process to build your final IConfiguration configuration
object, as shown in figure 19.5. In the first stage, you load the configuration values that are

97Azure Key Vault is a service that lets you securely store secrets in the cloud. Your app retrieves the secrets from Azure Key Vault at runtime by calling an API

and providing a client ID and a secret. The client ID and secret must come from local configuration values, so that you can retrieve the rest from Azure Key
Vault. Read more, including how to get started, at https://docs.microsoft.com/aspnet/core/security/key-vault-configuration.

663

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/security/key-vault-configuration

©Manning Publications Co. To comment go to liveBook

available locally, such as JSON files and environment variables, and build a temporary
IConfiguration. You can use this object to configure the complex providers, add them to
your configuration builder, and build the final IConfiguration for your app.

Figure 19.5 Adding a configuration provider that requires configuration. Start by adding configuration providers
that you have the details for and build a temporary IConfiguration object. You can use this configuration
object to load the settings required by the complex provider, add the provider to your builder, and build the final
IConfiguration object using all three providers.

You can use this two-phase process whenever you have configuration providers that need
configuration themselves. Building the configuration object twice means that the values are
loaded from each of the initial configuration providers twice, I’ve never found that to be a
problem.

664

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

As an example of this process, in listing 19.12, you’ll create a temporary IConfiguration
object built using the contents of an XML file. This contains a configuration property called
"SettingsFile" with the filename of a JSON file.

In the second phase of configuration, you add the JSON file provider (using the filename
from the partial IConfiguration) and the environment variable provider. When you finally call
Build() on the IHostBuilder, a new IConfiguration object will be built, containing the
configuration values from the XML file, the JSON file, and the environment variables.

Listing 19.12 Using multiple IConfiguration objects to configure providers

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((context, config) =>
 {
 config.Sources.Clear(); #A
 config.AddXmlFile("baseconfig.xml"); #B

 IConfiguration partialConfig = config.Build(); #C
 string filename = partialConfig["SettingsFile"]; #D

 config.AddJsonFile(filename) #E
 .AddEnvironmentVariables(); #F
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

#A Remove the default configuration sources
#B Adds an XML file to the configuration, which contains configuration for other providers
#C Builds the IConfiguration to read the XML file
#D Extracts the configuration required by other providers
#E Uses the extracted configuration to configure other providers
#F Remember, values from subsequent providers will overwrite values from previous providers

This is a somewhat contrived example—it’s unlikely that you’d need to load configuration
values to read a JSON file—but the principle is the same no matter which provider you use. A
good example of this is the Azure Key Value provider. To load configuration values from Azure
Key Vault, you need a URL, a client ID, and a secret. These must be loaded from other
configuration providers, so you have to use the same two-phase process as shown in the
previous listing.

Once you’ve loaded the configuration for your app, it’s common to bind this configuration
to strongly typed objects using the IOptions pattern. In the next section, we look at other
ways to configure your IOptions objects and how to build them using DI services.

19.3.2 Using services to configure IOptions with IConfigureOptions

A common and encouraged practice is to bind your configuration object to strongly typed
IOptions<T> objects, as you saw in chapter 11. Typically, you configure this binding in

665

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Startup.ConfigureServices by calling services.Configure<T>() and providing an
IConfiguration object or section to bind.

To bind a strongly typed object, called CurrencyOptions, to the "Currencies" section of
an IConfiguration object, you’d use

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
}

This sets the properties of the CurrencyOptions object, based on the values in the
"Currencies" section of your IConfiguration object. Simple binding like this is common, but
sometimes you might want to customize the configuration of your IOptions<T> objects, or
you might not want to bind them to configuration at all. The IOptions pattern only requires
you to configure a strongly typed object before it’s injected into a dependent service, it
doesn’t mandate that you have to bind it to an IConfiguration section.

TIP Technically, even if you don’t configure an IOptions<T> at all, you can still inject it into your services. In

that case, the T object will always be created using the default constructor.

The services.Configure<T>() method has an overload that lets you provide a lambda
function that the framework uses to configure the CurrencyOptions object. For example, in
the following snippet, we use a lambda function to set the Currencies property on the
configured CurrencyOptions object to a fixed array of strings:

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
 services.Configure<CurrencyOptions>(options =>
 options.Currencies = new string[] { "GBP", "USD"});
}

Each call to Configure<T>(), both the binding to IConfiguration and the lambda function,
adds another configuration step to the CurrencyOptions object. When the DI container first
requires an instance of IOptions<CurrencyOptions>, each of the steps run in turn, as shown
in figure 19.6.

666

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 19.6 Configuring a CurrencyOptions object. When the DI container needs an IOptions<> instance
of a strongly typed object, the container creates the object, and then uses each of the registered Configure()
methods to set the object’s properties.

In the example, you set the Currencies property to a static array of strings in a lambda
function. But what if you don’t know the correct values ahead of time? You might need to load
the available currencies from a database, or from some remote service, for example.

Unfortunately, this situation, where you need a configured service to configure your
IOptions<T> is hard to resolve. Remember, you declare your IOptions<T> configuration
inside ConfigureServices, as part of the DI configuration. How can you get a fully configured
instance of a currency service if you haven’t registered it with the container yet?

The solution is to defer the configuration of your IOptions<T> object until the last
moment, just before the DI container needs to create it to handle an incoming request. At that
point, the DI container will be completely configured and will know how to create the currency
service.

ASP.NET Core provides this mechanism with the IConfigureOptions<T> interface. You
implement this interface in a configuration class and use it to configure the IOptions<T>
object in any way you need. This class can use DI, so you can easily use any other required
services.

Listing 19.13 Implementing IConfigureOptions<T> to configure an options object

public class ConfigureCurrencyOptions : IConfigureOptions<CurrencyOptions>
{
 private readonly ICurrencyProvider _currencyProvider; #A
 public ConfigureCurrencyOptions(ICurrencyProvider currencyProvider)
 {
 _currencyProvider = currencyProvider; #A
 }

667

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 public void Configure(CurrencyOptions options) #B
 {
 options.Currencies = _currencyProvider.GetCurrencies(); #C
 }
}

#A You can inject services that are only available after the DI is completely configured.
#B Configure is called when an instance of IOptions <CurrencyOptions> is required.
#C You can use the injected service to load the values from a remote API, for example.

All that remains is to register this implementation in the DI container. As always, order is
important, so if you want ConfigureCurrencyOptions to run after binding to configuration,
you must add it after the first call to services.Configure<T>():

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CurrencyOptions>(
 Configuration.GetSection("Currencies"));
 services.AddSingleton
 <IConfigureOptions<CurrencyOptions>, ConfigureCurrencyOptions>();
}

WARNING The CurrencyConfigureOptions object is registered as a singleton, so it will capture any

injected services of scoped or transient lifetimes.98

With this configuration, when IOptions<CurrencyOptions> is injected into a controller or
service, the CurrencyOptions object will first be bound to the "Currencies" section of your
IConfiguration and will then be configured by the ConfigureCurrencyOptions class.

One piece of configuration not yet shown is ICurrencyProvider used by
ConfigureCurrencyOptions. In the sample code for this chapter, I created a simple
CurrencyProvider service and registered it with the DI container using

services.AddSingleton<ICurrencyProvider, CurrencyProvider>();

As your app grows, and you add extra features and services, you’ll probably find yourself
writing more and more of these simple DI registrations, where you register a Service that
implements IService. The built-in ASP.NET Core DI container requires you to explicitly
register each of these services manually. If you find this requirement frustrating, it may be
time to look at third-party DI containers that can take care of some of the boilerplate for you.

98If you inject a scoped service into your configuration class (for example, a DbContext), you need to do a bit more work to ensure it’s disposed of correctly. I

describe how to achieve that here: http://mng.bz/6m17.

668

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/6m17

©Manning Publications Co. To comment go to liveBook

19.4 Using a third-party dependency injection container
In this section I show how to replace the default dependency injection container with a third-
party alternative, Lamar. Third-party containers often provide additional features compared to
the built-in container, such as assembly scanning, automatic service registration, and property
injection. Replacing the built-in container can also be useful when porting an existing app that
uses a third-party DI container to ASP.NET Core.

The .NET community had been using DI containers for years before ASP.NET Core decided
to include one that is built-in. The ASP.NET Core team wanted a way to use DI in their own
framework libraries, and to create a common abstraction99 that allows you to replace the
built-in container with your favorite third-party alternative, such as

• Autofac
• StructureMap/Lamar
• Ninject
• Simple Injector
• Unity

The built-in container is intentionally limited in the features it provides, and it won’t be getting
many more realistically. In contrast, third-party containers can provide a host of extra
features. These are some of the features available in Lamar
(https://jasperfx.github.io/lamar/documentation/ioc/), the spiritual successor to StructureMap
(https://structuremap.github.io/):

• Assembly scanning for interface/implementation pairs based on conventions
• Automatic concrete class registration
• Property injection and constructor selection
• Automatic Lazy<T>/Func<T> resolution
• Debugging/testing tools for viewing inside your container

None of these features are a requirement for getting an application up and running, so using
the built-in container makes a lot of sense if you’re building a small app or you’re new to DI
containers in general. But if, at some undefined tipping point, the simplicity of the built-in
container becomes too much of a burden, it may be worth replacing it.

TIP A middle-of-the-road approach is to use the Scrutor NuGet package, which adds some features to the

built-in DI container, without replacing it entirely. For an introduction and examples, see

https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-

container/.

99Although the promotion of DI as a core practice has been applauded, this abstraction has seen some controversy. This post from one of the maintainers of

the SimpleInjector DI library describes many of the arguments and concerns: https://blog.simpleinjector.org/2016/06/whats-wrong-with-the-asp-net-
core-di-abstraction/. You can also read more about the decisions here: https://github.com/aspnet/DependencyInjection/issues/433.

669

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://jasperfx.github.io/lamar/documentation/ioc/
https://structuremap.github.io/
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/
https://blog.simpleinjector.org/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/
https://blog.simpleinjector.org/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/
https://github.com/aspnet/DependencyInjection/issues/433

©Manning Publications Co. To comment go to liveBook

In this section, I show how you can configure an ASP.NET Core app to use Lamar for
dependency resolution. It won’t be a complex example, or an in-depth discussion of Lamar
itself. Instead, I’ll cover the bare minimum to get up and running.

Whichever third-party container you choose to install into an existing app, the overall
process is pretty much the same:

1. Install the container NuGet package.
2. Register the third-party container with the IHostBuilder in Program.cs
3. Add a ConfigureContainer method in Startup.
4. Configure the third-party container in ConfigureContainer to register your services.

Most of the major .NET DI containers have been ported to work on .NET Core and include an
adapter that lets you add them to ASP.NET Core apps. For details, it’s worth consulting the
specific guidance for the container you’re using. For Lamar, the process looks like this:

1. Install the Lamar.Microsoft.DependencyInjection NuGet package using the NuGet
package manager, by running dotnet add package

dotnet add package Lamar.Microsoft.DependencyInjection

or by adding a <PackageReference> to your csproj file

<PackageReference
 Include="Lamar.Microsoft.DependencyInjection" Version="4.3.0" />

2. Call UseLamar() on your IHostBuilder in Program.cs

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .UseLamar()
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 }

3. Add a ConfigureContainer method to your Startup class, with the following
signature:

public void ConfigureContainer(ServiceRegistry services) { }

4. Configure the Lamar ServiceRegistry in ConfigureContainer, as shown in the
following listing. This is a basic configuration, but you can see a more complex example
in the source code for this chapter.

Listing 19.14 Configuring StructureMap as a third-party DI container

public void ConfigureContainer(ServiceRegistry services) #A
{
 services.AddAuthorization(); #B
 services.AddControllers() #B
 .AddControllersAsServices(); #C

670

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 config.Scan(_ => { #D
 _.AssemblyContainingType(typeof(Startup)); #D
 _.WithDefaultConventions(); #D
 }); #D
}

#A Configure your services in ConfigureContainer instead of ConfigureServices
#B You can (and should) add ASP.NET Core framework services to the ServiceRegistry as usual.
#C Required so that Lamar is used to build your API controllers.
#D Lamar can automatically scan your assemblies for services to register.

In this example, I’ve used the default conventions to register services. This will automatically
register concrete classes and services that are named following expected conventions (for
example, Service implements IService). You can change these conventions or add other
registrations in the ConfigureContainer method.

The ServiceRegistry passed into ConfigureContainer implements IServiceCollection,
which means you can use all the built-in extension methods, such as AddControllers() and
AddAuthorization(), to add framework services to your container.

WARNING If you’re using DI in your MVC controllers (almost certainly!) and you register those dependencies

with Lamar, rather than the built-in container, you may need to call AddControllersAsServices(), as

shown in listing 19.14. This is due to an implementation detail in the way the your MVC controllers are created

by the framework. For details, see https://andrewlock.net/controller-activation-and-dependency-injection-in-

asp-net-core-mvc/.

With this configuration in place, whenever your app needs to create a service, it will request it
from the Lamar container, which will create the dependency tree for the class and create an
instance. This example doesn’t show off the power of Lamar, so be sure to check out the
documentation (https://jasperfx.github.io/lamar/) and the associated source code for this
chapter for more examples. Even in modestly sized applications, Lamar can greatly simplify
your service registration code, but its party trick is showing all the services you have
registered, and any associated issues.

That brings us to the end of this chapter on custom components. In this chapter, I focused
on some of the most common components you will build for the configuration, dependency
injection, and middleware systems of ASP.NET Core. In the next chapter, you’ll learn about
more custom components, with a focus on Razor Pages and API controllers.

19.5 Summary
• Use the Run extension method to create middleware components that always return a

response. You should always place the Run extension at the end of a middleware
pipeline or branch, as middleware placed after it will never execute.

671

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/controller-activation-and-dependency-injection-in-asp-net-core-mvc/
https://andrewlock.net/controller-activation-and-dependency-injection-in-asp-net-core-mvc/
https://jasperfx.github.io/lamar/

©Manning Publications Co. To comment go to liveBook

• You can create branches in the middleware pipeline with the Map extension. If an
incoming request matches the specified path prefix, the request will execute the
pipeline branch, otherwise it will execute the trunk.

• When the Map extension matches a request path segment, it removes the segment
from the request’s HttpContext.Path and moves it to the PathBase property. This
ensures that routing in branches works correctly.

• You can use the Use extension method to create generalized middleware components
that can generate a response, modify the request, or pass the request on to
subsequent middleware in the pipeline. This is useful for cross-cutting concerns, like
adding a header to all responses.

• You can encapsulate middleware in a reusable class. The class should take a
RequestDelegate object in the constructor, and should have a public Invoke() method
that takes an HttpContext and returns a Task. To call the next middleware in the
pipeline, invoke the RequestDelegate with the provided HttpContext.

• To create endpoints that generate a response, build a miniature pipeline containing the
response-generating middleware, and call endpoints.Map(route, pipeline).
Endpoint routing will be used to map incoming requests to your endpoint.

• You can attach metadata to endpoints which is made available to any middleware
placed between the calls to UseRouting() and UseEndpoints(). This metadata enables
functionality such as authorization and CORS.

• To add authorization to an endpoint, call RequireAuthorization() after mapping the
endpoint. This is equivalent to using the [Authorize] attribute on Razor Pages and API
controllers. You can optionally provide an authorization policy name, instead of using
the default policy.

• Some configuration providers require configuration values themselves. For example, a
configuration provider that loads settings from a database might need a connection
string. You can load these configuration providers by partially building an
IConfiguration object using the other providers and reading the required
configuration from it. You can then configure the database provider and add it to the
ConfigurationBuilder before rebuilding to get the final IConfiguration.

• If you need to use services from the DI container to configure an IOptions<T> object,
then you should create a separate class that implements IConfigureOptions<T>. This
class can use DI in the constructor and is used to lazily build a requested IOptions<T>
object at runtime.

• You can replace the built-in DI container with a third-party container. Third-party
containers often provide additional features, such as convention-based dependency
registration, assembly scanning, or property injection.

• To use a third-party container such as Lamar, install the NuGet package, enable the
container on IHostBuilder, and implement ConfigureContainer() in Startup.
Configure the third-party container in this method by registering both the required
ASP.NET Core framework services and your app specific services.

672

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

20
Building custom MVC and Razor

Pages components

This chapter covers

• Creating custom Razor Tag Helpers
• Using view components to create complex Razor views
• Creating a custom DataAnnotations validation attribute
• Replacing the DataAnnotations validation framework with an alternative

In the previous chapter, you learned how to customize and extend some of the core systems
in ASP.NET Core: configuration, dependency injection, and your middleware pipeline. These
components form the basis of all ASP.NET Core apps. In this chapter we’re focusing on Razor
Pages and MVC/API controllers. You’ll learn how to build custom components that work with
Razor views, as well as the validation framework used by both Razor Pages and API
controllers.

We start by looking at Tag Helpers. In section 20.1, I show you how to create two different
Tag Helpers: one that generates HTML to describe the current machine, and one that lets you
write if statements in Razor templates without having to use C#. These will give you the
details you need to create your own custom Tag Helpers in your own apps if the need arises.

In section 20.2, you’ll learn about a new Razor concept: view components. View
components are a bit like partial views, but they can contain business logic and database
access. For example, on an e-commerce site, you might have a shopping cart, a dynamically
populated menu, and a login widget, all on one page. Each of those sections is independent of
the main page content and has its own logic and data-access needs. In an ASP.NET Core app
using Razor Pages, you’d implement each of those as a View Component.

673

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In section 20.3, I show how to create a custom validation attribute. As you saw in chapter
6, validation is a key responsibility of Razor Page handlers and action methods, and the
DataAnnotations attributes provide a clean, declarative way for doing so. We previously only
looked at the built-in attributes, but you’ll often find you need to add attributes tailored to
your app’s domain. In section 20.3, you’ll see how to create a simple validation attribute, and
how to extend it to use services registered with the DI container.

Throughout this book I’ve mentioned that you can easily swap out core parts of the
ASP.NET Core framework if you wish. In section 20.4 you’ll do just that, by replacing the built-
in attribute-based validation framework with a popular alternative, FluentValidation. This open
source library allows you to separate your binding models from the validation rules, which
makes building certain validation logic easier. Many people prefer this approach of separating
concerns to the declarative approach of DataAnnotations.

When you’re building pages with Razor Pages, one of the best productivity features is Tag
Helpers, and in the next section you’ll see how you can create your own.

20.1 Creating a custom Razor Tag Helper
In this section you’ll learn how to create your own Tag Helpers, which allow you to customize
your HTML output. You’ll learn how to create Tag Helpers that add new elements to your HTML
markup, as well as Tag Helpers that can be used to remove or customize existing markup.
You’ll also see that your custom Tag Helpers integrate with the tooling of your IDE to provide
rich IntelliSense in the same way as the built-in Tag Helpers.

In my opinion, Tag Helpers are one of the best additions to the venerable Razor template
language in ASP.NET Core. They allow you to write Razor templates that are easier to read, as
they require less switching between C# and HTML, and they augment your HTML tags, rather
than replacing them (as opposed to the HTML Helpers used extensively in the previous version
of ASP.NET).

ASP.NET Core comes with a wide variety of Tag Helpers (see chapter 8), which will cover
many of your day-to-day requirements, especially when it comes to building forms. For
example, you can use the Input Tag Helper by adding an asp-for attribute to an <input> tag
and passing a reference to a property on your PageModel, in this case Input.Email:

<input asp-for="Input.Email" />

The Tag Helper is activated by the presence of the attribute and gets a chance to augment the
<input> tag when rendering to HTML. The Input Tag Helper uses the name of the property to
set the <input> tag’s name and id properties, the value of the model to set the value
property, and the presence of attributes such as [Required] or [EmailAddress] to add
attributes for validations:

<input type="email" id="Input_Email" name="Input.Email"
 value="test@example.com" data-val="true"
 data-val-email="The Email Address field is not a valid e-mail address."
 data-val-required="The Email Address field is required."
 />

674

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
mailto:test@example.com

©Manning Publications Co. To comment go to liveBook

Tag Helpers help reduce the duplication in your code, or they can simplify common patterns.
In this section, I show how you can create your own custom Tag Helpers.

In section 20.1.1, you create a system information Tag Helper, which prints details about
the name and operating system of the server your app is running on. In section 20.1.2, you
create a Tag Helper that you can use to conditionally show or hide an element based on a C#
Boolean property. In section 20.1.3 you create a Tag Helper that reads the Razor content
written inside the Tag Helper and transforms it.

20.1.1 Printing environment information with a custom Tag Helper

A common problem you may run into when you start running your web applications in
production, especially if you’re using a server-farm setup, is working out which machine
rendered the page you’re currently looking at. Similarly, when deploying frequently, it can be
useful to know which version of the application is running. When I’m developing and testing, I
sometimes like to add a little “info dump” at the bottom of my layouts, so I can easily work
out which server generated the current page, which environment it’s running in, and so on.

In this section, I’m going to show you how to build a custom Tag Helper to output system
information to your layout. You’ll be able to toggle the information it displays, but by default,
it will display the machine name and operating system on which the app is running, as shown
in figure 20.1.

Figure 20.1 The SystemInfoTagHelper displays the machine name and operating system on which the
application is running. It can be useful for identifying which instance of your app handled the request when
running in a web farm scenario.

You can call this Tag Helper from Razor by creating a <system-info> element in your
template, for example:

<footer>
 <system-info></system-info>
</footer>

675

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

TIP You probably don’t want to expose this sort of information in production, so you could also wrap it in an

<environment> Tag Helper, as you saw in chapter 8.

The easiest way to create a custom Tag Helper is to derive from the TagHelper base class and
override the Process() or ProcessAsync() function that describes how the class should
render itself. The following listing shows your complete custom Tag Helper, the
SystemInfoTagHelper, which renders the system information to a <div>. You could easily
extend this class if you wanted to display additional fields or add additional options.

Listing 20.1 SystemInfoTagHelper to render system information to a view

public class SystemInfoTagHelper : TagHelper #A
{
 private readonly HtmlEncoder _htmlEncoder; #B
 public SystemInfoTagHelper(HtmlEncoder htmlEncoder) #B
 {
 _htmlEncoder = htmlEncoder;
 }

 [HtmlAttributeName("add-machine")] #C
 public bool IncludeMachine { get; set; } = true;

 [HtmlAttributeName("add-os")] #C
 public bool IncludeOS { get; set; } = true;

 public override void Process(#D
 TagHelperContext context, TagHelperOutput output) #D
 {
 output.TagName = "div"; #E
 output.TagMode = TagMode.StartTagAndEndTag; #F
 var sb = new StringBuilder();

 if (IncludeMachine) #G
 { #G
 sb.Append(" Machine "); #G
 sb.Append(_htmlEncoder.Encode(Environment.MachineName)); #G
 } #G

 if (IncludeOS) #H
 { #H
 sb.Append(" OS "); #H
 sb.Append(#H
 _htmlEncoder.Encode(RuntimeInformation.OSDescription)); #H
 } #H
 output.Content.SetHtmlContent(sb.ToString()); #I
 }
}

#A Derives from the TagHelper base class
#B An HtmlEncoder is necessary when writing HTML content to the page.
#C Decorating properties with HtmlAttributeName allows you to set their value from Razor markup
#D The main function called when an element is rendered.
#E Replaces the <system-info> element with a <div> element
#F Renders both the <div> </div> start and end tag

676

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#G If required, adds a element and the HTML-encoded machine name
#H If required, adds a element and the HTML-encoded OS name
#I Sets the inner content of the <div> tag with the HTML-encoded value stored in the string builder

There’s a lot of new code in this sample, so we’ll work through it line by line. First, the class
name of the Tag Helper defines the name of the element you must create in your Razor
template, with the suffix removed and converted to kebab-case. As this Tag Helper is called
SystemInfoTagHelper, you must create a <system-info> element.

TIP If you want to customize the name of the element, for example to <env-info>, but want to keep the

same class name, you can apply the [HtmlTargetElement] with the desired name, such as

[HtmlTargetElement("Env-Info")]. HTML tags are not case sensitive, so you could use "Env-Info"

or "env-info".

Inject an HtmlEncoder into your Tag Helper so you can HTML-encode any data you write to
the page. As you saw in chapter 18, you should always HTML-encode data you write to the
page to avoid XSS vulnerabilities (and to ensure the data is displayed correctly).

You’ve defined two properties on your Tag Helper, IncludeMachine and IncludeOS, which
you’ll use to control which data is written to the page. These are decorated with a
corresponding [HtmlAttributeName], which enables setting the properties from the Razor
template. In Visual Studio, you’ll even get IntelliSense and type checking for these values, as
shown in figure 20.2.

Figure 20.2 In Visual Studio, Tag Helpers are shown in a purple font and you get IntelliSense for properties
decorated with [HtmlAttributeName].

Finally, we come to the Process() method. The Razor engine calls this method to execute the
Tag Helper when it identifies the target element in a view template. The Process() method
defines the type of tag to render (<div>), whether it should render a start and end tag (or a
self-closing tag—it depends on the type of tag you’re rendering), and the HTML content of the
<div>. You set the HTML content to be rendered inside the tag by calling
Content.SetHtmlContent() on the provided instance of TagHelperOutput.

WARNING Always HTML-encode your output before writing to your tag with SetHtmlContent().

Alternatively, pass unencoded input to SetContent() and the output will be automatically HTML-encoded

for you.

677

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Before you can use your new Tag Helper in a Razor template, you need to register it. You can
do this in the _ViewImports.cshtml file, using the @addTagHelper directive and specifying the
fully qualified name of the Tag Helper and the assembly. For example,

@addTagHelper CustomTagHelpers.SystemInfoTagHelper, CustomTagHelpers

Alternatively, you can add all the Tag Helpers from a given assembly by using the wildcard
syntax, *, and specifying the assembly name:

@addTagHelper *, CustomTagHelpers

With your custom Tag Helper created and registered, you’re now free to use it in any of your
Razor views, partial views, or layouts.

TIP If you’re not seeing IntelliSense for your Tag Helper in Visual Studio, and the Tag Helper isn’t rendered in

the bold font used by Visual Studio, then you probably haven’t registered your Tag Helpers correctly in

__ViewImports.cshtml using @addTagHelper.

The SystemInfoTagHelper is an example of a Tag Helper that generates content, but you can
also use Tag Helpers to control how existing elements are rendered. In the next section, you’ll
create a simple Tag Helper that can control whether or not an element is rendered, based on
an HTML attribute.

20.1.2 Creating a custom Tag Helper to conditionally hide elements

If you want to control whether an element is displayed in a Razor template based on some C#
variable, then you’d typically wrap the element in a C# if statement:

@{
 var showContent = true;
}
@if(showContent)
{
 <p>The content to show</p>
}

Falling back to C# constructs like this can be useful, as it allows you to generate any markup
you like. Unfortunately, it can be mentally disruptive having to switch back and forth between
C# and HTML, and it makes it harder to use HTML editors that don’t understand Razor syntax.

In this section, you’ll create a simple Tag Helper to avoid the cognitive dissonance
problem. You can apply this Tag Helper to existing elements to achieve the same result as
shown previously, but without having to fall back to C#:

@{
 var showContent = true;
}
<p if="showContent">
 The content to show
</p>

678

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Instead of creating a new element, as you did for SystemInfoTagHelper (<system-info>),
you’ll create a Tag Helper that you apply as an attribute to existing HTML elements. This Tag
Helper does one thing: it controls the visibility of the element it’s attached to. If the value
passed in the if attribute is true, the element and its content is rendered as normal. If the
value passed is false, the Tag Helper removes the element and its content from the template.
Here’s how you could achieve this.

Listing 20.2 Creating an IfTagHelper to conditionally render elements

[HtmlTargetElement(Attributes = "if")] #A
public class IfTagHelper : TagHelper
{
 [HtmlAttributeName("if")] #B
 public bool RenderContent { get; set; } = true;

 public override void Process(#C
 TagHelperContext context, TagHelperOutput output) #C
 {
 if(RenderContent == false) #D
 {
 output.TagName = null; #E
 output.SuppressOutput(); #F
 }
 }

 public override int Order => int.MinValue; #G
}

#A Setting the Attributes property ensures the Tag Helper is triggered by an if attribute.
#B Binds the value of the if attribute to the RenderContent property
#C The Razor engine calls Process() to execute the Tag Helper.
#D If the RenderContent property evaluates to false, removes the element
#E Sets the element the Tag Helper resides on to null, removing it from the page
#F Doesn’t render or evaluate the inner content of the element
#G Ensures this Tag Helper runs before any others attached to the element

Instead of a standalone <if> element, the Razor engine executes the IfTagHelper whenever
it finds an element with an if attribute. This can be applied to any HTML element: <p>, <div>,
<input>, whatever you need. Define a Boolean property for whether you should render the
content, which is bound to the value in the if attribute.

The Process() function is much simpler here. If RenderContent is false, then it sets the
TagHelperOutput.TagName to null, which removes the element from the page. You also call
SuppressOutput(), which prevents any content inside the attributed element from being
rendered. If RenderContent is true, then you skip these steps and the content is rendered as
normal.

One other point of note is the overridden Order property. This controls the order in which
Tag Helpers run when multiple Tag Helpers are applied to an element. By setting Order to
int.MinValue, you ensure IfTagHelper will run first, removing the element if required,

679

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

before other Tag Helpers execute. There’s generally no point running other Tag Helpers if the
element is going to be removed from the page anyway!

NOTE Remember to register your custom Tag Helpers in _ViewImports .cshtml with the @addTagHelper

directive.

With a simple HTML attribute, you can now conditionally render elements in Razor templates,
without having to fall back to C#. This tag helper can show and hide content without needing
to know what the content is. In the next section, we’ll create a Tag Helper that does need to
know the content.

20.1.3 Creating a Tag Helper to convert Markdown to HTML

The two Tag Helpers shown so far are agnostic to the content written inside the Tag Helper,
but it can also be useful to create Tag Helpers that inspect, retrieve, and modify this content.
In this section you’ll see an example of one such Tag Helper that converts Markdown content
written inside it into HTML.

DEFINITION Markdown is a commonly used text-based markup language that is easy to read but can also

be converted into HTML. It is the common format used by README files on GitHub, and I use it to write blog

posts, for example. For an introduction to Markdown, see https://guides.github.com/features/mastering-

markdown/.

We’ll use the popular Markdig library (https://github.com/lunet-io/markdig/) to create the
Markdown Tag Helper. This library converts a string containing markdown into an HTML
string. You can install Markdig using Visual Studio, by running dotnet add package

Markdig, or by adding a <PackageReference> to your csproj file:

<PackageReference Include="Markdig" Version="0.20.0" />

The Markdown Tag Helper that we’ll create shortly can be used by adding <markdown>
elements to your Razor Page, as shown in the following listing.

Listing 20.3 Using a Markdown Tag Helper in a Razor Page

@page
@model IndexModel

<markdown> #A
This is a markdown title #B

This is a markdown list: #C

* Item 1 #C
* Item 2 #C

<div if="showContent"> #D
 Content is shown when showContent is true #D
</div> #D

680

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://github.com/lunet-io/markdig/

©Manning Publications Co. To comment go to liveBook

</markdown>

#A The Markdown Tag Helper is added using the <markdown> element
#B Titles can be created in Markdown using # to denote h1, ## to denote h2, and so on
#C Markdown converts simple lists to HTML elements
#D Razor content can be nested inside other Tag Helpers

The Markdown Tag Helper renders content by:

1. Rendering any Razor content inside the Tag Helper. This includes executing any nested
Tag Helpers and C# code inside the Tag Helper. The above example uses the
IfTagHelper, for example.

2. Converting the resulting string to HTML using the Markdig library.
3. Replacing the content with the rendered HTML and removing the Tag Helper

<markdown> element.

The following listing shows a simple approach to implementing a Markdown Tag Helper using
Markdig. Markdig supports many additional extensions and features that you could enable, but
the overall pattern of the Tag Helper would be the same.

Listing 20.4 Implementing a Markdown Tag Helper using Markdig

public class MarkdownTagHelper: TagHelper #A
{
 public override async Task ProcessAsync(
 TagHelperContext context, TagHelperOutput output)
 {
 TagHelperContent markdownRazorContent = await #B
 output.GetChildContentAsync(NullHtmlEncoder.Default); #B
 string markdown = #C
 markdownRazorContent.GetContent(NullHtmlEncoder.Default); #C

 string html = Markdig.Markdown.ToHtml(markdown); #D

 output.Content.SetHtmlContent(html); #E
 output.TagName = null; #F
 }
}

#A The Markdown Tag Helper will use the <markdown> element
#B Retrieve the contents of the <markdown> element
#C Render the Razor contents to a string
#D Convert the markdown string to HTML using Markdig
#E Write the HTML content to the output
#F Remove the <markdown> element from the content

When rendered to HTML, the Markdown content in listing 20.3 (when the showContent
variable is true) becomes:

<h2>This is a markdown title</h2>
<p>This is a markdown list:</p>

Item 1

681

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Item 2

<div>
 Content is shown when showContent is true
</div>

NOTE In Listing 20.4 we implemented ProcessAsync() instead of Process(). That is because we call

the async method, GetChildContentAsync(). You must only call async methods from other async

methods, as otherwise you can get issues such as thread starvation. For more details, see

https://docs.microsoft.com/aspnet/core/performance/performance-best-practices.

The Tag Helpers in this section represent a small sample of possible avenues you could
explore,100 but they cover the two broad categories: Tag Helpers for rendering new content,
and Tag Helpers for controlling the rendering of other elements.

Tag Helpers can be useful for providing small pieces of isolated, reusable functionality like
this, but they’re not designed to provide larger, application-specific sections of an app or to
make calls to business-logic services. Instead, you should use view components, as you’ll see
in the next section.

20.2 View components: adding logic to partial views
In this section you’ll learn about view components. View components operate independently of
the main Razor Page and can be used to encapsulate complex business logic. You can use
view components to keep your main Razor Page focused on a single task, rendering the main
content, instead of also being responsible for other sections of the page.

If you think about a typical website, you’ll notice that they often have multiple independent
dynamic sections, in addition to the main content. Consider Stack Overflow, shown in figure
20.3, for example. As well as the main body of the page showing questions and answers,
there’s a section showing the current logged-in user, a panel for blog posts and related items,
and a section for job suggestions.

100For further details and examples, see the documentation at http://mng.bz/Idb0.

682

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/performance/performance-best-practices
http://mng.bz/Idb0

©Manning Publications Co. To comment go to liveBook

Figure 20.3 The Stack Overflow website has multiple sections that are independent of the main content, but
which contain business logic and complex rendering logic. Each of these sections could be rendered as a view
component in ASP.NET Core.

Each of these sections is effectively independent of the main content. Each section contains
business logic (deciding which posts or ads to show), database access (loading the details of
the posts), and rendering logic for how to display the data. In chapter 7, you saw that you can
use layouts and partial views to split up the rendering of a view template into similar sections,
but partial views aren’t a good fit for this example. Partial views let you encapsulate view
rendering logic, but not business logic that’s independent of the main page content.

Instead, view components provide this functionality, encapsulating both the business logic
and rendering logic for displaying a small section of the page. You can use DI to provide
access to a database context, and you can test them independently of the view they generate,
much like MVC and API controllers. Think of them a bit like mini-MVC controllers, or mini-
Razor Pages, but you invoke them directly from a Razor view, instead of in response to an
HTTP request.

TIP View components are comparable to child actions from the previous version of ASP.NET, in that they

provide similar functionality. Child actions don’t exist in ASP.NET Core.

683

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

View components versus Razor Components and Blazor
In this book I am focusing on server-side rendered applications using Razor Pages and API applications using API
controllers. .NET Core 3.0 introduced a completely new approach to building ASP.NET Core applications: Blazor. I don’t
cover Blazor in this book, so I recommend reading Blazor in Action by Chris Sainty (Manning, 2021).
Blazor has two programming models, client-side and server-side, but both approaches use Blazor components
(confusingly, officially called Razor components). Blazor components have a lot of parallels with view components, but
they live in a fundamentally different world. Blazor components can interact with each other easily, but you can’t use
them with Tag Helpers or view components, and it’s hard to combine them with Razor Page form posts.
Nevertheless, if you need an “island” of rich client-side interactivity in a single Razor Page, you can embed a Blazor
component inside a Razor Page, as shown in the documentation:
https://docs.microsoft.com/aspnet/core/blazor/components/integrate-components. You could also use Blazor
components as a way to replace AJAX calls in your Razor Pages, as I show in https://andrewlock.net/replacing-ajax-
calls-in-razor-pages-using-razor-components-and-blazor/.
If you don’t need the client-side interactivity of Blazor, then view components are still the best option for isolated
sections in Razor Pages. They interoperate cleanly with your Razor Pages, have no additional operational overhead, and
use familiar concepts like layouts, partial views and Tag Helpers. For more details on why you should continue to use
view components see https://andrewlock.net/dont-replace-your-view-components-with-razor-components/.

In this section, you’ll see how to create a custom view component for the recipe app you built
in previous chapters, as shown in figure 20.4. If the current user is logged in, the view
component displays a panel with a list of links to the user’s recently created recipes. For
unauthenticated users, the view component displays links to the login and register actions.

684

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/blazor/components/integrate-components
https://andrewlock.net/replacing-ajax-calls-in-razor-pages-using-razor-components-and-blazor/
https://andrewlock.net/replacing-ajax-calls-in-razor-pages-using-razor-components-and-blazor/
https://andrewlock.net/dont-replace-your-view-components-with-razor-components/

©Manning Publications Co. To comment go to liveBook

Figure 20.4 The view component displays different content based on the currently logged-in user. It includes
both business logic (which recipes to load from the database) and rendering logic (how to display the data).

This component is a great candidate for a view component as it contains database access and
business logic (choosing which recipes to display), as well as rendering logic (how the panel
should be displayed).

TIP Use partial views when you want to encapsulate the rendering of a specific view model, or part of a view

model. When you have rendering logic that requires business logic or database access, or where the section is

logically distinct from the main page content, consider using a view component.

You invoke view components directly from Razor views and layouts using a Tag Helper-style
syntax, using a vc: prefix:

<vc:my-recipes number-of-recipes="3">
</vc:my-recipes>

Custom view components typically derive from the ViewComponent base class, and implement
an InvokeAsync() method, as shown in listing 20.5. Deriving from this base class allows
access to useful helper methods, in much the same way that deriving from the

685

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

ControllerBase class does for API controllers. Unlike API controllers, the parameters passed
to InvokeAsync don’t come from model binding. Instead, you pass the parameters to the view
component using properties on the Tag Helper element in your Razor view.

Listing 20.5 A custom view component to display the current user’s recipes

public class MyRecipesViewComponent : ViewComponent #A
{
 private readonly RecipeService _recipeService; #B
 private readonly UserManager<ApplicationUser> _userManager; #B
 public MyRecipesViewComponent(RecipeService recipeService, #B
 UserManager<ApplicationUser> userManager) #B
 { #B
 _recipeService = recipeService; #B
 _userManager = userManager; #B
 } #B

 public async Task<IViewComponentResult> InvokeAsync(#C
 int numberOfRecipes) #D
 {
 if(!User.Identity.IsAuthenticated)
 {
 return View("Unauthenticated"); #E
 }

 var userId = _userManager.GetUserId(HttpContext.User); #F
 var recipes = await _recipeService.GetRecipesForUser(#F
 userId, numberOfRecipes);

 return View(recipes); #G
 }
}

#A Deriving from the ViewComponent base class provides useful methods like View().
#B You can use DI in a view Component.
#C InvokeAsync renders the view component. It should return a Task<IViewComponentResult>
#D You can pass parameters to the component from the view.
#E Calling View() will render a partial view with the provided name.
#F You can use async external services, allowing you to encapsulate logic in your business domain.
#G You can pass a view model to the partial view. Default.cshtml is used by default.

This custom view component handles all the logic you need to render a list of recipes when the
user is logged in, or a different view if the user isn’t authenticated. The name of the view
component is derived from the class name, like Tag Helpers. Alternatively, you can apply the
[ViewComponent] attribute to the class and set a different name entirely.

The InvokeAsync method must return a Task<IViewComponentResult>. This is similar to
the way you can return IActionResult from an action method or a page handler, but it’s
more restrictive; view components must render some sort of content, so you can’t return
status codes or redirects. You’ll typically use the View() helper method to render a partial
view template (as in the previous listing) though you can also return a string directly using the

686

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Content() helper method, which will HTML-encode the content and render it to the page
directly.

You can pass any number of parameters to the InvokeAsync method. The name of the
parameters (in this case, numberOfRecipes) is converted to kebab-case and exposed as a
property in the view component’s Tag Helper (<number-of-recipes>). You can provide these
parameters when you invoke the view component from a view, and you’ll get IntelliSense
support, as show in figure 20.5.

Figure 20.5 Visual Studio provides IntelliSense support for the method parameters of a view component’s
InvokeAsync method. The parameter name, in this case numberOfRecipes, is converted to kebab-case for
use as an attribute in the Tag Helper.

View components have access to the current request and HttpContext. In listing 20.5, you
can see that we’re checking whether the current request was from an authenticated user. You
can also see that we’ve used some conditional logic: if the user isn’t authenticated, render the
“Unauthenticated” Razor template, if they’re authenticated, render the default Razor template
and pass in the view models loaded from the database.

NOTE If you don’t specify a specific Razor view template to use in the View() function, view components

use the template name, “Default.cshtml.”

The partial views for view components work similarly to other Razor partial views that you
learned about in chapter 7, but they’re stored separately from them. You must create partial
views for view components at either:

• Views/Shared/Components/ComponentName/TemplateName, or
• Pages/Shared/Components/ComponentName/TemplateName

Both locations work, so for Razor Pages app, I typically use the Pages/ folder. For the view
component in listing 20.5, for example, you’d create your view templates at

• Pages/Shared/Components/MyRecipes/Default.cshtml
• Pages/Shared/Components/MyRecipes/Unauthenticated.cshtml

This was only a quick introduction to view components, but it should get you a long way. View
components are a simple method to embed pockets of isolated, complex logic in your Razor
layouts. Having said that, be mindful of these caveats:

• View component classes must be public, non-nested, and non-abstract classes.
• Although similar to MVC controllers, you can’t use filters with view components.

687

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

• You can use Layouts in your view components views, to extract rendering logic
common to a specific view component. This layout may contain @sections, as you saw
in chapter 7, but these sections are independent of the “main” Razor view’s layout.

• View components are isolated from the Razor Page they’re rendered in, so you can’t,
for example, define a @section in a Razor Page layout, and then add that content from
a view component; the contexts are completely separate

• When using the <vc:my-recipes> Tag Helper syntax to invoke your view component,
you must import it as a custom Tag Helper, as you saw in section 20.1.

• Instead of using the Tag Helper syntax, you may invoke the view component from a
view directly by using IViewComponentHelper Component, though I don’t recommend
using this syntax. For example:

@await Component.InvokeAsync("MyRecipes", new { numberOfRecipes = 3 })

We’ve covered Tag Helpers and view components, which are both features of the Razor engine
in ASP.NET Core. In the next section, you’ll learn about a different, but related, topic: how to
create a custom DataAnnotations attribute. If you’ve used previous versions of ASP.NET,
then this will be familiar, but ASP.NET Core has a couple of tricks up its sleeve to help you out.

20.3 Building a custom validation attribute
In this section you’ll learn how to create a custom DataAnnotations validation attribute that
specifies specific values a string property may take. You’ll then learn how you can expand
the functionality to be more generic by delegating to a separate service that is configured in
your DI controller. This will allow you to create custom domain-specific validations for your
apps.

We looked at model binding in chapter 6, where you saw how to use the built-in
DataAnnotations attributes in your binding models to validate user input. These provide
several built-in validations, such as

• [Required]—The property isn’t optional and must be provided.
• [StringLength(min, max)]—The length of the string value must be between min and

max characters.
• [EmailAddress]—The value must be a valid email address format.

But what if these attributes don’t meet your requirements? Consider the following listing,
which shows a binding model from a currency converter application. The model contains three
properties: the currency to convert from, the currency to convert to, and the quantity.

Listing 20.6 Currency converter initial binding model

public class CurrencyConverterModel
{
 [Required] #A
 [StringLength(3, MinimumLength = 3)] #B
 public string CurrencyFrom { get; set; }

688

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 [Required] #A
 [StringLength(3, MinimumLength = 3)] #B
 public string CurrencyTo { get; set; }

 [Required] #A
 [Range(1, 1000)] #C
 public decimal Quantity { get; set; }
}

#A All the properties are required.
#B The strings must be exactly 3 characters.
#C The quantity can be between 1 and 1000.

There’s some basic validation on this model, but during testing you identify a problem: users
can enter any three-letter string for the CurrencyFrom and CurrencyTo properties. Users
should only be able to choose a valid currency code, like "USD" or "GBP", but someone
attacking your application could easily send "XXX" or "£$%"!

Assuming you support a limited set of currencies, say GBP, USD, EUR, and CAD, you could
handle the validation in a few different ways. One way would be to validate the CurrencyFrom
and CurrencyTo values within the Razor Page handler method, after model binding and
attribute validation has already occurred.

Another way would be to use a [RegularExpresssion] attribute to look for the allowed
strings. The approach I’m going to take here is to create a custom ValidationAttribute. The
goal is to have a custom validation attribute you can apply to the CurrencyFrom and
CurrencyTo attributes, to restrict the range of valid values. This will look something like the
following example.

Listing 20.7 Applying custom validation attributes to the binding model

public class CurrencyConverterModel
{
 [Required]
 [StringLength(3, MinimumLength = 3)]
 [CurrencyCode("GBP", "USD", "CAD", "EUR")] #A
 public string CurrencyFrom { get; set; }

 [Required]
 [StringLength(3, MinimumLength = 3)]
 [CurrencyCode("GBP", "USD", "CAD", "EUR")] #A

 [Required]
 [Range(1, 1000)]
 public decimal Quantity { get; set; }
}

#A CurrencyCodeAttribute validates that the property has one of the provided values

Creating a custom validation attribute is simple, as you can start with the
ValidationAttribute base class and you only have to override a single method. The next

689

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

listing shows how you could implement CurrencyCodeAttribute to ensure that the currency
codes provided match the expected values.

Listing 20.8 Custom validation attribute for currency codes

public class CurrencyCodeAttribute : ValidationAttribute #A
{
 private readonly string[] _allowedCodes; #B
 public CurrencyCodeAttribute(params string[] allowedCodes) #B
 { #B
 _allowedCodes = allowedCodes; #B
 } #B

 protected override ValidationResult IsValid(#C
 object value, ValidationContext context) #C
 {
 var code = value as string;
 if(code == null || !_allowedCodes.Contains(code)) #D
 {
 return new ValidationResult("Not a valid currency code"); #D
 }
 return ValidationResult.Success; #E
 }
}

#A Derives from ValidationAttribute to ensure your attribute is used during validation
#B The attribute takes in an array of allowed currency codes.
#C The IsValid method is passed the value to validate and a context object.
#D If the value provided isn’t a string, is null, or isn’t an allowed code, then return an error . . .
#E . . . otherwise, return a success result

Validation occurs in the action filter pipeline after model binding, before the action or Razor
Page handler is executed. The validation framework calls IsValid() for each instance of
ValidationAttribute on the model property being validated. The framework passes in value
(the value of the property being validated) and the ValidationContext to each attribute in
turn. The context object contains details that you can use to validate the property.

Of particular note is the ObjectInstance property. You can use this to access the top-level
model being validated when you validate a sub-property. For example, if the CurrencyFrom
property of the CurrencyConvertModel is being validated, you can access the top-level object
from the ValidationAttribute using:

var model = validationContext.ObjectInstance as CurrencyConverterModel;

This can be useful if the validity of a property depends on the value of another property of the
model. For example, you might want a validation rule that says that GBP is a valid value for
CurrencyTo, except when CurrencyFrom is also GBP. The ObjectInstance makes these sorts
of comparison validations easy.

690

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

NOTE Although using ObjectInstance makes it easy to make “model-level” comparisons like these, it

reduces the portability of your validation attribute. In this case, you would only be able to use the attribute in

the application that defines CurrencyConverterModel.

Within the IsValid method, you can cast the value provided to the required data type (in
this case, string) and check against the list of allowed codes. If the code isn’t allowed, then
the attribute returns a ValidationResult with an error message indicating there was a
problem. If the code is allowed, then ValidationResult.Success is returned, and the
validation succeeds.

Putting your attribute to the test in figure 20.6 shows that when CurrencyTo is an invalid
value (£$%), the validation for the property fails and an error is added to the ModelState. You
could do some tidying up of this attribute to let you set a custom message, to allow nulls, or
to display the name of the property that’s invalid, but the important features are all there.

Figure 20.6 The Watch window of Visual Studio showing the result of validation using the custom
ValidationAttribute. The user has provided an invalid currencyTo value, £$%. Consequently,
ModelState isn’t valid and contains a single error with the message “Not a valid currency code.”

The main feature missing from this custom attribute is client-side validation. You’ve seen that
the attribute works well on the server side, but if the user entered an invalid value they
wouldn’t be informed until after the invalid value had been sent to the server. That’s safe, and
so is as much as you need to do for security and data-consistency purposes, but client-side
validation can improve the user experience by providing immediate feedback.

You can implement client-side validation in several ways, but it’s heavily dependent on the
JavaScript libraries you use to provide the functionality. Currently ASP.NET Core Razor
templates rely on jQuery for client-side validation. See the documentation for an example of
creating a jQuery Validation adapter for your attributes:
https://docs.microsoft.com/aspnet/core/mvc/models/validation#custom-client-side-validation.

691

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/mvc/models/validation#custom-client-side-validation

©Manning Publications Co. To comment go to liveBook

Another improvement to your custom validation attribute would be to load the list of
currencies from a DI service, such as an ICurrencyProvider. Unfortunately, you can’t use
constructor DI in your CurrencyCodeAttribute as you can only pass constant values to the
constructor of an Attribute in .NET. In chapter 13, we worked around this limitation for
filters by using [TypeFilter] or [ServiceFilter], but there’s no such solution for
ValidationAttribute.

Instead, for validation attributes, you must use the service locator pattern. As I discussed
in chapter 10, this antipattern is best avoided where possible, but unfortunately, it’s necessary
in this case. Instead of declaring an explicit dependency via a constructor, you must ask the
DI container directly for an instance of the required service.

Listing 20.9 shows how you could rewrite listing 20.8 to load the allowed currencies from
an instance of ICurrencyProvider, instead of hardcoding the allowed values in the attribute’s
constructor. The attribute calls the GetService<T>() method on ValidationContext to
resolve an instance of ICurrencyProvider from the DI container. Note that
ICurrencyProvider is a hypothetical service, that would need to be registered in your
application’s ConfigureServices() method in Startup.cs.

Listing 20.9 Using the service-locator pattern to access services

public class CurrencyCodeAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(
 object value, ValidationContext context)
 {
 var provider = context.GetService<ICurrencyProvider>(); #A
 var allowedCodes = provider.GetCurrencies(); #B

 var code = value as string; #C
 if(code == null || !_allowedCodes.Contains(code)) #C
 { #C
 return new ValidationResult("Not a valid currency code"); #C
 } #C
 return ValidationResult.Success; #C
 }
}

#A Retrieves an instance of ICurrencyProvider directly from the DI container
#B Fetches the currency codes using the provider
#C Validates the property as before

TIP The generic GetService<T> method is an extension method available in the

Microsoft.Extensions.DependencyInjection namespace. As an alternative, you can use the

GetService(Type type) method.

The default DataAnnotations validation system can be convenient due to its declarative
nature, but this has trade-offs, as shown by the dependency injection problem above. Luckily,
you can completely replace the validation system your application uses, as shown in the
following section.

692

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

20.4 Replacing the validation framework with FluentValidation
In this section you’ll learn how to replace the DataAnnotations-based validation framework
that’s used by default in ASP.NET Core. You’ll see the arguments for why you might want to
do this and learn how to use a third-party alternative: FluentValidation. This open source
project allows you to define the validation requirements of your models separately from the
models themselves. This separation can make some types of validation easier and ensures
each class in your application has a single responsibility.

Validation is an important part of the model-binding process in ASP.NET Core. Up to now,
we’ve been using DataAnnotation attributes applied to properties of your binding model, to
define your requirements. In section 20.3 we even created a custom validation attribute.

By default, ASP.NET Core is configured to use these attributes to drive the validation
portion of model-binding. But the ASP.NET Core framework is very flexible and allows you to
replace whole chunks of the framework if you like. The validation system is one such area that
many people choose to replace.

FluentValidation (https://fluentvalidation.net/) is a popular alternative validation
framework for ASP.NET Core. It is a mature library, with its roots going back well before
ASP.NET Core was conceived of. With FluentValidation you write your validation code
separately from your binding model code. This gives several advantages:

• You’re not restricted to the limitations of Attributes, such as the dependency injection
problem we had to work around in listing 20.9.

• It’s much easier to create validation rules that apply to multiple properties, for example
to ensure an EndDate property contains a later value than a StartDate property.
Achieving this with DataAnnotation attributes is possible, but difficult.

• It’s generally easier to test FluentValidation validators than DataAnnotation attributes.
• The validation is strongly-typed, compared to DataAnnotations attributes where it’s

possible to apply attributes in ways that don’t make sense, such as applying an
[EmailAddress] attribute to an int property, for example.

• Separating your validation logic from the model itself arguably better conforms to the
single-responsibility-principle (SRP) 101.

That final point is often given as a reason not to use FluentValidation: FluentValidation
separates a binding model from its validation rules. Some people are happy to accept the
limitations of DataAnnotations to keep the model and validation rules together. Before I show
how to add FluentValidation to your application, let’s see what FluentValidation validators look
like.

101 The SRP is one of the SOLID design principles: https://en.wikipedia.org/wiki/SOLID.

693

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://fluentvalidation.net/
https://en.wikipedia.org/wiki/SOLID

©Manning Publications Co. To comment go to liveBook

20.4.1 Comparing FluentValidation to DataAnnotation attributes

To better understand the difference between the DataAnnotations approach and
FluentValidation, we’ll convert the binding models from section 20.3 to use FluentValidation.
The following listing shows what the binding model from listing 20.7 would look like when used
with FluentValidation. It is structurally identical but has no validation attributes.

Listing 20.10 Currency converter initial binding model for use with FluentValidation

public class CurrencyConverterModel
{
 public string CurrencyFrom { get; set; }
 public string CurrencyTo { get; set; }
 public decimal Quantity { get; set; }
}

In FluentValidation you define your validation rules in a separate class, with a class per model
to be validated. Typically, these derive from the AbstractValidator<> base class, which
provides a set of extension methods for defining your validation rules.

The following listing shows a validator for the CurrencyConverterModel, which matches
the validations added using attributes in listing 20.7. You create a set of validation rules for a
property by calling RuleFor(), and chaining method calls such as NotEmpty() from it. This
style of method chaining is called a “fluent” interface, hence the name.

Listing 20.11 Currency converter initial binding model for use with FluentValidation

public class CurrencyConverterModelValidator #A
 : AbstractValidator<CurrencyConverterModel> #A
{
 private readonly string[] _allowedValues #B
 = new []{ "GBP", "USD", "CAD", "EUR" }; #B

 public InputValidator() #C
 {
 RuleFor(x => x.CurrencyFrom) #D
 .NotEmpty() #E
 .Length(3) #E
 .Must(value => _allowedValues.Contains(value)) #F
 .WithMessage("Not a valid currency code"); #F

 RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .Must(value => _allowedValues.Contains(value))
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.Quantity)
 .NotNull()
 .InclusiveBetween(1, 1000); #G
 }
}

#A The validator inherits from AbstractValidator
#B Defines the static list of currency codes that are supported

694

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#C You define validation rules in the validator’s constructor
#D RuleFor is used to add a new validation rule. The lambda syntax allows for strong typing
#E There are equivalent rules for common DataAnnotation validation attributes
#F You can easily add custom validation rules, without having to create separate classes
#G Thanks to strong typing, the rules available depend on the property being validated.

Your first impression of this code might be that it’s quite verbose compared to listing 20.7 but
remember that listing 20.7 used a custom validation attribute, [CurrencyCode]. The
validation in listing 20.11 doesn’t require anything else—the logic implemented by the
[CurrencyCode] attribute is right there in the validator, making it easy to reason about. The
Must() method can be used to perform arbitrarily complex validations, without having the
additional layers of indirection required by custom DataAnnotations attributes.

On top of that, you’ll notice that you can only define validation rules that make sense for
the property being validated. Previously, there was nothing to stop us applying the
[CurrencyCode] attribute to the Quantity property; that’s just not possible with
FluentValidation.

Of course, just because you can write the custom [CurrencyCode] logic in-line, doesn’t
necessarily mean you have to. If a rule is used in multiple parts of your application, it may
make sense to extract it into a helper class. The following listing shows how you could extract
the currency code logic into an extension method, which can be used in multiple validators.

Listing 20.12 An extension method for currency validation

public static class ValidationExtensions
{
 public static IRuleBuilderOptions<T, string> #A
 MustBeCurrencyCode<T>(#A
 this IRuleBuilder<T, string> ruleBuilder) #A
 {
 return ruleBuilder #B
 .Must(value => _allowedValues.Contains(value)) #B
 .WithMessage("Not a valid currency code"); #B
 }

 private static readonly string[] _allowedValues = #C
 new []{ "GBP", "USD", "CAD", "EUR" }; #C
}

#A Creates an extension method that can be chained from RuleFor() for string properties
#B Applies the same validation logic as before
#C The currency code values to allow

You can then update your CurrencyConverterModelValidator to use the new extension
method, removing the duplication in your validator, and ensuring consistency across “country
code” fields:

RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode();

695

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Another advantage of the FluentValidation approach of using standalone validation classes, is
that they are created using dependency injection, so you can inject services into them. As an
example, consider the [CurrencyCode] validation attribute from listing 20.9 which used a
service, ICurrencyProvider from the DI container. This requires using service location to
obtain an instance of ICurrencyProvider using an injected “context” object.

With the FluentValidation library, you can just inject the ICurrencyProvider directly into
your validator, as shown in the following listing. This requires fewer gymnastics to get the
desired functionality and makes your validator’s dependencies explicit.

Listing 20.13 Currency converter validator using dependency injection

public class CurrencyConverterModelValidator
 : AbstractValidator< CurrencyConverterModel>
{
 public InputValidator(ICurrencyProvider provider) #A
 {
 RuleFor(x => x.CurrencyFrom)
 .NotEmpty()
 .Length(3)
 .Must(value => provider #B
 .GetCurrencies() #B
 .Contains(value)) #B
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.CurrencyTo)
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode(provider.GetCurrencies()); #C

 RuleFor(x => x.Quantity)
 .NotNull()
 .InclusiveBetween(1, 1000);
 }
}

#A Injecting the service using standard constructor dependency injection
#B Using the injected service in a Must() rule
#C Using the injected service with an extension method

The final feature I’ll show demonstrates how much easier it is to write validators that span
multiple properties with FluentValidation. For example, imagine we want to validate that the
value of CurrencyTo is different to CurrencyFrom. Using FluentValidation you can implement
this with an overload of Must(), which provides both the model and the property being
validated, as shown in the following listing.

Listing 20.14 Using Must() to validate that two properties are different

RuleFor(x => x.CurrencyTo) #A
 .NotEmpty()
 .Length(3)
 .MustBeCurrencyCode()
 .Must((InputModel model, string currencyTo) #B
 => currencyTo != model.CurrencyFrom) #C

696

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 .WithMessage("Cannot convert currency to itself"); #D

#A The error message will be associated with the CurrencyTo property
#B The Must function passes the top-level model being validated and the current property
#C Perform the validation—the currencies must be different
#D Use the provided message as the error message

Creating a validator like this is certainly possible with DataAnnotation attributes, but it
requires far more ceremony than the FluentValidation equivalent, and is generally harder to
test. FluentValidation has many more features for making it easier to write and test your
validators too, for example:

• Complex property validations. Validators can be applied to complex types, as well as
primitive types like string and int shown here in this section.

• Custom property validators. In addition to simple extension methods, you can create
your own property validators for complex validation scenarios.

• Collection rules. When types contain collections, such as List<T>, you can apply
validation to each item in the list, as well as the overall collection.

• RuleSets. Create multiple collections of rules that can be applied to an object in
different circumstances. These can be especially useful if you’re using FluentValidation
in additional areas of your application.

• Client-side validation. FluentValidation is a server-side framework, but it emits the
same attributes as DataAnnotation attributes to enable client-side validation using
jQuery.

There are many more features in addition to these, so be sure to browse the documentation at
https://docs.fluentvalidation.net/ for details. In the next section you’ll see how to add
FluentValidation to your ASP.NET Core application.

20.4.2 Adding FluentValidation to your application

Replacing the whole validation system of ASP.NET Core sounds like a big step, but the
FluentValidation library makes it easy to add to your application. Simply follow these steps:

1. Install the FluentValidation.AspNetCore NuGet package using Visual Studio’s NuGet
package manager, using the CLI by running dotnet add package

FluentValidation.AspNetCore or by adding a <PackageReference> to your csproj
file:

<PackageReference Include="FluentValidation.AspNetCore" Version="9.0.1" />

2. Configure the FluentValidation library in the ConfigureServices method of your
Startup class by calling AddFluentValidation(). You can further configure the
library, as shown in listing 20.15 below.

697

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.fluentvalidation.net/

©Manning Publications Co. To comment go to liveBook

3. Register your validators (such as the CurrencyConverterModelValidator from listing
20.13) with the DI container. These can be registered manually, using any scope you
choose, for example:

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddFluentValidation();

 services.AddScoped<
 IValidator<CurrencyConverterModelValidator>,
 CurrencyConverterModelValidator>();
}

Alternatively, you can allow FluentValidation to automatically register all your validators
using the options shown in listing 20.15.

For such a mature library, FluentValidation has relatively few configuration options to
decipher. The following listing shows some of the options available, in particular it shows how
to automatically register all the custom validators in your application, and how to disable
DataAnnotation validation entirely.

Listing 20.15 Configuring FluentValidation in an ASP.NET Core application

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddFluentValidation(opts =>
 {
 opts.RegisterValidatorsFromAssemblyContaining<Startup>(); #A
 opts.ImplicitlyValidateChildProperties = true; #B
 opts.LocalizationEnabled = false; #C
 opts.RunDefaultMvcValidationAfterFluentValidationExecutes #D
 = false; #D
 });
}

#A Instead of manually registering validators, FluentValidation can auto-register them for you
#B Ensure that complex (nested) properties are validated, not just “top-level” properties
#C FluentValidation has full localization support, but you can disable it if you don’t need it
#D Setting to false disables DataAnnotation validation completely for model binding

It’s important to understand that final point. If you don’t set it to false, ASP.NET Core will run
validation with both DataAnnotations and with FluentValidation. That may be useful if you’re
in the process of migrating from one system to the other, but otherwise I recommend
disabling it. Having your validation split between both places seems like it would be the worst
of both worlds!

One final thing to consider is where to put your validators in your solution. There are no
technical requirements on this—if you’ve registered your validator with the DI container it will
be used correctly—so the choice is up to you. Personally, I prefer to place validators close to
the models they’re validating.

698

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

For Razor Pages binding model validators, I create the validator as a nested class of the
PageModel, in the same place as I create the InputModel, as I described in chapter 6. That
gives a class hierarchy in the Razor Page similar to the following:

public class IndexPage : PageModel
{
 public class InputModel { }
 public class InputModelValidator: AbstractValidator<InputModel> { }
}

That’s just my preference of course, you’re free to adopt another approach if you prefer!
That brings us to the end of this chapter on custom Razor Pages components. When

combined with the components in the previous chapter, you’ve got a great base for extending
your ASP.NET Core applications to meet your needs. It’s a testament to ASP.NET Core’s design
that you can swap out whole sections like the Validation framework entirely. If you don’t like
how some part of the framework works, see if someone has written an alternative!

20.5 Summary
• With Tag Helpers, you can bind your data model to HTML elements, making it easier to

generate dynamic HTML. Tag Helpers can customize the elements they’re attached to,
add additional attributes, and customize how they’re rendered to HTML. This can
greatly reduce the amount of markup you need to write.

• The name of a Tag Helper class dictates the name of the element in the Razor
templates, so the SystemInfoTagHelper corresponds to the <system-info> element.
You can choose a different element name by adding the [HtmlTargetElement]
attribute to your Tag Helper.

• You can set properties on your Tag Helper object from Razor syntax by decorating the
property with an [HtmlAttributeName("name")] attribute and providing a name. You
can set these properties from Razor using HTML attributes, <system-info

name="value">, for example.
• The TagHelperOutput parameter passed to the Process or ProcessAsync methods

control the HTML that’s rendered to the page. You can set the element type with the
TagName property, and set the inner content using Content.SetContent() or
Content.SetHtmlContent().

• You can prevent inner Tag Helper content being processed by calling SupressOutput()
and you can remove the element entirely by setting TagName=null. This is useful if you
only want to conditionally render elements to the response.

• You can retrieve the contents of a Tag Helper by calling GetChildContentAsync() on
the TagHelperOutput parameter. You can then Render this content to a string by
calling GetContent(). This will render any Razor expressions and Tag Helpers to HTML,
allowing you to manipulate the contents.

• View components are like partial views, but they allow you to use complex business
and rendering logic. You can use them for sections of a page, such as the shopping

699

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

cart, a dynamic navigation menu, or suggested articles.
• Create a view component by deriving from the ViewComponent base class, and

implement InvokeAsync(). You can pass parameters to this function from the Razor
view template using HTML attributes, in a similar way to Tag Helpers.

• View components can use DI, have access to the HttpContext, and can render partial
views. The partial views should be stored in the Pages/Shared/Components/<Name>/
folder, where Name is the name of the view component. If not specified, view
components will look for a default view named Default.cshtml.

• You can create a custom DataAnnotations attribute by deriving from
ValidationAttribute and overriding the IsValid method. You can use this to
decorate your binding model properties and perform arbitrary validation.

• You can’t use constructor DI with custom validation attributes. If the validation
attribute needs access to services from the DI container, you must use the service
locator pattern to load them from the validation context, using the GetService<T>
method.

• FluentValidation is an alternative validation system that can replace the default
DataAnnotations validation system. It is not based on attributes, which makes it
easier to write custom validations for your validation rules and makes those rules
easier to test.

• To create a validator for a model, create a class derived from AbstractValidator<>
and call RuleFor<>() in the constructor to add validation rules. You can chain multiple
requirements on RuleFor<>() in the same way that you could add multiple
DataAnnotation attributes to a model.

• If you need to create a custom validation rule, you can use the Must() method to
specify a predicate. If you wish to re-use the validation rule across multiple models,
encapsulate the rule as an extension method, to reduce duplication.

• To add FluentValidation to your application, install the FluentValidation.AspNetCore
NuGet package, call AddFluentValidation() after your call to AddRazorPages() or
AddControllers(), and register your validators with the DI container. This will add
FluentValidation validations in addition to the built-in DataAnnotations system.

• To remove the DataAnnotations validation system, and use FluentValidation only, set
the RunDefaultMvcValidationAfterFluentValidationExecutes option to false in
your call to AddFluentValidation(). Favor this approach where possible, to avoid
receiving validation methods from two different systems.

• You can allow FluentValidation to automatically discover and register all the validators
in your application by calling RegisterValidatorsFromAssemblyContaining<T>(),
where T is a type in the assembly to scan. This means you don’t have to register each
validator in your application with the DI container individually.

700

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

21
Calling remote APIs with

IHttpClientFactory

This chapter covers

• Problems caused by using HttpClient incorrectly to call HTTP APIs
• Using IHttpClientFactory to manage HttpClient lifetimes
• Encapsulating configuration and handling transient errors with IHttpClientFactory

So far in this book we’ve focused on creating web pages and exposing APIs for others to
consume. Whether that’s customers browsing a Razor Pages application, or client-side SPAs
and mobile apps consuming your APIs, we’ve been writing the APIs for others to consume.

However, it’s very common for your application to interact with third-party-services by
consuming their APIs. For example, an eCommerce site needs to take payments, send email
and SMS messages, and retrieve exchange rates from a third-party service. The most common
approach for interacting with services is using HTTP. So far in this book we’ve looked at how
you can expose HTTP services, using API controllers, but we haven’t looked at how you can
consume HTTP services.

In section 21.1, you’ll learn the best way to interact with HTTP services using HttpClient.
If you have any experience with C#, it’s very likely you’ve used this class to send HTTP
requests, but there are two “gotchas” to think about, otherwise your app could run into
difficulties.

 IHttpClientFactory was introduced in .NET Core 2.1; it makes creating and managing
HttpClient instances easier and avoids the common pitfalls. In section 21.2 you’ll learn how
IHttpClientFactory achieves this by managing the HttpClient handler pipeline. You’ll learn
how to create named clients to centralize the configuration for calling remote APIs, and how to
use typed clients to encapsulate the remote service’s behavior.

701

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Network glitches are a fact of life when you’re working with HTTP APIs, so it’s important for
you to handle them gracefully. In section 21.3 you’ll learn how to use the open source
resilience and fault-tolerance library Polly to handle common transient errors using simple
retries, with the possibility for more complex policies.

Finally, in section 21.4 you’ll see how you can create your own custom
HttpMessageHandler handler managed by IHttpClientFactory. You can use custom
handlers to implement cross cutting concerns such as logging, metrics, or authentication,
where a function needs to execute every time you call an HTTP API. In section 21.4 you’ll see
how to create a handler that automatically adds an API key to all outgoing requests to an API.

To misquote John Donne, “no app is an island”, and the most common way of interacting
with other apps and services is over HTTP. In .NET Core, that means using HttpClient.

21.1 Calling HTTP APIs: the problem with HttpClient
In this section you’ll learn how to use HttpClient to call HTTP APIs. I focus on two common
pitfalls in using HttpClient, socket exhaustion and DNS rotation problems, and show why
they occur. In section 21.2 you’ll see how to avoid these issues by using
IHttpClientFactory.

It’s very common for an application to need to interact with other services to fulfill its duty.
Take a typical ecommerce store for example. In even the most basic version of the
application, you will likely need to send emails and take payments using credit cards or other
services. You could try and build that functionality yourself, but it probably wouldn’t be worth
the effort.

Instead, it makes far more sense to delegate those responsibilities to third-party services
which specialize in that functionality. Whichever service you use, they will almost certainly
expose an HTTP API for interacting with the service. For many services, that will be the only
way.

HTTP vs gRPC vs GraphQL
There are many ways to interact with third-party services, but HTTP RESTful services are still the king, decades after
HTTP was first proposed. Every platform and programming language you can think of includes support for making HTTP
requests and handling responses. That ubiquity makes it the go-to option for most services.
Despite their ubiquity, RESTful services are not perfect. They are relatively verbose, which means more data ends up
being sent and received than some other protocols. It can also be difficult to evolve RESTful APIs after you have
deployed them. These limitations have spurred interest in two alternative protocols in particular: gRPC and GraphQL.
gRPC is intended to be an efficient mechanism for server-to-server communication. It builds on top of HTTP/2, but
typically provides much higher performance than traditional RESTful APIs. gRPC support was added in .NET Core 3.0
and is receiving many performance and feature updates. For a comprehensive view of .NET support, see the
documentation at https://docs.microsoft.com/aspnet/core/grpc.
While gRPC is primarily intended for server-to-server communication, GraphQL is best used to provide evolvable APIs to
mobile and SPA apps. It has become very popular among front-end developers, as it can reduce the friction involved in
deploying and using new APIs. For details, I recommend GraphQL in Action by Samer Buna (Manning, 2020).

702

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/grpc

©Manning Publications Co. To comment go to liveBook

Despite the benefits and improvements gRPC and GraphQL can bring, RESTful HTTP services are here to stay for the
foreseeable future, so it’s worth making sure you understand how to use them with HttpClient.

In .NET we use the HttpClient class for calling HTTP APIs. You can use it to make HTTP calls
to APIs, providing all the headers and body to send in a request, and reading the response
headers and data you get back. Unfortunately, it’s hard to use correctly, and even when you
do, it has limitations.

The source of the difficultly with HttpClient stems partly from the fact it implements the
IDisposable interface. In general, when you use a class that implements IDisposable, you
should wrap the class with a using statement whenever you create a new instance. This
ensures that unmanaged resources used by the type are cleaned-up when the class is
removed.

using (var myInstance = new MyDisposableClass())
{
 // use myInstance
}

That might lead you to think that the correct way to create an HttpClient is shown in the
following listing. This shows a simple example where an API controller calls an external API to
fetch the latest currency exchange rates and returns them as the response.

WARNING Do not use HttpClient like what’s shown in listing 21.1. Using it this way could cause your

application to become unstable, as you’ll see shortly.

Listing 21.1 The incorrect way to use HttpClient

[ApiController]
public class ValuesController : ControllerBase
{
 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 using (HttpClient client = new HttpClient()) #A
 {
 client.BaseAddress #B
 = new Uri("https://api.exchangeratesapi.io"); #B

 var response = await client.GetAsync("latest"); #C

 response.EnsureSuccessStatusCode(); #D
 return await response.Content.ReadAsStringAsync(); #E
 }
 }
}

#A Wrapping the HttpClient in a using statement means it is disposed at the end of the using block
#B Configure the base URL used to make requests using the HttpClient
#C Make a GET request to the exchange rates API
#D Throws an exception if the request was not successful

703

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

#E Read the result as a string and return it from the action method

However, HttpClient is special, and you shouldn’t use it like this! The problem is primarily
due to the way the underlying protocol implementation works. Whenever your computer needs
to send a request to an HTTP server, you must create a connection between your computer
and the server. To create a connection, your computer opens a port, which has a random
number between 0 and 65535, and connects to the HTTP server’s IP address and port, as
shown in figure 21.1. Your computer can then send HTTP requests to the server.

DEFINITION The combination of IP address and port is called a socket.

Figure 21.1 To create a connection, a client selects a random port and connects to the HTTP server’s port and IP
address. The combination of a port number and IP address is called a socket. The client can then send HTTP
requests to the server.

The main problem with the using statement and HttpClient is that it can lead to a problem
called socket exhaustion, as illustrated in figure 21.2. This happens when all the ports on your
computer have been used up making other HTTP connections, so your computer can’t make
any more requests. At that point, your application will hang, waiting for a socket to become
free. A very bad experience!

Given that I said there are 65536 different port numbers, you might think that’s an
unlikely situation. It’s true, you will likely only run into this problem on a server that is making
a lot of connections, but it’s not as rare as you might think.

The problem is that when you dispose an HttpClient, it doesn’t close the socket
immediately. The design of the TCP/IP protocol used for HTTP requests means that after trying
to close a connection, the connection moves to a state called TIME_WAIT. The connection then
waits for a specific period (240 seconds on Windows) before closing the socket completely.

704

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Until the TIME_WAIT period has elapsed, you can’t reuse the socket in another HttpClient
to make HTTP requests. If you’re making a lot of requests, that can quickly lead to socket
exhaustion, as shown in figure 21.2

TIP You can view the state of active ports/sockets in Windows and Linux by running the command netstat

from the command line or a terminal window.

Figure 21.2 Disposing of HttpClient can lead to socket exhaustion. Each new connection requires the

705

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

operating system to assign a new socket. Closing a socket doesn’t make it available until the TIME_WAIT period
of 240 seconds has elapsed. Eventually you can run out of sockets, at which point you can’t make any outgoing
HTTP requests.

Instead of disposing HttpClient, the general advice (before IHttpClientFactory was
introduced in .NET Core 2.1) was to use a single instance of the HttpClient, as shown in the
following listing.

Listing 21.2 Using a singleton HttpClient to avoid socket exhaustion

[ApiController]
public class ValuesController : ControllerBase
{
 private static readonly HttpClient _client = new HttpClient #A
 { #A
 BaseAddress = new Uri("https://api.exchangeratesapi.io") #A
 }; #A

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 var response = await _client.GetAsync("latest"); #B

 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsStringAsync();
 }
}

#A A single instance of the HttpClient is created and stored as a static field
#B Multiple requests use the same instance of HttpClient

This solves the problem of socket exhaustion. As you’re not disposing the HttpClient, the
socket is not disposed, so you can re-use the same port for multiple requests. No matter how
many times you call GetRates() in the example above, you will only use a single socket.
Problem solved!

Unfortunately, this introduces a different problem, primarily around DNS. DNS is how the
friendly host names we use, such as manning.com, are converted into the IP addresses that
computers need. When a new connection is required, the HttpClient first checks the DNS
record for a host to find the IP address, and then makes the connection. For subsequent
requests, the connection is already established, so it doesn’t make another DNS call.

For singleton HttpClient instances this can be a problem, as the HttpClient won’t detect
DNS changes. DNS is often used in cloud environments for load balancing to do graceful
rollouts of deployments.102 If the DNS record of a service you’re calling changes during the

102 Azure Traffic Manager, for example, uses DNS to route requests. You can read more about how it works at https://azure.microsoft.com/en-

gb/services/traffic-manager/.

706

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://azure.microsoft.com/en-gb/services/traffic-manager/
https://azure.microsoft.com/en-gb/services/traffic-manager/
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

lifetime of your application, a singleton HttpClient will keep calling the old service, as shown
in figure 21.3.

NOTE HttpClient won’t respect a DNS change while the original connection exists. If the original

connection is closed, for example if the original server goes offline, then it will respect the DNS change as it

must establish a new connection.

Figure 21.3. HttpClient does a DNS lookup before establishing a connection, to determine the IP address
associated with a hostname. If the DNS record for a hostname changes, a singleton HttpClient will not
detect it, and will continue sending requests to the original server it connected to.

It seems like you’re damned if you, and you’re damned if you don’t! Luckily,
IHttpClientFactory can take care of all this for you.

707

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

21.2 Creating HttpClients with IHttpClientFactory
In this section you’ll learn how you can use IHttpClientFactory to avoid the common pitfalls
of HttpClient. I’ll show several patterns you can use to create HttpClients:

• Using the CreateClient() as a drop-in replacement for HttpClient
• Using “named clients” centralize the configuration of an HttpClient used to call a

specific third-party API.
• Using “typed clients” to encapsulate the interaction with a third-party API for easier

consumption by your code.

IHttpClientFactory was introduced in .NET Core 2.1. It makes it easier to create
HttpClient instances correctly, instead of relying on either of the faulty approaches I showed
in section 21.1. It also makes it easier to configure multiple HttpClients and allows you to
create a “middleware pipeline” for outgoing requests.

Before we look at how IHttpClientFactory achieves all that, we will look a little closer at
how HttpClient works under the hood.

21.2.1 Using IHttpClientFactory to manage HttpClientHandler lifetime

In this section I describe the handler pipeline used by HttpClient. You’ll see how
IHttpClientFactory manages the lifetime of the handler pipeline and how this enables the
factory to avoid both socket exhaustion and DNS issues.

The HttpClient class you typically use to make HTTP requests is responsible for
orchestrating requests, but it isn’t responsible for making the raw connection itself. Instead,
the HttpClient calls into a pipeline of HttpMessageHandler, at the end of which is an
HttpClientHandler, which makes the actual connection, and sends the HTTP request, as
shown in figure 21.4.

708

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 21.4. Each HttpClient contains a pipeline of HttpMessageHandlers. The final handler is an
HttpClientHandler, which makes the connection to the remote server and sends the HTTP request. This
configuration is similar to the ASP.NET Core middleware pipeline and allows you to make cross-cutting
adjustments to outgoing requests.

This configuration is very reminiscent of the middleware pipeline used by ASP.NET Core
applications, but this is an outbound pipeline. When an HttpClient makes a request, each
handler gets a chance to modify the request, before the final HttpClientHandler makes the
real HTTP request. Each handler in turn then gets a chance to view the response after it’s
received.

TIP You’ll see an example of using this handler pipeline for cross-cutting concerns in section 21.2.4 when we

add a transient error handler.

The issues of socket exhaustion and DNS I described in section 21.1 are both related to the
disposal of the HttpClientHandler at the end of the handler pipeline. By default, when you
dispose an HttpClient, you dispose the handler pipeline too. IHttpClientFactory separates
the lifetime of the HttpClient from the underlying HttpClientHandler.

709

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Separating the lifetime of these two components enables the IHttpClientFactory to solve
the problems of socket exhaustion and DNS rotation. It achieves this in two ways:

• Creating a pool of available handlers. Socket exhaustion occurs when you dispose an
HttpClientHandler, due to the TIME_WAIT problem described previously.
IHttpClientFactory solves this by creating a “pool” of handlers.

IHttpClientFactory maintains an “active” handler, that is used to create all
HttpClients for two minutes. When the HttpClient is disposed, the underlying
handler isn’t disposed. As the handler isn’t disposed, the connection isn’t closed, and
socket exhaustion isn’t a problem.

• Periodically disposing handlers. Sharing handler pipelines solves the socket exhaustion
problem, but it doesn’t solve the DNS issue. To work around this, the
IHttpClientFactory periodically (every two minutes) creates a new “active”
HttpClientHandler that is used for each HttpClient created subsequently. As these
HttpClients are using a new handler, they make a new TCP/IP connection, and so
DNS changes are respected.

IHttpClientFactory disposes “expired” handlers periodically in the background—once
they are no longer used by an HttpClient. This ensures there are only ever a limited
number of connections in use by your application’s HttpClients.103

Rotating handlers with IHttpClientFactory solves both the issues we’ve discussed. Another
bonus is that it’s easy to replace existing usages of HttpClient with IHttpClientFactory.

IHttpClientFactory is included by default in ASP.NET Core, you just need to add it to
your application’s services in the ConfigureServices() method of Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient()
}

This registers the IHttpClientFactory as a singleton in your application, so you can inject it
into any other service. For example, the following listing shows how you can replace the
HttpClient approach from listing 21.2 with a version that uses IHttpClientFactory.

Listing 21.3 Using IHttpClientFactory to create an HttpClient

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHttpClientFactory _factory; #A
 public ValuesController(IHttpClientFactory factory) #A
 {

103 I looked in depth about how IHttpClientFactory achieves this rotation. This is a detailed post, but may be of interest to those who like to know how things

are implemented behind the scenes: https://andrewlock.net/exporing-the-code-behind-ihttpclientfactory/.

710

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/exporing-the-code-behind-ihttpclientfactory/

©Manning Publications Co. To comment go to liveBook

 _factory = factory;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 HttpClient client = _factory.CreateClient(); #B

 client.BaseAddress = #C
 new Uri("https://api.exchangeratesapi.io"); #C
 client.DefaultRequestHeaders.Add(#C
 HeaderNames.UserAgent, "ExchangeRateViewer"); #C

 var response = await client.GetAsync("latest"); #D

 response.EnsureSuccessStatusCode(); #D
 return await response.Content.ReadAsStringAsync(); #D
 }
}

#A Inject the IHttpClientFactory using DI
#B Create an HttpClient instance with an HttpClientHandler managed by the factory
#C Configure the HttpClient for calling the API as before
#D Use the HttpClient in exactly the same way as you would otherwise

The immediate benefit of using IHttpClientFactory in this way is efficient socket and DNS
handling. Minimal changes should be required to take advantage of this pattern, as the bulk of
your code stays the same. This makes it a good option if you’re refactoring an existing app.

21.2.2 Configuring named clients at registration time

In this section you’ll learn how to use the “named client” pattern with IHttpClientFactory.
This pattern encapsulates the logic for calling a third-party API in a single location, making it
easier to use the HttpClient in your consuming code.

Using IHttpClientFactory solves the technical issues I described in section 21.1, but the
code in listing 21.3 is still pretty messy in my eyes. That’s primarily because you must
configure the HttpClient to point to your service before you use it. If you use need to create
an HttpClient to call the API in more than one place in your application, you must configure
it more than one place too.

IHttpClientFactory provides a convenient solution to this problem by allowing you to
centrally configure named clients. These clients have a string name, and a configuration
function which runs whenever an instance of the named client is requested. You can define
multiple configuration functions which run in sequence to configure your new HttpClient.

For example, the following listing shows how to register a named client called "rates".
This client is configured with the correct BaseAddress and sets default headers that are to be
sent with each outbound request.

Listing 21.4 Configuring a named client using IHttpClientFactory in Startup.cs

public void ConfigureServices(IServiceCollection services)

711

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

{
 services.AddHttpClient("rates", (HttpClient client) => #A
 {
 client.BaseAddress = #B
 new Uri("https://api.exchangeratesapi.io"); #B
 client.DefaultRequestHeaders.Add(#B
 HeaderNames.UserAgent, "ExchangeRateViewer"); #B
 })
 .ConfigureHttpClient((HttpClient client) => {}) #C
 .ConfigureHttpClient(
 (IServiceProvider provider, HttpClient client) => {}); #D
}

#A Provide a name for the client, and a configuration function
#B The configuration function runs every time the named HttpClient is requested
#C You can add additional configuration functions for the named client, which run in sequence
#D Additional overloads exist that allow access to the DI container when creating a named client

Once you have configured this named client, you can create it from an IHttpClientFactory
instance using the name of the client, "rates". The following listing shows how you could
update listing 21.3 to use the named client configured in listing 21.4.

Listing 21.5 Using IHttpClientFactory to create a named HttpClient

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHttpClientFactory _factory; #A
 public ValuesController(IHttpClientFactory factory) #A
 {
 _factory = factory;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 HttpClient client = _factory.CreateClient("rates"); #B

 var response = await client.GetAsync("latest"); #C

 response.EnsureSuccessStatusCode(); #C
 return await response.Content.ReadAsStringAsync(); #C
 }
}

#A Inject the IHttpClientFactory using DI
#B Request the named client called "rates" and configure it as defined in ConfigureServices()
#C Use the HttpClient in the same way as before

NOTE You can still create “unconfigured” clients using CreateClient() without a name. Be aware that if

you pass an unconfigured name, for example CreateClient("MyRates"), then the client returned will be

unconfigured. Take care—client names are case sensitive, so "rates" is a different client to "Rates"!

712

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

Named clients allow you to centralize your HttpClient configuration in one place, removing
the responsibility of configuring the client from your consuming code. But you’re still working
with “raw” HTTP calls at this point, for example providing the relative URL to call ("/latest")
and parsing the response. IHttpClientFactory includes a feature that makes it easier to
clean up this code.

21.2.3 Using Typed clients to encapsulate HTTP calls

In this section I teach about “typed clients.” These take the “named client” approach one step
further—as well as encapsulating the configuration for calling a third-party API, they also
encapsulate the HTTP details, such as which URLs to call, what HTTP verbs to use, and what
data is returned. Encapsulating these details in a single location makes the API easier to
consumer in your code.

A common pattern when you need to interact with an API is to encapsulate the mechanics
of that interaction into a separate service. You could easily do this with the
IHttpClientFactory features you’ve already seen, by extracting the body of the GetRates()
function from listing 21.5 into a separate service. But IHttpClientFactory has deeper
support for this pattern too.

IHttpClientFactory supports typed clients. A typed client is a class that accepts a
configured HttpClient in its constructor. It uses the HttpClient to interact with the remote
API and exposes a clean interface for consumers to call. All of the logic for interacting with the
remote API is encapsulated in the typed client, such as which URL paths to call, which HTTP
verbs to use, and the types of response the API returns. This encapsulation makes it easier to
call the third-party API from multiple places in your app by using the typed client.

 For example, the following listing shows an example typed client for the exchange rates
API shown in previous listings. It accepts an HttpClient in its constructor, and exposes a
GetLatestRates() method that encapsulates the logic for interacting with the third-party API.

Listing 21.6 Creating a typed client for the exchange rates API

public class ExchangeRatesClient
{
 private readonly HttpClient _client; #A
 public ExchangeRatesClient(HttpClient client) #A
 {
 _client = client;
 }

 public async Task<string> GetLatestRates() #B
 {
 var response = await _client.GetAsync("latest"); #C
 response.EnsureSuccessStatusCode(); #C

 return await response.Content.ReadAsString(); #C
 }
}

#A Inject an HttpClient using DI instead of an IHttpClientFactory

713

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#B The GetLatestRates() logic encapsulates the logic for interacting with the API
#C Use the HttpClient the same way as before

We can then inject this ExchangeRatesClient into consuming services, and they don’t need to
know anything about how to make HTTP requests to the remote service, they just need to
interact with the typed client. We can update listing 21.3 to use the typed client as shown in
the following listing, at which point the GetRates() action method becomes trivial.

Listing 21.7 Consuming a typed client to encapsulate calls to a remote HTTP server

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesClient _ratesClient; #A
 public ValuesController(ExchangeRatesClient ratesClient) #A
 {
 _ratesClient = ratesClient;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 return await _ratesClient.GetLatestRates(); #B
 }
}

#A Inject the typed client in the constructor
#B Call the typed client’s API. The typed client handles making the correct HTTP requests

You may be a little confused at this point: I haven’t mentioned how IHttpClientFactory is
involved yet!

The ExchangeRatesClient takes an HttpClient in its constructor. IHttpClientFactory is
responsible for creating the HttpClient, configuring it to call the remote service, and injecting
it into a new instance of the typed client.

You can register the ExchangeRatesClient as a typed client and configure the HttpClient
that is injected in ConfigureServices, as shown in the following listing. This is very similar to
configuring a named client, so you can register additional configuration for the HttpClient
that will be injected into the typed client

Listing 21.8 Registering a typed client with HttpClientFactory in Startup.cs

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient> #A
 (HttpClient client) => #B
 {
 client.BaseAddress = #B
 new Uri("https://api.exchangeratesapi.io"); #B
 client.DefaultRequestHeaders.Add(#B
 HeaderNames.UserAgent, "ExchangeRateViewer"); #B
 })
 .ConfigureHttpClient((HttpClient client) => {}); #C

714

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

}

#A Register a typed client using the generic AddHttpClient method
#B You can provide an additional configuration function for the HttpClient that will be injected
#C As for named clients, you can provide multiple configuration methods

TIP You can think of a typed client as a wrapper around a named client. I’m a big fan of this approach as it

encapsulates all the logic for interacting with a remote service in one place. It also avoids the “magic strings”

that you use with named clients, removing the possibility of typos.

Another option when registering typed clients is to register an interface, in addition to the
implementation. This is often a good practice, as it makes it much easier to test consuming
code. For example, if the typed client in listing 21.6 implemented the interface
IExchangeRatesClient, you could register the interface and typed client implementation
using

services.AddHttpClient<IExchangeRatesClient, ExchangeRatesClient>()

You could then inject this into consuming code using the interface type, for example:

public ValuesController(IExchangeRatesClient ratesClient)

Another commonly used pattern is to not provide any configuration for the typed client in
ConfigureServices(). Instead, you could place that logic in the constructor of your
ExchangeRatesClient using the injected HttpClient:

public class ExchangeRatesClient
{
 private readonly HttpClient _client;
 public ExchangeRatesClient(HttpClient client)
 {
 _client = client;
 _client.BaseAddress = new Uri("https://api.exchangeratesapi.io");
 }
}

This is functionally equivalent to the approach shown in listing 21.8, it's a matter of taste
where you’d rather put the configuration for your HttpClient. If you take this approach, you
don’t need to provide a configuration lambda in ConfigureServices:

services.AddHttpClient<ExchangeRatesClient>();

Named clients and typed clients are convenient for managing and encapsulating HttpClient
configuration, but IHttpClientFactory brings another advantage we haven’t looked at yet:
it’s easier to extend the HttpClient handler pipeline.

21.3 Handling transient HTTP errors with Polly
In this section you’ll learn how to handle a very common scenario: “transient” errors when you
make calls to a remote service, caused by an error in the remote server, or temporary

715

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://api.exchangeratesapi.io

©Manning Publications Co. To comment go to liveBook

network issues. You’ll see how to use IHttpClientFactory to handle cross-cutting concerns
like this by adding handlers to the HttpClient handler pipeline.

In section 21.2.1 I described HttpClient as consisting of a “pipeline” of handlers. The big
advantage of this pipeline, much like the middleware pipeline of your application, is it allows
you to add cross-cutting concerns to all requests. For example, IHttpClientFactory
automatically adds a handler to each HttpClient that logs the status code and duration of
each outgoing request.

As well as logging, another very common requirement is to handle transient errors when
calling an external API. Transient errors can happen when the network drops out, or if a
remote API goes offline temporarily. For transient errors, simply trying the request again can
often succeed, but having to manually write the code to do so is cumbersome.

ASP.NET Core includes a library called Microsoft.Extensions.Http.Polly that makes handling
transient errors easier. It uses the popular open source library Polly (www.thepollyproject.org)
to automatically retry requests that fail due to transient network errors.

Polly is a mature library for handling transient errors that includes a variety of different
error handling strategies, such as simple retries, exponential back off, circuit breaking,
bulkhead isolation, and many more. Each strategy is explained in detail at
https://github.com/App-vNext/Polly, so be sure to read the benefits and trade-offs when
selecting a strategy.

To provide a taste of what’s available, we’ll add a simple retry policy to the
ExchangeRatesClient shown in section 21.2. If a request fails due to a network problem such
as a timeout or a server error, we’ll configure Polly to automatically retry the request as part
of the handler pipeline, as shown in figure 21.5.

716

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://www.thepollyproject.org/
https://github.com/App-vNext/Polly

©Manning Publications Co. To comment go to liveBook

Figure 21.5 Using the PolicyHttpMessageHandler to handle transient errors. If an error occurs when
calling the remote API, the Polly handler will automatically retry the request. If the request then succeeds, the
result is passed back to the caller. The caller didn’t have to handle the error themselves, making it simpler to
use the HttpClient while remaining resilient to transient errors.

To add transient error handling to a named or HttpClient, you must:

717

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

1. Install the Microsoft.Extensions.Http.Polly NuGet package in your project by running
dotnet add package Microsoft.Extensions.Http.Polly, by using the NuGet
explorer in Visual Studio, or by adding a <PackageReference> element to your project
file as shown below

<PackageReference Include="Microsoft.Extensions.Http.Polly"
 Version="3.1.6" />

2. Configure a named or typed client as shown in listings 21.5 and 21.7.
3. Configure a transient error handling policy for your client as shown in listing 21.8.

Listing 21.8 Configuring a transient error handling policy for a typed client in Startup.cs

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient>() #A
 .AddTransientHttpErrorPolicy(policy => #B
 policy.WaitAndRetryAsync(new[] { #C
 TimeSpan.FromMilliseconds(200), #D
 TimeSpan.FromMilliseconds(500), #D
 TimeSpan.FromSeconds(1) #D
 })
);
}

#A You can add transient error handler to named or typed handlers
#B Use the extension methods provided by the NuGet package to add transient error handler
#C Configure the retry policy used by the handler. There are many types of policy to choose from
#D Configures a policy that waits and retries 3 times if an error occurs

In the listing above, we configure the error handler to catch transient errors and retry three
times, waiting an increasing amount of time between requests. If the request fails on the third
try, the handler will ignore the error, and pass it back to the client, just as if there was no
error handler at all. By default, the handler will retry any request that either

• Throws an HttpRequestException, indicating an error at the protocol level, such as a
closed connection, or

• Returns an HTTP 5xx status code, indicating a server error at the API, or
• Returns an HTTP 408 status code, indicating a timeout.

TIP If you want to handle more cases automatically, or to restrict the responses that will be automatically

retried, you can customize the selection logic as described in the documentation: https://github.com/App-

vNext/Polly/wiki/Polly-and-HttpClientFactory.

Using standard handlers like the transient error handler allows you to apply the same logic
across all requests made by a given HttpClient. The exact strategy you choose will depend
on the characteristics of both the service and the request, but a good retry strategy is a must
whenever you interact with potentially unreliable HTTP APIs.

718

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory
https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory

©Manning Publications Co. To comment go to liveBook

The Polly error handler is an example of an optional HttpMessageHandler that you can
plug in to your HttpClient, but you can also create your own custom handler. In the next
section you’ll see how to create a handler that adds a header to all outgoing requests.

21.4 Creating a custom HttpMessageHandler
In this section you’ll learn how to create an HttpMessageHandler that adds a custom HTTP
header to all outgoing requests. You could use this handler to attach an API key to all outgoing
requests to a given third-party API, for example. You’ll see how to create the handler and how
to register it with a typed client.

Most third-party APIs will require some form of authentication when you’re calling them.
For example, many services require you attach an API key to an outgoing request, so that the
request can be tied to your account. Instead of having to remember to manually add this
header for every request to the API, you could configure a custom HttpMessageHandler to
automatically attach the header for you.

NOTE More complex APIs may use Json Web Tokens (JWT) obtained from an identity provider. If that’s the

case, consider using the open source IdentityModel library (https://identitymodel.readthedocs.io) which

provides integration points for ASP.NET Core Identity and HttpClientFactory.

You can configure a named or typed client using IHttpClientFactory to use your API-key
handler as part of the HttpClient’s handler pipeline, as shown in figure 21.6. When you use
the HttpClient to send a message, the HttpRequestMesssage is passed through each
handler in turn. The API-key handler adds the extra header and passes the request to the next
handler in the pipeline. Eventually, the HttpClientHandler makes the network request to
send the HTTP request. After the response is received, each handler gets a chance to inspect
(and potentially modify) the response.

719

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://identitymodel.readthedocs.io/

©Manning Publications Co. To comment go to liveBook

Figure 21.6 You can use a custom HttpMessageHandler to modify requests before they’re sent to third-party
APIs. Every request passes through the handler, before the final handler, the HttpClientHandler sends the
request to the HTTP API. After the response is received, each handler gets a chance to inspect and modify the
response.

To create a custom HttpMessageHandler and add it to a typed or named client’s pipeline, you
must:

1. Create a custom handler by deriving from the DelegatingHandler base class.
2. Override the SendAsync() method to provide your custom behavior. Call

base.SendAsync() to execute the remainder of the handler pipeline.
3. Register your handler with the DI container. If your handler does not require state, you

can register it as a singleton service, otherwise you should register it as a transient
service.

4. Add the handler to one or more of your named or typed clients by calling
AddHttpMessageHandler<T>(), on an IHttpClientBuilder, where T is your handler
type. The order you register handlers dictates the order they will be added to the
HttpClient handler pipeline. You can add the same handler type more than once in a
pipeline if you wish, and to multiple typed or named clients.

720

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

The following listing shows an example of a custom HttpMessageHandler that adds a header
to every outgoing request. We use the custom "X-API-KEY" header in this example, but the
header you need will vary depending on the third-party API you’re calling. This example uses
strongly typed configuration to inject the secret API key, as you saw in chapter 10.

Listing 21.9 Creating a custom HttpMessageHandler

public class ApiKeyMessageHandler : DelegatingHandler #A
{
 private readonly ExchangeRateApiSettings _settings; #B
 public ApiKeyMessageHandler(#B
 IOptions<ExchangeRateApiSettings> settings) #B
 { #B
 _settings = settings.Value; #B
 } #B

 protected override async Task<HttpResponseMessage> SendAsync(#C
 HttpRequestMessage request, #C
 CancellationToken cancellationToken) #C
 {
 request.Headers.Add("X-API-KEY", _settings.ApiKey); #D

 HttpResponseMessage response = #E
 await base.SendAsync(request, cancellationToken); #E

 return response; #F
 }
}

#A Custom HttpMessageHandlers should derive from DelegatingHandler
#B Inject the strongly typed configuration values using dependency injection
#C Override the SendAsync method to implement the custom behavior
#D Add the extra header to all outgoing requests
#E Call the remainder of the pipeline and receive the response
#F You could inspect or modify the response before returning it

To use the handler, you must register it with the DI container, and add it to a named or typed
client. In the following listing, we add it to the ExchangeRatesClient, along with the transient
error handler we registered in listing 21.8. This creates a pipeline similar to that shown in
figure 21.6.

Listing 21.10 Registering a custom handler in Startup.ConfigureServices

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ApiKeyMessageHandler>(); #A

 services.AddHttpClient<ExchangeRatesClient>()
 .AddHttpMessageHandler<ApiKeyMessageHandler>() #B
 .AddTransientHttpErrorPolicy(policy => #C
 policy.WaitAndRetryAsync(new[] {
 TimeSpan.FromMilliseconds(200),
 TimeSpan.FromMilliseconds(500),
 TimeSpan.FromSeconds(1)
 })

721

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

);
}

#A Register the custom handler with the DI container
#B Configure the typed client to use the custom handler
#C Add the transient error handler. The order they are registered, dictates their order in the pipeline

Whenever you make a request using the typed client ExchangeRatesClient, you can be sure
the API key will be added, and that transient errors will be handled automatically for you.

That brings us to the end of this chapter on IHttpClientFactory. Given the difficulties in
using HttpClient correctly I showed in section 21.1, you should always favor
IHttpClientFactory where possible. As a bonus, IHttpClientFactory allows you to easily
centralize your API configuration using named clients and to encapsulate your API interactions
using typed clients.

21.5 Summary
• Use the HttpClient class for calling HTTP APIs. You can use it to make HTTP calls to

APIs, providing all the headers and body to send in a request, and reading the response
headers and data you get back.

• HttpClient uses a pipeline of handlers, consisting of multiple HttpMessageHandlers,
connected in a similar way to the middleware pipeline used in ASP.NET Core. The final
handler is the HttpClientHandler which is responsible for making the network
connection and sending the request.

• HttpClient implements IDisposable, but you shouldn’t typically dispose it. When the
HttpClientHandler which makes the TCP/IP connection is disposed, it keeps a
connection open for the TIME_WAIT period. Disposing many HttpClients in a short
period of time can lead to socket exhaustion, preventing a machine from handling any
more requests.

• Prior to .NET Core 2.1, the advice was to use a single HttpClient for the lifetime of
your application. Unfortunately, a singleton HttpClient will not respect DNS changes,
which are commonly used for traffic management in cloud environments.

• IHttpClientFactory solves both these problems by managing the lifetime of the
HttpMessageHandler pipeline. You can create a new HttpClient by calling
CreateClient(), and IHttpClientFactory takes care of disposing the handler pipeline
when it is no longer in use.

• You can centralize the configuration of an HttpClient in ConfigureServices() using
named clients by calling AddHttpClient("test", c => {}). You can then retrieve a
configured instance of the client in your services by calling
IHttpClientFactory.CreateClient("test").

• You can create a typed client by injecting an HttpClient into a service, T, and
configuring the client using AddHttpClient<T>(c => {}). Typed clients are great for
abstracting the HTTP mechanics away from consumers of your client.

• You can use the Microsoft.Extensions.Http.Polly library to add transient HTTP error

722

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

handling to your HttpClients. Call AddTransientHttpErrorPolicy() when configuring
your IHttpClientFactory in ConfigureServices, and provide a Polly policy to control
when errors should be automatically handled and retried.

• It’s common to use a simple “retry” policy to try making a request multiple times
before giving up and returning an error. When designing a policy be sure to consider
the impact of your policy; in some circumstances it may be better to fail quickly instead
of retrying a request which is never going to succeed. Polly includes additional policies
such as circuit-breakers to create more advanced approaches.

• By default, the transient error handling middleware will handle connection errors,
server errors that return a 5xx error code, and 408 (timeout) errors. You can customize
this if you want to handle additional error types but ensure that you only retry requests
which are safe to do so.

• You can create a custom HttpMessageHandler to modify each request made through a
named or typed client. Custom handlers are good for implementing cross-cutting
concerns such as logging, metrics, and authentication.

• To create a custom HttpMessageHandler, derive from DelegatingHandler and
override the SendAsync() method. Call base.SendAsync() to send the request to the
next handler in the pipeline and finally to the HttpClientHandler which makes the
HTTP request.

• Register your custom handler in the DI container as either a transient or a singleton.
Add it to a named or typed client using AddHttpMessageHandler<T>(). The order you
register the handler in the IHttpClientBuilder is the order the handler will appear in
the HttpClient handler pipeline.

723

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

22
Building background tasks and

services

This chapter covers

• Creating tasks that run in the background for your application
• Using the generic IHost to create Windows Services and Linux daemons
• Using Quartz.NET to run tasks on a schedule, in a clustered environment

We’ve covered a lot of ground in the book so far. You’ve learned how to create page-based
applications using Razor Pages and how to create APIs for mobile clients and services. You’ve
seen how to add authentication and authorization to your application, how to use EF Core for
storing state in the database, and how to create custom components to meet your
requirements.

As well as these “UI” focused apps, you may find you need to build “background” or
“batch-task” services. These services aren’t meant to interact with users directly. Rather they
stay running in the background, processing items from a queue or periodically executing a
long-running process.

For example, you might want to have a background service that sends email confirmations
for eCommerce orders, or a batch job that calculates sales and losses for retail stores after the
shops close. ASP.NET Core includes support for these “background tasks” by providing
abstractions for running a task in the background when your application starts.

In section 22.1 you’ll learn about the background task support provided in ASP.NET Core
by the IHostedService interface. You’ll learn how to use the BackgroundService helper class
to create tasks that run on a timer, and how to manage your DI lifetimes correctly in a long-
running task.

724

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In section 22.2 we take the background service concept one step further to create
“headless” worker services, using the generic IHost. Worker services don’t use Razor Pages or
API controllers; instead they consist only of IHostedServices running tasks in the
background. You’ll also see how to configure and install a worker service app as a Windows
Service, or as a Linux daemon.

In section 22.3 I introduce the open source library Quartz.NET, which provides extensive
scheduling capabilities for creating background services. You’ll learn how to install Quartz.NET
in your applications, how to create complex schedules for your tasks, and how to add
redundancy to your worker services by using clustering.

Before we get to more complex scenarios, we’ll start by looking at the built-in support for
running background tasks in your apps.

22.1 Running background tasks with IHostedService
In this section you’ll learn how to create background tasks that run for the lifetime of the
application using IHostedService. You’ll create a task that caches the values from a remote
service every 5 minutes, so that the rest of the application can retrieve the values from the
cache. You’ll then learn how to use services with a scoped lifetime in your singleton
background services by managing container scopes yourself.

In most applications, it’s common to want to create tasks that happen in the background,
rather than in response to a request. This could be a task to process a queue of emails;
handling events published to some sort of a message bus; or running a batch process to
calculate daily profits. By moving this work to a background task, your user interface can stay
responsive. Instead of trying to send an email immediately for example, you could add the
request to a queue and return a response to the user immediately. The background task can
consume that queue in the background at its leisure.

In ASP.NET Core, you can use the IHostedService interface to run tasks in the
background. Classes which implement this interface are started when your application starts,
shortly after your application starts handling requests, and are stopped shortly before your
application is stopped. This provides the hooks you need to perform most tasks

NOTE Even the ASP.NET Core server, Kestrel, runs as an IHostedService. In one sense, almost everything

in an ASP.NET Core app is a “background” task!

In this section you’ll see how to use the IHostedService to create a background task that
runs continuously throughout the lifetime of your app. This could be used for many different
things, but in the next section you’ll see how to use it to populate a simple cache.

22.1.1 Running background tasks on a timer

In this section you’ll learn how to create a background task that runs periodically on a timer,
throughout the lifetime of your app. Running background tasks can be useful for many
reasons, such as scheduling work to be performed later or for performing work in-advance.

725

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

For example, in chapter 21, we used IHttpClientFactory and a typed client to call a
third-party service to retrieve the current exchange rate between various currencies, and
returned them in an API controller, as shown in the following listing. A simple optimization for
this code might be to cache the exchange rate values for a period.

Listing 22.1 Using a typed client to return exchange rates from a third-party service

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesClient _typedClient; #A
 public ValuesController(ExchangeRatesClient typedClient) #A
 {
 _typedClient = typedClient;
 }

 [HttpGet("values")]
 public async Task<string> GetRates()
 {
 return await _typedClient.GetLatestRatesAsync() #B
 }
}

#A A typed client created using IHttpClientFactory is injected in the constructor
#B The typed client is used to retrieve exchange rates from the remote API and returns them

There are multiple ways you could implement that, but in this section, we’ll use a simple cache
that pre-emptively fetches the exchange rates in the background, as shown in figure 22.1. The
API controller simply reads from the cache; it never has to make HTTP calls itself, so it
remains fast.

NOTE An alternative approach might add caching to your strongly typed client, ExchangeRateClient. The

downside is that when you need to update the rates, you will have to do the request immediately, making the

overall response slower. Using a background service keeps your API controller consistently fast.

726

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 22.1 You can use a background task to cache the results from a third-party API on a schedule. The API
controller can then read directly from the cache, instead of calling the third-party API itself. This reduces the
latency of requests to your API controller, while ensuring the data remains fresh.

You can implement a background task using the interface IHostedService. This consists of
two methods:

public interface IHostedService
{
 Task StartAsync(CancellationToken cancellationToken);
 Task StopAsync(CancellationToken cancellationToken);
}

but there are subtleties to implementing the interface correctly. In particular, the
StartAsync() method, although asynchronous, runs “inline” as part of your application
startup. Background tasks that are expected to run for the lifetime of your application must
return a Task immediately, and schedule background work on a different thread.

WARNING Calling await in IHostedService.StartAsync() method will block your application

starting until the method completes. This can be useful in some cases but is often not the desired behavior for

background tasks.

727

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

To make it easier to create background services using best practice patterns, ASP.NET Core
provides the abstract base class BackgroundService which implements IHostedService and
is designed to be used for long running tasks. To create a background task you must override
a single method of this class, ExecuteAsync(). You’re free to use async-await inside this
method and you can keep running the method for the lifetime of your app.

For example, the following listing shows a background service that fetches the latest
interest rates using a typed client and saves them in a cache, as you saw in figure 22.1. The
ExecuteAsync() method keeps looping and updating the cache until the CancellationToken
passed as an argument indicates that the application is shutting down.

Listing 22.2 Implementing a BackgroundService that calls a remote HTTP API

public class ExchangeRatesHostedService : BackgroundService #A
{
 private readonly IServiceProvider _provider; #B
 private readonly ExchangeRatesCache _cache; #C
 public ExchangeRatesHostedService(
 IServiceProvider provider, ExchangeRatesCache cache)
 {
 _provider = provider;
 _cache = cache;
 }

 protected override async Task ExecuteAsync(#D
 CancellationToken stoppingToken) #E
 {
 while (!stoppingToken.IsCancellationRequested) #F
 {
 var client = _provider #G
 .GetRequiredService<ExchangeRatesClient>(); #G

 string rates= await client.GetLatestRatesAsync(); #H
 _cache.SetRates(latest); #I

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken); #J
 }
 }
}

#A Derive from BackgroundService to create a task that runs for the lifetime of your app
#B Inject an IServiceProvider so you can create instances of the typed client
#C A simple cache for exchange rates
#D You must override ExecuteAsync to set the service’s behavior
#E The CancellationToken passed as an argument is triggered when the application shuts down
#F Keep looping until the application shuts down
#G Create a new instance of the typed client, so that the HttpClient is short-lived
#H Fetch the latest rates from the remote API
#I Store the rates in the cache
#J Wait for 5 minutes (or for the application to shut down) before updating the cache,

The ExchangeRateCache in listing 22.2 is a simple singleton that stores the latest rates. It
must be thread-safe, as it will be accessed concurrently by your API controllers. You can see a
simple implementation in the source code for this chapter.

728

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

To register your background service with the DI container, use the AddHostedService()
extension method in the ConfigureServices() method of Startup.cs, as shown in the
following listing.

Listing 22.3 Registering an IHostedService with the DI container

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<ExchangeRatesClient>() #A
 services.AddSingleton<ExchangeRatesCache>(); #B
 services.AddHostedService<ExchangeRatesHostedService>(); #C
}

#A Register the typed client as before
#B Add the cache object as a singleton, as you must share the same instance throughout your app
#C Register the ExchangeRatesHostedService as an IHostedService

By using a background service to fetch the exchange rates, your API controller becomes very
simple. Instead of fetching the latest rates itself, it returns the value from the cache, which is
kept up to date by the background service:

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly ExchangeRatesCache _cache;
 public ValuesController(ExchangeRatesCache cache)
 {
 _cache = cache;
 }

 [HttpGet("values"]
 public string GetValues()
 {
 return _cache.GetLatestRates();
 }
}

One slightly messy aspect of listing 22.2 is that I’ve used the service-locator pattern to
retrieve the typed client. This isn’t ideal, but you shouldn’t inject typed clients into background
services directly. Typed clients are designed to be short lived, to ensure you take advantage of
the HttpClient handler rotation as described in chapter 21. In contrast, background services
are singletons that live for the lifetime of your application.

TIP If you wish, you can avoid the service-locator pattern used in listing 22.2 by using the factory pattern

described in this post: https://www.stevejgordon.co.uk/ihttpclientfactory-patterns-using-typed-clients-from-

singleton-services.

The need to have short-lived services leads to another common question—how can you use
“scoped” services in a background service?

729

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.stevejgordon.co.uk/ihttpclientfactory-patterns-using-typed-clients-from-singleton-services
https://www.stevejgordon.co.uk/ihttpclientfactory-patterns-using-typed-clients-from-singleton-services

©Manning Publications Co. To comment go to liveBook

22.1.2 Using scoped services in background tasks

Background services that implement IHostedService are created once when your application
starts. That means they are, by necessity, singletons, as there will only ever be a single
instance of the class.

That leads to a problem if you need to use services registered with a scoped lifetime. Any
services you inject into the constructor of your singleton IHostedService must themselves be
registered as singletons. Does that mean there’s no way to use scoped dependencies in a
background service?

REMINDER As I discussed in chapter 10, a service should only use dependencies with a lifetime longer

than or equal to the lifetime of the service, to avoid captured dependencies.

For example, lets imagine a slight variation of the caching example from section 22.1.1.
Instead of storing the exchange rates in a singleton cache object, you want to save the
exchange rates to a database, so you can look up the historic rates.

Most database providers, including EF Core’s DbContext, register their services with
scoped lifetimes. That means you need to access the scoped DbContext, from inside the
singleton ExchangeRatesHostedService, which precludes injecting the DbContext with
constructor injection. The solution is to create a new container scope every time you update
the exchange rates.

In typical ASP.NET Core applications, the framework creates a new container scope every
time a new request is received, just before the middleware pipeline executes. All the services
that are used in that request are fetched from the scoped container. In a background service,
there are no requests, so no container scopes are created. The solution is to create your own!

You can create a new container scope anywhere you have access to an IServiceProvider
by calling IServiceProvider.CreateScope(). This creates a scoped container, which you can
use to retrieve scoped services.

WARNING Always make sure to dispose the IServiceScope returned by CreateScope() when you’re

finished with it, typically with a using statement. This disposes any services that were created by the scoped

container, and prevents memory leaks.

The following listing shows a version of the ExchangeRatesHostedService that stores the
latest exchange rates as an EF Core entity in the database. It creates a new scope for each
iteration of the while loop and retrieves the scoped AppDbContext from the scoped container.

Listing 22.4 Consuming scoped services from an IHostedService

public class ExchangeRatesHostedService : BackgroundService #A
{
 private readonly IServiceProvider _provider; #B
 public ExchangeRatesHostedService(IServiceProvider provider) #B
 {
 _provider = provider;

730

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 }

 protected override async Task ExecuteAsync(
 CancellationToken stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)
 {
 using(IServiceScope scope = _provider.CreateScope()) #C
 {
 var scopedProvider = scope.ServiceProvider; #D

 var client = scope.ServiceProvider #E
 .GetRequiredService<ExchangeRatesClient>(); #E

 var context = scope.ServiceProvider #E
 .GetRequiredService<AppDbContext>(); #E

 var rates= await client.GetLatestRatesAsync(); #F

 context.Add(rates); #F
 await context.SaveChanges(rates); #F
 } #G

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken); #H
 }
 }
}

#A BackgroundService is registered as a singleton
#B The injected IServiceProvider can be used to retrieve singleton services, or to create scopes
#C Create a new scope using the root IServiceProvider
#D The scope exposes an IServiceProvider that can be used to retrieve scoped components
#E Retrieve the scoped services from the container
#F Fetch the latest rates, and save using EF Core
#G Dispose the scope with the using statement.
#H Wait for the next iteration. A new scope is created on the next iteration.

Creating scopes like this is a general solution whenever you find you need to access scoped
services and you’re not running in the context of a request. A prime example is when you’re
implementing IConfigureOptions, as you saw in chapter 19. You can take the exact same
approach—creating a new scope—as shown here http://mng.bz/6m17.

TIP Using service location in this way always feels a bit convoluted. I typically try and extract the body of the

task to a separate class and use service location to retrieve that class only. You can see an example of this

approach in the documentation: https://docs.microsoft.com/aspnet/core/fundamentals/host/hosted-

services#consuming-a-scoped-service-in-a-background-task.

IHostedService is available in ASP.NET Core, so you can run background tasks in your Razor
Pages or API controller applications. However, sometimes all you want is the background task
and you don’t need any UI. For those cases, you can use the raw IHost abstraction, without
having to bother with HTTP handling at all.

731

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/6m17
https://docs.microsoft.com/aspnet/core/fundamentals/host/hosted-services#consuming-a-scoped-service-in-a-background-task
https://docs.microsoft.com/aspnet/core/fundamentals/host/hosted-services#consuming-a-scoped-service-in-a-background-task

©Manning Publications Co. To comment go to liveBook

22.2 Creating headless worker services using IHost
In this section you’ll learn about worker services, which are ASP.NET Core applications that do
not handle HTTP traffic. You’ll learn how to create a new worker service from a template and
compare the generated code to a traditional ASP.NET Core application. You’ll also learn how to
install the worker service as a Windows Service or as a systemd daemon on Linux.

In section 22.1 we cached exchange rates based on the assumption that they’re being
consumed directly by the UI part of your application, by Razor Pages or API controllers for
example. However, in the section 22.1.2 example we saved the rates to the database instead
of storing them in-process. That raises the possibility of other applications with access to the
database using the rates too. Taking that one step further, could we create an application
which is only responsible for caching these rates, and has no UI at all?

Since .NET Core 3.0, ASP.NET Core has been built on top of a “generic” (as opposed to
“web”) IHost implementation. It is the IHost implementation that provides features such as
configuration, logging, and dependency injection. ASP.NET Core adds the middleware pipeline
for handling HTTP requests, as well as paradigms such as Razor Pages or MVC on top of that,
as shown in figure 22.2.

Figure 22.2 ASP.NET Core builds on the generic IHost implementation. The IHost provides features such as
configuration, dependency injection, and configuration. ASP.NET Core adds HTTP handling on top of that by way
of the middleware pipeline, Razor Pages and API controllers. If you don’t need HTTP handling, you can use the
IHost without the additional ASP.NET Core libraries to create a smaller application.

If your application doesn’t need to handle HTTP requests, then there’s no real reason to use
ASP.NET Core. You can use the IHost implementation alone to create an application that will
have a lower memory footprint, faster startup, and less surface area to worry about from a

732

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

security side than a full ASP.NET Core application. .NET Core applications that use this
approach are commonly called worker services or workers.

DEFINITION A worker is a .NET Core application that uses the generic IHost but doesn’t include the

ASP.NET Core libraries for handling HTTP requests. They are sometimes called “headless” services, as they

don’t expose a UI for you to interact with.

Workers are commonly used for running background tasks (IHostedService implementations)
which don’t require a UI. These tasks could be for running batch jobs, for running tasks
repeatedly on a schedule, or for handling events using some sort of message bus. In the next
section we’ll create a worker for retrieving the latest exchange rates from a remote API,
instead of adding the background task to an ASP.NET Core application.

22.2.1 Creating a worker service from a template

In this section you’ll see how to create a basic worker service from a template. Visual Studio
includes a template for creating worker services by choosing File > New > Project > Worker
Service. You can create a similar template using the .NET CLI by running dotnet new worker.
The resulting template consists of two C# files:

• Worker.cs—This is a simple BackgroundService implementation that writes to the log
every second. You can replace this class with your own BackgroundService
implementation, such as the example from listing 22.4.

• Program.cs—As with a typical ASP.NET Core application, this contains the entry point
for your application, and is where the IHost is built and run. In contrast to a typical
ASP.NET Core app, it’s also where you will configure the dependency injection container
for your application.

The most notable difference between the worker service template and an ASP.NET Core
template is that there is no Startup.cs file. In ASP.NET Core applications, Startup.cs is where
you usually configure your DI container and your middleware pipeline. The worker service
doesn’t have a middleware pipeline (as it doesn’t handle HTTP requests), but it does use DI,
so where is that configured?

In worker service templates, you configure DI in Program.cs using the
ConfigureServices() method as shown in the following listing. This method is functionally
identical to the ConfigureServices() method in Startup.cs, so you can use exactly the same
syntax. The following listing shows how to configure EF Core, the exchange rates typed client
from chapter 21, and the background service that saves exchange rates to the database, as
you saw in section 22.1.2.

Listing 22.5 Program.cs for a worker service that saves exchange rates using EF Core

public class Program
{
 public static void Main(string[] args)

733

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 {
 CreateHostBuilder(args).Build().Run(); #A
 }

 public static IHostBuilder CreateHostBuilder(string[] args) => #B
 Host.CreateDefaultBuilder(args) #B
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHttpClient<ExchangeRatesClient>(); #C
 services #C
 .AddHostedService<ExchangeRatesHostedService>(); #C

 services.AddDbContext<AppDbContext>(options => #C
 options.UseSqlite(#C
 hostContext.Configuration #D
 .GetConnectionString("SqlLiteConnection")) #D
);
 });
}

#A A worker creates an IHostBuilder, builds an IHost, and runs it, the same as an ASP.NET Core app
#B The same HostBuilder code is used, but there is no call to ConfigureWebHostDefaults
#C Add services in ConfigureServices, the same as you typically would in Startup.cs
#D IConfiguration can be accessed from the HostBuilderContext parameter

TIP You can use the IHostBuilder.ConfigureServices() methods in ASP.NET Core apps too, but the

general convention is to use Startup.cs instead. The IHostBuilder methods are useful in some

circumstances when you need to control exactly when your background tasks start, as I describe in this post

https://andrewlock.net/controlling-ihostedservice-execution-order-in-aspnetcore-3/.

The changes in Program.cs, and the lack of a Startup.cs file, are the most obvious differences
between a worker service and an ASP.NET Core app, but there are some important differences
in the .csproj project file too. The following listing shows the project file for a worker service
that uses IHttpClientFactory and EF Core, and highlights some of the differences compared
to a similar ASP.NET Core application.

Listing 22.6 Project file for a worker service

<Project Sdk="Microsoft.NET.Sdk.Worker"> #A

 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework> #B
 <UserSecretsId>5088-4277-B226-DC0A790AB790</UserSecretsId> #C
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Hosting" #D
 Version="3.1.6" /> #D
 <PackageReference Include="Microsoft.Extensions.Http" #E
 Version="3.1.6" /> #E
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" #F
 Version="3.1.6" PrivateAssets="All" /> #F
 <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite" #F
 Version="3.1.6" /> #F

734

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/controlling-ihostedservice-execution-order-in-aspnetcore-3/

©Manning Publications Co. To comment go to liveBook

 </ItemGroup>
</Project>

#A Worker services use a different project SDK type to ASP.NET Core apps
#B The target framework is the same as for ASP.NET Core apps
#C Worker services use configuration, so can use UserSecrets, the same as ASP.NET Core apps
#D All worker services must explicitly add this package. ASP.NET Core apps add it implicitly
#E If you’re using IHttpClientFactory, you’ll need to add this package in worker services
#F EF Core packages must be explicitly added, the same as for ASP.NET Core apps

Some parts of the project file are the same for both worker services and ASP.NET Core apps:

• Both types of app must specify a <TargetFramework>, such as netcoreapp3.1 for .NET
Core 3.1, or net5.0 for .NET 5.

• Both types of apps use the configuration system, so you can use <UserSecretsId> to
manage secrets in development, as discussed in chapter 11.

• Both types of app must explicitly add references to the EF Core NuGet packages to use
EF Core in the app.

There are also several differences in the project template:

• The <Project> element’s Sdk for a worker service should be
Microsoft.NET.Sdk.Worker, while for an ASP.NET Core app it is
Microsoft.NET.Sdk.Web. The Web SDK includes implicit references to additional
packages that are not generally required in worker services.

• The worker service must include an explicit PackageReference for the
Microsoft.Extensions.Hosting NuGet package. This package includes the generic IHost
implementation used by worker services.

• You may need to include additional packages to reference the same functionality, when
compared to an ASP.NET Core app. An example of this is the Microsoft.Extensions.Http
package (which provides IHttpClientFactory). This package is referenced implicitly in
ASP.NET Core apps but must be explicitly referenced in worker services.

Running a worker service is the same as running an ASP.NET Core application: use dotnet
run from the command line or hit F5 from Visual Studio. A worker service is essentially just a
console application (as are ASP.NET Core applications), so they both run the same way.

You can run worker services in most of the same places you would run an ASP.NET Core
application, though as a worker service doesn’t handle HTTP traffic, some options make more
sense than others. In the next section, we’ll look at two supported ways of running your
application: as a Windows Service or as a Linux systemd daemon.

22.2.2 Running worker services in production

In this section you’ll learn how to run worker services in production. You’ll learn how to install
a worker service as a Windows service so that the operating system monitors and starts your
worker service automatically. You’ll also see how to prepare your application for installation as
a systemd daemon on Linux.

735

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Worker services, like ASP.NET Core applications, are fundamentally just .NET Core console
applications. The difference is that they are typically intended to be long-running applications.
The common approach for running these types of applications on Windows is to use a Windows
Service or to use a systemd daemon on Linux.

NOTE It’s also very common to run applications in the Cloud using Docker containers or dedicated platform

services like Azure App Service. The process for deploying a worker service to these managed services is

typically identical to deploying an ASP.NET Core application.

Adding support for Windows services or systemd is easy, thanks to two optional NuGet
packages:

• Microsoft.Extensions.Hosting.Systemd. Adds support for running the application as a
systemd application. To enable systemd integration, call UseSystemd() on your
IHostBuilder in Program.cs.

• Microsoft.Extensions.Hosting.WindowsServices. Adds support for running the
application as a Windows Service. To enable the integration, call UseWindowsService()
on your IHostBuilder in Program.cs.

• These packages each add a single extension method to IHostBuilder that enables the
appropriate integration when running as a systemd daemon, or as a Windows Service.
For example, the following listing shows how to enable Windows Service support.

Listing 22.7 Adding Windows Service support to a worker service

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) => #A
 Host.CreateDefaultBuilder(args) #A
 .ConfigureServices((hostContext, services) => #A
 { #A
 services.AddHostedService<Worker>(); #A
 }) #A
 .UseWindowsService(); #B
}

#A Configure your worker service as you would normally
#B Add support for running as a Windows Service

During development, or if you run your application as a console app, the
AddWindowsService() does nothing; your application runs exactly the same as it would
without the method call. However, your application can now be installed as a Windows
Service, as your app now has the required integration hooks to work with the Windows Service
system.

736

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

The following describes the basic steps to install a worker service app as a Windows
Service:

1. Add the Microsoft.Extensions.Hosting.WindowsServices NuGet package to
your application using Visual Studio, by running dotnet add

package Microsoft.Extensions.Hosting.WindowsServices in the project folder, or
by adding a <PackageReference> to your .csproj file:
<PackageReference Include="Microsoft.Extensions.Hosting.WindowsServices"

Version="3.1.6" />

2. Add a call to UseWindowsService() on your IHostBuilder, as shown in listing 22.7.
3. Publish your application, as described in chapter 16. From the command line, you

could run dotnet publish -c Release from the project folder.

4. Open a command prompt as Administrator, and install the application using

the Windows sc utility. You need to provide the path to your published

project’s .exe file and a name to use for the service, for example My Test Service:

sc create "My Test Service" BinPath="C:\path\to\MyService.exe"

5. You can manage the service from the Services control panel in Windows, as shown
in figure 22.3. Alternatively, to start the service from the command line run sc
start "My Test Service", or to delete the service run sc delete "My Test
Service".

Figure 22.3 The Services control panel in Windows. After installing a worker service as a Windows Service using
the sc utility, you can manage your worker service from here. This allows you to control when the Windows
service starts and stops, the user account the application runs under, and how to handle errors.

WARNING These steps are the bare minimum to install a Windows Service. When running in production you

must consider many security aspects not covered here. For more details, see

https://docs.microsoft.com/aspnet/core/host-and-deploy/windows-service.

After following the process above, your worker service will be running as a Windows service.

737

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/host-and-deploy/windows-service

©Manning Publications Co. To comment go to liveBook

An interesting point of note is that installing as a Windows Service or systemd daemon
isn’t limited to worker services only—you can install an ASP.NET Core application in the same
way. Simply follow the instructions above, add the call to UseWindowsService(), and install
your ASP.NET Core app. This is thanks to the fact that the ASP.NET Core functionality is built
directly on top of the generic Host functionality.

You can follow a similar process to install a worker service as a systemd daemon by
installing the Microsoft.Extensions.Hosting.Systemd package, and calling UseSystemd() on
your IHostBuilder. For more details on configuring systemd, see
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx#monitor-the-app.

So far in this chapter we’ve used IHostedService and the BackgroundService to run
tasks that repeat on an interval, and you’ve seen how to install worker services as long
running applications, by installing as a Windows Service.

In the final section of this chapter, we look at how you can create more advanced
schedules for your background tasks, as well as how to add resiliency to your application by
running multiple instances of your workers. To achieve that, we’ll use a mature third-party
library, Quartz.NET.

22.3 Coordinating background tasks using Quartz.NET
In this section you’ll learn how to use the open source scheduler library Quartz.NET. You’ll
learn how to install and configure the library, and how to add a background job to run on a
schedule. You’ll also learn how to enable clustering for your applications, so that you can run
multiple instances of your worker service, and share jobs between them.

All the background tasks you’ve seen so far in this chapter repeat a task on an interval
indefinitely, from the moment the application starts. However, sometimes you want more
control of this timing. Maybe you always want to run the application at 15 minutes past each
hour. Or maybe you only want to run a task on the second Tuesday of the month at 3am.
Additionally, maybe you want to run multiple instances of your application for redundancy, but
ensure that only one of the services runs a task at any one time.

It would certainly be possible to build all this extra functionality into an application
yourself, but there are excellent libraries available which already provide all this functionality
for you. Two of the most well known in the .NET space are Hangfire (www.hangfire.io) and
Quartz.NET(www.quartz-scheduler.net).

Hangfire is an open source library which also has a “Pro” subscription option. One of its
most popular features is a dashboard user interface, that shows the state of all your running
jobs, each task’s history, and any errors that occurred.

Quartz.NET is completely open source and essentially offers a “beefed-up” version of the
BackgroundService functionality. It has extensive scheduling functionality, as well as support
for running in a “clustered” environment, where multiple instances of your application
coordinate to distribute the jobs amongst themselves.

738

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx#monitor-the-app
http://www.hangfire.io/
http://www.quartz-scheduler.net/

©Manning Publications Co. To comment go to liveBook

NOTE Quartz.NET is based on a similar Java library called Quartz Scheduler. When looking for information on

Quartz.NET be sure you’re looking at the correct Quartz!

Quartz.NET is based around four main concepts:

• Jobs. These are the background tasks that implement your logic.
• Triggers. These control when a job will run based on a schedule, such as “every 5

minutes”, or “every second Tuesday”. A job can have multiple triggers.
• Job Factory. The job factory is responsible for creating instances of your jobs.

Quartz.NET integrates with ASP.NET Core’s DI container, so you can use DI in your job
classes.

• Scheduler. The Quartz.NET scheduler keeps track of the triggers in your application,
creates job using the Job Factory, and runs your jobs. The scheduler typically runs as
an IHostedService for the lifetime of your app.

Background services versus Cron Jobs
It’s common to use cron jobs to run tasks on a schedule on linux and Windows has similar functionality called
Scheduled Tasks. These are used to periodically run an application or script file, which is typically a short-lived task.
In contrast, .NET Core apps using background services are designed to be long-lived, even if they are only used to run
tasks on a schedule. This allows your application to do things like adjust its schedule as required or perform
optimizations. In addition, being long-lived means your app doesn’t have to just run tasks on a schedule. It can respond
to ad-hoc events, such as events in a message queue for example.
Of course, if you don’t need those capabilities, and would rather not have a long-running application, you can use .NET
Core in combination with cron jobs. You could create a simple .NET console app which runs your task and then shuts
down, and could schedule it to execute periodically as a cron job. The choice is yours!

In this section I’ll show how to install Quartz.NET and configure a background service to run
on a schedule. I’ll then show how to enable clustering, so that you can run multiple instances
of your application and distribute the jobs between them.

22.3.1 Installing Quartz.NET in an ASP.NET Core application

In this section I show how to install the Quartz.NET scheduler into an ASP.NET Core
application. Quartz.NET can be installed in any .NET Core application, so you can add it to an
ASP.NET Core application or a worker service, depending on your requirements. Quartz.NET
will run in the background in the same way as the IHostedService implementations do. In
fact, Quartz.NET uses the IHostedService abstractions to schedule and run jobs.

DEFINITION A job in Quartz.NET is a task to be executed which implements the IJob interface. It is where

you define the logic of your tasks to execute.

739

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In this section you’ll see how to install Quartz.NET into a worker service. You’ll install the
necessary dependencies and configure the Quartz.NET scheduler to run as a background
service in a worker service app. In section 22.3.2 we’ll convert the exchange-rate downloader
task from section 22.1 to a Quartz.NET IJob and configure triggers to run on a schedule.

NOTE The instructions in this section can be used to install Quartz.NET into either a worker service or a full

ASP.NET Core application. The only difference is whether you use the ConfigueServices() method in Program.cs

or Startup.cs, respectively.

To install Quartz.NET:

1. Install the Quartz.AspNetCore NuGet package in your project by running dotnet

add package Quartz.AspNetCore, by using the NuGet explorer in Visual Studio,

or by adding a <PackageReference> element to your project file as shown below

<PackageReference Include="Quartz.AspNetCore" Version="3.1.0" />

2. Add the Quartz.NET IHostedService scheduler by calling AddQuartzServer() on

the IServiceCollection in ConfigureServices, as shown below.

Set WaitForJobsToComplete=true so that your app will wait for any jobs in

progress to finish when shutting down
services.AddQuartzServer(q => q.WaitForJobsToComplete = true);

3. Configure the required Quartz.NET services in ConfigureServices. The example in
the following listing configures the Quartz.NET job factory to retrieve job
implementations from a scoped DI container, and adds a required service.

Listing 22.8 Configuring Quartz.NET in a ConfigureServices

public void ConfigureServices(IService collection) #A
{
 services.AddQuartz(q => #B

{
 q.UseMicrosoftDependencyInjectionScopedJobFactory(); #C

q.UseSimpleTypeLoader(); #D
 });

 services.AddQuartzServer(q => q.WaitForJobsToComplete = true); #E
}

#A Add Quartz.NET in Startup.cs for ASP.NET Core apps or in Program.cs for worker services
#B Register Quartz.NET services with the DI container
#C Configure Quartz.NET to load jobs from a scoped DI container
#D Required configuration for Quartz.NET internals
#E Add the Quartz.NET IHostedService that runs the Quartz.NET scheduler

This configuration registers all Quartz.NET’s required components, so you can now run your
application, using dotnet run or by pressing F5 in Visual Studio. When your app starts, the

740

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Quartz.NET IHostedService starts its scheduler, as shown in figure 22.4. We haven’t
configured any jobs to run yet, so the scheduler doesn’t have anything to schedule yet.

Figure 22.4 The Quartz.NET scheduler starts on app startup and logs its configuration. The default configuration
stores the list of jobs and their schedules in memory and runs in a non-clustered state. In this example you can
see that no jobs or triggers have been registered, so the scheduler has nothing to schedule yet.

TIP Running your application before you’ve added any jobs is a good practice to check that you have installed

and configure Quartz.NET correctly before you get to more advanced configuration.

A job scheduler without any jobs to schedule isn’t a lot of use, so in the next section we’ll
create a job and add a trigger for it to run on a timer.

22.3.2 Configuring a job to run on a schedule with Quartz.NET

In section 22.1 we created an IHostedService that downloads exchange rates from a remote
service and saves the results to a database using EF Core. In this section you’ll see how you
can create a similar Quartz.NET IJob and configure it to run on a schedule.

The following listing shows an implementation of IJob which downloads the latest
exchange rates from a remote API using a typed client, ExchangeRatesClient. The results are
then saved using an EF Core DbContext, AppDbContext.

Listing 22.9 A Quartz.NET IJob for downloading and saving exchange rates

public class UpdateExchangeRatesJob : IJob #A
{
 private readonly ILogger<UpdateExchangeRatesJob> _logger; #B
 private readonly ExchangeRatesClient _typedClient; #B

741

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 private readonly AppDbContext _dbContext; #B
 public UpdateExchangeRatesJob(#B
 ILogger<UpdateExchangeRatesJob> logger, #B
 ExchangeRatesClient typedClient, #B
 AppDbContext dbContext) #B
 { #B
 _logger = logger; #B
 _typedClient = typedClient; #B
 _dbContext = dbContext; #B
 } #B

 public async Task Execute(IJobExecutionContext context) #C
 {
 _logger.LogInformation("Fetching latest rates");

 var latestRates = await _typedClient.GetLatestRatesAsync(); #D

 _dbContext.Add(latestRates); #E
 await _dbContext.SaveChangesAsync(); #E

 _logger.LogInformation("Latest rates updated");
 }
}

#A Quartz.NET jobs must implement the IJob interface
#B You can use standard dependency injection to inject any dependencies
#C IJob requires you implement a single asynchronous method, Execute
#D Download the rates from the remote API
#E Save the rates to the database

Functionally, the IJob in the previous listing is doing a similar task to the BackgroundService
implementation I provided in listing 22.4, with a few notable exceptions:

• The IJob only defines the task to execute, it doesn’t define timing information. In the
BackgroundService implementation, we also had to control how often the task was
executed.

• A new IJob instance is created every time the job is executed. In contrast, the
BackgroundService implementation is only created once and its Execute method is
only invoked once.

• We can inject scoped dependencies directly into the IJob implementation. To use
scoped dependencies in the IHostedService implementation, we had to manually
create our own scope, and use service location to load dependencies. Quartz.NET takes
care of that for us, allowing us to use pure constructor injection. Every time the job is
executed, a new scope is created and is used to create a new instance of your IJob.

The IJob defines what to execute, but it doesn’t define when to execute it. For that,
Quartz.NET uses triggers. Triggers can be used to define arbitrarily complex blocks of time
during which a job should be executed. For example, you can specify start and end times, how
many times to repeat, and blocks of time when a job should or shouldn’t run (such as only
9am-5pm, Monday-Friday).

742

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

In the following listing, we register the UpdateExchangeRatesJob with the DI container
using the AddJob<T>() method and provide a unique name to identify the job. We also
configure a trigger which fires immediately, and then every 5 minutes, until the application
shuts down.

Listing 22.10 Configuring a Quartz.NET IJob and trigger

public void ConfigureServices(IService collection)
{
 services.AddQuartz(q =>
 {
 q.UseMicrosoftDependencyInjectionScopedJobFactory();
 q.UseSimpleTypeLoader();

 var jobKey = new JobKey("Update exchange rates"); #A
 q.AddJob<UpdateExchangeRatesJob>(opts => #B
 opts.WithIdentity(jobKey)); #B

 q.AddTrigger(opts => opts #C
 .ForJob(jobKey) #C
 .WithIdentity(jobKey.Name + " trigger") #D
 .StartNow() #E
 .WithSimpleSchedule(x => x #F
 .WithInterval(TimeSpan.FromMinutes(5)) #F
 .RepeatForever()) #F
);
 });

 services.AddQuartzServer(q => q.WaitForJobsToComplete = true);
}

#A Create a unique key for the job, used to associate it with a trigger
#B Add the IJob to the DI container, and associate with the job key
#C Register a trigger for the IJob via the job key
#D Provide a unique name for the trigger for use in logging and in clustered scenarios
#E Fire the trigger as soon as the Quartz.NET scheduler runs on app startup
#F Fire the trigger every five minutes, until the app shuts down.

Simple triggers like the schedule defined above are common, but you can also achieve more
complex configurations using other schedules. For example, the following configuration would
configure a trigger to fire every week, on a Friday, at 5:30pm:

q.AddTrigger(opts => opts
 .ForJob(jobKey)
 .WithIdentity("Update exchange rates trigger")
 .WithSchedule(CronScheduleBuilder
 .WeeklyOnDayAndHourAndMinute(DayOfWeek.Friday, 17, 30))

You can configure a wide array of time and calendar-based triggers with Quartz.NET. You can
also control how Quartz.NET handles “missed triggers”—that is, triggers that should have
fired, but your app wasn’t running at the time. For a detailed description of the trigger
configuration options and more examples, see the Quartz.NET documentation at www.quartz-
scheduler.net/documentation/.

743

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://www.quartz-scheduler.net/documentation/
http://www.quartz-scheduler.net/documentation/

©Manning Publications Co. To comment go to liveBook

TIP A common problem people run into with long running jobs is that Quartz.NET will keep starting new

instances of the job when a trigger fires, even though it’s already running! To avoid that, tell Quartz.NET to not

start another instance by decorating your IJob implementation with the

[DisallowConcurrentExecution] attribute.

The ability to configure advanced schedules, simple use of dependency injection in background
tasks, and the separation of jobs from triggers, is reason enough for me to recommend
Quartz.NET as soon as you have anything more than the most basic background service
needs. However, the real tipping point is when you need to scale your application for
redundancy or performance reasons—that’s when Quartz.NET’s clustering capabilities make it
shine.

22.3.3 Using clustering to add redundancy and to your background tasks

In this section you’ll learn how to configure Quartz.NET to persist its configuration to a
database. This is a necessary step that enables clustering, so that multiple instances of your
application can coordinate to run your Quartz.NET jobs.

As your applications become more popular, you may find you need to run more instances
of your app to handle the traffic they receive. If you keep your ASP.NET Core applications
stateless, then the process of scaling is relatively simple: the more applications you have, the
more traffic you can handle, everything else being equal.

However, scaling applications that use IHostedService to run background tasks might not
be as simple. For example, imagine your application includes the BackgroundService that we
created in section 22.1.2, which saves exchange rates to the database every 5 minutes. When
you’re running a single instance of your app, the task runs every 5 minutes as expected.

But what happens if you scale your application, and run 10 instances of it? Every one of
those applications will be running the BackgroundService, and they’ll all be updating every 5
minutes from the time each instance started!

One option would be to move the BackgroundService to a separate worker service app.
You could then continue to scale your ASP.NET Core application to handle the traffic as
required but deploy a single instance of the worker service. As only a single instance of the
BackgroundService would be running, the exchange rates would be updated on the correct
schedule again.

TIP Differing scaling requirements, as in this example, are one of the best reasons for splitting up bigger apps

into smaller “microservices”. Breaking up an app like this has a maintenance overhead, however, so think

about the tradeoffs if you take this route. For more on this tradeoff, I recommend Microservices in .NET Core by

Christian Horsdal Gammelgaard (Manning, 2020)

However, if you take this route, you add a hard limitation that you can only ever have a single
instance of your worker service. If your need to run more instances of your worker service to
handle additional load, you’ll be stuck.

744

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

An alternative option to enforcing a single service is to use clustering. Clustering allows
you to run multiple instances of your application, and tasks are distributed between all the
instances of your application. Quartz.NET achieves clustering by using a database as a backing
store. When a trigger indicates a job needs to execute, the Quartz.NET schedulers in each app
attempt to obtain a lock to execute the job, as shown in figure 22.5. Only a single app can be
successful, ensuring that a single app handles the trigger for the IJob.

Figure 22.5 Using clustering with Quartz.NET allows horizontal scaling. Quartz.NET uses a database as a backing
store, ensuring that only a single instance of the application handles a trigger at a time. This makes it possible
to run multiple instances of your application to meet scalability requirements.

Quartz.NET relies on a persistent database for its clustering functionality. Quartz.NET stores
descriptions of the jobs and triggers in the database, including when the trigger last fired for
example. It’s the “locking” features of the database that ensure only a single application can
execute a task at a time.

TIP You can enable persistence without enabling clustering. This allows the Quartz.NET scheduler to “catch

up” with missed triggers.

745

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

The following listing shows how to enable persistence for Quartz.NET, and, additionally, how to
enable clustering. The example below stores data in an MS SQLServer (or LocalDB) server, but
Quartz.NET supports many other databases. The example below uses the recommended
values for enabling clustering and persistence as outlined in the documentation.104

Listing 22.11 Enabling persistence and clustering for Quartz.NET

public void ConfigureServices(IService collection) #A
{
 var connectionString = Configuration #B
 .GetConnectionString("DefaultConnection"); #B

 services.AddQuartz(q =>
 {
 q.SchedulerId = "AUTO"; #C

 q.UseMicrosoftDependencyInjectionScopedJobFactory();
 q.UseSimpleTypeLoader();

 q.UsePersistentStore(s => #D
 {
 s.UseSqlServer(connectionString); #E
 s.UseClustering(); #F
 s.UseProperties = true; #G
 s.UseJsonSerializer(); #G
 });

 var jobKey = new JobKey("Update exchange rates");
 q.AddJob<UpdateExchangeRatesJob>(opts =>
 opts.WithIdentity(jobKey));

 q.AddTrigger(opts => opts
 .ForJob(jobKey)
 .WithIdentity(jobKey.Name + " trigger")
 .StartNow()
 .WithSimpleSchedule(x => x
 .WithInterval(TimeSpan.FromMinutes(5))
 .RepeatForever())
);
 });

 services.AddQuartzServer(q => q.WaitForJobsToComplete = true);
}

#A Configuration is identical for both ASP.NET Core apps and worker services
#B Obtain the connection string for your database from configuration
#C Each instance of your app must have a unique SchedulerId. AUTO takes care of this for you
#D Enable database persistence for the Quartz.NET scheduler data
#E Store the scheduler data in a SQLServer (or LocalDb) database
#F Enables clustering between multiple instances of your app

104 The Quartz.NET documentation discusses many configuration setting controls for persistence (https://www.quartz-

scheduler.net/documentation/quartz-3.x/tutorial/job-stores.html).

746

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.quartz-scheduler.net/documentation/quartz-3.x/tutorial/job-stores.html
https://www.quartz-scheduler.net/documentation/quartz-3.x/tutorial/job-stores.html

©Manning Publications Co. To comment go to liveBook

#G Adds the recommended configuration for job persistence

With this configuration, Quartz.NET stores a list of jobs and triggers in the database and uses
database locking to ensure only a single instance of your app “handles” a trigger and runs the
associated job.

NOTE SQLite doesn’t support the database locking primitives required for clustering. You can use SQLite as a

persistence store, but you won’t be able to use clustering.

Quartz.NET stores data in your database, but it doesn’t attempt to create the tables it uses
itself. Instead, you must manually add the required tables. Quartz.NET provides SQL scripts
for all of the supported database server types on GitHub, including MS SQL Server, SQLite,
PostgreSQL, MySQL, and many more:
https://github.com/quartznet/quartznet/tree/master/database/tables

TIP If you’re using EF Core migrations to manage your database, I suggest using them even for “ad hoc”

scripts like these. In the code sample associated with this chapter, you can see a migration that creates the

required tables using the Quartz.NET scripts.

Clustering is one of those advanced features that is only necessary as you start to scale your
application, but it’s an important tool to have in your belt. It gives you the ability to safely
scale your services as you add more jobs. There are some important things to bear in mind
however, so I suggest reading through the warnings in the Quartz.NET documentation
https://www.quartz-scheduler.net/documentation/quartz-3.x/tutorial/advanced-enterprise-
features.html.

That brings us to the end of this chapter on background services. In the final chapter of
this book, I’ll describe an important aspect of web development which, sometimes despite the
best of intentions, is often left until last: testing. You’ll learn how to write simple unit tests for
your classes, how to design for testability, and how to build integration tests that test your
whole app.

22.4 Summary
• You can use the IHostedService interface to run tasks in the background of your

ASP.NET Core apps. Call AddHostedSerice<T>() to add an implementation T to the DI
container. IHostedService is useful for implementing long-running tasks.

• Typically, you should derive from BackgroundService to create an IHostedService, as
this implements best-practices required for long-running tasks. You must override a
single method, ExecuteAsync, which is called when your app starts. You should run
your tasks within this method until the provided CancellationToken indicates the app
is shutting down.

• You can manually create DI scopes using IServiceProvider.CreateScope(). This is
useful for accessing scoped lifetime services from within a singleton lifetime

747

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/quartznet/quartznet/tree/master/database/tables
https://www.quartz-scheduler.net/documentation/quartz-3.x/tutorial/advanced-enterprise-features.html
https://www.quartz-scheduler.net/documentation/quartz-3.x/tutorial/advanced-enterprise-features.html

©Manning Publications Co. To comment go to liveBook

component, for example from an IHostedService implementation.
• A worker service is a .NET Core application that uses the generic IHost but doesn’t

include the ASP.NET Core libraries for handling HTTP requests. They generally have a
smaller memory and disk footprint than the ASP.NET Core equivalent.

• Worker services use the same logging, configuration, and dependency injection
systems as ASP.NET Core apps. However, they don’t use the Startup.cs file, so you
must configure your DI services in IHostBuilder.ConfigureServices().

• To run a worker service or ASP.NET Core app as a Windows Service, add the
Microsoft.Extensions.Hosting.WindowsServices NuGet package, and call
AddWindowsService() on IHostBuilder. You can install and manage your app with the
Windows sc utility.

• To install a Linux systemd daemon, add the Microsoft.Extensions.Hosting.Systemd
NuGet package, and call AddSystemd() on IHostBuilder. Both the Systemd and
Windows Service integration packages do nothing when running the application as a
console app, which is great for testing your app.

• Quartz.NET runs jobs based on triggers using advanced schedules. It builds on the
IHostedService implementation to add extra features and scalability. You can install
Quartz by adding the Quartz.AspNetCore NuGet package, and calling AddQuartz() and
AddQuartzServer() in ConfigureServices().

• You can create a Quartz.NET job by implementing the IJob interface. This requires
implementing a single method, Execute. You can enable DI for the job by calling
UseMicrosoftDependencyInjectionScopedJobFactory in AddQuartz(). This allows
you to directly inject scoped (or transient) services into your job, without having to
create your own scopes.

• You must register your job, T, with DI by calling AddJob<T>() and providing a JobKey
name for the job. You can add an associated trigger by calling AddTrigger() and
providing the JobKey. Triggers have a wide variety of schedules available for controlling
when a job should be executed.

• By default, triggers will continue to spawn new instances of a job as often as
necessary. For long running jobs scheduled with a short interval that will result in many
instances of your app running concurrently. If you only want a trigger to execute a job
when an instance is not already running, decorate your job with the
[DisallowConcurrentExecution] attribute.

• Quartz.NET supports database persistence for storing when triggers have executed. To
enable persistence, call UsePersistentStore() in your AddQuartz() configuration
method, and configure a database, using UseSqlServer() for example. With
persistence, Quartz.NET can persist details about jobs and triggers between application
restarts.

• Enabling persistence also allows you to use clustering. Clustering enables multiple apps
using Quartz.NET to coordinate, so that jobs are spread across multiple schedulers. To
enable clustering, first enable database persistence, and then call UseClustering().

748

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

23
Testing your application

This chapter covers

• Creating unit test projects with xUnit
• Writing unit tests for custom middleware and API controllers
• Using the Test Host package to write integration tests
• Testing your real application’s behavior with WebApplicationFactory
• Testing code dependent on EF Core with the in-memory database provider

When I first started programming, I didn’t understand the benefits of automated testing. It
involved writing so much more code—wouldn’t it be more productive to be working on new
features instead? It was only when my projects started getting bigger that I appreciated the
advantages. Instead of having to manually run my app and test each scenario, I could press
Play on a suite of tests and have my code tested for me automatically.

Testing is universally accepted as good practice, but how it fits into your development
process can often turn into a religious debate. How many tests do you need? Is anything less
than 100% coverage of your code base adequate? Should you write tests before, during, or
after the main code?

This chapter won’t address any of those questions. Instead, I focus on the mechanics of
testing an ASP.NET Core application. I show you how to use isolated unit tests to verify the
behavior of your services in isolation, how to test your API controllers and custom middleware,
and how to create integration tests that exercise multiple components of your application at
once. Finally, I touch on the EF Core in-memory provider, a feature that lets you test
components that depend on a DbContext without having to connect to a database.

749

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

TIP For a broader discussion around testing, or if you’re brand new to unit testing, see The Art of Unit Testing,

Third Edition by Roy Osherove (Manning, 2021). Alternatively, for an in-depth look at testing with xUnit in .NET

Core, see .NET Core in Action by Dustin Metzgar (Manning, 2018).

In section 23.1, I introduce the .NET SDK testing framework, and how you can use it to create
unit testing apps. I describe the components involved, including the testing SDK and the
testing frameworks themselves, like xUnit and MSTest. Finally, I cover some of the
terminology I use throughout the chapter.

In section 23.2, you’ll create your first test project. You’ll be testing a simple class at this
stage, but it’ll allow you to come to grips with the various testing concepts involved. You’ll
create several tests using the xUnit test framework, make assertions about the behavior of
your services, and execute the test project both from Visual Studio and the command line.

In sections 23.3 and 23.4, we’ll look at how to test common features of your ASP.NET Core
apps: API controllers and custom middleware. I show you how to write isolated unit tests for
both, much like you would any other service, as well as the tripping points to look out for.

To ensure components work correctly, it’s important to test them in isolation. But you also
need to test they work correctly in a middleware pipeline. ASP.NET Core provides a handy Test
Host package that lets you easily write these integration tests for your components. You can
even go one step further with the WebApplicationFactory helper class, and test that your
app is working correctly. In section 23.5, you’ll see how to use WebApplicationFactory to
simulate requests to your application, and to verify it generates the correct response.

In the final section of this chapter, I demonstrate how to use the SQLite database provider
for EF Core with an in-memory database. You can use this provider to test services that
depend on an EF Core DbContext, without having to use a real database. That avoids the pain
of having a known database infrastructure, of resetting the database between tests, and of
different people having slightly different database configurations.

Let’s start by looking at the overall testing landscape for ASP.NET Core, the options
available to you, and the components involved.

23.1 An introduction to testing in ASP.NET Core
In this section you’ll learn about the basics of testing in ASP.NET Core. You’ll learn about the
different types of tests you can write, such as unit tests and integration tests, and why you
should write both types. Finally, you’ll see how testing fits into ASP.NET Core.

If you have experience building apps with the full .NET Framework or mobile apps with
Xamarin, then you might have some experience with unit testing frameworks. If you were
building apps in Visual Studio, exactly how to create a test project would vary between testing
frameworks (xUnit, NUnit, MSTest), and running the tests in Visual Studio often required
installing a plugin. Similarly, running tests from the command line varied between
frameworks.

With the .NET Core SDK, testing in ASP.NET Core and .NET Core is now a first-class citizen,
on a par with building, restoring packages, and running your application. Just as you can run

750

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

dotnet build to build a project, or dotnet run to execute it, you can use dotnet test to
execute the tests in a test project, regardless of the testing framework used.

The dotnet test command uses the underlying .NET Core SDK to execute the tests for a
given project. This is exactly the same as when you run your tests using the Visual Studio test
runner, so whichever approach you prefer, the results are the same.

Test projects are console apps that contain a number of tests. A test is typically a method
that evaluates whether a given class in your app behaves as expected. The test project will
typically have dependencies on at least three components:

• The .NET Test SDK
• A unit testing framework, for example xUnit, NUnit, Fixie, or MSTest
• A test-runner adapter for your chosen testing framework, so that you can execute your

tests by calling dotnet test

These dependencies are normal NuGet packages that you can add to a project, but they allow
you to hook in to the dotnet test command and the Visual Studio test runner. You’ll see an
example csproj from a test app in the next section.

Typically, a test consists of a method that runs a small piece of your app in isolation and
checks that it has the desired behavior. If you were testing a Calculator class, you might
have a test that checks that passing the values 1 and 2 to the Add() method returns the
expected result, 3.

You can write lots of small, isolated tests like this for your app’s classes to verify that each
component is working correctly, independent of any other components. Small isolated tests
like these are called unit tests.

Using the ASP.NET Core framework, you can build apps that you can easily unit test; you
can test some aspects of your controllers in isolation from your action filters and model
binding. This is because the framework:

• Avoids static types.
• Uses interfaces instead of concrete implementations.
• Has a highly modular architecture; you can test your controllers in isolation from your

action filters and model binding, for example.

But just because all your components work correctly independently, doesn’t mean they’ll work
when you put them together. For that, you need integration tests, which test the interaction
between multiple components.

The definition of an integration test is another somewhat contentious issue, but I think of
integration tests as any time you’re testing multiple components together, or you’re testing
large vertical slices of your app. Testing a user manager class that can save values to a
database, or testing that a request made to a health-check endpoint returns the expected
response, for example. Integration tests don’t necessarily include the entire app, but they
definitely use more components than unit tests.

751

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

NOTE I don’t cover UI tests which, for example, interact with a browser to provide true end-to-end automated

testing. Selenium (www.seleniumhq.org) and Cypress (www.cypress.io) are two of the best known tools for UI

testing.

ASP.NET Core has a couple of tricks up its sleeve when it comes to integration testing. You can
use the Test Host package to run an in-process ASP.NET Core server, which you can send
requests to and inspect the responses. This saves you from the orchestration headache of
trying to spin up a web server on a different process, making sure ports are available and so
on, but still allowing you to exercise your whole app.

At the other end of the scale, the EF Core SQLite in-memory database provider lets you
isolate your tests from the database. Interacting and configuring a database is often one of
the hardest aspects of automating tests, so this provider lets you sidestep the issue entirely.
You’ll see how to use it in section 23.6.

The easiest way to get to grips with testing is to give it a try, so in the next section, you’ll
create your first test project and use it to write unit tests for a simple custom service.

23.2 Unit testing with xUnit
In this section, you’ll learn how to create unit test projects, how to reference classes in other
projects, and how to run tests with Visual Studio or the .NET CLI. You’ll create a test project
and use it to test the behavior of a basic currency converter service. You’ll write some simple
unit tests that check that the service returns the expected results, and that it throws
exceptions when you expect it to.

As I described in section 23.1, to create a test project you need to use a testing
framework. You have many options, such as NUnit or MSTest, but the most commonly used
test framework with .NET Core is xUnit (https://xunit.github.io/). The ASP.NET Core
framework project itself uses xUnit as its testing framework, so it’s become somewhat of a
convention. If you’re familiar with a different testing framework, then feel free to use that
instead.

23.2.1 Creating your first test project

Visual Studio includes a template to create a .NET Core xUnit test project, as shown in figure
23.1. Choose File > New Project and choose xUnit Test Project (.NET Core) from the New
Project dialog. Alternatively, you could choose MSTest Test Project (.NET Core) or NUnit Test
Project (.NET Core) if you’re more comfortable with those frameworks.

752

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://www.seleniumhq.org/
http://www.cypress.io/
https://xunit.github.io/

©Manning Publications Co. To comment go to liveBook

Figure 23.1 The New Project Dialog in Visual Studio. Choose xUnit Test Project to create an xUnit project or
choose Unit Test Project to create an MSTest project.

Alternatively, if you’re not using Visual Studio, you can create a similar template using the
.NET CLI with

dotnet new xunit

Whether you use Visual Studio or the .NET CLI, the template creates a console project and
adds the required testing NuGet packages to your csproj file, as shown in the following listing.
If you chose to create an MSTest (or other framework) test project, then the xUnit and xUnit
runner packages would be replaced with packages appropriate to your testing framework of
choice.

Listing 23.1 The csproj file for an xUnit test project

<Project Sdk="Microsoft.NET.Sdk"> #A
 <PropertyGroup> #A
 <TargetFramework>netcoreapp3.1</TargetFramework> #A
 <IsPackable>false</IsPackable>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference
 Include="Microsoft.NET.Test.Sdk" Version="16.5.0" /> #B
 <PackageReference Include="xunit" Version="2.4.0" /> #C
 <PackageReference
 Include="xunit.runner.visualstudio" Version="2.4.0" /> #D
 <PackageReference Include="coverlet.collector" Version="1.2.0" /> #E
 </ItemGroup>
</Project>

#A The test project is a standard .NET Core project targeting .NET Core 3.1.
#B The .NET Test SDK, required by all test projects

753

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#C The xUnit test framework
#D The xUnit test adapter for the .NET Test SDK
#E An optional package that collects metrics about how much of your code base is covered by tests

In addition to the NuGet packages, the template includes a single example unit test. This
doesn’t do anything, but it’s a valid xUnit test all the same, as shown in the following listing.
In xUnit, a test is a method on a public class, decorated with a [Fact] attribute.

Listing 23.2 An example xUnit unit test, created by the default template

public class UnitTest1 #A
{
 [Fact] #B
 public void Test1() #C
 {
 }
}

#A xUnit tests must be in public classes.
#B The [Fact] attribute indicates the method is a test method.
#C The Fact must be public and have no parameters.

Even though this test doesn’t test anything, it highlights some characteristics of xUnit [Fact]
tests:

• Tests are denoted by the [Fact] attribute.
• The method should be public, with no method arguments.
• The method is void. It could also be an async method and return Task.
• The method resides inside a public, non-static class.

NOTE The [Fact] attribute, and these restrictions, are specific to the xUnit testing framework. Other

frameworks will use other ways to denote test classes and have different restrictions on the classes and

methods themselves.

It’s also worth noting that, although I said that test projects are console apps, there’s no
Program class or static void main method. Instead, the app looks more like a class library.
This is because the test SDK automatically injects a Program class at build time. It’s not
something you have to worry about in general, but you may have issues if you try to add your
own Program.cs file to your test project.105

Before we go any further and create some useful tests, we’ll run the test project as it is,
using both Visual Studio and the .NET SDK tooling, to see the expected output.

105This isn’t a common thing to do, but I’ve seen it used occasionally. I describe this issue in detail, and how to fix it, at http://mng.bz/1NyQ.

754

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/1NyQ

©Manning Publications Co. To comment go to liveBook

23.2.2 Running tests with dotnet test

When you create a test app that uses the .NET Test SDK, you can run your tests either with
Visual Studio or using the .NET CLI. In Visual Studio, you run tests by choosing Tests > Run >
All Tests from the main menu, or by clicking Run All in the Test Explorer window, as shown in
figure 23.2.

Figure 23.2 The Test Explorer window in Visual Studio lists all tests found in the solution, and their most recent
pass/fail status. Click a test in the left-hand pane to see details about the most recent test run in the right-hand
pane.

The Test Explorer window lists all the tests found in your solution and the results of each test.
In xUnit, a test will pass if it doesn’t throw an exception, so Test1 passed successfully.

Alternatively, you can run your tests from the command line using the .NET CLI by running

dotnet test

from the unit test project’s folder, as shown in figure 23.3.

NOTE You can also run dotnet test from the solution folder. This will run all test projects referenced in

the .sln solution file.

755

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 23.3 You can run tests from the command line using dotnet test. This restores and builds the test
project before executing all the tests in the project.

Calling dotnet test runs a restore and build of your test project and then runs the tests, as
you can see from the console output in figure 23.3. Under the hood, the .NET CLI calls into the
same underlying infrastructure as Visual Studio does (the .NET Core SDK), so you can use
whichever approach better suits your development style.

You’ve seen a successful test run, so it’s time to replace that placeholder test with
something useful. First things first, you need something to test.

23.2.3 Referencing your app from your test project

In test-driven development (TDD), you typically write your unit tests before you write the
actual class you’re testing, but I’m going to take a more traditional route here and create the
class to test first. You’ll write the tests for it afterwards.

Let’s assume you’ve created an app called ExchangeRates.Web, which is used to convert
between different currencies, and you want to add tests for it. You’ve added a test project to
your solution as described in section 23.2.1, so your solution looks like figure 23.4.

756

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 23.4 A basic solution, containing an ASP.NET Core app called ExchangeRates.Web and a test project
called ExchangeRates.Web.Test.

In order for the ExchangeRates.Web.Test project to be able to test the classes in the
ExchangeRates.Web project, you need to add a reference to the web project in your test
project. In Visual Studio, you can do this by right-clicking the Dependencies node of your test
project and choosing Add Reference, as shown in figure 23.5. You can then select the web
project from the Add Reference Dialog. After adding it to your project, it shows up inside the
Dependencies node, under Projects.

757

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 23.5 To test your app project, you need to add a reference to it from the test project. Right-click the
Dependencies node and choose Add Project Reference. The app project is shown referenced inside the
Dependencies Node, under Projects.

Alternatively, you can edit the csproj file directly and add a <ProjectReference> element
inside an <ItemGroup> element with the relative path to the referenced project’s csproj file.

<ItemGroup>
 <ProjectReference
 Include="..\..\src\ExchangeRates.Web\ExchangeRates.Web.csproj" />
</ItemGroup>

Note that the path is the relative path. A ".." in the path means the parent folder, so the
relative path shown correctly traverses the directory structure for the solution, including both
the src and test folders shown in Solution Explorer in figure 23.5.

TIP Remember, you can edit the csproj file directly in Visual Studio by doubly-clicking the project in Solution

Explorer.

758

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Common conventions for project layout
The layout and naming of projects within a solution is completely up to you, but ASP.NET Core projects have generally
settled on a couple of conventions that differ slightly from the Visual Studio File New defaults. These conventions are
used by the ASP.NET team on GitHub, as well as many other open source C# projects.
The following figure shows an example of these layout conventions. In summary, these are:
• The .sln solution file is in the root directory.
• The main projects are placed in a src sub-directory.
• The test projects are placed in a test or tests sub-directory.
• Each main project has a test project equivalent, named the same as the associated main project with a “.Test” or

“.Tests” suffix.
• Other folders, such as samples, tools, or docs contain sample projects, tools for building the project, or

documentation.

Conventions around project structures have emerged in the ASP.NET Core framework libraries and open source projects
on GitHub. You don’t have to follow them for your own project, but it’s worth being aware of them.
Whether or not you choose to follow these conventions is entirely up to you, but it’s good to be aware of them at least,
so you can easily navigate other projects on GitHub.

Your test project is now referencing your web project, so you can write tests for classes in the
web project. You’re going to be testing a simple class used for converting between currencies,
as shown in the following listing.

Listing 23.3 Example CurrencyConverter class to convert currencies to GBP

public class CurrencyConverter
{
 public decimal ConvertToGbp(#A
 decimal value, decimal exchangeRate, int decimalPlaces) #A
 {
 if (exchangeRate <= 0) #B
 { #B

759

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 throw new ArgumentException(#B
 "Exchange rate must be greater than zero", #B
 nameof(exchangeRate)); #B
 } #B
 var valueInGbp = value / exchangeRate; #C
 return decimal.Round(valueInGbp, decimalPlaces); #D
 }
}

#A The ConvertToGbp method converts a value using the provided exchange rate and rounds it.
#B Guard clause, as only positive exchange rates are valid.
#C Converts the value
#D Rounds the result and returns it

This class only has a single method, ConvertToGbp(), which converts a value from one
currency into GBP, given the provided exchangeRate. It then rounds the value to the required
number of decimal places and returns it.

WARNING This class is only a basic implementation. In practice, you’d need to handle arithmetic

overflow/underflow for large or negative values, as well as considering other edge cases. This is only for

demonstration purposes!

Imagine you want to convert 5.27 USD to GBP, and the exchange rate from GBP to USD is
1.31. If you want to round to 4 decimal places, you’d call

converter.ConvertToGbp(value: 5.27, exchangeRate: 1.31, decimalPlaces: 4);

You have your sample application, a class to test, and a test project, so it’s about time you
wrote some tests.

23.2.4 Adding Fact and Theory unit tests

When I write unit tests, I usually target one of three different paths through the method under
test:

• The happy path—Where typical arguments with expected values are provided
• The error path—Where the arguments passed are invalid and tested for
• Edge cases—Where the provided arguments are right on the edge of expected values

I realize this is a broad classification, but it helps me think about the various scenarios I need
to consider.106 Let’s start with the happy path, by writing a unit test that verifies that the
ConvertToGbp() method is working as expected with typical input values.

106 A whole other way to approach testing is property-based testing. This fascinating approach is common in functional programming communities, like F#.

You can find a great introduction here https://fsharpforfunandprofit.com/posts/property-based-testing/. That post uses F#, but it is still highly
accessible even if you’re new to the language.

760

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://fsharpforfunandprofit.com/posts/property-based-testing/

©Manning Publications Co. To comment go to liveBook

Listing 23.4 Unit test for ConvertToGbp using expected arguments

[Fact] #A
public void ConvertToGbp_ConvertsCorrectly() #B
{
 var converter = new CurrencyConverter(); #C
 decimal value = 3; #D
 decimal rate = 1.5m; #D
 int dp = 4; #D
 decimal expected = 2; #E

 var actual = converter.ConvertToGbp(value, rate, dp); #F

 Assert.Equal(expected, actual); #G
}

#A The [Fact] attribute marks the method as a test method.
#B You can call the test anything you like.
#C The class to test, commonly called the “system under test” (SUT)
#D The parameters of the test that will be passed to ConvertToGbp
#E The result you expect.
#F Executes the method and captures the result
#G Verifies the expected and actual values match. If they don’t, this will throw an exception.

This is your first proper unit test, which has been configured using the Arrange, Act, Assert
(AAA) style:

• Arrange—Define all the parameters and create an instance of the system (class) under
test (SUT)

• Act—Execute the method being tested and capture the result
• Assert—Verify that the result of the Act stage had the expected value

Most of the code in this test is standard C#, but if you’re new to testing, the Assert call will
be unfamiliar. This is a helper class provided by xUnit for making assertions about your code.
If the parameters provided to Assert.Equal() aren’t equal, the Equal() call will throw an
exception and fail the test. If you change the expected variable in listing 23.4 to be 2.5
instead of 2, for example, and run the test, you can see that Test Explorer shows the failure in
figure 23.6.

TIP Alternative assertion libraries such as FluentAssertions (https://fluentassertions.com/) and Shouldly

(https://github.com/shouldly/shouldly) allow you to write your assertions in a more natural style, for example

actual.Should().Be(expected). These libraries are entirely optional, but I find they make tests more

readable and error messages easier to understand.

761

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://fluentassertions.com/
https://github.com/shouldly/shouldly

©Manning Publications Co. To comment go to liveBook

Figure 23.6 When a test fails, it’s marked with a red cross in Test Explorer. Clicking the test in the left pane
shows the reason for the failure in the right pane. In this case, the expected value was 2.5, but the actual value
was 2.

NOTE The names of your test class and method are used throughout the test framework to describe your

test. You can customize how these are displayed in Visual Studio and in the CLI by configuring an

xunit.runner.json file, as described here: https://xunit .github.io/docs/configuring-with-json.html.

In listing 23.4, you chose specific values for value, exchangeRate, and decimalPlaces to test
the happy path. But this is only one set of values in an infinite number of possibilities, so you
should probably at least test a few different combinations.

One way to achieve this would be to copy and paste the test multiple times, tweak the
parameters, and change the test method name to make it unique. xUnit provides an
alternative way to achieve the same thing without requiring so much duplication.

Instead of creating a [Fact] test method, you can create a [Theory] test method. A
Theory provides a way of parameterizing your test methods, effectively taking your test
method and running it multiple times with different arguments. Each set of arguments is
considered a different test.

You could rewrite the [Fact] test in listing 23.4 to be a [Theory] test, as shown next.
Instead of specifying the variables in the method body, pass them as parameters to the
method, then decorate the method with three [InlineData] attributes. Each instance of the
attribute provides the parameters for a single run of the test.

Listing 23.5 Theory test for ConvertToGbp testing multiple sets of values

[Theory] #A
[InlineData(0, 3, 0)] #B
[InlineData(3, 1.5, 2)] #B
[InlineData(3.75, 2.5, 1.5)] #B
public void ConvertToGbp_ConvertsCorrectly (#C
 decimal value, decimal rate, decimal expected) #C
{
 var converter = new CurrencyConverter();
 int dps = 4;

762

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://xunit.github.io/docs/configuring-with-json.html
https://xunit

©Manning Publications Co. To comment go to liveBook

 var actual = converter.ConvertToGbp(value, rate, dps); #D

 Assert.Equal(expected, actual); #E
}

#A Marks the method as a parameterized test
#B Each [InlineData] attribute provides all the parameters for a single run of the test method.
#C The method takes parameters, which are provided by the [InlineData] attributes.
#D Executes the system under test
#E Verifies the result

If you run this [Theory] test using dotnet test or Visual Studio, then it will show up as three
separate tests, one for each set of [InlineData], as shown in figure 23.7.

Figure 23.7 Each set of parameters in an [InlineData] attribute for a [Theory] test creates a separate
test run. In this example, a single [Theory] has three [InlineData] attributes, so it creates three tests,
named according to the method name and the provided parameters.

[InlineData] isn’t the only way to provide the parameters for your theory tests, though it’s
one of the most commonly used. You can also use a static property on your test class with the
[MemberData] attribute, or a class itself using the [ClassData] attribute.107

You now have some tests for the happy path of the ConvertToGbp() method, and I even
sneaked an edge case into listing 23.5 by testing the case where value = 0. The final concept
I’ll cover is testing error cases, where invalid values are passed to the method under test.

23.2.5 Testing failure conditions

A key part of unit testing is checking that the system under test handles edge cases and errors
correctly. For the CurrencyConverter, that would mean checking how the class handles
negative values, small or zero exchange rates, large values and rates, and so on.

107I describe how you to use the [ClassData] and [MemberData] attributes in a blog post at http://mng.bz/8ayP.

763

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/8ayP

©Manning Publications Co. To comment go to liveBook

Some of these edge cases might be rare but valid cases, whereas other cases might be
technically invalid. Calling ConvertToGbp with a negative value is probably valid; the
converted result should be negative too. A negative exchange rate doesn’t make sense
conceptually, so should be considered an invalid value.

Depending on the design of the method, it’s common to throw exceptions when invalid
values are passed to a method. In listing 23.3 you saw that we throw an ArgumentException
if the exchangeRate parameter is less than or equal to zero.

xUnit includes a variety of helpers on the Assert class for testing whether a method
throws an exception of an expected type. You can then make further assertions on the
exception, for example to test whether the exception had an expected message.

WARNING Take care not to tie your test methods too closely to the internal implementation of a method.

Doing so can make your tests brittle, where trivial changes to a class break the unit tests.

The following listing shows a [Fact] test to check the behavior of the ConvertToGbp()
method when you pass it a zero exchangeRate. The Assert.Throws method takes a lambda
function that describes the action to execute, which should throw an exception when run.

Listing 23.6 Using Assert.Throws<> to test whether a method throws an exception

[Fact]
public void ThrowsExceptionIfRateIsZero()
{
 var converter = new CurrencyConverter();
 const decimal value = 1;
 const decimal rate = 0; #A
 const int dp = 2;
 var ex = Assert.Throws<ArgumentException>(#B
 () => converter.ConvertToGbp(value, rate, dp)); #C

 // Further assertions on the exception thrown, ex
}

#A An invalid value
#B You expect an ArgumentException to be thrown.
#C The method to execute, which should throw an exception

The Assert.Throws method executes the lambda and catches the exception. If the exception
thrown matches the expected type, the test will pass. If no exception is thrown or the
exception thrown isn’t of the expected type, then the Assert.Throws method will throw an
exception and fail the test.

That brings us to the end of this introduction on unit testing with xUnit. The examples in
this section described how to use the new .NET Test SDK, but we didn’t cover anything specific
to ASP.NET Core. In the rest of this chapter, we’ll focus on testing ASP.NET Core projects
specifically. We’ll start by unit testing middleware.

764

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

23.3 Unit testing custom middleware
In this section you’ll learn how to test custom middleware in isolation. You’ll see how to test
whether your middleware handled a request or whether it called the next middleware in the
pipeline. You’ll also see how to read the response stream for your middleware.

In chapter 19, you saw how to create custom middleware and how you could encapsulate
middleware as a class with an Invoke function. In this section, you’ll create unit tests for a
simple health-check middleware, similar to the one in chapter 19. This is a basic
implementation, but it demonstrates the approach you can take for more complex middleware
components.

The middleware you’ll be testing is shown in listing 23.7. When invoked, this middleware
checks that the path starts with /ping and, if it does, returns a plain text "pong" response. If
the request doesn’t match, it calls the next middleware in the pipeline (the provided
RequestDelegate).

Listing 23.7 StatusMiddleware to be tested, which returns a "pong" response

public class StatusMiddleware
{
 private readonly RequestDelegate _next; #A
 public StatusMiddleware(RequestDelegate next) #A
 {
 _next = next;
 }
 public async Task Invoke(HttpContext context) #B
 {
 if(context.Request.Path.StartsWithSegments("/ping")) #C
 { #C
 context.Response.ContentType = "text/plain"; #C
 await context.Response.WriteAsync("pong"); #C
 return; #C
 } #C
 await _next(context); #D
 }
}

#A The RequestDelegate representing the rest of the middleware pipeline
#B Called when the middleware is executed
#C If the path starts with "/ping", a "pong" response is returned . . .
#D . . . otherwise, the next middleware in the pipeline is invoked.

In this section, you’re only going to test two simple cases:

• When a request is made with a path of "/ping"
• When a request is made with a different path

WARNING Where possible, I recommend you don’t directly inspect paths in your middleware like this. A

better approach is to use endpoint routing instead, as I discussed in chapter 19. The middleware in this section

is for demonstration purposes only.

765

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Middleware is slightly complicated to unit test because the HttpContext object is conceptually
a big class. It contains all the details for the request and the response, which can mean there’s
a lot of surface area for your middleware to interact with. For that reason, I find unit tests
tend to be tightly coupled to the middleware implementation, which is generally undesirable.

For the first test, you’ll look at the case where the incoming request Path doesn’t start with
/ping. In this case, StatusMiddleware should leave the HttpContext unchanged, and should
call the RequestDelegate provided in the constructor, which represents the next middleware
in the pipeline.

You could test this behavior in several ways, but in listing 23.8 you test that the
RequestDelegate (essentially a one-parameter function) is executed by setting a local
variable to true. In the Assert at the end of the method, you verify the variable was set and
therefore that the delegate was invoked. To invoke StatusMiddleware, create and pass in a
DefaultHttpContext,108 which is an implementation of HttpContext.

Listing 23.8 Unit testing StatusMiddleware when a nonmatching path is provided

[Fact]
public async Task ForNonMatchingRequest_CallsNextDelegate()
{
 var context = new DefaultHttpContext(); #A
 context.Request.Path = "/somethingelse"; #A
 var wasExecuted = false; #B
 RequestDelegate next = (HttpContext ctx) => #C
 { #C
 wasExecuted = true; #C
 return Task.CompletedTask; #C
 }; #C
 var middleware = new StatusMiddleware(next); #D

 await middleware.Invoke(context); #E

 Assert.True(wasExecuted); #F
}

#A Creates a DefaultHttpContext and sets the path for the request
#B Tracks whether the RequestDelegate was executed
#C The RequestDelegate representing the next middleware, should be invoked in this example.
#D Creates an instance of the middleware, passing in the next RequestDelegate
#E Invokes the middleware with the HttpContext, should invoke the RequestDelegate
#F Verifies RequestDelegate was invoked

When the middleware is invoked, it checks the provided Path and finds that it doesn’t match
the required value of /ping. The middleware therefore calls the next RequestDelegate and
returns.

108The DefaultHttpContext derives from HttpContext and is part of the base ASP.NET Core framework abstractions. If you’re so inclined, you

can explore the source code for it at https://github.com/dotnet/aspnetcore/blob/v3.1.7/src/Http/Http/src/DefaultHttpContext.cs.

766

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/dotnet/aspnetcore/blob/v3.1.7/src/Http/Http/src/DefaultHttpContext.cs

©Manning Publications Co. To comment go to liveBook

The other obvious case to test is when the request Path is "/ping", and so the middleware
should generate an appropriate response. You could test several different characteristics of the
response:

• The response should have a 200 OK status code
• The response should have a Content-Type of text/plain
• The response body should contain the "pong" string

Each of these characteristics represents a different requirement, so you’d typically codify each
as a separate unit test. This makes it easier to tell exactly which requirement hasn’t been met
when a test fails. For simplicity, in listing 23.9 I show all these assertions in the same test.

The positive case unit test is made more complex by the need to read the response body
to confirm it contains "pong". DefaultHttpContext uses Stream.Null for the Response.Body
object, which means anything written to Body is lost. To capture the response and read it out
to verify the contents, you must replace the Body with a MemoryStream. After the middleware
executes, you can use a StreamReader to read the contents of the MemoryStream into a
string and verify it.

Listing 23.9 Unit testing StatusMiddleware when a matching Path is provided

[Fact]
public async Task ReturnsPongBodyContent()
{
 var bodyStream = new MemoryStream(); #A
 var context = new DefaultHttpContext(); #A
 context.Response.Body = bodyStream; #A
 context.Request.Path = "/ping"; #B
 RequestDelegate next = (ctx) => Task.CompletedTask; #C
 var middleware = new StatusMiddleware(next: next); #C

 await middleware.Invoke(context); #D

 string response; #E
 bodyStream.Seek(0, SeekOrigin.Begin); #E
 using (var stringReader = new StreamReader(bodyStream)) #E
 { #E
 response = await stringReader.ReadToEndAsync(); #E
 } #E

 Assert.Equal("pong", response); #F
 Assert.Equal("text/plain", context.Response.ContentType); #G
 Assert.Equal(200, context.Response.StatusCode); #H
}

#A Creates a DefaultHttpContext and initializes the body with a MemoryStream to capture the response
#B The path is set to the required value for the StatusMiddleware.
#C Creates an instance of the middleware and passes in a simple RequestDelegate
#D Invokes the middleware
#E Rewinds the MemoryStream and reads the response body into a string
#F Verifies the response has the correct value
#G Verifies the Content-Type response is correct
#H Verifies the Status Code response is correct

767

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

As you can see, unit testing middleware requires a lot of setup to get it working. On the
positive side, it allows you to test your middleware in isolation, but in some cases, especially
for simple middleware without any dependencies on databases or other services, integration
testing can (somewhat surprisingly) be easier. In section 23.5, you’ll create integration tests
for this middleware to see the difference.

Custom middleware is common in ASP.NET Core projects, but far more common are Razor
Pages and API controllers. In the next section, you’ll see how you can unit test them in
isolation from other components.

23.4 Unit testing API controllers
In this section you’ll learn how to unit test API controllers. You’ll learn about the benefits and
difficulties of testing these components in isolation, and the situations when it can be useful.

Unit tests are all about isolating behavior; you want to test only the logic contained in the
component itself, separate from the behavior of any dependencies. The Razor Pages and
MVC/API frameworks use the filter pipeline, routing, and model binding systems, but these are
all external to the controller or PageModels. The PageModels and controllers themselves are
responsible for only a limited number of things. Typically,

• For invalid requests (that have failed validation, for example), return an appropriate
ActionResult (API controllers) or redisplay a form (Razor Pages)

• For valid requests, call the required business logic services and return an appropriate
ActionResult (API controllers), or show or redirect to a success page (Razor Pages).

• Optionally, apply resource-based authorization as required.

Controllers and Razor Pages generally shouldn’t contain business logic themselves; instead,
they should call out to other services. Think of them more as orchestrators, serving as the
intermediary between the HTTP interfaces your app exposes and your business logic services.

If you follow this separation, you’ll find it easier to write unit tests for your business logic,
and you’ll benefit from greater flexibility to change your controllers to meet your needs. With
that in mind, there’s often a drive to make your controllers and page handlers as thin as
possible,109 to the point where there’s not much left to test!

All that said, controllers and actions are classes and methods, so you can write unit tests
for them. The difficulty is deciding what you want to test! As an example, we’ll consider the
simple API controller in the following listing, which converts a value using a provided exchange
rate, and returns a response.

109One of my first introductions to this idea was a series of posts by Jimmy Bogard. The following is a link to the last post in the series, but it contains links to

all the earlier posts too. Jimmy Bogard is also behind the MediatR library (https://github.com/jbogard/MediatR), which makes creating thin controllers
even easier. See https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/.

768

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/jbogard/MediatR
https://lostechies.com/jimmybogard/2013/12/19/put-your-controllers-on-a-diet-posts-and-commands/

©Manning Publications Co. To comment go to liveBook

Listing 23.10 The API controller under test

[Route("api/[controller]")]
public class CurrencyController : ControllerBase
{
 private readonly CurrencyConverter _converter #A
 = new CurrencyConverter(); #A

 [HttpPost]
 public ActionResult<decimal> Convert(InputModel model) #B
 {
 if (!ModelState.IsValid) #C
 { #C
 return BadRequest(ModelState); #C
 } #C

 decimal result = _convert.ConvertToGbp(model) #D

 return result; #E
 }
}

#A The CurrencyConverter would normally be injected using DI. Created here for simplicity
#B The Convert method returns an ActionResult<T>
#C If the input is invalid, returns a 400 Bad Request result, including the ModelState.
#D If the model is valid, calculate the result
#E Return the result directly

Let’s first consider the happy-path, when the controller receives a valid request. The following
listing shows that you can create an instance of the API controller, call an action method, and
you’ll receive an ActionResult<T> response.

Listing 23.11 A simple API Controller unit test

public class CurrencyControllerTest
{
 [Fact]
 public void Convert_ReturnsValue()
 {
 var controller = new CurrencyController(); #A
 var model = new ConvertInputModel #A
 { #A
 Value = 1, #A
 ExchangeRate = 3, #A
 DecimalPlaces = 2, #A
 }; #A

 ActionResult<decimal> result = controller.Convert(model); #B
 Assert.NotNull(result); #C
 }
}

#A Creates an instance of the ConvertController to test and a model to send to the API
#B Invokes the ConvertToGbp method and captures the value returned
#C Asserts that the IActionResult is a ViewResult

769

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

An important point to note here is that you’re only testing the return value of the action, the
ActionResult<T>, not the response that’s sent back to the user. The process of serializing the
result to the response is handled by the MVC formatter infrastructure, as you saw in chapter
9, not by the controller.

When you unit test controllers, you’re testing them separately from the MVC infrastructure,
such as formatting, model binding, routing, and authentication. This is obviously by design,
but as with testing middleware in section 23.3, it can make testing some aspects of your
controller somewhat complex.

Consider model validation. As you saw in chapter 6, one of the key responsibilities of
action methods and Razor Page handlers is to check the ModelState.IsValid property and
act accordingly if a binding model is invalid. Testing that your controllers and Page Models
correctly handle validation failures seems like a good candidate for a unit tests.

Unfortunately, things aren’t simple here either. The Razor Page/MVC framework
automatically sets the ModelState property as part of the model binding process. In practice,
when your action method or page handler is invoked in your running app, you know that the
ModelState will match the binding model values. But in a unit test, there’s no model binding,
so you must set the ModelState yourself manually.

Imagine you’re interested in testing the sad path for the controller in listing 23.10, where
the model is invalid, and the controller should return BadRequestObjectResult. In a unit test,
you can’t rely on the ModelState property being correct for the binding model. Instead, you
must manually add a model-binding error to the controller’s ModelState before calling the
action, as shown here.

Listing 23.12 Testing handling of validation errors in MVC Controllers

[Fact]
public void Convert_ReturnsBadRequestWhenInvalid()
{
 var controller = new CurrencyController(); #A
 var model = new ConvertInputModel #B
 { #B
 Value = 1, #B
 ExchangeRate = -2, #B
 DecimalPlaces = 2, #B
 }; #B

 controller.ModelState.AddModelError(#C
 nameof(model.ExchangeRate), #C
 "Exchange rate must be greater than zero" #C
); #C

 ActionResult<decimal> result = controller.Convert(model); #D

 Assert.IsType<BadRequestObjectResult>(result.Result); #E
}

#A Creates an instance of the Controller to test
#B Creates an invalid binding model by using a negative ExchangeRate
#C Manually adds a model error to the Controller’s ModelState. This sets ModelState.IsValid to false.

770

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

#D Invokes the action method, passing in the binding models
#E Verifies the action method returned a BadRequestObjectResult

NOTE In listing 23.12, I passed in an invalid model, but I could just as easily have passed in a valid model, or

even null; the controller doesn’t use the binding model if the ModelState isn’t valid, so the test would still

pass. But if you’re writing unit tests like this one, I recommend trying to keep your model consistent with your

ModelState, otherwise your unit tests aren’t testing a situation that occurs in practice!

Personally, I tend to shy away from unit testing API controllers directly in this way110. As
you’ve seen with model binding, the controllers are somewhat dependent on earlier stages of
the MVC framework which you often need to emulate. Similarly, if your controllers access the
HttpContext (available on the ControllerBase base classes), you may need to perform
additional setup.

NOTE I haven’t discussed Razor Pages much in this section, as they suffer from many of the same problems,

in that they are dependent on the supporting infrastructure of the framework. Nevertheless, if you do wish to

test your Razor Page PageModel, you can read about it here:

https://docs.microsoft.com/aspnet/core/test/razor-pages-tests.

Instead of using unit testing, I try to keep my controllers and Razor Pages as “thin” as
possible. I push as much of the “behavior” in these classes into business logic services that
can be easily unit tested, or into middleware and filters, which can be more easily tested
independently.

NOTE This is a personal preference. Some people like to get as close to 100% test coverage for their code

base as possible, but I find testing “orchestration” classes is often more hassle than it’s worth.

Although I often forgo unit testing controllers and Razor Pages, I often write integration tests
that test them in the context of a complete application. In the next section, we look at ways to
write integration tests for your app, so you can test its various components in the context of
the ASP.NET Core framework as a whole.

23.5 Integration testing: testing your whole app in-memory
In this section you’ll learn how to create integration tests that test component interactions.
You’ll learn to create a TestServer that sends HTTP requests in-memory to test custom
middleware components more easily. You’ll then learn how to run integration tests for a real
application, using your real app’s configuration, services, and middleware pipeline. Finally,

110 You can read more about why I generally don’t unit test my controllers here: https://andrewlock.net/should-you-unit-test-controllers-in-aspnetcore/.

771

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/test/razor-pages-tests
https://andrewlock.net/should-you-unit-test-controllers-in-aspnetcore/

©Manning Publications Co. To comment go to liveBook

you’ll then learn how to use WebApplicationFactory to replace services in your app with test
versions, to avoid depending on third-party APIs in your tests.

If you search the internet for the different types of testing, you’ll find a host of different
types to choose from. The differences between them are sometimes subtle and people don’t
universally agree upon the definitions. I chose not to dwell on it in this book—I consider unit
tests to be isolated tests of a component and integration tests to be tests that exercise
multiple components at once.

In this section, I’m going to show how you can write integration tests for the
StatusMiddleware from section 23.3 and the API controller from section 23.4. Instead of
isolating the components from the surrounding framework and invoking them directly, you’ll
specifically test them in a similar context to when you use them in practice.

Integration tests are an important part of confirming that your components function
correctly, but they don’t remove the need for unit tests. Unit tests are excellent for testing
small pieces of logic contained in your components and are typically quick to execute.
Integration tests are normally significantly slower, as they require much more configuration
and may rely on external infrastructure, such as a database.

Consequently, it’s normal to have far more unit tests for an app than integration tests. As
you saw in section 23.2, unit tests typically verify the behavior of a component, using valid
inputs, edge cases, and invalid inputs, to ensure that the component behaves correctly in all
cases. Once you have an extensive suite of unit tests, you’ll likely only need a few integration
tests to be confident your application is working correctly.

You could write many different types of integration tests for an application. You could test
that a service can write to a database correctly, that it can integrate with a third-party service
(for sending emails, for example), or that it can handle HTTP requests made to it.

In this section, you’re going to focus on the last point, verifying that your app can handle
requests made to it, just as you would if you were accessing the app from a browser. For this,
you’re going to use a useful library provided by the ASP.NET Core team called
Microsoft.AspNetCore.TestHost.

23.5.1 Creating a TestServer using the Test Host package

Imagine you want to write some integration tests for the StatusMiddleware from section
23.3. You’ve already written unit tests for it, but you want to have at least one integration test
that tests the middleware in the context of the ASP.NET Core infrastructure.

You could go about this in many ways. Perhaps the most complete approach would be to
create a separate project and configure StatusMiddleware as the only middleware in the
pipeline. You’d then need to run this project, wait for it to start up, send requests to it, and
inspect the responses.

This would possibly make for a good test, but it would also require a lot of configuration,
and be fragile and error-prone. What if the test app can’t start because it tries to use an
already-taken port? What if the test app doesn’t shut down correctly? How long should the
integration test wait for the app to start?

772

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

The ASP.NET Core Test Host package lets you get close to this setup, without having the
added complexity of spinning up a separate app. You add the Test Host to your test project by
adding the Microsoft.AspNetCore.TestHost NuGet package, either using the Visual Studio
NuGet GUI, Package Manager Console, or the .NET CLI. Alternatively, add the
<PackageReference> element directly to your test project’s .csproj file:

<PackageReference Include="Microsoft.AspNetCore.TestHost" Version="3.1.7"/>

In a typical ASP.NET Core app, you create a HostBuilder in your Program class, configure a
web server (Kestrel) and define your application’s configuration, services, and middleware
pipeline (using a Startup file). Finally, you call Build() on the HostBuilder to create an
instance of an IHost that can be run and will listen for requests on a given URL and port.

The Test Host package uses the same HostBuilder to define your test application, but
instead of listening for requests at the network level, it creates an IHost that uses in-memory
request objects instead, as shown in figure 23.8. It even exposes an HttpClient that you can
use to send requests to the test app. You can interact with the HttpClient as though it were
sending requests over the network, but in reality, the requests are kept entirely in memory.

773

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 23.8 When your app runs normally, it uses the Kestrel server. This listens for HTTP requests and converts
the requests into an HttpContext, which is passed to the middleware pipeline. The TestServer doesn’t
listen for requests on the network. Instead, you use an HttpClient to make in-memory requests. From the
point of view of the middleware, there’s no difference.

Listing 23.13 shows how to use the Test Host package to create a simple integration test for
the StatusMiddleware. First, create a HostBuilder and call ConfigureWebHost() to define
your application by adding middleware in the Configure method. This is equivalent to the
Startup.Configure() method you would typically use to configure your application.

774

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Call the UseTestServer() extension method in ConfigureWebHost(), which replaces the
default Kestrel server with the TestServer from the Test Host package. The TestServer is the
main component in the Test Host package, which makes all the magic possible. After
configuring the HostBuilder, call StartAsync() to build and start the test application. You
can then create an HttpClient using the extension method GetTestClient(). This returns an
HttpClient configured to make in-memory requests to the TestServer.

Listing 23.13 Creating an integration test with TestServer

public class StatusMiddlewareTests
{
 [Fact]
 public async Task StatusMiddlewareReturnsPong()
 {
 var hostBuilder = new HostBuilder() #A
 .ConfigureWebHost(webHost => #A
 {
 webHost.Configure(app => #B
 app.UseMiddleware<StatusMiddleware>()); #B
 webHost.UseTestServer(); #C
 });

 IHost host = await hostBuilder.StartAsync(); #D
 HttpClient client = host.GetTestClient(); #E

 var response = await client.GetAsync("/ping"); #F

 response.EnsureSuccessStatusCode(); #G
 var content = await response.Content.ReadAsStringAsync(); #H
 Assert.Equal("pong", content); #H
 }
}

#A Configures a HostBuilder to define the in-memory test app
#B Add the StatusMiddleware as the only middleware in the pipeline
#C Configure the host to use the TestServer instead of Kestrel
#D Build and start the host
#E Creates an HttpClient, or you can interact directly with the server object
#F Makes an in-memory request, which is handled by the app as normal.
#G Verifies the response was a success (2xx) status code
#H Reads the body content and verifies that it contained "pong"

This test ensures that the test application defined by HostBuilder returns the expected value
when it receives a request to the /ping path. The request is entirely in-memory, but from the
point of view of StatusMiddleware, it’s the same as if the request came from the network.

The HostBuilder configuration in this example is simple. Even though I’ve called this an
integration test, you’re specifically testing the StatusMiddleware on its own, rather than in
the context of a “real” application. In many ways, I think this setup is preferable for testing
custom middleware compared to the “proper” unit-tests I showed in section 23.3.

775

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Regardless of what you call it, this test relies on very simple configuration for the test app.
You may also want to test the middleware in the context of your real application, so that the
result is representative of your app’s real configuration.

If you want to run integration tests based on an existing app, then you don’t want to have
to configure the test HostBuilder manually like you did in listing 23.13. Instead, you can use
another helper package, Microsoft.AspNetCore.Mvc.Testing.

23.5.2 Testing your application with WebApplicationFactory

Building up a HostBuilder and using the Test Host package, as you did in section 23.5.1, can
be useful when you want to test isolated “infrastructure” components, such as middleware. It’s
also very common to want to test your “real” app, with the full middleware pipeline
configured, as well as all the required services added to DI. This gives you the most
confidence that your application is going to work in production.

The TestServer that provides the in-memory server can be used for testing your “real”
app, but, in principle, there’s a lot more configuration required. Your real app likely loads
configuration files or web static files from disk, and may use Razor Pages and views. Prior to
.NET Core 2.1, configuring all of these was cumbersome. Thankfully, the introduction of the
Microsoft.AspNetCore.Mvc.Testing package and WebApplicationFactory largely solves these
configuration issues for you.

You can use the WebApplicationFactory class (provided by the
Microsoft.AspNetCore.Mvc.Testing NuGet package) to run an in-memory version of your real
application. It uses the TestServer behind the scenes, but it uses your app’s real
configuration, DI service registration, and middleware pipeline. For example, the following
listing shows an example that tests that when your application receives a "/ping" request, it
responds with "pong".

Listing 23.14 Creating an integration test with TestServer

public class IntegrationTests: #A
 IClassFixture<WebApplicationFactory<Startup>> #A
{
 private readonly WebApplicationFactory<Startup> _fixture; #B
 public StatusMiddlewareWebApplicationFactoryTests(#B
 WebApplicationFactory<Startup> fixture) #B
 {
 _fixture = fixture; #B
 }

 [Fact]
 public async Task PingRequest_ReturnsPong()
 {
 HttpClient client = _fixture.CreateClient(); #C

 var response = await client.GetAsync("/ping"); #D

 response.EnsureSuccessStatusCode(); #D
 var content = await response.Content.ReadAsStringAsync(); #D
 Assert.Equal("pong", content); #D

776

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 }
}

#A Your test must implement the marker interface
#B Inject an instance of WebApplicationFactory<T>, where T is a class in your app
#C Create an HttpClient that sends request to the in-memory TestServer
#D Make requests and verify the response as before

One of the advantages of using WebApplicationFactory as shown in listing 23.14 is that it
requires less manual configuration than using the TestServer directly, as shown in listing
23.13, despite performing more configuration behind the scenes. The WebApplicationFactory
tests your app using the configuration defined in your Program.cs and Startup.cs files.

Listings 23.14 and 23.13 are conceptually quite different too. Listing 23.13 tests that the
StatusMiddleware behaves as expected, in the context of a dummy ASP.NET Core app; listing
23.14 tests that your app behaves as expected for a given input. It doesn’t say anything
specific about how that happens. Your app doesn’t have to use the StatusMiddleware for the
test in listing 23.14 to pass, it just has to respond correctly to the given request. That means
the test knows less about the internal implementation details of your app, and is only
concerned with its behavior.

DEFINITION Tests that fail whenever you change your app slightly are called brittle or fragile. Try to avoid

brittle tests by ensuring they aren’t dependent on implementation details of your app.

To create tests that use WebApplicationFactory:

• Install the Microsoft.AspNetCore.Mvc.Testing NuGet package in your project by running
dotnet add package Microsoft.AspNetCore.Mvc.Testing, by using the NuGet
explorer in Visual Studio, or by adding a <PackageReference> element to your project
file as shown below

<PackageReference Include="Microsoft.AspNetCore.Mvc.Testing"
 Version="3.1.7" />

• Update the <Project> element in your test project’s .csproj file to the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

This is required by WebApplicationFactory so that it can find your configuration files
and static files

• Implement IClassFixture<WebApplicationFactory<T>> in your xUnit test class,
where T is a class in your real application’s project. By convention, you typically use
your application’s Startup class for T.

o WebApplicationFactory uses the T reference to find your application’s
Program.CreateHostBuilder() method to build an appropriate TestServer
for tests.

777

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

o The IClassFixture<TFixture> is an xUnit marker interface, that tells xUnit to
build an instance of TFixture before building the test class and to inject the
instance into the test class’s constructor. You can read more about fixtures at
https://xunit.net/docs/shared-context.

• Accept an instance of WebApplicationFactory<T> in your test class’s constructor. You
can use this fixture to create an HttpClient for sending in-memory requests to the
TestServer. Those requests emulate your application’s production behaviour, as your
application’s real configuration, services, and middleware are all used.

The big advantage of WebApplicationFactory is that you can easily test your real app’s
behavior. That power comes with responsibility—your app will behave just as it would in real
life, so it will write to a database and send to third-party APIs! Depending on what you’re
testing, you may want to replace some of your dependencies to avoid this, as well as to make
testing easier.

23.5.3 Replacing dependencies in WebApplicationFactory

When you use WebbApplicationFactory to run integration tests on your app, your app will be
running in-memory, but other than that, it’s as through you’re running your application using
dotnet run. That means, any connection strings, secrets, or API keys that can be loaded
locally will also be used to run your application!

TIP By default, WebApplicationFactory uses the "Development" hosting environment, the same as

when you run locally.

On the plus side, that means you have a genuine test that your application can start correctly.
For example, if you’ve forgotten to register a required DI dependency that is detected on
application startup, any tests that use WebApplicationFactory will fail.

On the downside, that means all your tests will be using the same database connection
and services as when you run your application locally. It’s common to want to replace those
with alternative “test” versions of your services.

As a simple example, lets imagine the CurrencyConverter that you’ve been testing in this
app uses IHttpClientFactory to call a third-party API to retrieve the latest exchange rates.
You don’t want to hit that API repeatedly in your integration tests, so you want to replace the
CurrencyConverter with your own StubCurrencyConverter.

The first step is to ensure the service CurrencyConverter implements an interface,
ICurrencyConverter for example, and that your app uses this interface throughout, not the
implementation. For our simple example, the interface would probably look like the following:

public interface ICurrencyConverter
{
 decimal ConvertToGbp(decimal value, decimal rate, int dps);
}

You would register the service in Startup.ConfigureServices() using:

778

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://xunit.net/docs/shared-context

©Manning Publications Co. To comment go to liveBook

services.AddScoped<ICurrencyConverter, CurrencyConverter>();

Now that your application only indirectly depends on CurrencyConverter, you can provide an
alternative implementation in your tests.

TIP Using an interface decouples your application services from a specific implementation, allowing you to

substitute alternative implementations. This is a key practice for making classes testable.

We’ll create a simple alternative implementation of ICurrencyConverter for our tests, that
always returns the same value, 3. It’s obviously not very useful as an actual converter, but
that’s not the point: you have complete control! Create the following class in your test project:

public class StubCurrencyConverter : ICurrencyConverter
{
 public decimal ConvertToGbp(decimal value, decimal rate, int dps)
 {
 return 3;
 }
}

You now have all the pieces you need to replace the implementation in your tests. To achieve
that, we’ll use a feature of WebApplicationFactory that lets you customize the DI container
before starting the test server.

TIP It’s important to remember you only want to replace the implementation when running in the test project.

I’ve seen some people try and configure their real apps to replace live services for fake services when a

specific value is set for example. That is generally unnecessary, bloats your apps with “test” services, and

generally adds confusion!

WebApplicationFactory exposes a method, WithWebHostBuilder, that allows you to
customize your application before the in-memory TestServer starts. The following listing
shows an integration test that uses this builder to replace the “default” ICurrencyConverter
implementation with our test stub.

Listing 23.15 Replacing a dependency in an integration test using WithWebHostBuilder

public class IntegrationTests: #A
 IClassFixture<WebApplicationFactory<Startup>> #A
{
 private readonly WebApplicationFactory<Startup> _fixture; #A
 public StatusMiddlewareWebApplicationFactoryTests(#A
 WebApplicationFactory<Startup> fixture) #A
 {
 _fixture = fixture; #A
 }

 [Fact]
 public async Task ConvertReturnsExpectedValue()
 {
 var customFactory = _fixture.WithWebHostBuilder(#B

779

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 (IWebHostBuilder hostBuilder) => #B
 {
 hostBuilder.ConfigureTestServices(services => #C
 {
 services.RemoveAll<ICurrencyConverter>(); #D
 services.AddSingleton
 <ICurrencyConverter, StubCurrencyConverter>(); #E
 });
 });

 HttpClient client = customFactory.CreateClient(); #F

 var response = await client.GetAsync("/api/currency"); #G

 response.EnsureSuccessStatusCode(); #G
 var content = await response.Content.ReadAsStringAsync(); #G

 Assert.Equal("3", content); #H
 }
}

#A Implement the required interface, and inject it into the constructor
#B Create a custom factory with the additional configuration
#C ConfigureTestServices executes after all other DI services are configured in your real app
#D Removes all implementations of ICurrencyConverter from the DI container
#E Adds the test service as a replacement
#F Calling CreateClient bootstraps the application and starts the TestServer
#G Invoke the currency converter endpoint
H As the test converter always returns 3, so does the API endpoint

There are a couple of important points to note in this example

• WithWebHostBuilder() returns a new WebApplicationFactory instance. The new
instance has your custom configuration, while the original injected _fixture instance
remains unchanged.

• ConfigureTestServices() is called after your real app’s ConfigureServices()
method. That means you can replace services that have been previously been
registered. You can also use this to override configuration values, as you’ll see in
section 23.6.

WithWebHosBuilder() is handy when you want to replace a service for a single test. But what
if you wanted to replace the ICurrencyConverter in every test. All that boilerplate would
quickly become cumbersome. Instead, you can create a custom WebApplicationFactory.

23.5.4 Reducing duplication by creating a custom WebApplicationFactory

If you find yourself writing WithWebHosBuilder() a lot in your integration tests, it might be
worth creating a custom WebApplicationFactory instead. The following listing shows how to
centralize the test service we used in listing 23.15 into a custom WebApplicationFactory.

Listing 23.16 Creating a custom WebApplicationFactory to reduce duplication

public class CustomWebApplicationFactory #A

780

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 : WebApplicationFactory<Startup> #A
{
 protected override void ConfigureWebHost(#B
 IWebHostBuilder builder) #B
 {
 builder.ConfigureTestServices(services => #C
 { #C
 services.RemoveAll<ICurrencyConverter>(); #C
 services.AddSingleton #C
 <ICurrencyConverter, StubCurrencyConverter>(); #C
 }); #C
 }
}

#A Derive from WebApplicationFactory
#B There are many functions available to override. This is equivalent to calling WithWebHostBuilder
#C Add custom configuration for your application

In this example, we override ConfigureWebHost and configure the test services for the
factory111. You can use your custom factory in any test by injecting it as an IClassFixture,
as you have before. For example, the following listing shows how you would update listing
23.15 to use the custom factory defined in listing 23.16.

Listing 23.17 Using a custom WebApplicationFactory in an integration test

public class IntegrationTests: #A
 IClassFixture<CustomWebApplicationFactory> #A
{
 private readonly CustomWebApplicationFactory _fixture; #B
 public IntegrationTests(CustomWebApplicationFactory fixture) #B
 {
 _fixture = fixture;
 }

 [Fact]
 public async Task ConvertReturnsExpectedValue()
 {
 HttpClient client = _fixture.CreateClient(); #C

 var response = await client.GetAsync("/api/currency");

 response.EnsureSuccessStatusCode();
 var content = await response.Content.ReadAsStringAsync();

 Assert.Equal("3", content); #D
 }
}

#A Implement the IClassFixture interface for the custom factory
#B Inject an instance of the factory in the constructor

111 WebApplicationFactory has many other services you could implement for other scenarios. For details see

https://docs.microsoft.com/aspnet/core/test/integration-tests.

781

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/aspnet/core/test/integration-tests

©Manning Publications Co. To comment go to liveBook

#C The client already contains the test service configuration
#D The result confirms the test service was used

You can also combine your custom WebApplicationFactory that substitutes services that you
always want to replace, with the WithWebHostBuilder() method to override additional
services on a per-test basis. That combination gives you the best of both worlds: reduced
duplication with the custom factory, and control with the per-test configuration.

Running integration tests using your real app’s configuration provides about the closest
you’ll get to a guarantee that your app is working correctly. The sticking point in that
guarantee is nearly always external dependencies, such as third-party APIs and databases.

In the final section of this chapter, we’ll look at how to use the SQLite provider for EF Core
with an in-memory database. You can use this approach to write tests for services that use an
EF Core database context, without needing access to a real database.

23.6 Isolating the database with an in-memory EF Core provider
In this section you’ll learn how to write unit tests for code that relies on an EF Core
DbContext. You’ll learn how to create an in-memory database, and the difference between the
in-memory provider and the SQLite in-memory provider. Finally, you’ll see how to use the in-
memory SQLite provider to create fast, isolated tests for code that relies on a DbContext.

As you saw in chapter 12, EF Core is an ORM that is used primarily with relational
databases. In this section, I’m going to discuss one way to test services that depend on an EF
Core DbContext, without having to configure or interact with a real database.

NOTE To learn more about testing your EF Core code, see Entity Framework Core in Action by Jon P Smith

(Manning, 2021), http://mng.bz/k0dz.

The following listing shows a highly stripped-down version of the RecipeService you created
in chapter 12 for the recipe app. It shows a single method to fetch the details of a recipe using
an injected EF Core DbContext.

Listing 23.18 RecipeService to test, which uses EF Core to store and load entities

public class RecipeService
{
 readonly AppDbContext _context; #A
 public RecipeService(AppDbContext context) #A
 { #A
 _context = context; #A
 } #A
 public RecipeViewModel GetRecipe(int id)
 {
 return _context.Recipes #B
 .Where(x => x.RecipeId == id)
 .Select(x => new RecipeViewModel
 {
 Id = x.RecipeId,
 Name = x.Name

782

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/k0dz

©Manning Publications Co. To comment go to liveBook

 })
 .SingleOrDefault();
 }
}

#A An EF Core DbContext is injected in the constructor.
#B Uses the DbSet<Recipes> property to load recipes and creates a RecipeViewModel

Writing unit tests for this class is a bit of a problem. Unit tests should be fast, repeatable, and
isolated from other dependencies, but you have a dependency on your app’s DbContext. You
probably don’t want to be writing to a real database in unit tests, as it would make the tests
slow, potentially unrepeatable, and highly dependent on the configuration of the database: a
fail on all three requirements!

NOTE Depending on your development environment, you may want to use a real database for your

integration tests, despite these drawbacks. Using a database like the one you’ll use in production increases the

likelihood you’ll detect any problems in your tests. You can find an example of using Docker to achieve this

here: https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-

applications/test-aspnet-core-services-web-apps.

Luckily, Microsoft ships two in-memory database providers for this scenario. Recall from
chapter 12 that when you configure your app’s DbContext in Startup.ConfigureServices(),
you configure a specific database provider, such as SQL Server, for example:

services.AddDbContext<AppDbContext>(options =>
 options.UseSqlServer(connectionSttring);

The in-memory database providers are alternative providers designed only for testing.
Microsoft includes two in-memory providers in ASP.NET Core:

• Microsoft.EntityFrameworkCore.InMemory—This provider doesn’t simulate a database.
Instead, it stores objects directly in memory. It isn’t a relational database as such, so it
doesn’t have all the features of a normal database. You can’t execute SQL against it
directly, and it won’t enforce constraints, but it’s fast.

• Microsoft.EntityFrameworkCore.Sqlite—SQLite is a relational database. It’s limited in
features compared to a database like SQL Server, but it’s a true relational database,
unlike the in-memory database provider. Normally, a SQLite database is written to a
file, but the provider includes an in-memory mode, in which the database stays in
memory. This makes it much faster and easier to create and use for testing.

Instead of storing data in a database on disk, both of these providers store data in memory,
as shown in figure 23.9. This makes them fast, easy to create and tear down, and allows you
to create a new database for every test, to ensure your tests stay isolated from one another.

783

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/test-aspnet-core-services-web-apps
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/test-aspnet-core-services-web-apps

©Manning Publications Co. To comment go to liveBook

784

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure 23.9 The in-memory database provider and SQLite provider (in-memory mode) compared to the SQL
Server database provider. The in-memory database provider doesn’t simulate a database as such. Instead, it
stores objects in memory and executes LINQ queries against them directly.

NOTE In this post, I describe how to use the SQLite provider as an in-memory database, as it’s more fully

featured than the in-memory provider. For details on using the in-memory provider see http://mng.bz/hdIq.

To use the SQLite provider in memory, add the Microsoft.EntityFrameworkCore.Sqlite package
to your test project’s .csproj file. This adds the UseSqlite() extension method, which you’ll
use to configure the database provider for your unit tests.

Listing 23.19 shows how you could use the in-memory SQLite provider to test the
GetRecipe() method of RecipeService. Start by creating a SqliteConnection object and
using the "DataSource=:memory:" connection string. This tells the provider to store the
database in memory and then open the connection.

WARNING The in-memory database is destroyed when the connection is closed. If you don’t open the

connection yourself, EF Core will close the connection to the in-memory database when you dispose the

DbContext. If you want to share an in-memory database between DbContexts, you must explicitly open the

connection yourself.

Next, pass the SqlLiteConnection instance into the DbContextOptionsBuilder<> and call
UseSqlite(). This configures the resulting DbContextOptions<> object with the necessary
services for the SQLite provider and provides the connection to the in-memory database. By
passing this options object into an instance of AppDbContext, all calls to the DbContext result
in calls to the in-memory database provider.

Listing 23.19 Using the in-memory database provider to test an EF Core DbContext

[Fact]
public void GetRecipeDetails_CanLoadFromContext()
{
 var connection = new SqliteConnection("DataSource=:memory:"); #A
 connection.Open(); #B

 var options = new DbContextOptionsBuilder<AppDbContext>() #C
 .UseSqlite(connection) #C
 .Options; #C

 using (var context = new AppDbContext(options)) #D
 {
 context.Database.EnsureCreated(); #E
 context.Recipes.AddRange(#F
 new Recipe { RecipeId = 1, Name = "Recipe1" }, #F
 new Recipe { RecipeId = 2, Name = "Recipe2" }, #F
 new Recipe { RecipeId = 3, Name = "Recipe3" }); #F
 context.SaveChanges(); #G
 }
 using (var context = new AppDbContext(options)) #H
 {

785

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://mng.bz/hdIq

©Manning Publications Co. To comment go to liveBook

 var service = new RecipeService(context); #I
 var recipe = service.GetRecipe (id: 2); #J
 Assert.NotNull(recipe); #K
 Assert.Equal(2, recipe.Id); #K
 Assert.Equal("Recipe2", recipe.Name); #K
 }
}

#A Configures an in-memory SQLite connection using the special “in-memory” connection string
#B Opens the connection so EF Core won’t close it automatically
#C Creates an instance of DbContextOptions<> and configures it to use the SQLite connection
#D Creates a DbContext and passes in the options
#E Ensures the in-memory database matches EF Core’s model (similar to running migrations)
#F Adds some recipes to the DbContext
#G Saves the changes to the in-memory database
#H Creates a fresh DbContext to test that you can retrieve data from the DbContext
#I Creates the RecipeService to test and pass in the fresh DbContext
#J Executes the GetRecipe function. This executes the query against the in-memory database.
#K Verifies that you correctly retrieved the recipe from the in-memory database

This example follows the standard format for any time you need to test a class that depends
on an EF Core DbContext:

1. Create a SqliteConnection with the "DataSource=:memory:" connection string and
open the connection.

2. Create a DbContextOptionsBuilder<> and call UseSqlite(), passing in the open
connection.

3. Retrieve the DbContextOptions object from the Options property.
4. Pass the options to an instance of your DbContext and ensure the database matches EF

Core’s model by calling context.Database.EnsureCreated(). This is similar to
running migrations on your database but should only be used on test databases. Create
and add any required test data to the in-memory database and call SaveChanges() to
persist the data.

5. Create a new instance of your DbContext and inject it into your test class. All queries
will be executed against the in-memory database.

By using two separate DbContexts, you can avoid bugs in your tests due to EF Core caching
data without writing it to the database. With this approach, you can be sure that any data
read in the second DbContext was persisted to the underlying in-memory database provider.

This was a very brief introduction to using the SQLite provider as an in-memory database
provider, and EF Core testing in general, but if you follow the setup shown in listing 23.19, it
should take you a long way. The source code for this chapter shows how you can combine this
code with a custom WebApplictaionFactory to use an in-memory database for your
integration tests. For more details on testing EF Core, including additional options and
strategies, see Entity Framework Core in Action by Jon P Smith (Manning, 2021).

786

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

23.7 Summary
• Unit test apps are console apps that have a dependency on the .NET Test SDK, a test

framework such as xUnit, MSTest, or NUnit, and a test runner adapter. You can run the
tests in a test project by calling dotnet test from the command line in your test
project or by using the Test Explorer in Visual Studio.

• Many testing frameworks are compatible with the .NET Test SDK, but xUnit has
emerged as an almost de facto standard for ASP.NET Core projects. The ASP.NET Core
team themselves use it to test the framework.

• To create an xUnit test project, choose xUnit Test Project (.NET Core) in Visual Studio
or use the dotnet new xunit CLI command. This creates a test project containing the
Microsoft.NET.Test.Sdk, xunit, and xunit.runner.visualstudio NuGet packages.

• xUnit includes two different attributes to identify test methods. [Fact] methods should
be public and parameterless. [Theory] methods can contain parameters, so they can
be used to run a similar test repeatedly with different parameters. You can provide the
data for each [Theory] run using the [InlineData] attribute.

• Use assertions in your test methods to verify that the system under test (SUT) returned
an expected value. Assertions exist for most common scenarios, including verifying that
a method call raised an exception of a specific type. If your code raises an unhandled
exception, the test will fail.

• Use the DefaultHttpContext class to unit test your custom middleware components. If
you need access to the response body, you must replace the default Stream.Null with
a MemoryStream instance and manually read the stream after invoking the middleware.

• API controllers and Razor Page models can be unit tested just like other classes, but
they should generally contain little business logic, so it may not be worth the effort. For
example, the API controller is tested independently of routing, model validation, and
filters, so you can’t easily test logic that depends on any of these aspects.

• Integration tests allow you to test multiple components of your app at once, typically
within the context of the ASP.NET Core framework itself. The
Microsoft.AspNetCore.TestHost package provides a TestServer object that you can use
to create a simple web host for testing. This creates an in-memory server that you can
make requests to and receive responses from. You can use the TestServer directly
when you wish to create integration tests for custom components like middleware.

• For more extensive integration tests of a real application, you should use the
WebApplicationFactory class in the Microsoft.AspNetCore.Mvc.Testing package.
Implement IClassFixture<WebApplicationFactory<Startup>> on your test class and
inject an instance of WebApplicationFactory<Startup> into the constructor. This
creates an in-memory version of your whole app, using the same configuration, DI
services, and middleware pipeline. You can send in-memory requests to your app to get
the best idea of how your application will behave in production.

• To customize the WebApplicationFactory, call WithWebHostBuilder() and call
ConfigureTestServices(). This method is invoked after your app’s standard DI

787

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

configuration. This enables you to add or remove the default services for your app, for
example to replace a class that contacts a third-party API with a stub implementation.

• If you find you need to customise the services for every test, you can create a custom
WebApplicationFactory by deriving from it and overriding the ConfigureWebHost
method. You can place all your configuration in the custom factory and implement
IClassFixture<CustomWebApplicationFactory> in your test classes, instead of
calling WithWebHostBuilder() in every test method.

• You can use the EF Core SQLite provider as an in-memory database to test code that
depends on an EF Core database context. You configure the in-memory provider by
creating a SqliteConnection with a "DataSource=:memory:" connection string. Create
a DbContextOptionsBuilder<> object and call Use-Sqlite(), passing in the
connection. Finally, pass DbContextOptions<> into an instance of your app’s
DbContext and call context.Database.EnsureCreated() to prepare the in-memory
database for use with EF Core.

• The SQLite in-memory database is maintained as long as there’s an open
SqliteConnection. By opening the connection manually, the database can be used
with multiple DbContexts. If you don’t call Open() on the connection, EF Core will close
the connection (and delete the in-memory database) when the DbContext is disposed.

788

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Appendix A
Preparing your development

environment

This appendix covers

• Installing the .NET Core SDK
• Choosing an editor or IDE

For .NET developers in a Windows-centric world, Visual Studio was pretty much a developer
requirement in the past. But with .NET and ASP.NET Core going cross-platform, that’s no
longer the case.

All of ASP.NET Core (creating new projects, building, testing, and publishing) can be run
from the command line for any supported operating system. All you need is the .NET SDK,
which provides the .NET Command Line Interface (CLI). Alternatively, if you’re on Windows,
and not comfortable with the command line, you can still use File > New Project in Visual
Studio to dive straight in. With ASP.NET Core, it’s all about choice!

In a similar vein, you can now get a great editing experience outside of Visual Studio
thanks to the OmniSharp project.112 This is a set of libraries and editor plugins that provide
code suggestions and autocomplete (IntelliSense) across a wide range of editors and
operating systems. How you setup your environment will likely depend on which operating
system you’re using and what you’re used to.

112 Information about the OmniSharp project can be found at www.omnisharp.net. Source code can be found at https://github.com/omnisharp.

789

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://www.omnisharp.net/
https://github.com/omnisharp

©Manning Publications Co. To comment go to liveBook

Remember that for .NET Core and .NET 5, the operating system you choose for
development has no bearing on the final systems you can run on—whether you choose
Windows, macOS, or Linux for development, you can deploy to any supported system.

In this appendix I show how to install the .NET SDK so you can build, run, and publish
.NET apps. I’ll also discuss some of the integrated development environment (IDE) and editor
options available for you to build applications.

A.1 Installing the .NET SDK
The most important thing you need for .NET Core and .NET 5 development is the .NET SDK. In
this section I describe how to install the .NET SDK and how to check which version you have
installed.

To start programming with .NET, you need to install the .NET SDK (previously called the
.NET Core SDK). This contains the base libraries, tooling, and the compiler you need to create
.NET applications.

You can install the .NET SDK from https://dotnet.microsoft.com/download. This contains
links to download the latest version of .NET for your operating system. If you’re using
Windows or macOS, this page contains installer download links; if you’re using Linux, there
are instructions for installing .NET using your distributions package manager, as a Snap
package, or as a manual download.

WARNING Make sure you download the .NET SDK not the .NET Runtime. The .NET runtime is used to

execute .NET applications, but it can’t be used to build them. The .NET SDK includes a copy of the runtime, so it

can run your applications, but it can also build, test, and publish them.

After installing the .NET SDK, you can run commands with the .NET CLI using the dotnet
command. Run dotnet --info to see information about the version of the .NET SDK
currently in use, as well as the .NET SDKs and .NET runtimes you have installed, as shown in
figure A.1.

790

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://dotnet.microsoft.com/download

©Manning Publications Co. To comment go to liveBook

Figure A.1. Use dotnet --info to check which version of the .NET SDK is currently used, and which
versions are available. Use this command to check that you have installed the .NET SDK correctly. This
screenshot shows I am currently using a preview version of .NET 5.

As you can see in figure A.1, I have multiple versions of the .NET SDK (previously, the .NET
Core SDK) installed. This is perfectly fine, but not necessary. Newer versions of the .NET SDK
can build applications that target older versions of .NET Core. For example, the .NET 5 SDK
can build .NET 5, .NET Core 3.x, .NET Core 2.x and .NET Core 1.x applications. In contrast,
the .NET Core 3.1 SDK can’t build .NET 5 applications.

TIP Some IDEs, such as Visual Studio, can automatically install .NET 5 as part of their installation process.

There is no problem installing multiple versions of .NET Core and .NET 5 side-by-side, so you can always install

the .NET SDK manually, whether your IDE installs a different version or not.

By default, when you run dotnet commands from the command line, you’ll be using the
latest version of the .NET SDK you have installed. You can control that, and use an older
version of the SDK, by adding a global.json file to the folder. For an introduction to this file,
how to use it, and understanding .NET’s versioning system, see
https://andrewlock.net/exploring-the-new-rollforward-and-allowprerelease-settings-in-global-
json/.

Once you have the .NET SDK installed, it’s time to choose an IDE or editor. The choices
available will depend on which operating system you’re using and will largely be driven by
personal preference.

791

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://andrewlock.net/exploring-the-new-rollforward-and-allowprerelease-settings-in-global-json/
https://andrewlock.net/exploring-the-new-rollforward-and-allowprerelease-settings-in-global-json/

©Manning Publications Co. To comment go to liveBook

A.2 Choosing an IDE or editor
In this section I describe a few of the most popular IDEs and editors for .NET development and
how to install them. Choosing an IDE is a very personal choice, so this section only describes a
few of the options. If your favorite IDE isn’t listed here, check the documentation to see if
.NET is supported.

A.2.1 Visual Studio (Windows only)

For a long time, Windows has been the best system for building .NET applications, and with
the availability of Visual Studio that’s arguably still the case.

Visual Studio (figure A.2) is a full-featured integrated development environment, which
provides one of the best all-around experiences for developing ASP.NET Core applications.
Luckily, the Visual Studio Community edition is now free for open source, students, and small
teams of developers.

Figure A.2 Visual Studio provides one of the most complete ASP.NET Core development environments for
Windows users.

Visual studio comes loaded with a whole host of templates for building new projects, best-in-
class debugging, and publishing, without ever needing to touch a command prompt. It’s

792

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

especially suited if you’re publishing to Azure, as it has many direct hooks into Azure features
to make development and deployment easier.

You can install Visual Studio by visiting https://visualstudio.microsoft.com/vs/ and clicking
Download Visual Studio. Choose the Community Edition (unless you have a license for the
Professional or Enterprise version) and follow the prompts to install Visual Studio.

The Visual Studio installer is an application in-and-of-itself and will ask you to select
workloads to install. You can select as many as you like, but for ASP.NET Core development,
ensure you select at a minimum:

• ASP.NET and web development
• .NET Core cross-platform development

After selecting these workloads, click Download, and fetch a beverage of your choice. Despite
having been on a diet recently, Visual Studio still requires many GB to be downloaded and
installed! Once it’s finished, you’ll be ready to start building ASP.NET Core applications.

A.2.2 JetBrains Rider (Windows, Linux, macOS)

Rider (figure A.3), from the company JetBrains, is a cross-platform IDE alternative to Visual
Studio. Released in 2017, Rider is another full-featured IDE, based on the venerable
ReSharper plugin. If you’re used to using Visual Studio with the ReSharper plugin, and the
multitude of refactorings this plugin provides, then I strongly suggest investigating Rider.
Similarly, if you’re familiar with JetBrains’ IntelliJ products, you will feel at home in Rider.

793

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://visualstudio.microsoft.com/vs/

©Manning Publications Co. To comment go to liveBook

Figure A.3 Rider is a cross-platform .NET IDE from JetBrains. It is based on the ReSharper plugin for Visual
Studio, so includes many of the same refactoring features, as well as a debugger, test runner, and all the other
integration features you would expect from a full-featured IDE.

To install Rider visit https://www.jetbrains.com/rider/ and click Download. Rider comes with a
30-day free trial, after which you will need to purchase a license. If you already have a
ReSharper license, you may already have a license for Rider. They also offer discounts or free
licenses for various users, such as students and startups, so it’s worth looking into.

A.2.3 Visual Studio for Mac (macOS)

Despite the branding, Visual Studio for Mac is a completely different product to Visual Studio.
Rebranded and extended from its Xamarin Studio precursor, you can now use Visual Studio for
Mac to build ASP.NET Core applications on macOS. Visual Studio for Mac generally has fewer
features than Visual Studio or Rider, but it offers a native IDE, and is under active
development.

To install Visual Studio for Mac, visit https://visualstudio.microsoft.com/vs/mac/, click
Download Visual Studio for Mac, and download and run the installer.

794

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://www.jetbrains.com/rider/
https://visualstudio.microsoft.com/vs/mac/

©Manning Publications Co. To comment go to liveBook

A.2.4 Visual Studio Code (Windows, Linux, macOS)

Sometimes, you don’t want a full-fledged IDE. Maybe you want to quickly view or edit a file, or
you don’t like the sometimes-unpredictable performance of Visual Studio. In those cases, a
simple editor may be all you want or need, and Visual Studio Code is a great choice. Visual
Studio Code (figure A.4) is an open source, lightweight editor that provides editing,
IntelliSense, and debugging for a wide range of languages, including C# and ASP.NET Core.

Figure A.4 Visual Studio Code provides cross-platform IntelliSense and debugging.

To install Visual Studio Code, visit https://code.visualstudio.com/, click Download, and run the
downloaded installer. The first time you open a folder containing a C# project or solution file
with Visual Studio Code, you’ll be prompted to install a C# extension. This provides the
IntelliSense and integration between Visual Studio Code and the .NET SDK.

The extension model of VS Code is one of its biggest assets, as you can add a huge
amount of additional functionality. Whether you’re working with Azure, AWS, or any other
technology, be sure to check the extension marketplace at
https://marketplace.visualstudio.com/vscode to see what’s available. If you search for “.NET
Core”, you’ll also find a huge array of extensions that can bring VS Code closer to that full-
blown IDE experience if you wish.

795

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://code.visualstudio.com/
https://marketplace.visualstudio.com/vscode

©Manning Publications Co. To comment go to liveBook

In this book, I use Visual Studio for most of the examples, but you’ll be able to follow
along using any of the tools I’ve mentioned. The book assumes you’ve successfully installed
.NET 5 and an editor on your computer.

796

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Appendix B
 Understanding the .NET

ecosystem

This appendix covers

• The history of .NET leading to the development of .NET Core
• The position of .NET 5 in the .NET ecosystem
• Sharing code between projects with .NET Standard
• The future of .NET Standard with .NET 5

The .NET ecosystem has changed a lot since .NET was first introduced, but the development of
.NET Core and .NET 5 has resulted in a particularly large degree of churn and the introduction
of many new concepts.

This churn isn’t surprising given Microsoft’s newfound transparency regarding the
development process and building in the open on GitHub. Unfortunately, it can be confusing
for developers new to .NET, and even to seasoned veterans! In this appendix, I try to
straighten out some of the terms that developers new to .NET often find confusing, as well as
provide some context for the changes.

In this appendix I discuss the history the .NET ecosystem, how it has evolved, and the
issues Microsoft was attempting to solve. As part of this, I’ll discuss the similarities and
differences between .NET 5, .NET Core, and .NET Framework.

.NET Core wasn’t developed in isolation, and one of its primary design goals was to
improve the ability to share code between multiple frameworks. In section B.2, I describe how
this was achieved in pre-.NET Core/.NET 5 days, using Portable Class Libraries (PCLs) and the
successor approach using .NET Standard. Finally, in section B.3, I discuss what .NET 5 means
for .NET Standard.

797

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

B.1 The evolution of .NET into .NET 5
In this section I discuss the history or .NET 5 and .NET Core and why they were created. You’ll
learn about the various .NET platforms around in the early 2010s and why their sharding
prompted the development of .NET Core as a new cross-platform runtime. Finally, you’ll learn
how .NET 5 has grown out of .NET Core, and the future of .NET.

B.1.1 Exploring the .NET platforms that prompted .NET Core

If you’re a .NET developer, chances are you’re already familiar with the .NET Framework. The
.NET Framework, version 4.8 at the time of writing, is a Windows-only development platform
that you can use for both desktop and web development. It’s installed by default on Windows
and was historically used for most desktop and server .NET development.

If you’re a mobile developer, you might also be familiar with the Xamarin framework,
which, until recently, used the cross-platform Mono implementation of the .NET Framework.
This is an alternative platform to the .NET Framework that you can use to build mobile
applications on Windows, Android, and iOS.

Historically, these two platforms were completely separate, but they consisted of many
similar components and implemented similar APIs. Each platform contained libraries and app-
models specific to their platform, but they use similar fundamental libraries and types, as
shown in figure B.1.

798

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure B.1 The layers that make up the .NET Framework. Each builds on the capabilities of the layer below, with
the highest layer providing the app models that you’ll use to build your applications.

At the bottom of each stack is the tooling that allows you to compile and run .NET applications
such as the compiler and the common language runtime (CLR). At the top of each stack, you
have the app-specific libraries that you use to build applications for your platform. For
example, you could build a Windows Forms app on the .NET Framework, but not using the
Xamarin platform, and vice-versa for an iOS app.

In the middle of each stack you have the Base Class Libraries (BCL). These are the
fundamental .NET types you use in your apps on a daily basis: the int and string types, the
file-reading APIs, the Task APIs, and so on. Although both .NET platforms have many similar

799

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

types, they’re fundamentally different, so you can’t guarantee a type will exist on both
platforms, or that it will expose the same methods and properties.

I’ve only discussed two platforms so far, the .NET Framework and Xamarin, but .NET has
many different implementations, of which these are only two. Windows also has the Windows
8/8.1 platform and the Universal Windows Platform (UWP). On phones, in addition to Xamarin,
there’s the Windows Phone 8.1 and Silverlight Phone platforms. The list goes on and on
(Unity, .NET Compact Framework (CF), .NET Micro …)!

Each of these platforms uses a slightly different set of APIs (classes and methods) in their
BCL. Platforms have a certain number of similar APIs between them in their BCLs, but the
intersection is patchy. On top of that, the libraries that make up the BCL of a platform are
fundamentally not interoperable. Any source code written for a given set of APIs must be
specifically recompiled for each target platform.

Several years ago, Microsoft realized this sharding of .NET was a problem. Developers had
to know a slightly different set of APIs for each platform, and sharing code so that it could be
used on more than one platform was a pain.

On top of that, the primary web development platform of the .NET Framework was
showing its age. The software industry was moving toward small, lightweight, cloud-native
frameworks that you could deploy in cross-platform environments. The centrally installed
Windows-only .NET Framework was not designed for these scenarios. Microsoft set about
developing a new framework, called “Project K” during development, which ultimately became
.NET Core.

B.1.2 Introducing .NET Core

The .NET Core platform was Microsoft’s solution to the centrally installed, Windows-only .NET
Framework. .NET Core is highly modular, can be deployed side-by-side with other .NET Core
installations (or alternatively, distributed with the app), and is cross-platform. The term .NET
Core is somewhat overloaded, in that it was used through development as a general umbrella
term to describe a variety of changes. The .NET Core platform consists of

• A cross-platform BCL—The BCL libraries of the .NET Core platform, historically called
CoreFX, contain all the primitive types and libraries for building .NET Core applications.

• A new cross-platform runtime—The runtime for .NET Core, called CoreCLR, which
executes .NET Core applications.

• The .NET CLI tooling—The dotnet tool used for building and publishing apps.
• The ASP.NET Core libraries—The “app-layer” libraries, used to build ASP.NET Core

applications.

These components make up the .NET Core platform and find their analogs to the various
components that make up the .NET Framework and Xamarin platforms you saw in figure B.1.
By creating a new platform, Microsoft was able to maintain backward compatibility for apps
that used the .NET Framework, which allowed new apps to be developed using .NET Core and
take advantage of its cross-platform and isolated deployment story.

800

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

NOTE You might be thinking, “Wait, they had too many .NET platforms, so they created another one?” If so,

you’re on the ball. But luckily, with .NET Core, came .NET Standard.

On its own, .NET Core would’ve meant yet another BCL of APIs for .NET developers to learn.
But as part of the development of .NET Core, Microsoft introduced .NET Standard. .NET
Standard, as the name suggests, ensures a standard set of APIs is available on every .NET
platform. You no longer had to learn the specific set of APIs available for the flavor of .NET
you were using; if you could use the .NET Standard APIs, you knew you’d be fine on multiple
platforms. I’ll talk more about .NET Standard in section B.2.

.NET Standard was a good stop-gap solution for writing code that could work on multiple
platforms, but it didn’t address one fundamental issue: there were still multiple platforms.
Every platform had its own separate code that must be maintained by Microsoft, despite being
almost identical in many places.

Microsoft was innovating quickly in .NET Core, introducing new C# features such as Async
Enumerables and Span<T>, as well as providing many performance improvements.113
Unfortunately, none of the other platforms could take advantage of these without significant
work. Microsoft’s vision for tackling this head-on was “One .NET”.

B.1.3 .NET 5: the first step in the One .NET vision

In May 2019, Microsoft announced114 that the next major version of .NET Core after 3.0 would
be .NET 5. This was the first step in their attempt to unify the .NET platform.

Previously, as I discussed in section B.1.1, you had to use .NET Framework to build
Windows Desktop apps, Xamarin to build iOS or Android apps, and .NET Core to build cross-
platform web apps. Each app-model was tied to the underlying platform and used a distinct
BCL. The “One .NET” vision which started with.NET 5 is to have a single .NET platform, with a
single BCL, which can be used with every app model: Windows Desktop apps, iOS or Android
apps, as well as cross-platform web apps, as shown in figure B.2.

113 There is a blog post on the .NET blog detailing the vast low-level improvements made to .NET Core. These are fascinating if you are into that sort of thing!

You can find the .NET 5 blog post here: https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/.
114 You can find the announcement blog post here: https://devblogs.microsoft.com/dotnet/introducing-net-5/. This contains a lot of detail of future

plans, so I strongly suggest reading it.

801

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/

©Manning Publications Co. To comment go to liveBook

Figure B.2. .NET 5 provides a single platform for running multiple app models. Instead of each app model
requiring a separate .NET platform, with a separate BCL, all app models will be able to use the same underlying
.NET 5 platform and BCL.

Practically speaking .NET 5 really is “just” the next version of .NET Core. There are very few
breaking changes moving an ASP.NET Core 3.1 application to .NET 5115, and for the most part,
the upgrade is very easy. .NET 5 adds additional features (such as gRPC and Blazor), but
fundamentally not much has changed for most ASP.NET Core applications.

NOTE A common point of confusion is the name: .NET 5. The “Core” moniker was dropped to try and signify

“there is only one version of .NET now”. Also, version 4 was skipped, to avoid confusion between the new

version and .NET Framework version 4. Hopefully this naming decision will pay off in the long run, even if it’s

confusing now!

.NET 5 represents the first step on the road to One .NET. The hope is that basing all future
development effort on one platform will reduce duplication of effort and provide both greater
stability and progress for the platform. With that in mind, Microsoft have committed to a
regular release cadence, so you can easily plan how to keep your apps up to date as new
versions of .NET are released.

115 You can see the list of breaking changes at https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.1-5.0.

802

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.1-5.0

©Manning Publications Co. To comment go to liveBook

B.1.4 The future: .NET 6 and beyond

As with many open source projects, developing in the open is often associated with a faster
release cycle than with the traditional .NET Framework. This was certainly the case with .NET
Core, with new releases (major and minor) coming regularly for the first few years of
development.

While many developers like this faster cadence and the new features it brings, it can lead
to some uncertainty. Is it worth spending time upgrading to the latest version now if a new
version is going to be released next week?

To counteract the potential churn, and give users confidence in continued support, each
.NET Core (and subsequently, .NET) release falls into one of two support tracks:

• Long Term Support (LTS). These releases are supported for three years from their first
release.

• Current. These releases are supported until three months after the next LTS or current
release.

Having two supported tracks leaves you with a simple choice: if you want more features, and
are happy to commit to updating your app more frequently, choose Current releases; if you
want fewer updates but also fewer features, choose LTS116.

The two-track approach went some way to alleviating uncertainty, but it still left users
unsure exactly when a new release would occur, and hence how long the current version
would be supported.

With .NET 5, Microsoft committed to a well-defined release cycle consisting of shipping a
new major version of .NET every year, alternating between LTS releases and Current releases,
as shown in figure B.3. Minor updates are not intended to be common but will occur in
interstitial months if required.

Figure B.3 The timeline for releases of new .NET versions. A new .NET version will be released every year in
November. Releases will alternate between Long Term Support (LTS) versions and Current release versions.

116 For more details on .NET support policies, see https://dotnet.microsoft.com/platform/support/policy/dotnet-core.

803

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

©Manning Publications Co. To comment go to liveBook

With this timeline, you know how long a version of .NET will be supported. If you use a
Current track release (such as .NET 5) you know you will be supported until 3 months after
the release of .NET 6 in November 2021. As an LTS release, .NET 6 will be supported until
November 2024.

The unification of multiple .NET platforms in .NET 5 means that there will be less need in
future to share code between multiple platforms: that’s one of the big selling points of One
.NET. Nevertheless, you will no doubt need to share code with existing legacy applications for
many years, so code sharing is still a concern.

As I described in section B.1.2 .NET Standard was introduced with .NET Core as a way of
sharing code between .NET Core applications and existing legacy applications. Before I dig into
the details of .NET Standard, I’ll briefly discuss its predecessor, Portable Class Libraries, and
why they’re now obsolete thanks to .NET Standard.

B.2 Sharing code between projects
In this section I discuss the history of sharing code between .NET platforms using Portable
Class Libraries. I then introduce .NET Standard as an alternative solution that was introduced
with .NET Core.

With so many different .NET implementations, the .NET ecosystem needed a way to share
code between libraries, long before .NET Core was envisaged. What if you wanted to use the
same classes in both your ASP.NET .NET Framework project and your Silverlight project?
You’d have to create a separate project for each platform, copy and paste files between them,
and recompile your code for each platform. The result was two different libraries from the
same code. Portable Class Libraries (PCLs) were the initial solution to this problem.

B.2.1 Finding a common intersection with Portable Class Libraries

PCLs were introduced to make the process of compiling and sharing code between multiple
platforms simpler. When creating a library, developers could specify the platforms they
wanted to support, and the project would only have access to the set of APIs common among
all of them. Each additional platform supported would reduce the API surface to only those
APIs available in all the selected platforms, as shown in figure B.4.

804

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

Figure B.4 Each additional framework that must be supported by a PCL reduces the APIs available to your
application. If you support multiple frameworks you have vastly fewer APIs available to you.

To create a PCL library, you’d create a library that targeted a specific PCL “profile”. This profile
contained a precomputed list of APIs known to be available on the associated platforms. That
way, you could create one library that you could share across your selected platforms. You
could have a single project and a single resulting package—no copy and paste or duplicate
projects required.

This approach was a definite improvement over the previous option, but creating PCLs was
often tricky. There were inherent tooling complexities to contend with and understanding the
APIs available for each different combination of platforms that made up a PCL profile was
difficult.117

On top of these issues, every additional platform you targeted would reduce the BCL API
surface available for you to use in your library. For example, the .NET Framework might
contain APIs A, B, and C. But if Xamarin only has API A and Windows Phone only has API C,
then your library can’t use any of them, as shown in figure B.5.

117 See here for the full horrifying list: https://portablelibraryprofiles.stephencleary.com/.

805

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://portablelibraryprofiles.stephencleary.com/

©Manning Publications Co. To comment go to liveBook

Figure B.5 Each platform exposes slightly different APIs. When creating PCLs, only those APIs that are available
in all the targeted platforms are available. In this case, none of the APIs, A, B, or C, is available in all targeted
platforms, so none of them can be used in the PCL.

One additional issue with PCL libraries was that they were inherently tied to the underlying
platforms they targeted. In order to work with a new target platform, you’d have to recompile
the PCL, even if no source code changes were required.

Say you’re using a PCL library that supports Windows Phone 8.1 and .NET Framework 4.5.
If Microsoft were to release a new platform, let’s say, .NET Fridge, which exposes the same
API as Windows Phone 8.1, you wouldn’t be able to use the existing library with your new
.NET Fridge application. Instead, you’d have to wait for the library author to recompile their
PCL to support the new platform, and who knows when that would be!

PCLs had their day, and they solved a definite problem, but for modern development .NET
Standard provides a much cleaner approach.

B.2.2 .NET Standard: a common interface for .NET

As part of the development of .NET Core, Microsoft announced .NET Standard as the successor
to PCL libraries. .NET Standard takes the PCL relationship between platform support and APIs
available, and flips it on its head:

• PCLs—A PCL profile targets a specific set of platforms. The APIs available to a PCL
library are the common APIs shared by all the platforms in the profile.

• .NET Standard—A .NET Standard version defines a specific set of APIs. These APIs are

806

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

always available in a .NET Standard library. Any platform that implements all these
APIs supports that version of .NET Standard.

.NET Standard isn’t something you download. Instead, it’s a list of APIs that a .NET Standard-
compatible platform must implement.118 You can create libraries that target .NET Standard,
and you can use that library in any app that targets a .NET Standard-compatible platform.

.NET Standard has multiple versions, each of which is a superset of the previous versions.
For example, .NET Standard 1.2 includes all the APIs from .NET Standard 1.1, which in turn
includes all the APIs from .NET Standard 1.0, as shown in figure B.6.

Figure B.6 Each version of .NET Standard includes all the APIs from previous versions. The smaller the version of
.NET Standard, the smaller the number of APIs.

When you create a .NET Standard library, you target a specific version of .NET Standard and
can reference any library that targets that version or earlier. If you’re writing a library that
targets .NET Standard 1.2, you can reference packages that target .NET Standard 1.2, 1.1, or
1.0. Your package can in turn be referenced by any library that targets .NET Standard 1.2 or
later or any library that targets a platform that implements .NET Standard 1.2 or later.

118 It is, literally, a list of APIs. You can view the APIs included in each version of .NET Standard on GitHub here:

https://github.com/dotnet/standard/tree/master/docs/versions. For example you can see the APIs include in .NET Standard 1.0 here:
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.0.md.

807

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.0.md

©Manning Publications Co. To comment go to liveBook

A platform implements a specific version of .NET Standard if it contains all the APIs
required by that version of .NET Standard. By extension, a platform that supports a specific
version of .NET Standard also supports all previous versions of .NET Standard. For example,
UWP version 10 supports .NET Standard 1.4, which means it also supports .NET Standard
versions 1.0-1.3, as shown in figure B.7.

Figure B.7 The UWP Platform version 10 supports .NET Standard 1.4. That means it contains all the APIs
required by the .NET Standard specification version 1.4. That means it also contains all the APIs in earlier
versions of .NET Standard. It also contains additional platform-specific APIs that aren’t part of any version of
.NET Standard.

Each version of a platform supports a different version of .NET Standard. .NET Framework 4.5
supports .NET Standard 1.1, but .NET Framework 4.7.1 supports .NET Standard 2.0. Table B.1
shows some of the versions supported by various .NET platforms. For a more complete list,
see https://docs.microsoft.com/dotnet/standard/net-standard.

Table B.1 Highest supported .NET Standard version for various .NET platform versions. A blank cell
means that version of .NET Standard isn’t supported on the platform.

.NET Standard Version 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0

.NET Framework 4.5 4.5 4.5.1 4.6 4.6.1 4.6.2 4.7.1

808

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://docs.microsoft.com/dotnet/standard/net-standard

©Manning Publications Co. To comment go to liveBook

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4 6.4

Windows 8.0 8.0 8.1

Windows Phone 8.1 8.1 8.1

A version of this table is often used to explain .NET Standard, but for me, the relationship
between .NET Standard and a .NET Platform all made sense when I saw an example that
explained .NET Standard in terms of C# constructs.119

You can think of each version of .NET Standard as a series of inherited interfaces, and the
.NET platforms as implementations of one of these interfaces. In the following listing, I use the
last two rows of table B.1 to illustrate this, considering .NET Standard 1.0-1.2 and looking at
the Windows 8.0 platform and Windows Phone 8.1.

Listing B.1 An interpretation of .NET Standard in C#

interface NETStandard1_0 #A
{
 void SomeMethod();
}

interface NETStandard1_1 : NETStandard1_0 #B
{
 void OtherMethod(); #C
}

interface NETStandard1_2 : NETStandard1_1 #D
{
 void YetAnotherMethod(); #E
}

class Windows8 : NETStandard1_1 #F
{
 void SomeMethod () { /* Method implementation */ } #G
 void OtherMethod() { /* Method implementation */ } #G

 void ADifferentMethod() { /* Method implementation */ #H
}

class WindowsPhone81 : NETStandard1_2 #I
{
 void SomeMethod () { /* Method implementation */ } #J
 void OtherMethod() { /* Method implementation */ } #J
 void YetAnotherMethod () { /* Method implementation */ } #J

 void ExtraMethod1() { /* Method implementation */ } #K

119The example was originally provided by David Fowler from the ASP.NET team. You can view an updated version of this metaphor here:

https://github.com/dotnet/standard/blob/master/docs/metaphor.md/.

809

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/dotnet/standard/blob/master/docs/metaphor.md

©Manning Publications Co. To comment go to liveBook

 void ExtraMethod2() { /* Method implementation */ } #K
}

#A Defines the APIs available in .NET Standard 1.0
#B .NET Standard 1.1 inherits all the APIs from .NET Standard 1.0.
#C APIs available in .NET Standard 1.1 but not in 1.0
#D .NET Standard 1.2 inherits all the APIs from .NET Standard 1.1.
#E APIs available in .NET Standard 1.2 but not in 1.1 or 1.0
#F Windows 8.0 implements .NET Standard 1.1.
#G Implementations of the APIs required by .NET Standard 1.1 and 1.0
#H Additional APIs that aren’t part of .NET Standard, but exist on the Windows 8.0 platform
#I Windows Phone 8.1 implements .NET Standard 1.2.
#J Implementations of the APIs required by .NET Standard 1.2, 1.1, and 1.0
#K Additional APIs that aren’t part of .NET Standard, but exist on the Windows Phone 8.1 platform

In the same way that you write programs to use interfaces rather than specific
implementations, you can target your libraries against a .NET Standard interface without
worrying about the individual implementation details of the platform. You can then use your
library with any platform that implements the required interface version.

One of the advantages you gain by targeting .NET Standard is the ability to target new
platforms without having to recompile any of your libraries or wait for dependent library
authors to recompile theirs. It also makes reasoning about the exact APIs available far
simpler—the higher the .NET Standard version you target, the more APIs will be available to
you.

WARNING Even if a platform implements a given version of .NET Standard, the method implementation

might throw a PlatformNotSupportedException. For example, some reflection APIs might not

be available on all platforms. .NET 5 includes Roslyn Analyzer support to detect this situation and will warn you

of the issue at build time. See https://devblogs.microsoft.com/dotnet/automatically-find-latent-bugs-in-your-

code-with-net-5/ for more details about analyzers introduced in .NET 5.

Unfortunately, things are never as simple as you want them to be. Although .NET Standard
2.0 is a strict superset of .NET Standard 1.6, apps targeting .NET Framework 4.6.1 can
reference .NET Standard 2.0 libraries, even though it technically only implements .NET
Standard 1.4, as shown in Table B.1.120

WARNING Even though .NET Framework 4.6.1 technically only implements .NET Standard 1.4, it can

reference .NET Standard 2.0 libraries. This is a special case and applies only to versions 4.6.1-4.7.0. .NET

Framework 4.7.1 implements .NET Standard 2.0, so it can reference .NET Standard 2.0 libraries natively.

120The reasoning behind this move was laid out in a post on the .NET blog which I highly recommend reading:

https://devblogs.microsoft.com/dotnet/introducing-net-standard/.

810

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://devblogs.microsoft.com/dotnet/automatically-find-latent-bugs-in-your-code-with-net-5/
https://devblogs.microsoft.com/dotnet/automatically-find-latent-bugs-in-your-code-with-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/

©Manning Publications Co. To comment go to liveBook

The reasoning behind this move was to counteract a chicken-and-egg problem. One of the
early complaints about .NET Core 1.x was how few APIs were available, which made porting
projects to .NET Core tricky. Consequently, in .NET Core 2.0, Microsoft added thousands of
APIs that were available in .NET Framework 4.6.1, the most widely installed .NET Framework
version, and added these APIs to .NET Standard 2.0. The intention was for .NET Standard 2.0
to provide the same APIs as .NET Framework 4.6.1.

Unfortunately, .NET Framework 4.6.1 doesn’t contain the APIs in .NET Standard 1.5 or 1.6.
Given .NET Standard 2.0 is a strict superset of .NET Standard 1.6, .NET Framework 4.6.1 can’t
support .NET Standard 2.0 directly.

This left Microsoft with a problem. If the most popular version of the .NET Framework
didn’t support .NET Standard 2.0, no one would write .NET Standard 2.0 libraries, which would
hamstring .NET Core 2.0 as well. Consequently, Microsoft took the decision to allow .NET
Framework 4.6.1 to reference .NET Standard 2.0 libraries, as shown in figure B.8.

Figure B.8 NET Framework 4.6.1 doesn’t contain the APIs required for .NET Standard 1.5, 1.6, or 2.0. But it
contains nearly all the APIs required for .NET Standard 2.0. In order to speed up adoption and to make it easier
to start using .NET Standard 2.0 libraries, you can reference .NET Standard 2.0 libraries for a .NET Framework
4.6.1 app.

All this leads to some fundamental technical difficulties. .NET Framework 4.6.1 can reference
.NET Standard 2.0 libraries, even though it technically doesn’t support them, but you must
have the .NET Core 2.0 SDK installed to ensure everything works correctly.

811

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

To blur things even further, libraries compiled against .NET Framework 4.6.1 can be
referenced by .NET Standard libraries through the use of a compatibility shim, as I describe in
the next section.

B.2.3 Fudging .NET Standard 2.0 support with the compatibility shim

Microsoft’s plan for .NET Standard 2.0 was to make it easier to build .NET Core apps. If users
built libraries targeting .NET Standard 2.0, then they could still use them in their .NET
Framework 4.6.1 apps, but they could also use the libraries in their .NET Core apps.

The problem was that when .NET Standard 2.0 was first released, no libraries (NuGet
packages) would implement it yet. Given .NET Standard libraries can only reference other
.NET Standard libraries, you’d have to wait for all your dependencies to update to .NET
Standard, who would have to wait for their dependencies first, and so on.

To speed things up, Microsoft created a compatibility shim. This shim allows a .NET
Standard 2.0 library to reference .NET Framework 4.6.1 libraries. Ordinarily, this sort of
reference wouldn’t be possible; .NET Standard libraries can only reference .NET Standard
libraries of an equal or lower version, as shown in figure B.9.121

Figure B.9 By default, .NET Standard libraries can only reference other .NET Standard libraries, targeting the
same .NET Standard version or lower. With the compatibility shim, .NET Standard libraries can also reference
libraries compiled against .NET Framework 4.6.1.

121The process by which this magic is achieved is complicated. This article describes the process of assembly unification in detail:

https://github.com/dotnet/standard/blob/master/docs/planning/netstandard-2.0/README.md

812

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://github.com/dotnet/standard/blob/master/docs/planning/netstandard-2.0/README.md

©Manning Publications Co. To comment go to liveBook

By enabling this shim, suddenly .NET Core 2.0 apps could use any of the many .NET
Framework 4.6.1 (or lower) NuGet libraries available. As long as the referenced library stuck
to APIs which are part of .NET Standard 2.0, you’d be able to reference .NET Framework
libraries in your .NET Core 2+ apps or .NET Standard 2.0 libraries, even if your app runs
cross-platform on Linux or macOS.

WARNING If the library uses .NET Framework-specific APIs, you’ll get an exception at runtime. There’s no

easy way of knowing whether a library is safe to use, short of examining the source code, so the .NET tooling

will raise a warning every time you build. Be sure to thoroughly test your app if you rely on this shim.

If your head is spinning at this point, I don’t blame you. This was a particularly confusing point
in the evolution of .NET Standard, in which rules were being bent to fit the current
environment. This inevitably led to various caveats and hand-waving, followed by bugs and
fixes122! Luckily, if your development is focused on .NET 5, .NET Standard is not something
you will generally have to worry about.

B.3 .NET 5 and the future of .NET Standard
In this section I discuss what .NET 5 means for the future of .NET Standard and the approach
you should take for new applications targeting .NET 5.

NOTE The advice in this section is based on official guidance from Microsoft regarding the future of .NET

Standard here https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/.

.NET Standard was necessary when .NET Core was a young framework, to ensure you still had
access to the existing NuGet package ecosystem. .NET 5 is an evolution of .NET Core, so you
can take advantage of that same ecosystem in .NET 5.

.NET 5 implements .NET Standard 2.1, the latest version of the standard, which is also
implemented by .NET Core 3.0. That means .NET 5 applications can reference:

• Any NuGet package or library that implements .NET Standard 1.0-2.1.
• Any.NuGet package or library that implements .NET Core 1.x-3.x

.NET Standard was designed to handle code-sharing between multiple .NET platforms. But the
release of .NET 5, and the “One .NET” vision, specifically aims to have only a single platform.
Is .NET Standard still useful?

Yes and no. From .NET 5 onwards, no more versions of .NET Standard are planned, as
subsequent versions of .NET (for example. .NET 7) will already be able to reference libraries
targeting earlier versions of .NET (such as .NET 5 and .NET 6).

122 You can find an example of one such issue here, but there were, unfortunately, many similar cases:

https://github.com/dotnet/runtime/issues/29314.

813

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/
https://github.com/dotnet/runtime/issues/29314

©Manning Publications Co. To comment go to liveBook

.NET Standard will remain useful when you need to share code between .NET 5+
applications and legacy (.NET Core, .NET Framework, Xamarin) applications. .NET Standard
remains the mechanism for this cross-.NET platform code sharing.

B.4 Summary
• .NET has many different implementations, including the .NET Framework, Mono, and

Unity. Each of these is a separate platform with separate Base Class Libraries (BCLs)
and app models. .NET Core is another separate platform.

• Each platform has a BCL that provides fundamental .NET types and classes such as
strings, file manipulation, and streams. Each platform has a slightly different BCL.

• .NET 5 is the first step in unifying these platforms, most notable Mono (and hence
Xamarin) and .NET Core, under the One .NET vision. App models currently associated
with other platforms will be made available on the new .NET 5+ platform.

• .NET will see a new major release every year. These will alternate between Long Term
Support releases, which receive 3 years of support, and Current releases, which receive
15 months support.

• Portable Class Libraries (PCLs) attempted to solve the problem of sharing code between
.NET platforms by allowing you to write code to the logical intersection of each
platform's BCL. Each additional platform you targeted meant fewer BCL APIs in
common.

• .NET Standard defines a standard set of APIs that are available across all platforms that
support it. You can write libraries that target a specific version of .NET Standard and
they’ll be compatible with any platform that supports that version of .NET Standard.

• Each version of .NET Standard is a superset of the previous. For example, .NET
Standard 1.2 includes all the APIs from .NET Standard 1.1, which in turn includes all
the APIs from .NET Standard 1.0.

• Each version of a platform supports a specific version of .NET Standard. For example,
.NET Framework 4.5.1 supports .NET Standard 1.2 (and hence also .NET Standard 1.1
and 1.0).

• .NET Framework 4.6.1 technically only supports .NET Standard 1.4. Thanks to a
compatibility shim, you can reference .NET Standard 2.0 libraries from a .NET
Framework 4.6.1 app. Similarly, you can reference a .NET Framework library from a
.NET Standard 2.0 library, which wouldn’t be possible without the shim.

• If you rely on the compatibility shim to reference a .NET Framework 4.6.1 library from
a .NET Standard 2.0 library, and the referenced library uses .NET Framework-specific
APIs, you’ll get an exception at runtime.

• An app must target a .NET platform implementation, such as .NET 5 or .NET Core 3.1.
It can’t target .NET Standard.

• .NET 5 supports .NET Standard 2.1. It can reference any .NET Standard library, and
any .NET Core library.

814

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

815

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion

©Manning Publications Co. To comment go to liveBook

 Appendix C
Useful references

In this appendix, I provide a number of links and references that I’ve found useful for learning
about .NET Core/.NET 5, .NET Standard, and ASP.NET Core.

C.1 Relevant books
In this book, we touched on several topics and aspects of the .NET ecosystem that are
somewhat peripheral to building ASP.NET Core applications. For a deeper understanding of
those topics, I recommend the books in this section. They cover areas that you’ll inevitably
encounter when building ASP.NET Core applications:

• Khorikov, Vladimir. Unit Testing Principles, Patterns, and Practices. Manning, 2020.
https://livebook.manning.com/book/unit-testing. Learn to refine your unit tests using
modern best practices in this excellent book that contains examples in C#.

• Metzgar, Dustin. .NET Core in Action. Manning, 2018.
https://livebook.manning.com/book/dotnet-core-in-action. ASP.NET Core apps are built
using .NET Core and .NET 5. .NET Core in Action provides everything you need to know
about running on the platform.

• Osherove, Roy. The Art of Unit Testing, second edition. Manning, 2013.
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition. In this book
(ASP.NET Core in Action), I discuss the mechanics of unit testing ASP.NET Core
applications. For a deeper discussion of how to create your tests, I recommend The Art
of Unit Testing.

• Sainty, Chris. Blazor in Action. Manning, 2021.
https://livebook.manning.com/book/blazor-in-action. Blazor is an exciting new
framework that uses the power of industry standard WebAssembly to run .NET in the
browser. With Blazor you can build single-page applications, just as you would with a
JavaScript framework like Angular or React, but using the C# language and tooling that

816

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/book/unit-testing
https://livebook.manning.com/book/dotnet-core-in-action
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition
https://livebook.manning.com/book/blazor-in-action

©Manning Publications Co. To comment go to liveBook

you already know.
• Smith, Jon P. Entity Framework Core in Action, second edition. Manning, 2021.

https://livebook.manning.com/book/entity-framework-core-in-action-second-edition.
If you’re using EF Core in your apps, I highly recommend Entity Framework Core in
Action. It covers all the features and pitfalls of EF Core, as well as how to tune your app
for performance.

• Van Deursen, Steven, and Mark Seemann, Dependency Injection Principles, Practices,
and Patterns. Manning, 2019. https://livebook.manning.com/book/dependency-
injection-principles-practices-patterns. Dependency injection is a core aspect of
ASP.NET Core, so Dependency Injection Principles, Practices, and Patterns is especially
relevant now. It introduces the patterns and antipatterns of dependency injection in the
context of .NET and the C# language.

C.2 Announcement blog posts
When Microsoft releases a new version of ASP.NET Core or .NET Core, they typically write an
announcement blog post. These posts provide a high-level overview of the topic, with many
examples of new features. They’re a great place to start if you want to quickly get acquainted
with a topic:

• De la Torre, Cesar. “Web Applications with ASP.NET Core Architecture and Patterns
guidance (Updated for .NET Core 2.0),” .NET Blog (blog), Microsoft, August 9, 2017,
http://mng.bz/t415. Blog post introducing a free e-book on how to architecture modern
web apps using ASP.NET Core and Azure.

• Fritz, Jeffrey T. “Announcing ASP.NET Core 2.0,” .NET Blog (blog), Microsoft, August
14, 2017, http://mng.bz/0004. Announcement blog post for ASP.NET Core 2.0.
Describes how to upgrade a project from 1.x to 2.0 and introduces some of the
features specific to ASP.NET Core 2.0.

• Lander, Rich. “Announcing .NET Core 2.0,” .NET Blog (blog), Microsoft, August 14,
2017, https://blogs.msdn.microsoft.com/dotnet/2017/08/14/ announcing-net-core-2-
0/. Announcement blog post for .NET Core 2.0, describing the new features compared
to .NET Core 1.x.

• Lander, Rich. “Introducing .NET 5”. .NET Blog (blog), Microsoft, May 6, 2019,
https://devblogs.microsoft.com/dotnet/introducing-net-5/. The announcement blog
post for .NET 5, describing the vision for the platform.

• Landwerth, Immo. “The future of .NET Standard,” .NET Blog (blog), Microsoft,
September 15, 2020, https://devblogs.microsoft.com/dotnet/the-future-of-net-
standard/. A discussion on what .NET 5 means for the future of .NET Standard,
including guidance for library authors.

• Landwerth, Immo. “.NET Standard—Demystifying .NET Core and .NET Standard,”
Microsoft Developer Network, Microsoft, September, 2017,
https://msdn.microsoft.com/en-us/magazine/mt842506.aspx. Long post explaining

817

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://livebook.manning.com/book/entity-framework-core-in-action-second-edition
https://livebook.manning.com/book/dependency-injection-principles-practices-patterns
https://livebook.manning.com/book/dependency-injection-principles-practices-patterns
http://mng.bz/t415
http://mng.bz/0004
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/
https://devblogs.microsoft.com/dotnet/the-future-of-net-standard/
https://msdn.microsoft.com/en-us/magazine/mt842506.aspx
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/

©Manning Publications Co. To comment go to liveBook

introducing .NET Core and explaining where .NET Standard fits in the .NET -ecosystem.
• Microsoft, “.NET Core and .NET 5 Support Policy,”
• Microsoft Docs, “.NET Core and .NET 5 Support Policy.” Microsoft.

https://dotnet.microsoft.com/platform/support/policy/dotnet-core. Microsoft’s official
support policy for .NET Core and .NET 5.

C.3 Microsoft documentation
Historically, Microsoft documentation has been poor, but with ASP.NET Core there has been a
massive push to ensure the docs are useful and current. You can find walkthroughs, targeted
documentation for specific features, documentation for supported APIs, and even an in-
browser C# compiler:

• Microsoft Docs, “.NET API Browser.” Microsoft Docs.
https://docs.microsoft.com/dotnet/api/. This is an API browser, which can be used to
work out which .NET APIs are available on which .NET platforms.

• Miller, Rowan, Brice Lambson, Maria Wenzel, Diego Vega, and Martin Milan. “Entity
Framework Core Quick Overview.” Microsoft Docs. September 20, 2020.
https://docs.microsoft.com/ef/core/. This is the official documentation for EF Core.

• Microsoft. “Introduction to ASP.NET Core.” Microsoft Docs.
https://docs.microsoft.com/aspnet/core/. This is the official documentation for
ASP.NET Core.

• Microsoft Docs, “Cross-platform targeting”, Microsoft Docs. https://docs.microsoft.com/
dotnet/standard/library-guidance/cross-platform-targeting. The official guidance on
choosing a target framework for your libraries.

C.4 Security-related links
Security is an important aspect of modern web development. This section contains some of
the references I refer to regularly, which describe some best practices for web development,
as well as practices to avoid:

• Allen, Brock, and Dominick Baier. “IdentityServer4 1.0.0 documentation.”
https://identityserver4.readthedocs.io/. Documentation for IdentityServer, the OpenID
Connect and OAuth 2.0 framework for ASP.NET Core.

• Baier, Dominick. Dominick Baier on Identity & Access Control (blog).
https://leastprivilege.com/. The personal blog of Dominick Baier, co-author of
IdentityServer. A great resource when working with authentication and authorization in
ASP.NET Core.

• Microsoft Docs. “Overview of ASP.NET Core Security.” Microsoft Docs. October 24,
2018. https://docs.microsoft.com/aspnet/core/security/. The home page of the official
ASP.NET Core documentation for all things security related.

• Helme, Scott. Scott Helme (blog). https://scotthelme.co.uk/. Scott Helme’s blog, with
advice on security standards, especially security headers you can add to your

818

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://docs.microsoft.com/dotnet/api/
https://docs.microsoft.com/ef/core/
https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/en-gb/dotnet/standard/library-guidance/cross-platform-targeting
https://docs.microsoft.com/en-gb/dotnet/standard/library-guidance/cross-platform-targeting
https://identityserver4.readthedocs.io/
https://leastprivilege.com/
https://docs.microsoft.com/aspnet/core/security/
https://scotthelme.co.uk/
https://scotthelme.co.uk/

©Manning Publications Co. To comment go to liveBook

application.
• Helme, Scott. “SecurityHeaders.io—Analyse your HTTP response headers.”.

https://securityheaders.com/. Test your website’s security headers, and get advice on
why and how you should add them to your app.

• Hunt, Troy. Troy Hunt (blog). https://www.troyhunt.com. Personal blog of Troy Hunt
with security-related advice for web developers, particularly .NET developers.

C.5 ASP.NET Core GitHub repositories
ASP.NET Core is entirely open source and developed on GitHub. One of the best ways I’ve
found to learn about the framework is to browse the source code itself. This section contains
the main repositories for ASP.NET Core, .NET Core, and EF Core:

• .NET Foundation. “.NET Runtime.” The .NET CoreCLR runtime and BCL libraries, as well
as extension libraries. https://github.com/dotnet/runtime.

• .NET Foundation. “.NET SDK and CLI.” The .NET command line interface (CLI), assets
for building the .NET SDK, and project templates. https://github.com/dotnet/sdk.

• .NET Foundation. “ASP.NET Core” The framework libraries that make up ASP.NET Core.
https://github.com/dotnet/aspnetcore.

• .NET Foundation. “Entity Framework Core.” The EF Core library.
https://github.com/dotnet/efcore.

C.6 Tooling and services
This section contains links to tools and services you can use to build ASP.NET Core projects:

• .NET SDK: https://dotnet.microsoft.com/download.
• Cloudflare is a global content delivery network you can use to add caching and HTTPS

to your applications for free https://www.cloudflare.com/.
• Let’s Encrypt is a free, automated, and open Certificate Authority. You can use it to

obtain free SSL certificates to secure your application: https://letsencrypt.org/.
• Rehan Saeed, Muhammed. “.NET Boxed” https://github.com/Dotnet-Boxed/Templates.

A comprehensive collection of templates to get started with ASP.NET Core,
preconfigured with many best practices.

• Visual Studio, Visual Studio for Mac, and Visual Studio Code:
https://www.visualstudio.com/.

• JetBrains Rider: https://www.jetbrains.com/rider/.

C.7 ASP.NET Core blogs
This section contains blogs that focus on ASP.NET Core. Whether you’re trying to get an
overview of a general topic, or trying to solve a specific problem, it can be useful to have
multiple viewpoints on a topic.

• .NET Team. .NET Blog (blog). Microsoft, https://blogs.msdn.microsoft.com/dotnet. The

819

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://securityheaders.com/
https://www.troyhunt.com/
https://github.com/dotnet/runtime
https://github.com/dotnet/sdk
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/efcore
https://dotnet.microsoft.com/download
https://www.cloudflare.com/
https://letsencrypt.org/
https://github.com/Dotnet-Boxed/Templates
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.jetbrains.com/rider/
https://blogs.msdn.microsoft.com/dotnet
https://www.troyhunt.com
https://www.visualstudio.com/
https://blogs.msdn.microsoft.com/dotnet

©Manning Publications Co. To comment go to liveBook

.NET team’s blog, lots of great links.
• Alcock, Chris. The Morning Brew (blog). http://blog.cwa.me.uk/. A collection of .NET-

related blog posts, curated daily.
• Boden, Damien. Software Engineering (blog). https://damienbod.com/. Excellent blog

by Microsoft MVP Damien Boden on ASP.NET Core, lots of posts about ASP.NET Core
with Angular.

• Brind, Mike. Mikesdotnetting (blog). https://www.mikesdotnetting.com/. Mike Brind has
many posts on ASP.NET Core, especially focused on ASP.NET Core Razor Pages.

• Hanselman, Scott. Scott Hanselman (blog). https://www.hanselman.com/blog/.
Renowned speaker Scott Hanselman’s personal blog. A highly diverse blog focused
predominantly on .NET.

• Lock, Andrew. .NET Escapades (blog). https://andrewlock.net. My personal blog
focused on ASP.NET Core.

• Pine, David. IEvangelist (blog). http://davidpine.net/. Personal blog of Microsoft MVP
David Pine, with lots of posts on ASP.NET Core.

• Rehan Saeed, Muhammed. Muhammed Rehan Saeed (blog). https://rehansaeed.com.
Personal blog of Muhammad Rehan Saeed, Microsoft MVP and author of the .NET Boxed
project (linked in section C.6).

• Strahl, Rick. Rick Strahl’s Web Log (blog). https://weblog.west-wind.com/. Excellent
blog by Rick Strahl covering a wide variety of ASP.NET Core topics.

• Gordon, Steve. Steve Gordon – Code with Steve (blog).
https://www.stevejgordon.co.uk/. Personal blog of Steve Gordon focused on .NET.
Often focused on writing high-performance code with .NET.

• Wojcieszyn, Filip. StrathWeb (blog). https://www.strathweb.com. Lots of posts on
ASP.NET Core and ASP.NET from Filip, a Microsoft MVP.

• Abuhakmeh, Khalid. Abuhakmeh (blog). https://khalidabuhakmeh.com/. A wide variety
of posts from Khalid, focused on .NET and software development in general.

C.8 Video links
If you prefer video for learning a subject, I recommend checking out the links in this section.
In particular, the ASP.NET Core community standup provides great insight into the changes
you’ll see in future ASP.NET Core versions, straight from the team building the framework.

• .NET Foundation. “.NET Community Standup.”
https://dotnet.microsoft.com/platform/community/standup. Weekly videos with the
ASP.NET Core team discussing development of the framework. Also includes standups
with the .NET team, the Xamarin team, and the EF Core team.

• Landwerth, Immo. “.NET Standard—Introduction.” YouTube video, 10:16 minutes.
Posted November 28, 2016 https://www.youtube.com/watch?v=YI4MurjfMn8. The first
video in an excellent series on .NET standard.

• Microsoft. “Channel 9: Videos for developers from the people building Microsoft

820

Licensed to Angela Lutz <angelalutz1297@yahoo.com>

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
http://blog.cwa.me.uk/
https://damienbod.com/
https://www.mikesdotnetting.com/
https://www.hanselman.com/blog/
https://andrewlock.net/
http://davidpine.net/
https://rehansaeed.com/
https://weblog.west-wind.com/
https://www.stevejgordon.co.uk/
https://www.strathweb.com/
https://khalidabuhakmeh.com/
https://dotnet.microsoft.com/platform/community/standup
https://www.youtube.com/watch?v=YI4MurjfMn8
http://blog.cwa.me.uk/
http://davidpine.net/
https://rehansaeed.com

©Manning Publications Co. To comment go to liveBook

products and services.” https://channel9.msdn.com/. Microsoft’s official video channel.
Contains a huge number of videos on .NET and ASP.NET Core, among many others.

• Wildermuth, Shawn. “Building a Web App with ASP.NET Core, MVC, Entity Framework
Core, Bootstrap, and Angular.” Pluralsight course, 9:52 hours. Posted October 7, 2019.
https://www.pluralsight.com/courses/aspnetcore-mvc-efcore-bootstrap-angular-web.
Shawn Wildermuth’s course on building an ASP.NET Core application.

• Gordon, Steve, “Integration Testing ASP.NET Core Applications: Best Practices”.
Pluralsight course, 3:25 hours. Posted July 15, 2020.
https://www.pluralsight.com/courses/integration-testing-asp-dot-net-core-applications-
best-practices. One of several courses from Steve Gordon providing guidance and
advice on building ASP.NET Core applications

821

https://livebook.manning.com/book/asp-net-core-in-action-second-edition/discussion
https://channel9.msdn.com/
https://www.pluralsight.com/courses/aspnetcore-mvc-efcore-bootstrap-angular-web
https://www.pluralsight.com/courses/integration-testing-asp-dot-net-core-applications-best-practices
https://www.pluralsight.com/courses/integration-testing-asp-dot-net-core-applications-best-practices
ttps://channel9.msdn.com/

