CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

Tip You need to run this command only the first time you create a Blazor WebAssembly project. Once the template is installed, you
can skip this step and jump to the command shown in Listing 37-6.

Listing 37-5. Installing the Blazor WebAssembly Project Template
dotnet new -i Microsoft.AspNetCore.Blazor.Templates::3.1.0-previews4.19579.2

The output from this command is confusing and can leave you with the impression that the installation has failed. The
command shows a list of the installed templates, and you will know the command has succeeded if you see this entry in the list:

Blazor WebAssembly App blazorwasm [CH#] Web/Blazor/WebAssembly

Next, use the PowerShell command prompt to run the commands shown in Listing 37-6 from within the Advanced project folder
(the folder that contains the Advanced. csproj file).

Listing 37-6. Creating the Blazor WebAssembly Project

dotnet new blazorwasm -o ../BlazorWebAssembly
dotnet add ../BlazorWebAssembly reference ../DataModel

These commands create a Blazor WebAssembly project named BlazorhWebAssembly and add a reference to the DataModel
project, which makes the Person, Department, and Location classes available.

Preparing the ASP.NET Core Project

Use the PowerShell command prompt to run the commands shown in Listing 37-7 in the Advanced project folder.

Listing 37-7. Preparing the Advanced Project

dotnet add reference ../DataModel ../BlazorWebAssembly

dotnet add package Microsoft.AspNetCore.Blazor.Server --version 3.1.0-preview4.19579.2

These commands create references to the other projects so that the data model classes and the components in the Blazor
WebAssembly project can be used.

Adding the Solution References

Run the command shown in Listing 37-8 in the Advanced folder to add references to the new project to the solution file.

Listing 37-8. Adding Solution References

dotnet sln add ../DataModel ../BlazorWebAssembly

993

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

Opening the Projects

Once you have set up all three projects, start Visual Studio or Visual Studio Code. If you are using Visual Studio, open the Advanced.sln
file in the Advanced folder. All three projects are open for editing, as shown in Figure 37-2. If you are using Visual Studio Code, open

the folder that contains all three projects, as shown in Figure 37-2.

Solution Explorer > X
@El- -8B W
Search Solution Explorer (Ctrl+;) P~

3] Solution 'Advanced’ (3 of 3 projects)
4 7] Advanced
& Connected Services
i Dependencies
M Properties
& wwwroot

Blazor

Controllers

Migrations

Models

Pages

Services

Views
_Imports.razor
£T appsettings.Development.json
£T appsettings.json
£T globaljson
£T libman.json
c* Program.cs
c= Startup.cs
4 5] BlazorWebAssembly
& Connected Services
< Dependencies
M Properties
@ wwwroot

Pages

Shared
_Imports.razor
App.razor

b c* Program.cs

b c# Startup.cs
4 DataModel

P %" Dependencies

P ¢ Classl.cs
B A D acb i b

a2 - R - - -

b
b

T v ew

s

A=, D,

Figure 37-2. Opening the three projects

EXPLORER
" OPEN EDITORS
v PROJECTSET
v Advanced
PSS
bin
Blazor

L

VO

Controllers
» Migrations
> Models

> obj

Pages

W

»

A

Properties
> Services
> Views
2 wwwroot
_Imports.razor
2 Advanced.csproj
} appsettings.Development.json
appsettings,son
global.json
libman,json
C: Program.cs
C¢ Startup.cs
v BlazorWebAssembly
> bin
> obj
> Pages
> Properties
> Shared

it B st

Completing the Blazor WebAssembly Configuration

The next step is to configure the ASP.NET Core project so that it can deliver the contents of the Blazor WebAssembly project to
clients. Add the statements shown in Listing 37-9 to the Startup.cs file in the Advanced folder.

994

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

Caution It is important to pay close attention to which files you are editing. Files with the same name exist in multiple projects, and
if you don’t follow the examples closely, you won’t end up with a working application. Future versions of Blazor may be easier to work
with, but for the moment, the details are important.

Listing 37-9. Configuring the Application in the Startup.cs File in the Advanced Project

using System;

using System.Collections.Generic;

using System.Lling;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.EntityFrameworkCore;

using Advanced.Models;

using Microsoft.AspNetCore.ResponseCompression;

namespace Advanced {
public class Startup {

public Startup(IConfiguration config) {
Configuration = config;
}

public IConfiguration Configuration { get; set; }

public void ConfigureServices(IServiceCollection services) {
services.AddDbContext<DataContext>(opts => {
opts.UseSqlServer (Configuration|
"ConnectionStrings:PeopleConnection"]);
opts.EnableSensitiveDatalogging(true);
D;
services.AddControllersWithViews().AddRazorRuntimeCompilation();
services.AddRazorPages().AddRazorRuntimeCompilation();
services.AddServerSideBlazor();
services.AddSingleton<Services.ToggleService>();

services.AddResponseCompression(opts =» {
opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });
D3

}
public void Configure(IApplicationBuilder app, DataContext context) {
app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting();
app.UseEndpoints(endpoints => {

endpoints.MapControllerRoute("controllers"”,
"controllers/{controller=Home}/{action=Index}/{id?}");

995

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

endpoints.MapDefaultControllerRoute();
endpoints.MapRazorPages();
endpoints.MapBlazorHub();

endpoints.MapFallbackToClientSideBlazor<BlazoriebAssembly.Startup>
("/webassembly/{*path:nonfile}", "index.html");

endpoints.MapFallbackToPage("/_Host");
1;

app.Map("/webassembly", opts =»
opts.UseClientSideBlazorFiles<BlazorilebAssembly.Startup>());

SeedData.SeedDatabase(context);

These statements enable response compression, which Blazor WebAssembly requires, and configure the ASP.NET Core request
pipeline so that requests for /webassembly are handled by Blazor WebAssembly using the contents of the BlazoriWebAssembly project.

Setting the Base URL

The final step is to modify the HTML file that will be used to respond to requests for the /webassembly URL. Apply the change shown
in Listing 37-10 to the index.html file in the wawroot folder of the BlazorWebAssembly folder.

Caution Make sure there are forward-slash (/) characters before and after webassembly in the href attribute of the base element.
If you omit either character, then Blazor WebAssembly will not work.

Listing 37-10. Setting the URL in the index.html File in the wwwroot Folder of the BlazorWebAssembly Project

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>BlazorWebAssembly</title>
<base href="/webassembly/" />
<link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />
<link href="css/site.css" rel="stylesheet" />

</head>

<body>
<app>Loading...</app>

<div id="blazor-error-ui">
An unhandled error has occurred.

Reload
x
</div>
<script src="_framework/blazor.webassembly.js"></script>
</body>
</html>

996

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

The base element sets the URL from which all relative URLs in the document are defined and is required for the correct
operation of the Blazor WebAssembly routing system.

Testing the Placeholder Components

Start ASP.NET Core by selecting Start Without Debugging or Run Without Debugging from the Debug menu. If you prefer to use the
command prompt, run the command shown in Listing 37-11 in the Advanced project folder.

Listing 37-11. Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/webassembly, and you will see the placeholder content added by the
template used to create the BlazorWebAssembly project.

Using the PowerShell command prompt, run the following commands from within the Advanced project folder. Click the
Counter and Fetch Data links, and you will see different content displayed, as shown in Figure 37-3.

Hello, wo Weather forecast

Winkema Ly youi sy Counter This component demaonstratis eiching data from the server
SR e Date Temp. (C] Temp. (F) Summary
S82016 1 3 Frouzing

sTame 14 57 Bracing
saane 13) Freezing
SR2018 18 4 Batmy

5102018 2 .-} Chilly

Figure 37-3. The Blazor WebAssembly placeholder content

Creating a Blazor WebAssembly Component

Blazor WebAssembly uses the same approach as Blazor Server, relying on components as building blocks for applications,
connected through the routing system, and displaying common content through layouts. In this section, I show how to create a
Razor Component that works with Blazor WebAssembly, and then I'll re-create the simple forms application from Chapter 36.

Importing the Data Model Namespace

The components I will create in this chapter all use the classes in the shared DataModel project. Rather than add @using
expressions to each component, add the namespace for the data model classes to the _Imports.razor file in the root folder of the
BlazorWebAssembly project, as shown in Listing 37-12.

Listing 37-12. Adding a Namespace in the _Imports.razor File in the BlazorWebAssembly Project

@using System.Net.Http

@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.JSInterop

997

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

@using BlazorWebAssembly
@using BlazorWebAssembly.Shared
@using Advanced.Models

Notice that although I moved the model classes to the DataModel project, I have specified the Advanced.Models namespace.
This is because the class files I moved all have namespace declarations that specify Advanced.Models, which means that moving the
files hasn’t changed the namespace in which the classes exist.

Creating a Component

In earlier chapters, I defined my Razor Components in a Blazor folder to keep the new content separate from the other parts of ASP.
NET Core. There is only Blazor content in the BlazorWebAssembly project, so I am going to follow the convention adopted by the
project template and use the Pages and Shared folders.

Add a Razor Component named List.razor to the Pages folder of the BlazorWebAssembly project and add the content shown
in Listing 37-13.

Listing 37-13. The Contents of the List.razor File in the Pages Folder of the BlazorWebAssembly Project

@page "/forms"
@page "/forms/list"

<h5 class="bg-primary text-white text-center p-2">People (WebAssembly)</h5>

<table class="table table-sm table-striped table-bordered">
<thead>
<tr>
<th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
</tr>
</thead>
<tbody>
@if (People.Count() == 0) {
<tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
} else {
@foreach (Person p in People) {
<tr>
<td>@p.PersonId</td>
<td>@p.Surname, @p.Firstname</td>
<td>@p.Department.Name</td>
<td>@p.Location.City</td>
<td class="text-center">
<NavLink class="btn btn-sm btn-info"
href="@GetDetailsUrl(p.PersonId)">
Details
</NavLink>
<NavLink class="btn btn-sm btn-warning"
href="@GetEditUrl(p.PersonId)">
Edit
</NavLink>
<button class="btn btn-sm btn-danger"
@onclick="@(() => HandleDelete(p))">
Delete
</button>
</td>
</tr>

}
</tbody>
</table>

998

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

<NavLink class="btn btn-primary" href="forms/create">Create</NavLink>
@code {

[Inject]
public HttpClient Http { get; set; }

public Person[] People { get; set; } = Array.Empty<Person>();

protected async override Task OnInitializedAsync() {
await UpdateData();
}

private async Task UpdateData() {
People = await Http.GetJsonAsync<Person[]>("/api/people");
}

string GetEditUrl(long id) => $"forms/edit/{id}";
string GetDetailsUrl(long id) => $"forms/details/{id}";

public async Task HandleDelete(Person p) {
HttpResponseMessage resp =
await Http.DeleteAsync($"/api/people/{p.PersonId}");
if (resp.IsSuccessStatusCode) {
await UpdateData();
}

If you compare this component with the Blazor Server equivalent from Chapter 36, you will see that they are largely the same.
Both types of Blazor use the same set of core features, which is why the content uses the same Razor directives, handles events with
the @onclick attributes, and uses the same @code section for C# statements. A Blazor WebAssembly component is compiled into a
C# class, just like its Blazor Server counterpart. The key difference is, of course, that the C# class that is generated is executed in the
browser—and that’s the reason for the differences from the component in Chapter 36.

Navigating in a Blazor WebAssembly Component

Notice that the URLs that are used for navigation are expressed without a leading forward-slash character, like this:
<NavLink class="btn btn-primary" href="forms/create">Create</NavLink>

The root URL for the application was specified using the base element in Listing 37-13, and using relative URLs ensures that
navigation is performed relative to the root. In this case, the relative forms/create URL is combined with the /webassembly/ root
specified by the base element, and navigation will be to /webassembly/forms/create. Including a leading forward slash would
navigate to /forms/create instead, which is outside the set of URLs that are being managed by the Blazor WebAssembly part of the
application. This change is required only for navigation URLs. URLs specified with the @page directive, for example, are not affected.

Getting Data in a Blazor WebAssembly Component

The biggest change is that Blazor WebAssembly can’t use Entity Framework Core. Although the runtime may be able to execute the
Entity Framework Core classes, the browser restricts WebAssembly applications to HTTP requests, preventing the use of SQL. To get
data, Blazor WebAssembly applications consume web services, which is why I added the API controller to the Advanced project at
the start of the chapter.

999

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

As part of the Blazor WebAssembly application startup, a service is created for the HttpClient class, which components can
receive using the standard dependency injection features. The List component receives an HttpClient component through a
property that has been decorated with the Inject attribute, like this:

[Inject]
public HttpClient Http { get; set; }

The HttpClient class provides the methods described in Table 37-2 to send HTTP requests.

Table 37-2. The Methods Defined by the HttpClient Class

Name Description

GetAsync(url) This method sends an HTTP GET request.

PostAsync(url, data) This method sends an HTTP POST request.

PutAsync(url, data) This method sends an HTTP PUT request.

PatchAync(url, data) This method sends an HTTP PATCH request.

DeleteAsync(url) This method sends an HTTP DELETE request.

SendAsync(request) This method sends an HTTP, configured using an HttpRequestMessage object.

The methods in Table 37-2 return a Task<HttpResponseMessage> result, which describes the response received from the HTTP
server to the asynchronous request. Table 37-3 shows the most useful HttpResponseMessage properties.

Table 37-3. Useful HttpClient Properties

Name Description

Content This property returns the content returned by the server.
HttpResponseHeaders This property returns the response headers.

StatusCode This property returns the response status code.
IsSuccessStatusCode This property returns true if the response status code is

between 200 and 299, indicating a successful request.

The List component uses the DeleteAsync methods to ask the web service to delete objects when the user clicks a Delete button.

HttpResponseMessage resp =
await Http.DeleteAsync($"/api/people/{p.PersonId}");
if (resp.IsSuccessStatusCode) {
await UpdateData();
}

These methods are useful when you don’t need to work with the data the web service sends back, such as in this situation where
I check to see only if the DELETE request has been successful. Notice that I specify the path for the request URL only when using the
HttpClient service because the web service is available using the same scheme, host, and port as the application.

For operations where the web service returns data, the extension methods for the HttpClient class described in Table 37-4 are
more useful. These methods serialize data into JSON so it can be sent to the server and parse JSON responses into C# objects. For
requests that return no result, the generic type argument can be omitted.

1000

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

Table 37-4. The HttpClient Extension Methods

Name Description

GetJsonAsync<T>(url) This method sends an HTTP GET request and parses the response to type T.
PostJIsonAsync<T>(url, data) This method sends an HTTP POST request and parses the response to type T.
PutJsonAsync<T>(url, data) This method sends an HTTP PUT request and parses the response to type T.
SendJsonAsync<T>(method, url, data) This method sends an HTTP request using the specified method and parses the

response to type T.

The List component uses the GetJsonAsync<T> method to request data from the web service.

private async Task UpdateData() {
People = await Http.GetJsonAsync<Person[]>("/api/people");
}

Setting the generic type argument to Person[] tells HttpClient to parse the response into an array of Person objects.

Note The HttpClient class doesn’t present any scope or lifecycle issues and sends requests only when one of the methods
described in Table 37-2 or Table 37-4 is invoked. Some thought is required, however, about when to request new data. In this example, |
requery the web service after an object has been deleted, rather than simply remove the object from the data that was requested when
the component was initialized. This may not be suitable for all applications because it will reflect any changes to the database that have
been made by other users.

Creating a Layout

The template used to create the Blazor WebAssembly project includes a layout that presents the navigation features for the
placeholder content. I don’t want these navigation features, so the first step is to create a new layout. Add a Razor Component
named EmptylLayout.razor in the Shared folder of the BlazorWebAssembly project with the content shown in Listing 37-14.

Listing 37-14. The EmptyLayout.razor File in the Shared Folder of the BlazorWebAssembly Project
@inherits LayoutComponentBase
<div class="m-2">

@Body
</div>

I could apply the new layout with @layout expressions, as I did in Chapter 36, but I am going to use this layout as the default by
changing the routing configuration, which is defined in the App . razor file in the BlazorWebAssembly project, as shown in Listing 37-15.

Listing 37-15. Applying the Layout in the App.razor File in the BlazorWebAssembly Project

<Router AppAssembly="@typeof(Program).Assembly">
<Found Context="routeData">
<RouteView RouteData="@routeData" DefaultLayout="@typeof(EmptyLayout)” />
</Found>

1001

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

<NotFound>
<LayoutView Layout="@typeof(EmptyLayout)">
<p>Sorry, there's nothing at this address.</p>
</LayoutView>
</NotFound>
</Router>

Chapter 35 describes the Router, RouteView, Found, and NotFound components.

Defining CSS Styles

The template created the Blazor WebAssembly project with its own copy of the Bootstrap CSS framework and with an additional
stylesheet that combines the styles required to configure the Blazor WebAssembly error and validation elements and manage the
layout of the application. Replace the 1ink elements in the HTML file as shown in Listing 37-16 and apply styles directly to the exrror
element. This has the effect of removing the styles used by the Microsoft layout and using the Bootstrap CSS stylesheet that was
added to the Advanced project.

Listing 37-16. Modifying the index.html File in the wwwroot Folder in the BlazorWebAssembly Project

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>BlazorWebAssembly</title>
<base href="/webassembly/" />
<link href="/1ib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>

<body>
<app>Loading...</app>

<div id="blazor-error-ui"
class="text-center bg-danger h6 text-white p-2 fixed-top w-100"
style="display:none"»
An unhandled error has occurred.

Reload
x
</div>
<script src="_framework/blazor.webassembly.js"></script>
</body>
</html>

To see the new component, restart ASP.NET Core and request http://localhost:5000/webassembly/forms, which will
produce the response shown in Figure 37-4.

1002

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

Q EBlazorWebAssembly X

< C @ localhost:5000/webassembly/forms ¥)
ID Name Dept Location

1 Fuentes, Charles Development New York Edit

2 Lara, Murphy Sales New York m Edit

3 Hoffman, Beasley Facilities New York Edit

4 Lloyd, Randall Support San Jose m Edit m

5 Case, Guzman Development San Jose Edit

6 Jacobs, Francesca Development Oakland Edit

7 Becker, Bright Facilities Oakland m Edit

Figure 37-4. A Blazor WebAssembly component

Blazor WebAssembly components follow the standard Blazor lifecycle, and the component displays the data it receives
from the web service.

Completing the Blazor WebAssembly Form Application

Only the Delete button displayed by the List component works currently. In the sections that follow, I complete the Blazor
WebAssembly form application by creating additional components.

Creating the Details Component

Add a Razor Component named Details.razor to the Pages folder of the BlazorWebAssembly project with the content shown
in Listing 37-17.

Listing 37-17. The Contents of the Details.razor File in the Pages Folder of the BlazorWebAssembly Project
@page "/forms/details/{id:long}"

<h4 class="bg-info text-center text-white p-2">Details (WebAssembly)</h4>

<div class="form-group">

<label>ID</label>

<input class="form-control" value="@PersonData.PersonId" disabled />
</div>
<div class="form-group">

<label>Firstname</label>

<input class="form-control" value="@PersonData.Firstname" disabled />
</div>
<div class="form-group">

<label>Surname</label>

<input class="form-control" value="@PersonData.Surname" disabled />
</div>

1003

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

<div class="form-group">
<label>Department</label>
<input class="form-control" value="@PersonData.Department?.Name" disabled />
</div>
<div class="form-group">
<label>Location</label>
<input class="form-control"
value="@($"{PersonData.Location?.City}, {PersonData.Location?.State}")"
disabled />
</div>
<div class="text-center">
<NavLink class="btn btn-info" href="@EditUrl">Edit</NavLink>
<NavLink class="btn btn-secondary" href="forms">Back</NavLink>
</div>

@code {

[Inject]
public NavigationManager NavManager { get; set; }

[Inject]
public HttpClient Http { get; set; }

[Parameter]
public long Id { get; set; }

public Person PersonData { get; set; } = new Person();

protected async override Task OnParametersSetAsync() {
PersonData = await Http.GetJsonAsync<Person>($"/api/people/{Id}");
}

public string EditUrl => $"forms/edit/{Id}";

The Details component has only two differences from its Blazor Server counterpart, following the pattern established by the
List component: the data is obtained through the HttpClient service, and navigation targets are expressed using relative URLs. In
all other regards, such as obtaining parameters from routing data, Blazor WebAssembly works just the same way as Blazor Server.

Creating the Editor Component

To complete the forms application, add a Razor Component named Editor.razor to the Pages folder of the BlazorWebAssembly
project with the content shown in Listing 37-18.

Listing 37-18. The Contents of the Editor.razor File in the Pages Folder of the BlazorWebAssembly Project

@page "/forms/edit/{id:long}"

@page "/forms/create"

<link href="/blazorValidation.css" rel="stylesheet" />

<h4 class="bg-@Theme text-center text-white p-2">@Mode (WebAssembly)</h4>

<EditForm Model="PersonData" OnValidSubmit="HandleValidSubmit">
<DataAnnotationsValidator />
@if (Mode == "Edit") {
<div class="form-group">
<label>ID</label>

1004

CHAPTER 37

<InputNumber class="form-control"
@bind-Value="PersonData.PersonId" readonly />
</div>
}
<div class="form-group">
<label>Firstname</label>
<ValidationMessage For="@(() => PersonData.Firstname)" />
<InputText class="form-control" @bind-Value="PersonData.Firstname" />
</div>
<div class="form-group">
<label>Surname</label>
<ValidationMessage For="@(() => PersonData.Surname)" />
<InputText class="form-control" @bind-Value="PersonData.Surname" />
</div>
<div class="form-group">
<label>Department</label>
<ValidationMessage For="@(() => PersonData.DepartmentId)" />
<select @bind="PersonData.DepartmentId" class="form-control">
<option selected disabled value="0">Choose a Department</option>
@foreach (var kvp in Departments) {
<option value="@kvp.Value">@kvp.Key</option>
}

</select>
</div>
<div class="form-group">
<label>Location</label>
<ValidationMessage For="@(() => PersonData.lLocationId)" />
<select @bind="PersonData.LocationId" class="form-control">
<option selected disabled value="0">Choose a Location</option>
@foreach (var kvp in Locations) {
<option value="@kvp.Value">@kvp.Key</option>
}

</select>
</div>
<div class="text-center">
<button type="submit" class="btn btn-@Theme">Save</button>
<NavLink class="btn btn-secondary" href="forms">Back</NavLink>
</div>
</EditForm>

@code {

[Inject]
public HttpClient Http { get; set; }

[Inject]
public NavigationManager NavManager { get; set; }

[Parameter]
public long Id { get; set; }

public Person PersonData { get; set; } = new Person();

public IDictionary<string, long> Departments { get; set; }
= new Dictionary<string, long>();

public IDictionary<string, long> Locations { get; set; }
= new Dictionary<string, long>();

USING BLAZOR WEB ASSEMBLY

1005

CHAPTER 37 © USING BLAZOR WEB ASSEMBLY

protected async override Task OnParametersSetAsync() {
if (Mode == "Edit") {
PersonData = await Http.GetJsonAsync<Person>($"/api/people/{Id}");
}

Departments = (await Http.GetJsonAsync<Department[]>("/api/departments"))
.ToDictionary(d => d.Name, d => d.Departmentid);

Locations = (await Http.GetJsonAsync<Location[]>("/api/locations"))
.ToDictionary(1l => $"{1.City}, {1.State}", 1 => l.LocationId);

}

public string Theme => Id == 0 ? "primary" : "warning";
public string Mode => Id == 0 ? "Create" : "Edit";

public async Task HandleValidSubmit() {
await Http.SendJsonAsync(Mode == "Create" ? HttpMethod.Post : HttpMethod.Put,
"/api/people", PersonData);
NavManager.NavigateTo("forms");
}
}s

This component uses the Blazor form features described in Chapter 36 but uses HTTP requests to read and write data to the
web service created at the start of the chapter. The GetJsonAsync<T> method is used to read data from the web service, and the
SendJsonAsync method is used to send either POST or PUT requests when the user submits the form.

Notice that I have not used the custom select component or validation components I created in Chapter 36. Sharing
components between projects—especially when Blazor WebAssembly is introduced after development has started—is awkward. I
expect the process to improve in future releases, but for this chapter, I have simply done without the features. As a consequence, the
select elements do not trigger validation when a value is selected, the submit button isn’t automatically disabled, and there are no
restrictions on the combination of department and location.

Restart ASP.NET Core and request http://localhost:5000/webassembly/forms, and you will see the Blazor WebAssembly
version of the form application. Click the Details button for the first item in the table, and you will see the fields for the selected
object. Click the Edit button, and you will be presented with an editable form. Make a change and click the Save button, and the
changes will be sent to the web service and displayed in the data table, as shown in Figure 37-5.

&

C @ localhomS000/webassembhytad « C @ localhostS000 webastambiy/forms

s C @ locahost 5000 webasse r

/ | People (WebAssej

) | ID Name Dapt Locat]

1 [1+] ‘j
" 1 4
Firstrame s Lara, MufPhy Sales Mew!
Charles Gy Hoffmar] Beasley Facilities el
Surnamé Liayd, fandall Support San{
Sumame F
Fuentes , Guzman Development S.anj
Fuentes
Department Fuentes Jacoks, Francesca Development Oaled
Department
Development Degas Becker, Bright Facikities Dakiyf
Developrment
ocatian Develkpment Hays, Marks Facilities Oalt(
Location T 1
e b Trufille, Undenwood Development Oakly
Mew York, NY

F

New YorkNuY m
- {

Figure 37-5. The completed Blazor WebAssembly form application

Summary

In this chapter, I described Blazor WebAssembly, showed you how to add it to a project, and demonstrated how it is similar—
although not identical—to the Blazor Server described in earlier chapters. In the next chapter, I explain how to use ASP.NET Core
Identity to secure an application.

1006

CHAPTER 38

Using ASPNET Core Identity

ASP.NET Core Identity is an API from Microsoft to manage users in ASP.NET Core applications and includes support for integrating
authentication and authorization into the request pipeline.

ASP.NET Core Identity is a toolkit with which you create the authorization and authentication features an application requires.
There are endless integration options for features such as two-factor authentication, federation, single sign-on, and account self-
service. There are options that are useful only in large corporate environments or when using cloud-hosted user management.

ASP.NET Core Identity has evolved into its own framework and is too large for me to cover in detail in this book. Instead, I
have focused on the parts of the Identity API that intersect with web application development, much as I have done with Entity
Framework Core. In this chapter, I show you how to add ASP.NET Core Identity to a project and explain how to consume the ASP.
NET Core Identity API to create tools to perform basic user and role management. In Chapter 39, I show you how to use ASP.NET
Core Identity to authenticate users and perform authorization. Table 38-1 puts ASP.NET Core Identity in context.

Table 38-1. Putting ASPNET Core Identity in Context

Question Answer
What is it? ASP.NET Core Identity is an API for managing users.
Why is it useful? Most applications have some features that should not be available to all users. ASP.NET Core Identity

provides features to allow users to authenticate themselves and gain access to restricted features.

How is it used? ASP.NET Core Identity is added to projects as a package and stores its data in a database using Entity
Framework Core. Management of users is performed through a well-defined AP, and its features are applied
as attributes, as I describe in Chapter 39.

Are there any pitfalls ASP.NET Core Identity is complex and provides support for a wide range of authentication, authorization,

or limitations? and management models. It can be difficult to understand all the options, and documentation can be sparse.
Are there any There is no sensible alternative to ASP.NET Core Identity if a project needs to restrict access to features.
alternatives?

Table 38-2 summarizes the chapter.

Table 38-2. Chapter Summary

Problem Solution Listing
Preparing the application for Create the context class and use it to prepare a migration that is applied to the 4-7
Identity database

Managing user accounts Use the UserManager<T> class 8-12,15,16
Setting a username and Use the options pattern to configure Identity 13,14
password policy

Managing roles Use the RoleManager<T> class to manage the roles and the UserManager<T> 17-20

class to assign users to roles

© Adam Freeman 2020 1007
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_38

CHAPTER 38 * USING ASP.NET CORE IDENTITY

Preparing for This Chapter

This chapter uses the Advanced, DataModel, and BlazorWebAssembly projects from Chapter 37. If you are using Visual Studio, open
the Advanced. s1n file you created in the previous chapter to open all three projects. If you are using Visual Studio Code, open the
folder that contains the three projects.

Tip You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Open a new PowerShell command prompt, navigate to the folder that contains the Advanced. csproj file, and run the command
shown in Listing 38-1 to drop the database.

Listing 38-1. Dropping the Database

dotnet ef database drop --force

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 38-2.

Listing 38-2. Running the Example Application

dotnet run

Use a browser to request http://localhost:5000, which will produce the response shown in Figure 38-1.

@ localhost:5000/pecple X

& C @ localhost5000/people Fay

|. Departments | Ascending X Select Highlight v

‘ Ditats ‘ ID Name Dept Location
7 Becker, Bright Facilities Oakland, CA m

5 Case, Guzman Development San Jose, CA ﬁ

1 Fuentes, Chuck Development New York, NY Edit
8 Hays, Marks Facilities Qakland, CA E
3 Hoffman, Beasley Facilities New York, NY Edit
6 Jacobs, Francesca Development Qakland, CA
2 Lara, Murphy Sales New York, NY
4 Uoyd, Randall2 Support San Jose, CA
9 Trujillo, Underwood Development Qakland, CA Edit

Figure 38-1. Running the example application
1008

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

Preparing the Project for ASP.NET Core ldentity

The process for setting up ASP.NET Core Identity requires adding a package to the project, configuring the application, and
preparing the database. To get started, use a PowerShell command prompt to run the command shown in Listing 38-3 in the
Advanced project folder, which installs the ASP.NET Core Identity package. If you are using Visual Studio, you can install the package
by selecting Project » Manage NuGet Packages.

Listing 38-3. Installing ASP.NET Core Identity Packages

dotnet add package Microsoft.AspNetCore.Identity.EntityFrameworkCore --version 3.1.1

Preparing the ASP.NET Core Identity Database

ASP.NET Identity requires a database, which is managed through Entity Framework Core. To create the Entity Framework Core
context class that will provide access to the Identity data, add a class file named IdentityContext.cs to the Advanced/Models folder
with the code shown in Listing 38-4.

Listing 38-4. The Contents of the IdentityContext.cs File in the Models Folder of the Advanced Project

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

namespace Advanced.Models {
public class IdentityContext: IdentityDbContext<IdentityUser> {

public IdentityContext(DbContextOptions<IdentityContext> options)
: base(options) { }

The ASP.NET Core Identity package includes the IdentityDbContext<T> class, which is used to create an Entity Framework
Core context class. The generic type argument T is used to specify the class that will represent users in the database. You can create
custom user classes, but I have used the basic class, called IdentityUser, which provides the core Identity features.

Note Don’t worry if the classes used in Listing 38-4 don’t make sense. If you are unfamiliar with Entity Framework Core, then |
suggest you treat the class as a black box. Changes are rarely required once the building blocks for ASP.NET Core Identity have been set
up, and you can copy the files from this chapter into your own projects.

Configuring the Database Connection String

A connection string is required to tell ASP.NET Core Identity where it should store its data. In Listing 38-5, [added a connection
string to the appsettings.json file, alongside the one used for the application data.

Listing 38-5. Adding a Connection String in the appsettings.json File in the Advanced Project

{
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Information",

1009

CHAPTER 38 USING ASP.NET CORE IDENTITY

"Microsoft.EntityFrameworkCore": "Information"

}
1

"AllowedHosts": "*",
"ConnectionStrings": {
"PeopleConnection": "Server=(localdb)\\MSSQLLocalDB;Database=People;MultipleActiveResultSets=True",
"IdentityConnection": "Server=(localdb)\\MSSOLLocalDB;Database=Identity;MultipleActiveResultSets=True"
}
}

The connection string specifies a LocalDB database named Identity.

Note The width of the printed page doesn’t allow for sensible formatting of the connection string, which must appear in a single
unbroken line. When you add the connection string to your own project, make sure that it is on a single line.

Configuring the Application

The next step is to configure ASP.NET Core so the Identity database context is set up as a service, as shown in Listing 38-6.

Listing 38-6. Configuring Identity in the Startup.cs File in the Advanced Project

using System;

using System.Collections.Generic;

using System.Lling;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.EntityFrameworkCore;

using Advanced.Models;

using Microsoft.AspNetCore.ResponseCompression;
using Microsoft.AspNetCore.Identity;

namespace Advanced {
public class Startup {

public Startup(IConfiguration config) {
Configuration = config;
}

public IConfiguration Configuration { get; set; }

public void ConfigureServices(IServiceCollection services) {

services.AddDbContext<DataContext>(opts => {

opts.UseSqlServer(Configuration[
"ConnectionStrings:PeopleConnection"]);

opts.EnableSensitiveDatalogging(true);

D;

services.AddControllersWithViews().AddRazorRuntimeCompilation();

services.AddRazorPages().AddRazorRuntimeCompilation();

services.AddServerSideBlazor();

services.AddSingleton<Services.ToggleService>();

1010

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

services.AddResponseCompression(opts => {
opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });

1

services.AddDbContext<IdentityContexts(opts =»>
opts.UseSqlServer(Configuration|
"ConnectionStrings:IdentityConnection"]));
services.AddIdentity<IdentityUser, IdentityRole>()
-AddEntityFrameworkStores<IdentityContexts();

}

public void Configure(IApplicationBuilder app, DataContext context) {

app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting();

app.UseEndpoints(endpoints => {
endpoints.MapControllerRoute("controllers"”,
"controllers/{controller=Home}/{action=Index}/{id?}");
endpoints.MapDefaultControllerRoute();
endpoints.MapRazorPages();
endpoints.MapBlazorHub();

endpoints.MapFallbackToClientSideBlazor<BlazorWebAssembly.Startup>
("/webassembly/{*path:nonfile}", "index.html");

endpoints.MapFallbackToPage("/ Host");
1;

app.Map("/webassembly", opts =>
opts.UseClientSideBlazorFiles<BlazorWebAssembly.Startup>());

SeedData.SeedDatabase(context);

Creating and Applying the Identity Database Migration

The remaining step is to create the Entity Framework Core database migration and apply it to create the database. Open a new
PowerShell window, navigate to the Advanced project folder, and run the commands shown in Listing 38-7.

Listing 38-7. Creating and Applying the Database Migration

dotnet ef migrations add --context IdentityContext Initial
dotnet ef database update --context IdentityContext

AsIexplained in earlier chapters, Entity Framework Core manages changes to database schemas through a feature called
migrations. Now that there are two database context classes in the project, the Entity Framework Core tools require the --context
argument to determine which context class is being used. The commands in Listing 38-7 create a migration that contains the ASP.
NET Core Identity schema and apply it to the database.

1011

CHAPTER 38 USING ASP.NET CORE IDENTITY

RESETTING THE ASP.NET CORE IDENTITY DATABASE

If you need to reset the database, run the dotnet ef database drop --force --context IdentityContext command in the
Advanced folder and then run the dotnet ef database update --context IdentityContext command. This will delete the
existing database and create a new—and empty—replacement. Do not use these commands on production systems because
you will delete user credentials. If you need to reset the main database, then run the dotnet ef database drop --force
--context DataContext command, followed by dotnet ef database update --context DataContext.

Creating User Management Tools

In this section, I am going to create the tools that manage users through ASP.NET Core Identity. Users are managed through the
UserManager<T> class, where T is the class chosen to represent users in the database. When I created the Entity Framework Core
context class, I specified IdentityUser as the class to represent users in the database. This is the built-in class that is provided by

ASP.NET Core Identity, and it provides the core features that are required by most applications. Table 38-3 describes the most useful

IdentityUser properties. (There are additional properties defined by the IdentityUser class, but these are the ones required by
most applications and are the ones I use in this book.)

SCAFFOLDING THE IDENTITY MANAGEMENT TOOLS

Microsoft provides a tool that will generate a set of Razor Pages for user management. The tool adds generic content—known
as scaffolding—from templates to a project, which you then tailor to the application. | am not a fan of scaffolding or templates,
and this is not an exception. The Microsoft Identity templates are well thought out, but they are of limited use because they focus
on self-management, allowing users to create accounts, change passwords, and so on, without administrator intervention. You
can adapt the templates to restrict the range of tasks that users perform, but the premise behind the features remains the same.

If you are writing the type of application where users manage their own credentials, then the scaffolding option may be worth
considering and is described at https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-
identity. For all other approaches, the user management API provided by ASP.NET Core Identity should be used.

Table 38-3. Useful IdentityUser Properties

Name Description

Id This property contains the unique ID for the user.
UserName This property returns the user’s username.

Email This property contains the user’s e-mail address.

Table 38-4 describes the UserManagement<T> members I use in this section to manage users.

Table 38-4. Useful UserManager<T> Members

Name Description

Users This property returns a sequence containing the users stored in the database.
FindByIdAsync(id) This method queries the database for the user object with the specified ID.
CreateAsync(user, password) This method stores a new user in the database using the specified password.
UpdateAsync(user) This method modifies an existing user in the database.

DeleteAsync(user) This method removes the specified user from the database.

1012

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

Preparing for User Management Tools

In preparation for creating the management tools, add the expressions shown in Listing 38-8 to the _ViewImports.cshtml file in the
Pages folder of the Advanced project.

Listing 38-8. Adding Expressions in the _ViewImports.cshtml File in the Pages Folder of the Advanced Project

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using Advanced.Models

@using Microsoft.AspNetCore.Mvc.RazorPages

@using Microsoft.EntityFrameworkCore

@using System.ComponentModel.DataAnnotations

@using Microsoft.AspNetCore.Identity

@using Advanced.Pages

Next, create the Pages/Users folder in the Advanced project and add to it a Razor Layout named _Layout.cshtml to the Pages/
Users folder with the content shown in Listing 38-9.

Listing 38-9. The _Layout.cshtml File in the Pages/Users Folder in the Advanced Project

<!DOCTYPE html>
<html>
<head>
<title>Identity</title>
<link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
<div class="m-2">
<h5 class="bg-info text-white text-center p-2">User Administration</hs5>
@RenderBody()
</div>
</body>
</html>

Add a class file named AdminPageModel. cs to the Pages folder and use it to define the class shown in Listing 38-10.

Listing 38-10. The AdminPageModel.cs File in the Pages Folder in the Advanced Project

using Microsoft.AspNetCore.Mvc.RazorPages;

namespace Advanced.Pages {
public class AdminPageModel: PageModel {

}

This class will be the base for the page model classes defined in this section. As you will see in Chapter 39, a common base class
is useful when it comes to securing the application.

Enumerating User Accounts

Although the database is currently empty, I am going to start by creating a Razor Page that will enumerate user accounts. Add a
Razor Page named List.cshtml to the Pages/Users folder in the Advanced project with the content shown in Listing 38-11.

1013

CHAPTER 38 USING ASP.NET CORE IDENTITY

Listing 38-11. The Contents of the List.cshtml File in the Pages/Users Folder in the Advanced Project

@page
@model ListModel

<table class="table table-sm table-bordered">
<tr><th>ID</th><th>Name</th><th>Email</th><th></th></tr>
@if (Model.Users.Count() == 0) {
<tr><td colspan="4" class="text-center">No User Accounts</td></tr>

} else {
foreach (IdentityUser user in Model.Users) {
<tr>

<td>@user.Id</td>

<td>@user.UserName</td>

<td>@user.Email</td>

<td class="text-center">

<form asp-page="List" method="post">
<input type="hidden" name="Id" value="@user.Id" />
<a class="btn btn-sm btn-warning" asp-page="Editor"
asp-route-id="@user.Id" asp-route-mode="edit">Edit
<button type="submit" class="btn btn-sm btn-danger">
Delete
</button>
</form>
</td>
</tr>
}
}
</table>

Create
@functions {

public class ListModel : AdminPageModel {
public UserManager<IdentityUser> UserManager;

public ListModel(UserManager<IdentityUser> userManager) {
UserManager = userManager;

}

public IEnumerable<IdentityUser> Users { get; set; }

public void OnGet() {
Users = UserManager.Users;
}

The UserManager<IdentityUser> class is set up as a service so that it can be consumed via dependency injection. The Users
property returns a collection of IdentityUser objects, which can be used to enumerate the user accounts. This Razor Page displays
the users in a table, with buttons that allow each user to be edited or deleted, although this won'’t be visible initially because a
placeholder message is shown when there are no user objects to display. There is a button that navigates to a Razor Page named
Create, which I define in the next section.

Restart ASP.NET and request http://localhost:5000/users/1ist to see the (currently empty) data table, which is shown in
Figure 38-2.

1014

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

m

& C @ localhost:5000/users/list b :
User Administration
ID Name Email

No User Accounts

Figure 38-2. Enumerating users

Creating Users

Add a Razor Page named Create.cshtml to the Pages/Users folder with the content shown in Listing 38-12.

Listing 38-12. The Contents of the Create.cshtml File in the Pages/Users Folder of the Advanced Project

@page
@model CreateModel

<h5 class="bg-primary text-white text-center p-2">Create User</h5>
<form method="post">
<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">
<label>User Name</label>
<input name="UserName" class="form-control" value="@Model.UserName" />
</div>
<div class="form-group">
<label>Email</label>
<input name="Email" class="form-control" value="@Model.Email" />
</div>
<div class="form-group">
<label>Password</label>
<input name="Password" class="form-control" value="@Model.Password" />
</div>
<button type="submit" class="btn btn-primary">Submit</button>
Back
</form>

@functions {

public class CreateModel : AdminPageModel {
public UserManager<IdentityUser> UserManager;

public CreateModel(UserManager<IdentityUser> usrManager) {
UserManager = usrManager;
}

1015

CHAPTER 38 USING ASP.NET CORE IDENTITY

[BindProperty][Required]
public string UserName { get; set; }

[BindProperty][Required][EmailAddress]
public string Email { get; set; }

[BindProperty][Required]
public string Password { get; set; }

public async Task<IActionResult> OnPostAsync() {
if (ModelState.IsValid) {
IdentityUser user =
new IdentityUser { UserName = UserName, Email = Email };
IdentityResult result =
await UserManager.CreateAsync(user, Password);
if (result.Succeeded) {
return RedirectToPage("List");
}

foreach (IdentityError err in result.Errors) {
ModelState.AddModelError("", err.Description);
}

}

return Page();

Even though ASP.NET Core Identity data is stored using Entity Framework Core, you don’t work directly with the database
context class. Instead, data is managed through the methods provided by the UserManager<T> class. New users are created using the
CreateAsync method, which accepts an IdentityUser object and a password string as arguments.

This Razor Page defines three properties that are subject to model binding. The UserName and Email properties are used to
configure the IdentityUser object, which is combined with the value bound to the Password property to call the CreateAsync
method. These properties are configured with validation attributes, which ensure that values are supplied and that the Email
property is a formatted e-mail address.

The result of the CreateAsync method is a Task<IdentityResult> object, which indicates the outcome of the create operation,
using the properties described in Table 38-5.

Table 38-5. The Properties Defined by the IdentityResult Class

Name Description
Succeeded Returns true if the operation succeeded.
Errors Returns a sequence of IdentityError objects that describe the errors encountered while attempting the

operation. Each IdentityError object provides a Description property that summarizes the problem.

Iinspect the Succeeded property to determine whether a new user has been created in the database. If the Succeeded property
is true, then the client is redirected to the List page so that the list of users is displayed, reflecting the new addition.

if (result.Succeeded) {
return RedirectToPage("List");
}

foreach (IdentityError err in result.Errors) {
ModelState.AddModelError("", err.Description);
}

1016

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

If the Succeeded property is false, then the sequence of IdentityError objects provided by the Exrors property is enumerated,
with the Description property used to create a model-level validation error using the ModelState.AddModelError method.

To test the ability to create a new user account, restart ASP.NET Core and request http://localhost:5000/users/list. Click
the Create button and fill in the form with the values shown in Table 38-6.

Tip There are domains reserved for testing, including example.com. You can see a complete list at https://tools.ietf.org/
html/rfc2606.

Table 38-6. The Values for Creating an Example User

Field Description

Name Joe

Email Jjoe@example.com
Password Secret123$

Once you have entered the values, click the Submit button. ASP.NET Core Identity will create the user in the database, and the
browser will be redirected, as shown in Figure 38-3. (You will see a different ID value because IDs are randomly generated for each
user.)

Note | used a regular input element for the Password field to make it easier to follow the examples in this chapter. For real
projects, it is a good idea to set the input element’s type attribute to password so that the characters entered cannot be seen.

& C @ localhost:5000/Users/Create b4

User Administration

Create User

< C @ localhost:5000/Users/List T
User Name
Joe User Administration
Email D Name Email

y ff307492-82bb-4436-8199-665e313c854e Joe joe@example.com [Eait
joe@example.com

Password

Secret123S

Submit

Figure 38-3. Creating a new user

Click the Create button again and enter the same details into the form, using the values in Table 38-6. This time you will see an
error reported through the model validation summary when you click the Create button, as shown in Figure 38-4. This is an example
of an error returned through the IdentityResult object produced by the CreateAsync method.

1017

http://example.com
https://tools.ietf.org/html/rfc2606
https://tools.ietf.org/html/rfc2606

CHAPTER 38 * USING ASP.NET CORE IDENTITY

@ Identity X

- C @ localhost:5000/Users/Create w

User Administration

Create User
e User name 'Joe’ is already taken.
User Name

Joe

! r-‘"") ot “‘ﬂm‘nﬂm‘»” samiantini Crta it e,
Figure 38-4. An error when creating a new user

Validating Passwords

One of the most common requirements, especially for corporate applications, is to enforce a password policy. You can see the
default policy by navigating to http://localhost:5000/Users/Create and filling out the form with the data shown in Table 38-7.

Table 38-7. The Values for Creating an Example User

Field Description

Name Alice

Email alice@example.com
Password secret

When you submit the form, ASP.NET Core Identity checks the candidate password and generates errors if it doesn’t match the
password, as shown in Figure 38-5.

1018

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

@ Identity X

- C @ localhost:5000/Users/Create %4

User Administration

Create User

e Passwords must have at least one non alphanumeric character.
¢ Passwords must have at least one digit ('0°-'9").
e Passwords must have at least one uppercase (‘A’-'Z’).

User Name

Alice

ERAIL st s P S sabmemen, et e S P ™

Figure 38-5. Password validation errors
The password validation rules are configured using the options pattern, as shown in Listing 38-13.

Listing 38-13. Configuring Password Validation in the Startup.cs File in the Advanced Project

public void ConfigureServices(IServiceCollection services) {
services.AddDbContext<DataContext>(opts => {
opts.UseSqlServer (Configuration[
"ConnectionStrings:PeopleConnection"]);
opts.EnableSensitiveDatalogging(true);
D;
services.AddControllersWithViews().AddRazorRuntimeCompilation();
services.AddRazorPages().AddRazorRuntimeCompilation();
services.AddServerSideBlazor();
services.AddSingleton<Services.ToggleService>();

services.AddResponseCompression(opts => {
opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });
1);

services.AddDbContext<IdentityContext>(opts =>
opts.UseSqlServer(Configuration["ConnectionStrings:IdentityConnection"]));

services.AddIdentity<IdentityUser, IdentityRole>()
.AddEntityFrameworkStores<IdentityContext>();

services.Configure<IdentityOptionss(opts => {
opts.Password.RequiredLength = 6;
opts.Password.RequireNonAlphanumeric = false;
opts.Password.RequirelLowercase = false;
opts.Password.RequireUppercase = false;

1019

CHAPTER 38 * USING ASP.NET CORE IDENTITY
opts.Password.RequireDigit = false;

s

ASP.NET Core Identity is configured using the IdentityOptions class, whose Password property returns a PasswordOptions
class that configures password validation using the properties described in Table 38-8.

Table 38-8. The PasswordOptions Properties

Name Description

RequiredLength This int property is used to specify the minimum length for passwords.

RequireNonAlphanumeric Setting this bool property to true requires passwords to contain at least one character that is not a
letter or a digit.

Requirelowercase Setting this bool property to true requires passwords to contain at least one lowercase character.

RequireUppercase Setting this bool property to true requires passwords to contain at least one uppercase character.

RequireDigit Setting this bool property to true requires passwords to contain at least one numeric character.

In the listing, I specified that passwords must have a minimum length of six characters and disabled the other constraints.
This isn’t something that you should do without careful consideration in a real project, but it allows for an effective demonstration.
Restart ASP.NET Core, request http://localhost:5000/users/create, and fill out the form using the details from Table 38-7. When
you click the Submit button, the password will be accepted by the new validation rules, and a new user will be created, as shown in
Figure 38-6.

D Identity

&« C @ localhost:5000/Users/Create o
User Administration
User Name
@ Identity
< C @ localhost:5000/Users/List b 8

Email T X
s User Administration

alice@example.com

Alice

ID Name Email

Password 86b35fcc-dab2-48f8-8ec6-944749a5afde Alice alice@example.com T8 Delete

Rac k

ff397492-82bb-4436-8199-665¢313¢854e Joe joe@example.com | Edit

Create

Figure 38-6. Changing the password validation rules

Validating User Details

Validation is also performed on usernames and e-mail addresses when accounts are created. To see how validation is applied,
request http://localhost:5000/users/create and fill out the form using the values shown in Table 38-9.

1020

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

Table 38-9. The Values for Creating an Example User

Field Description

Name Bob!

Email alice@example.com
Password secret

Click the Submit button, and you will see the error message shown in Figure 38-7.

 Identity

User Name

Bob!

Email

\.-._, EJ - — - w”. MM‘.@-‘"‘ PN NP

— C @ localhost:5000/users/create %4

¢ User name '‘Bob!" is invalid, can only contain letters or digits.

x

User Administration

Figure 38-7. A user details validation error

Validation can be configured with the options pattern, using the User property defined by the IdentityOptions class. This class
returns a UserOptions class, whose properties are described in Table 38-10.

Table 38-10. The UserOptions Properties

Name

Description

AllowedUserNameCharacters This string property contains all the legal characters that can be used in a username. The default

value specifies a-z, A-Z, and 0-9 and the hyphen, period, underscore, and @ characters. This
property is not a regular expression, and every legal character must be specified explicitly in the
string.

RequireUniqueEmail Setting this bool property to true requires new accounts to specify e-mail addresses that have not

been used previously.

In Listing 38-14, I have changed the configuration of the application so that unique e-mail addresses are required and so that
only lowercase alphabetic characters are allowed in usernames.

1021

CHAPTER 38 USING ASP.NET CORE IDENTITY

Listing 38-14. Changing the User Validation Settings in the Startup.cs File in the Advanced Project

public void ConfigureServices(IServiceCollection services) {

services.AddDbContext<DataContext>(opts => {

opts.UseSqlServer(Configuration[
"ConnectionStrings:PeopleConnection"]);

opts.EnableSensitiveDatalogging(true);

D;

services.AddControllersWithViews().AddRazorRuntimeCompilation();

services.AddRazorPages().AddRazorRuntimeCompilation();

services.AddServerSideBlazor();

services.AddSingleton<Services.ToggleService>();

services.AddResponseCompression(opts => {
opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });
D;

services.AddDbContext<IdentityContext>(opts =>
opts.UseSqlServer (Configuration["ConnectionStrings:IdentityConnection"]));
services.AddIdentity<IdentityUser, IdentityRole>()
.AddEntityFrameworkStores<IdentityContext>();

services.Configure<IdentityOptions>(opts => {
opts.Password.RequiredLength = 6;
opts.Password.RequireNonAlphanumeric = false;
opts.Password.RequireLowercase = false;
opts.Password.RequireUppercase = false;
opts.Password.RequireDigit = false;
opts.User.RequireUniqueEmail = true;
opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";

};

Restart ASP.NET Core, request http://localhost:5000/users/create, and fill out the form with the values in Table 38-9. Click
the Submit button, and you will see that the e-mail address now causes an error. The username still contains illegal characters and is
also flagged as an error, as shown in Figure 38-8.

1022

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

@ Identity X

- C @ localhost:5000/users/create %4

Create User

User Administration

e User name '‘Bob!" is invalid, can only contain letters or digits.
e Email ‘alice@example.com’ is already taken.

User Name

Bob!

Email

Figure 38-8. Validating user detail

Editing Users

To add support for editing users, add a Razor Page named Editor.cshtml to the Pages/Users folder of the Advanced project with
the content shown in Listing 38-15.

Listing 38-15. The Contents of the Editor.cshtml File in the Pages/Users Folder of the Advanced Project

@page "{id}"
@model EditorModel

<h5 class="bg-warning text-white text-center p-2">Edit User</h5>
<form method="post">
<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">
<label>ID</label>
<input name="Id" class="form-control" value="@Model.Id" disabled />
<input name="Id" type="hidden" value="@Model.Id" />
</div>
<div class="form-group">
<label>User Name</label>
<input name="UserName" class="form-control" value="@Model.UserName" />
</div>
<div class="form-group">
<label>Email</label>
<input name="Email" class="form-control" value="@Model.Email" />
</div>
<div class="form-group">
<label>New Password</label>
<input name="Password" class="form-control" value="@Model.Password" />
</div>
<button type="submit" class="btn btn-warning">Submit</button>
Back
</form>

1023

CHAPTER 38 USING ASP.NET CORE IDENTITY

@functions {

public class EditorModel : AdminPageModel {
public UserManager<IdentityUser> UserManager;

public EditorModel(UserManager<IdentityUser> usrManager) {
UserManager = usrManager;
}

[BindProperty][Required]
public string Id { get; set; }

[BindProperty][Required]
public string UserName { get; set; }

[BindProperty][Required][EmailAddress]
public string Email { get; set; }

[BindProperty]
public string Password { get; set; }

public async Task OnGetAsync(string id) {
IdentityUser user = await UserManager.FindByIdAsync(id);
Id = user.Id; UserName = user.UserName; Email = user.Email;

}

public async Task<IActionResult> OnPostAsync() {
if (ModelState.IsValid) {
IdentityUser user = await UserManager.FindByIdAsync(Id);
user.UserName = UserName;
user.Email = Email;
IdentityResult result = await UserManager.UpdateAsync(user);
if (result.Succeeded &3 !String.IsNullOrEmpty(Password)) {
await UserManager.RemovePasswordAsync(user);
result = await UserManager.AddPasswordAsync(user, Password);
}
if (result.Succeeded) {
return RedirectToPage("List");
}

foreach (IdentityError err in result.Errors) {
ModelState.AddModelError("", err.Description);
}

}

return Page();

The Editor page uses the UserManager<T>.FindByIdAsync method to locate the user, querying the database with the id value
received through the routing system and received as an argument to the OnGetAsync method. The values from the IdentityUser
object returned by the query are used to populate the properties that are displayed by the view part of the page, ensuring that the
values are not lost if the page is redisplayed due to validation errors.

1024

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

When the user submits the form, the FindByIdAsync method is used to query the database for the IdentityUser object, which
is updated with the UserName and Email values provided in the form. Passwords required a different approach and must be removed
from the user object before a new password is assigned, like this:

await UserManager.RemovePasswordAsync(user);
result = await UserManager.AddPasswordAsync(user, Password);

The Editor page changes the password only if the form contains a Password value and if the updates for the UserName and
Email fields have been successful. Errors from ASP.NET Core Identity are presented as validation messages, and the browser is
redirected to the List page after a successful update. Request http://localhost:5000/Users/List, click the Edit button for Joe,
and change the UserName field to bob, with all lowercase characters. Click the Submit button, and you will see the change reflected
in the list of users, as shown in Figure 38-9.

Note You will see an error if you click the Edit button for the Alice account and click Submit without making changes. This is
because the account was created before the validation policy was changed. ASP.NET Core Identity applies validation checks for updates,
leading to the odd situation where the data in the database can be read—and used—Dbut must be changed for the user to be updated.

[C @ localhost:5000/Users/Editor/ff397492... ¥

User Administration

ff397492-82bb-4436-8199-665231 3m
dentity

User Name
C @ localhost:5000/Users/List

bob
User Administration

Email
Name Email

j le.
josBaamplecom 86b35fcc-dab2-48f8-8ec6-944749a5afde Alice alice@example.com | gdit Eyam

New Password

ff397492-82bb-4436-8199-665e313¢854e bob joe@example.com | Edi

Figure 38-9. Editing a user

1025

CHAPTER 38 * USING ASP.NET CORE IDENTITY

Deleting Users

The last feature I need for my basic user management application is the ability to delete users, as shown in Listing 38-16.

Listing 38-16. Deleting Users in the List.cshtml File in the Pages/Users Folder in the Advanced Project

@functions {

public class ListModel : AdminPageModel {
public UserManager<IdentityUser> UserManager;

public ListModel(UserManager<IdentityUser> userManager) {
UserManager = userManager;

}

public IEnumerable<IdentityUser> Users { get; set; }

public void OnGet() {
Users = UserManager.Users;
}

public async Task<IActionResults> OnPostAsync(string id) {
IdentityUser user = await UserManager.FindByIdAsync(id);
if (user != null) {
await UserManager.DeleteAsync(user);
}

return RedirectToPage();

The List page already displays a Delete button for each user in the data table, which submits a POST request containing the Id
value for the IdentityUser object to be removed. The OnPostAsync method receives the Id value and uses it to query Identity using
the FindByIdAsync method, passing the object that is returned to the DeleteAsync method, which deletes it from the database. To
check the delete functionality, request http://localhost:5000/Users/List and click Delete for the Alice account. The user object
will be removed, as shown in Figure 38-10.

€ 5 ¢ (o EEmE—E SN D -

<« C @ localhost5000/Users/List k-4

User Administration
User Administration

D Name Email

86b35fcc-dab2-48f8-8ect-04474%5afde Alice alice@examplecom B

D Name Email

1f397402-82bb-4436-8199-6650313c854e bob joe@examplecom [
ff397492-82bb-4436-8199-665¢313¢854¢ bob joe@example.com T Delete

m S

Figure 38-10. Deleting a user

1026

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

Creating Role Management Tools

Some applications enforce only two levels of authorization: authenticated users are allowed access to all the application’s features,
while unauthenticated users have less—or no—access. The SportsStore application in Part 1 followed this approach: there was one
user, and once authenticated, they had access to all the application’s features, including administration tools, while unauthenticated
users were restricted to the public store features.

ASP.NET Core Identity supports roles for applications that require more granular authorization. Users are assigned to one or
more roles, and their membership of those roles determines which features are accessible. In the sections that follow, I show you
how to build tools to create and manage roles.

Roles are managed through the RoleManager<T> class, where T is the representation of roles in the database. When I configured
ASP.NET Core Identity at the start of the chapter, I selected IdentityRole, which is the built-in class that Identity provides to
describe a role, which means that I will be using the RoleManager<IdentityRole> class in these examples. The RoleManager<T>
class defines the methods and properties shown in Table 38-11 that allow roles to be created and managed.

Table 38-11. The Members Defined by the RoleManager<T> Class

Name Description

CreateAsync(role) Creates a new role

DeleteAsync(role) Deletes the specified role

FindByIdAsync(id) Finds a role by its ID

FindByNameAsync(name) Finds a role by its name

RoleExistsAsync(name) Returns true if a role with the specified name exists
UpdateAsync(role) Stores changes to the specified role

Roles Returns an enumeration of the roles that have been defined

Table 38-12 describes the key properties defined by the IdentityRole class.

Table 38-12. Useful IdentityRole Properties

Name Description
Id This property contains the unique ID for the role.
Name This property returns the role name.

Although roles are managed through the RoleManager<T> class, membership of roles is managed through the methods provided
by UserManager<T> described in Table 38-13.

Table 38-13. The UserManager<T> Methods for Managing Role Membership

Name Description

AddToRoleAsync(user, role) This method adds a user to a role.

RemoveFromRoleAsync(user, role) This method removes a user from a role.

GetRolesAsync(user) This method returns the roles for which the user is a member.
GetUsersInRoleAsync(role) This method returns users who are members of the specified role.
IsInRoleAsync(user, role) This method returns true if the user is a member of the specified role.

Preparing for Role Management Tools

To prepare for the role management tools, create the Pages/Roles folder in the Advanced project and add to it a Razor layout named
_Layout.cshtml with the content shown in Listing 38-17.

1027

CHAPTER 38 USING ASP.NET CORE IDENTITY

Listing 38-17. The Contents of the _Layout.cshtml File in the Pages/Roles Folder in the Advanced Project

<!DOCTYPE html>
<html>
<head>
<title>Identity</title>
<link href="/1ib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
<div class="m-2">
<h5 class="bg-secondary text-white text-center p-2">Role Administration</h5>
@RenderBody()
</div>
</body>
</html>

This layout will ensure there is an obvious difference between the user and role management tools.

Enumerating and Deleting Roles

Add a Razor Page named List.cshtml to the Pages/Roles folder in the Advanced project with the content shown in Listing 38-18.

Listing 38-18. The Contents of the List.cshtml File in the Pages/Roles Folder in the Advanced Project

@page
@model ListModel

<table class="table table-sm table-bordered">
<tr><th>ID</th><th>Name</th><th>Members</th><th></th></tr>
@if (Model.Roles.Count() == 0) {
<tr><td colspan="4" class="text-center">No Roles</td></tr>
} else {
foreach (IdentityRole role in Model.Roles) {
<tr>
<td>@role.Id</td>
<td>@role.Name</td>
<td>@(await Model.GetMembersString(role.Name))</td>
<td class="text-center">
<form asp-page="List" method="post">
<input type="hidden" name="Id" value="@role.Id" />
<a class="btn btn-sm btn-warning" asp-page="Editor"
asp-route-id="@role.Id" asp-route-mode="edit">Edit
<button type="submit" class="btn btn-sm btn-danger">
Delete
</button>
</formy>
</td>
</tr>

}
</table>

Create
@functions {
public class ListModel : AdminPageModel {

public UserManager<IdentityUser> UserManager;
public RoleManager<IdentityRole> RoleManager;

1028

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

public ListModel(UserManager<IdentityUser> userManager,
RoleManager<IdentityRole> roleManager) {
UserManager = userManager;
RoleManager = roleManager;

}

public IEnumerable<IdentityRole> Roles { get; set; }

public void OnGet() {
Roles = RoleManager.Roles;
}

public async Task<string> GetMembersString(string role) {
IEnumerable<IdentityUser> users
= (await UserManager.GetUsersInRoleAsync(role));
string result = users.Count() == 0
? "No members"
: string.Join(", ", users.Take(3).Select(u => u.UserName).ToArray());
return users.Count() > 3 ? $"{result}, (plus others)" : result;

}

public async Task<IActionResult> OnPostAsync(string id) {
IdentityRole role = await RoleManager.FindByIdAsync(id);
await RoleManager.DeleteAsync(role);
return RedirectToPage();

The roles are enumerated, along with the names of up to three of the role members or a placeholder message if there are no
members. There is also a Create button, and each role is presented with Edit and Delete buttons, following the same pattern I used
for the user management tools.

The Delete button sends a POST request back to the Razor Page. The OnPostAsync method uses the FindByIdAsync method to
retrieve the role object, which is passed to the DeleteAsync method to remove it from the database.

Creating Roles

Add a Razor Page named Create.cshtml in the Pages/Roles folder in the Advanced project with the contents shown in Listing 38-19.

Listing 38-19. The Contents of the Create.cshtml File in the Pages/Roles Folder in the Advanced Project

@page
@model CreateModel

<h5 class="bg-primary text-white text-center p-2">Create Role</h5>
<form method="post">
<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">
<label>Role Name</label>
<input name="Name" class="form-control" value="@Model.Name" />
</div>
<button type="submit" class="btn btn-primary">Submit</button>
Back
</form>

1029

CHAPTER 38 USING ASP.NET CORE IDENTITY

@functions {

public class CreateModel : AdminPageModel {
public RoleManager<IdentityRole> RoleManager;

public CreateModel(UserManager<IdentityUser> userManager,
RoleManager<IdentityRole> roleManager) {
RoleManager = roleManager;

}

[BindProperty][Required]
public string Name { get; set; }

public async Task<IActionResult> OnPostAsync() {
if (ModelState.IsValid) {
IdentityRole role = new IdentityRole { Name = Name };
IdentityResult result = await RoleManager.CreateAsync(role);
if (result.Succeeded) {
return RedirectToPage("List");
}

foreach (IdentityError err in result.Errors) {
ModelState.AddModelError("", err.Description);
}

}

return Page();

The user is presented with a form containing an input element to specify the name of the new role. When the form is submitted,
the OnPostAsync method creates a new IdentityRole object and passes it to the CreateAsync method.

Assigning Role Membership

To add support for managing role memberships, add a Razor Page named Editor.cshtml to the Pages/Roles folder in the Advanced
project, with the content shown in Listing 38-20.

Listing 38-20. The Contents of the Editor.cshtml File in the Pages/Roles Folder in the Advanced Project

@page Il{id}ll
@model EditorModel

<h5 class="bg-primary text-white text-center p-2">Edit Role: @Model.Role.Name</h5>

<form method="post">
<input type="hidden" name="rolename" value="@Model.Role.Name" />
<div asp-validation-summary="All" class="text-danger"></div>
<h5 class="bg-secondary text-white p-2">Members</h5>
<table class="table table-sm table-striped table-bordered">
<thead><tr><th>User</th><th>Email</th><th></th></tr></thead>
<tbody>
@if ((await Model.Members()).Count() == 0) {
<tr><td colspan="3" class="text-center">No members</td></tr>
}

1030

CHAPTER 38

@foreach (IdentityUser user in await Model.Members()) {
<tr>
<td>@user.UserName</td>
<td>@user.Email</td>
<td>
<button asp-route-userid="@user.Id"
class="btn btn-primary btn-sm" type="submit">
Change
</button>
</td>
</tr>
}
</tbody>
</table>

<h5 class="bg-secondary text-white p-2">Non-Members</h5>
<table class="table table-sm table-striped table-bordered">
<thead><tr><th>User</th><th>Email</th><th></th></tr></thead>
<tbody>
@if ((await Model.NonMembers()).Count() == 0) {
<tr><td colspan="3" class="text-center">No non-members</td></tr>

}
@foreach (IdentityUser user in await Model.NonMembers()) {
<tr>
<td>@user.UserName</td>
<td>@user.Email</td>
<td>
<button asp-route-userid="@user.Id"
class="btn btn-primary btn-sm" type="submit">
Change
</button>
</td>
</tr>
}
</tbody>
</table>

</form>
Back
@functions {

public class EditorModel : AdminPageModel {
public UserManager<IdentityUser> UserManager;
public RoleManager<IdentityRole> RoleManager;

public EditorModel(UserManager<IdentityUser> userManager,
RoleManager<IdentityRole> roleManager) {
UserManager = userManager;
RoleManager = roleManager;

}

public IdentityRole Role { get; set; }

public Task<IList<IdentityUser>> Members() =>
UserManager.GetUsersInRoleAsync(Role.Name);

USING ASP.NET CORE IDENTITY

1031

CHAPTER 38 USING ASP.NET CORE IDENTITY

public async Task<IEnumerable<IdentityUser>> NonMembers() =>
UserManager.Users.Tolist().Except(await Members());

public async Task OnGetAsync(string id) {
Role = await RoleManager.FindByIdAsync(id);
}

public async Task<IActionResult> OnPostAsync(string userid,
string rolename) {
Role = await RoleManager.FindByNameAsync(rolename);
IdentityUser user = await UserManager.FindByIdAsync(userid);
IdentityResult result;
if (await UserManager.IsInRoleAsync(user, rolename)) {
result = await UserManager.RemoveFromRoleAsync(user, rolename);
} else {
result = await UserManager.AddToRoleAsync(user, rolename);
}

if (result.Succeeded) {
return RedirectToPage();
} else {
foreach (IdentityError err in result.Errors) {
ModelState.AddModelError("", err.Description);
}

return Page();

The user is presented with a table showing the users who are members of the role and with a table showing nonmembers. Each
row contains a Change button that submits the form. The OnPostAsync method uses the UserManager . FindByIdAsync method to
retrieve the user object from the database. The IsInRoleAsync method is used to determine whether the user is a member of the
role, and the AddToRoleAsync and RemoveFromRoleAsync methods are used to add and remove the user, respectively.

Restart ASP.NET Core and request http://localhost:5000/roles/1ist. The list will be empty because there are no roles in the
database. Click the Create button, enter Admins into the text field, and click the Submit button to create a new role. Once the role
has been created, click the Edit button, and you will see the list of users who can be added to the role. Clicking the Change button
will move the user in and out of the role. Click back, and the list will be updated to show the users who are members of the role, as
shown in Figure 38-11.

Caution ASP.NET Core Identity revalidates user details when changing role assignments, which will result in an error if you try to
modify a user whose details do not match the current restrictions, which happens when restrictions are introduced after the application
has been deployed and the database is already populated with users created under the old roles. It is for this reason that the Razor
Page in Listing 38-20 checks the result from the operations to add or remove users from a role and displays any errors as validation
messages.

1032

CHAPTER 38 ' USING ASP.NET CORE IDENTITY

C D locathost 5000 Roles/List

Role Administration

D Name.

91522424 b351-2bd3-0bd5-50add468025 Adming ok R m

e m

Figure 38-11. Managing roles

Summary

In this chapter, I showed you how to add ASP.NET Core Identity to a project and prepare its database to store users and roles. I
described the basic ASP.NET Core Identity API and showed you how it can be used to create tools to manage users and roles. In the

next chapter, I show you how to apply ASP.NET Core Identity to control access to controllers, Razor Pages, Blazor applications, and
web services.

1033

CHAPTER 39

Applying ASPNET Core Identity

In this chapter, I explain how ASP.NET Core Identity is applied to authenticate users and authorize access to application features. I
create the features required for users to establish their identity, explain how access to endpoints can be controlled, and demonstrate
the security features that Blazor provides. I also show two different ways to authenticate web service clients. Table 39-1 summarizes
the chapter.

Table 39-1. Chapter Summary

Problem Solution Listing

Authenticating users Use the SignInManager<T> class to validate the credentials users provide and use the 3-18
built-in middleware to trigger authentication

Restricting access to Use the Authorize attribute and the built-in middleware to control access 9-13

endpoints

Restricting access to Blazor Use the Authorize attribute and the built-in Razor Components to control access 14-17

components

Restricting access to web Use cookie authentication or bearer tokens 18-30

services

Preparing for This Chapter

This chapter uses the projects from Chapter 38. To prepare for this chapter, I am going to reset both the application data and
ASP.NET Core Identity databases and create new users and roles. Open a new command prompt and run the commands shown
in Listing 39-1 in the Advanced project folder, which contains the Advanced. csproj file. These commands remove the existing
databases and re-create them.

Tip You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 39-1. Re-creating the Project Databases

dotnet ef database drop --force --context DataContext
dotnet ef database drop --force --context IdentityContext
dotnet ef database update --context DataContext

dotnet ef database update --context IdentityContext

© Adam Freeman 2020 1035
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_39

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

Now that the application contains multiple database context classes, the Entity Framework Core commands require the
--context argument to select the context that a command applies to.

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 39-2.

Listing 39-2. Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/home/index, which will produce the response shown in Figure 39-1.

lecalhost5000/home/index
e

« C @ localhost:5000/homefindex ve
Sort Highlight
Ascending T Select Highlight ¥
ID Name Dept Location
7 Becker, Bright Facilities Oakland, CA m
5 Case, Guzman Development San Jose, CA m
1 Fuentes, Charles Development New York, NY m
8 Hays, Marks Facilities Oakland, CA m
3 Hoffman, Beasley Facilities New York, NY m
6 Jacobs, Francesca Development Oakland, CA m
2 Lara, Murphy Sales New York, NY Edit
- Lloyd, Randall Support San Jose, CA m
9 Trujillo, Underwood Development Oakland, CA m

Departments

Figure 39-1. Running the example application

The main application database is automatically reseeded when the application starts. There is no seed data for the ASP.NET
Core Identity database. Request http://localhost:5000/users/list and http://localhost:5000/roles/1ist, and you will see
the responses in Figure 39-2, which show the database is empty.

1036

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

@ Identity
T &

@ localhost:5000/users/list

Ly " <« C @ localhost:5000/roles/list o
User Administration

o — - Role Administration

No User Accounts ID Name Members

No Roles

Figure 39-2. The empty ASP.NET Core Identity database

Authenticating Users

In the sections that follow, I show you how to add authentication features to the example project so that users can present their
credentials and establish their identity to the application.

AUTHENTICATION VS. AUTHORIZATION

It is important to understand the difference between authentication and authorization when working with ASP.NET Core Identity.
Authentication, often referred to as AuthN, is the process of establishing the identity of a user, which the user does by presenting
their credentials to the application. In the case of the example application, those credentials are a username and a password.
The username is public information, but the password is known only by the user, and when the correct password is presented,
the application is able to authenticate the user.

Authorization, often referred to as AuthZ, is the process of granting access to application features based on a user’s identity.
Authorization can be performed only when a user has been authenticated because an application has to know the identity of a
user before deciding whether they are entitled to use a specific feature.

Creating the Login Feature

To enforce a security policy, the application must allow users to authenticate themselves, which is done using the ASP.NET Core
Identity API. Create the Pages/Account folder and add to it a Razor Page named _Layout.cshtml with the content shown in
Listing 39-3. This layout will provide common content for authentication features.

Listing 39-3. The Contents of the _Layout.cshtml File in the Pages/Account Folder in the Advanced Project

<!DOCTYPE html>

<html>

<head>
<title>Identity</title>
<link href="/1ib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />

</head>

<body>
<div class="m-2">

@RenderBody()

</div>

</body>

</html>

1037

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

Add a Razor Page named Login.cshtml to the Pages/Account folder in the Advanced project with the content shown in
Listing 39-4.

Listing 39-4. The Contents of the Login.cshtml File in the Pages/Account Folder of the Advanced Project

@page
@model LoginModel

<div class="bg-primary text-center text-white p-2"><h4>Log In</h4></div>
<div class="m-1 text-danger" asp-validation-summary="All"></div>

<form method="post">
<input type="hidden" name="returnUrl" value="@Model.ReturnUrl" />
<div class="form-group">
<label>UserName</label>
<input class="form-control" asp-for="UserName" />
</div>
<div class="form-group">
<label>Password</label>
<input asp-for="Password" type="password" class="form-control" />
</div>
<button class="btn btn-primary" type="submit">Log In</button>
</form>

@functions {

public class LoginModel : PageModel {
private SignInManager<IdentityUser> signInManager;

public LoginModel(SignInManager<IdentityUser> signinMgr) {
signInManager = signinMgr;
}

[BindProperty] [Required]
public string UserName { get; set; }

[BindProperty] [Required]
public string Password { get; set; }

[BindProperty(SupportsGet = true)]
public string ReturnUrl { get; set; }

public async Task<IActionResult> OnPostAsync() {
if (ModelState.IsValid) {
Microsoft.AspNetCore.Identity.SignInResult result =
await signInManager.PasswordSignInAsync(UserName, Password,
false, false);
if (result.Succeeded) {
return Redirect(ReturnUrl ?? "/");
}

ModelState.AddModelError("", "Invalid username or password");

}

return Page();

1038

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

ASP.NET Core Identity provides the SigninManager<T> class to manage logins, where the generic type argument T is the
class that represents users in the application, which is IdentityUser for the example application. Table 39-2 describes the
SigninManager<T> members I use in this chapter.

Table 39-2. Useful SigninManager<T> Members

Name Description
PasswordSignInAsync(name, This method attempts authentication using the specified username and password. The
password, persist, lockout) persist argument determines whether a successful authentication produces a cookie that

persists after the browser is closed. The lockout argument determines whether the account
should be locked if authentication fails.

SignOutAsync() This method signs out the user.

The Razor Page presents the user with a form that collects a username and a password, which are used to perform
authentication with the PasswordSignInAsync method, like this:

Microsoft.AspNetCore.Identity.SignInResult result =
await signInManager.PasswordSignInAsync(UserName, Password, false, false);

The result from the PasswordSignInAsync methodsis a SignInResult object, which defines a Suceeded property that is true if
the authentication is successful. (There is also a SignInResult class defined in the Microsoft.AspNetCore.Mvc namespace, which is
why I used a fully qualified class name in the listing.)

Authentication in an ASP.NET Core application is usually triggered when the user tries to access an endpoint that requires
authorization, and it is convention to return the user to that endpoint if authentication is successful, which is why the Login page
defines a ReturnUrl property that is used in a redirection if the user has provided valid credentials.

if (result.Succeeded) {
return Redirect(RetuxnUrl ?? "/");

}

If the user hasn’t provided valid credentials, then a validation message is shown, and the page is redisplayed.

PROTECTING THE AUTHENTICATION COOKIE

The authentication cookie contains the user’s identity, and ASP.NET Core trusts that requests containing the cookie originate from
the authenticated user. This means you should use HTTPS for production applications that use ASP.NET Core Identity to prevent
the cookie from being intercepted by an intermediary. See Part 2 for details of enabling HTTPS in ASP.NET Core.

Inspecting the ASP.NET Core Identity Cookie

When a user is authenticated, a cookie is added to the response so that subsequent requests can be identified as being already
authenticated. Add a Razor Page named Details.cshtml to the Pages/Account folder of the Advanced project with the content
shown in Listing 39-5, which displays the cookie when it is present.

1039

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

Listing 39-5. The Contents of the Details.cshtml File in the Pages/Account Folder of the Advanced Folder

@page
@model DetailsModel

<table class="table table-sm table-bordered">
<tbody>
@if (Model.Cookie == null) {
<tr><th class="text-center">No Identity Cookie</th></tr>

} else {
<tr>
<th>Cookie</th>
<td class="text-break">@Model.Cookie</td>
</tr>
}
</tbody>
</table>

@functions {
public class DetailsModel : PageModel {
public string Cookie { get; set; }

public void OnGet() {
Cookie = Request.Cookies[".AspNetCore.Identity.Application"];
}

The name used for the ASP.NET Core Identity cookie is . AspNetCore.Identity.Application, and this page retrieves the cookie
from the request and displays its value or a placeholder message if there is no cookie.

Creating a Sign-Out Page

Itis important to give users the ability to sign out so they can explicitly delete the cookie, especially if public machines may be used
to access the application. Add a Razor Page named Logout.cshtml to the Pages/Account folder of the Advanced folder with the
content shown in Listing 39-6.

Listing 39-6. The Contents of the Logout.cshtml File in the Pages/Account Folder in the Advanced Project

@page
@model LogoutModel

<div class="bg-primary text-center text-white p-2"><h4>Log Out</h4></div>
<div class="m-2">

<h6>You are logged out</h6>

<a asp-page="Login" class="btn btn-secondary">0K
</div>

@functions {

public class LogoutModel : PageModel {
private SignInManager<IdentityUser> signInManager;

public LogoutModel(SignInManager<IdentityUser> signInMgr) {
signInManager = signInMgr;
}

1040

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

public async Task OnGetAsync() {
await signInManager.SignOutAsync();
}

This page calls the SignOutAsync method described in Table 39-2 to sign the application out of the application. The ASP.NET
Core Identity cookie will be deleted so that the browser will not include it in future requests (and invalidated the cookie, so that
requests will not be treated as authenticated even if the cookie is used again anyway).

Testing the Authentication Feature

Restart ASP.NET Core and request http://localhost:5000/users/1ist. Click the Create button and fill out the form using the data
shown in Table 39-3. Click the Submit button to submit the form and create the user account.

Table 39-3. The Data Values to Create a User

Field Description
UserName bob

Email bob@example.com
Password secret

Navigate to http://localhost:5000/account/login and authenticate using the username and password from Table 39-3.
No return URL has been specified, and you will be redirected to the root URL once you have been authenticated. Request http://
localhost:5000/account/details, and you will see the ASP.NET Core Identity cookie. Request http://localhost:5000/account/
logout to log out of the application and return to http://localhost:5000/account/details to confirm that the cookie has been
deleted, as shown in Figure 39-3.

@ Idensity x
€ 5 C O locaihost5000/account/login

D loentty

€« c

D locathose 5000

L C @ localost5000/account/iogou

Cookie CIDIBM|Bwghi-
ClHRWxl4wpenGo4X

Userame BeagDsxuZWwYhKal No Identity Cookie
UyzKCIVIGCyYAFRZE yoy are logged out
bob QO _ULXDUZOGTTERD,
NxMRSSSUMNCeAT

Password JmikeC38YDIpKT-Krm
W2hCk0d4U39TVKzpcEkGU 258-qybilglfisVefR_Nk-

1BtKsBIYEUEQkIW3SbbilaSvSShT_LuOhK3mbULZTBILNOocHHTNSSUPHOOZ 1 SpmLFx235_gZhsv
CO4jEINIMWTSRIBSTPQ-hEQAGmABs 1 VZWESHMacg Atra2fY TNILFYV ycx

Figure 39-3. Authenticating a user

Enabling the Identity Authentication Middleware

ASP.NET Core Identity provides a middleware component that detects the cookie created by the SignInManager<T> class and
populates the HttpContex object with details of the authenticated user. This provides endpoints with details about the user without
needing to be aware of the authentication process or having to deal directly with the cookie created by the authentication process.
Listing 39-7 adds the authentication middleware to the example application’s request pipeline.

1041

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

Listing 39-7. Enabling Middleware in the Startup.cs File in the Advanced Folder

public void Configure(IApplicationBuilder app, DataContext context) {

app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting();

app.UseAuthentication();

app.UseEndpoints(endpoints => {
endpoints.MapControllerRoute("controllers"”,
"controllers/{controller=Home}/{action=Index}/{id?}");
endpoints.MapDefaultControllerRoute();
endpoints.MapRazorPages();
endpoints.MapBlazorHub();

endpoints.MapFallbackToClientSideBlazor<BlazorlWebAssembly.Startup>
("/webassembly/{*path:nonfile}", "index.html");

endpoints.MapFallbackToPage("/ Host");
D;

app.Map("/webassembly", opts =>
opts.UseClientSideBlazorFiles<BlazorWebAssembly.Startup>());

SeedData.SeedDatabase(context);

The middleware sets the value of the HttpContext.User property to a ClaimsPrincipal object. Claims are pieces of information
about a user and details of the source of that information, providing a general-purpose approach to describing the information
known about a user.

The ClaimsPrincipal class is part of NET Core and isn’t directly useful in most ASP.NET Core applications, but there are two
nested properties that are useful in most applications, as described in Table 39-4.

Table 39-4. Useful Nested ClaimsPrincipal Properties

Name Description

ClaimsPrincipal.Identity.Name This property returns the username, which will be null if there is no user associated with
the request.

ClaimsPrincipal.Identity. This property returns true if the user associated with the request has been authenticated.

IsAuthenticated

The username provided through the ClaimsPrincipal object can be used to obtain the ASP.NET Core Identity user object, as
shown in Listing 39-8.

Listing 39-8. User Details in the Details.cshtml File in the Pages/Account Folder of the Advanced Project

@page
@model DetailsModel

<table class="table table-sm table-bordered"»
<tbody»
@if (Model.IdentityUser == null) {
<try<th class="text-center"s»No User</thy</tr>

1042

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

} else {
<tr><thyName</thy <td>@Model.IdentityUser.UserName</td></tr>
<tr><th>Email</thy<td>@Model.IdentityUser.Email</td></tr>

</tbody>
</tabley

@functions {

public class DetailsModel : PageModel {
private UserManager<IdentityUser»> userManager;

public DetailsModel(UserManager<IdentityUsers manager) {
userManager = manager;
}

public IdentityUser IdentityUser { get; set; }

public async Task OnGetAsync() {
if (User.Identity.IsAuthenticated) {
IdentityUser = await userManager.FindByNameAsync(User.Identity.Name);
}

The HttpContext.User property can be accessed through the User convenience property defined by the PageModel and
ControllerBase classes. This Razor Page confirms that there is an authenticated user associated with the request and gets the
IdentityUser object that describes the user.

Restart ASP.NET Core, request http://localhost:5000/account/login, and authenticate using the details in Table 39-3.

Request http://localhost:5000/account/details, and you will see how the ASP.NET Core Identity middleware enabled in
Listing 39-7 has processed the cookie to associate user details with the request, as shown in Figure 39-4.

CONSIDERING TWO-FACTOR AUTHENTICATION

| have performed single-factor authentication in this chapter, which is where the user is able to authenticate using a single piece

of information known to them in advance: the password.

ASP.NET Core Identity also supports two-factor authentication, where the user needs something extra, usually something that is
given to the user at the moment they want to authenticate. The most common examples are a value from a hardware token or
smartphone app or an authentication code that is sent as an e-mail or text message. (Strictly speaking, the two factors can be

anything, including fingerprints, iris scans, and voice recognition, although these are options that are rarely required for most
web applications.)

Security is increased because an attacker needs to know the user’s password and have access to whatever provides the second

factor, such as an e-mail account or cell phone.

| don’t show two-factor authentication in the book for two reasons. The first is that it requires a lot of preparatory work, such

as setting up the infrastructure that distributes the second-factor e-mails and texts and implementing the validation logic, all of

which is beyond the scope of this book.

The second reason is that two-factor authentication forces the user to remember to jump through an additional hoop to

authenticate, such as remembering their phone or keeping a security token nearby, something that isn’t always appropriate for

web applications. | carried a hardware token of one sort or another for more than a decade in various jobs, and | lost count of the
number of times that I couldn’t log in to an employer’s system because | left the token at home. If you are considering two-factor

authentication, then | recommend using one of the many hosted providers that will take care of distributing and managing the
second factors for you.

1043

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

“— C @ localhost:5000/account/login or ¥y :
Log In
UserName
 Identity
bob T :
B C @ localhost:5000/account/details w :
Password Name bob
srssne Email bob@example.com.

Figure 39-4. Getting details of an authenticated user

Authorizing Access to Endpoints

Once an application has an authentication feature, user identities can be used to restrict access to endpoints. In the sections that
follow, I explain the process for enabling authorization and demonstrate how an authorization policy can be defined.

Applying the Authorization Attribute

The Authorize attribute is used to restrict access to an endpoint and can be applied to individual action or page handler methods
or to controller or page model classes, in which case the policy applies to all the methods defined by the class. want to restrict
access to the user and role administration tools created in Chapter 38. When there are multiple Razor Pages or controllers for which
the same authorization policy is required, it is a good idea to define a common base class to which the Authorize attribute can be
applied because it ensures that you won’t accidentally omit the attribute and allow unauthorized access. It is for this reason that

I defined the AdminPageModel class and used it as the base for all the administration tool page models in Chapter 38. Listing 39-9
applies the Authorize attribute to the AdninPageModel class to create the authorization policy.

Listing 39-9. Applying an Attribute in the AdminPageModel.cs File in the Pages Folder in the Advanced Project
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Authorization;

namespace Advanced.Pages {

[Authorize(Roles="Admins")]
public class AdminPageModel : PageModel {

}

The Authorize attribute can be applied without arguments, which restricts access to any authenticated user. The Roles
argument is used to further restrict access to users who are members of specific roles, which are expressed as a comma-separated
list. The attribute in this listing restricts access to users assigned to the Admins role. The authorization restrictions are inherited,
which means that applying the attribute to the base class restricts access to all the Razor Pages created to manage users and roles in
Chapter 38.

1044

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

Note If you want to restrict access to most, but not all, of the action methods in a controller, then you can apply the Authorize
attribute to the controller class and the AllowAnonymous attribute to just the action methods for which authenticated access is required.

Enabling the Authorization Middleware

The authorization policy is enforced by a middleware component, which must be added to the application’s request pipeline, as
shown in Listing 39-10.

Listing 39-10. Adding Middleware in the Startup.cs File in the Advanced Project

public void Configure(IApplicationBuilder app, DataContext context) {

app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints => {
endpoints.MapControllerRoute("controllers"”,
"controllers/{controller=Home}/{action=Index}/{id?}");
endpoints.MapDefaultControllerRoute();
endpoints.MapRazorPages();
endpoints.MapBlazorHub();

endpoints.MapFallbackToClientSideBlazor<BlazorWebAssembly.Startup>
("/webassembly/{*path:nonfile}", "index.html");

endpoints.MapFallbackToPage("/ Host");
D;

app.Map("/webassembly", opts =>
opts.UseClientSideBlazorFiles<BlazorWebAssembly.Startup>());

SeedData.SeedDatabase(context);

The UseAuthorization method must be called between the UseRouting and UseEndpoints methods and after the
UseAuthentication method has been called. This ensures that the authorization component can access the user data and inspect
the authorization policy after the endpoint has been selected but before the request is handled.

Creating the Access Denied Endpoint

The application must deal with two different types of authorization failure. If no user has been authenticated when a restricted
endpoint is requested, then the authorization middleware will return a challenge response, which will trigger a redirection to the
login page so the user can present their credentials and prove they should be able to access the endpoint.

But if an authenticated user requests a restricted endpoint and doesn’t pass the authorization checks, then an access denied
response is generated so the application can display a suitable warning to the user. Add a Razor Page named AccessDenied.cshtml
to the Pages/Account folder of the Advanced folder with the content shown in Listing 39-11.

1045

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

Listing 39-11. The AccessDenied.cshtml File in the Pages/Account Folder of the Advanced Project
@page
<h4 class="bg-danger text-white text-center p-2">Access Denied</h4>

<div class="m-2">

<h6>You are not authorized for this URL</h6>

0K

Logout
</div>

This page displays a warning message to the user, with a button that navigates to the root URL. There is typically little the
user can do to resolve authorization failures without administrative intervention, and my preference is to keep the access denied
response as simple as possible.

Creating the Seed Data

In Listing 39-9, I restricted access to the user and role administration tools, so they can be accessed only by users in the Admin role.
There is no such role in the database, which creates a problem: I am locked out of the administration tools because there is no
authorized account that will let me create the role.

I could have created an administration user and role before applying the Authorize attribute, but that complicates deploying
the application, when making code changes should be avoided. Instead, I am going to create seed data for ASP.NET Core Identity
to ensure there will always be at least one account that can be used to access the user and role management tools. Add a class file
named IdentitySeedData.cs to the Models folder in the Advanced project and use it to define the class shown in Listing 39-12.

Listing 39-12. The Contents of the IdentitySeedData.cs File in the Models Folder of the Advanced Project

using System;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Identity;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

namespace Advanced.Models {
public class IdentitySeedData {

public static void CreateAdminAccount(IServiceProvider serviceProvider,
IConfiguration configuration) {
CreateAdminAccountAsync(serviceProvider, configuration).Wait();

}

public static async Task CreateAdminAccountAsync(IServiceProvider
serviceProvider, IConfiguration configuration) {

serviceProvider = serviceProvider.CreateScope().ServiceProvider;

UserManager<IdentityUser> userManager =
serviceProvider.GetRequiredService<UserManager<IdentityUser>>();

RoleManager<IdentityRole> roleManager =
serviceProvider.GetRequiredService<RoleManager<IdentityRole>>();

string username = configuration["Data:AdminUser:Name"] ?? "admin";
string email

= configuration["Data:AdminUser:Email"] ?? "admin@example.com";
string password = configuration["Data:AdminUser:Password"] ?? "secret";
string role = configuration["Data:AdminUser:Role"] ?? "Admins";

1046

CHAPTER 39

if (await userManager.FindByNameAsync(username) == null) {

if (await roleManager.FindByNameAsync(role) == null) {
await roleManager.CreateAsync(new IdentityRole(role));
}

IdentityUser user = new IdentityUser {
UserName = username,
Email = email

};

IdentityResult result = await userManager
.CreateAsync(user, password);
if (result.Succeeded) {
await userManager.AddToRoleAsync(user, role);
}

APPLYING ASP.NET CORE IDENTITY

The UserManager<T> and RoleManager<T> services are scoped, which means I need to create a new scope before requesting the
services since the seeding will be done when the application starts. The seeding code creates a user account that is assigned to a role.
The values for the seed data are read from the application’s configuration with fallback values, making it easy to configure the seeded
account without needing a code change. Listing 39-13 adds a statement to the Startup class so that the database is seeded when the

application starts.

Caution Putting passwords in code files or plain-text configuration files means you must make it part of your deployment process
to change the default account’s password when you deploy the application and initialize a new database for the first time. You can also
use the user secrets feature to keep sensitive data outside of the project.

Listing 39-13. Seeding Identity in the Startup.cs File in the Advanced Project

public void Configure(IApplicationBuilder app, DataContext context) {

app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints => {
endpoints.MapControllerRoute("controllers"”,
"controllers/{controller=Home}/{action=Index}/{id?}");
endpoints.MapDefaultControllerRoute();
endpoints.MapRazorPages();
endpoints.MapBlazorHub();

endpoints.MapFallbackToClientSideBlazor<BlazorlWebAssembly.Startup>
("/webassembly/{*path:nonfile}", "index.html");

endpoints.MapFallbackToPage("/ Host");
D;

1047

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

app.Map("/webassembly", opts =>
opts.UseClientSideBlazorFiles<BlazorhWebAssembly.Startup>());

SeedData.SeedDatabase(context);
IdentitySeedData.CreateAdminAccount(app.ApplicationServices, Configuration);

Testing the Authentication Sequence

Restart ASP.NET Core and request http://localhost:5000/account/logout to ensure that no user is logged in to the application.
Without logging in, request http://localhost:5000/users/list. The endpoint that will be selected to handle the request requires
authentication, and the login prompt will be shown since there is no authenticated user associated with the request. Authenticate
with the username bob and the password secret. This user doesn’t have access to the restricted endpoint, and the access denied
response will be shown, as illustrated by Figure 39-5.

e Identity
e

c @ localhost5000/Account/Login?R... ©* ¢

UserName <« C @ localhost:5000/Account/Access... ©Ov T
- Access Denied

Password You are not authorized for this URL
sssene ‘ OK H Logout ‘

Figure 39-5. A user without authorization

Click the Logout button and request http://localhost:5000/users/1ist again, which will lead to the login prompt being
displayed. Authenticate with the username admin and the password secret. This is the user account created by the seed data and
that is a member of the role specified by the Authorize attribute. The user passes the authorization check, and the requested Razor
Page is displayed, as shown in Figure 39-6.

1048

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

<« C @ localhost5000/Account/Login?R... ©

< C @ localhost:5000/users/list o I
UserMName
admin r User Administration
Password ID Name Email

024500dd-7768-4b70-a7b2-831ef03ff097 admin admin@example.com gdit

ced2eedb-7af8-46b3-b3ed-60911d79b298 bob bob@example.com Edit @

Figure 39-6. A user with authorization

CHANGING THE AUTHORIZATION URLS

The /Account/Login and /Account/AccessDenied URLs are the defaults used by ASP.NET Core authorization files. These can
be changed in the Startup class using the options pattern, like this:

services.Configure<CookieAuthenticationOptions>(
IdentityConstants.ApplicationScheme,
opts => {
opts.LoginPath = "/Authenticate";
opts.AccessDeniedPath = "/NotAllowed";
D;

Configuration is performed using the CookieAuthenticationOptions class, defined in the Microsoft.AspNetCore.
Authentication.Cookies namespace. The LoginPath property is used to specify the path to which browsers will be redirected
when an unauthenticated user attempts to access a restricted endpoint. The AccessDeniedPath property is used to specify the
path when an authenticated user attempts to access a restricted endpoint and does not have authorization.

Authorizing Access to Blazor Applications

The simplest way to protect Blazor applications is to restrict access to the action method or Razor Page that acts as the entry point.
In Listing 39-14, I added the Authorize attribute to the page model class for the Host page, which is the entry point for the Blazor

application in the example project.

UNDERSTANDING OAUTH AND IDENTITYSERVER

If you read the Microsoft documentation, you will be left with the impression that you need to use a third-party server called
IdentityServer (http://identityserver.io) to authenticate web services.

IdentityServer is a high-quality open source package that provides authentication and authorization services, with paid-for
options for add-ons and support. IdentityServer provides support for OAuth, which is a standard for managing authentication
and authorization and provides packages for a range of client-side frameworks.

1049

http://identityserver.io

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

What the Microsoft documentation is saying—albeit awkwardly—is that Microsoft has used IdentityServer in the project
templates that include authentication for web services. If you create an Angular or React project using an ASP.NET Core template
provided by Microsoft, you will find that the authentication has been implemented using IdentityServer.

Authentication is complex, and IdentityServer can be difficult to set up correctly. | like IdentityServer, but it is not essential
and is not required by most projects. IdentityServer may be useful if your project needs to support complex authentication
scenarios, but my advice is not to rush into using third-party authentication servers until they are essential.

Listing 39-14. Applying an Attribute in the _Host.cshtml File in the Pages Folder of the Advanced Project

@page "/"

@{ Layout = null; }

@model HostModel

@using Microsoft.AspNetCore.Authorization

<!DOCTYPE html>
<html>
<head>
<title>@ViewBag.Title</title>
<link href="/1ib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
<base href="~/" />
</head>
<body>
<div class="m-2">
<component type="typeof(Advanced.Blazor.Routed)" render-mode="Server" />
</div>
<script src="_framework/blazor.server.js"></script>
<script src="~/interop.js"></script>
</body>
</html>

@functions {

[Authorize]
public class HostModel : PageModel {}

This has the effect of preventing unauthenticated users from accessing the Blazor application. Request http://
localhost:5000/account/logout to ensure the browser doesn’t have an authentication cookie and then request http://
localhost:5000. This request will be handled by the Host page, but the authorization middleware will trigger the redirection
to the login prompt. Authenticate with the username bob and the password secret, and you will be granted access to the Blazor
application, as shown in Figure 39-7.

1050

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

- (m | x
r & it = @ localngs 5000 Ly +
1 C © localhostS000/Account/Login?R 3 C @jlcchosei bl
Departments Ascending * Select Highlight -
UserName
v Details 7
fi o ds ID Name Dept Location
7 Becker, Bright Facilities Qakland, CA m
Password
Toggle Links 5 Case Guzman Development San Jose, CA m
J5 Toggle 1 Fuentes, Charles Development New York, NY m
im 8 Hays, Marks Facilities Oakland, CA m
| 3 Hoffman, Beasley Facilities New York, NY m
i, gt sttt s 26005, ELARRSSEin st s eplnmRD!_ 22 klan it I e PN

Figure 39-7. Restricting access to the Blazor endpoint

Performing Authorization in Blazor Components

Restricting access to the endpoint is an effective technique, but it applies the same level of authorization to all the Blazor
functionality. For applications that require more granular restrictions, Blazor provides the AuthorizeRouteView component,

which allows different content to be displayed for authorized and unauthorized when components are managed using URL routing.
Listing 39-15 adds the AuthorizeRouteView to the routing component in the example application.

Listing 39-15. Adding a Component in the Routed.razor File in the Blazor Folder of the Advanced Project

@using Microsoft.AspNetCore.Components.Authorization

<Router AppAssembly="typeof(Startup).Assembly">
<Found>
<AuthorizeRouteView RouteData="@context" DefaultLayout="typeof(NavLayout)">
<NotAuthorized Context="authContext"s>
<h4 class="bg-danger text-white text-center p-2"s>Not Authorized </h4>
<div class="text-center"»
You may need to log in as a different user
</div>
</NotAuthorized>
</AuthorizeRouteView>
</Found>
<NotFound>
<h4 class="bg-danger text-white text-center p-2">
Not Matching Route Found
</h4>
</NotFound>
</Router>

The NotAuthorized section is used to define the content that will be presented to users when they attempt to access a restricted
resource. To demonstrate this feature, I am going to restrict access to the DepartmentList component to users assigned to the
Admins role, as shown in Listing 39-16.

Listing 39-16. Restricting Access in the DepartmentList.cshtml File in the Blazor Folder in the Advanced Project

@page "/departments”

@page "/depts"

@using Microsoft.AspNetCore.Authorization
@attribute [Authorize(Roles = "Admins")]

1051

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
<TableTemplate RowType="Department" RowData="Departments"
Highlight="@(d => d.Name)"
SortDirection="@(d => d.Name)">
<Header>
<tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
</Header>
<RowTemplate Context="d">
<td>@d.Departmentid</td>
<td>@d.Name</td>
<td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
<td>
@(String.Join(", ",
d.People.Select(p => p.Location.City).Distinct()))
</td>
</RowTemplate>
</TableTemplate>
</CascadingValue>

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />
<button class="btn btn-primary" @onclick="HandleClick">People</button>
@code {

[Inject]
public DataContext Context { get; set; }

public IEnumerable<Department> Departments => Context.Departments
.Include(d => d.People).ThenInclude(p => p.Location);

public string Theme { get; set; } = "info";
public string[] Themes = new string[] { "primary", "info", "success" };

[Inject]
public NavigationManager NavManager { get; set; }

public void HandleClick() => NavManager.NavigateTo("/people");

I have used the @attribute directive to apply the Authorize attribute to the component. Restart ASP.NET Core and request
http://localhost:5000/account/logout to remove the authentication cookie and then request http://localhost:5000. When
prompted, authenticate with the username bob and the password secret. You will see the Blazor application, but when you click the
Departments button, you will see the authorization content defined in Listing 39-15, as shown in Figure 39-8. Log out again and log
in as admin with the password secret, and you will be able to use the restricted component.

1052

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

@ localhost 3000/ pecple

<«

@ localnest 5000 depts

C @ localhostS000/pecple

<« C @ localhost:5000/depts ov T

People Not Authorized

UserName |
St You may need to log in as a different user
Password | Details
7 Becker, §
Toggle Links 5 Case, Gu
Toggle Links
) 8 Hays, M m -
Lpb—i—te | . 0. S Sie. A8 P e P i P / I S

Figure 39-8. Using authorization in a Blazor application

Displaying Content to Authorized Users

The AuthorizeView component is used to restrict access to sections of content rendered by a component. In Listing 39-17, [have
changed the authorization for the DepartmentList component so that any authenticated user can access the page and use the
AuthorizeView component so that the contents of the Locations column in the table is shown only to users assigned to the Admins

group.

Listing 39-17. Selective Content in the DepartmentList.razor File in the Blazor Folder in the Advanced Project

@page "/departments”

@page "/depts"

@using Microsoft.AspNetCore.Authorization

@using Microsoft.AspNetCore.Components.Authorization
@attribute [Authorize]

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
<TableTemplate RowType="Department" RowData="Departments"

Highlight="@(d => d.Name)"

SortDirection="@(d => d.Name)">

<Header>
<tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>

</Header>

<RowTemplate Context="d">
<td>@d.Departmentid</td>

<td>@d.Name</td>
<td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
<td>
<AuthorizeView Roles="Admins"»
<Authorized»

@(String.Join(", ",
d.People.Select(p => p.Location.City).Distinct()))
</Authorized»
<NotAuthorized»
(Not authorized)
</NotAuthorized>
</AuthorizeView>
</td>
</RowTemplate>
</TableTemplate>
</CascadingValue>

1053

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />
<button class="btn btn-primary" @onclick="HandleClick">People</button>
@code {
// ...statements omitted for brevity...
The AuthorizeView component is configured with the Roles property, which accepts a comma-separated list of authorized

roles. The Authorized section contains the content that will be shown to authorized users. The NotAuthorized section contains the
content that will be shown to unauthorized users.

Tip You can omit the NotAuthorized section if you don’t need to show content to unauthorized users.

Restart ASP.NET Core and authenticate as bob, with password secret, before requesting http://localhost:5000/depts. This
user is not authorized to see the contents of the Locations column, as shown in Figure 39-9. Authenticate as admin, with password
secret, and request http://localhost:5000/depts again. This time the user is a member of the Admins role and passes the
authorization checks, also shown in Figure 39-9.

Q@ localhost5000/depts

&« C @ localhost:5000/depts b+ 4

| People |

5 * ¢ Select Highlight v

; i Locations

| Details | ID Name People Locations pcobs, | New York, San Jose,
Oakland

2 Development Fuentes, Case, Jacobs, Trujillo | (Not authorized)
I, Hays | New York, Oakland

: 4 Facilities Hoffman, Becker, Hays (Not authorized)
Toggle Links oo
1 Sales Lara (Not authorized) sl
L 3 Support Lloyd (Not authorized) S Jon
Theme

S ¥ T L N R PO SN ST MY S ¥ Sy P

Figure 39-9. Selectively displaying content based on authorization

Authenticating and Authorizing Web Services

The authorization process in the previous section relies on being able to redirect the client to a URL that allows the user to enter
their credentials. A different approach is required when adding authentication and authorization to a web service because there

is no option to present the user with an HTML form to collect their credentials. The first step in adding support for web services
authentication is to disable the redirections so that the client will receive HTTP error responses when attempting to request an
endpoint that requires authentication. Add a class file named CookieAuthenticationExtensions.cs to the Advanced folder and use
it to define the extension method shown in Listing 39-18.

1054

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

Listing 39-18. The Contents of the CookieAuthenticationExtensions.cs File in the Advanced Folder

using System;

using System.Collections.Generic;
using System.Lling;

using System.Linq.Expressions;
using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Authentication.Cookies {
public static class CookieAuthenticationExtensions {

public static void DisableRedirectForPath(
this CookieAuthenticationEvents events,
Expression<Func<CookieAuthenticationEvents,
Func<RedirectContext<CookieAuthenticationOptions>, Task>>> expr,
string path, int statuscode) {

string propertyName = ((MemberExpression)expr.Body).Member.Name;
var oldHandler = expr.Compile().Invoke(events);

Func<RedirectContext<CookieAuthenticationOptions>, Task> newHandler
= context => {
if (context.Request.Path.StartsWithSegments(path)) {
context.Response.StatusCode = statuscode;
} else {
oldHandler(context);
}

return Task.CompletedTask;
};

typeof(CookieAuthenticationEvents).GetProperty(propertyName)
.SetValue(events, newHandler);

This code is hard to follow. ASP.NET Core provides the CookieAuthenticationOptions class, which is used to configure cookie-
based authentication. The CookieAuthenticationOptions.Events property returns a CookieAuthenticationEvents object, which
is used to set the handlers for the events triggered by the authentication system, including the redirections that occur when the
user requests unauthorized content. The extension methods in Listing 39-18 replaces the default handler for an event with one that
performs redirection only if the request doesn’t start with a specified path string. Listing 39-19 uses the extension method to replace
the OnRedirectTologin and OnRedirectToAccessDenied handlers so that redirections are not performed when the request path
starts with /api.

Listing 39-19. Preventing Redirection in the Startup.cs File in the Advanced Folder

using System;

using System.Collections.Generic;

using System.Ling;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Advanced.Models;

1055

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

using Microsoft.AspNetCore.ResponseCompression;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Authentication.Cookies;

namespace Advanced {
public class Startup {

public Startup(IConfiguration config) {
Configuration = config;
}

public IConfiguration Configuration { get; set; }

public void ConfigureServices(IServiceCollection services) {
services.AddDbContext<DataContext>(opts => {
opts.UseSqlServer (Configuration|
"ConnectionStrings:PeopleConnection"]);
opts.EnableSensitiveDatalogging(true);
1;
services.AddControllersWithViews().AddRazorRuntimeCompilation();
services.AddRazorPages().AddRazorRuntimeCompilation();
services.AddServerSideBlazor();
services.AddSingleton<Services.ToggleService>();

services.AddResponseCompression(opts => {
opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });
;s

services.AddDbContext<IdentityContext>(opts =>
opts.UseSqlServer (Configuration|
"ConnectionStrings:IdentityConnection"]));
services.AddIdentity<IdentityUser, IdentityRole>()
.AddEntityFrameworkStores<IdentityContext>();

services.Configure<IdentityOptions>(opts => {
opts.Password.RequiredLength = 6;
opts.Password.RequireNonAlphanumeric = false;
opts.Password.Requirelowercase = false;
opts.Password.RequireUppercase = false;
opts.Password.RequireDigit = false;
opts.User.RequireUniqueEmail = true;
opts.User.AllowedUserNameCharacters = "abcdefghijklmnopgrstuvwxyz";

1

services.AddAuthentication(opts =» {
opts.DefaultScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
opts.DefaultChallengeScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
}) .AddCookie(opts => {
opts.Events.DisableRedirectForPath(e => e.OnRedirectTologin,
"/api", StatusCodes.Status401Unauthorized);
opts.Events.DisableRedirectForPath(e => e.OnRedirectToAccessDenied,
"/api", StatusCodes.Status403Forbidden);

1056

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

public void Configure(IApplicationBuilder app, DataContext context) {

// ...statements omitted for brevity...

The AddAuthentication method is used to select cookie-based authentication and is chained with the AddCookie method to
replace the event handlers that would otherwise trigger redirections.

Building a Simple JavaScript Client

To demonstrate how to perform authentication with web services, I am going to create a simple JavaScript client that will consume
data from the Data controller in the example project.

Tip You don’t have to be familiar with JavaScript to follow the examples in this part of the chapter. It is the server-side code that is
important and the way it supports authentication by the client so that it can access the web service.

Add an HTML Page called webclient.html to the wawroot folder of the Advanced project with the elements shown in Listing 39-20.

Listing 39-20. The Contents of the webclient.html File in the wwwroot Folder of the Advanced Project

<!DOCTYPE html>
<html>
<head>
<title>Web Service Authentication</title>
<link href="/1ib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
<script type="text/javascript" src="webclient.js"></script>
</head>
<body>
<div id="controls" class="m-2"></div>
<div id="data" class="m-2 p-2">
No data
</div>
</body>
</html>

Add a JavaScript file named webclient. js to the wawroot of the Advanced project with the content shown in Listing 39-21.

Listing 39-21. The Contents of the webclient.js File in the wwwroot Folder of the Advanced Project

"bob";
"secret";

const username
const password

window.addEventListener("DOMContentLoaded", () => {
const controlDiv = document.getElementById("controls");
createButton(controlDiv, "Get Data", getData);
createButton(controlDiv, "Log In", login);
createButton(controlDiv, "Log Out", logout);

1

function login() {
// do nothing
}

1057

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

function logout() {
// do nothing
}

async function getData() {
let response = await fetch("/api/people");
if (response.ok) {
let jsonData = await response.json();
displayData(...jsonData.map(item => ~${item.surname}, ${item.firstname}"));
} else {
displayData(Error: ${response.status}: ${response.statusText}");

}

function displayData(...items) {
const dataDiv = document.getElementById("data");
dataDiv.innerHTML = "";
items.forEach(item => {
const itemDiv = document.createElement("div");
itemDiv.innerText = item;
itemDiv.style.wordWrap = "break-word";
dataDiv.appendChild(itemDiv);
1
}

function createButton(parent, label, handler) {
const button = document.createElement("button");
button.classList.add("btn", "btn-primary", "m-2");
button.innerText = label;
button.onclick = handler;
parent.appendChild(button);

This code presents the user with Get Data and Log In and Log Out buttons. Clicking the Get Data button sends an HTTP request
using the Fetch API, processes the JSON result, and displays a list of names. The other buttons do nothing, but I'll use them in later
examples to authenticate with the ASP.NET Core application using the hardwired credentials in the JavaScript code.

Caution This is just a simple client to demonstrate server-side authentication features. If you need to write a JavaScript client, then
consider a framework such as Angular or React. Regardless of how you build your clients, do not include hardwired credentials in the

JavaScript files.

Request http://localhost:5000/webclient.html, and click the Get Data button. The JavaScript client will send an HTTP

request to the Data controller and display the results, as shown in Figure 39-10.

1058

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

@ Web Service Authenticati

@ Web Service Authentication

< C @ localhg
<« C @ localhost:5000/webclient.ntml * e :
Get Data Log In Log Out
No data

Fuentes, Charles
Lara, Murphy
Hoffman, Beasley
Lloyd, Randall
Case, Guzman
Jacobs, Francesca
Becker, Bright
Hays, Marks
Trujillo, Underwood

Figure 39-10. A simple web client

Restricting Access to the Web Service

The standard authorization features are used to restrict access to web service endpoints, and in Listing 39-22, I have applied the
Authorize attribute to the DataController class.

Listing 39-22. Applying an Attribute in the DataController.cs File in the Controllers Folder of the Advanced Project

using Advanced.Models;

using Microsoft.AspNetCore.Mvc;

using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Authorization;

namespace Advanced.Controllers {

[ApiController]

[Route("/api/people")]

[Authorize]

public class DataController : ControllerBase {
private DataContext context;

// ...methods omitted for brevity...

Restart ASP.NET Core and request http://localhost:5000/account/logout to ensure that the JavaScript client doesn’t use
an authentication cookie from a previous example. Request http://localhost:5000/webclient.html to load the JavaScript client
and click the Get Data button to send the HTTP request. The server will respond with a 401 Unauthorized response, as shown in
Figure 39-11.

1059

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

@ Web Service Authentication

< C @ localhost:5000/webclient.html ¥ :

Error: 401: Unauthorized

Figure 39-11. An unauthorized request

Using Cookie Authentication

The simplest way to implement authentication is to rely on the standard ASP.NET Core cookies demonstrated in previous sections.
Add a class file named ApiAccountController.cs to the Controllers folder of the Advanced project and use it to define the
controller shown in Listing 39-23.

Listing 39-23. The Contents of the ApiAccountController.cs File in the Controllers Folder of the Advanced Project

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Mvc;

using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;

namespace Advanced.Controllers {

[ApiController]

[Route("/api/account™)]

public class ApiAccountController : ControllerBase {
private SignInManager<IdentityUser> signinManager;

public ApiAccountController(SignInManager<IdentityUser> mgr) {
signinManager = mgr;
}

[HttpPost("login")]
public async Task<IActionResult> Login([FromBody]Credentials creds) {
Microsoft.AspNetCore.Identity.SignInResult result
= await signinManager.PasswordSignInAsync(creds.Username,
creds.Password, false, false);
if (result.Succeeded) {
return Ok();
}

return Unauthorized();

}

[HttpPost("logout")]

public async Task<IActionResult> Logout() {
await signinManager.SignOutAsync();
return Ok();

1060

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

public class Credentials {
[Required]
public string Username { get; set; }
[Required]
public string Password { get; set; }

This web service controller defines actions that allow clients to log in and log out. The response for a successful authentication

request will contain a cookie that the browser will automatically include in requests made by the JavaScript client.

Listing 39-24 adds support to the simple JavaScript client for authenticating using the action methods defined in Listing 39-23.

Listing 39-24. Adding Authentication in the webclient.js File in the wwwroot Folder of the Advanced Project

const username = "bob";
const password = "secret";

window.addEventListener("DOMContentLoaded", () => {
const controlDiv = document.getElementById("controls");
createButton(controlDiv, "Get Data", getData);
createButton(controlDiv, "Log In", login);
createButton(controlDiv, "Log Out", logout);

1

async function login() {
let response = await fetch("/api/account/login", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ username: username, password: password })
D3
if (response.ok) {
displayData("Logged in");
} else {
displayData(Error: ${response.status}: ${response.statusText}");

}

async function logout() {
let response = await fetch("/api/account/logout”, {
method: "POST"
s
if (response.ok) {
displayData("Logged out");
} else {
displayData(Error: ${response.status}: ${response.statusText}");

}

async function getData() {
let response = await fetch("/api/people");
if (response.ok) {
let jsonData = await response.json();
displayData(...jsonData.map(item => ~${item.surname}, ${item.firstname}"));
} else {
displayData(Error: ${response.status}: ${response.statusText}");
}

1061

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

function displayData(...items) {
const dataDiv = document.getElementById("data");
dataDiv.innerHTML = "";
items.forEach(item => {
const itemDiv = document.createElement("div");
itemDiv.innerText = item;
itemDiv.style.wordWrap = "break-word";
dataDiv.appendChild(itemDiv);
1))
}

function createButton(parent, label, handler) {
const button = document.createElement("button");
button.classList.add("btn", "btn-primary", "m-2");
button.innerText = label;
button.onclick = handler;
parent.appendChild(button);

Restart ASP.NET Core, request http://localhost:5000/webclient.html, and click the Login In button. Wait for the message
confirming authentication and then click the Get Data button. The browser includes the authentication cookie, and the request
passes the authorization checks. Click the Log Out button and then click Get Data again. No cookie is used, and the request fails.
Figure 39-12 shows both requests.

@ Web Service duthentication *

@ Web Sendce Authentention @ Web Service Authenticatio

< C @ localhost5000/webclent < C @ localhost5000/webclienthim &

" Logged out
Logged in i Pt 99 k| Error: 401: Unauthorized

Lara, Murphy
Hoffman, Beasley
Lloyd, Randall
Case, Guzman
Jacobs, Francesca
Becker, Bright
Hays, Marks
Trujille, Underwood

Get Data

]

Figure 39-12. Using cookie authentication

Using Bearer Token Authentication

Not all web services will be able to rely on cookies because not all clients can use then. An alternative is to use a bearer token, which
is a string that clients are given and is included in the requests they send to the web service. Clients don’t understand the meaning of
the token—which is said to be opaque—and just use whatever token the server provides.

I am going to demonstrate authentication using a JSON Web Token (JWT), which provides the client with an encrypted token
that contains the authenticated username. The client is unable to decrypt or modify the token, but when it is included in a request,
the ASP.NET Core server decrypts the token and uses the name it contains as the identity of the user. The JWT format is described in
detail at https://tools.ietf.org/html/rfc7519.

Caution ASPNET Core will trust that any request that includes the token originates from the authenticated user. Just as when using
cookies, production applications should use HTTPS to prevent tokens from being intercepted and reused.

1062

https://tools.ietf.org/html/rfc7519

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

Preparing the Application

Open a new PowerShell command prompt, navigate to the Advanced project folder, and run the commands shown in Listing 39-25 to
add the packages for JWT to the project.

Listing 39-25. Installing the NuGet Package

dotnet add package System.IdentityModel.Tokens.Jwt --version 5.6.0
dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer --version 3.1.1

JWT requires a key that is used to encrypt and decrypt tokens. Add the configuration setting shown in Listing 39-26 to the
appsettings.jsonfile. If you use JWT in a real application, ensure you change the key.

Listing 39-26. Adding a Setting in the appsettings.json File in the Advanced Project

{
"Logging": {
"LoglLevel™: {
"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Information",
"Microsoft.EntityFrameworkCore": "Information",
"Microsoft.AspNetCore.Authentication": "Debug"

}

by
"AllowedHosts": "*",

"ConnectionStrings": {
"PeopleConnection": "Server=(localdb)\\MSSQLLocalDB;Database=People;MultipleActiveResultSets=True",
"IdentityConnection": "Server=(localdb)\\MSSQLLocalDB;Database=Identity;MultipleActiveResultSets=True"
}s

"juwtSecret": "apress_jwt_secret"

Creating Tokens

The client will send an HTTP request that contains user credentials and will receive a JWT in response. Listing 39-27 adds an action
method to the ApiAccount controller that receives the credentials, validates them, and generates tokens.

Listing 39-27. Generating Tokens in the ApiAccountController.cs File in the Controllers Folder of the Advanced Project

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;

using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;

using Microsoft.IdentityModel.Tokens;
using System.IdentityModel.Tokens.Jut;
using System.Text;

using System.Security.Claims;

using System;

using Microsoft.Extensions.Configuration;

1063

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

namespace Advanced.Controllers {

[ApiController]

[Route("/api/account™)]

public class ApiAccountController : ControllerBase {
private SignInManager<IdentityUser> signinManager;
private UserManager<IdentityUser> userManager;
private IConfiguration configuration;

public ApiAccountController(SignInManager<IdentityUser> mgr,
UserManager<IdentityUser> usermgr, IConfiguration config) {
signinManager = mgr;
userManager = usermgr;
configuration = config;

}

[HttpPost("login")]
public async Task<IActionResult> Login([FromBody]Credentials creds) {
Microsoft.AspNetCore.Identity.SignInResult result
= await signinManager.PasswordSignInAsync(creds.Username,
creds.Password, false, false);
if (result.Succeeded) {
return Ok();
}

return Unauthorized();

}

[HttpPost("logout™")]

public async Task<IActionResult> Logout() {
await signinManager.SignOutAsync();
return Ok();

}

[HttpPost("token")]
public async Task<IActionResulty Token([FromBody]Credentials creds) {
if (await CheckPassword(creds)) {
JwtSecurityTokenHandler handler = new JwtSecurityTokenHandler();
byte[] secret = Encoding.ASCII.GetBytes(configuration["jwtSecret"]);
SecurityTokenDescriptor descriptor = new SecurityTokenDescriptor {
Subject = new ClaimsIdentity(new Claim[] {
new Claim(ClaimTypes.Name, creds.Username)
D>
Expires = DateTime.UtcNow.AddHours(24),
SigningCredentials = new SigningCredentials(
new SymmetricSecurityKey(secret),
SecurityAlgorithms.HmacSha256Signature)
b
SecurityToken token = handler.CreateToken(descriptor);
return Ok(new {
success = true,
token = handler.liriteToken(token)

H
}

return Unauthorized();

1064

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

private async Task<bool> CheckPassword(Credentials creds) {
IdentityUser user = await userManager.FindByNameAsync(creds.Username);
if (user != null) {
foreach (IPasswordValidator<IdentityUsexr»> v in
userManager .PasswordValidators) {
if ((await v.ValidateAsync(userManager, user,
creds.Password)).Succeeded) {
return true;

}
}
return false;

}

public class Credentials {
[Required]
public string Username { get; set; }
[Required]
public string Password { get; set; }

The UserManager<T> class defines a PasswordValidators property that returns a sequence of objects that implement the
IPasswordValidator<T> interface. When the Token action method is invoked, it passes the credentials to the CheckPassword
method, which enumerates the IPasswordValidator<T> objects to invoke the ValidateAsync method on each of them. If the
password is validated by any of the validators, then the Token method creates a token.

The JWT specification defines a general-purpose token that can be used more broadly than identifying users in HTTP requests,
and many of the options that are available are not required for this example. The token that is created in Listing 39-27 contains a
payload like this:

"unique_name": "bob",
"nbf": 1579765454,
"exp": 1579851854,
"iat": 1579765454

The unique_name property contains the name of the user and is used to authenticate requests that contain the token. The other
payload properties are timestamps, which I do not use.

The payload is encrypted using the key defined in Listing 39-27 and returned to the client as a JSON-encoded response that
looks like this:

"success":true,
"token":"eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9..."

I have shown just the first part of the token because they are long strings and it is the structure of the response that is important.
The client receives the token and includes it in future requests using the Authorization header, like this:

Authorization: Bearer eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9

1065

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

The server receives the token, decrypts it using the key, and authenticates the request using the value of the unique_name
property from the token payload. No further validation is performed, and requests with a valid token will be authenticated using
whatever username is contained in the payload.

Authenticating with Tokens

The next step is to configure the application to receive and validate the tokens, as shown in Listing 39-28.

Listing 39-28. Authenticating Tokens in the Startup.cs File in the Advanced Project

using System;

using System.Collections.Generic;

using System.Ling;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.EntityFrameworkCore;

using Advanced.Models;

using Microsoft.AspNetCore.ResponseCompression;
using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Authentication.Cookies;
using Microsoft.IdentityModel.Tokens;

using System.Text;

using System.Security.Claims;

using Microsoft.AspNetCore.Authentication.JwtBearer;

namespace Advanced {
public class Startup {

public Startup(IConfiguration config) {
Configuration = config;
}

public IConfiguration Configuration { get; set; }

public void ConfigureServices(IServiceCollection services) {
services.AddDbContext<DataContext>(opts => {
opts.UseSqlServer (Configuration|
"ConnectionStrings:PeopleConnection"]);
opts.EnableSensitiveDatalogging(true);
1;
services.AddControllersiWithViews().AddRazorRuntimeCompilation();
services.AddRazorPages().AddRazorRuntimeCompilation();
services.AddServerSideBlazor();
services.AddSingleton<Services.ToggleService>();

services.AddResponseCompression(opts => {

opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
new[] { "application/octet-stream" });
1;

1066

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

services.AddDbContext<IdentityContext>(opts =>
opts.UseSqlServer(Configuration[
"ConnectionStrings:IdentityConnection"]));

services.AddIdentity<IdentityUser, IdentityRole>()
.AddEntityFrameworkStores<IdentityContext>();

services.Configure<IdentityOptions>(opts => {
opts.Password.RequiredLength = 6;
opts.Password.RequireNonAlphanumeric = false;
opts.Password.Requirelowercase = false;
opts.Password.RequireUppercase = false;
opts.Password.RequireDigit = false;
opts.User.RequireUniqueEmail = true;
opts.User.AllowedUserNameCharacters = "abcdefghijklmnopgrstuvwxyz";

};

services.AddAuthentication(opts => {
opts.DefaultScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
opts.DefaultChallengeScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
}).AddCookie(opts => {
opts.Events.DisableRedirectForPath(e => e.OnRedirectTologin,
"/api", StatusCodes.Status401Unauthorized);
opts.Events.DisableRedirectForPath(e => e.OnRedirectToAccessDenied,
"/api", StatusCodes.Status403Forbidden);
}) .AddIwtBearer(opts => {
opts.RequireHttpsMetadata = false;
opts.SaveToken = true;
opts.TokenValidationParameters = new TokenValidationParameters {
ValidateIssuerSigningKey = true,
IssuerSigningKey = new SymmetricSecurityKey(
Encoding.ASCII.GetBytes(Configuration["jwtSecret”])),
ValidateAudience = false,
ValidateIssuer = false
b
opts.Events = new JwtBearerEvents {
OnTokenValidated = async ctx = {
var usrmgr = ctx.HttpContext.RequestServices
.GetRequiredService<UserManager<IdentityUser>>();
var signinmgr = ctx.HttpContext.RequestServices
.GetRequiredService<SignInManager<IdentityUser>>();
string username =
ctx.Principal.FindFirst(ClaimTypes.Name)?.Value;
IdentityUser idUser = await usrmgr.FindByNameAsync(username);
ctx.Principal =
await signinmgr.CreateUserPrincipalAsync(idUser);

public void Configure(IApplicationBuilder app, DataContext context) {

// ...statements omitted for brevity...

1067

CHAPTER 39 APPLYING ASP.NET CORE IDENTITY

The AddJwtBearer adds support for JWT to the authentication system and provides the settings required to decrypt tokens.
I have added a handler for the OnTokenValidated event, which is triggered when a token is validated so that I can query the user
database and associate the IdentityUser object with the request. This acts as a bridge between the JWT tokens and the ASP.NET
Core Identity data, ensuring that features like role-based authorization work seamlessly.

Restricting Access with Tokens

To allow a restricted endpoint to be accessed with tokens, I have modified the Authorize attribute applied to the Data controller, as
shown in Listing 39-29.

Listing 39-29. Enabling Tokens in the DataController.cs File in the Controllers Folder of the Advanced Project

using Advanced.Models;

using Microsoft.AspNetCore.Mvc;

using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Authorization;

namespace Advanced.Controllers {

[ApiController]
[Route("/api/people")]
[Authorize(AuthenticationSchemes = "Identity.Application, Bearer")]
public class DataController : ControllerBase {
private DataContext context;

// ...methods omitted for brevity...

The AuthenticationSchemes argument is used to specify the types of authentication that can be used to authorize access to the
controller. In this case, I have specified that the default cookie authentication and the new bearer tokens can be used.

Using Tokens to Request Data

The final step is to update the JavaScript client so that it obtains a token and includes it in requests for data, as shown in Listing 39-30.

Listing 39-30. Using Tokens in the webclient.js File in the wwwroot Folder of the Advanced Project

const username
const password
let token;

n bob n ;
"secret";

window.addEventListener("DOMContentLoaded", () => {
const controlDiv = document.getElementById("controls");
createButton(controlDiv, "Get Data", getData);
createButton(controlDiv, "Log In", login);
createButton(controlDiv, "Log Out", logout);

};

async function login() {
let response = await fetch("/api/account/token”, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ username: username, password: password })

CHAPTER 39 ' APPLYING ASP.NET CORE IDENTITY

if (response.ok) {

token = (await response.json()).token;

displayData("Logged in", token);
} else {

displayData(Error: ${response.status}: ${response.statusText}");
}

}

async function logout() {
token = "";
displayData("Logged out");

async function getData() {
let response = await fetch("/api/people”, {
headers: { "Authorization": ~Bearer ${token} }
W H
if (response.ok) {
let jsonData = await response.json();
displayData(...jsonData.map(item => ~${item.surname}, ${item.firstname}"));
} else {
displayData(Error: ${response.status}: ${response.statusText}");

}

function displayData(...items) {
const dataDiv = document.getElementById("data");
dataDiv.innerHTML = "";
items.forEach(item => {
const itemDiv = document.createElement("div");
itemDiv.innerText = item;
itemDiv.style.wordWrap = "break-word";
dataDiv.appendChild(itemDiv);
1))
}

function createButton(parent, label, handler) {
const button = document.createElement("button");
button.classList.add("btn", "btn-primary", "m-2");
button.innerText = label;
button.onclick = handler;
parent.appendChild(button);

The client receives the authentication response and assigns the token so it can be used by the GetData method, which sets the
Authorization header. Notice that no logout request is required, and the variable used to store the token is simply reset when the
user clicks the Log Out button.

Caution It is easy to end up authenticating with a cookie when attempting to test tokens. Make sure you clear your browser cookies
before testing this feature to ensure that cookies from previous tests are not used.

Restart ASP.NET Core and request http://localhost:5000/webclient.html. Click the Log In button, and a token will be
generated and displayed. Click the Get Data button, and the token will be sent to the server and used to authenticate the user,
producing the results shown in Figure 39-13.

1069

CHAPTER 39 * APPLYING ASP.NET CORE IDENTITY

@ Web Service Authentication @ Web Service Authentication
@ Web Service Authentication

C @ localhostst C ® localhost:5000/webclient.htm| b4

C @ localhost:5000/webclienthtml

e o B

No data i it Fuentes, Charles
A Lara, Murphy
eyJhbGeiOiIUzITNilsInRScCI6IkpXVCI9.eyi1 f#
/Yilsim5iZilEMTU3OTe3NjU 1 NiwiZxhwijoxM S
s) 1N | oyd, Randall

QIOJETNzZK3NZYINTZ9x9IkArnH]fBED2cC 2w

Case, Guzman
obSNwM

Jacobs, Francesca
Becker, Bright
Hays, Marks
Trujillo, Underwood

Figure 39-13. Using a token for authentication

Summary

In this chapter, I showed you how to apply authentication and authorization in an ASP.NET Core application. I explained the process
for authenticating users and restricting access to endpoints. I explained how users are authorized in Blazor applications, and I
demonstrated how web service clients can be authenticated using cookies and bearer tokens.

That’s all I have to teach you about ASP.NET Core. I can only hope that you have enjoyed reading this book as much as I enjoyed
writing it, and I wish you every success in your ASP.NET Core projects.

1070

Index

A

Action methods, 444
Action results, 456
ActivatorUtilities class, resolving services, 322
Angular, 4
appsettings.Development.json File, see Configuration
appsettings.json File, see Configuration
Arrays, model binding, 722
ASP.NET Core
application frameworks, 3
Blazor, 4
MVC framework, 3, 4
Razor Pages, 4
architecture, 3
gRPC, 5
platform, 5
SignalR, 5
utility frameworks
ASP.NET Core Identity, 4
Entity Framework Core, 4
ASP.NET Core Identity, 4
access denied endpoint, 1045
application configuration, 1010
authentication cookie, 1039
authentication middleware, 1041
authentication vs. authorization, 1037
authN, 1037
authorization, 1044
Authorize attribute, 1044
endpoints, 1044
web services, 1054
authorization middleware, 1045
Authorize attribute, 1059
AuthenticationSchemes argument, 1068
Roles argument, 1044
authZ, 1037
Blazor applications, 1049
changing passwords, 1025
ClaimsPrincipal class, 1042
creating roles, 1029
creating users, 1015
database configuration, 1009

© Adam Freeman 2020

database migration, 1011
database reset, 1011
deleting roles, 1028
deleting users, 1026
disabling redirection, 1057
editing roles, 1030
editing users, 1023
Entity Framework Core, 1011
enumerating roles, 1028
enumerating users, 1013, 1020
IdentityResult class, 1016
IdentityRole class, 1027
Identity Server, 1049
IdentityUser class, 1012
importance of HTTPS, 1039
logging in, 1037
logging out, 1037, 1040
management tools, 1012
OAuth, 1049
options pattern, 1020
package, adding, 1009
PasswordOptions class, 1020
password validation, 1018
redirection URLs, 1049
RoleManager<T> class, 1027
role membership, 1030
scaffolding, 1012
seed data, 1046
service configuration, 1010
SignInManager<T> class, 1039
two-factor authentication, 1043
UserManager<T>
class, 1012, 1027

UserOptions class, 1021
validating user details, 1020
web services, 1054

bearer tokens, 1062

cookie authentication, 1060

JSON Web Token, 1062

ASP.NET Core Platform, see Platform
Authentication, see ASP.NET Core Identity
Authorization, see ASP.NET Core Identity

1071

A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0

https://doi.org/10.1007/978-1-4842-5440-0

INDEX

B

Blazor, 4, 867

advantages, 867
application errors, 920
elementID, 921
architecture, 867
attributes, parameters, 881
attribute splatting, 898
authorization, 1049
AuthorizeRouteView component, 1051
AuthorizeView component, 1053
bindings, 872, 883
configuring, 885
DateTime bindings, 886
defining, 884, 885
Blazor Server, 4
Blazor WebAssembly, 4
cascading parameters, 915
client-side code, 869
components
applying, 872
attributes, 896
bulk attributes, 897
cascading parameters, 915
child content, 905
code-only, 890
code section, 871
combining, 894
configuration, 896
content section, 871
creating, 870
custom bindings, 901, 903
custom events, 901
custom form, 961
DataAnnotationsValidator, 964
element references, 948
forms, 959
generic templates, 909
InvokeAsync method, 943
invoking from other code, 942
JavaScript, 946, 948, 953
@key expression, 906
LayoutView, 934
partial classes, 888
restricting element reuse, 906
StateHasChanged method, 943
tag helper, 872
templates, 907
ValidationMessage, 964
ValidationSummary, 964
connection errors, 918
element classes, 918
element ID, 918
testing with Fiddler, 919
data validation
components, 964
element classes, 964
disadvantages, 868
EditForm component, 959
enabling, 868
Entity Framework Core

1072

dependency injection scopes, 969
repeated queries, 973
errors, 918
events
attributes, 875
default actions, 881
event types, 876
handler methods names, 878
handler parameters, 877
inline expressions, 880
parameters, 881
propagation, 881
form features, 959
forms
CRUD operations, 978
EditContext features, 983
HTTP connection, 867
hub, 868
imports file, creating, 870
InputCheckbox component, 959
InputDate component, 959
InputNumber component, 959
InputTextArea component, 959
InputText component, 959
JavaScript file, 869
@layout expression, 934
layouts, 934
lifecycle, 935
Parameter attribute, 896, 897
@ref expression, 939
rendering modes, 872

retaining references, @ref expression, 939

routing, 924
configuring fallback, 926
default route, 928
layouts, 933, 934
MapPFallbackToPage method, 926
navigation, 929
NavigationManager service, 930
NavLink component, 929, 934
@page directive, 926
receiving route data, 932
Router component, 924
RouteView component, 924

WebAssembly (see WebAssembly, Blazor)

Blazor Server, see Blazor

Blazor WebAssembly, see Blazor
Bootstrap CSS framework, 371, 857
Bower, 370

C

C#

anonymous types, 95

asynchronous methods, 99
asynchronous enumerable, 102
async keyword, 100
await keyword, 100
tasks, 99

collection initializers, 81

extension methods, 85, 86

index initializers, 82

interfaces
default implementations, 97
extension methods, 86
lambda expressions, 89
expression forms, 93
functions, 90
methods, 93
properties, 93
nameof expressions, 105
non-nullable reference types, 76
null coalescing operator, 75
null conditional operator, 73, 74
object initializers, 81
pattern matching, 83, 84
properties
auto-implemented, 77
read-only, 78
string interpolation, 80
type inference, 95
var keyword, 95
Caching, see Services
Circular references, see Entity Framework Core
Client-Side packages, see Static Content
Collections, model binding, 725
Configuration, 345
appsettings.json File, 345
ASPNETCORE_ENVIRONMENT, 352
command-line arguments, 421
determining the environment, 356
environment-specific configuration, 346, 351
IConfiguration interface, 347
IsDevelopment method, 356
IsProduction method, 356
IsStaging method, 356
launch.json File, 352
launchSettings.json File, 351
listing secrets, 358
middleware components, 347
user secrets, 357
initializing, 358
reading secrets, 359
storing secrets, 358
tooling, 357
Containers, creating, 244
Content Delivery Networks, 655
Content Negotiation, 478
Controllers, 442
Cookies, 374
CookieOptions class, 376
IsEssential property, 378
ITrackingConsentFeature interface, 378
sessions (see Sessions)
tracking cookies, 376, 378
UseCookiePolicy method, 378

D

Data validation
attributes, 461
Range, 462
Required, 462
ModelState property, 462

INDEX

Debugging, 66
Dependency injection, 256, 317

ActivatorUtilities class, 322
Createlnstance method, 323
GetServiceOrCreatelnstance method, 323

AddScoped method, 324, 330

AddSingleton method, 318, 324

AddTransient method, 324

concrete-class services, 421

ConfigureServices method, 318
accessing services, 336

controllers, 447

dependency chains, 334

endpoints, 320
adaptor functions, 321
method parameters, 321

Entity Framework Core scopes, 969

exceptions, 330

factory functions, 337

filters, 787, 808

FromServices attribute, 448

GetRequiredService method, 320

GetService method, 320

HttpContext object, 329
RequestServices property, 331

IServiceProvider interface, extension methods, 320

middleware
constructor parameter, 318
HttpContext object, 320

multiple implementations, 338

options pattern, 274, 349

service lifecycles, 324
AddTransient method, 325
methods, 324
scoped services, 329, 330
singleton services, 324
transient services, 325

service location, 313

singleton pattern, 315

tight coupling, 313

type brokers, 315

unbound types, 341

whether to use, 313

Design patterns, 4
Dictionaries, model binding, 726
Docker, 244

E

Endpoints, controllers, 21
Entity Framework Core, 4

AddDbContext<T> method, 417, 431, 856
ASP.NET Core Identity, 1011
changing primary keys, 830
Column attribute, 430
connection strings, 418, 432, 856
multiple active result sets, 418
context class, 416, 430, 854
creating related data, 840
creating services, 417, 431, 856
data model classes, 416, 428
global tools, installing, 415

1073

INDEX

Entity Framework Core (cont.)
LINQ queries, 422
logging sensitive data, 423
migrations
applying, 419
creating, 418, 432, 857
NuGet packages, installing, 416, 428, 852
related data, 471
circular references, 472
Include method, 471
projecting new objects, 473
related data properties, resetting, 826
seeding data, 419, 430, 854
SQL types, 430
storing data
migrations, 420
SaveChangesAsync method, 422
SaveChanges method, 420
Errata, reporting, 6
Exceptions
developer exception page, 391
HTML error responses, 393, 394
status code responses, 395

F

Files, sending using action results, 456
Filters, 777
action filters, 782, 789, 790
attributes, 782
authorization filters, 782, 783
dependency injection, 787, 808
exception filters, 782, 802
execution order, 782
factories, 806
FilterContext class, 783
global filters, 810
IActionFilter interface, 789
IAlwaysRunResultFilter interface, 797
IAsyncActionFilter interface, 789
IAsyncAlwaysRunResultFilter interface, 797
IAsyncAuthorizationFilter interface, 783
IAsyncExceptionFilter interface, 802
IAsyncPageFilter interface, 793
IAsyncResourceFilter interface, 786
IAsyncResultFilter interface, 797
TAuthorizationFilter interface, 783
IExceptionFilter interface, 802
IFilterFactory interface, 806
interfaces, 782
IOrderedFilter interface, 811
IPageFilter interface, 793
IResourceFilter interface, 786
IResultFilter interface, 797
lifecycle, 804
reusing filters, 806
using scopes, 808
ordering, 811
page filters, 782, 793, 794
RequireHttps, 779
resource filters, 782, 786
result filters, 782, 797

1074

always-run filters, 798
context objects, 797

reusing filters, 806

ServiceFilter attribute, 809

short-circuiting, 782

types, 782

Forms, 821

Blazor form features, 959

button elements
asp-action attribute, 678
asp-controller attribute, 678
asp-page attribute, 678

creating data, 824, 837

creating related data, 840
separate request, 843
single request, 840

CSREF protection, 695
AutoValidateAntiForgeryToken attribute, 696
controllers, 696
IgnoreAntiForgeryToken attribute, 697
JavaScript clients, 699
Razor Pages, 697
security token, 696
ValidateAntiForgeryToken attribute, 697

deleting data, 830, 838

editing data, 828, 838

elements
asp-* attributes, 677
asp-action attribute, 677
asp-controller attribute, 677
asp-page attribute, 677
target, 677

input elements
asp-for attribute, 679
Column attribute, 683
DisplayFormat attribute, 684
formatting values, 682
id attribute, 680
name attribute, 680
related data, 685
type attribute, 680
value attribute, 680

label elements
asp-for attribute, 688
for attribute, 688

Post/Redirect/Get pattern, 672

reading data, 822, 836
resetting, 826, 830

select elements
asp-for attribute, 690
asp-items attribute, 690, 692
SelectList class, 692
SelectListItem class, 692

tag helpers, 672, 676

textarea elements, asp-for attribute, 694

G

General Data Protection Regulation, see Cookies
Globbing selectors, 651

GraphQL, 439

gRPC, 5, 439

H

Host header, request filtering, 397
HTML Forms, see Forms
HTML, Safe Encoding, 552
HttpContext class, 262
HttpRequest class, 263
HttpResponse class, 263
HTTPS, 384
configuring, 385
detecting HTTPS requests, 386
development certificates, 386, 775
enabling, 384
redirection from, 387, 388
status codes, 395
Strict Transport Security, 389
SSL, 384
TLS, 384

Identity, see ASP.NET Core Identity

J,K

jQuery
client-side validation packages, 765
installing package, 646
model validation messages, 746
JSON
serializer configuration, 465
web services, 439
JSON.NET Serializer, 475

L

Library Manager, see Static Content
Lists, model binding, 725
LocalDB, 11, 14
Logging, 361
categories, 361
ILogger<T> interface, 361, 362
log levels, 362, 364
messages, 361
providers, 361
console, 361
Debug, 361
EventSource, 361
list, 361
SQL queries, 423

Middleware
branching, 270
built-in middleware, 256
context objects, 262
cookies, 374
creating, 261, 265
exception handling, 391
Host header filtering, 397
HTTPS, 384
Map method, 270

INDEX

MapWhen method, 272

next function, 264

request pipeline, 255

response caching (see Services)

response compression, UseResponseCompression
method, 415

return path, 267

Run middleware, 273

sessions, 380

short-circuiting, 268

static files, 366

terminal middleware, 272

URL routing (see Routing)

UseDeveloperExceptionPage, 259, 357

UseEndpoints, 259

Use method, 262

UseMiddleware method, 266

UseRouting, 259

using classes, 265

Model binding, 448

arrays, 722

specifying indices, 723
BindNever attribute, 715
BindProperties attribute, 714, 715
collections, 722

arrays, 722

collections of complex types, 728

dictionaries, 726

key/value pairs, 726

lists, 725

sequences, 725

sets, 725

simple collections, 725
complex types, 712

binding to a property, 713

nested types, 715

property binding, 713

selectively binding properties, 719, 720
default values, 710
FromBody attribute, 449, 730, 735
FromForm attribute, 730
FromHeader attribute, 730, 733
FromQuery attribute, 730
FromRoute attribute, 730
FromService attribute, 730
manual binding, 736

TryUpdateModelAsync method, 737
nested types, 715
nullable parameters, 711
over binding, 455
Razor Pages, 708
search locations, 706
simple types, 707

default values, 710
source selection, 730
TryUpdateModelAsync method, 737
understanding, 705

Model validation

AddModelError method, 744

client-side validation
extending, 767
JavaScript packages, 765

1075

INDEX

Model validation (cont.)
explicit validation, 744
GetValidationState method, 744
IsValid property, 744
metadata validation, 757
mismatched model types, 826
model state dictionary, 744
new view model objects, 826
Razor Pages, 754
remote validation, 767
understanding, 742
validating checkboxes, 759
validation attributes, 757
Compare attribute, 758
custom attributes, 761
Range attribute, 758
RegularExpression attribute, 758
Required attribute, 758
StringLength attribute, 758
validation messages, 745
attributes, 745
configuring, 748
element highlighting, 746
jQuery, 746
model-level messages, 752
property-level messages, 751
tag helper, 747
ValidationSummary values, 748
validation states, 744
web services controllers, 761
Model-View-Controller Pattern, 442
MVC Framework
action results, 456
ControllerBase class, 444
controllers, 442
defining, 444
ModelState property, 462
enabling, 443
MVC pattern, 442
NonController attribute, 444
pattern, 3
Razor (see Views)
separation of concerns, 3
views (see Views)

N

.NET Core SDK, 12, 13
NuGet, 260
null values, 73

(0

OpenAPI, see Web Services
Options pattern, 274, 349

P, Q
Pages, model expressions, 631
PATCH method, 474
Platform

client-side packages (see Static Content)

1076

configuration (see Configuration)
Cookies (see Cookies)
distributed cache, 381
exceptions (see Exceptions)
Host header, 397
HTTPS (see HTTPS)
Logging (see Logging)
middleware (see Middleware)
options pattern, 274, 349
request features, 378
request pipeline, 255

branching, 270

return path, 267
services, 256
sessions (see Sessions)
static content (see Static Content)
understanding, 255

Program class, 258
Projects

adding items, 57
adding packages, 260
appsettings files, 257
appsettings.json file (see Configuration)
building projects, 59
client-side packages, 63
compiling projects, 59
creating, 54
dotnet new command, 17
creation, 53
csproj project file, 257, 260
debugging, 66
Empty template, 256
entry point, 258
global.json file, 257
launch.json File, 352
launchSettings.json file, 257, 351
LibMan, 63
managing packages, 62
client-side, 63
tool, 63
opening, 17,19, 53
request pipeline, short-circuiting, 268
running, 20
scaffolding, 58
Startup class, 259
templates, 52
tool packages, 63

R

Razor, see Views
Razor Component, see Blazor
Razor Pages, 4, 559

action results
Page method, implied, 572
redirections, 574
code-behind classes, 570
common base classes, 836
configuration, 559
creating, 560
dependency injection, 584
generated class, 563

HTTP methods, 575
@inject directive, 584
layouts, 580
model validation, 754
multiple handler methods, 834
@page directive, 566
page model, 562, 569
base class, 569
code-behind class, 570
generating URLs, 650
handler parameter/variable, 578
multiple handler methods, 578
multiple HTTP methods, 575
properties, 569
Url property, 650
page view, 563
partial views, 582
MVC Framework, 582
search path, 582
registering tag helpers, 617
routing, 564
conventions, 568
default URL, 566
defining a route, 566
routing convention, 562
runtime compilation, 559
view components, using, 592
React, 4
Redis, see Services
Repository pattern, 132
Response compressions, 415
RESTFul web services, see Web Services
Routing, 5, 22, 282, 283
ambiguous routes
avoiding, 305
ordering, 306
applying middleware, 283
areas, 294
convention routing, 498, 501
defining endpoints, 284
Endpoints, RequestDelegate, 284
endpoint selection, 307
GetEndpoint method, 308
fallback routes, 302
generating URLs, 291, 293
HttpContext.RouteValues property, 288
IEndpointRouteBuilder methods, 284
MapControllerRoute method, 498
MapDefaultControllerRoute method, 500
Razor Pages, 562
route selection, 289
URL patterns, 286
catch-all segments, 298
complex patterns, 294
constraints, 299, 300, 303
default values, 296
optional segments, 296
regular expressions, 301
RouteValuesDictionary class, 288
segment variables, 286, 287
WithMetadata method, 292

INDEX

S

Scaffolding, 58
Security, see ASP.NET Core Identity
Services
AddDistributedSqlServerCache, 408
application lifetime service, 421
caching, 404
AddDistributedMemoryCache method, 408
AddStackExchangeRedisCahce
method, 408
database preparation, 409
data cache, 406
DistributedCacheEntryOptions class, 407
distributed caching, 409
IDistributedCache implementations, 408
IDistributedCache interface, 406
memory cache options, 408
NuGet package, 410
persistent caching, 409
SQL Server cache options, 412
response caching, 412
AddResponseCaching method, 413
Cache-Control header, 414
UseResponseCaching method, 413
Vary header, 415
Sessions, 380
configuration, 382
data cache, 381
ISession interface, 383
session data, 383, 384
SignalR, 5
Single page applications, 4
Singleton pattern, 315
Source maps, 652
SportsStore, 123
administration, 213
Blazor Server, 214
cart, 174, 189
checkout, 200
client-side packages, 151
connection strings, 130
creating projects, 123
data model, 128
deployment, 244
Entity Framework Core, 129
filtering categories, 157
migrations, 134
navigation menu, 165
page counts, fixing, 171
pagination, 140
repository pattern, 132
security, 233
sessions, 178, 189
tag helpers, 143
unit testing, 123
validation, 209
SQL Server, LocalDB, 11, 14
Startup class, 259
Configure method (see Middleware)
ConfigureServices method (see Dependency Injection)
Startup Class, enabling MVC, 443

1077

INDEX

Static Content, 365

Bower, 370

Library Manager, 369
initializing project, 370
installing packages, 370, 857

middleware, 366, 367

wwwroot folder, 365

Status code responses, 395

T

Tag Helper Components, see Tag Helpers
Tag Helpers
anchor elements, 647
Razor Pages, 649
attributes
HtmlAttributeName attribute, 616
naming convention, 616
Blazor, 872
built-in helpers, 647
cache busting, 654
caching content, 661
cache expiry, 663
distributed caching, 663
variations, 665
components, 639
creating, 639
expanding selection, 641
TagHelperComponent class, 639
TagHelperComponentTagHelper
class, 641
context data, 615, 629
TagHelperContext class, 615
ViewContext attribute, 630
coordination, 635
creating, 615
CSS stylesheets, 657
enabling, 647
environment element, 666
forms (see Forms)
globbing, 651
HtmlAttributeNotBound attribute, 630
HtmlTargetElement attribute, 619
images, 660
img elements, 660
JavaScript files, 650
link elements, 657, 658
model expressions, 631
output, 616
ProcessAsync method, 615
Process method, 615
property naming convention, 616
registering, 617
scope
increasing, 620
restricting, 619
script elements, 650
cache busting, 654
content delivery networks, 655
selecting, 651
short-hand elements, 622

1078

suppressing output, 637
TagBuilder class, 625
TagHelperContext class, 615
TagHelperOutput class, 616
validation messages, 747
view components, 591
ViewContext attribute, 630
_ViewImports.cshtml file, 617

Temp data, see Views

Type broker pattern, 315

U

Unit testing, 123
Assert methods, 113
creating the test project, 111
Fact attribute, 113
isolating components, 117
mocking, 120, 121
Moq package, 120
MSTest, 111
NUnit, 111
project templates, 111
running tests, 114, 115
writing tests, 112
XUnit, 111

URL Routing, see Routing

User Secrets, see Configuration

Vv

View Components, 588
applying
Component.InvokeAsync
expression, 589
custom HTML element, 591
Razor Pages, 592
tag helper, 591
vc element, 591
context data, 598
parent view, 600
creating, 589
hybrid classes
controllers, 607
Razor Pages, 604
ViewComponent attribute, 604

ViewComponentContext attribute, 604

Invoke method, 589

parent views, 600

results, 593
HTML fragments, 596
partial views, 593

ViewComponent attribute, 604

ViewComponent class, 589
context data, 598
properties, 598

Views, 23, 593, 595
AddControllersWithViews method, 498

AddRazorRuntimeCompilation method, 498

compilation package, 496
content encoding, disable, 553

content-encoding, 552
CSHTML files, 501
directives, 515
@addTagHelper, 515
@attribute, 515
@functions, 515
@implements, 515
@inherits, 515
@inject, 515, 584
@model, 515
@namespace, 515
@page, 515
@section, 515, 542
@using, 514, 515
expressions
@, 516
attribute values, 518
@await, 516
code blocks, 516
conditional expressions, 518, 520
element content, 517
@foreach, 516
@if, 516
@Model, 516
sequences, 522
@switch, 516
@try, 516
generated classes, 508
generating URLs, 650
Url property, 650
HTML content-encoding, 552
IntelliSense support, 511
JSON content-encoding, 554
layouts, 534
configuring, 535
disabling, 541
optional sections, 545
overriding the default
layout, 538
RenderSection method, 542
section expressions, 542
sections, 542
selecting a layout, 534
selecting programmatically, 539
model expressions, 631
partial views, 548
HTML Helper, 550
partial element, 549
RazorPage<T> class, 509, 510
Razor syntax, 515
recompilation, 503
registering tag helpers, 617
search path, 501
selecting by name, 504
shared views, 505
temp data, 531
keep method, 532
peek method, 532
TempData attribute, 533
TempData property, 532
templated delegates, 551

view bag, 529
view components, 593
view import file, 513, 548
view model object, 502
view start files, 537
Visual Studio
browser selection, 18
installing, 10
LocalDB, 11
workloads, 11
Visual Studio Code
environment selection, 20
installing, 12
LocalDB, 14

W XY Z

WebAssembly, Blazor
base element, 996
base URL, 996
components, 998
CSS styles, 1002
HttpClient service, 1000
layout, 1001
navigation URLs, 999
placeholder components, 997
project creation, 992
project template, 992
setup, 992, 994
shared code, 992
Web Pages, 3
Web Services, 4, 438
action methods, results, 446
action results, 456
actions, HTTP method attributes, 445
ApiController attribute, 463
authentication, 1054
authorization, 1054
content formatting, 477
custom formatters, 479
default policy, 477
JSON formatting, 479
restricting formats, 484
XML formatting, 479
content negotiation, 478
Accept header, 478
Consumes attribute, 484
respecting Accept header, 481
URL, 483
controllers, 442
asynchronous actions, 453
attributes, 445
ControllerBase class, 444
creating, 444
dependency injection, 447
FromServices attribute, 448
model binding (see Model binding)
services, 447
data validation (see Data validation)
endpoints, 439
GraphQL, 439

INDEX

1079

INDEX

Web Services (cont.)

gRPC, 439

HTTP PATCH method, 474

JSON Patch, 439, 474, 475
JSON.NET Serializer, 475
JsonPatchDocument<T> class, 476
NuGet package, 475
specification, 474

model validation, 761

null properties, 464

1080

OpenAP], 486
API Analyzer, 490
conflicts, 486
Nuget Package, 487
ProducesResponseType attribute, 492
Related data, 471
remote model validation, 767
REST, 438
routing, 445
URLs/HTTP Methods, 439

