
Chapter 20 ■ Advanced Web Service Features

483

The argument for the attribute specifies the format that will be used for the result from the action, and more than one type can
be specified. The Produces attribute restricts the types that the MVC Framework will consider when processing an Accept header. To
see the effect of the Produces attribute, use a PowerShell prompt to run the command shown in Listing 20-20.

Listing 20-20.  Requesting Data

Invoke-WebRequest http://localhost:5000/api/content/object -Headers @{Accept="application/xml,application/
json;q=0.8"} | select @{n='Content-Type';e={ $_.Headers."Content-Type" }}, Content

The Accept header tells the MVC Framework that the client prefers XML data but will accept JSON. The Produces attribute
means that XML data isn’t available as the data format for the GetObject action method and so the JSON serializer is selected, which
produces the following response:

Content-Type Content
------------ -------
application/json; charset=utf-8 {"name":"Kayak","price":275.00,
 "categoryId":1,"supplierId":1}

�Requesting a Format in the URL
The Accept header isn’t always under the control of the programmer who is writing the client. In such situations, it can be helpful to
allow the data format for the response to be requested using the URL. This feature is enabled by decorating an action method with
the FormatFilter attribute and ensuring there is a format segment variable in the action method’s route, as shown in Listing 20-21.

Listing 20-21.  Enabling Formatting in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [ApiController]
 [Route("/api/[controller]")]
 public class ContentController : ControllerBase {
 private DataContext context;

 public ContentController(DataContext dataContext) {
 context = dataContext;
 }

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 [Produces("application/json", "application/xml")]
 public async Task<ProductBindingTarget> GetObject() {
 Product p = await context.Products.FirstAsync();
 return new ProductBindingTarget() {
 Name = p.Name, Price = p.Price, CategoryId = p.CategoryId,
 SupplierId = p.SupplierId
 };
 }
 }
}

Chapter 20 ■ Advanced Web Service Features

484

The FormatFilter attribute is an example of a filter, which is an attribute that can modify requests and responses, as described
in Chapter 30. This filter gets the value of the format segment variable from the route that matched the request and uses it to
override the Accept header sent by the client. I have also expanded the range of types specified by the Produces attribute so that the
action method can return both JSON and XML responses.

Each data format supported by the application has a shorthand: xml for XML data and json for JSON data. When the action
method is targeted by a URL that contains one of these shorthand names, the Accept header is ignored, and the specified format is
used. To see the effect, restart ASP.NET Core and use the browser to request http://localhost:5000/api/content/object/json
and http://localhost:5000/api/content/object/xml, which produce the responses shown in Figure 20-6.

�Restricting the Formats Received by an Action Method
Most content formatting decisions focus on the data formats the ASP.NET Core application sends to the client, but the same
serializers that deal with results are used to deserialize the data sent by clients in request bodies. The deserialization process
happens automatically, and most applications will be happy to accept data in all the formats they are configured to send. The
example application is configured to send JSON and XML data, which means that clients can send JSON and XML data in requests.

The Consumes attribute can be applied to action methods to restrict the data types it will handle, as shown in Listing 20-22.

Listing 20-22.  Adding Action Methods in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [ApiController]
 [Route("/api/[controller]")]
 public class ContentController : ControllerBase {
 private DataContext context;

 public ContentController(DataContext dataContext) {
 context = dataContext;
 }

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 [Produces("application/json", "application/xml")]

Figure 20-6.  Requesting data formats in the URL

Chapter 20 ■ Advanced Web Service Features

485

 public async Task<ProductBindingTarget> GetObject() {
 Product p = await context.Products.FirstAsync();
 return new ProductBindingTarget() {
 Name = p.Name, Price = p.Price, CategoryId = p.CategoryId,
 SupplierId = p.SupplierId
 };
 }

 [HttpPost]
 [Consumes("application/json")]
 public string SaveProductJson(ProductBindingTarget product) {
 return $"JSON: {product.Name}";
 }

 [HttpPost]
 [Consumes("application/xml")]
 public string SaveProductXml(ProductBindingTarget product) {
 return $"XML: {product.Name}";
 }
 }
}

The new action methods are decorated with the Consumes attribute, restricting the data types that each can handle. The
combination of attributes means that HTTP POST attributes whose Content-Type header is application/json will be handled by
the SaveProductJson action method. HTTP POST requests whose Content-Type header is application/xml will be handled by
the SaveProductXml action method. Restart ASP.NET Core and use a PowerShell command prompt to run the command shown in
Listing 20-23 to send JSON data to the example application.

Listing 20-23.  Sending JSON Data

Invoke-RestMethod http://localhost:5000/api/content -Method POST -Body (@{ Name="Swimming Goggles";
Price=12.75; CategoryId=1; SupplierId=1} | ConvertTo-Json) -ContentType "application/json"

The request is automatically routed to the correct action method, which produces the following response:

JSON: Swimming Goggles

Run the command shown in Listing 20-24 to send XML data to the example application.

Listing 20-24.  Sending XML Data

Invoke-RestMethod http://localhost:5000/api/content -Method POST -Body "<ProductBindingTarget><Name>Kayak
</Name><Price>275.00</Price><CategoryId>1</CategoryId><SupplierId>1</SupplierId></ProductBindingTarget>"
-ContentType "application/xml"

The request is routed to the SaveProductXml action method and produces the following response:

XML: Kayak

The MVC Framework will send a 415 - Unsupported Media Type response if a request is sent with a Content-Type header that
doesn’t match the data types that the application supports.

Chapter 20 ■ Advanced Web Service Features

486

�Documenting and Exploring Web Services
When you are responsible for developing both the web service and its client, the purpose of each action and its results are obvious
and are usually written at the same time. If you are responsible for a web service that is consumed by third-party developers, then
you may need to provide documentation that describes how the web service works. The OpenAPI specification, which is also known
as Swagger, describes web services in a way that can be understood by other programmers and consumed programmatically. In this
section, I demonstrate how to use OpenAPI to describe a web service and show you how to fine-tune that description.

�Resolving Action Conflicts
The OpenAPI discovery process requires a unique combination of the HTTP method and URL pattern for each action method. The
process doesn’t support the Consumes attribute, so a change is required to the ContentController to remove the separate actions for
receiving XML and JSON data, as shown in Listing 20-25.

Listing 20-25.  Removing an Action in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [ApiController]
 [Route("/api/[controller]")]
 public class ContentController : ControllerBase {
 private DataContext context;

 public ContentController(DataContext dataContext) {
 context = dataContext;
 }

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 [Produces("application/json", "application/xml")]
 public async Task<ProductBindingTarget> GetObject() {
 Product p = await context.Products.FirstAsync();
 return new ProductBindingTarget() {
 Name = p.Name, Price = p.Price, CategoryId = p.CategoryId,
 SupplierId = p.SupplierId
 };
 }

 [HttpPost]
 [Consumes("application/json")]
 public string SaveProductJson(ProductBindingTarget product) {
 return $"JSON: {product.Name}";
 }

Chapter 20 ■ Advanced Web Service Features

487

 //[HttpPost]
 //[Consumes("application/xml")]
 //public string SaveProductXml(ProductBindingTarget product) {
 // return $"XML: {product.Name}";
 //}
 }
}

Commenting out one of the action methods ensures that each remaining action has a unique combination of HTTP method
and URL.

�Installing and Configuring the Swashbuckle Package
The Swashbuckle package is the most popular ASP.NET Core implementation of the OpenAPI specification and will automatically
generate a description for the web services in an ASP.NET Core application. The package also includes tools that consume that
description to allow the web service to be inspected and tested.

Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the commands
shown in Listing 20-26 to install the NuGet package. If you are using Visual Studio, you can select Project ➤ Manage Nuget Packages
and install the package through the Visual Studio package user interface.

Listing 20-26.  Adding a Package to the Project

dotnet add package Swashbuckle.AspNetCore --version 5.0.0-rc2

Add the statements shown in Listing 20-27 to the Startup class to add the services and middleware provided by the
Swashbuckle package.

Listing 20-27.  Configuring Swashbuckle in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.OpenApi.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

Chapter 20 ■ Advanced Web Service Features

488

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });

 services.AddControllers()
 .AddNewtonsoftJson().AddXmlSerializerFormatters();

 services.Configure<MvcNewtonsoftJsonOptions>(opts => {
 opts.SerializerSettings.NullValueHandling
 = Newtonsoft.Json.NullValueHandling.Ignore;
 });

 services.Configure<MvcOptions>(opts => {
 opts.RespectBrowserAcceptHeader = true;
 opts.ReturnHttpNotAcceptable = true;
 });

 services.AddSwaggerGen(options => {
 options.SwaggerDoc("v1",
 new OpenApiInfo { Title = "WebApp", Version = "v1" });
 });
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseRouting();
 app.UseMiddleware<TestMiddleware>();
 app.UseEndpoints(endpoints => {
 endpoints.MapGet("/", async context => {
 await context.Response.WriteAsync("Hello World!");
 });;
 endpoints.MapControllers();
 });
 app.UseSwagger();
 app.UseSwaggerUI(options => {
 options.SwaggerEndpoint("/swagger/v1/swagger.json", "WebApp");
 });
 SeedData.SeedDatabase(context);
 }
 }
}

There are two features set up by the statements in Listing 20-27. The feature generates an OpenAPI description of the web
services that the application contains. You can see the description by restarting ASP.NET Core and using the browser to request the
URL http://localhost:5000/swagger/v1/swagger.json, which produces the response shown in Figure 20-7. The OpenAPI format
is verbose, but you can see each URL that the web service controllers support, along with details of the data each expects to receive
and the range of responses that it will generate.

Chapter 20 ■ Advanced Web Service Features

489

The second feature is a UI that consumes the OpenAPI description of the web service and presents the information in a more
easily understood way, along with support for testing each action. Use the browser to request http://localhost:5000/swagger, and
you will see the interface shown in Figure 20-8. You can expand each action to see details, including the data that is expected in the
request and the different responses that the client can expect.

Figure 20-7.  The OpenAPI description of the web service

Figure 20-8.  The OpenAPI explorer interface

Chapter 20 ■ Advanced Web Service Features

490

�Fine-Tuning the API Description
Relying on the API discovery process can produce a result that doesn’t truly capture the web service. You can see this by examining
the entry in the Products section that describes GET requests matched by the /api/Product/{id} URL pattern. Expand this item
and examine the response section, and you will see there is only one status code response that will be returned, as shown in
Figure 20-9.

The API discovery process makes assumptions about the responses produced by an action method and doesn’t always reflect
what can really happen. In this case, the GetProduct action method in the ProductController class can return another response
that the discovery process hasn’t detected.

...
[HttpGet("{id}")]
public async Task<IActionResult> GetProduct(long id) {
 Product p = await context.Products.FindAsync(id);
 if (p == null) {
 return NotFound();
 }
 return Ok(new {
 ProductId = p.ProductId, Name = p.Name,
 Price = p.Price, CategoryId = p.CategoryId,
 SupplierId = p.SupplierId
 });
}
...

If a third-party developer attempts to implement a client for the web service using the OpenAPI data, they won’t be expecting
the 404 - Not Found response that the action sends when it can’t find an object in the database.

�Running the API Analyzer
ASP.NET Core includes an analyzer that inspects web service controllers and highlights problems like the one described in the
previous section. To enable the analyzer, add the elements shown in Listing 20-28 to the WebApp.cspoj file. (If you are using Visual
Studio, right-click the WebApp project item in the Solution Explorer and select Edit Project File from the popup menu.)

Figure 20-9.  The data formats listed in the OpenAPI web service description

Chapter 20 ■ Advanced Web Service Features

491

Listing 20-28.  Enabling the Analyzer in the WebApp.csproj File in the WebApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson"
 Version="3.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="3.1.1">
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
 buildtransitive</IncludeAssets>
 <PrivateAssets>all</PrivateAssets>
 </PackageReference>
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="3.1.1" />
 <PackageReference Include="Swashbuckle.AspNetCore" Version="5.0.0-rc2" />
 </ItemGroup>

 <PropertyGroup>
 <IncludeOpenAPIAnalyzers>true</IncludeOpenAPIAnalyzers>
 </PropertyGroup>

</Project>

If you are using Visual Studio, you will see any problems detected by the API analyzer shown in the controller class file, as
shown in Figure 20-10.

If you are using Visual Studio Code, you will see warning messages when the project is compiled, either using the dotnet build
command or when it is executed using the dotnet run command. When the project is compiled, you will see this message that
describes the issue in the ProductController class:

Controllers\ProductsController.cs(28,9): warning API1000: Action method returns undeclared status code '404'.
[C:\WebApp\WebApp.csproj]
 1 Warning(s)
 0 Error(s)

Figure 20-10.  A problem detected by the API analyzer

Chapter 20 ■ Advanced Web Service Features

492

�Declaring the Action Method Result Type
To fix the problem detected by the analyzer, the ProducesResponseType attribute can be used to declare each of the response types
that the action method can produce, as shown in Listing 20-29.

Listing 20-29.  Declaring the Result in the ProductsController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WebApp.Models;
using System.Collections.Generic;
using Microsoft.Extensions.Logging;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace WebApp.Controllers {

 [ApiController]
 [Route("api/[controller]")]
 public class ProductsController : ControllerBase {
 private DataContext context;

 public ProductsController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet]
 public IAsyncEnumerable<Product> GetProducts() {
 return context.Products;
 }

 [HttpGet("{id}")]
 [ProducesResponseType(StatusCodes.Status200OK)]
 [ProducesResponseType(StatusCodes.Status404NotFound)]
 public async Task<IActionResult> GetProduct(long id) {
 Product p = await context.Products.FindAsync(id);
 if (p == null) {
 return NotFound();
 }
 return Ok(new {
 ProductId = p.ProductId, Name = p.Name,
 Price = p.Price, CategoryId = p.CategoryId,
 SupplierId = p.SupplierId
 });
 }

 // ...action methods omitted for brevity...
 }
}

Restart ASP.NET Core and use a browser to request http://localhost:5000/swagger, and you will see the description for the
action method has been updated to reflect the 404 response, as shown in Figure 20-11.

Chapter 20 ■ Advanced Web Service Features

493

�Summary
In this chapter, I described some of the advanced features available for creating web services. I explained how to deal with related
data in Entity Framework Core queries, how to support the HTTP PATCH method for handling selective updates, how content
negotiation works, and how to use OpenAPI to describe the web services you create. In the next chapter, I describe how controllers
can generate HTML responses.

Figure 20-11.  Reflecting all the status codes produced by an action method

495© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_21

CHAPTER 21

Using Controllers with Views, Part I

In this chapter, I introduce the Razor view engine, which is responsible for generating HTML responses that can be displayed directly
to the user (as opposed to the JSON and XML responses, which are typically consumed by other applications). Views are files that
contain C# expressions and HTML fragments that are processed by the view engine to generate HTML responses. I show how views
work, explain how they are used in action methods, and describe the different types of C# expression they contain. In Chapter 22, I
describe some of the other features that views support. Table 21-1 puts Razor views in context.

Table 21-2 summarizes the chapter.

Table 21-1.  Putting Razor Views in Context

Question Answer

What are they? Views are files that contain a mix of static HTML content and C# expressions.

Why are they useful? Views are used to create HTML responses for HTTP requests. The C# expressions are evaluated
and combined with the HTML content to create a response.

How are they used? The View method defined by the Controller class creates an action response that uses a view.

Are there any pitfalls or
limitations?

It can take a little time to get used to the syntax of view files and the way they combine code and
content.

Are there any alternatives? There are a number of third-party view engines that can be used in ASP.NET Core MVC, but their
use is limited.

Table 21-2.  Chapter Summary

Problem Solution Listing

Enabling views Use the AddControllersWithViews and MapControllerRoute methods
to set up the required services and endpoints

1–5

Returning an HTML response from a
controller action method

Use the View method to create a ViewResult 6

Creating dynamic HTML content Create a Razor view that uses expressions for dynamic content 7–9, 20, 21

Selecting a view by name Provide the view name as an argument to the View method 10, 11

Creating a view that can be used by
multiple controllers

Create a shared view 12–14

Specifying a model type for a view Use an @model expression 15–19

Generating content selectively Use @if, @switch or @foreach expressions 22–26

Including C# code in a view Use a code block 27

Chapter 21 ■ Using Controllers with Views, Part I

496

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 20. To prepare for this chapter, open a new PowerShell command prompt and
run the command shown in Listing 21-1 in the WebApp folder to install a new package. If you are using Visual Studio, you can install
the package by selecting Project ➤ Manage NuGet Packages.

Listing 21-1.  Adding a Package to the Example Project

dotnet add package Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation --version 3.1.1

Next, replace the contents of the Startup class with the statements shown in Listing 21-2, which remove some of the services
and middleware used in earlier chapters.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 21-2.  Replacing the Contents of the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllers();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 });

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 21 ■ Using Controllers with Views, Part I

497

 SeedData.SeedDatabase(context);
 }
 }
}

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 21-3 to drop the database.

Listing 21-3.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 21-4.

Listing 21-4.  Running the Example Application

dotnet run

The database will be seeded as part of the application startup. Once ASP.NET Core is running, use a web browser to request
http://localhost:5000/api/products, which will produce the response shown in Figure 21-1.

�Getting Started with Views
I started this chapter with a web service controller to demonstrate the similarity with a controller that uses views. It is easy to think
about web service and view controllers as being separate, but it is important to understand that the same underlying features are
used for both types of response. In the sections that follow, I configure the application to support HTML applications and repurpose
the Home controller so that it produces an HTML response.

Figure 21-1.  Running the example application

Chapter 21 ■ Using Controllers with Views, Part I

498

�Configuring the Application
The first step is to configure ASP.NET Core to enable HTML responses, as shown in Listing 21-5.

Listing 21-5.  Changing the Configuration in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapControllerRoute("Default",
 "{controller=Home}/{action=Index}/{id?}");
 });
 SeedData.SeedDatabase(context);
 }
 }
}

HTML responses are created using views, which are files containing a mix of HTML elements and C# expressions. The
AddControllers method I used in Chapter 19 to enable the MVC Framework only supports web service controllers. To enable
support for views, the AddControllersWithViews method is used. The AddRazorRuntimeCompilation method is used to enable the
feature provided by the package installed in Listing 21-1, which makes it easier to work with views during development, as explained
shortly.

The second change is the addition of the MapControllerRoute method in the endpoint routing configuration. Controllers that
generate HTML responses don’t use the same routing attributes that are applied to web service controllers and rely on a feature
named convention routing, which I describe in the next section.

Chapter 21 ■ Using Controllers with Views, Part I

499

�Creating an HTML Controller
Controllers for HTML applications are similar to those used for web services but with some important differences. To create an
HTML controller, add a class file named HomeController.cs to the Controllers folder with the statements shown in Listing 21-6.

Listing 21-6.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 return View(await context.Products.FindAsync(id));
 }
 }
}

The base class for HTML controllers is Controller, which is derived from the ControllerBase class used for web service
controllers and provides additional methods that are specific to working with views.

...
public class HomeController:Controller {
...

Action methods in HTML controllers return objects that implement the IActionResult interface, which is the same result type
used in Chapter 19 to return specific status code responses. The Controller base class provides the View method, which is used to
select a view that will be used to create a response.

...
return View(await context.Products.FindAsync(id));
...

■■ Tip N otice that the controller in Listing 21-6 hasn’t been decorated with attributes. The ApiController attribute is applied only to
web service controllers and should not be used for HTML controllers. The Route and HTTP method attributes are not required because
HTML controllers rely on convention-based routing, which was configured in Listing 21-5 and which is introduced shortly.

The View method creates an instance of the ViewResult class, which implements the IActonResult interface and tells the MVC
Framework that a view should be used to produce the response for the client. The argument to the View method is called the view
model and provides the view with the data it needs to generate a response.

There are no views for the MVC Framework to use at the moment, but if you restart ASP.NET Core and use a browser to request
http://localhost:5000, you will see an error message that shows how the MVC Framework responds to the ViewResult it received
from the Index action method, as shown in Figure 21-2.

Chapter 21 ■ Using Controllers with Views, Part I

500

Behind the scenes, there are two important conventions at work, which are described in the following sections.

■■ Note T here are two features that can expand the range of search locations. The search will include the /Pages/Shared folder if the
project uses Razor Pages, as explained in Chapter 23.

�Understanding Convention Routing
HTML controllers rely on convention routing instead of the Route attribute. The convention in this term refers to the use of the
controller class name and the action method name used to configure the routing system, which was done in Listing 21-6 by adding
this statement to the endpoint routing configuration:

...
endpoints.MapControllerRoute("Default", "{controller=Home}/{action=Index}/{id?}");
...

The route that this statement sets up matches two- and three-segment URLs. The value of the first segment is used as the
name of the controller class, without the Controller suffix, so that Home refers to the HomeController class. The second segment
is the name of the action method, and the optional third segment allows action methods to receive a parameter named id. Default
values are used to select the Index action method on the Home controller for URLs that do not contain all the segments. This is such
a common convention that the same routing configuration can be set up without having to specify the URL pattern, as shown in
Listing 21-7.

Listing 21-7.  Using the Default Routing Convention in the Startup.cs File in the WebApp Folder

...
public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

Figure 21-2.  Using a view result

Chapter 21 ■ Using Controllers with Views, Part I

501

 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 });
 SeedData.SeedDatabase(context);
}
...

The MapDefaultControllerRoute method avoids the risk of mistyping the URL pattern and sets up the convention-based
routing. I have configured one route in this chapter, but an application can define as many routes as it needs, and later chapters
expand the routing configuration to make examples easier to follow.

■■ Tip T he MVC Framework assumes that any public method defined by an HTML controller is an action method and that action
methods support all HTTP methods. If you need to define a method in a controller that is not an action, you can make it private or,
if that is not possible, decorate the method with the NonAction attribute. You can restrict an action method to support specific HTTP
methods by applying attributes so that the HttpGet attribute denotes an action that handles GET requests, the HttpPost method
denotes an action that handles POST requests, and so on.

�Understanding the Razor View Convention
When the Index action method defined by the Home controller is invoked, it uses the value of the id parameter to retrieve an object
from the database and passes it to the View method.

...
public async Task<IActionResult> Index(long id = 1) {
 return View(await context.Products.FindAsync(id));
}
...

When an action method invokes the View method, it creates a ViewResult that tells the MVC Framework to use the default
convention to locate a view. The Razor view engine looks for a view with the same name as the action method, with the addition of
the cshtml file extension, which is the file type used by the Razor view engine. Views are stored in the Views folder, grouped by the
controller they are associated with. The first location searched is the Views/Home folder, since the action method is defined by the
Home controller (the name of which is taken by dropping Controller from the name of the controller class). If the Index.cshtml
file cannot be found in the Views/Home folder, then the Views/Shared folder is checked, which is the location where views that are
shared between controllers are stored.

While most controllers have their own views, views can also be shared so that common functionality doesn’t have to be
duplicated, as demonstrated in the “Using Shared Views” section.

The exception response in Figure 21-2 shows the result of both conventions. The routing conventions are used to process the
request using the Index action method defined by the Home controller, which tells the Razor view engine to use the view search
convention to locate a view. The view engine uses the name of the action method and controller to build its search pattern and
checks for the Views/Home/Index.cshtml and Views/Shared/Index.cshtml files.

�Creating a Razor View
To provide the MVC Framework with a view to display, create the Views/Home folder and add to it a file named Index.cshtml with
the content shown in Listing 21-8. If you are using Visual Studio, create the view by right-clicking the Views/Home folder, selecting
Add ➤ New Item from the popup menu, and selecting the Razor View item in the ASP.NET Core ➤ Web category, as shown in
Figure 21-3.

Chapter 21 ■ Using Controllers with Views, Part I

502

■■ Tip T here is a menu item for creating views in the Add popup menu, but this relies on the Visual Studio scaffolding feature, which
adds template content to create different types of view. I don’t rely on the scaffolding in this book and instead show you how to create
views from scratch.

Listing 21-8.  The Contents of the Index.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">Product Table</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

The view file contains standard HTML elements that are styled using the Bootstrap CSS framework, which is applied through
the class attribute. The key view feature is the ability to generate content using C# expressions, like this:

...
<tr><th>Name</th><td>@Model.Name</td></tr>
<tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
...

Figure 21-3.  Creating a view using Visual Studio

Chapter 21 ■ Using Controllers with Views, Part I

503

I explain how these expressions work in the “Understanding the Razor Syntax” section, but for now, it is enough to know that
these expressions insert the value of the Name and Price properties from the Product view model passed to the View method by the
action method in Listing 21-6. Restart ASP.NET Core and use a browser to request http://localhost:5000, and you will see the
HTML response shown in Figure 21-4.

�Modifying a Razor View
The package I added in Listing 21-1 and configured in Listing 21-5 detects and recompiles Razor views automatically, meaning that
the ASP.NET Core runtime doesn’t have to be restarted. To demonstrate the recompilation process, Listing 21-9 adds new elements
to the Index view.

Listing 21-9.  Adding Elements in the Index.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">Product Table</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Save the changes to the view and reload the browser window without restarting ASP.NET Core. The changes to the view will be
detected, and there will be a brief pause as the views are compiled, after which the response shown in Figure 21-5 will be displayed.

■■ Note T his feature applies only to views and not the C# classes in a project. If you make a change to a class file, then you will have
to restart ASP.NET Core for the change to take effect.

Figure 21-4.  A view response

Chapter 21 ■ Using Controllers with Views, Part I

504

�Selecting a View by Name
The action method in Listing 21-6 relies entirely on convention, leaving Razor to select the view that is used to generate the response.
Action methods can select a view by providing a name as an argument to the View method, as shown in Listing 21-10.

Listing 21-10.  Selecting a View in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 Product prod = await context.Products.FindAsync(id);
 if (prod.CategoryId == 1) {
 return View("Watersports", prod);
 } else {
 return View(prod);
 }
 }
 }
}

The action method selects the view based on the CategoryId property of the Product object that is retrieved from the
database. If the CategoryId is 1, the action method invokes the View method with an additional argument that selects a view named
Watersports.

...
return View("Watersports", prod);
...

Figure 21-5.  Modifying a Razor view

Chapter 21 ■ Using Controllers with Views, Part I

505

Notice that the action method doesn’t specify the file extension or the location for the view. It is the job of the view engine to
translate Watersports into a view file. To create the view, add a Razor view file named Watersports.cshtml file to the Views/Home
folder with the content shown in Listing 21-11.

Listing 21-11.  The Contents of the Watersports.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

The new view follows the same pattern as the Index view but has a different title above the table. Since the HomeController
class has been changed, restart ASP.NET Core and request http://localhost:5000/home/index/1 and http://localhost:5000/
home/index/4. The action method selects the Watersports view for the first URL and the default view for the second URL, producing
the two responses shown in Figure 21-6.

�Using Shared Views
When the Razor view engine locates a view, it looks in the View/[controller] folder and then the Views/Shared folder. This search
pattern means that views that contain common content can be shared between controllers, avoiding duplication. To see how this
process works, add a Razor view file named Common.cshtml to the Views/Shared folder with the content shown in Listing 21-12.

Figure 21-6.  Selecting views

Chapter 21 ■ Using Controllers with Views, Part I

506

Listing 21-12.  The Contents of the Common.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Shared View</h6>
</body>
</html>

Next, add an action method to the Home controller that uses the new view, as shown in Listing 21-13.

Listing 21-13.  Adding an Action in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 Product prod = await context.Products.FindAsync(id);
 if (prod.CategoryId == 1) {
 return View("Watersports", prod);
 } else {
 return View(prod);
 }
 }

 public IActionResult Common() {
 return View();
 }
 }
}

The new action relies on the convention of using the method name as the name of the view. When a view doesn’t require any
data to display to the user, the View method can be called without arguments. Next, create a new controller by adding a class file
named SecondController.cs to the Controllers folder, with the code shown in Listing 21-14.

Listing 21-14.  The Contents of the SecondController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace WebApp.Controllers {

 public class SecondController : Controller {

Chapter 21 ■ Using Controllers with Views, Part I

507

 public IActionResult Index() {
 return View("Common");
 }
 }
}

The new controller defines a single action, named Index, which invokes the View method to select the Common view. Restart ASP.
NET Core and navigate to http://localhost:5000/home/common and http://localhost:5000/second, both of which will render
the Common view, producing the responses shown in Figure 21-7.

SPECIFYING A VIEW LOCATION

The Razor view engine will look for a controller-specific view before a shared view. You can change this behavior by specifying
the complete path to a view file, which can be useful if you want to select a shared view that would otherwise be ignored
because there is a controller-specific view with the same name.

...
public IActionResult Index() {
 return View("/Views/Shared/Common.cshtml");
}
...

When specifying the view, the path relative to the project folder must be specified, starting with the / character. Notice that the
full name of the file, including the file extension, is used.

This is a technique that should be used sparingly because it creates a dependency on a specific file, rather than allowing the
view engine to select the file.

�Working with Razor Views
Razor views contain HTML elements and C# expressions. Expressions are mixed in with the HTML elements and denoted with the
@ character, like this:

...
<tr><th>Name</th><td>@Model.Name</td></tr>
...

Figure 21-7.  Using a shared view

Chapter 21 ■ Using Controllers with Views, Part I

508

When the view is used to generate a response, the expressions are evaluated, and the results are included in the content sent to the
client. This expression gets the name of the Product view model object provided by the action method and produces output like this:

...
<tr><th>Name</th><td>Corner Flags</td></tr>
...

This transformation can seem like magic, but Razor is simpler than it first appears. Razor views are converted into C# classes
that inherit from the RazorPage class, which are then compiled like any other C# class.

■■ Tip  You can see the generated view classes by examining the contents of the obj/Debug/netcoreapp3.0/Razor/Views folder with
the Windows File Explorer.

The view from Listing 21-11, for example, would be transformed into a class like this:

using Microsoft.AspNetCore.Mvc.Razor;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ViewFeatures;

namespace AspNetCore {

 public class Views_Home_Watersports : RazorPage<dynamic> {

 public async override Task ExecuteAsync() {
 WriteLiteral("<!DOCTYPE html>\r\n<html>\r\n");
 WriteLiteral("<head>");
 WriteLiteral(@"<link
 href=""/lib/twitter-bootstrap/css/bootstrap.min.css""
 rel=""stylesheet"" />");
 WriteLiteral("</head>");
 WriteLiteral("<body>");
 WriteLiteral(@"<h6 class=""bg-secondary text-white text-center
 m-2 p-2"">Watersports</h6>\r\n<div class=""m-2"">\r\n<table
 class=""table table-sm table-striped table-bordered"">\r\n
 <tbody>\r\n>");
 WriteLiteral("<th>Name</th><td>");
 Write(Model.Name);
 WriteLiteral("</td></tr>");
 WriteLiteral("<tr><th>Price</th><td>");
 Write(Model.Price.ToString("c"));
 WriteLiteral("</td></tr>\r\n<tr><th>Category ID</th><td>");
 Write(Model.CategoryId);
 WriteLiteral("</td></tr>\r\n</tbody>\r\n</table>\r\n</div>");
 WriteLiteral("</body></html>");
 }

 public IUrlHelper Url { get; private set; }
 public IViewComponentHelper Component { get; private set; }
 public IJsonHelper Json { get; private set; }
 public IHtmlHelper<dynamic> Html { get; private set; }
 public IModelExpressionProvider ModelExpressionProvider { get; private set; }
 }
}

Chapter 21 ■ Using Controllers with Views, Part I

509

This class is a simplification of the code that is generated so that I can focus on the features that are most important for this
chapter. The first point to note is that the class generated from the view inherits from the RazorPage<T> class.

...
public class Views_Home_Watersports : RazorPage<dynamic> {
...

Table 21-3 describes the most useful properties and methods defined by RazorPage<T>.

CACHING RESPONSES

Responses from views can be cached by applying the ResponseCache attribute to action methods (or to the controller class,
which caches the responses from all the action methods). See Chapter 17 for details of how response caching is enabled.

The expressions in the view are translated into calls to the Write method, which encodes the result of the expression so that it
can be included safely in an HTML document. The WriteLiteral method is used to deal with the static HTML regions of the view,
which don’t need further encoding.

■■ Tip S ee Chapter 22 for more details about HTML encoding.

The result is a fragment like this from the CSHTML file:

...
<tr><th>Name</th><td>@Model.Name</td></tr>
...

This is converted into a series of C# statements like these in the ExecuteAsync method:

...
WriteLiteral("<th>Name</th><td>");
Write(Model.Name);
WriteLiteral("</td></tr>");
...

Table 21-3.  The RazorPage<T> Members

Name Description

Context This property returns the HttpContext object for the current request.

Layout This property is used to set the view layout, as described in Chapter 22.

Model This property returns the view model passed to the View method by the action.

RenderBody() This method is used in layouts to include content from a view, as described in Chapter 22.

RenderSection() This method is used in layouts to include content from a section in a view, as described in Chapter 22.

TempData This property is used to access the temp data feature, which is described in Chapter 22.

ViewBag This property is used to access the view bag, which is described in Chapter 22.

ViewContext This property returns a ViewContext object that provides context data.

ViewData This property returns the view data, which I used for unit testing controllers in the SportsStore application.

Write(str) This method writes a string, which will be safely encoded for use in HTML.

WriteLiteral(str) This method writes a string without encoding it for safe use in HTML.

Chapter 21 ■ Using Controllers with Views, Part I

510

When the ExecuteAsync method is invoked, the response is generated with a mix of the static HTML and the expressions
contained in the view. When the statements in the generated class are executed, the combination of the HTML fragments and the
results from evaluating the expressions are written to the response, producing HTML like this:

...
<th>Name</th><td>Kayak</td></tr>
...

In addition to the properties and methods inherited from the RazorPage<T> class, the generated view class defines the
properties described in Table 21-4, some of which are used for features described in later chapters.

�Setting the View Model Type
The generated class for the Watersports.cshtml file is derived from RazorPage<T>, but Razor doesn’t know what type will be used
by the action method for the view model, so it has selected dynamic as the generic type argument. This means that the
@Model expression can be used with any property or method name, which is evaluated at runtime when a response is generated.
To demonstrate what happens when a nonexistent member is used in an exception, add the content shown in Listing 21-15 to the
Watersports.cshtml file.

Listing 21-15.  Adding Content in the Watersports.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 <tr><th>Tax Rate</th><td>@Model.TaxRate</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Table 21-4.  The Additional View Class Properties

Name Description

Component This property returns a helper for working with view components, which is accessed through the vc
tag helper described in Chapter 25.

Html This property returns an implementation of the IHtmlHelper interface. This property is used to
manage HTML encoding, as described in Chapter 22.

Json This property returns an implementation of the IJsonHelper interface, which is used to encode
data as JSON, as described in Chapter 22.

ModelExpressionProvider This property provides access to expressions that select properties from the model, which is used
through tag helpers, described in Chapters 25–27.

Url This property returns a helper for working with URLs, as described in Chapter 26.

Chapter 21 ■ Using Controllers with Views, Part I

511

Use a browser to request http://localhost:5000, and you will see the exception shown in Figure 21-8.

To check expressions during development, the type of the Model object can be specified using the model keyword, as shown in
Listing 21-16.

■■ Tip I t is easy to get the two terms confused. Model, with an uppercase M, is used in expressions to access the view model object
provided by the action method, while model, with a lowercase m, is used to specify the type of the view model.

Listing 21-16.  Declaring the Model Type in the Watersports.cshtml File in the Views/Home Folder

@model WebApp.Models.Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 <tr><th>Tax Rate</th><td>@Model.TaxRate</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

An error warning will appear in the editor after a few seconds, as Visual Studio or Visual Studio Code checks the view in the
background, as shown in Figure 21-9. The compiler will also report an error if you build the project or use the dotnet build or
dotnet run command.

Figure 21-8.  Using a nonexistent property in a view expression

Chapter 21 ■ Using Controllers with Views, Part I

512

When the C# class for the view is generated, the view model type is used as the generic type argument for the base class, like
this:

...
public class Views_Home_Watersports : RazorPage<Product> {
...

Specifying a view model type allows Visual Studio and Visual Studio Code to suggest property and method names as you edit
views. Replace the nonexistent property with the one shown in Listing 21-17.

Listing 21-17.  Replacing a Property in the Watersports.cshtml File in the Views/Home Folder

@model WebApp.Models.Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 <tr><th>Supplier ID</th><td>@Model.SupplierId</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

As you type, the editor will prompt you with the possible member names defined by the view model class, as shown in
Figure 21-10. This figure shows the Visual Studio code editor, but Visual Studio Code has a comparable feature.

Figure 21-9.  An error warning in a view file

Chapter 21 ■ Using Controllers with Views, Part I

513

�Using a View Imports File
When I declared the view model object at the start of the Watersports.cshtml file, I had to include the namespace that contains the
class, like this:

...
@model WebApp.Models.Product
...

By default, all types that are referenced in a Razor view must be qualified with a namespace. This isn’t a big deal when the only
type reference is for the model object, but it can make a view more difficult to read when writing more complex Razor expressions
such as the ones I describe later in this chapter.

You can specify a set of namespaces that should be searched for types by adding a view imports file to the project. The view
imports file is placed in the Views folder and is named _ViewImports.cshtml.

■■ Note  Files in the Views folder whose names begin with an underscore (the _ character) are not returned to the user, which allows
the file name to differentiate between views that you want to render and the files that support them. View imports files and layouts
(which I describe shortly) are prefixed with an underscore.

If you are using Visual Studio, right-click the Views folder in the Solution Explorer, select Add ➤ New Item from the pop-up
menu, and select the Razor View Imports template from the ASP.NET Core category, as shown in Figure 21-11.

Figure 21-10.  Editor suggestions when using a view model type

Chapter 21 ■ Using Controllers with Views, Part I

514

Visual Studio will automatically set the name of the file to _ViewImports.cshtml, and clicking the Add button will create the
file, which will be empty. If you are using Visual Studio Code, simply select the Views folder and add a new file called _ViewImports.
cshtml.

Regardless of which editor you used, add the expression shown Listing 21-18.

Listing 21-18.  The Contents of the _ViewImports.cshtml File in the Views Folder

@using WebApp.Models

The namespaces that should be searched for classes used in Razor views are specified using the @using expression, followed by
the namespace. In Listing 21-18, I have added an entry for the WebApp.Models namespace that contains the view model class used in
the Watersports.cshtml view.

Now that the namespace is included in the view imports file, I can remove the namespace from the view, as shown in
Listing 21-19.

■■ Tip  You can also add an @using expression to individual view files, which allows types to be used without namespaces in a single
view.

Listing 21-19.  Simplifying the Model Type in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>

Figure 21-11.  Creating a view imports file

Chapter 21 ■ Using Controllers with Views, Part I

515

 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 <tr><th>Supplier ID</th><td>@Model.SupplierId</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Save the view file and use a browser to request http://localhost:5000, and you will see the response shown in Figure 21-12.

�Understanding the Razor Syntax
The Razor compiler separates the static fragments of HTML from the C# expressions, which are then handled separately in the
generated class file. There are several types of expression that can be included in views, which I describe in the sections that follow.

�Understanding Directives
Directives are expressions that give instructions to the Razor view engine. The @model expression is a directive, for example, that tells
the view engine to use a specific type for the view model, while the @using directive tells the view engine to import a namespace.
Table 21-5 describes the most useful Razor directives.

Figure 21-12.  Using a view imports file

Chapter 21 ■ Using Controllers with Views, Part I

516

�Understanding Content Expressions
Razor content expressions produce content that is included in the output generated by a view. Table 21-6 describes the most useful
content expressions, which are demonstrated in the sections that follow.

�Setting Element Content
The simplest expressions are evaluated to produce a single value that is used as the content for an HTML element in the response
sent to the client. The most common type of expression inserts a value from the view model object, like these expressions from the
Watersports.cshtml view file:

Table 21-5.  Useful Razor Directives

Name Description

@model This directive specifies the type of the view model.

@using This directive imports a namespace.

@page This directive denotes a Razor Page, described in Chapter 23.

@section This directive denotes a layout section, as described In Chapter 22.

@addTagHelper This directive adds tag helpers to a view, as described in Chapter 25.

@namespace This directive sets the namespace for the C# class generated from a view.

@functions This directive adds C# properties and methods to the C# class generated from a view and is commonly used
in Razor Pages, as described in Chapter 23.

@attribute This directive adds an attribute to the C# class generated from a view. I use this feature to apply authorization
restrictions in Chapter 38.

@implements This directive declares that the C# class generated from a view inherits an interface or is derived from a base
class. This feature is demonstrated in Chapter 33.

@inherits This directive sets the base class for the C# class generated from a view. This feature is demonstrated in
Chapter 33.

@inject This directive provides a view with direct access to a service through dependency injection. This feature is
demonstrated in Chapter 23.

Table 21-6.  Useful Razor Content Expressions

Name Description

@<expression> This is the basic Razor expression, which is evaluated, and the result it produces is inserted into the response.

@if This expression is used to select regions of content based on the result of an expression. See the “Using
Conditional Expressions” section for examples.

@switch This expression is used to select regions of content based on the result of an expression. See the “Using
Conditional Expressions” section for examples.

@foreach This expression generates the same region of content for each element in a sequence. See the “Enumerating
Sequences” for examples.

@{ ... } This expression defines a code block. See the “Using Razor Code Blocks” section for an example.

@: This expression denotes a section of content that is not enclosed in HTML elements. See the “Using
Conditional Expressions” section for an example.

@try This expression is used to catch exceptions.

@await This expression is used to perform an asynchronous operation, the result of which is inserted into the
response. See Chapter 24 for examples.

Chapter 21 ■ Using Controllers with Views, Part I

517

...
<tr><th>Name</th><td>@Model.Name</td></tr>
<tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
...

This type of expression can read property values or invoke methods, as these examples demonstrate. Views can contain more
complex expressions, but these need to be enclosed in parentheses so that the Razor compiler can differentiate between the code
and static content, as shown in Listing 21-20.

Listing 21-20.  Adding Expressions in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Tax</th><td>@Model.Price * 0.2m</td></tr>
 <tr><th>Tax</th><td>@(Model.Price * 0.2m)</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Use a browser to request http://localhost:5000; the response, shown in Figure 21-13, shows why parentheses are important.

The Razor view compiler matches expressions conservatively and has assumed that the asterisk and the numeric value in the
first expression are static content. This problem is avoided by parentheses for the second expression.

Figure 21-13.  Expressions with and without parentheses

Chapter 21 ■ Using Controllers with Views, Part I

518

�Setting Attribute Values
An expression can be used to set the values of element attributes, as shown in Listing 21-21.

Listing 21-21.  Setting an Attribute in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered"
 data-id="@Model.ProductId">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Tax</th><td>@Model.Price * 0.2m</td></tr>
 <tr><th>Tax</th><td>@(Model.Price * 0.2m)</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

I used the Razor expressions to set the value for some data attributes on the table element.

■■ Tip  Data attributes, which are attributes whose names are prefixed by data-, have been an informal way of creating custom
attributes for many years and have been made part of the formal standard as part of HTML5. They are most often applied so that
JavaScript code can locate specific elements or so that CSS styles can be more narrowly applied.

If you request http://localhost:5000 and look at the HTML source that is sent to the browser, you will see that Razor has set
the values of the attribute, like this:

...
<table class="table table-sm table-striped table-bordered" data-id="1">
 <tbody>
 <tr><th>Name</th><td>Kayak</td></tr>
 <tr><th>Price</th><td>$275.00</td></tr>
 <tr><th>Tax</th><td>275.00 * 0.2m</td></tr>
 <tr><th>Tax</th><td>55.000</td></tr>
 </tbody>
</table>
...

�Using Conditional Expressions
Razor supports conditional expressions, which means that the output can be tailored based on the view model. This technique is
at the heart of Razor and allows you to create complex and fluid responses from views that are simple to read and maintain. In
Listing 21-22, I have added a conditional statement to the Watersports view.

Chapter 21 ■ Using Controllers with Views, Part I

519

Listing 21-22.  Using an If Expression in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered"
 data-id="@Model.ProductId">
 <tbody>
 @if (Model.Price > 200) {
 <tr><th>Name</th><td>Luxury @Model.Name</td></tr>
 } else {
 <tr><th>Name</th><td>Basic @Model.Name</td></tr>
 }
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Tax</th><td>@Model.Price * 0.2m</td></tr>
 <tr><th>Tax</th><td>@(Model.Price * 0.2m)</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

The @ character is followed by the if keyword and a condition that will be evaluated at runtime. The if expression supports
optional else and elseif clauses and is terminated with a close brace (the } character). If the condition is met, then the content in
the if clause is inserted into the response; otherwise, the content in the else clause is used instead.

Notice that the @ prefix isn’t required to access a Model property in the condition.

...
@if (Model.Price > 200) {
...

But the @ prefix is required inside the if and else clauses, like this:

...
<tr><th>Name</th><td>Luxury @Model.Name</td></tr>
...

To see the effect of the conditional statement, use a browser to request http://localhost:5000/home/index/1 and http://
localhost:5000/home/index/2. The conditional statement will produce different HTML elements for these URLs, as shown in
Figure 21-14.

Chapter 21 ■ Using Controllers with Views, Part I

520

Razor also supports @switch expressions, which can be a more concise way of handling multiple conditions, as shown in
Listing 21-23.

Listing 21-23.  Using a Switch Expression in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered"
 data-id="@Model.ProductId">
 <tbody>
 @switch (Model.Name) {
 case "Kayak":
 <tr><th>Name</th><td>Small Boat</td></tr>
 break;
 case "Lifejacket":
 <tr><th>Name</th><td>Flotation Aid</td></tr>
 break;
 default:
 <tr><th>Name</th><td>@Model.Name</td></tr>
 break;
 }
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Tax</th><td>@Model.Price * 0.2m</td></tr>
 <tr><th>Tax</th><td>@(Model.Price * 0.2m)</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Conditional expressions can lead to the same blocks of content being duplicated for each result clause. In the switch
expression, for example, each case clause differs only in the content of the td element, while the tr and th elements remain the
same. To remove this duplication, conditional expressions can be used within an element, as shown in Listing 21-24.

Figure 21-14.  Using a conditional statement

Chapter 21 ■ Using Controllers with Views, Part I

521

Listing 21-24.  Setting Content in the Watersports.cshtml File in the Views/Home Folder

@model Product
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Watersports</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered"
 data-id="@Model.ProductId">
 <tbody>
 <tr><th>Name</th><td>
 @switch (Model.Name) {
 case "Kayak":
 @:Small Boat
 break;
 case "Lifejacket":
 @:Flotation Aid
 break;
 default:
 @Model.Name
 break;
 }
 </td></tr>
 <tr><th>Price</th><td>@Model.Price.ToString("c")</td></tr>
 <tr><th>Tax</th><td>@Model.Price * 0.2m</td></tr>
 <tr><th>Tax</th><td>@(Model.Price * 0.2m)</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

The Razor compiler needs help with literal values that are not enclosed in HTML elements, requiring the @: prefix, like this:

...
@:Small Boat
...

The compiler copes with HTML elements because it detects the open tag, but this additional help is required for text content.
To see the effect of the switch statement, use a web browser to request http://localhost:5000/home/index/2, which produces the
response shown in Figure 21-15.

Chapter 21 ■ Using Controllers with Views, Part I

522

�Enumerating Sequences
The Razor @foreach expression generates content for each object in an array or a collection, which is a common requirement when
processing data. Listing 21-25 adds an action method to the Home controller that produces a sequence of objects.

Listing 21-25.  Adding an Action in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 Product prod = await context.Products.FindAsync(id);
 if (prod.CategoryId == 1) {
 return View("Watersports", prod);
 } else {
 return View(prod);
 }
 }

 public IActionResult Common() {
 return View();
 }

Figure 21-15.  Using a switch expression with literal content

Chapter 21 ■ Using Controllers with Views, Part I

523

 public IActionResult List() {
 return View(context.Products);
 }
 }
}

The new action is called List, and it provides its view with the sequence of Product objects obtained from the Entity Framework
Core data context. Add a Razor view file named List.cshtml to the Views/Home folder and add the content shown in Listing 21-26.

Listing 21-26.  The Contents of the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr><td>@p.Name</td><td>@p.Price</td></tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

The foreach expression follows the same format as the C# foreach statement. In the example, the variable p is assigned each
object in the sequence provided by the action method. The content within the expression is duplicated for each object and inserted
into the response after the expressions it contains are evaluated. In this case, the content in the foreach expression generates a table
row with cells that have their own expressions.

...
<tr><td>@p.Name</td><td>@p.Price</td></tr>
...

Restart ASP.NET Core so that the new action method will be available and use a browser to request http://localhost:5000/
home/list, which produces the result shown in Figure 21-16, showing how the foreach expression populates a table body.

Chapter 21 ■ Using Controllers with Views, Part I

524

�Using Razor Code Blocks
Code blocks are regions of C# content that do not generate content but that can be useful to perform tasks that support the
expressions that do. Listing 21-27 adds a code block that calculates an average value.

■■ Tip T he most common use of code blocks is to select a layout, which is described in Chapter 21.

Listing 21-27.  Using a Code Block in the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 decimal average = Model.Average(p => p.Price);
}
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr>
 <td>@p.Name</td><td>@p.Price</td>
 <td>@((p.Price / average * 100).ToString("F1"))
 % of average</td>
 </tr>
 }

Figure 21-16.  Using a foreach expression

Chapter 21 ■ Using Controllers with Views, Part I

525

 </tbody>
 </table>
 </div>
</body>
</html>

The code block is denoted by @{ and } and contains standard C# statements. The code block in Listing 21-27 uses LINQ to
calculate a value that is assigned to a variable named average, which is used in an expression to set the contents of a table cell,
avoiding the need to repeat the average calculation for each object in the view model sequence. Use a browser to request http://
localhost:5000/home/list, and you will see the response shown in Figure 21-17.

■■ Note  Code blocks can become difficult to manage if they contain more than a few statements. For more complex tasks, consider
using the view bag, described in Chapter 22, or adding a nonaction method to the controller.

�Summary
In this chapter, I introduced Razor views, which are used to create HTML responses from action methods. I explained how views are
defined, how they are transformed into C# classes, and how the expressions they contain can be used to generate dynamic content.
In the next chapter, I continue to describe how controllers can be used with views.

Figure 21-17.  Using a code block

527© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_22

CHAPTER 22

Using Controllers with Views, Part II

In this chapter, I describe more of the features provided by Razor views. I show you how to pass additional data to a view using the
view bang and how to use layouts and layout sections to reduce duplication. I also explain how the results from expressions are
encoded and how to disable the encoding process. Table 22-1 summarizes the chapter.

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 21. To prepare for this chapter, replace the contents of the HomeController.cs
file with the code shown in Listing 22-1.

Listing 22-1.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 return View(await context.Products.FindAsync(id));
 }

Table 22-1.  Chapter Summary

Problem Solution Listing

Providing unstructured data to a view Use the view bag 5, 6

Providing temporary data to a view Use temp data 7, 8

Using the same content in multiple views Use a layout 9–12, 15–18

Selecting the default layout for views Use a view start file 13, 14

Interleaving unique and common content Use layout sections 19–24

Creating reusable sections of content Use a partial view 25–29

Inserting HTML into a response using a Razor expression Encode the HTML 30–32

Including JSON in a view Use the JSON encoder 33

Chapter 22 ■ Using Controllers with Views, Part II

528

 public IActionResult List() {
 return View(context.Products);
 }
 }
}

One of the features used in this chapter requires the session feature, which was described in Chapter 16. To enable sessions, add
the statements shown in Listing 22-2 to the Startup class.

Listing 22-2.  Enabling Sessions in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();

 services.AddDistributedMemoryCache();
 services.AddSession(options => {
 options.Cookie.IsEssential = true;
 });
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseSession();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

Chapter 22 ■ Using Controllers with Views, Part II

529

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 22-3 to drop the database.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 22-3.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Once the database has been dropped, select Start Without Debugging or Run Without Debugging from the Debug menu, or use the
PowerShell command prompt to run the command shown in Listing 22-4.

Listing 22-4.  Running the Example Application

dotnet run

The database will be seeded as part of the application startup. Once ASP.NET Core is running, use a web browser to request
http://localhost:5000, which will produce the response shown in Figure 22-1.

�Using the View Bag
Action methods provide views with data to display with a view model, but sometimes additional information is required. Action
methods can use the view bag to provide a view with extra data, as shown in Listing 22-5.

Figure 22-1.  Running the example application

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 22 ■ Using Controllers with Views, Part II

530

Listing 22-5.  Using the View Bag in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 ViewBag.AveragePrice = await context.Products.AverageAsync(p => p.Price);
 return View(await context.Products.FindAsync(id));
 }

 public IActionResult List() {
 return View(context.Products);
 }
 }
}

The ViewBag property is inherited from the Controller base class and returns a dynamic object. This allows action methods to
create new properties just by assigning values to them, as shown in the listing. The values assigned to the ViewBag property by the
action method are available to the view through a property also called ViewBag, as shown in Listing 22-6.

Listing 22-6.  Using the View Bag in the Index.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">Product Table</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>
 @Model.Price.ToString("c")
 (@(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price)
 </td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

Chapter 22 ■ Using Controllers with Views, Part II

531

The ViewBag property conveys the object from the action to the view, alongside the view model object. In the listing, the
action method queries for the average of the Product.Price properties in the database and assigns it to a view bag property named
AveragePrice, which the view uses in an expression. Restart ASP.NET Core and use a browser to request http://localhost:5000,
which produces the response shown in Figure 22-2.

WHEN TO USE THE VIEW BAG

The view bag works best when it is used to provide the view with small amounts of supplementary data without having to create
new view model classes for each action method. The problem with the view bag is that the compiler cannot check the use of
the properties on dynamic objects, much like views that don’t use an @model expression. It can be difficult to judge when a new
view model class should be used, and my rule of thumb is to create a new view model class when the same view model property
is used by multiple actions or when an action method adds more than two or three properties to the view bag.

�Using Temp Data
The temp data feature allows a controller to preserve data from one request to another, which is useful when performing
redirections. Temp data is stored using a cookie unless session state is enabled when it is stored as session data. Unlike session data,
temp data values are marked for deletion when they are read and removed when the request has been processed.

Add a class file called CubedController.cs to the WebApp/Controllers folder and use it to define the controller shown in
Listing 22-7.

Listing 22-7.  The Contents of the CubedController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace WebApp.Controllers {
 public class CubedController: Controller {

 public IActionResult Index() {
 return View("Cubed");
 }

 public IActionResult Cube(double num) {
 TempData["value"] = num.ToString();
 TempData["result"] = Math.Pow(num, 3).ToString();

Figure 22-2.  Using the view bag

Chapter 22 ■ Using Controllers with Views, Part II

532

 return RedirectToAction(nameof(Index));
 }
 }
}

The Cubed controller defines an Index method that selects a view named Cubed. There is also a Cube action, which relies on the
model binding process to obtain a value for its num parameter from the request (a process described in detail in Chapter 28). The
Cubed action method performs its calculation and stores the num value and the calculation result using TempData property, which
returns a dictionary that is used to store key/value pairs. Since the temp data feature is built on top of the sessions feature, only
values that can be serialized to strings can be stored, which is why I convert both double values to strings in Listing 22-7. Once the
values are stored as temp data, the Cube method performs a redirection to the Index method. To provide the controller with a view,
add a Razor view file named Cubed.cshtml to the WebApp/Views/Shared folder with the content shown in Listing 22-8.

Listing 22-8.  The Contents of the Cubed.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Cubed</h6>
 <form method="get" action="/cubed/cube" class="m-2">
 <div class="form-group">
 <label>Value</label>
 <input name="num" class="form-control" value="@(TempData["value"])" />
 </div>
 <button class="btn btn-primary" type="submit">Submit</button>
 </form>
 @if (TempData["result"] != null) {
 <div class="bg-info text-white m-2 p-2">
 The cube of @TempData["value"] is @TempData["result"]
 </div>
 }
</body>
</html>

The base class used for Razor views provides access to the temp data through a TempData property, allowing values to be read
within expressions. In this case, temp data is used to set the content of an input element and display a results summary. Reading a
temp data value doesn’t remove it immediately, which means that values can be read repeatedly in the same view. It is only once the
request has been processed that the marked values are removed.

To see the effect, restart ASP.NET Core, use a browser to navigate to http://localhost:5000/cubed, enter a value into the form
field, and click the Submit button. The browser will send a request that will set the temp data and trigger the redirection. The temp
data values are preserved for the new request, and the results are displayed to the user. But reading the data values marks them
for deletion, and if you reload the browser, the contents of the input element and the results summary are no longer displayed, as
shown in Figure 22-3.

■■ Tip T he object returned by the TempData property provides a Peek method, which allows you to get a data value without marking
it for deletion, and a Keep method, which can be used to prevent a previously read value from being deleted. The Keep method doesn’t
protect a value forever. If the value is read again, it will be marked for removal once more. Use session data if you want to store items so
that they won’t be removed when the request is processed.

Chapter 22 ■ Using Controllers with Views, Part II

533

USING THE TEMP DATA ATTRIBUTE

Controllers can define properties that are decorated with the TempData attribute, which is an alternative to using the TempData
property, like this:

using Microsoft.AspNetCore.Mvc;
using System;

namespace WebApp.Controllers {
 public class CubedController: Controller {

 public IActionResult Index() {
 return View("Cubed");
 }

 public IActionResult Cube(double num) {
 Value = num.ToString();
 Result = Math.Pow(num, 3).ToString();
 return RedirectToAction(nameof(Index));
 }

 [TempData]
 public string Value { get; set; }

 [TempData]
 public string Result { get; set; }
 }
}

The values assigned to these properties are automatically added to the temp data store, and there is no difference in the way
they are accessed in the view. My preference is to use the TempData dictionary to store values because it makes the intent of the
action method obvious to other developers. However, both approaches are entirely valid, and choosing between them is a matter
of preference.

Figure 22-3.  Using temp data

Chapter 22 ■ Using Controllers with Views, Part II

534

�Working with Layouts
The views in the example application contain duplicate elements that deal with setting up the HTML document, defining the head
section, loading the Bootstrap CSS file, and so on. Razor supports layouts, which avoid this sort of duplication by consolidating
common content in a single file that can be used by any view.

Layouts are typically stored in the Views/Shared folder because they are usually used by the action methods of more than one
controller. If you are using Visual Studio, right-click the Views/Shared folder, select Add ➤ New Item from the popup menu, and
choose the Razor Layout template, as shown in Figure 22-4. Make sure the name of the file is _Layout.cshtml and click the Add
button to create the new file. Replace the content added to the file by Visual Studio with the elements shown in Listing 22-9.

If you are using Visual Studio Code, create a file named _Layout.cshtml in the Views/Shared folder and add the content shown
in Listing 22-9.

Listing 22-9.  The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">Shared View</h6>
 @RenderBody()
</body>
</html>

The layout contains the common content that will be used by multiple views. The content that is unique to each view is inserted
into the response by calling the RenderBody method, which is inherited by the RazorPage<T> class, as described in Chapter 21. Views
that use layouts can focus on just their unique content, as shown in Listing 22-10.

Figure 22-4.  Creating a layout

Chapter 22 ■ Using Controllers with Views, Part II

535

Listing 22-10.  Using a Layout in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
}
<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>
 @Model.Price.ToString("c")
 (@(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price)
 </td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
</div>

The layout is selected by adding a code block, denoted by the @{ and } characters, that sets the Layout property inherited from
the RazorPage<T> class. In this case, the Layout property is set to the name of the layout file. As with normal views, the layout is
specified without a path or file extension, and the Razor engine will search in the /Views/[controller] and /Views/Shared folders
to find a matching file. Use the browser to request http://localhost:5000, and you will see the response shown in Figure 22-5.

�Configuring Layouts Using the View Bag
The view can provide the layout with data values, allowing the common content provided by the view to be customized. The view
bag properties are defined in the code block that selects the layout, as shown in Listing 22-11.

Listing 22-11.  Setting a View Bag Property in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = "Product Table";
}

Figure 22-5.  Using a layout

Chapter 22 ■ Using Controllers with Views, Part II

536

<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>
 @Model.Price.ToString("c")
 (@(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price)
 </td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
</div>

The view sets a Title property, which can be used in the layout, as shown in Listing 22-12.

Listing 22-12.  Using a View Bag Property in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">
 @(ViewBag.Title ?? "Layout")
 </h6>
 @RenderBody()
</body>
</html>

The Title property is used to set the content of the title element and h6 element in the body section. Layouts cannot rely on
view bag properties being defined, which is why the expression in the h6 element provides a fallback value if the view doesn’t define
a Title property. To see the effect of the view bag property, use a browser to request http://localhost:5000, which produces the
response shown in Figure 22-6.

UNDERSTANDING VIEW BAG PRECEDENCE

The values defined by the view take precedence if the same view bag property is defined by the view and the action method. If
you want to allow the action to override the value defined in the view, then use a statement like this in the view code block:

...
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}
...

This statement will set the value for the Title property only if it has not already been defined by the action method.

Chapter 22 ■ Using Controllers with Views, Part II

537

�Using a View Start File
Instead of setting the Layout property in every view, you can add a view start file to the project that provides a default Layout value.
If you are using Visual Studio, right-click the Views folder item in the Solution Explorer, select Add ➤ New Item, and locate the Razor
View Start template, as shown in Figure 22-7. Make sure the name of the file is _ViewStart.cshtml and click the Add button to create
the file, which will have the content shown in Listing 22-13.

If you are using Visual Studio Code, then add a file named _ViewStart.cshtml to the Views folder and add the content shown in
Listing 22-13.

Listing 22-13.  The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

The file contains sets the Layout property, and the value will be used as the default. Listing 22-14 removes the content from the
Common.cshtml file that is contained in the layout.

Figure 22-6.  Using a view bag property to configure a layout

Figure 22-7.  Creating a view start file

Chapter 22 ■ Using Controllers with Views, Part II

538

Listing 22-14.  Removing Content in the Common.cshtml File in the Views/Shared Folder

<h6 class="bg-secondary text-white text-center m-2 p-2">Shared View</h6>

The view doesn’t define a view model type and doesn’t need to set the Layout property because the project contains a view
start file. The result is that the content in Listing 22-14 will be added to the body section of the HTML content of the response. Use a
browser to navigate to http://localhost:5000/second, and you will see the response in Figure 22-8.

�Overriding the Default Layout
There are two situations where you may need to define a Layout property in a view even when there is a view start file in the project.
In the first situation, a view requires a different layout from the one specified by the view start file. To demonstrate, add a Razor
layout file named _ImportantLayout.cshtml to the Views/Shared folder with the content shown in Listing 22-15.

Listing 22-15.  The Contents of the _ImportantLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h3 class="bg-warning text-white text-center p-2 m-2">Important</h3>
 @RenderBody()
</body>
</html>

In addition to the HTML document structure, this file contains a header element that displays Important in large text. Views
can select this layout by assigning its name to the Layout property, as shown in Listing 22-16.

■■ Tip I f you need to use a different layout for all the actions of a single controller, then add a view start file to the Views/
[controller] folder that selects the view you require. The Razor engine will use the layout specified by the controller-specific view
start file.

Figure 22-8.  Using a view start file

Chapter 22 ■ Using Controllers with Views, Part II

539

Listing 22-16.  Using a Specific Layout in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_ImportantLayout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}
<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>
 @Model.Price.ToString("c")
 (@(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price)
 </td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
 </table>
</div>

The Layout value in the view start file is overridden by the value in the view, allowing different layouts to be applied. Use a
browse to request http://localhost:5000, and the response will be produced using the new layout, as shown in Figure 22-9.

SELECTING A LAYOUT PROGRAMMATICALLY

The value that a view assigns to the Layout property can be the result of an expression that allows layouts to be selected by the
view, similar to the way that action methods can select views. Here is an example that selects the layout based on a property
defined by the view model object:

...
@model Product
@{
 Layout = Model.Price > 100 ? "_ImportantLayout" : "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}
...

The layout named _ImportantLayout is selected when the value of the view model object’s Price property is greater than 100;
otherwise, _Layout is used.

Chapter 22 ■ Using Controllers with Views, Part II

540

The second situation where a Layout property can be needed is when a view contains a complete HTML document and doesn’t
require a layout at all. To see the problem, open a new PowerShell command prompt and run the command shown in Listing 22-17.

Listing 22-17.  Sending an HTTP Request

Invoke-WebRequest http://localhost:5000/home/list | Select-Object -expand Content

This command sends an HTTP GET request whose response will be produced using the List.cshtml file in the Views/Home
folder. This view contains a complete HTML document, which is combined with the content in the view specified by the view start
file, producing a malformed HTML document, like this:

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-primary text-white text-center m-2 p-2">
 Layout
 </h6>
 <!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr><td>Kayak</td><td>275.00</td></tr>
 <tr><td>Lifejacket</td><td>48.95</td></tr>
 <tr><td>Soccer Ball</td><td>19.50</td></tr>
 <tr><td>Corner Flags</td><td>34.95</td></tr>

Figure 22-9.  Specifying a layout in a view

Chapter 22 ■ Using Controllers with Views, Part II

541

 <tr><td>Stadium</td><td>79500.00</td></tr>
 <tr><td>Thinking Cap</td><td>16.00</td></tr>
 <tr><td>Unsteady Chair</td><td>29.95</td></tr>
 <tr><td>Human Chess Board</td><td>75.00</td></tr>
 <tr><td>Bling-Bling King</td><td>1200.00</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>
</body>
</html>

The structural elements for the HTML document are duplicated, so there are two html, head, body, and link elements. Browsers
are adept at handling malformed HTML but don’t always cope with poorly structured content. Where a view contains a complete
HTML document, the Layout property can be set to null, as shown in Listing 22-18.

Listing 22-18.  Disabling Layouts in the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr><td>@p.Name</td><td>@p.Price</td></tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

Save the view and run the command shown in Listing 22-17 again, and you will see that the response contains only the
elements in the view and that the layout has been disabled.

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">

Chapter 22 ■ Using Controllers with Views, Part II

542

 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr><td>Kayak</td><td>275.00</td></tr>
 <tr><td>Lifejacket</td><td>48.95</td></tr>
 <tr><td>Soccer Ball</td><td>19.50</td></tr>
 <tr><td>Corner Flags</td><td>34.95</td></tr>
 <tr><td>Stadium</td><td>79500.00</td></tr>
 <tr><td>Thinking Cap</td><td>16.00</td></tr>
 <tr><td>Unsteady Chair</td><td>29.95</td></tr>
 <tr><td>Human Chess Board</td><td>75.00</td></tr>
 <tr><td>Bling-Bling King</td><td>1200.00</td></tr>
 </tbody>
 </table>
 </div>
</body>
</html>

�Using Layout Sections
The Razor view engine supports the concept of sections, which allow you to provide regions of content within a layout. Razor sections
give greater control over which parts of the view are inserted into the layout and where they are placed. To demonstrate the sections
feature, I have edited the /Views/Home/Index.cshtml file, as shown in Listing 22-19.

Listing 22-19.  Defining Sections in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header {
 Product Information
}

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>
<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

Sections are defined using the Razor @section expression followed by a name for the section. Listing 22-19 defines sections
named Header and Footer, and sections can contain the same mix of HTML content and expressions, just like the main part of the
view. Sections are applied in a layout with the @RenderSection expression, as shown in Listing 22-20.

Chapter 22 ■ Using Controllers with Views, Part II

543

Listing 22-20.  Using Sections in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-info text-white m-2 p-1">
 This is part of the layout
 </div>

 <h6 class="bg-primary text-white text-center m-2 p-2">
 @RenderSection("Header")
 </h6>

 <div class="bg-info text-white m-2 p-1">
 This is part of the layout
 </div>

 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 @RenderBody()
 </tbody>
 </table>
 </div>

 <div class="bg-info text-white m-2 p-1">
 This is part of the layout
 </div>

 <h6 class="bg-primary text-white text-center m-2 p-2">
 @RenderSection("Footer")
 </h6>

 <div class="bg-info text-white m-2 p-1">
 This is part of the layout
 </div>
</body>
</html>

When the layout is applied, the RenderSection expression inserts the content of the specified section into the response. The
regions of the view that are not contained within a section are inserted into the response by the RenderBody method. To see how the
sections are applied, use a browser to request http://localhost:5000, which provides the response shown in Figure 22-10.

■■ Note A view can define only the sections that are referred to in the layout. The view engine throws an exception if you define
sections in the view for which there is no corresponding @RenderSection expression in the layout.

Chapter 22 ■ Using Controllers with Views, Part II

544

Sections allow views to provide fragments of content to the layout without specifying how they are used. As an example,
Listing 22-21 redefines the layout to consolidate the body and sections into a single HTML table.

Listing 22-21.  Using a Table in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Header")
 </th>
 </tr>
 </thead>
 <tbody>
 @RenderBody()
 </tbody>
 <tfoot>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Footer")
 </th>
 </tr>
 </tfoot>

Figure 22-10.  Using sections in a layout

Chapter 22 ■ Using Controllers with Views, Part II

545

 </table>
 </div>
</body>
</html>

To see the effect of the change to the view, use a browser to request http://localhost:5000, which will produce the response
shown in Figure 22-11.

�Using Optional Layout Sections
By default, a view must contain all the sections for which there are RenderSection calls in the layout, and an exception will be
thrown if the layout requires a section that the view hasn’t defined. Listing 22-22 adds a call to the RenderSection method that
requires a section named Summary.

Listing 22-22.  Adding a Section in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Header")
 </th>
 </tr>
 </thead>
 <tbody>
 @RenderBody()
 </tbody>

Figure 22-11.  Changing how sections are displayed in a layout

Chapter 22 ■ Using Controllers with Views, Part II

546

 <tfoot>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Footer")
 </th>
 </tr>
 </tfoot>
 </table>
 </div>
 @RenderSection("Summary")
</body>
</html>

Use a browser to request http://localhost:5000, and you will see the exception shown in Figure 22-12.

There are two ways to solve this problem. The first is to create an optional section, which will be rendered only if it is defined by
the view. Optional sections are created by passing a second argument to the RenderSection method, as shown in Listing 22-23.

Listing 22-23.  Defining an Optional Section in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Header", false)
 </th>
 </tr>
 </thead>

Figure 22-12.  Attempting to render a nonexistent view section

Chapter 22 ■ Using Controllers with Views, Part II

547

 <tbody>
 @RenderBody()
 </tbody>
 <tfoot>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Footer", false)
 </th>
 </tr>
 </tfoot>
 </table>
 </div>
 @RenderSection("Summary", false)
</body>
</html>

The second argument specifies whether a section is required, and using false prevents an exception when the view doesn’t
define the section.

�Testing for Layout Sections
The IsSectionDefined method is used to determine whether a view defines a specified section and can be used in an if expression
to render fallback content, as shown in Listing 22-24.

Listing 22-24.  Checking for a Section in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Header", false)
 </th>
 </tr>
 </thead>
 <tbody>
 @RenderBody()
 </tbody>
 <tfoot>
 <tr>
 <th class="bg-primary text-white text-center" colspan="2">
 @RenderSection("Footer", false)
 </th>
 </tr>
 </tfoot>
 </table>
 </div>

Chapter 22 ■ Using Controllers with Views, Part II

548

 @if (IsSectionDefined("Summary")) {
 @RenderSection("Summary", false)
 } else {
 <div class="bg-info text-center text-white m-2 p-2">
 This is the default summary
 </div>
 }
</body>
</html>

The IsSectionDefined method is invoked with the name of the section you want to check and returns true if the view defines
that section. In the example, I used this helper to render fallback content when the view does not define the Summary section. To see
the fallback content, use a browser to request http://localhost:5000, which produces the response shown in Figure 22-13.

�Using Partial Views
You will often need to use the same set of HTML elements and expressions in several different places. Partial views are views that
contain fragments of content that will be included in other views to produce complex responses without duplication.

�Enabling Partial Views
Partial views are applied using a feature called tag helpers, which are described in detail in Chapter 25; tag helpers are configured
in the view imports file, which was added to the project in Chapter 21. To enable the feature required for partial views, add the
statement shown in Listing 22-25 to the _ViewImports.cshtml file.

Listing 22-25.  Enabling Tag Helpers in the _ViewImports.cshtml File in the Views Folder

@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

�Creating a Partial View
Partial views are just regular CSHTML files, and it is only the way they are used that differentiates them from standard views. If you
are using Visual Studio, right-click the Views/Home folder, select Add ➤ New Item, and use the Razor View template to create a file
named _RowPartial.cshtml. Once the file has been created, replace the contents with those shown in Listing 22-26. If you are using
Visual Studio Code, add a file named _RowPartial.cshtml to the Views/Home folder and add to it the content shown in Listing 22-26.

Figure 22-13.  Displaying fallback content for a view section

Chapter 22 ■ Using Controllers with Views, Part II

549

■■ Tip  Visual Studio provides some tooling support for creating prepopulated partial views, but the simplest way to create a partial
view is to create a regular view using the Razor View item template.

Listing 22-26.  The Contents of the _RowPartial.cshtml File in the Views/Home Folder

@model Product

<tr>
 <td>@Model.Name</td>
 <td>@Model.Price</td>
</tr>

The model expression is used to define the view model type for the partial view, which contains the same mix of expressions
and HTML elements as regular views. The content of this partial view creates a table row, using the Name and Price properties of a
Product object to populate the table cells.

�Applying a Partial View
Partial views are applied by adding a partial element in another view or layout. In Listing 22-27, I have added the element to the
List.cshtml file so the partial view is used to generate the rows in the table.

Listing 22-27.  Using a Partial View in the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <partial name="_RowPartial" model="p" />
 }
 </tbody>
 </table>
 </div>
</body>
</html>

The attributes applied to the partial element control the selection and configuration of the partial view, as described in
Table 22-2.

Chapter 22 ■ Using Controllers with Views, Part II

550

The partial element in Listing 22-27 uses the name attribute to select the _RowPartial view and the model attribute to select
the Product object that will be used as the view model object. The partial element is applied within the @foreach expression,
which means that it will be used to generate each row in the table, which you can see by using a browser to request http://
localhost:5000/home/list to produce the response shown in Figure 22-14.

USING THE HTML HELPER TO APPLY PARTIAL VIEWS

In earlier versions of ASP.NET Core, partial views were applied using the Html property that is added to the C# class generated
from the view, as explained in Chapter 21. The object returned by the Html property implements the IHtmlHelper interface,
through which views can be applied, like this:

...
@Html.Partial("_RowPartial")
...

This type of expression works and is still supported, but the partial element provides a more elegant approach that is
consistent with the rest of the HTML elements in the view.

�Selecting the Partial View Model Using an Expression
The for attribute is used to set the partial view’s model using an expression that is applied to the view’s model, which is a feature
more easily demonstrated than described. Add a partial view named _CellPartial.cshtml to the Views/Home folder with the
content shown in Listing 22-28.

Table 22-2.  The partial Element Attributes

Name Description

name This property specifies the name of the partial view, which is located using the same search process as regular views.

model This property specifies the value that will be used as the view model object for the partial view.

for This property is used to define an expression that selects the view model object for the partial view, as explained next.

view-data This property is used to provide the partial view with additional data.

Figure 22-14.  Using a partial view

Chapter 22 ■ Using Controllers with Views, Part II

551

Listing 22-28.  The Contents of the _CellPartial.cshtml File in the Views/Home Folder

@model string

<td class="bg-info text-white">@Model</td>

This partial view has a string view model object, which it uses as the contents of a table cell element; the table cell element is
styled using the Bootstrap CSS framework. In Listing 22-29, I have added a partial element to the _RowPartial.cshtml file that uses
the _CellPartial partial view to display the table cell for the name of the Product object.

Listing 22-29.  Using a Partial View in the _RowPartial.cshtml File in the Views/Home Folder

@model Product

<tr>
 <partial name="_CellPartial" for="Name" />
 <td>@Model.Price</td>
</tr>

The for attribute selects the Name property as the model for the _CellPartial partial view. To see the effect, use a browser to
request http://localhost:5000/home/list, which will produce the response shown in Figure 22-15.

USING TEMPLATED DELEGATES

Templated delegates are an alternative way of avoiding duplication in a view. Templated delegates are defined in a code block,
like this:

...
@{
 Func<Product, object> row
 = @<tr><td>@item.Name</td><td>@item.Price</td></tr>;
}
...

The template is a function that accepts a Product input object and returns a dynamic result. Within the template expression,
the input object is referred to as item in expressions. The templated delegate is invoked as a method expression to generate
content.

Figure 22-15.  Selecting a model property for use in a partial view

Chapter 22 ■ Using Controllers with Views, Part II

552

...
<tbody>
 @foreach (Product p in Model) {
 @row(p)
 }
</tbody>
...

I find this feature awkward and prefer using partial views, although this is a matter of preference and habit rather than any
objective problems with the way that templated delegates work.

�Understanding Content-Encoding
Razor views provide two useful features for encoding content. The HTML content-encoding feature ensures that expression
responses don’t change the structure of the response sent to the browser, which is an important security feature. The JSON encoding
feature encodes an object as JSON and inserts it into the response, which can be a useful debugging feature and can also be useful
when providing data to JavaScript applications. Both encoding features are described in the following sections.

�Understanding HTML Encoding
The Razor view engine encodes expression results to make them safe to include in an HTML document without changing its
structure. This is an important feature when dealing with content that is provided by users, who may try to subvert the application or
accidentally enter dangerous content. Listing 22-30 adds an action method to the Home controller that passes a fragment of HTML to
the View method.

Listing 22-30.  Adding an Action in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;

namespace WebApp.Controllers {

 public class HomeController: Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> Index(long id = 1) {
 ViewBag.AveragePrice = await context.Products.AverageAsync(p => p.Price);
 return View(await context.Products.FindAsync(id));
 }

 public IActionResult List() {
 return View(context.Products);
 }

 public IActionResult Html() {
 return View((object)"This is a <h3><i>string</i></h3>");
 }
 }
}

Chapter 22 ■ Using Controllers with Views, Part II

553

The new action passes a string that contains HTML elements. To create the view for the new action method, add a Razor view
file named Html.cshtml to the Views/Home folder with the content shown in Listing 22-31.

■■ Tip N otice that I cast the string passed to the View method as an object, without which the string is assumed to be the name of a
view and not the view model object.

Listing 22-31.  The Contents of the Html.cshtml File in the Views/Home Folder

@model string
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-secondary text-white text-center m-2 p-2">@Model</div>
</body>
</html>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/html. The response, which is shown on the
left of Figure 22-17, shows how the potentially dangerous characters in the view model string have been escaped.

To include the result of an expression without safe encoding, you can invoke the Html.Raw method. The Html property is one of
the properties added to the generated view class, described in Chapter 21, which returns an object that implements the IHtmlHelper
interface, as shown in Listing 22-32.

Listing 22-32.  Disabling Encoding in the Html.cshtml File in the Views/Home Folder

@model string
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-secondary text-white text-center m-2 p-2">@Html.Raw(Model)</div>
</body>
</html>

Request the http://localhost:5000/home/html URL again, and you will see that the view model string is passed on without
being encoded and is then interpreted by the browser as part of the HTML document, as shown on the right of Figure 22-16.

■■ Caution  Do not disable safe encoding unless you are entirely confident that no malicious content will be passed to the view.
Careless use of this feature presents a security risk to your application and your users.

Chapter 22 ■ Using Controllers with Views, Part II

554

�Understanding JSON Encoding
The Json property, which is added to the class generated from the view, as described in Chapter 21, can be used to encode an
object as JSON. The most common use for JSON data is in RESTful web services, as described in earlier chapters, but I find the
Razor JSON encoding feature useful as a debugging aid when I don’t get the output I expect from a view. Listing 22-33 adds a JSON
representation of the view model object to the output produced by the Index view.

Listing 22-33.  Using JSON Encoding in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header {
 Product Information
}

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>
<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

@section Summary {
 <div class="bg-info text-white m-2 p-2">
 @Json.Serialize(Model)
 </div>
}

The Json property returns an implementation of the IJsonHelper interface, whose Serialize method produces a JSON
representation of an object. Use a browser to request http://localhost:5000, and you will see the response shown in Figure 22-17,
which includes JSON in the Summary section of the view.

Figure 22-16.  HTML result encoding

Chapter 22 ■ Using Controllers with Views, Part II

555

�Summary
In this chapter, I continued to describe the features available in Razor views. I showed you how to use the view bag, how to use
layouts and partial views to deal with common content, and how to manage the encoding process for expression results. In the next
chapter, I introduce Razor Pages, which provides an alternative way to generate HTML responses.

Figure 22-17.  Encoding an expression result as JSON

557© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_23

CHAPTER 23

Using Razor Pages

In this chapter, I introduce Razor Pages, which is a simpler approach to generating HTML content, intended to capture some of
the enthusiasm for the legacy ASP.NET Web Pages framework. I explain how Razor Pages work, explain how they differ from the
controllers and views approach taken by the MVC Framework, and show you how they fit into the wider ASP.NET Core platform.

The process of explaining how Razor Pages work can minimize the differences from the controllers and views described in
earlier chapters. You might form the impression that Razor Pages are just MVC-lite and dismiss them, which would be a shame.
Razor Pages are interesting because of the developer experience and not the way they are implemented.

My advice is to give Razor Pages a chance, especially if you are an experienced MVC developer. Although the technology used
will be familiar, the process of creating application features is different and is well-suited to small and tightly focused features that
don’t require the scale and complexity of controllers and views. I have been using the MVC Framework since it was first introduced,
and I admit to ignoring the early releases of Razor Pages. Now, however, I find myself mixing Razor Pages and the MVC Framework
in most projects, much as I did in the SportsStore example in Part 1. Table 23-1 puts Razor Pages in context.

Table 23-2 summarizes the chapter.

Table 23-1.  Putting Razor Pages in Context

Question Answer

What are they? Razor Pages are a simplified way of generating HTML responses.

Why are they
useful?

The simplicity of Razor Pages means you can start getting results sooner than with the MVC Framework,
which can require a relatively complex preparation process. Razor Pages are also easier for less experienced
web developers to understand because the relationship between the code and content is more obvious.

How are they
used?

Razor Pages associate a single view with the class that provides it with features and uses a file-based routing
system to match URLs.

Are there any
pitfalls or
limitations?

Razor Pages are less flexible than the MVC Framework, which makes them unsuitable for complex
applications. Razor Pages can be used only to generate HTML responses and cannot be used to create RESTful
web services.

Are there any
alternatives?

The MVC Framework’s approach of controllers and views can be used instead of Razor Pages.

Chapter 23 ■ Using Razor Pages

558

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 22. Open a new PowerShell command prompt, navigate to the folder that
contains the WebApp.csproj file, and run the command shown in Listing 23-1 to drop the database.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 23-1.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Once the database has been dropped, select Start Without Debugging or Run Without Debugging from the Debug menu or use the
PowerShell command prompt to run the command shown in Listing 23-2.

Listing 23-2.  Running the Example Application

dotnet run

The database will be seeded as part of the application startup. Once ASP.NET Core is running, use a web browser to request
http://localhost:5000, which will produce the response shown in Figure 23-1.

Table 23-2.  Chapter Summary

Problem Solution Listing

Enabling Razor Pages Use AddRazorPages and MapRazorPages to set up the required services
and middleware

3

Creating a self-contained endpoint Create a Razor Page 4, 26, 27

Routing requests to a Razor Page Use the name of the page or specify a route using the @page directive 5–8

Providing logic to support the view section
of a Razor Page

Use a page model class 9–12

Creating results that are not rendered using
the view section of a Razor Page

Define a handler method that returns an action result 13–15

Handling multiple HTTP methods Define handlers in the page model class 16–18

Avoiding duplication of content Use a layout or a partial view 19–25

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 23 ■ Using Razor Pages

559

�Understanding Razor Pages
As you learn how Razor Pages work, you will see they share common functionality with the MVC Framework. In fact, Razor Pages are
typically described as a simplification of the MVC Framework—which is true—but that doesn’t give any sense of why Razor Pages
can be useful.

The MVC Framework solves every problem in the same way: a controller defines action methods that select views to produce
responses. It is a solution that works because it is so flexible: the controller can define multiple action methods that respond to
different requests, the action method can decide which view will be used as the request is being processed, and the view can depend
on private or shared partial views to produce its response.

Not every feature in web applications needs the flexibility of the MVC Framework. For many features, a single action method
will be used to handle a wide range of requests, all of which are dealt with using the same view. Razor Pages offer a more focused
approach that ties together markup and C# code, sacrificing flexibility for focus.

But Razor Pages have limitations. Razor Pages tend to start out focusing on a single feature but slowly grow out of control as
enhancements are made. And, unlike MVC controllers, Razor Pages cannot be used to create web services.

You don’t have to choose just one model because the MVC Framework and Razor Pages coexist, as demonstrated in this
chapter. This means that self-contained features can be easily developed with Razor Pages, leaving the more complex aspects of an
application to be implemented using the MVC controllers and actions.

In the sections that follow, I show you how to configure and use Razor pages, and then I explain how they work and
demonstrate the common foundation they share with MVC controllers and actions.

�Configuring Razor Pages
To prepare the application for Razor Pages, statements must be added to the Startup class to set up services and configure the
endpoint routing system, as shown in Listing 23-3.

Listing 23-3.  Configuring the Application in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

Figure 23-1.  Running the example application

Chapter 23 ■ Using Razor Pages

560

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();

 services.AddDistributedMemoryCache();
 services.AddSession(options => {
 options.Cookie.IsEssential = true;
 });
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseSession();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The AddRazorPages method sets up the service that is required to use Razor Pages, while the optional
AddRazorRuntimeCompilation method enables runtime recompilation, using the package added to the project in Chapter 21. The
MapRazorPages method creates the routing configuration that matches URLs to pages, which is explained later in the chapter.

�Creating a Razor Page
Razor Pages are defined in the Pages folder. If you are using Visual Studio, create the WebApp/Pages folder, right-click it in the
Solution Explorer, select Add ➤ New Item from the popup menu, and select the Razor Page template, as shown in Figure 23-2. Set
the Name field to Index.cshtml and click the Add button to create the file and replace the contents of the file with those shown in
Listing 23-4.

Chapter 23 ■ Using Razor Pages

561

If you are using Visual Studio Code, create the WebApp/Pages folder and add to it a new file named Index.cshtml with the
content shown in Listing 23-4.

Listing 23-4.  The Contents of the Index.cshtml File in the Pages Folder

@page
@model IndexModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using WebApp.Models;

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
</body>
</html>

@functions {

 public class IndexModel: PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public IndexModel(DataContext ctx) {
 context = ctx;
 }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 }
 }
}

Figure 23-2.  Creating a Razor Page

Chapter 23 ■ Using Razor Pages

562

Razor Pages use the Razor syntax that I described in Chapters 21 and 22, and Razor Pages even use the same CSHTML file
extension. But there are some important differences.

The @page directive must be the first thing in a Razor Page, which ensures that the file is not mistaken for a view associated with
a controller. But the most important difference is that the @functions directive is used to define the C# code that supports the Razor
content in the same file. I explain how Razor Pages work shortly, but to see the output generated by the Razor Page, restart ASP.NET
Core and use a browser to request http://localhost:5000/index, which produces the response shown in Figure 23-3.

�Understanding the URL Routing Convention
URL routing for Razor Pages is based on the file name and location, relative to the Pages folder. The Razor Page in Listing 23-4 is in
a file named Index.cshtml, in the Pages folder, which means that it will handle requests for the /index. The routing convention can
be overridden, as described in the “Understanding Razor Pages Routing” section, but, by default, it is the location of the Razor Page
file that determines the URLs that it responds to.

�Understanding the Page Model
In a Razor Page, the @model directive is used to select a page model class, rather than identifying the type of the object provided by an
action method. The @model directive in Listing 23-4 selects the IndexModel class.

...
@model IndexModel
...

The page model is defined within the @functions directive and is derived from the PageModel class, like this:

...
@functions {
 public class IndexModel: PageModel {
...

When the Razor Page is selected to handle an HTTP request, a new instance of the page model class is created, and dependency
injection is used to resolve any dependencies that have been declared using constructor parameters, using the features described in
Chapter 14. The IndexModel class declares a dependency on the DataContext service created in Chapter 18, which allows it to access
the data in the database.

...
public IndexModel(DataContext ctx) {
 context = ctx;
}
...

Figure 23-3.  Using a Razor Page

Chapter 23 ■ Using Razor Pages

563

After the page model object has been created, a handler method is invoked. The name of the handler method is On, followed
by the HTTP method for the request so that the OnGet method is invoked when the Razor Page is selected to handle an HTTP GET
request. Handler methods can be asynchronous, in which case a GET request will invoke the OnGetAsync method, which is the
method implemented by the IndexModel class.

...
public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
}
...

Values for the handler method parameters are obtained from the HTTP request using the model binding process, which is
described in detail in Chapter 28. The OnGetAsync method receives the value for its id parameters from the model binder, which it
uses to query the database and assign the result to its Product property.

�Understanding the Page View
Razor Pages use the same mix of HTML fragments and code expressions to generate content, which defines the view presented to
the user. The page model’s methods and properties are accessible in the Razor Page through the @Model expression. The Product
property defined by the IndexModel class is used to set the content of an HTML element, like this:

...
<div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
...

The @Model expression returns an IndexModel object, and this expression reads the Name property of the object returned by the
Product property.

�Understanding the Generated C# Class
Behind the scenes, Razor Pages are transformed into C# classes, just like regular Razor views. Here is a simplified version of the C#
class that is produced from the Razor Page in Listing 23-4:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Razor.Runtime.TagHelpers;
using Microsoft.AspNetCore.Razor.TagHelpers;
using WebApp.Models;

namespace AspNetCore {

 public class Pages_Index : Page {
 public <IndexModel> ViewData => (<IndexModel>)PageContext?.ViewData;
 public IndexModel Model => ViewData.Model;

 public async override Task ExecuteAsync() {
 WriteLiteral("\r\n<!DOCTYPE html>\r\n<html>\r\n");
 WriteLiteral("<head>");

Chapter 23 ■ Using Razor Pages

564

 WriteLiteral("@<link
 href=\"/lib/twitter-bootstrap/css/bootstrap.min.css\"
 rel=\"stylesheet\" />");
 WriteLiteral("</head>");
 WriteLiteral("<body>");
 WriteLiteral("<div class=\"bg-primary text-white text-center m-2 p-2\">")
 Write(Model.Product.Name);
 WriteLiteral("</div>");
 WriteLiteral("</body></html>\r\n\r\n");
 }

 public class IndexModel: PageModel {
 private DataContext context;
 public Product Product { get; set; }

 public IndexModel(DataContext ctx) {
 context = ctx;
 }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 }
 }

 public IUrlHelper Url { get; private set; }
 public IViewComponentHelper Component { get; private set; }
 public IJsonHelper Json { get; private set; }
 public IHtmlHelper<IndexModel> Html { get; private set; }
 public IModelExpressionProvider ModelExpressionProvider { get; private set; }
 }
}

If you compare this code with the equivalent shown in Chapter 21, you can see how Razor Pages rely on the same features used
by the MVC Framework. The HTML fragments and view expressions are transformed into calls to the WriteLiteral and Write
methods.

■■ Tip  You can see the generated classes by examining the contents of the obj/Debug/netcoreapp3.0/Razor/Pages folder with the
Windows File Explorer.

�Understanding Razor Pages Routing
Razor Pages rely on the location of the CSHTML file for routing so that a request for http://localhost:5000/index is handled
by the Pages/Index.cshtml file. Adding a more complex URL structure for an application is done by adding folders whose names
represent the segments in the URL you want to support. As an example, create the WebApp/Pages/Suppliers folder and add to it a
Razor Page named List.cshtml with the contents shown in Listing 23-5.

Listing 23-5.  The Contents of the List.cshtml File in the Pages/Suppliers Folder

@page
@model ListModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using WebApp.Models;

Chapter 23 ■ Using Razor Pages

565

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h5 class="bg-primary text-white text-center m-2 p-2">Suppliers</h5>
 <ul class="list-group m-2">
 @foreach (string s in Model.Suppliers) {
 <li class="list-group-item">@s
 }

</body>
</html>

@functions {

 public class ListModel : PageModel {
 private DataContext context;

 public IEnumerable<string> Suppliers { get; set; }

 public ListModel(DataContext ctx) {
 context = ctx;
 }

 public void OnGet() {
 Suppliers = context.Suppliers.Select(s => s.Name);
 }
 }
}

The new page model class defines a Suppliers property that is set to the sequence of Name values for the Supplier objects in the
database. The database operation in this example is synchronous, so the page model class defined the OnGet method, rather than
OnGetAsync. The supplier names are displayed in a list using an @foreach expression. To use the new Razor Page, use a browser to
request http://localhost:5000/suppliers/list, which produces the response shown in Figure 23-4. The path segments of the
request URL correspond to the folder and file name of the List.cshtml Razor Page.

Figure 23-4.  Using a folder structure to route requests

Chapter 23 ■ Using Razor Pages

566

UNDERSTANDING THE DEFAULT URL HANDLING

The MapRazorPages method sets up a route for the default URL for the Index.cshtml Razor Page, following a similar convention
used by the MVC Framework. It is for this reason that the first Razor Page added to a project is usually called Index.cshtml.
However, when the application mixes Razor Pages and the MVC Framework together, the default route is set up by whichever is
configured first, which is why requests for http://localhost:5000 for the example application are handled by the Index action
of the Home MVC controller. If you want the Index.cshtml file to handle the default URL, then you can change the order of the
endpoint routing statements so that Razor Pages is set up first, like this:

...
app.UseEndpoints(endpoints => {
 endpoints.MapRazorPages();
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
});
...

In my own projects, where I mix Razor Pages and MVC controllers, I tend to rely on the MVC Framework to handle the default
URL, and I avoid creating the Index.cshtml Razor Page to avoid confusion.

�Specifying a Routing Pattern in a Razor Page
Using the folder and file structure to perform routing means there are no segment variables for the model binding process to use.
Instead, values for the request handler methods are obtained from the URL query string, which you can see by using a browser to
request http://localhost:5000/index?id=2, which produces the response shown in Figure 23-5.

The query string provides a parameter named id, which the model binding process uses to satisfy the id parameter defined by
the OnGetAsync method in the Index Razor Page.

...
public async Task OnGetAsync(long id = 1) {
...

I explain how model binding works in detail in Chapter 28, but for now, it is enough to know that the query string parameter in
the request URL is used to provide the id argument when the OnGetAsync method is invoked, which is used to query the database for
a product.

The @page directive can be used with a routing pattern, which allows segment variables to be defined, as shown in Listing 23-6.

Figure 23-5.  Using a query string parameter

Chapter 23 ■ Using Razor Pages

567

Listing 23-6.  Defining a Segment Variable in the Index.cshtml File in the Pages Folder

@page "{id:long?}"
@model IndexModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using WebApp.Models;

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
</body>
</html>

@functions {

 // ...statements omitted for brevity...
}

All the URL pattern features that are described in Chapter 13 can be used with the @page directive. The route pattern used in
Listing 23-6 adds an optional segment variable named id, which is constrained so that it will match only those segments that can be
parsed to a long value. To see the change, restart ASP.NET Core (automatic recompilation doesn’t detect routing changes) and use a
browser to request http://localhost:5000/index/4, which produces the response shown on the left of Figure 23-6.

The @page directive can also be used to override the file-based routing convention for a Razor Page, as shown in Listing 23-7.

Listing 23-7.  Changing the Route in the List.cshtml File in the Pages/Suppliers Folder

@page "/lists/suppliers"
@model ListModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using WebApp.Models;

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <h5 class="bg-primary text-white text-center m-2 p-2">Suppliers</h5>
 <ul class="list-group m-2">
 @foreach (string s in Model.Suppliers) {
 <li class="list-group-item">@s
 }

</body>
</html>

@functions {

 // ...statements omitted for brevity...
}

The directive changes the route for the List page so that it matches URLs whose path is /lists/suppliers. To see the effect of
the change, restart ASP.NET Core and request http://localhost:5000/lists/suppliers, which produces the response shown on
the right of Figure 23-6.

Chapter 23 ■ Using Razor Pages

568

�Adding Routes for a Razor Page
Using the @page directive replaces the default file-based route for a Razor Page. If you want to define multiple routes for a page, then
configuration statements can be added to the Startup class, as shown in Listing 23-8.

Listing 23-8.  Adding Razor Page Routes in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();

 services.AddDistributedMemoryCache();
 services.AddSession(options => {
 options.Cookie.IsEssential = true;
 });

 services.Configure<RazorPagesOptions>(opts => {
 opts.Conventions.AddPageRoute("/Index", "/extra/page/{id:long?}");
 });
 }

Figure 23-6.  Changing routes using the @page directive

Chapter 23 ■ Using Razor Pages

569

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseSession();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The options pattern is used to add additional routes for a Razor Page using the RazorPageOptions class. The AddPageRoute
extension method is called on the Conventions property to add a route for a page. The first argument is the path to the page, without
the file extension and relative to the Pages folder. The second argument is the URL pattern to add to the routing configuration. To
test the new route, restart ASP.NET Core and use a browser to request http://localhost:5000/extra/page/2, which is matched by
the URL pattern added in Listing 23-8 and produces the response shown on the left of Figure 23-7. The route added in Listing 23-8
supplements the route defined by the @page attribute, which you can test by requesting http://localhost:5000/index/2, which
will produce the response shown on the right of Figure 23-7.

�Understanding the Page Model Class
Page models are derived from the PageModel class, which provides the link between the rest of ASP.NET Core and the view part of the
Razor Page. The PageModel class provides methods for managing how requests are handled and properties that provide context data,
the most useful of which are described in Table 23-3. I have listed these properties for completeness, but they are not often required
in Razor Page development, which focuses more on selecting the data that is required to render the view part of the page.

Figure 23-7.  Adding a route for a Razor Page

Chapter 23 ■ Using Razor Pages

570

�Using a Code-Behind Class File
The @function directive allows the page-behind class and the Razor content to be defined in the same file, which is a development
approach used by popular client-side frameworks, such as React or Vue.js.

Defining code and markup in the same file is convenient but can become difficult to manage for more complex applications.
Razor Pages can also be split into separate view and code files, which is similar to the MVC examples in previous chapters and is
reminiscent of ASP.NET Web Pages, which defined C# classes in files known as code-behind files. The first step is to remove the page
model class from the CSHTML file, as shown in Listing 23-9.

Listing 23-9.  Removing the Page Model Class in the Index.cshtml File in the Pages Folder

@page "{id:long?}"
@model WebApp.Pages.IndexModel

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
</body>
</html>

The convention for naming Razor Pages code-behind files is to append the .cs file extension to the name of the view file. If you
are using Visual Studio, the code-behind file was created by the Razor Page template when the Index.cshtml file was added to the
project. Expand the Index.cshtml item in the Solution Explorer and you will see the code-behind file, as shown in Figure 23-8. Open
the file for editing and replace the contents with the statements shown in Listing 23-10.

Table 23-3.  Selected PageModel Properties for Context Data

Name Description

HttpContext This property returns an HttpContext object, described in Chapter 12.

ModelState This property provides access to the model binding and validation features described in Chapters 28 and 29.

PageContext This property returns a PageContext object that provides access to many of the same properties defined by the
PageModel class, along with additional information about the current page selection.

Request This property returns an HttpRequest object that describes the current HTTP request, as described in Chapter 12.

Response This property returns an HttpResponse object that represents the current response, as described in Chapter 12.

RouteData This property provides access to the data matched by the routing system, as described in Chapter 13.

TempData This property provides access to the temp data feature, which is used to store data until it can be read by a
subsequent request. See Chapter 22 for details.

User This property returns an object that describes the user associated with the request, as described in Chapter 38.

Chapter 23 ■ Using Razor Pages

571

If you are using Visual Studio Code, add a file named Index.cshtml.cs to the WebApp/Pages folder with the content shown in
Listing 23-10.

Listing 23-10.  The Contents of the Index.cshtml.cs File in the Pages Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.RazorPages;
using WebApp.Models;

namespace WebApp.Pages {

 public class IndexModel: PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public IndexModel(DataContext ctx) {
 context = ctx;
 }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 }
 }
}

When defining the separate page model class, I defined the class in the WebApp.Pages namespace. This isn’t a requirement, but
it makes the C# class consistent with the rest of the application.

One drawback of using a code-behind file is that automatic recompilation applies only to CSHTML files, which means that
changes to the class file are not applied until the application has been restarted. Restart ASP.NET Core and request http://
localhost:5000/index to ensure the code-behind file is used, producing the response shown in Figure 23-9.

Figure 23-8.  Revealing the code-behind file in the Visual Studio Solution Explorer

Chapter 23 ■ Using Razor Pages

572

�Adding a View Imports File
A view imports file can be used to avoid using the fully qualified name for the page model class in the view file, performing the same
role as the one I used in Chapter 22 for the MVC Framework. If you are using Visual Studio, use the Razor View Imports template to
add a file named _ViewImports.cshtml to the WebApp/Pages folder, with the content shown in Listing 23-11. If you are using Visual
Studio Code, add the file directly.

Listing 23-11.  The Contents of the _ViewImports.cshtml File in the WebApp/Pages Folder

@namespace WebApp.Pages
@using WebApp.Models

The @namespace directive sets the namespace for the C# class that is generated by a view, and using the directive in the view
imports file sets the default namespace for all the Razor Pages in the application, with the effect that the view and its page model
class are in the same namespace and the @model directive does not require a fully qualified type, as shown in Listing 23-12.

Listing 23-12.  Removing the Page Model Namespace in the Index.cshtml File in the Pages Folder

@page "{id:long?}"
@model IndexModel

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
</body>
</html>

Use the browser to request http://localhost:5000/index, which will trigger the recompilation of the views. There is no
difference in the response produced by the Razor Page, which is shown in Figure 23-9.

�Understanding Action Results in Razor Pages
Although it is not obvious, Razor Page handler methods use the same IActionResult interface to control the responses they
generate. To make page model classes easier to develop, handler methods have an implied result that displays the view part of the
page. Listing 23-13 makes the result explicit.

Listing 23-13.  Using an Explicit Result in the Index.cshtml.cs File in the Pages Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.RazorPages;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc;

Figure 23-9.  Using a code-behind file

Chapter 23 ■ Using Razor Pages

573

namespace WebApp.Pages {

 public class IndexModel : PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public IndexModel(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 return Page();
 }
 }
}

The Page method is inherited from the PageModel class and creates a PageResult object, which tells the framework to render
the view part of the page. Unlike the View method used in MVC action methods, the Razor Pages Page method doesn’t accept
arguments and always renders the view part of the page that has been selected to handle the request.

The PageModel class provides other methods that create different action results to produce different outcomes, as described in
Table 23-4.

�Using an Action Result
Except for the Page method, the methods in Table 23-4 are the same as those available in action methods. However, care must be
taken with these methods because sending a status code response is unhelpful in Razor Pages because they are used only when a
client expects the content of the view.

Table 23-4.  The PageModel Action Result Methods

Name Description

Page() This IActionResult returned by this method produces a 200 OK status code and renders
the view part of the Razor Page.

NotFound() The IActionResult returned by this method produces a 404 NOT FOUND status code.

BadRequest(state) The IActionResult returned by this method produces a 400 BAD REQUEST status code.
The method accepts an optional model state object that describes the problem to the
client, as demonstrated in Chapter 19.

File(name, type) The IActionResult returned by this method produces a 200 OK response, sets the
Content-Type header to the specified type, and sends the specified file to the client.

Redirect(path)
RedirectPermanent(path)

The IActionResult returned by these methods produces 302 FOUND and 301 MOVED
PERMANENTLY responses, which redirect the client to the specified URL.

RedirectToAction(name)RedirectTo
ActionPermanent(name)

The IActionResult returned by these methods produces 302 FOUND and 301 MOVED
PERMANENTLY responses, which redirect the client to the specified action method.
The URL used to redirect the client is produced using the routing features described in
Chapter 13.

RedirectToPage(name)
RedirectToPagePermanent(name)

The IActionResult returned by these methods produce 302 FOUND and 301 MOVED
PERMANENTLY responses that redirect the client to another Razor Page. If no name is
supplied, the client is redirected to the current page.

StatusCode(code) The IActionResult returned by this method produces a response with the specific
status code.

Chapter 23 ■ Using Razor Pages

574

Instead of using the NotFound method when requested data cannot be found, for example, a better approach is to redirect the
client to another URL that can display an HTML message for the user. The redirection can be to a static HTML file, to another Razor
Page, or to an action defined by a controller. Add a Razor Page named NotFound.cshtml to the Pages folder and add the content
shown in Listing 23-14.

Listing 23-14.  The Contents of the NotFound.cshtml File in the Pages Folder

@page "/noid"
@model NotFoundModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using WebApp.Models;

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <title>Not Found</title>
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">No Matching ID</div>
 <ul class="list-group m-2">
 @foreach (Product p in Model.Products) {
 <li class="list-group-item">@p.Name (ID: @p.ProductId)
 }

</body>
</html>

@functions {

 public class NotFoundModel: PageModel {
 private DataContext context;

 public IEnumerable<Product> Products { get; set; }

 public NotFoundModel(DataContext ctx) {
 context = ctx;
 }

 public void OnGetAsync(long id = 1) {
 Products = context.Products;
 }
 }
}

The @page directive overrides the route convention so that this Razor Page will handle the /noid URL path. The page model
class uses an Entity Framework Core context object to query the database and displays a list of the product names and key values
that are in the database.

In Listing 23-15, I have updated the handle method of the IndexModel class to redirect the user to the NotFound page when a
request is received that doesn’t match a Product object in the database.

Listing 23-15.  Using a Redirection in the Index.cshtml.cs File in the Pages Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.RazorPages;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc;

Chapter 23 ■ Using Razor Pages

575

namespace WebApp.Pages {

 public class IndexModel : PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public IndexModel(DataContext ctx) {
 context = ctx;
 }

 public async Task<IActionResult> OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 if (Product == null) {
 return RedirectToPage("NotFound");
 }
 return Page();
 }
 }
}

The RedirectToPage method produces an action result that redirects the client to a different Razor Page. The name of the target
page is specified without the file extension, and any folder structure is specified relative to the Pages folder. To test the redirection,
restart ASP.NET Core and request http://localhost:5000/index/500, which provides a value of 500 for the id segment variable
and does not match anything in the database. The browser will be redirected and produce the result shown in Figure 23-10.

Notice that the routing system is used to produce the URL to which the client is redirected, which uses the routing pattern
specified with the @page directive. In this example, the argument to the RedirectToPage method was NotFound, but this has been
translated into a redirection to the /noid path specified by the @page directive in Listing 23-14.

�Handling Multiple HTTP Methods
Razor Pages can define handler methods that respond to different HTTP methods. The most common combination is to support the
GET and POST methods that allow users to view and edit data. To demonstrate, add a Razor Page called Editor.cshtml to the Pages
folder and add the content shown in Listing 23-16.

Figure 23-10.  Redirecting to a different Razor Page

Chapter 23 ■ Using Razor Pages

576

■■ Note I have kept this example as simple as possible, but there are excellent ASP.NET Core features for creating HTML forms and for
receiving data when it is submitted, as described in Chapter 31.

Listing 23-16.  The Contents of the Editor.cshtml File in the WebApps/Pages Folder

@page "{id:long}"
@model EditorModel

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">Editor</div>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Product.Name</td></tr>
 <tr><th>Price</th><td>@Model.Product.Price</td></tr>
 </tbody>
 </table>
 <form method="post">
 @Html.AntiForgeryToken()
 <div class="form-group">
 <label>Price</label>
 <input name="price" class="form-control"
 value="@Model.Product.Price" />
 </div>
 <button class="btn btn-primary" type="submit">Submit</button>
 </form>
 </div>
</body>
</html>

The elements in the Razor Page view create a simple HTML form that presents the user with an input element containing the
value of the Price property for a Product object. The form element is defined without an action attribute, which means the browser
will send a POST request to the Razor Page’s URL when the user clicks the Submit button.

■■ Note T he @Html.AntiForgeryToken() expression in Listing 23-16 adds a hidden form field to the HTML form that ASP.NET Core
uses to guard against cross-site request forgery (CSRF) attacks. I explain how this feature works in Chapter 27, but for this chapter, it is
enough to know that POST requests that do not contain this form field will be rejected.

If you are using Visual Studio, expand the Editor.cshtml item in the Solution Explorer to reveal the Editor.cshtml.cs class
file and replace its contents with the code shown in Listing 23-17. If you are using Visual Studio Code, add a file named Editor.
cshtml.cs to the WebApp/Pages folder and use it to define the class shown in Listing 23-17.

Listing 23-17.  The Contents of the Editor.cshtml.cs File in the Pages Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using WebApp.Models;

Chapter 23 ■ Using Razor Pages

577

namespace WebApp.Pages {
 public class EditorModel : PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public EditorModel(DataContext ctx) {
 context = ctx;
 }

 public async Task OnGetAsync(long id) {
 Product = await context.Products.FindAsync(id);
 }

 public async Task<IActionResult> OnPostAsync(long id, decimal price) {
 Product p = await context.Products.FindAsync(id);
 p.Price = price;
 await context.SaveChangesAsync();
 return RedirectToPage();
 }
 }
}

The page model class defines two handler methods, and the name of the method tells the Razor Pages framework which HTTP
method each handles. The OnGetAsync method is used to handle GET requests, which it does by locating a Product, whose details
are displayed by the view.

The OnPostAsync method is used to handle POST requests, which will be sent by the browser when the user submits the HTML
form. The parameters for the OnPostAsync method are obtained from the request so that the id value is obtained from the URL route
and the price value is obtained from the form. (The model binding feature that extracts data from forms is described in Chapter 28.)

UNDERSTANDING THE POST REDIRECTION

Notice that the last statement in the OnPostAsync method invokes the RedirectToPage method without an argument, which
redirects the client to the URL for the Razor Page. This may seem odd, but the effect is to tell the browser to send a GET request
to the URL it used for the POST request. This type of redirection means that the browser won’t resubmit the POST request if the
user reloads the browser, preventing the same action from being accidentally performed more than once.

To see how the page model class handles different HTTP methods, restart ASP.NET Core and use a browser to navigate to
http://localhost:5000/editor/1. Edit the field to set the price to 100 and click the Submit button. The browser will send a POST
request that is handled by the OnPostAsync method. The database will be updated, and the browser will be redirected so that the
updated data is displayed, as shown in Figure 23-11.

Chapter 23 ■ Using Razor Pages

578

�Selecting a Handler Method
The page model class can define multiple handler methods, allowing the request to select a method using a handler query string
parameter or routing segment variable. To demonstrate this feature, add a Razor Page file named HandlerSelector.cshtml to the
Pages folder with the content shown in Listing 23-18.

Listing 23-18.  The Contents of the HandlerSelector.cshtml File in the Pages Folder

@page
@model HandlerSelectorModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">Selector</div>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Product.Name</td></tr>
 <tr><th>Price</th><td>@Model.Product.Name</td></tr>
 <tr><th>Category</th><td>@Model.Product.Category?.Name</td></tr>
 <tr><th>Supplier</th><td>@Model.Product.Supplier?.Name</td></tr>
 </tbody>
 </table>
 Standard

 Related

 </div>
</body>
</html>

Figure 23-11.  Handling multiple HTTP methods

Chapter 23 ■ Using Razor Pages

579

@functions{

 public class HandlerSelectorModel: PageModel {
 private DataContext context;

 public Product Product { get; set; }

 public HandlerSelectorModel(DataContext ctx) {
 context = ctx;
 }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 }

 public async Task OnGetRelatedAsync(long id = 1) {
 Product = await context.Products
 .Include(p => p.Supplier)
 .Include(p => p.Category)
 .FirstOrDefaultAsync(p => p.ProductId == id);
 Product.Supplier.Products = null;
 Product.Category.Products = null;
 }
 }
}

The page model class in this example defines two handler methods: OnGetAsync and OnGetRelatedAsync. The OnGetAsync
method is used by default, which you can see by using a browser to request http://localhost:5000/handlerselector. The handler
method queries the database and presents the result to the user, as shown on the left of Figure 23-12.

One of the anchor elements rendered by the page targets a URL with a handler query string parameter, like this:

...
Related
...

The name of the handler method is specified without the On[method] prefix and without the Async suffix so that the
OnGetRelatedAsync method is selected using a handler value of related. This alternative handler method includes related data in
its query and presents additional data to the user, as shown on the right of Figure 23-12.

Figure 23-12.  Selecting handler methods

Chapter 23 ■ Using Razor Pages

580

�Understanding the Razor Page View
The view part of a Razor Page uses the same syntax and has the same features as the views used with controllers. Razor Pages can use
the full range of expressions and features such as sessions, temp data, and layouts. Aside from the use of the @page directive and the
page model classes, the only differences are a certain amount of duplication to configure features such as layouts and partial views,
as described in the sections that follow.

�Creating a Layout for Razor Pages
Layouts for Razor Pages are created in the same way as for controller views but in the Pages/Shared folder. If you are using Visual
Studio, create the Pages/Shared folder and add to it a file named _Layout.cshtml using the Razor Layout template with the contents
shown in Listing 23-19. If you are using Visual Studio Code, create the Pages/Shared folder, create the _Layout.cshtml file in the
new folder, and add the content shown in Listing 23-19.

■■ Note  Layouts can be created in the same folder as the Razor Pages that use them, in which case they will be used in preference to
the files in the Shared folder.

Listing 23-19.  The Contents of the _Layout.cshtml File in the Pages/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <h5 class="bg-secondary text-white text-center m-2 p-2">
 Razor Page
 </h5>
 @RenderBody()
</body>
</html>

The layout doesn’t use any features that are specific to Razor Pages and contains the same elements and expressions used in
Chapter 22 when I created a layout for the controller views.

Next, use the Razor View Start template to add a file named _ViewStart.cshtml to the Pages folder. Visual Studio will create
the file with the content shown in Listing 23-20. If you are using Visual Studio Code, create the _ViewStart.cshtml file and add the
content shown in Listing 23-20.

Listing 23-20.  The Contents of the _ViewStart.cshtml File in the Pages Folder

@{
 Layout = "_Layout";
}

The C# classes generated from Razor Pages are derived from the Page class, which provides the Layout property used by the
view start file, which has the same purpose as the one used by controller views. In Listing 23-21, I have updated the Index page to
remove the elements that will be provided by the layout.

Chapter 23 ■ Using Razor Pages

581

Listing 23-21.  Removing Elements in the Index.cshtml File in the Pages Folder

@page "{id:long?}"
@model IndexModel

<div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>

Using a view start file applies the layout to all pages that don’t override the value assigned to the Layout property. In Listing 23-22,
I have added a code block to the Editor page so that it doesn’t use a layout.

Listing 23-22.  Disabling Layouts in the Editor.cshtml File in the Pages Folder

@page "{id:long}"
@model EditorModel
@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>

 <! ...elements omitted for brevity ... />

</body>
</html>

Use a browser to request http://localhost:5000/index, and you will see the effect of the new layout, which is shown on the
left of Figure 23-13. Use the browser to request http://localhost:5000/editor/1, and you will receive content that is generated
without the layout, as shown on the right of Figure 23-13.

Figure 23-13.  Using a layout in Razor Pages

Chapter 23 ■ Using Razor Pages

582

�Using Partial Views in Razor Pages
Razor Pages can use partial views so that common content isn’t duplicated. The example in this section relies on the tag helpers
feature, which I describe in detail in Chapter 25. For this chapter, add the directive shown in Listing 23-23 to the view imports file,
which enables the custom HTML element used to apply partial views.

Listing 23-23.  Enabling Tag Helpers in the _ViewImports.cshtml File in the Pages Folder

@namespace WebApp.Pages
@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Next, add a Razor view named _ProductPartial.cshtml in the Pages/Shared folder and add the content shown in Listing 23-24.

Listing 23-24.  The Contents of the _ProductPartial.cshtml File in the Pages/Shared Folder

@model Product

<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr><th>Price</th><td>@Model.Price</td></tr>
 </tbody>
 </table>
</div>

Notice there is nothing specific to Razor Pages in the partial view. Partial views use the @model directive to receive a view model
object and do not use the @page directive or have page models, both of which are specific to Razor Pages. This allows Razor Pages to
share partial views with MVC controllers, as described in the sidebar.

UNDERSTANDING THE PARTIAL METHOD SEARCH PATH

The Razor view engine starts looking for a partial view in the same folder as the Razor Page that uses it. If there is no matching
file, then the search continues in each parent directory until the Pages folder is reached. For a partial view used by a Razor Page
defined in the Pages/App/Data folder, for example, the view engine looks in the Pages/App/Data folder, the Page/App folder,
and then the Pages folder. If no file is found, the search continues to the Pages/Shared folder and, finally, to the Views/Shared
folder.

The last search location allows partial views defined for use with controllers to be used by Razor Pages, which is a useful feature
for avoiding duplicate content in applications where MVC controllers and Razor Pages are both used.

Partial views are applied using partial element, as shown in Listing 23-25, with the name attribute specifying the name of the
view and the model attribute providing the view model.

■■ Caution P artial views receive a view model through their @model directive and not a page model. It is for this reason that the value
of the model attribute is Model.Product and not just Model.

Chapter 23 ■ Using Razor Pages

583

Listing 23-25.  Using a Partial View in the Index.cshtml File in the Pages Folder

@page "{id:long?}"
@model IndexModel

<div class="bg-primary text-white text-center m-2 p-2">@Model.Product.Name</div>
<partial name="_ProductPartial" model="Model.Product" />

When the Razor Page is used to handle a response, the contents of the partial view are incorporated into the response. Use a
browser to request http://localhost:5000/index, and the response includes the table defined in the partial view, as shown in
Figure 23-14.

�Creating Razor Pages Without Page Models
If a Razor Page is simply presenting data to the user, the result can be a page model class that simply declares a constructor
dependency to set a property that is consumed in the view. To understand this pattern, add a Razor Page named Data.cshtml to the
WebApp/Pages folder with the content shown in Listing 23-26.

Listing 23-26.  The Contents of the Data.cshtml File in the Pages Folder

@page
@model DataPageModel
@using Microsoft.AspNetCore.Mvc.RazorPages

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">
 @foreach (Category c in Model.Categories) {
 <li class="list-group-item">@c.Name
 }

@functions {

 public class DataPageModel : PageModel {
 private DataContext context;

 public IEnumerable<Category> Categories { get; set; }

 public DataPageModel(DataContext ctx) {
 context = ctx;
 }

Figure 23-14.  Using a partial view

Chapter 23 ■ Using Razor Pages

584

 public void OnGet() {
 Categories = context.Categories;
 }
 }
}

The page model in this example doesn’t transform data, perform calculations, or do anything other than giving the view access
to the data through dependency injection. To avoid this pattern, where a page model class is used only to access a service, the
@inject directive can be used to obtain the service in the view, without the need for a page model, as shown in Listing 23-27.

■■ Caution T he @inject directive should be used sparingly and only when the page model class adds no value other than to provide
access to services. In all other situations, using a page model class is easier to manage and maintain.

Listing 23-27.  Accessing a Service in the Data.cshtml File in the Pages Folder

@page
@inject DataContext context;

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">
 @foreach (Category c in context.Categories) {
 <li class="list-group-item">@c.Name
 }

The @inject expression specifies the service type and the name by which the service is accessed. In this example, the service type
is DataContext, and the name by which it is accessed is context. Within the view, the @foreach expression generates elements for each
object returned by the DataContext.Categories properties. Since there is no page model in this example, I have removed the @page and
@using directives. Use a browser to navigate to http://localhost:5000/data, and you will see the response shown in Figure 23-15.

�Summary
In this chapter, I introduced Razor Pages and explained how they differ from the controllers and views. I showed you how to define
content and code in the same file, how to use a code-behind file, and how page models provide the underpinnings for the most
important Razor Pages features. In the next chapter, I describe the view components feature.

Figure 23-15.  Using a Razor Page without a page model

585© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_24

CHAPTER 24

Using View Components

I describe view components in this chapter, which are classes that provide action-style logic to support partial views; this means view
components provide complex content to be embedded in views while allowing the C# code that supports it to be easily maintained.
Table 24-1 puts view components in context.

Table 24-2 summarizes the chapter.

Table 24-1.  Putting View Components in Context

Question Answer

What are they? View components are classes that provide application logic to support partial views or to inject small
fragments of HTML or JSON data into a parent view.

Why are they useful? Without view components, it is hard to create embedded functionality such as shopping baskets or login
panels in a way that is easy to maintain.

How are they used? View components are typically derived from the ViewComponent class and are applied in a parent view
using the custom vc HTML element or the @await Component.InvokeAsync expression.

Are there any pitfalls or
limitations?

View components are a simple and predictable feature. The main pitfall is not using them and trying to
include application logic within views where it is difficult to test and maintain.

Are there any
alternatives?

You could put the data access and processing logic directly in a partial view, but the result is difficult to
work with and hard to maintain.

Table 24-2.  Chapter Summary

Problem Solution Listing

Creating a reusable unit of code and content Define a view component 7–13

Creating a response from a view component Use one of the IViewComponentResult implementation classes 14–18

Getting context data Use the properties inherited from the base class or use the
parameters of the Invoke or InvokeAsync method

19–23

Generating view component responses asynchronously Override the InvokeAsync method 24–26

Integrating a view component into another endpoint Create a hybrid controller or Razor Page 27–34

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 23. To prepare for this chapter, add a class file named City.cs to the WebApp/
Models folder with the content shown in Listing 24-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 24 ■ Using View Components

586

Listing 24-1.  The Contents of the City.cs File in the Models Folder

namespace WebApp.Models {

 public class City {
 public string Name { get; set; }
 public string Country { get; set; }
 public int Population { get; set; }
 }
}

Add a class named CitiesData.cs to the WebApp/Models folder with the content shown in Listing 24-2.

Listing 24-2.  The Contents of the CitiesData.cs File in the WebApp/Models Folder

using System.Collections.Generic;

namespace WebApp.Models {

 public class CitiesData {

 private List<City> cities = new List<City> {
 new City { Name = "London", Country = "UK", Population = 8539000},
 new City { Name = "New York", Country = "USA", Population = 8406000 },
 new City { Name = "San Jose", Country = "USA", Population = 998537 },
 new City { Name = "Paris", Country = "France", Population = 2244000 }
 };

 public IEnumerable<City> Cities => cities;

 public void AddCity(City newCity) {
 cities.Add(newCity);
 }
 }
}

The CitiesData class provides access to a collection of City objects and provides an AddCity method that adds a new object to
the collection. Add the statement shown in Listing 24-3 to the ConfigureServices method of the Startup class to create a service for
the CitiesData class.

Listing 24-3.  Defining a Service in the Startup.cs File in the WebApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

Chapter 24 ■ Using View Components

587

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();

 services.AddDistributedMemoryCache();
 services.AddSession(options => {
 options.Cookie.IsEssential = true;
 });

 services.Configure<RazorPagesOptions>(opts => {
 opts.Conventions.AddPageRoute("/Index", "/extra/page/{id:long?}");
 });

 services.AddSingleton<CitiesData>();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseSession();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The new statement uses the AddSingleton method to create a CitiesData service. There is no interface/implementation
separation in this service, which I have created to easily distribute a shared CitiesData object. Add a Razor Page named Cities.
cshtml to the WebApp/Pages folder and add the content shown in Listing 24-4.

Listing 24-4.  The Contents of the Cities.cshtml File in the Pages Folder

@page
@inject CitiesData Data

<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 @foreach (City c in Data.Cities) {
 <tr>
 <td>@c.Name</td>
 <td>@c.Country</td>
 <td>@c.Population</td>
 </tr>
 }

Chapter 24 ■ Using View Components

588

 </tbody>
 </table>
</div>

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 24-5 to drop the database.

Listing 24-5.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 24-6.

Listing 24-6.  Running the Example Application

dotnet run

The database will be seeded as part of the application startup. Once ASP.NET Core is running, use a web browser to request
http://localhost:5000/cities, which will produce the response shown in Figure 24-1.

Figure 24-1.  Running the example application

�Understanding View Components
Applications commonly need to embed content in views that isn’t related to the main purpose of the application. Common
examples include site navigation tools and authentication panels that let the user log in without visiting a separate page.

The data for this type of feature isn’t part of the model data passed from the action method or page model to the view. It is for
this reason that I have created two sources of data in the example project: I am going to display some content generated using City
data, which isn’t easily done in a view that receives data from the Entity Framework Core repository and the Product, Category, and
Supplier objects it contains.

Chapter 24 ■ Using View Components

589

Partial views are used to create reusable markup that is required in views, avoiding the need to duplicate the same content in
multiple places in the application. Partial views are a useful feature, but they just contain fragments of HTML and Razor directives,
and the data they operate on is received from the parent view. If you need to display different data, then you run into a problem.
You could access the data you need directly from the partial view, but this breaks the development model and produces an
application that is difficult to understand and maintain. Alternatively, you could extend the view models used by the application
so that it includes the data you require, but this means you have to change every action method, which makes it hard to isolate the
functionality of action methods for effective maintenance and testing.

This is where view components come in. A view component is a C# class that provides a partial view with the data that it needs,
independently from the action method or Razor Page. In this regard, a view component can be thought of as a specialized action or
page, but one that is used only to provide a partial view with data; it cannot receive HTTP requests, and the content that it provides
will always be included in the parent view.

�Creating and Using a View Component
A view component is any class whose name ends with ViewComponent and that defines an Invoke or InvokeAsync method or any
class that is derived from the ViewComponent base class or that has been decorated with the ViewComponent attribute. I demonstrate
the use of the attribute in the “Getting Context Data” section, but the other examples in this chapter rely on the base class.

View components can be defined anywhere in a project, but the convention is to group them in a folder named Components.
Create the WebApp/Components folder and add to it a class file named CitySummary.cs with the content shown in Listing 24-7.

Listing 24-7.  The Contents of the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public string Invoke() {
 return $"{data.Cities.Count()} cities, "
 + $"{data.Cities.Sum(c => c.Population)} people";
 }
 }
}

View components can take advantage of dependency injection to receive the services they require. In this example, the view
component declares a dependency on the CitiesData class, which is then used in the Invoke method to create a string that
contains the number of cities and the population total.

�Applying a View Component
View components can be applied in two different ways. The first technique is to use the Component property that is added to the
C# classes generated from views and Razor Pages. This property returns an object that implements the IViewComponentHelper
interface, which provides the InvokeAsync method. Listing 24-8 uses this technique to apply the view component in the Index.
cshtml file in the Views/Home folder.

Chapter 24 ■ Using View Components

590

Listing 24-8.  Using a View Component in the Index.cshtml File in the Views/Index Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header { Product Information }

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>
<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

@section Summary {
 <div class="bg-info text-white m-2 p-2">
 @await Component.InvokeAsync("CitySummary")
 </div>
}

View components are applied using the Component.InvokeAsync method, using the name of the view component class as the
argument. The syntax for this technique can be confusing. View component classes define either an Invoke or InvokeAsync method,
depending on whether their work is performed synchronously or asynchronously. But the Component.InvokeAsync method is
always used, even to apply view components that define the Invoke method and whose operations are entirely synchronous.

To add the namespace for the view components to the list that are included in views, I added the statement shown in Listing 24-9 to
the _ViewImports.json file in the Views folder.

Listing 24-9.  Adding a Namespace in the _ViewImports.json File in the Views Folder

@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using WebApp.Components

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1, which will produce the result
shown in Figure 24-2.

Chapter 24 ■ Using View Components

591

�Applying View Components Using a Tag Helper
Razor views and pages can contain tag helpers, which are custom HTML elements that are managed by C# classes. I explain how
tag helpers work in detail in Chapter 25, but view components can be applied using an HTML element that is implemented as a tag
helper. To enable this feature, add the directive shown in Listing 24-10 to the _ViewImports.cshtml file in the Views folder.

■■ Note  View components can be used only in controller views or Razor Pages and cannot be used to handle requests directly.

Listing 24-10.  Configuring a Tag Helper in the _ViewImports.cshtml File in the Views Folder

@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using WebApp.Components
@addTagHelper *, WebApp

The new directive adds tag helper support for the example project, which is specified by name. (You must change WebApp to the
name of your project.) In Listing 24-11, I have used the custom HTML element to apply the view component.

Listing 24-11.  Applying a View Component in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header { Product Information }

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>

Figure 24-2.  Using a view component

Chapter 24 ■ Using View Components

592

<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

@section Summary {
 <div class="bg-info text-white m-2 p-2">
 <vc:city-summary />
 </div>
}

The tag for the custom element is vc, followed by a colon, followed by the name of the view component class, which is
transformed into kebab-case. Each capitalized word in the class name is converted to lowercase and separated by a hyphen so that
CitySummary becomes city-summary, and the CitySummary view component is applied using the vc:city-summary element.

�Applying View Components in Razor Pages
Razor Pages use view components in the same way, either through the Component property or through the custom HTML element.
Since Razor Pages have their own view imports file, a separate @addTagHelper directive is required, as shown in Listing 24-12.

Listing 24-12.  Adding a Directive in the _ViewImports.cshtml File in the Pages Folder

@namespace WebApp.Pages
@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, WebApp

Listing 24-13 applies the CitySummary view component to the Data page.

Listing 24-13.  Using a View Component in the Data.cshtml File in the Pages Folder

@page
@inject DataContext context;

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">
 @foreach (Category c in context.Categories) {
 <li class="list-group-item">@c.Name
 }

<div class="bg-info text-white m-2 p-2">
 <vc:city-summary />
</div>

Use a browser to request http://localhost:5000/data, and you will see the response shown in Figure 24-3, which displays the
city data alongside the categories in the database.

Chapter 24 ■ Using View Components

593

�Understanding View Component Results
The ability to insert simple string values into a view or page isn’t especially useful, but fortunately, view components are capable of
much more. More complex effects can be achieved by having the Invoke or InvokeAsync method return an object that implements
the IViewComponentResult interface. There are three built-in classes that implement the IViewComponentResult interface, and they
are described in Table 24-3, along with the convenience methods for creating them provided by the ViewComponent base class. I
describe the use of each result type in the sections that follow.

There is special handling for two result types. If a view component returns a string, then it is used to create a
ContentViewComponentResult object, which is what I relied on in earlier examples. If a view component returns an IHtmlContent
object, then it is used to create an HtmlContentViewComponentResult object.

�Returning a Partial View
The most useful response is the awkwardly named ViewViewComponentResult object, which tells Razor to render a partial
view and include the result in the parent view. The ViewComponent base class provides the View method for creating
ViewViewComponentResult objects, and four versions of the method are available, described in Table 24-4.

Figure 24-3.  Using a view component in a Razor Page

Table 24-3.  The Built-in IViewComponentResult Implementation Classes

Name Description

ViewViewComponentResult This class is used to specify a Razor view, with optional view model data. Instances of this class
are created using the View method.

ContentViewComponentResult This class is used to specify a text result that will be safely encoded for inclusion in an HTML
document. Instances of this class are created using the Content method.

HtmlContentViewComponentResult This class is used to specify a fragment of HTML that will be included in the HTML document
without further encoding. There is no ViewComponent method to create this type of result.

Chapter 24 ■ Using View Components

594

These methods correspond to those provided by the Controller base class and are used in much the same way. To create a
view model class that the view component can use, add a class file named CityViewModel.cs to the WebApp/Models folder and use it
to define the class shown in Listing 24-14.

Listing 24-14.  The Contents of the CityViewModel.cs File in the Models Folder

namespace WebApp.Models {

 public class CityViewModel {
 public int Cities { get; set; }
 public int Population { get; set; }
 }
}

Listing 24-15 modifies the Invoke method of the CitySummary view component so it uses the View method to select a partial
view and provides view data using a CityViewModel object.

Listing 24-15.  Selecting a View in the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public IViewComponentResult Invoke() {
 return View(new CityViewModel {
 Cities = data.Cities.Count(),
 Population = data.Cities.Sum(c => c.Population)
 });
 }
 }
}

There is no view available for the view component currently, but the error message this produces reveals the locations that are
searched. Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1 to see the locations that are
searched when the view component is used with a controller. Request http://localhost:5000/data to see the locations searched
when a view component is used with a Razor Page. Figure 24-4 shows both responses.

Table 24-4.  The ViewComponent.View Methods

Name Description

View() Using this method selects the default view for the view component and does not provide a view model.

View(model) Using the method selects the default view and uses the specified object as the view model.

View(viewName) Using this method selects the specified view and does not provide a view model.

View(viewName, model) Using this method selects the specified view and uses the specified object as the view model.

Chapter 24 ■ Using View Components

595

Razor searches for a view named Default.cshtml when a view component invokes the View method without specifying a name.
If the view component is used with a controller, then the search locations are as follows:

•	 /Views/[controller]/Components/[viewcomponent]/Default.cshtml

•	 /Views/Shared/Components/[viewcomponent]/Default.cshtml

•	 /Pages/Shared/Components/[viewcomponent]/Default.cshtml

When the CitySummary component is rendered by a view selected through the Home controller, for example, [controller]
is Home and [viewcomponent] is CitySummary, which means the first search location is /Views/Home/Components/CitySummary/
Default.cshtml. If the view component is used with a Razor Page, then the search locations are as follows:

•	 /Pages/Components/[viewcomponent]/Default.cshtml

•	 /Pages/Shared/Components/[viewcomponent]/Default.cshtml

•	 /Views/Shared/Components/[viewcomponent]/Default.cshtml

If the search paths for Razor Pages do not include the page name but a Razor Page is defined in a subfolder, then the Razor view
engine will look for a view in the Components/[viewcomponent] folder, relative to the location in which the Razor Page is defined,
working its way up the folder hierarchy until it finds a view or reaches the Pages folder.

■■ Tip N otice that view components used in Razor Pages will find views defined in the Views/Shared/Components folder and that
view components defined in controllers will find views in the Pages/Shared/Components folder. This means you don’t have to duplicate
views when a view component is used by controllers and Razor Pages.

Create the WebApp/Views/Shared/Components/CitySummary folder and add to it a Razor view named Default.cshtml with the
content shown in Listing 24-16.

Listing 24-16.  The Default.cshtml File in the Views/Shared/Components/CitySummary Folder

@model CityViewModel

<table class="table table-sm table-bordered text-white bg-secondary">
 <thead>
 <tr><th colspan="2">Cities Summary</th></tr>
 </thead>
 <tbody>
 <tr>
 <td>Cities:</td>
 <td class="text-right">
 @Model.Cities
 </td>
 </tr>

Figure 24-4.  The search locations for view component views

Chapter 24 ■ Using View Components

596

 <tr>
 <td>Population:</td>
 <td class="text-right">
 @Model.Population.ToString("#,###")
 </td>
 </tr>
 </tbody>
</table>

Views for view components are similar to partial views and use the @model directive to set the type of the view model object.
This view receives a CityViewModel object from its view component, which is used to populate the cells in an HTML table. Use
a browser to request http://localhost:5000/home/index/1 and http://localhost:5000/data, and you will see the view
incorporated into the responses, as shown in Figure 24-5.

�Returning HTML Fragments
The ContentViewComponentResult class is used to include fragments of HTML in the parent view without using a view. Instances of
the ContentViewComponentResult class are created using the Content method inherited from the ViewComponent base class, which
accepts a string value. Listing 24-17 demonstrates the use of the Content method.

■■ Tip I n addition to the Content method, the Invoke method can return a string, which will be automatically converted to a
ContentViewComponentResult. This is the approach I took in the view component when it was first defined.

Listing 24-17.  Using the Content Method in the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

Figure 24-5.  Using a view with a view component

Chapter 24 ■ Using View Components

597

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public IViewComponentResult Invoke() {
 return Content("This is a <h3><i>string</i></h3>");
 }
 }
}

The string received by the Content method is encoded to make it safe to include in an HTML document. This is particularly
important when dealing with content that has been provided by users or external systems because it prevents JavaScript content
from being embedded into the HTML generated by the application.

In this example, the string that I passed to the Content method contains some basic HTML tags. Restart ASP.NET Core and use
a browser to request http://localhost:5000/home/index/1. The response will include the encoded HTML fragment, as shown in
Figure 24-6.

If you look at the HTML that the view component produced, you will see that the angle brackets have been replaced so that the
browser doesn’t interpret the content as HTML elements, as follows:

...
<div class="bg-info text-white m-2 p-2">
 This is a <h3><i>string</i></h3>
</div>
...

You don’t need to encode content if you trust its source and want it to be interpreted as HTML. The Content method always
encodes its argument, so you must create the HtmlContentViewComponentResult object directly and provide its constructor with an
HtmlString object, which represents a string that you know is safe to display, either because it comes from a source that you trust or
because you are confident that it has already been encoded, as shown in Listing 24-18.

Listing 24-18.  Returning an HTML Fragment in the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Html;

Figure 24-6.  Returning an encoded HTML fragment using a view component

Chapter 24 ■ Using View Components

598

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public IViewComponentResult Invoke() {
 return new HtmlContentViewComponentResult(
 new HtmlString("This is a <h3><i>string</i></h3>"));
 }
 }
}

This technique should be used with caution and only with sources of content that cannot be tampered with and that perform
their own encoding. Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1, and you will see
the response isn’t encoded and is interpreted as HTML elements, as shown in Figure 24-7.

�Getting Context Data
Details about the current request and the parent view are provided to a view component through properties defined by the
ViewComponent base class, as described in Table 24-5.

Figure 24-7.  Returning an unencoded HTML fragment using a view component

Chapter 24 ■ Using View Components

599

The context data can be used in whatever way helps the view component do its work, including varying the way that data
is selected or rendering different content or views. It is hard to devise a representative example of using context data in a view
component because the problems it solves are specific to each project. In Listing 24-19, I check the route data for the request to
determine whether the routing pattern contains a controller segment variable, which indicates a request that will be handled by a
controller and view.

Listing 24-19.  Using Request Data in the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Html;

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public string Invoke() {
 if (RouteData.Values["controller"] != null) {
 return "Controller Request";
 } else {
 return "Razor Page Request";
 }
 }
 }
}

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1 and http://localhost:5000/data,
and you will see that the view component alters its output, as shown in Figure 24-8.

Table 24-5.  The ViewComponentContext Properties

Name Description

HttpContext This property returns an HttpContext object that describes the current request and the response that is being
prepared.

Request This property returns an HttpRequest object that describes the current HTTP request.

User This property returns an IPrincipal object that describes the current user, as described in Chapters 37 and 38.

RouteData This property returns a RouteData object that describes the routing data for the current request.

ViewBag This property returns the dynamic view bag object, which can be used to pass data between the view component
and the view, as described in Chapter 22.

ModelState This property returns a ModelStateDictionary, which provides details of the model binding process, as described
in Chapter 29.

ViewData This property returns a ViewDataDictionary, which provides access to the view data provided for the view
component.

Chapter 24 ■ Using View Components

600

�Providing Context from the Parent View Using Arguments
Parent views can provide additional context data to view components, providing them with either data or guidance about the content
that should be produced. The context data is received through the Invoke or InvokeAsync method, as shown in Listing 24-20.

Listing 24-20.  Receiving a Value in the CitySummary.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using WebApp.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Html;

namespace WebApp.Components {

 public class CitySummary: ViewComponent {
 private CitiesData data;

 public CitySummary(CitiesData cdata) {
 data = cdata;
 }

 public IViewComponentResult Invoke(string themeName) {
 ViewBag.Theme = themeName;

 return View(new CityViewModel {
 Cities = data.Cities.Count(),
 Population = data.Cities.Sum(c => c.Population)
 });
 }
 }
}

The Invoke method defines a themeName parameter that is passed on to the partial view using the view bag, which was
described in Chapter 22. Listing 24-21 updates the Default view to use the received value to style the content it produces.

Figure 24-8.  Using context data in a view component

Chapter 24 ■ Using View Components

601

Listing 24-21.  Styling Content in the Default.cshtml File in the Views/Shared/Components/CitySummary Folder

@model CityViewModel

<table class="table table-sm table-bordered text-white bg-@ViewBag.Theme">
 <thead>
 <tr><th colspan="2">Cities Summary</th></tr>
 </thead>
 <tbody>
 <tr>
 <td>Cities:</td>
 <td class="text-right">
 @Model.Cities
 </td>
 </tr>
 <tr>
 <td>Population:</td>
 <td class="text-right">
 @Model.Population.ToString("#,###")
 </td>
 </tr>
 </tbody>
</table>

A value for all parameters defined by a view component’s Invoke or InvokeAsync method must always be provided. Listing 24-22
provides a value for themeName parameter in the view selected by the Home controller.

■■ Tip T he view component will not be used if you do not provide values for all the parameters it defines but no error message is
displayed. If you don’t see any content from a view component, then the likely cause is a missing parameter value.

Listing 24-22.  Supplying a Value in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header { Product Information }

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>
<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

@section Summary {
 <div class="bg-info text-white m-2 p-2">
 <vc:city-summary theme-name="secondary" />
 </div>
}

Chapter 24 ■ Using View Components

602

The name of each parameter is expressed an attribute using kebab-case so that the theme-name attribute provides a value for the
themeName parameter. Listing 24-23 sets a value in the Data.cshtml Razor Page.

Listing 24-23.  Supplying a Value in the Data.cshtml File in the Pages Folder

@page
@inject DataContext context;

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">
 @foreach (Category c in context.Categories) {
 <li class="list-group-item">@c.Name
 }

<div class="bg-info text-white m-2 p-2">
 <vc:city-summary theme-name="danger" />
</div>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1 and http://localhost:5000/data.
The view component is provided with different values for the themeName parameter, producing the responses shown in Figure 24-9.

PROVIDING VALUES USING THE COMPONENT HELPER

If you prefer applying view components using the Component.InvokeAsync helper, then you can provide context using method
arguments, like this:

...
<div class="bg-info text-white m-2 p-2">
 @await Component.InvokeAsync("CitySummary", new { themeName = "danger" })
</div>
...

The first argument to the InvokeAsync method is the name of the view component class. The second argument is an object
whose names correspond to the parameters defined by the view component.

Figure 24-9.  Using context data in a view component

Chapter 24 ■ Using View Components

603

�Creating Asynchronous View Components
All the examples so far in this chapter have been synchronous view components, which can be recognized because they define the
Invoke method. If your view component relies on asynchronous APIs, then you can create an asynchronous view component by
defining an InvokeAsync method that returns a Task. When Razor receives the Task from the InvokeAsync method, it will wait for
it to complete and then insert the result into the main view. To create a new component, add a class file named PageSize.cs to the
Components folder and use it to define the class shown in Listing 24-24.

Listing 24-24.  The Contents of the PageSize.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Net.Http;
using System.Threading.Tasks;

namespace WebApp.Components {

 public class PageSize : ViewComponent {

 public async Task<IViewComponentResult> InvokeAsync() {
 HttpClient client = new HttpClient();
 HttpResponseMessage response
 = await client.GetAsync("http://apress.com");
 return View(response.Content.Headers.ContentLength);
 }
 }
}

The InvokeAsync method uses the async and await keywords to consume the asynchronous API provided by the HttpClient
class and get the length of the content returned by sending a GET request to Apress.com. The length is passed to the View method,
which selects the default partial view associated with the view component.

Create the Views/Shared/Components/PageSize folder and add to it a Razor view named Default.cshtml with the content
shown in Listing 24-25.

Listing 24-25.  The Contents of the Default.cshtml File in the Views/Shared/Components/PageSize Folder

@model long
<div class="m-1 p-1 bg-light text-dark">Page size: @Model</div>

The final step is to use the component, which I have done in the Index view used by the Home controller, as shown in Listing 24-26.
No change is required in the way that asynchronous view components are used.

Listing 24-26.  Using an Asynchronous Component in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_Layout";
 ViewBag.Title = ViewBag.Title ?? "Product Table";
}

@section Header { Product Information }

<tr><th>Name</th><td>@Model.Name</td></tr>
<tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
</tr>
<tr><th>Category ID</th><td>@Model.CategoryId</td></tr>

Chapter 24 ■ Using View Components

604

@section Footer {
 @(((Model.Price / ViewBag.AveragePrice)
 * 100).ToString("F2"))% of average price
}

@section Summary {
 <div class="bg-info text-white m-2 p-2">
 <vc:city-summary theme-name="secondary" />
 <vc:page-size />
 </div>
}

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1, which will produce a response that
includes the size of the Apress.com home page, as shown in Figure 24-10. You may see a different number displayed since the Apress
web site is updated frequently.

■■ Note A synchronous view components are useful when there are several different regions of content to be created, each of which
can be performed concurrently. The response isn’t sent to the browser until all the content is ready. If you want to update the content
presented to the user dynamically, then you can use Blazor, as described in Part 4.

�Creating View Components Classes
View components often provide a summary or snapshot of functionality that is handled in-depth by a controller or Razor Page. For
a view component that summarizes a shopping basket, for example, there will often be a link that targets a controller that provides a
detailed list of the products in the basket and that can be used to check out and complete the purchase.

In this situation, you can create a class that is a view component as well as a controller or Razor Page. If you are using Visual
Studio, expand the Cities.cshtml item in the Solution Explorer to show the Cities.cshtml.cs file and replace its contents with
those shown in Listing 24-27. If you are using Visual Studio Code, add a file named Cities.cshtml.cs to the Pages folder with the
content shown in Listing 24-27.

Listing 24-27.  The Contents of the Cities.cshtml.cs File in the Pages Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using WebApp.Models;

Figure 24-10.  Using an asynchronous component

Chapter 24 ■ Using View Components

605

namespace WebApp.Pages {

 [ViewComponent(Name = "CitiesPageHybrid")]
 public class CitiesModel : PageModel {

 public CitiesModel(CitiesData cdata) {
 Data = cdata;
 }

 public CitiesData Data { get; set; }

 [ViewComponentContext]
 public ViewComponentContext Context { get; set; }

 public IViewComponentResult Invoke() {
 return new ViewViewComponentResult() {
 ViewData = new ViewDataDictionary<CityViewModel>(
 Context.ViewData,
 new CityViewModel {
 Cities = Data.Cities.Count(),
 Population = Data.Cities.Sum(c => c.Population)
 })
 };
 }
 }
}

This page model class is decorated with the ViewComponent attribute, which allows it to be used as a view component.
The Name argument specifies the name by which the view component will be applied. Since a page model cannot inherit from
the ViewComponent base class, a property whose type is ViewComponentContext is decorated with the ViewComponentContext
attribute, which signals that it should be assigned an object that defines the properties described in Table 24-5 before the Invoke
or InvokeAsync method is invoked. The View method isn’t available, so I have to create a ViewViewComponentResult object, which
relies on the context object received through the decorated property. Listing 24-28 updates the view part of the page to use the new
page model class.

Listing 24-28.  Updating the View in the Cities.cshtml File in the Pages Folder

@page
@model WebApp.Pages.CitiesModel

<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 @foreach (City c in Model.Data.Cities) {
 <tr>
 <td>@c.Name</td>
 <td>@c.Country</td>
 <td>@c.Population</td>
 </tr>
 }
 </tbody>
 </table>
</div>

The changes update the directives to use the page model class. To create the view for the hybrid view component, create the
Pages/Shared/Components/CitiesPageHybrid folder and add to it a Razor view named Default.cshtml with the content shown in
Listing 24-29.

Chapter 24 ■ Using View Components

606

Listing 24-29.  The Default.cshtml File in the Pages/Shared/Components/CitiesPageHybrid Folder

@model CityViewModel

<table class="table table-sm table-bordered text-white bg-dark">
 <thead><tr><th colspan="2">Hybrid Page Summary</th></tr></thead>
 <tbody>
 <tr>
 <td>Cities:</td>
 <td class="text-right">@Model.Cities</td>
 </tr>
 <tr>
 <td>Population:</td>
 <td class="text-right">
 @Model.Population.ToString("#,###")
 </td>
 </tr>
 </tbody>
</table>

Listing 24-30 applies the view component part of the hybrid class in another page.

Listing 24-30.  Using a View Component in the Data.cshtml File in the Pages Folder

@page
@inject DataContext context;

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">
 @foreach (Category c in context.Categories) {
 <li class="list-group-item">@c.Name
 }

<div class="bg-info text-white m-2 p-2">
 <vc:cities-page-hybrid />
</div>

Hybrids are applied just like any other view component. Restart ASP.NET Core and request http://localhost:5000/cities
and http://localhost:5000/data. Both URLs are processed by the same class. For the first URL, the class acts as a page model; for
the second URL, the class acts as a view component. Figure 24-11 shows the output for both URLs.

Chapter 24 ■ Using View Components

607

�Creating a Hybrid Controller Class
The same technique can be applied to controllers. Add a class file named CitiesController.cs to the Controllers folder and add
the statements shown in Listing 24-31.

Listing 24-31.  The Contents of the CitiesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System.Linq;
using WebApp.Models;

namespace WebApp.Controllers {

 [ViewComponent(Name = "CitiesControllerHybrid")]
 public class CitiesController: Controller {
 private CitiesData data;

 public CitiesController(CitiesData cdata) {
 data = cdata;
 }

 public IActionResult Index() {
 return View(data.Cities);
 }

 public IViewComponentResult Invoke() {
 return new ViewViewComponentResult() {
 ViewData = new ViewDataDictionary<CityViewModel>(
 ViewData,
 new CityViewModel {
 Cities = data.Cities.Count(),
 Population = data.Cities.Sum(c => c.Population)
 })
 };
 }
 }
}

Figure 24-11.  A hybrid page model and view component class

Chapter 24 ■ Using View Components

608

A quirk in the way that controllers are instantiated means that a property decorated with the ViewComponentContext attribute
isn’t required and the ViewData property inherited from the Controller base class can be used to create the view component result.

To provide a view for the action method, create the Views/Cities folder and add to it a file named Index.cshtml with the
content shown in Listing 24-32.

Listing 24-32.  The Contents of the Index.cshtml File in the Views/Cities Folder

@model IEnumerable<City>
@{
 Layout = "_ImportantLayout";
}

<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 @foreach (City c in Model) {
 <tr>
 <td>@c.Name</td>
 <td>@c.Country</td>
 <td>@c.Population</td>
 </tr>
 }
 </tbody>
 </table>
</div>

To provide a view for the view component, create the Views/Shared/Components/CitiesControllerHybrid folder and add to it
a Razor view named Default.cshtml with the content shown in Listing 24-33.

Listing 24-33.  The Default.cshtml File in the Views/Shared/Components/CitiesControllerHybrid Folder

@model CityViewModel
<table class="table table-sm table-bordered text-white bg-dark">
 <thead><tr><th colspan="2">Hybrid Controller Summary</th></tr></thead>
 <tbody>
 <tr>
 <td>Cities:</td>
 <td class="text-right">@Model.Cities</td>
 </tr>
 <tr>
 <td>Population:</td>
 <td class="text-right">
 @Model.Population.ToString("#,###")
 </td>
 </tr>
 </tbody>
</table>

Listing 24-34 applies the hybrid view component in the Data.cshtml Razor Page, replacing the hybrid class created in the
previous section.

Listing 24-34.  Applying the View Component in the Data.cshtml File in the Pages Folder

@page
@inject DataContext context;

<h5 class="bg-primary text-white text-center m-2 p-2">Categories</h5>
<ul class="list-group m-2">

Chapter 24 ■ Using View Components

609

 @foreach (Category c in context.Categories) {
 <li class="list-group-item">@c.Name
 }

<div class="bg-info text-white m-2 p-2">
 <vc:cities-controller-hybrid />
</div>

Restart ASP.NET Core and use a browser to request http://localhost:5000/cities/index and http://localhost:5000/
data. For the first URL, the class in Listing 24-34 is used as a controller; for the second URL, the class is used as a view component.
Figure 24-12 shows the responses for both URLs.

�Summary
In this chapter, I described the view components feature, which allows orthogonal features to be included in views used by
controllers or Razor Pages. I explained how view components work and how they are applied, and I demonstrated the different
types of results they produce. I completed the chapter by showing you how to create classes that are both view components and
controllers or Razor Pages. In the next chapter, I introduce tag helpers. which are used to transform HTML elements.

Figure 24-12.  A hybrid controller and view component class

611© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_25

CHAPTER 25

Using Tag Helpers

Tag helpers are C# classes that transform HTML elements in a view or page. Common uses for tag helpers include generating
URLs for forms using the application’s routing configuration, ensuring that elements of a specific type are styled consistently, and
replacing custom shorthand elements with commonly used fragments of content. In this chapter, I describe how tag helpers work
and how custom tag helpers are created and applied. In Chapter 26, I describe the built-in tag helpers, and in Chapter 27, I use tag
helpers to explain how HTML forms are created. Table 25-1 puts tag helpers in context.

Table 25-2 summarizes the chapter.

Table 25-1.  Putting Tag Helpers in Context

Question Answer

What are they? Tag helpers are classes that manipulate HTML elements, either to change them in some way, to
supplement them with additional content, or to replace them entirely with new content.

Why are they useful? Tag helpers allow view content to be generated or transformed using C# logic, ensuring that the HTML
sent to the client reflects the state of the application.

How are they used? The HTML elements to which tag helpers are applied are selected based on the name of the class or with
the HTMLTargetElement attribute. When a view is rendered, elements are transformed by tag helpers and
included in the HTML sent to the client.

Are there any pitfalls or
limitations?

It can be easy to get carried away and generate complex sections of HTML content using tag helpers,
which is something that is more readily achieved using view components, described in Chapter 24.

Are there any
alternatives?

You don’t have to use tag helpers, but they make it easy to generate complex HTML in ASP.NET Core
applications.

Table 25-2.  Chapter Summary

Problem Solution Listing

Creating a tag helper Define a class that is derived from the TagHelper class 1–7

Controlling the scope of a tag helper Alter the range of elements specified by the HtmlTargetElement attribute 8–11

Creating custom HTML elements that are
replaced with content

Use shorthand elements 12, 13

Creating elements programmatically Use the TagBuilder class 14

Controlling where content is inserted Use the prepend and append features 15–18

Getting context data Use the context object 19, 20

Operating on the view model or page model Use a model expression 21–24

Creating coordinating tag helpers Use the Items property 25–26

Suppressing content Use the SuppressOutput method 27, 28

Defining tag helper as services Create tag helper components 29–32

Chapter 25 ■ Using Tag Helpers

612

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 24. To prepare for this chapter, replace the contents of the Startup.cs file with
those in Listing 25-1, removing some of the configuration statements used in earlier chapters.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 25-1.  The Contents of the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

Next, replace the contents of the Index.cshtml file in the Views/Home folder with the content shown in Listing 25-2.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 25 ■ Using Tag Helpers

613

Listing 25-2.  The Contents of the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<table class="table table-striped table-bordered table-sm">
 <thead>
 <tr>
 <th colspan="2">Product Summary</th>
 </tr>
 </thead>
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

The view in Listing 25-2 relies on a new layout. Add a Razor view file named _SimpleLayout.cshtml in the Views/Shared folder
with the content shown in Listing 25-3.

Listing 25-3.  The Contents of the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 25-4 to drop the database.

Listing 25-4.  Dropping the Database

dotnet ef database drop --force

Chapter 25 ■ Using Tag Helpers

614

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 25-5.

Listing 25-5.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/home, which will produce the response shown in Figure 25-1.

�Creating a Tag Helper
The best way to understand tag helpers is to create one, which reveals how they operate and how they fit into an ASP.NET Core
application. In the sections that follow, I go through the process of creating and applying a tag helper that will set the Bootstrap CSS
classes for a tr element so that an element like this:

...
<tr tr-color="primary">
 <th colspan="2">Product Summary</th>
</tr>
...

will be transformed into this:

...
<tr class="bg-primary text-white text-center">
 <th colspan="2">Product Summary</th>
</tr>
...

The tag helper will recognize the tr-color attribute and use its value to set the class attribute on the element sent to the
browser. This isn’t the most dramatic—or useful—transformation, but it provides a foundation for explaining how tag helpers work.

Figure 25-1.  Running the example application

Chapter 25 ■ Using Tag Helpers

615

�Defining the Tag Helper Class
Tag helpers can be defined anywhere in the project, but it helps to keep them together because they need to be registered before
they can be used. Create the WebApp/TagHelpers folder and add to it a class file named TrTagHelper.cs with the code shown in
Listing 25-6.

Listing 25-6.  The Contents of the TrTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 public class TrTagHelper: TagHelper {

 public string BgColor { get; set; } = "dark";
 public string TextColor { get; set; } = "white";

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-center text-{TextColor}");
 }
 }
}

Tag helpers are derived from the TagHelper class, which is defined in the Microsoft.AspNetCore.Razor.TagHelpers
namespace. The TagHelper class defines a Process method, which is overridden by subclasses to implement the behavior that
transforms elements.

The name of the tag helper combines the name of the element it transforms followed by TagHelper. In the case of the example,
the class name TrTagHelper indicates this is a tag helper that operates on tr elements. The range of elements to which a tag helper
can be applied can be broadened or narrowed using attributes, as described later in this chapter, but the default behavior is defined
by the class name.

■■ Tip A synchronous tag helpers can be created by overriding the ProcessAsync method instead of the Process method, but this
isn’t required for most helpers, which tend to make small and focused changes to HTML elements. You can see an example of an
asynchronous tag helper in the “Advanced Tag Helper Features” section.

�Receiving Context Data
Tag helpers receive information about the element they are transforming through an instance of the TagHelperContext class, which
is received as an argument to the Process method and which defines the properties described in Table 25-3.

Chapter 25 ■ Using Tag Helpers

616

Although you can access details of the element’s attributes through the AllAttributes dictionary, a more convenient approach
is to define a property whose name corresponds to the attribute you are interested in, like this:

...
public string BgColor { get; set; } = "dark";
public string TextColor { get; set; } = "white";
...

When a tag helper is being used, the properties it defines are inspected and assigned the value of any whose name matches
attributes applied to the HTML element. As part of this process, the attribute value will be converted to match the type of the C#
property so that bool properties can be used to receive true and false attribute values and int properties can be used to receive
numeric attribute values such as 1 and 2.

Properties for which there are no corresponding HTML element attributes are not set, which means you should check to ensure
that you are not dealing with null or provide default values, which is the approach taken in Listing 25-6.

The name of the attribute is automatically converted from the default HTML style, bg-color, to the C# style, BgColor. You
can use any attribute prefix except asp- (which Microsoft uses) and data- (which is reserved for custom attributes that are sent to
the client). The example tag helper will be configured using bg-color and text-color attributes, which will provide values for the
BgColor and TextColor properties and be used to configure the tr element in the Process method, as follows:

...
output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-center text-{TextColor}");
...

■■ Tip  Using the HTML attribute name for tag helper properties doesn’t always lead to readable or understandable classes. You can
break the link between the name of the property and the attribute it represents using the HtmlAttributeName attribute, which can be
used to specify the HTML attribute that the property represents.

�Producing Output
The Process method transforms an element by configuring the TagHelperOutput object that is received as an argument. The
TagHelperOuput object starts by describing the HTML element as it appears in the view and is modified through the properties and
methods described in Table 25-4.

Table 25-3.  The TagHelperContext Properties

Name Description

AllAttributes This property returns a read-only dictionary of the attributes applied to the element being transformed, indexed by
name and by index.

Items This property returns a dictionary that is used to coordinate between tag helpers, as described in the
“Coordinating Between Tag Helpers” section.

UniqueId This property returns a unique identifier for the element being transformed.

Chapter 25 ■ Using Tag Helpers

617

In the TrTagHelper class, I used the Attributes dictionary to add a class attribute to the HTML element that specifies
Bootstrap styles, including the value of the BgColor and TextColor properties. The effect is that the background color for tr
elements can be specified by setting bg-color and text-color attributes to Bootstrap names, such as primary, info, and danger.

�Registering Tag Helpers
Tag helper classes must be registered with the @addTagHelper directive before they can be used. The set of views or pages to which a
tag helper can be applied depends on where the @addTagHelper directive is used.

For a single view or page, the directive appears in the CSHTML file itself. To make a tag helper available more widely, it can be
added to the view imports file, which is defined in the Views folder for controllers and the Pages folder for Razor Pages.

I want the tag helpers that I create in this chapter to be available anywhere in the application, which means that the
@addTagHelper directive is added to the _ViewImports.cshtml files in the Views and Pages folders. The vc element used in
Chapter 24 to apply view components is a tag helper, which is why the directive required to enable tag helpers is already in the
_ViewImports.cshtml file.

@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using WebApp.Components
@addTagHelper *, WebApp

The first part of the argument specifies the names of the tag helper classes, with support for wildcards, and the second
part specifies the name of the assembly in which they are defined. This @addTagHelper directive uses the wildcard to select all
namespaces in the WebApp assembly, with the effect that tag helpers defined anywhere in the project can be used in any controller
view. There is an identical statement in the Razor Pages _ViewImports.cshtml file in the Pages folder.

@namespace WebApp.Pages
@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, WebApp

The other @addTagHelper directive enables the built-in tag helpers that Microsoft provides, which are described in Chapter 26.

Table 25-4.  The TagHelperOutput Properties and Methods

Name Description

TagName This property is used to get or set the tag name for the output element.

Attributes This property returns a dictionary containing the attributes for the output element.

Content This property returns a TagHelperContent object that is used to set the content of the element.

GetChildContentAsync() This asynchronous method provides access to the content of the element that will be transformed, as
demonstrated in the “Creating Shorthand Elements” section.

PreElement This property returns a TagHelperContext object that is used to insert content in the view before the
output element. See the “Prepending and Appending Content and Elements” section.

PostElement This property returns a TagHelperContext object that is used to insert content in the view after the
output element. See the “Prepending and Appending Content and Elements” section.

PreContent This property returns a TagHelperContext object that is used to insert content before the output
element’s content. See the “Prepending and Appending Content and Elements” section.

PostContent This property returns a TagHelperContext object that is used to insert content after the output
element’s content. See the “Prepending and Appending Content and Elements” section.

TagMode This property specifies how the output element will be written, using a value from the TagMode
enumeration. See the “Creating Shorthand Elements” section.

SupressOuput() Calling this method excludes an element from the view. See the “Suppressing the Output Element”
section.

Chapter 25 ■ Using Tag Helpers

618

�Using a Tag Helper
The final step is to use the tag helper to transform an element. In Listing 25-7, I have added the attribute to the tr element, which
will apply the tag helper.

Listing 25-7.  Using a Tag Helper in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<table class="table table-striped table-bordered table-sm">
 <thead>
 <tr bg-color="info" text-color="white">
 <th colspan="2">Product Summary</th>
 </tr>
 </thead>
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td>@Model.Price.ToString("c")</td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home, which produces the response shown in
Figure 25-2.

The tr element to which the attributes were applied in Listing 25-7 has been transformed, but that isn’t the only change shown
in the figure. By default, tag helpers apply to all elements of a specific type, which means that all the tr elements in the view have
been transformed using the default values defined in the tag helper class, since no attributes were defined.

In fact, the problem is more serious because the @addTagHelper directives in the view import files mean that the example tag
helper is applied to all tr elements used in any view rendered by controllers and Razor Pages. Use a browser to request http://
localhost:5000/cities, for example, and you will see the tr elements in the response from Cities Razor Page have also been
transformed, as shown in Figure 25-3.

Figure 25-2.  Using a tag helper

Chapter 25 ■ Using Tag Helpers

619

�Narrowing the Scope of a Tag Helper
The range of elements that are transformed by a tag helper can be controlled using the HtmlTargetElement element, as shown in
Listing 25-8.

Listing 25-8.  Narrowing Scope in the TrTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tr", Attributes = "bg-color,text-color", ParentTag ="thead")]
 public class TrTagHelper: TagHelper {

 public string BgColor { get; set; } = "dark";
 public string TextColor { get; set; } = "white";

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-center text-{TextColor}");
 }
 }
}

The HtmlTargetElement attribute describes the elements to which the tag helper applies. The first argument specifies the
element type and supports the additional named properties described in Table 25-5.

Figure 25-3.  Unexpectedly modifying elements with a tag helper

Chapter 25 ■ Using Tag Helpers

620

The Attributes property supports CSS attribute selector syntax so that [bg-color] matches elements that have a bg-color
attribute, [bg-color=primary] matches elements that have a bg-color attribute whose value is primary, and [bg-color^=p]
matches elements with a bg-color attribute whose value begins with p. The attribute applied to the tag helper in Listing 25-8
matches tr elements with both bg-color and text-color attributes that are children of a thead element. Restart ASP.NET Core and
use a browser to request http://localhost:5000/home/index/1, and you will see the scope of the tag helper has been narrowed, as
shown in Figure 25-4.

�Widening the Scope of a Tag Helper
The HtmlTargetElement attribute can also be used to widen the scope of a tag helper so that it matches a broader range of elements.
This is done by setting the attribute’s first argument to an asterisk (the * character), which matches any element. Listing 25-9
changes the attribute applied to the example tag helper so that it matches any element that has bg-color and text-color attributes.

Listing 25-9.  Widening Scope in the TrTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("*", Attributes = "bg-color,text-color")]
 public class TrTagHelper: TagHelper {

 public string BgColor { get; set; } = "dark";
 public string TextColor { get; set; } = "white";

Table 25-5.  The HtmlTargetElement Properties

Name Description

Attributes This property is used to specify that a tag helper should be applied only to elements that have a given set of
attributes, supplied as a comma-separated list. An attribute name that ends with an asterisk will be treated as a
prefix so that bg-* will match bg-color, bg-size, and so on.

ParentTag This property is used to specify that a tag helper should be applied only to elements that are contained within an
element of a given type.

TagStructure This property is used to specify that a tag helper should be applied only to elements whose tag structure
corresponds to the given value from the TagStructure enumeration, which defines Unspecified,
NormalOrSelfClosing, and WithoutEndTag.

Figure 25-4.  Narrowing the scope of a tag helper

Chapter 25 ■ Using Tag Helpers

621

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-center text-{TextColor}");
 }
 }
}

Care must be taken when using the asterisk because it is easy to match too widely and select elements that should not be
transformed. A safer middle ground is to apply the HtmlTargetElement attribute for each type of element, as shown in Listing 25-10.

Listing 25-10.  Balancing Scope in the TrTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tr", Attributes = "bg-color,text-color")]
 [HtmlTargetElement("td", Attributes = "bg-color")]
 public class TrTagHelper: TagHelper {

 public string BgColor { get; set; } = "dark";
 public string TextColor { get; set; } = "white";

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-center text-{TextColor}");
 }
 }
}

Each instance of the attribute can use different selection criteria. This tag helper matches tr elements with bg-color and text-
color attributes and matches td elements with bg-color attributes. Listing 25-11 adds an element to be transformed to the Index
view to demonstrate the revised scope.

Listing 25-11.  Adding Attributes in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<table class="table table-striped table-bordered table-sm">
 <thead>
 <tr bg-color="info" text-color="white">
 <th colspan="2">Product Summary</th>
 </tr>
 </thead>
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td bg-color="dark">@Model.Price.ToString("c")</td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

Chapter 25 ■ Using Tag Helpers

622

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1. The response will contain two
transformed elements, as shown in Figure 25-5.

ORDERING TAG HELPER EXECUTION

If you need to apply multiple tag helpers to an element, you can control the sequence in which they execute by setting the Order
property, which is inherited from the TagHelper base class. Managing the sequence can help minimize the conflicts between tag
helpers, although it is still easy to encounter problems.

�Advanced Tag Helper Features
The previous section demonstrated how to create a basic tag helper, but that just scratches the surface of what’s possible. In the
sections that follow, I show more advanced uses for tag helpers and the features they provide.

�Creating Shorthand Elements
Tag helpers are not restricted to transforming the standard HTML elements and can also be used to replace custom elements with
commonly used content. This can be a useful feature for making views more concise and making their intent more obvious. To
demonstrate, Listing 25-12 replaces the thead element in the Index view with a custom HTML element.

Listing 25-12.  Adding a Custom HTML Element in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td bg-color="dark">@Model.Price.ToString("c")</td>
 </tr>

Figure 25-5.  Managing the scope of a tag helper

Chapter 25 ■ Using Tag Helpers

623

 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

The tablehead element isn’t part of the HTML specification and won’t be understood by browsers. Instead, I am going
to use this element as shorthand for generating the thead element and its content for the HTML table. Add a class named
TableHeadTagHelper.cs to the TagHelpers folder and use it to define the class shown in Listing 25-13.

■■ Tip  When dealing with custom elements that are not part of the HTML specification, you must apply the HtmlTargetElement
attribute and specify the element name, as shown in Listing 25-13. The convention of applying tag helpers to elements based on the
class name works only for standard element names.

Listing 25-13.  The Contents of TableHeadTagHelper.cs in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tablehead")]
 public class TableHeadTagHelper: TagHelper {

 public string BgColor { get; set; } = "light";

 public override async Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output) {

 output.TagName = "thead";
 output.TagMode = TagMode.StartTagAndEndTag;
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-white text-center");

 string content = (await output.GetChildContentAsync()).GetContent();
 output.Content
 .SetHtmlContent($"<tr><th colspan=\"2\">{content}</th></tr>");
 }
 }
}

This tag helper is asynchronous and overrides the ProcessAsync method so that it can access the existing content of the
elements it transforms. The ProcessAsync method uses the properties of the TagHelperOuput object to generate a completely
different element: the TagName property is used to specify a thead element, the TagMode property is used to specify that the element
is written using start and end tags, the Attributes.SetAttribute method is used to define a class attribute, and the Content
property is used to set the element content.

The existing content of the element is obtained through the asynchronous GetChildContentAsync method, which returns a
TagHelperContent object. This is the same object that is returned by the TagHelperOutput.Content property and allows the content
of the element to be inspected and changed using the same type, through the methods described in Table 25-6.

Chapter 25 ■ Using Tag Helpers

624

In Listing 25-13, the existing content of the element is read through the GetContent element and then set using the
SetHtmlContent method. The effect is to wrap the existing content in the transformed element in tr and th elements.

Restart ASP.NET Core and navigate to http://localhost:5000/home/index/1, and you will see the effect of the tag helper,
which is shown in Figure 25-6.

The tag helper transforms this shorthand element:

...
<tablehead bg-color="dark">Product Summary</tablehead>
...

into these elements:

...
<thead class="bg-dark text-white text-center">
 <tr>
 <th colspan="2">Product Summary</th>
 </tr>
</thead>
...

Notice that the transformed elements do not include the bg-color attribute. Attributes matched to properties defined by the tag
helper are removed from the output element and must be explicitly redefined if they are required.

Table 25-6.  Useful TagHelperContent Methods

Name Description

GetContent() This method returns the contents of the HTML element as a string.

SetContent(text) This method sets the content of the output element. The string argument is encoded so that it is safe
for inclusion in an HTML element.

SetHtmlContent(html) This method sets the content of the output element. The string argument is assumed to be safely
encoded. Use with caution.

Append(text) This method safely encodes the specified string and adds it to the content of the output element.

AppendHtml(html) This method adds the specified string to the content of the output element without performing any
encoding. Use with caution.

Clear() This method removes the content of the output element.

Figure 25-6.  Using a shorthand element

Chapter 25 ■ Using Tag Helpers

625

�Creating Elements Programmatically
When generating new HTML elements, you can use standard C# string formatting to create the content you require, which is the
approach I took in Listing 25-13. This works, but it can be awkward and requires close attention to avoid typos. A more robust
approach is to use the TagBuilder class, which is defined in the Microsoft.AspNetCore.Mvc.Rendering namespace and allows
elements to be created in a more structured manner. The TagHelperContent methods described in Table 25-6 accept TagBuilder
objects, which makes it easy to create HTML content in tag helpers, as shown in Listing 25-14.

Listing 25-14.  Creating HTML Elements in the TableHeadTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tablehead")]
 public class TableHeadTagHelper: TagHelper {

 public string BgColor { get; set; } = "light";

 public override async Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output) {

 output.TagName = "thead";
 output.TagMode = TagMode.StartTagAndEndTag;
 output.Attributes.SetAttribute("class",
 $"bg-{BgColor} text-white text-center");

 string content = (await output.GetChildContentAsync()).GetContent();

 TagBuilder header = new TagBuilder("th");
 header.Attributes["colspan"] = "2";
 header.InnerHtml.Append(content);

 TagBuilder row = new TagBuilder("tr");
 row.InnerHtml.AppendHtml(header);

 output.Content.SetHtmlContent(row);
 }
 }
}

This example creates each new element using a TagBuilder object and composes them to produce the same HTML structure as
the string-based version in Listing 25-13.

�Prepending and Appending Content and Elements
The TagHelperOutput class provides four properties that make it easy to inject new content into a view so that it surrounds an
element or the element’s content, as described in Table 25-7. In the sections that follow, I explain how you can insert content around
and inside the target element.

Chapter 25 ■ Using Tag Helpers

626

�Inserting Content Around the Output Element
The first TagHelperOuput properties are PreElement and PostElement, which are used to insert elements into the view before and
after the output element. To demonstrate the use of these properties, add a class file named ContentWrapperTagHelper.cs to the
WebApp/TagHelpers folder with the content shown in Listing 25-15.

Listing 25-15.  The Contents of the WrapperTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("*", Attributes = "[wrap=true]")]
 public class ContentWrapperTagHelper: TagHelper {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 TagBuilder elem = new TagBuilder("div");
 elem.Attributes["class"] = "bg-primary text-white p-2 m-2";
 elem.InnerHtml.AppendHtml("Wrapper");

 output.PreElement.AppendHtml(elem);
 output.PostElement.AppendHtml(elem);
 }
 }
}

This tag helper transforms elements that have a wrap attribute whose value is true, which it does using the PreElement and
PostElement properties to add a div element before and after the output element. Listing 25-16 adds an element to the Index view
that is transformed by the tag helper.

Listing 25-16.  Adding an Element in the Index.cshtml File in the Views/Index Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<div class="m-2" wrap="true">Inner Content</div>

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr><th>Name</th><td>@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td bg-color="dark">@Model.Price.ToString("c")</td>
 </tr>

Table 25-7.  The TagHelperOutput Properties for Appending Context and Elements

Name Description

PreElement This property is used to insert elements into the view before the target element.

PostElement This property is used to insert elements into the view after the target element.

PreContent This property is used to insert content into the target element, before any existing content.

PostContent This property is used to insert content into the target element, after any existing content.

Chapter 25 ■ Using Tag Helpers

627

 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1. The response includes the
transformed element, as shown in Figure 25-7.

If you examine the HTML sent to the browser, you will see that this element:

...
<div class="m-2" wrap="true">Inner Content</div>
...

has been transformed into these elements:

...
<div class="bg-primary text-white p-2 m-2">Wrapper</div>
<div class="m-2" wrap="true">Inner Content</div>
<div class="bg-primary text-white p-2 m-2">Wrapper</div>
...

Notice that the wrap attribute has been left on the output element. This is because I didn’t define a property in the tag helper
class that corresponds to this attribute. If you want to prevent attributes from being included in the output, then define a property for
them in the tag helper class, even if you don’t use the attribute value.

�Inserting Content Inside the Output Element
The PreContent and PostContent properties are used to insert content inside the output element, surrounding the original content.
To demonstrate this feature, add a class file named HighlightTagHelper.cs to the TagHelpers folder and use it to define the tag
helper shown in Listing 25-17.

Figure 25-7.  Inserting content around the output element

Chapter 25 ■ Using Tag Helpers

628

Listing 25-17.  The Contents of the HighlightTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("*", Attributes = "[highlight=true]")]
 public class HighlightTagHelper: TagHelper {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.PreContent.SetHtmlContent("<i>");
 output.PostContent.SetHtmlContent("</i>");
 }
 }
}

This tag helper inserts b and i elements around the output element’s content. Listing 25-18 adds the wrap attribute to one of the
table cells in the Index view.

Listing 25-18.  Adding an Attribute in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<div class="m-2" wrap="true">Inner Content</div>

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr><th>Name</th><td highlight="true">@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td bg-color="dark">@Model.Price.ToString("c")</td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1. The response includes the
transformed element, as shown in Figure 25-8.

Chapter 25 ■ Using Tag Helpers

629

If you examine the HTML sent to the browser, you will see that this element:

...
<td highlight="true">@Model.Name</td>
...

has been transformed into these elements:

...
<td highlight="true"><i>Kayak</i></td>
...

�Getting View Context Data
A common use for tag helpers is to transform elements so they contain details of the current request or the view model/ page model,
which requires access to context data. To create this type of tag helper, add a file named RouteDataTagHelper.cs to the TagHelpers
folder, with the content shown in Listing 25-19.

Listing 25-19.  The Contents of the RouteDataTagHelper.cs File in the WebApps/TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Microsoft.AspNetCore.Routing;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("div", Attributes="[route-data=true]")]
 public class RouteDataTagHelper: TagHelper {

 [ViewContext]
 [HtmlAttributeNotBound]
 public ViewContext Context { get; set; }

Figure 25-8.  Inserting content inside an element

Chapter 25 ■ Using Tag Helpers

630

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", "bg-primary m-2 p-2");

 TagBuilder list = new TagBuilder("ul");
 list.Attributes["class"] = "list-group";
 RouteValueDictionary rd = Context.RouteData.Values;
 if (rd.Count > 0) {
 foreach (var kvp in rd) {
 TagBuilder item = new TagBuilder("li");
 item.Attributes["class"] = "list-group-item";
 item.InnerHtml.Append($"{kvp.Key}: {kvp.Value}");
 list.InnerHtml.AppendHtml(item);
 }
 output.Content.AppendHtml(list);
 } else {
 output.Content.Append("No route data");
 }
 }
 }
}

The tag helper transforms div elements that have a route-data attribute whose value is true and populates the output element
with a list of the segment variables obtained by the routing system.

To get the route data, I added a property called Context and decorated it with two attributes, like this:

...
[ViewContext]
[HtmlAttributeNotBound]
public ViewContext Context { get; set; }
...

The ViewContext attribute denotes that the value of this property should be assigned a ViewContext object when a new
instance of the tag helper class is created, which provides details of the view that is being rendered, including the routing data, as
described in Chapter 13.

The HtmlAttributeNotBound attribute prevents a value from being assigned to this property if there is a matching attribute
defined on the div element. This is good practice, especially if you are writing tag helpers for other developers to use.

■■ Tip T ag helpers can declare dependencies on services in their constructors, which are resolved using the dependency injection
feature described in Chapter 14.

Listing 25-20 adds an element to the Home controller’s Index view that will be transformed by the new tag helper.

Listing 25-20.  Adding an Element in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<div route-data="true"></div>

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>

Chapter 25 ■ Using Tag Helpers

631

 <tbody>
 <tr><th>Name</th><td highlight="true">@Model.Name</td></tr>
 <tr>
 <th>Price</th>
 <td bg-color="dark">@Model.Price.ToString("c")</td>
 </tr>
 <tr><th>Category ID</th><td>@Model.CategoryId</td></tr>
 </tbody>
</table>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1. The response will include a list of
the segment variables the routing system has matched, as shown in Figure 25-9.

�Working with Model Expressions
Tag helpers can operate on the view model, tailoring the transformations they perform or the output they create. To see how this
feature works, add a class file named ModelRowTagHelper.cs to the TagHelpers folder, with the code shown in Listing 25-21.

Listing 25-21.  The Contents of the ModelRowTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tr", Attributes = "for")]
 public class ModelRowTagHelper : TagHelper {

 public string Format { get; set; }
 public ModelExpression For { get; set; }

Figure 25-9.  Displaying context data with a tag helper

Chapter 25 ■ Using Tag Helpers

632

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.TagMode = TagMode.StartTagAndEndTag;

 TagBuilder th = new TagBuilder("th");
 th.InnerHtml.Append(For.Name);
 output.Content.AppendHtml(th);

 TagBuilder td = new TagBuilder("td");
 if (Format != null && For.Metadata.ModelType == typeof(decimal)) {
 td.InnerHtml.Append(((decimal)For.Model).ToString(Format));
 } else {
 td.InnerHtml.Append(For.Model.ToString());
 }
 output.Content.AppendHtml(td);
 }
 }
}

This tag helper transforms tr elements that have a for attribute. The important part of this tag helper is the type of the For
property, which is used to receive the value of the for attribute.

...
public ModelExpression For { get; set; }
...

The ModelExpression class is used when you want to operate on part of the view model, which is most easily explained by
jumping forward and showing how the tag helper is applied in the view, as shown in Listing 25-22.

■■ Note T he ModelExpression feature can be used only on view models or page models. It cannot be used on variables that are
created within a view, such as with an @foreach expression.

Listing 25-22.  Using the Tag Helper in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<div route-data="true"></div>

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr for="Name" />
 <tr for="Price" format="c" />
 <tr for="CategoryId" />
 </tbody>
</table>

The value of the for attribute is the name of a property defined by the view model class. When the tag helper is created, the type
of the For property is detected and assigned a ModelExpression object that describes the selected property.

Chapter 25 ■ Using Tag Helpers

633

I am not going to describe the ModelExpression class in any detail because any introspection on types leads to endless lists
of classes and properties. Further, ASP.NET Core provides a useful set of built-in tag helpers that use the view model to transform
elements, as described in Chapter 26, which means you don’t need to create your own.

For the example tag helper, I use three basic features that are worth describing. The first is to get the name of the model property
so that I can include it in the output element, like this:

...
th.InnerHtml.Append(For.Name);
...

The Name property returns the name of the model property. The second feature is to get the type of the model property so that I
can determine whether to format the value, like this:

...
if (Format != null && For.Metadata.ModelType == typeof(decimal)) {
...

The third feature is to get the value of the property so that it can be included in the response.

...
td.InnerHtml.Append(For.Model.ToString());
...

Restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/2, and you will see the response
shown in Figure 25-10.

�Working with the Page Model
Tag helpers with model expressions can be applied in Razor Pages, although the expression that selects the property must account
for the way that the Model property returns the page model class. Listing 25-23 applies the tag helper to the Editor Razor Page,
whose page model defines a Product property.

Figure 25-10.  Using the view model in a tag helper

Chapter 25 ■ Using Tag Helpers

634

Listing 25-23.  Applying a Tag Helper in the Editor.cshtml File in the Pages Folder

@page "{id:long}"
@model EditorModel
@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="bg-primary text-white text-center m-2 p-2">Editor</div>
 <div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <tbody>
 <tr for="Product.Name" />
 <tr for="Product.Price" format="c" />
 </tbody>
 </table>
 <form method="post">
 @Html.AntiForgeryToken()
 <div class="form-group">
 <label>Price</label>
 <input name="price" class="form-control"
 value="@Model.Product.Price" />
 </div>
 <button class="btn btn-primary" type="submit">Submit</button>
 </form>
 </div>
</body>
</html>

The value for the for attribute selects the nested properties through the Product property, which provides the tag helper with
the ModelExpression it requires. Use a browser to request http://localhost:5000/editor/1 to see the response from the page,
which is shown on the left of Figure 25-11.

Figure 25-11.  Using a model expression tag helper with a Razor Page

Chapter 25 ■ Using Tag Helpers

635

One consequence of the page model is that the ModelExpression.Name property will return Product.Name, for example, instead
of just Name. Listing 25-24 updates the tag helper so that it will display just the last part of the model expression name.

■■ Note T his example is intended to highlight the effect of the page model on model expressions. Instead of displaying just the
last part of the name, a more flexible approach is to add support for another attribute that allows the display value to be overridden
as needed.

Listing 25-24.  Processing Names in the ModelRowTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Linq;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tr", Attributes = "for")]
 public class ModelRowTagHelper : TagHelper {

 public string Format { get; set; }
 public ModelExpression For { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.TagMode = TagMode.StartTagAndEndTag;

 TagBuilder th = new TagBuilder("th");
 th.InnerHtml.Append(For.Name.Split(".").Last());
 output.Content.AppendHtml(th);

 TagBuilder td = new TagBuilder("td");
 if (Format != null && For.Metadata.ModelType == typeof(decimal)) {
 td.InnerHtml.Append(((decimal)For.Model).ToString(Format));
 } else {
 td.InnerHtml.Append(For.Model.ToString());
 }
 output.Content.AppendHtml(td);
 }
 }
}

Restart ASP.NET Core and use a browser to request http://localhost:5000/editor/1; you will see the revised response, which
is shown on the right of Figure 25-11.

�Coordinating Between Tag Helpers
The TagHelperContext.Items property provides a dictionary used by tag helpers that operate on elements and those that operate
on their descendants. To demonstrate the use of the Items collection, add a class file named CoordinatingTagHelpers.cs to the
WebApp/TagHelpers folder and add the code shown in Listing 25-25.

Chapter 25 ■ Using Tag Helpers

636

Listing 25-25.  The Contents of the CoordinatingTagHelpers.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("tr", Attributes = "theme")]
 public class RowTagHelper: TagHelper {

 public string Theme { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 context.Items["theme"] = Theme;
 }
 }

 [HtmlTargetElement("th")]
 [HtmlTargetElement("td")]
 public class CellTagHelper : TagHelper {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (context.Items.ContainsKey("theme")) {
 output.Attributes.SetAttribute("class",
 $"bg-{context.Items["theme"]} text-white");
 }
 }
 }
}

The first tag helper operates on tr elements that have a theme attribute. Coordinating tag helpers can transform their own
elements, but this example simply adds the value of the theme attribute to the Items dictionary so that it is available to tag helpers
that operate on elements contained within the tr element. The second tag helper operates on th and td elements and uses the
theme value from the Items dictionary to set the Bootstrap style for its output elements.

Listing 25-26 adds elements to the Home controller’s Index view that apply the coordinating tag helpers.

■■ Note N otice that I have added the th and td elements that are transformed in Listing 25-26, instead of relying on a tag helper to
generate them. Tag helpers are not applied to elements generated by other tag helpers and affect only the elements defined in the view.

Listing 25-26.  Applying a Tag Helper in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr theme="primary">
 <th>Name</th><td>@Model.Name</td>
 </tr>

Chapter 25 ■ Using Tag Helpers

637

 <tr theme="secondary">
 <th>Price</th><td>@Model.Price.ToString("c")</td>
 </tr>
 <tr theme="info">
 <th>Category</th><td>@Model.CategoryId</td>
 </tr>
 </tbody>
</table>

Restart ASP.NET Core and use a browser to request http://localhost:5000/home, which produces the response shown in
Figure 25-12. The value of the theme element has been passed from one tag helper to another, and a color theme is applied without
needing to define attributes on each of the elements that is transformed.

�Suppressing the Output Element
Tag helpers can be used to prevent an element from being included in the HTML response by calling the SuppressOuput method on
the TagHelperOutput object that is received as an argument to the Process method. In Listing 25-27, I have added an element to the
Home controller’s Index view that should be displayed only if the Price property of the view model exceeds a specified value.

Listing 25-27.  Adding an Element in the Index.cshtml File in the Views/Home Folder

@model Product
@{
 Layout = "_SimpleLayout";
}

<div show-when-gt="500" for="Price">
 <h5 class="bg-danger text-white text-center p-2">
 Warning: Expensive Item
 </h5>
</div>

<table class="table table-striped table-bordered table-sm">
 <tablehead bg-color="dark">Product Summary</tablehead>
 <tbody>
 <tr theme="primary">
 <th>Name</th><td>@Model.Name</td>
 </tr>

Figure 25-12.  Coordination between tag helpers

Chapter 25 ■ Using Tag Helpers

638

 <tr theme="secondary">
 <th>Price</th><td>@Model.Price.ToString("c")</td>
 </tr>
 <tr theme="info">
 <th>Category</th><td>@Model.CategoryId</td>
 </tr>
 </tbody>
</table>

The show-when-gt attribute specifies the value above which the div element should be displayed, and the for property selects
the model property that will be inspected. To create the tag helper that will manage the elements, including the response, add a class
file named SelectiveTagHelper.cs to the WebApp/TagHelpers folder with the code shown in Listing 25-28.

Listing 25-28.  The Contents of the SelectiveTagHelper.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("div", Attributes = "show-when-gt, for")]
 public class SelectiveTagHelper: TagHelper {

 public decimal ShowWhenGt { get; set; }
 public ModelExpression For { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (For.Model.GetType() == typeof(decimal)
 && (decimal)For.Model <= ShowWhenGt) {
 output.SuppressOutput();
 }
 }
 }
}

The tag helper uses the model expression to access the property and calls the SuppressOutput method unless the threshold
is exceeded. To see the effect, restart ASP.NET Core and use a browser to request http://localhost:5000/home/index/1 and
http://localhost:5000/home/index/5. The value for the Price property of the Product selected by the first URL is less than the
threshold, so the element is suppressed. The value for the Price property of the Product selected by the second URL is more than
the threshold, so the element is displayed. Figure 25-13 shows both responses.

Figure 25-13.  Suppressing output elements

Chapter 25 ■ Using Tag Helpers

639

�Using Tag Helper Components
Tag helper components provide an alternative approach to applying tag helpers as services. This feature can be useful when you
need to set up tag helpers to support another service or middleware component, which is typically the case for diagnostic tools or
functionality that has both a client-side component and a server-side component, such as Blazor, which is described in Part 4. In the
sections that follow, I show you how to create and apply tag helper components.

�Creating a Tag Helper Component
Tag helper components are derived from the TagHelperComponent class, which provides a similar API to the TagHelper base class
used in earlier examples. To create a tag helper component, add a class file called TimeTagHelperComponent.cs in the TagHelpers
folder with the content shown in Listing 25-29.

Listing 25-29.  The Contents of the TimeTagHelperComponent.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System;

namespace WebApp.TagHelpers {

 public class TimeTagHelperComponent: TagHelperComponent {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 string timestamp = DateTime.Now.ToLongTimeString();

 if (output.TagName == "body") {
 TagBuilder elem = new TagBuilder("div");
 elem.Attributes.Add("class", "bg-info text-white m-2 p-2");
 elem.InnerHtml.Append($"Time: {timestamp}");
 output.PreContent.AppendHtml(elem);
 }
 }
 }
}

Tag helper components do not specify the elements they transform, and the Process method is invoked for every element for
which the tag helper component feature has been configured. By default, tag helper components are applied to transform head and
body elements. This means that tag helper component classes must check the TagName property of the output element to ensure
they perform only their intended transformations. The tag helper component in Listing 25-29 looks for body elements and uses the
PreContent property to insert a div element containing a timestamp before the rest of the element’s content.

■■ Tip I show you how to increase the range of elements handled by tag helper components in the next section.

Tag helper components are registered as services that implement the ITagHelperComponent interface, as shown in Listing 25-30.

Listing 25-30.  Registering a Tag Helper Component in the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Razor.TagHelpers;
using WebApp.TagHelpers;

Chapter 25 ■ Using Tag Helpers

640

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();
 services.AddTransient<ITagHelperComponent, TimeTagHelperComponent>();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The AddTransient method is used to ensure that each request is handled using its own instance of the tag helper component
class. To see the effect of the tag helper component, restart ASP.NET Core and use a browser to request http://localhost:5000/
home. This response—and all other HTML responses from the application—contain the content generated by the tag helper
component, as shown in Figure 25-14.

Figure 25-14.  Using a tag helper component

Chapter 25 ■ Using Tag Helpers

641

�Expanding Tag Helper Component Element Selection
By default, only the head and body elements are processed by the tag helper components, but additional elements can be
selected by creating a class derived from the terribly named TagHelperComponentTagHelper class. Add a class file named
TableFooterTagHelperComponent.cs to the TagHelpers folder and use it to define the classes shown in Listing 25-31.

Listing 25-31.  The Contents of the TableFooterTagHelperComponent.cs File in the TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Microsoft.Extensions.Logging;

namespace WebApp.TagHelpers {

 [HtmlTargetElement("table")]
 public class TableFooterSelector: TagHelperComponentTagHelper {

 public TableFooterSelector(ITagHelperComponentManager mgr,
 ILoggerFactory log): base(mgr, log) { }
 }

 public class TableFooterTagHelperComponent: TagHelperComponent {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (output.TagName == "table") {
 TagBuilder cell = new TagBuilder("td");
 cell.Attributes.Add("colspan", "2");
 cell.Attributes.Add("class", "bg-dark text-white text-center");
 cell.InnerHtml.Append("Table Footer");
 TagBuilder row = new TagBuilder("tr");
 row.InnerHtml.AppendHtml(cell);
 TagBuilder footer = new TagBuilder("tfoot");
 footer.InnerHtml.AppendHtml(row);
 output.PostContent.AppendHtml(footer);
 }
 }
 }
}

The TableFooterSelector class is derived from TagHelperComponentTagHelper, and it is decorated with the
HtmlTargetElement attribute that expands the range of elements processed by the application’s tag helper components. In this case,
the attribute selects table elements.

The TableFooterTagHelperComponent class, defined in the same file, is a tag helper component that transforms table elements
by adding a tfoot element, which represents a table footer.

■■ Caution  Bear in mind that when you create a new TagHelperComponentTagHelper, all the tag helper components will receive the
elements selected by the HtmlTargetAttribute element.

The tag helper component must be registered as a service to receive elements for transformation, but the tag helper component
tag helper (which is one of the worst naming choices I have seen for some years) is discovered and applied automatically. Listing 25-32
adds the tag helper component service.

Chapter 25 ■ Using Tag Helpers

642

�Summary
In this chapter, I explained how tag helpers work and their role in transforming HTML elements in views and pages. I showed you
how to create and apply tag helpers, how to control the elements that are selected for transformation, and how to use the advanced
features to get specific results. I finished the chapter by explaining the tag helper component feature, which are defined as services.
In the next chapter, I describe the built-in tag helpers that ASP.NET Core provides.

Listing 25-32.  Registering a Tag Helper Component in the Startup.cs File in the WebApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();
 services.AddTransient<ITagHelperComponent, TimeTagHelperComponent>();
 services.AddTransient<ITagHelperComponent, TableFooterTagHelperComponent>();
}
...

Restart ASP.NET Core and use a browser to request a URL that renders a table, such as http://localhost:5000/home or
http://localhost:5000/cities. Each table will contain a table footer, as shown in Figure 25-15.

Figure 25-15.  Expanding tag helper component element selection

643© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_26

CHAPTER 26

Using the Built-in Tag Helpers

ASP.NET Core provides a set of built-in tag helpers that apply the most commonly required element transformations. In this chapter,
I explain those tag helpers that deal with anchor, script, link, and image elements, as well as features for caching content and
selecting content based on the environment. In Chapter 27, I describe the tag helpers that support HTML forms. Table 26-1 puts the
built-in tag helpers in context.

Table 26-1.  Putting the Built-in Tag Helpers in Context

Question Answer

What are they? The built-in tag helpers perform commonly required transformations on HTML elements.

Why are they useful? Using the built-in tag helpers means you don’t have to create custom helpers using the techniques in
Chapter 25.

How are they used? The tag helpers are applied using attributes on standard HTML elements or through custom HTML
elements.

Are there any pitfalls or
limitations?

No, these tag helpers are well-tested and easy to use. Unless you have unusual needs, using these tag
helpers is preferable to custom implementation.

Are there any alternatives? These tag helpers are optional, and their use is not required.

Table 26-2 summarizes the chapter.

Table 26-2.  Chapter Summary

Problem Solution Listing

Creating elements that target endpoints Use the anchor element tag helper attributes 7, 8

Including JavaScript files in a response Use the JavaScript tag helper attributes 9–13

Including CSS files in a response Use the CSS tag helper attributes 14, 15

Managing image caching Use the image tag helper attributes 16

Caching sections of a view Use the caching tag helper 17–21

Varying content based on the application environment Use the environment tag helper 22

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 25. To prepare for this chapter, comment out the statements that register the tag
component helpers in the Startup class, as shown in Listing 26-1.

Chapter 26 ■ Using the Built-in Tag Helpers

644

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 26-1.  The Contents of the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
//using Microsoft.AspNetCore.Razor.TagHelpers;
//using WebApp.TagHelpers;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();
 //services.AddTransient<ITagHelperComponent, TimeTagHelperComponent>();
 //services.AddTransient<ITagHelperComponent,
 // TableFooterTagHelperComponent>();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

Next, update the _RowPartial.cshtml partial view in the Views/Home folder, making the changes shown in Listing 26-2.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 26 ■ Using the Built-in Tag Helpers

645

Listing 26-2.  Making Changes in the _RowPartial.cshtml File in the Views/Home Folder

@model Product

<tr>
 <td>@Model.Name</td>
 <td>@Model.Price.ToString("c")</td>
 <td>@Model.CategoryId</td>
 <td>@Model.SupplierId</td>
 <td></td>
</tr>

Add the elements shown in Listing 26-3 to define additional columns in the table rendered in the Home controller’s List view.

Listing 26-3.  Adding Elements in the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{ Layout = "_SimpleLayout"; }

<h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th><th>Price</th>
 <th>Category</th><th>Supplier</th><th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <partial name="_RowPartial" model="p" />
 }
 </tbody>
 </table>
</div>

�Adding an Image File
One of the tag helpers described in this chapter provides services for images. I created the wwwroot/images folder and added an
image file called city.png. This is a public domain panorama of the New York City skyline, as shown in Figure 26-1.

Figure 26-1.  Adding an image to the project

This image file is included in the source code for this chapter, which is available in the GitHub repository for this book. You can
substitute your own image if you don’t want to download the example project.

Chapter 26 ■ Using the Built-in Tag Helpers

646

�Installing a Client-Side Package
Some of the examples in this chapter demonstrate the tag helper support for working with JavaScript files, for which I use the jQuery
package. Use a PowerShell command prompt to run the command shown in Listing 26-4 in the project folder, which contains the
WebApp.csproj file. If you are using Visual Studio, you can select Project ➤ Manage Client-Side Libraries to select the jQuery package.

Listing 26-4.  Installing a Package

libman install jquery@3.4.1 -d wwwroot/lib/jquery

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 26-5 to drop the database.

Listing 26-5.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 26-6.

Listing 26-6.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/Home/list, which will display a list of products, as shown in Figure 26-2.

Figure 26-2.  Running the example application

Chapter 26 ■ Using the Built-in Tag Helpers

647

�Enabling the Built-in Tag Helpers
The built-in tag helpers are all defined in the Microsoft.AspNetCore.Mvc.TagHelpers namespace and are enabled by adding an
@addTagHelpers directive to individual views or pages or, as in the case of the example project, to the view imports file. Here is the
required directive from the _ViewImports.cshtml file in the Views folder, which enables the built-in tag helpers for controller views:

@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using WebApp.Components
@addTagHelper *, WebApp

Here is the corresponding directive in the _ViewImports.cshtml file in the Pages folder, which enables the built-in tag helpers
for Razor Pages:

@namespace WebApp.Pages
@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, WebApp

These directives were added to the example project in Chapter 24 to enable the view components feature.

�Transforming Anchor Elements
The a element is the basic tool for navigating around an application and sending GET requests to the application. The
AnchorTagHelper class is used to transform the href attribute of a elements so they target URLs generated using the routing system,
which means that hard-coded URLs are not required and a change in the routing configuration will be automatically reflected in the
application’s anchor elements. Table 26-3 describes the attributes the AnchorTagHelper class supports.

Table 26-3.  The Built-in Tag Helper Attributes for Anchor Elements

Name Description

asp-action This attribute specifies the action method that the URL will target.

asp-controller This attribute specifies the controller that the URL will target. If this attribute is omitted, then the URL will
target the controller or page that rendered the current view.

asp-page This attribute specifies the Razor Page that the URL will target.

asp-page-handler This attribute specifies the Razor Page handler function that will process the request, as described in
Chapter 23.

asp-fragment This attribute is used to specify the URL fragment (which appears after the # character).

asp-host This attribute specifies the name of the host that the URL will target.

asp-protocol This attribute specifies the protocol that the URL will use.

asp-route This attribute specifies the name of the route that will be used to generate the URL.

asp-route-* Attributes whose name begins with asp-route- are used to specify additional values for the URL so that
the asp-route-id attribute is used to provide a value for the id segment to the routing system.

asp-all-route-data This attribute provides values used for routing as a single value, rather than using individual attributes.

The AnchorTagHelper is simple and predictable and makes it easy to generate URLs in a elements that use the application’s
routing configuration. Listing 26-7 adds an anchor element that uses attributes from the table to create a URL that targets another
action defined by the Home controller.

Chapter 26 ■ Using the Built-in Tag Helpers

648

Listing 26-7.  Transforming an Element in the _RowPartial.cshtml File in the Views/Home Folder

@model Product

<tr>
 <td>@Model.Name</td>
 <td>@Model.Price.ToString("c")</td>
 <td>@Model.CategoryId</td>
 <td>@Model.SupplierId</td>
 <td>
 <a asp-action="index" asp-controller="home" asp-route-id="@Model.ProductId"
 class="btn btn-sm btn-info">
 Select

 </td>
</tr>

The asp-action and asp-controller attributes specify the name of the action method and the controller that defines it. Values
for segment variables are defined using asp-route-[name] attributes, such that the asp-route-id attribute provides a value for the
id segment variable that is used to provide an argument for the action method selected by the asp-action attribute.

■■ Tip T he class attributes added to the anchor elements in Listing 26-7 apply Bootstrap CSS Framework styles that give the
elements the appearance of buttons. This is not a requirement for using the tag helper.

To see the anchor element transformations, use a browser to request http://localhost:5000/home/list, which will produce
the response shown in Figure 26-3.

Figure 26-3.  Transforming anchor elements

Chapter 26 ■ Using the Built-in Tag Helpers

649

If you examine the Select anchor elements, you will see that each href attribute includes the ProductId value of the Product
object it relates to, like this:

...
Select
...

In this case, the value provided by the asp-route-id attribute means the default URL cannot be used, so the routing system has
generated a URL that includes segments for the controller and action name, as well as a segment that will be used to provide a parameter
to the action method. In both cases, since only an action method was specified, the URLs created by the tag helper target the controller
that rendered the view. Clicking the anchor elements will send an HTTP GET request that targets the Home controller’s Index method.

�Using Anchor Elements for Razor Pages
The asp-page attribute is used to specify a Razor Page as the target for an anchor element’s href attribute. The path to the page is
prefixed with the / character, and values for route segments defined by the @page directive are defined using asp-route-[name]
attributes. Listing 26-8 adds an anchor element that targets the List page defined in the Pages/Suppliers folder.

■■ Note T he asp-page-handler attribute can be used to specify the name of the page model handler method that will process the request.

Listing 26-8.  Targeting a Razor Page in the List.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 Layout = "_SimpleLayout";
}

<h6 class="bg-secondary text-white text-center m-2 p-2">Products</h6>
<div class="m-2">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th><th>Price</th>
 <th>Category</th><th>Supplier</th><th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <partial name="_RowPartial" model="p" />
 }
 </tbody>
 </table>
 <a asp-page="/suppliers/list" class="btn btn-secondary">Suppliers
</div>

Use a browser to request http://localhost:5000/home/list, and you will see the anchor element, which is styled to appear as
a button. If you examine the HTML sent to the client, you will see the anchor element has been transformed like this:

...
Suppliers
...

This URL used in the href attribute reflects the @page directive, which has been used to override the default routing convention
in this page. Click the element, and the browser will display the Razor Page, as shown in Figure 26-4.

Chapter 26 ■ Using the Built-in Tag Helpers

650

GENERATING URLS (AND NOT LINKS)

The tag helper generates URLs only in anchor elements. If you need to generate a URL, rather than a link, then you can use the
Url property, which is available in controllers, page models, and views. This property returns an object that implements the
IUrlHelper interface, which provides a set of methods and extension methods that generate URLs. Here is a Razor fragment
that generates a URL in a view:

...
<div>@Url.Page("/suppliers/list")</div>
...

This fragment produces a div element whose content is the URL that targets the /Suppliers/List Razor Page. The same
interface is used in controllers or page model classes, such as with this statement:

...
string url = Url.Action("List", "Home");
...

The statement generates a URL that targets the List action on the Home controller and assigns it to the string variable named url.

�Using the JavaScript and CSS Tag Helpers
ASP.NET Core provides tag helpers that are used to manage JavaScript files and CSS stylesheets through the script and link
elements. As you will see in the sections that follow, these tag helpers are powerful and flexible but require close attention to avoid
creating unexpected results.

�Managing JavaScript Files
The ScriptTagHelper class is the built-in tag helper for script elements and is used to manage the inclusion of JavaScript files in
views using the attributes described in Table 26-4, which I describe in the sections that follow.

Figure 26-4.  Targeting a Razor Page with an anchor element

Chapter 26 ■ Using the Built-in Tag Helpers

651

�Selecting JavaScript Files
The asp-src-include attribute is used to include JavaScript files in a view using globbing patterns. Globbing patterns support a set
of wildcards that are used to match files, and Table 26-5 describes the most common globbing patterns.

Table 26-4.  The Built-in Tag Helper Attributes for script Elements

Name Description

asp-src-include This attribute is used to specify JavaScript files that will be included in the view.

asp-src-exclude This attribute is used to specify JavaScript files that will be excluded from the view.

asp-append-version This attribute is used for cache busting, as described in the “Understanding Cache Busting”
sidebar.

asp-fallback-src This attribute is used to specify a fallback JavaScript file to use if there is a problem with a
content delivery network.

asp-fallback-src-include This attribute is used to select JavaScript files that will be used if there is a content delivery
network problem.

asp-fallback-src-exclude This attribute is used to exclude JavaScript files to present their use when there is a content
delivery network problem.

asp-fallback-test This attribute is used to specify a fragment of JavaScript that will be used to determine whether
JavaScript code has been correctly loaded from a content delivery network.

Table 26-5.  Common Globbing Patterns

Pattern Example Description

? js/src?.js This pattern matches any single character except /. The example matches any file contained in the js
directory whose name is src, followed by any character, followed by .js, such as js/src1.js and js/srcX.
js but not js/src123.js or js/mydir/src1.js.

* js/*.js This pattern matches any number of characters except /. The example matches any file contained in the
js directory with the .js file extension, such as js/src1.js and js/src123.js but not js/mydir/src1.js.

** js/**/*.js This pattern matches any number of characters including /. The example matches any file with the .js
extension that is contained within the js directory or any subdirectory, such as /js/src1.js and /js/
mydir/src1.js.

Globbing is a useful way of ensuring that a view includes the JavaScript files that the application requires, even when the exact
path to the file changes, which usually happens when the version number is included in the file name or when a package adds
additional files.

Listing 26-9 uses the asp-src-include attribute to include all the JavaScript files in the wwwroot/lib/jquery folder, which is the
location of the jQuery package installed with the command in Listing 26-4.

Listing 26-9.  Selecting JS Files in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script asp-src-include="lib/jquery/**/*.js"></script>
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

Chapter 26 ■ Using the Built-in Tag Helpers

652

Patterns are evaluated within the wwwroot folder, and the pattern I used locates any file with the js file extension, regardless of
its location within the wwwroot folder; this means that any JavaScript package added to the project will be included in the HTML sent
to the client.

Use a browser to request http://localhost:5000/home/list and examine the HTML sent to the browser. You will see the
single script element in the layout has been transformed into a script element for each JavaScript file, like this:

...
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <script src="/lib/jquery/core.js"></script>
 <script src="/lib/jquery/jquery.js"></script>
 <script src="/lib/jquery/jquery.min.js"></script>
 <script src="/lib/jquery/jquery.slim.js"></script>
 <script src="/lib/jquery/jquery.slim.min.js"></script>

</head>
...

If you are using Visual Studio, you may not have realized that the jQuery packages contain so many JavaScript files because
Visual Studio hides them in the Solution Explorer. To reveal the full contents of the client-side package folders, you can either expand
the individual nested entries in the Solution Explorer window or disable file nesting by clicking the button at the top of the Solution
Explorer window, as shown in Figure 26-5. (Visual Studio Code does not nest files.)

Figure 26-5.  Disabling file nesting in the Visual Studio Solution Explorer

UNDERSTANDING SOURCE MAPS

JavaScript files are minified to make them smaller, which means they can be delivered to the client faster and using less
bandwidth. The minification process removes all the whitespace from the file and renames functions and variables so that
meaningful names such as myHelpfullyNamedFunction will be represented by a smaller number of characters, such as x1.
When using the browser’s JavaScript debugger to track down problems in your minified code, names like x1 make it almost
impossible to follow progress through the code.

The files that have the map file extension are source maps, which browsers use to help debug minified code by providing a map
between the minified code and the developer-readable, unminified source file. When you open the browser’s F12 developer tools,
the browser will automatically request source maps and use them to help debug the application’s client-side code.

Chapter 26 ■ Using the Built-in Tag Helpers

653

�Narrowing the Globbing Pattern
No application would require all the files selected by the pattern in Listing 26-9. Many packages include multiple JavaScript files that
contain similar content, often removing less popular features to save bandwidth. The jQuery package includes the jquery.slim.js
file, which contains the same code as the jquery.js file but without the features that handle asynchronous HTTP requests and
animation effects. (There is also a core.js file, but this is included in the package by error and should be ignored.)

Each of these files has a counterpart with the min.js file extension, which denotes a minified file. Minification reduces the size
of a JavaScript file by removing all whitespace and renaming functions and variables to use shorter names.

Only one JavaScript file is required for each package and if you only require the minified versions, which will be the case in most
projects, then you can restrict the set of files that the globbing pattern matches, as shown in Listing 26-10.

Listing 26-10.  Selecting Minified Files in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script asp-src-include="lib/jquery**/*.min.js"></script>
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

Use a browser to request http://localhost:5000/home/list again and examine the HTML sent by the application. You will
see that only the minified files have been selected.

...
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <script src="/lib/jquery/jquery.min.js"></script>
 <script src="/lib/jquery/jquery.slim.min.js"></script>
</head>
...

Narrowing the pattern for the JavaScript files has helped, but the browser will still end up with the normal and slim versions of
jQuery and the bundled and unbundled versions of the Bootstrap JavaScript files. To narrow the selection further, I can include slim
in the pattern, as shown in Listing 26-11.

Listing 26-11.  Narrowing the Focus in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script asp-src-include="lib/jquery**/*slim.min.js"></script>
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

Chapter 26 ■ Using the Built-in Tag Helpers

654

Use the browser to request http://localhost:5000/home/list and examine the HTML the browser receives. The script
element has been transformed like this:

...
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <script src="/lib/jquery/jquery.slim.min.js"></script>
</head>
...

Only one version of the jQuery file will be sent to the browser while preserving the flexibility for the location of the file.

Excluding Files

Narrowing the pattern for the JavaScript files helps when you want to select a file whose name contains a specific term, such as slim.
It isn’t helpful when the file you want doesn’t have that term, such as when you want the full version of the minified file. Fortunately,
you can use the asp-src-exclude attribute to remove files from the list matched by the asp-src-include attribute, as shown in
Listing 26-12.

Listing 26-12.  Excluding Files in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script asp-src-include="/lib/jquery/**/*.min.js"
 asp-src-exclude="**.slim.**">
 </script>
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

If you use the browser to request http://localhost:5000/home/list and examine the HTML response, you will see that the
script element links only to the full minified version of the jQuery library, like this:

...
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <script src="/lib/jquery/jquery.min.js"></script>
</head>
...

UNDERSTANDING CACHE BUSTING

Static content, such as images, CSS stylesheets, and JavaScript files, is often cached to stop requests for content that rarely
changes from reaching the application servers. Caching can be done in different ways: the browser can be told to cache content
by the server, the application can use cache servers to supplement the application servers, or the content can be distributed
using a content delivery network. Not all caching will be under your control. Large corporations, for example, often install caches
to reduce their bandwidth demands since a substantial percentage of requests tend to go to the same sites or applications.

Chapter 26 ■ Using the Built-in Tag Helpers

655

One problem with caching is that clients don’t immediately receive new versions of static files when you deploy them because
their requests are still being serviced by previously cached content. Eventually, the cached content will expire, and the new
content will be used, but that leaves a period where the dynamic content generated by the application’s controllers is out of
step with the static content being delivered by the caches. This can lead to layout problems or unexpected application behavior,
depending on the content that has been updated.

Addressing this problem is called cache busting. The idea is to allow caches to handle static content but immediately reflect any
changes that are made at the server. The tag helper classes support cache busting by adding a query string to the URLs for static
content that includes a checksum that acts as a version number. For JavaScript files, for example, the ScriptTagHelper class
supports cache busting through the asp-append-version attribute, like this:

...
<script asp-src-include="/lib/jquery/**/*.min.js"
 asp-src-exclude="**.slim.**" asp-append-version="true">
</script>
...

Enabling the cache busting feature produces an element like this in the HTML sent to the browser:

...
<script src="/lib/jquery/dist/jquery.min.js?v=3zRSQ1HF-ocUiVcdv9yKTXqM"></script>
...

The same version number will be used by the tag helper until you change the contents of the file, such as by updating a
JavaScript library, at which point a different checksum will be calculated. The addition of the version number means that each
time you change the file, the client will request a different URL, which caches treat as a request for new content that cannot be
satisfied with the previously cached content and pass on to the application server. The content is then cached as normal until the
next update, which produces another URL with a different version.

�Working with Content Delivery Networks
Content delivery networks (CDNs) are used to offload requests for application content to servers that are closer to the user. Rather
than requesting a JavaScript file from your servers, the browser requests it from a hostname that resolves to a geographically local
server, which reduces the amount of time required to load files and reduces the amount of bandwidth you have to provision for your
application. If you have a large, geographically disbursed set of users, then it can make commercial sense to sign up to a CDN, but
even the smallest and simplest application can benefit from using the free CDNs operated by major technology companies to deliver
common JavaScript packages, such as jQuery.

For this chapter, I am going to use CDNJS, which is the same CDN used by the Library Manager tool to install client-side
packages in the ASP.NET Core project. You can search for packages at https://cdnjs.com; for jQuery 3.4.1, which is the package and
version installed in Listing 26-4, there are six CDNJS URLs.

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.js

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.map

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.js

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.min.js

•	 https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.min.map

These URLs provide the regular JavaScript file, the minified JavaScript file, and the source map for the minified file for both
the full and slim versions of jQuery. (There is also a URL for the core.js file, but, as noted earlier, this file is not used and will be
removed from future jQuery releases.)

The problem with CDNs is that they are not under your organization’s control, and that means they can fail, leaving your
application running but unable to work as expected because the CDN content isn’t available. The ScriptTagHelper class provides
the ability to fall back to local files when the CDN content cannot be loaded by the client, as shown in Listing 26-13.

https://cdnjs.com
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.js
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.map
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.js
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.min.js
https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.slim.min.map

Chapter 26 ■ Using the Built-in Tag Helpers

656

Listing 26-13.  Using CDN Fallback in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js"
 asp-fallback-src="/lib/jquery/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

The src attribute is used to specify the CDN URL. The asp-fallback-src attribute is used to specify a local file that will be used
if the CDN is unable to deliver the file specified by the regular src attribute. To figure out whether the CDN is working, the asp-
fallback-test attribute is used to define a fragment of JavaScript that will be evaluated at the browser. If the fragment evaluates as
false, then the fallback files will be requested.

■■ Tip T he asp-fallback-src-include and asp-fallback-src-exclude attributes can be used to select the local files with globbing
patterns. However, given that CDN script elements select a single file, I recommend using the asp-fallback-src attribute to select
the corresponding local file, as shown in the example.

Use a browser to request http://localhost:5000/home/list, and you will see that the HTML response contains two script
elements, like this:

...
<head>
 <title></title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
 <script>
 (window.jQuery||document.write("\u003Cscript
 src=\u0022/lib/jquery/jquery.min.js\u0022\u003E\u003C/script\u003E"));
 </script>
</head>
...

The first script element requests the JavaScript file from the CDN. The second script element evaluates the JavaScript
fragment specified by the asp-fallback-test attribute, which checks to see whether the first script element has worked. If the
fragment evaluates to true, then no action is taken because the CDN worked. If the fragment evaluates to false, a new script
element is added to the HTML document that instructs the browser to load the JavaScript file from the fallback URL.

It is important to test your fallback settings because you won’t find out if they fail until the CDN has stopped working and your
users cannot access your application. The simplest way to check the fallback is to change the name of the file specified by the src
attribute to something that you know doesn’t exist (I append the word FAIL to the file name) and then look at the network requests
that the browser makes using the F12 developer tools. You should see an error for the CDN file followed by a request for the fallback
file.

Chapter 26 ■ Using the Built-in Tag Helpers

657

■■ Caution T he CDN fallback feature relies on browsers loading and executing the contents of script elements synchronously and in
the order in which they are defined. There are a number of techniques in use to speed up JavaScript loading and execution by making
the process asynchronous, but these can lead to the fallback test being performed before the browser has retrieved a file from the CDN
and executed its contents, resulting in requests for the fallback files even when the CDN is working perfectly and defeating the use of a
CDN in the first place. Do not mix asynchronous script loading with the CDN fallback feature.

�Managing CSS Stylesheets
The LinkTagHelper class is the built-in tag helper for link elements and is used to manage the inclusion of CSS style sheets in a
view. This tag helper supports the attributes described in Table 26-6, which I demonstrate in the following sections.

Table 26-6.  The Built-in Tag Helper Attributes for link Elements

Name Description

asp-href-include This attribute is used to select files for the href attribute of the output element.

asp-href-exclude This attribute is used to exclude files from the href attribute of the output element.

asp-append-version This attribute is used to enable cache busting, as described in the “Understanding Cache
Busting” sidebar.

asp-fallback-href This attribute is used to specify a fallback file if there is a problem with a CDN.

asp-fallback-href-include This attribute is used to select files that will be used if there is a CDN problem.

asp-fallback-href-exclude This attribute is used to exclude files from the set that will be used when there is a CDN
problem.

asp-fallback-href-test-class This attribute is used to specify the CSS class that will be used to test the CDN.

asp-fallback-href-test-property This attribute is used to specify the CSS property that will be used to test the CDN.

asp-fallback-href-test-value This attribute is used to specify the CSS value that will be used to test the CDN.

�Selecting Stylesheets
The LinkTagHelper shares many features with the ScriptTagHelper, including support for globbing patterns to select or exclude
CSS files so they do not have to be specified individually. Being able to accurately select CSS files is as important as it is for JavaScript
files because stylesheets can come in regular and minified versions and support source maps. The popular Bootstrap package,
which I have been using to style HTML elements throughout this book, includes its CSS stylesheets in the wwwroot/lib/twitter-
bootstrap/css folder. These will be visible in Visual Studio Code, but you will have to expand each item in the Solution Explorer or
disable nesting to see them in the Visual Studio Solution Explorer, as shown in Figure 26-6.

Chapter 26 ■ Using the Built-in Tag Helpers

658

The bootstrap.css file is the regular stylesheet, the bootstrap.min.css file is the minified version, and the bootstrap.css.map
file is a source map. The other files contain subsets of the CSS features to save bandwidth in applications that don’t use them.

Listing 26-14 replaces the regular link element in the layout with one that uses the asp-href-include and asp-href-exclude
attributes. (I removed the script element for jQuery, which is no longer required.)

Listing 26-14.  Selecting a Stylesheet in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link asp-href-include="/lib/twitter-bootstrap/css/*.min.css"
 asp-href-exclude="**/*-reboot*,**/*-grid*" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

The same attention to detail is required as when selecting JavaScript files because it is easy to generate link elements for
multiple versions of the same file or files that you don’t want.

�Working with Content Delivery Networks
The LinkTag helper class provides a set of attributes for falling back to local content when a CDN isn’t available, although the
process for testing to see whether a stylesheet has loaded is more complex than testing for a JavaScript file. Listing 26-15 uses the
CDNJS URL for the Bootstrap CSS stylesheet.

Figure 26-6.  The Bootstrap CSS files

Chapter 26 ■ Using the Built-in Tag Helpers

659

Listing 26-15.  Using a CDN for CSS in the _SimpleLayout.cshtml File in the Views/Home Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.3.1/css/bootstrap.min.css"
 asp-fallback-href="/lib/twitter-bootstrap/css/bootstrap.min.css"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

The href attribute is used to specify the CDN URL, and I have used the asp-fallback-href attribute to select the file that will
be used if the CDN is unavailable. Testing whether the CDN works, however, requires the use of three different attributes and an
understanding of the CSS classes defined by the CSS stylesheet that is being used.

Use a browser to request http://localhost:5000/home/list and examine the HTML elements in the response. You will see
that the link element from the layout has been transformed into three separate elements, like this:

...
<head>
 <title></title>
 <link href="https://cdnjs.cloudflare.com/.../bootstrap.min.css" rel="stylesheet">
 <meta name="x-stylesheet-fallback-test" content="" class="btn">
 <script>
 ! function(a, b, c, d) {
 var e, f = document,
 g = f.getElementsByTagName("SCRIPT"),
 h = g[g.length1].previousElementSibling,
 i = f.defaultView && f.defaultView.getComputedStyle ?
 f.defaultView.getComputedStyle(h) : h.currentStyle;
 if (i && i[a] !== b)
 for (e = 0; e < c.length; e++)
 f.write('<link href="' + c[e] + '" ' + d + "/>")
 }("display", "inline-block", ["/lib/twitter-bootstrap/css/bootstrap.min.css"],
 "rel=\u0022stylesheet\u0022 ");
 </script>
</head>
...

To make the transformation easier to understand, I have formatted the JavaScript code and shortened the URL.
The first element is a regular link whose href attribute specifies the CDN file. The second element is a meta element, which

specifies the class from the asp-fallback-test-class attribute in the view. I specified the btn class in the listing, which means that
an element like this is added to the HTML sent to the browser:

<meta name="x-stylesheet-fallback-test" content="" class="btn">

The CSS class that you specify must be defined in the stylesheet that will be loaded from the CDN. The btn class that I specified
provides the basic formatting for Bootstrap button elements.

Chapter 26 ■ Using the Built-in Tag Helpers

660

The asp-fallback-test-property attribute is used to specify a CSS property that is set when the CSS class is applied to an
element, and the asp-fallback-test-value attribute is used to specify the value that it will be set to.

The script element created by the tag helper contains JavaScript code that adds an element to the specified class and then
tests the value of the CSS property to determine whether the CDN stylesheet has been loaded. If not, a link element is created for
the fallback file. The Bootstrap btn class sets the display property to inline-block, and this provides the test to see whether the
browser has been able to load the Bootstrap stylesheet from the CDN.

■■ Tip T he easiest way to figure out how to test for third-party packages like Bootstrap is to use the browser’s F12 developer tools. To
determine the test in Listing 26-15, I assigned an element to the btn class and then inspected it in the browser, looking at the individual
CSS properties that the class changes. I find this easier than trying to read through long and complex style sheets.

�Working with Image Elements
The ImageTagHelper class is used to provide cache busting for images through the src attribute of img elements, allowing
an application to take advantage of caching while ensuring that modifications to images are reflected immediately. The
ImageTagHelper class operates in img elements that define the asp-append-version attribute, which is described in Table 26-7 for
quick reference.

Table 26-7.  The Built-in Tag Helper Attribute for Image Elements

Name Description

asp-append-version This attribute is used to enable cache busting, as described in the “Understanding Cache Busting” sidebar.

In Listing 26-16, I have added an img element to the shared layout for the city skyline image that I added to the project at the
start of the chapter. I have also reset the link element to use a local file for brevity.

Listing 26-16.  Adding an Image in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">

 @RenderBody()
 </div>
</body>
</html>

Use a browser to request http://localhost:5000/home/list, which will produce the response shown in Figure 26-7.

Chapter 26 ■ Using the Built-in Tag Helpers

661

Examine the HTML response, and you will see that the URL used to request the image file includes a version checksum, like
this:

...

...

The addition of the checksum ensures that any changes to the file will pass through any caches, avoiding stale content.

�Using the Data Cache
The CacheTagHelper class allows fragments of content to be cached to speed up rendering of views or pages. The content to be
cached is denoted using the cache element, which is configured using the attributes shown in Table 26-8.

■■ Note  Caching is a useful tool for reusing sections of content so they don’t have to be generated for every request. But using caching
effectively requires careful thought and planning. While caching can improve the performance of an application, it can also create odd
effects, such as users receiving stale content, multiple caches containing different versions of content, and update deployments that are
broken because content cached from the previous version of the application is mixed with content from the new version. Don’t enable
caching unless you have a clearly defined performance problem to resolve, and make sure you understand the impact that caching will have.

Figure 26-7.  Using an image

Chapter 26 ■ Using the Built-in Tag Helpers

662

Listing 26-17 replaces the img element from the previous section with content that contains timestamps.

Listing 26-17.  Caching Content in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <h6 class="bg-primary text-white m-2 p-2">
 Uncached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 <cache>
 <h6 class="bg-primary text-white m-2 p-2">
 Cached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 </cache>
 @RenderBody()
 </div>
</body>
</html>

The cache element is used to denote a region of content that should be cached and has been applied to one of the h6 elements
that contains a timestamp. Use a browser to request http://localhost:5000/home/list, and both timestamps will be the same.
Reload the browser, and you will see that the cached content is used for one of the h6 elements and the timestamp doesn’t change,
as shown in Figure 26-8.

Table 26-8.  The Built-in Tag Helper Attributes for cache Elements

Name Description

enabled This bool attribute is used to control whether the contents of the cache element are cached. Omitting this
attribute enables caching.

expires-on This attribute is used to specify an absolute time at which the cached content will expire, expressed as a
DateTime value.

expires-after This attribute is used to specify a relative time at which the cached content will expire, expressed as a
TimeSpan value.

expires-sliding This attribute is used to specify the period since it was last used when the cached content will expire,
expressed as a TimeSpan value.

vary-by-header This attribute is used to specify the name of a request header that will be used to manage different versions of
the cached content.

vary-by-query This attribute is used to specify the name of a query string key that will be used to manage different versions
of the cached content.

vary-by-route This attribute is used to specify the name of a routing variable that will be used to manage different versions
of the cached content.

vary-by-cookie This attribute is used to specify the name of a cookie that will be used to manage different versions of the
cached content.

vary-by-user This bool attribute is used to specify whether the name of the authenticated user will be used to manage
different versions of the cached content.

vary-by This attribute is evaluated to provide a key used to manage different versions of the content.

priority This attribute is used to specify a relative priority that will be taken into account when the memory cache
runs out of space and purges unexpired cached content.

Chapter 26 ■ Using the Built-in Tag Helpers

663

Figure 26-8.  Using the caching tag helper

USING DISTRIBUTED CACHING FOR CONTENT

The cache used by the CacheTagHelper class is memory-based, which means that its capacity is limited by the available RAM
and that each application server maintains a separate cache. Content will be ejected from the cache when there is a shortage of
capacity available, and the entire contents are lost when the application is stopped or restarted.

The distributed-cache element can be used to store content in a shared cache, which ensures that all application servers use
the same data and that the cache survives restarts. The distributed-cache element is configured with the same attributes as
the cache element, as described in Table 26-8. See Chapter 17 for details of setting up a distributed cache.

�Setting Cache Expiry
The expires-* attributes allow you to specify when cached content will expire, expressed either as an absolute time or a time
relative to the current time, or to specify a duration during which the cached content isn’t requested. In Listing 26-18, I have used the
expires-after attribute to specify that the content should be cached for 15 seconds.

Listing 26-18.  Setting Cache Expiry in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <h6 class="bg-primary text-white m-2 p-2">
 Uncached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 <cache expires-after="@TimeSpan.FromSeconds(15)">
 <h6 class="bg-primary text-white m-2 p-2">
 Cached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 </cache>
 @RenderBody()

Chapter 26 ■ Using the Built-in Tag Helpers

664

 </div>
</body>
</html>

Use a browser to request http://localhost:5000/home/list and then reload the page. After 15 seconds the cached content
will expire, and a new section of content will be created.

�Setting a Fixed Expiry Point
You can specify a fixed time at which cached content will expire using the expires-on attribute, which accepts a DateTime value, as
shown in Listing 26-19.

Listing 26-19.  Setting Cache Expiry in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <h6 class="bg-primary text-white m-2 p-2">
 Uncached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 <cache expires-on="@DateTime.Parse("2100-01-01")">
 <h6 class="bg-primary text-white m-2 p-2">
 Cached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 </cache>
 @RenderBody()
 </div>
</body>
</html>

I have specified that that data should be cached until the year 2100. This isn’t a useful caching strategy since the application is
likely to be restarted before the next century starts, but it does illustrate how you can specify a fixed point in the future rather than
expressing the expiry point relative to the moment when the content is cached.

�Setting a Last-Used Expiry Period
The expires-sliding attribute is used to specify a period after which content is expired if it hasn’t been retrieved from the cache. In
Listing 26-20, I have specified a sliding expiry of 10 seconds.

Listing 26-20.  Using a Sliding Expiry in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>

Chapter 26 ■ Using the Built-in Tag Helpers

665

<body>
 <div class="m-2">
 <h6 class="bg-primary text-white m-2 p-2">
 Uncached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 <cache expires-sliding="@TimeSpan.FromSeconds(10)">
 <h6 class="bg-primary text-white m-2 p-2">
 Cached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 </cache>
 @RenderBody()
 </div>
</body>
</html>

You can see the effect of the express-sliding attribute by requesting http://localhost:5000/home/list and periodically
reloading the page. If you reload the page within 10 seconds, the cached content will be used. If you wait longer than 10 seconds
to reload the page, then the cached content will be discarded, the view component will be used to generate new content, and the
process will begin anew.

�Using Cache Variations
By default, all requests receive the same cached content. The CacheTagHelper class can maintain different versions of cached
content and use them to satisfy different types of HTTP requests, specified using one of the attributes whose name begins with vary-
by. Listing 26-21 shows the use of the vary-by-route attribute to create cache variations based on the action value matched by the
routing system.

Listing 26-21.  Creating a Variation in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <h6 class="bg-primary text-white m-2 p-2">
 Uncached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 <cache expires-sliding="@TimeSpan.FromSeconds(10)" vary-by-route="action">
 <h6 class="bg-primary text-white m-2 p-2">
 Cached timestamp: @DateTime.Now.ToLongTimeString()
 </h6>
 </cache>
 @RenderBody()
 </div>
</body>
</html>

If you use two browser tabs to request http://localhost:5000/home/index and http://localhost:5000/home/list, you
will see that each window receives its own cached content with its own expiration, since each request produces a different action
routing value.

Chapter 26 ■ Using the Built-in Tag Helpers

666

■■ Tip I f you are using Razor Pages, then you can achieve the same effect using page as the value matched by the routing system.

�Using the Hosting Environment Tag Helper
The EnvironmentTagHelper class is applied to the custom environment element and determines whether a region of content
is included in the HTML sent to the browser-based on the hosting environment, which I described in Chapters 15 and 16. The
environment element relies on the names attribute, which I have described in Table 26-9.

Table 26-9.  The Built-in Tag Helper Attribute for environment Elements

Name Description

names This attribute is used to specify a comma-separated list of hosting environment names for which the content
contained within the environment element will be included in the HTML sent to the client.

In Listing 26-22, I have added environment elements to the shared layout including different content in the view for the
development and production hosting environments.

Listing 26-22.  Using environment in the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <environment names="development">
 <h2 class="bg-info text-white m-2 p-2">This is Development</h2>
 </environment>
 <environment names="production">
 <h2 class="bg-danger text-white m-2 p-2">This is Production</h2>
 </environment>
 @RenderBody()
 </div>
</body>
</html>

The environment element checks the current hosting environment name and either includes the content it contains or
omits it (the environment element itself is always omitted from the HTML sent to the client). Figure 26-9 shows the output for the
development and production environments. (See Chapter 15 for details of how to set the environment.)

Chapter 26 ■ Using the Built-in Tag Helpers

667

Figure 26-9.  Managing content using the hosting environment

�Summary
In this chapter, I described the basic built-in tag helpers and explained how they are used to transform anchor, link, script,
and image elements. I also explained how to cache sections of content and how to render content based on the application’s
environment. In the next chapter, I describe the tag helpers that ASP.NET Core provides for working with HTML forms.

669© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_27

CHAPTER 27

Using the Forms Tag Helpers

In this chapter, I describe the built-in tag helpers that are used to create HTML forms. These tag helpers ensure forms are submitted
to the correct action or page handler method and that elements accurately represent specific model properties. Table 27-1 puts the
form tag helpers in context.

Table 27-1.  Putting Form Tag Helpers in Context

Question Answer

What are they? These built-in tag helpers transform HTML form elements.

Why are they useful? These tag helpers ensure that HTML forms reflect the application’s routing configuration
and data model.

How are they used? Tag helpers are applied to HTML elements using asp-* attributes.

Are there any pitfalls or limitations? These tag helpers are reliable and predictable and present no serious issues.

Are there any alternatives? You don’t have to use tag helpers and can define forms without them if you prefer.

Table 27-2 summarizes the chapter.

Table 27-2.  Chapter Summary

Problem Solution Listing

Specifying how a form will be submitted Use the form tag helper attributes 10–13

Transforming input elements Use the input tag helper attributes 14–22

Transforming label elements Use the label tag helper attributes 23

Populating select elements Use the select tag helper attributes 24–26

Transforming text areas Use the text area tag helper attributes 27

Protecting against cross-site request forgery Enable the anti-forgery feature 28–32

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 26. To prepare for this chapter, replace the contents of the _SimpleLayout.
cshtml file in the Views/Shared folder with those shown in Listing 27-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 27 ■ Using the Forms Tag Helpers

670

Listing 27-1.  The Contents of the _SimpleLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

This chapter uses controller views and Razor Pages to present similar content. To differentiate more readily between controllers
and pages, add the route shown in Listing 27-2 to the Startup class.

Listing 27-2.  Adding a Route in the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapControllerRoute("forms",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });

Chapter 27 ■ Using the Forms Tag Helpers

671

 SeedData.SeedDatabase(context);
 }
 }
}

The new route introduces a static path segment that makes it obvious that a URL targets a controller.

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 27-3 to drop the database.

Listing 27-3.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 27-4.

Listing 27-4.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers/home/list, which will display a list of products, as shown in
Figure 27-1.

Figure 27-1.  Running the example application

Chapter 27 ■ Using the Forms Tag Helpers

672

�Understanding the Form Handling Pattern
Most HTML forms exist within a well-defined pattern, shown in Figure 27-2. First, the browser sends an HTTP GET request, which
results in an HTML response containing a form, making it possible for the user to provide the application with data. The user clicks
a button that submits the form data with an HTTP POST request, which allows the application to receive and process the user’s data.
Once the data has been processed, a response is sent that redirects the browser to a URL that provides confirmation of the user’s
actions.

Figure 27-2.  The HTML Post/Redirect/Get pattern

This is known as the Post/Redirect/Get pattern, and the redirection is important because it means the user can click the
browser’s reload button without sending another POST request, which can lead to inadvertently repeating an operation.

In the sections that follow, I show how to follow the pattern with controllers and Razor Pages. I start with a basic
implementation of the pattern and then demonstrate improvements using tag helpers and, in Chapter 28, the model binding feature.

�Creating a Controller to Handle Forms
Controllers that handle forms are created by combining features described in earlier chapters. Add a class file named
FormController.cs to the Controllers folder with the code shown in Listing 27-5.

Listing 27-5.  The Contents of the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long id = 1) {
 return View("Form", await context.Products.FindAsync(id));
 }

Chapter 27 ■ Using the Forms Tag Helpers

673

 [HttpPost]
 public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

The Index action method selects a view named Form, which will render an HTML form to the user. When the user submits the form,
it will be received by the SubmitForm action, which has been decorated with the HttpPost attribute so that it can only receive HTTP POST
requests. This action method processes the HTML form data available through the HttpRequest.Form property so that it can be stored
using the temp data feature. The temp data feature can be used to pass data from one request to another but can be used only to store
simple data types. Each form data value is presented as a string array, which I convert to a single comma-separated string for storage. The
browser is redirected to the Results action method, which selects the default view and provides the temp data as the view model.

■■ Tip O nly form data values whose name doesn’t begin with an underscore are displayed. I explain why in the “Using the Anti-forgery
Feature” section, later in this chapter.

To provide the controller with views, create the Views/Form folder and add to it a Razor view file named Form.cshtml with the
content shown in Listing 27-6.

Listing 27-6.  The Contents of the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form action="/controllers/form/submitform" method="post">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

This view contains a simple HTML form that is configured to submit its data to the SubmitForm action method using a POST
request. The form contains an input element whose value is set using a Razor expression. Next, add a Razor view named Results.
cshtml to the Views/Forms folder with the content shown in Listing 27-7.

Listing 27-7.  The Contents of the Results.cshtml File in the Views/Form Folder

@model TempDataDictionary
@{ Layout = "_SimpleLayout"; }

<table class="table table-striped table-bordered table-sm">
 <thead>
 <tr class="bg-primary text-white text-center">
 <th colspan="2">Form Data</th>
 </tr>

Chapter 27 ■ Using the Forms Tag Helpers

674

 </thead>
 <tbody>
 @foreach (string key in Model.Keys) {
 <tr>
 <th>@key</th>
 <td>@Model[key]</td>
 </tr>
 }
 </tbody>
</table>
Return

This view displays the form data back to the user. I’ll show you how to process form data in more useful ways in Chapter 31, but
for this chapter the focus is on creating the forms, and seeing the data contained in the form is enough to get started.

Restart ASP.NET Core and use a browser to request http://localhost:5000/controllers/form to see the HTML form. Enter a
value into the text field and click Submit to send a POST request, which will be handled by the SubmitForm action. The form data will
be stored as temp data, and the browser will be redirected, producing the response shown in Figure 27-3.

Figure 27-3.  Using a controller to render and process an HTML form

�Creating a Razor Page to Handle Forms
The same pattern can be implemented using Razor Pages. One page is required to render and process the form data, and a second
page displays the results. Add a Razor Page named FormHandler.cshtml to the Pages folder with the contents shown in Listing 27-8.

Listing 27-8.  The Contents of the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Product.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>

Chapter 27 ■ Using the Forms Tag Helpers

675

@functions {

 [IgnoreAntiforgeryToken]
 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FindAsync(id);
 }

 public IActionResult OnPost() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToPage("FormResults");
 }
 }
}

The OnGetAsync handler methods retrieves a Product from the database, which is used by the view to set the value for the input
element in the HTML form. The form is configured to send an HTTP POST request that will be processed by the OnPost handler method.
The form data is stored as temp data, and the browser is sent a redirection to a form named FormResults. To create the page that the
browser will be redirected to, add a Razor Page named FormResults.cshtml to the Pages folder with the content shown in Listing 27-9.

■■ Tip T he page model class in Listing 27-8 is decorated with the IgnoreAntiforgeryToken attribute, which is described in the
“Using the Anti-forgery Feature” section.

Listing 27-9.  The Contents of the FormResults.cshtml File in the Pages Folder

@page "/pages/results"

<div class="m-2">
 <table class="table table-striped table-bordered table-sm">
 <thead>
 <tr class="bg-primary text-white text-center">
 <th colspan="2">Form Data</th>
 </tr>
 </thead>
 <tbody>
 @foreach (string key in TempData.Keys) {
 <tr>
 <th>@key</th>
 <td>@TempData[key]</td>
 </tr>
 }
 </tbody>
 </table>
 Return
</div>

Chapter 27 ■ Using the Forms Tag Helpers

676

No code is required for this page, which accesses temp data directly and displays it in a table. Use a browser to navigate to
http://localhost:5000/pages/form, enter a value into the text field, and click the Submit button. The form data will be processed
by the OnPost method defined in Listing 27-9, and the browser will be redirected to /pages/results, which displays the form data,
as shown in Figure 27-4.

Figure 27-4.  Using Razor Pages to render and process an HTML form

�Using Tag Helpers to Improve HTML Forms
The examples in the previous section show the basic mechanisms for dealing with HTML forms, but ASP.NET Core includes tag
helpers that transform form elements. In the sections that follow, I describe the tag helpers and demonstrate their use.

�Working with Form Elements
The FormTagHelper class is the built-in tag helper for form elements and is used to manage the configuration of HTML forms so that
they target the right action or page handler without the need to hard-code URLs. This tag helper supports the attributes described in
Table 27-3.

Table 27-3.  The Built-in Tag Helper Attributes for Form Elements

Name Description

asp-controller This attribute is used to specify the controller value to the routing system for the action attribute URL. If
omitted, then the controller rendering the view will be used.

asp-action This attribute is used to specify the action method for the action value to the routing system for the action
attribute URL. If omitted, then the action rendering the view will be used.

asp-page This attribute is used to specify the name of a Razor Page.

asp-page-handler This attribute is used to specify the name of the handler method that will be used to process the request.
You can see an example of this attribute in the SportsStore application in Chapter 9.

asp-route-* Attributes whose name begins with asp-route- are used to specify additional values for the action
attribute URL so that the asp-route-id attribute is used to provide a value for the id segment to the
routing system.

asp-route This attribute is used to specify the name of the route that will be used to generate the URL for the action
attribute.

asp-antiforgery This attribute controls whether anti-forgery information is added to the view, as described in the “Using
the Anti-forgery Feature” section.

asp-fragment This attribute specifies a fragment for the generated URL.

Chapter 27 ■ Using the Forms Tag Helpers

677

�Setting the Form Target
The FormTagHelper transforms form elements so they target an action method or Razor Page without the need for hard-coded URLs.
The attributes supported by this tag helper work in the same way as for anchor elements, described in Chapter 26, and use attributes
to provide values that help generate URLs through the ASP.NET Core routing system. Listing 27-10 modifies the form element in the
Form view to apply the tag helper.

■■ Note I f a form element is defined without a method attribute, then the tag helper will add one with the post value, meaning that the
form will be submitted using an HTTP POST request. This can lead to surprising results if you omitted the method attribute because you
expect the browser to follow the HTML5 specification and send the form using an HTTP GET request. It is a good idea to always specify
the method attribute so that it is obvious how the form should be submitted.

Listing 27-10.  Using a Tag Helper in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

The asp-action attribute is used to specify the name of the action that will receive the HTTP request. The routing system is
used to generate the URLs, just as for the anchor elements described in Chapter 26. The asp-controller attribute has not been used
in Listing 27-10, which means the controller that rendered the view will be used in the URL.

The asp-page attribute is used to select a Razor Page as the target for the form, as shown in Listing 27-11.

Listing 27-11.  Setting the Form Target in the FormHandler.cshtml File in the Pages Folder

...
<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Product.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>
...

Use a browser to navigate to http://localhost:5000/controllers/form and examine the HTML received by the browser; you
will see that the tag helper as added the action attribute to the form element like this:

...
<form method="post" action="controllers/Form/submitform">
...

Chapter 27 ■ Using the Forms Tag Helpers

678

This is the same URL that I defined statically when I created the view but with the advantage that changes to the routing
configuration will be reflected automatically in the form URL. Request http://localhost:5000/pages/form, and you will see that
the form element has been transformed to target the page URL, like this:

...
<form method="post" action="/pages/form">
...

�Transforming Form Buttons
The buttons that send forms can be defined outside of the form element. In these situations, the button has a form attribute whose
value corresponds to the id attribute of the form element it relates to and a formaction attribute that specifies the target URL for the
form.

The tag helper will generate the formaction attribute through the asp-action, asp-controller, or asp-page attributes, as
shown in Listing 27-12.

Listing 27-12.  Transforming a Button in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

The value of the id attribute added to the form element is used by the button as the value of the form attribute, which tells the
browser which form to submit when the button is clicked. The attributes described in Table 27-3 are used to identify the target for
the form, and the tag helper will use the routing system to generate a URL when the view is rendered. Listing 27-13 applies the same
technique to the Razor Page.

Listing 27-13.  Transforming a Button in the FormHandler.cshtml File in the Pages Folder

...
<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="Name" value="@Model.Product.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
 <button form="htmlform" asp-page="FormHandler" class="btn btn-primary mt-2">
 Sumit (Outside Form)
 </button>
</div>
...

Chapter 27 ■ Using the Forms Tag Helpers

679

Use a browser to request http://localhost:5000/controllers/form or http://localhost:5000/pages/form and inspect the
HTML sent to the browser. You will see the button element outside of the form has been transformed like this:

...
<button form="htmlform" class="btn btn-primary mt-2"
 formaction="/controllers/Form/submitform">
 Sumit (Outside Form)
</button>
...

Clicking the button submits the form, just as for a button that is defined within the form element, as shown in Figure 27-5.

Figure 27-5.  Defining a button outside of a form element

�Working with input Elements
The input element is the backbone of HTML forms and provides the main means by which a user can provide an application with
unstructured data. The InputTagHelper class is used to transform input elements so they reflect the data type and format of a view
model property they are used to gather, using the attributes described in Table 27-4.

Table 27-4.  The Built-in Tag Helper Attributes for input Elements

Name Description

asp-for This attribute is used to specify the view model property that the input element represents.

asp-format This attribute is used to specify a format used for the value of the view model property that the input element
represents.

The asp-for attribute is set to the name of a view model property, which is then used to set the name, id, type, and value
attributes of the input element. Listing 27-14 modifies the input element in the controller view to use the asp-for attribute.

Listing 27-14.  Configuring an input Element in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>

Chapter 27 ■ Using the Forms Tag Helpers

680

 <input class="form-control" asp-for="Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

This tag helper uses a model expression, described in Listing 27-14, which is why the value for the asp-for attribute is specified
without the @ character. If you inspect the HTML the application returns when using a browser to request http://localhost:5000/
controllers/form, you will see the tag helper has transformed the input element like this:

...
<div class="form-group">
 <label>Name</label>
 <input class="form-control" type="text" id="Name" name="Name" value="Kayak">
</div>
...

The values for the id and name attributes are obtained through the model expression, ensuring that you don’t introduce typos
when creating the form. The other attributes are more complex and are described in the sections that follow.

SELECTING MODEL PROPERTIES IN RAZOR PAGES

The asp-for attribute for this and the other tag helpers described in this chapter can be used for Razor Pages, but the value for
the name and id attributes in the transformed element includes the name of the page model property. For example, this element
selects the Name property through the page model’s Product property:

...
<input class="form-control" asp-for="Product.Name" />
...

The transformed element will have the following id and name attributes:

...
<input class="form-control" type="text" id="Product_Name" name="Product.Name" >
...

This difference is important when using the model binding feature to receive form data, as described in Chapter 28.

�Transforming the input Element type Attribute
The input element’s type attribute tells the browser how to display the element and how it should restrict the values the user enters. The
input element in Listing 27-14 is configured to the text type, which is the default input element type and offers no restrictions. Listing 27-15
adds another input element to the form, which will provide a more useful demonstration of how the type attribute is handled.

Listing 27-15.  Adding an input Element in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Id</label>
 <input class="form-control" asp-for="ProductId" />
 </div>

Chapter 27 ■ Using the Forms Tag Helpers

681

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

The new element uses the asp-for attribute to select the view model’s ProductId property. Use a browser to request http://
localhost:5000/controllers/form to see how the tag helper has transformed the element.

...
<div class="form-group">
 <label>Id</label>
 <input class="form-control" type="number" data-val="true"
 data-val-required="The ProductId field is required."
 id="ProductId" name="ProductId" value="1">
</div>
...

The value of the type attribute is determined by the type of the view model property specified by the asp-for attribute. The type
of the ProductId property is the C# long type, which has led the tag helper to set the input element’s type attribute to number, which
restricts the element so it will accept only numeric characters. The data-val and data-val-required attributes are added to the
input element to assist with validation, which is described in Chapter 29. Table 27-5 describes how different C# types are used to set
the type attribute of input elements.

■■ Note T here is latitude in how the type attribute is interpreted by browsers. Not all browsers respond to all the type values that are
defined in the HTML5 specification, and when they do, there are differences in how they are implemented. The type attribute can be
a useful hint for the kind of data that you are expecting in a form, but you should use the model validation feature to ensure that users
provide usable data, as described in Chapter 29.

Table 27-5.  C# Property Types and the Input Type Elements They Generate

C# Type input Element type Attribute

byte, sbyte, int, uint, short, ushort, long, ulong number

float, double, decimal text, with additional attributes for model validation, as described in Chapter 29

bool checkbox

string text

DateTime datetime

The float, double, and decimal types produce input elements whose type is text because not all browsers allow the full range
of characters that can be used to express legal values of this type. To provide feedback to the user, the tag helper adds attributes to
the input element that are used with the validation features described in Chapter 29.

You can override the default mappings shown in Table 27-5 by explicitly defining the type attribute on input elements. The tag
helper won’t override the value you define, which allows you to specify a type attribute value.

The drawback of this approach is that you must remember to set the type attribute in all the views where input elements
are generated for a given model property. A more elegant—and reliable approach—is to apply one of the attributes described in
Table 27-6 to the property in the C# model class.

Chapter 27 ■ Using the Forms Tag Helpers

682

■■ Tip T he tag helper will set the type attribute of input elements to text if the model property isn’t one of the types in Table 27-5
and has not been decorated with an attribute.

Table 27-6.  The Input Type Elements Attributes

Attribute input Element type Attribute

[HiddenInput] hidden

[Text] text

[Phone] tel

[Url] url

[EmailAddress] email

[DataType(DataType.Password)] password

[DataType(DataType.Time)] time

[DataType(DataType.Date)] date

�Formatting input Element Values
When the action method provides the view with a view model object, the tag helper uses the value of the property given to the asp-
for attribute to set the input element’s value attribute. The asp-format attribute is used to specify how that data value is formatted.
To demonstrate the default formatting, Listing 27-16 adds a new input element to the Form view.

Listing 27-16.  Adding an Element in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Id</label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Price" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

Use a browser to navigate to http://localhost:5000/controllers/form/index/5 and examine the HTML the browser
receives. By default, the value of the input element is set using the value of the model property, like this:

Chapter 27 ■ Using the Forms Tag Helpers

683

...
<input class="form-control" type="text" data-val="true"
 data-val-number="The field Price must be a number."
 data-val-required="The Price field is required."
 id="Price" name="Price" value="79500.00">
...

This format, with two decimal places, is how the value is stored in the database. In Chapter 26, I used the Column attribute to
select a SQL type to store Price values, like this:

...
[Column(TypeName = "decimal(8, 2)")]
public decimal Price { get; set; }
...

This type specifies a maximum precision of eight digits, two of which will appear after the decimal place. This allows a
maximum value of 999,999.99, which is enough to represent prices for most online stores. The asp-format attribute accepts a format
string that will be passed to the standard C# string formatting system, as shown in Listing 27-17.

Listing 27-17.  Formatting a Data Value in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Id</label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Price" asp-format="{0:#,###.00}" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

The attribute value is used verbatim, which means you must include the curly brace characters and the 0: reference, as well as
the format you require. Refresh the browser, and you will see that the value for the input element has been formatted, like this:

...
<input class="form-control" type="text" data-val="true"
 data-val-number="The field Price must be a number."
 data-val-required="The Price field is required."
 id="Price" name="Price" value="79,500.00">
...

This feature should be used with caution because you must ensure that the rest of the application is configured to support the
format you use and that the format you create contains only legal characters for the input element type.

Chapter 27 ■ Using the Forms Tag Helpers

684

�Applying Formatting via the Model Class
If you always want to use the same formatting for a model property, then you can decorate the C# class with the DisplayFormat
attribute, which is defined in the System.ComponentModel.DataAnnotations namespace. The DisplayFormat attribute
requires two arguments to format a data value: the DataFormatString argument specifies the formatting string, and setting the
ApplyFormatInEditMode to true specifies that formatting should be used when values are being applied to elements used for
editing, including the input element. Listing 27-18 applies the attribute to the Price property of the Product class, specifying a
different formatting string from earlier examples.

Listing 27-18.  Applying a Formatting Attribute to the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;

namespace WebApp.Models {
 public class Product {

 public long ProductId { get; set; }

 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 [DisplayFormat(DataFormatString = "{0:c2}", ApplyFormatInEditMode = true)]
 public decimal Price { get; set; }

 public long CategoryId { get; set; }
 public Category Category { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The asp-format attribute takes precedence over the DisplayFormat attribute, so I have removed the attribute from the view, as
shown in Listing 27-19.

Listing 27-19.  Removing an Attribute in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Id</label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Price" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

Chapter 27 ■ Using the Forms Tag Helpers

685

Restart ASP.NET Core and use a browser to request http://localhost:5000/controllers/form/index/5, and you will see that
the formatting string defined by the attribute has been applied, as shown in Figure 27-6.

Figure 27-6.  Formatting data values

I chose this format to demonstrate the way the formatting attribute works, but, as noted previously, care must be taken to ensure that
the application is able to process the formatted values using the model binding and validation features described in Chapters 28 and 29.

�Displaying Values from Related Data in input Elements
When using Entity Framework Core, you will often need to display data values that are obtained from related data, which is easily done
using the asp-for attribute because a model expression allows the nested navigation properties to be selected. First, Listing 27-20
includes related data in the view model object provided to the view.

Listing 27-20.  Including Related Data in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;

namespace WebApp.Controllers {

 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long id = 1) {
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
 }

Chapter 27 ■ Using the Forms Tag Helpers

686

 [HttpPost]
 public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

Notice that I don’t need to worry about dealing with circular references in the related data because the view model object isn’t
serialized. The circular reference issue is important only for web service controllers. In Listing 27-21, I have updated the Form view to
include input elements that use the asp-for attribute to select related data.

Listing 27-21.  Displaying Related Data in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label>Id</label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" asp-for="Category.Name" />
 </div>
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" asp-for="Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

Chapter 27 ■ Using the Forms Tag Helpers

687

The value of the asp-for attribute is expressed relative to the view model object and can include nested properties, allowing me
to select the Name properties of the related objects that Entity Framework Core has assigned to the Category and Supplier navigation
properties. The same technique is used in Razor Pages, except that the properties are expressed relative to the page model object, as
shown in Listing 27-22.

Listing 27-22.  Displayed Related Data in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Product.Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Product.Price" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" asp-for="Product.Category.Name" />
 </div>
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" asp-for="Product.Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
 <button form="htmlform" asp-page="FormHandler" class="btn btn-primary mt-2">
 Sumit (Outside Form)
 </button>
</div>

@functions {

 [IgnoreAntiforgeryToken]
 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

Chapter 27 ■ Using the Forms Tag Helpers

688

 public IActionResult OnPost() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToPage("FormResults");
 }
 }
}

To see the effect, restart ASP.NET Core so the changes to the controller take effect, and use a browser to request http://
localhost:5000/controller/form, which produces the response shown on the left of Figure 27-7. Use the browser to request
http://localhost:5000/pages/form, and you will see the same features used by the Razor Page, as shown on the right of Figure 27-7.

Figure 27-7.  Displaying related data

�Working with label Elements
The LabelTagHelper class is used to transform label elements so the for attribute is set consistently with the approach used to
transform input elements. Table 27-7 describes the attribute supported by this tag helper.

Chapter 27 ■ Using the Forms Tag Helpers

689

The tag helper sets the content of the label element so that it contains the name of the selected view model property. The tag
helper also sets the for attribute, which denotes an association with a specific input element. This aids users who rely on screen
readers and allows an input element to gain the focus when its associated label is clicked.

Listing 27-23 applies the asp-for attribute to the Form view to associate each label element with the input element that
represents the same view model property.

Listing 27-23.  Transforming label Elements in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="ProductId"></label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label asp-for="Category.Name">Category</label>
 <input class="form-control" asp-for="Category.Name" />
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Name">Supplier</label>
 <input class="form-control" asp-for="Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

You can override the content for a label element by defining it yourself, which is what I have done for the related data
properties in Listing 27-23. The tag helper would have set the content for both these label elements to be Name, which is not a useful
description. Defining the element content means the for attribute will be applied, but a more useful name will be displayed to the
user. Use a browser to request http://localhost:5000/controllers/form to see the names used for each element, as shown in
Figure 27-8.

Table 27-7.  The Built-in Tag Helper Attribute for label Elements

Name Description

asp-for This attribute is used to specify the view model property that the label element describes.

Chapter 27 ■ Using the Forms Tag Helpers

690

�Working with Select and Option Elements
The select and option elements are used to provide the user with a fixed set of choices, rather than the open data entry that is
possible with an input element. The SelectTagHelper is responsible for transforming select elements and supports the attributes
described in Table 27-8.

Figure 27-8.  Transforming label elements

Table 27-8.  The Built-in Tag Helper Attributes for select Elements

Name Description

asp-for This attribute is used to specify the view or page model property that the select element represents.

asp-items This attribute is used to specify a source of values for the option elements contained within the select element.

The asp-for attribute sets the value of the for and id attributes to reflect the model property that it receives. In Listing 27-24, I
have replaced the input element for the category with a select element that presents the user with a fixed range of values.

Listing 27-24.  Using a select Element in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="ProductId"></label>

Chapter 27 ■ Using the Forms Tag Helpers

691

 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label asp-for="Category.Name">Category</label>
 <select class="form-control" asp-for="CategoryId">
 <option value="1">Watersports</option>
 <option value="2">Soccer</option>
 <option value="3">Chess</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Name">Supplier</label>
 <input class="form-control" asp-for="Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

I have manually populated the select element with option elements that provide a range of categories for the user to choose
from. If you use a browser to request http://localhost:5000/controllers/form/index/5 and examine the HTML response, you
will see that the tag helper has transformed the select element like this:

...
<div class="form-group">
 <label for="Category_Name">Category</label>
 <select class="form-control" data-val="true"
 data-val-required="The CategoryId field is required."
 id="CategoryId" name="CategoryId">
 <option value="1">Watersports</option>
 <option value="2" selected="selected">Soccer</option>
 <option value="3">Chess</option>
 </select>
</div>
...

Notice that selected attribute has been added to the option element that corresponds to the view model’s CategoryId value,
like this:

...
<option value="2" selected="selected">Soccer</option>
...

The task of selecting an option element is performed by the OptionTagHelper class, which receives instructions from the
SelectTagHelper through the TagHelperContext.Items collection, described in Chapter 25. The result is that the select element
displays the name of the category associated with the Product object’s CategoryId value.

Chapter 27 ■ Using the Forms Tag Helpers

692

�Populating a select Element
Explicitly defining the option elements for a select element is a useful approach for choices that always have the same possible
values but doesn’t help when you need to provide options that are taken from the data model or where you need the same set of
options in multiple views and don’t want to manually maintain duplicated content.

The asp-items attribute is used to provide the tag helper with a list sequence of SelectListItem objects for which option
elements will be generated. Listing 27-25 modifies the Index action of the Form controller to provide the view with a sequence of
SelectListItem objects through the view bag.

Listing 27-25.  Providing a Data Sequence in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long id = 1) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

SelectListItem objects can be created directly, but ASP.NET Core provides the SelectList class to adapt existing data
sequences. In this case, I pass the sequence of Category objects obtained from the database to the SelectList constructor, along
with the names of the properties that should be used as the values and labels for option elements. In Listing 27-26, I have updated
the Form view to use the SelectList.

Chapter 27 ■ Using the Forms Tag Helpers

693

Listing 27-26.  Using a SelectList in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="ProductId"></label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label asp-for="Category.Name">Category</label>
 <select class="form-control" asp-for="CategoryId"
 asp-items="@ViewBag.Categories">
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Name">Supplier</label>
 <input class="form-control" asp-for="Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

Restart ASP.NET Core so the changes to the controller take effect and use a browser to request http://localhost:5000/
controllers/form/index/5. There is no visual change to the content presented to the user, but the option elements used to
populate the select element have been generated from the database, like this:

...
<div class="form-group">
 <label for="Category_Name">Category</label>
 <select class="form-control" data-val="true"
 data-val-required="The CategoryId field is required."
 id="CategoryId" name="CategoryId">
 <option value="1">Watersports</option>
 <option selected="selected" value="2">Soccer</option>
 <option value="3">Chess</option>
 </select>
</div>
...

This approach means that the options presented to the user will automatically reflect new categories added to the database.

Chapter 27 ■ Using the Forms Tag Helpers

694

�Working with Text Areas
The textarea element is used to solicit a larger amount of text from the user and is typically used for unstructured data, such as
notes or observations. The TextAreaTagHelper is responsible for transforming textarea elements and supports the single attribute
described in Table 27-9.

Table 27-9.  The Built-in Tag Helper Attributes for TextArea Elements

Name Description

asp-for This attribute is used to specify the view model property that the textarea element represents.

The TextAreaTagHelper is relatively simple, and the value provided for the asp-for attribute is used to set the id and name
attributes on the textarea element. The value of the property selected by the asp-for attribute is used as the content for the
textarea element. Listing 27-27 replaces the input element for the Supplier.Name property with a text area to which the asp-for
attribute has been applied.

Listing 27-27.  Using a Text Area in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="ProductId"></label>
 <input class="form-control" asp-for="ProductId" />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label asp-for="Category.Name">Category</label>
 <select class="form-control" asp-for="CategoryId"
 asp-items="@ViewBag.Categories">
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Name">Supplier</label>
 <textarea class="form-control" asp-for="Supplier.Name"></textarea>
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

<button form="htmlform" asp-action="submitform" class="btn btn-primary mt-2">
 Sumit (Outside Form)
</button>

Use a browser to request http://localhost:5000/controllers/form and examine the HTML received by the browser to see
the transformation of the textarea element.

Chapter 27 ■ Using the Forms Tag Helpers

695

...
<div class="form-group">
 <label for="Supplier_Name">Supplier</label>
 <textarea class="form-control" id="Supplier_Name" name="Supplier.Name">
 Soccer Town
 </textarea>
</div>
...

The TextAreaTagHelper is relatively simple, but it provides consistency with the rest of the form element tag helpers that I have
described in this chapter.

�Using the Anti-forgery Feature
When I defined the controller action method and page handler methods that process form data, I filtered out form data whose name
begins with an underscore, like this:

...
[HttpPost]
public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
}
...

I applied this filter to hide a feature to focus on the values provided by the HTML elements in the form. Listing 27-28 removes
the filter from the action method so that all the data received from the HTML form is stored in temp data.

Listing 27-28.  Removing a Filter in the FormController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
}
...

Restart ASP.NET Core and use a browser to request http://localhost:5000/controllers. Click the Submit button to send the
form to the application, and you will see a new item in the results, as shown in Figure 27-9.

Chapter 27 ■ Using the Forms Tag Helpers

696

The _RequestVerificationToken form value displayed in the results is a security feature that is applied by the FormTagHelper
to guard against cross-site request forgery. Cross-site request forgery (CSRF) exploits web applications by taking advantage of the
way that user requests are typically authenticated. Most web applications—including those created using ASP.NET Core—use
cookies to identify which requests are related to a specific session, with which a user identity is usually associated.

CSRF—also known as XSRF—relies on the user visiting a malicious website after using your web application and without
explicitly ending their session. The application still regards the user’s session as being active, and the cookie that the browser has
stored has not yet expired. The malicious site contains JavaScript code that sends a form request to your application to perform an
operation without the user’s consent—the exact nature of the operation will depend on the application being attacked. Since the
JavaScript code is executed by the user’s browser, the request to the application includes the session cookie, and the application
performs the operation without the user’s knowledge or consent.

■■ Tip  CSRF is described in detail at http://en.wikipedia.org/wiki/Cross-site_request_forgery.

If a form element doesn’t contain an action attribute—because it is being generated from the routing system with the asp-
controller, asp-action, and asp-page attributes—then the FormTagHelper class automatically enables an anti-CSRF feature,
whereby a security token is added to the response as a cookie. A hidden input element containing the same security token is added
to the HTML form, and it is this token that is shown in Figure 27-9.

�Enabling the Anti-forgery Feature in a Controller
By default, controllers accept POST requests even when they don’t contain the required security tokens. To enable the anti-forgery
feature, an attribute is applied to the controller class, as shown in Listing 27-29.

Listing 27-29.  Enabling the Anti-forgery Feature in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

Figure 27-9.  Showing all form data

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 27 ■ Using the Forms Tag Helpers

697

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long id = 1) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm() {
 foreach (string key in Request.Form.Keys) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

Not all requests require an anti-forgery token, and the AutoValidateAntiforgeryToken ensures that checks are performed for
all HTTP methods except GET, HEAD, OPTIONS, and TRACE.

■■ Tip T wo other attributes can be used to control token validation. The IgnoreValidationToken attribute suppresses validation for an
action method or controller. The ValidateAntiForgeryToken attribute does the opposite and enforces validation, even for requests that
would not normally require validation, such as HTTP GET requests. I recommend using the AutoValidateAntiforgeryToken attribute,
as shown in the listing.

Testing the anti-CSRF feature is a little tricky. I do it by requesting the URL that contains the form (http://localhost:5000/
controllers/forms for this example) and then using the browser’s F12 developer tools to locate and remove the hidden input
element from the form (or change the element’s value). When I populate and submit the form, it is missing one part of the required
data, and the request will fail.

�Enabling the Anti-forgery Feature in a Razor Page
The anti-forgery feature is enabled by default in Razor Pages, which is why I applied the IgnoreAntiforgeryToken attribute to
the page handler method in Listing 27-29 when I created the FormHandler page. Listing 27-30 removes the attribute to enable the
validation feature.

Chapter 27 ■ Using the Forms Tag Helpers

698

Listing 27-30.  Enabling Request Validation in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Product.Name" />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Product.Price" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" asp-for="Product.Category.Name" />
 </div>
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" asp-for="Product.Supplier.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
 <button form="htmlform" asp-page="FormHandler" class="btn btn-primary mt-2">
 Sumit (Outside Form)
 </button>
</div>

@functions {

 //[IgnoreAntiforgeryToken]
 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost() {
 foreach (string key in Request.Form.Keys
 .Where(k => !k.StartsWith("_"))) {
 TempData[key] = string.Join(", ", Request.Form[key]);
 }

Chapter 27 ■ Using the Forms Tag Helpers

699

 return RedirectToPage("FormResults");
 }
 }
}

Testing the validation feature is done in the same way as for controllers and requires altering the HTML document using the
browser’s developer tools before submitting the form to the application.

�Using Anti-forgery Tokens with JavaScript Clients
By default, the anti-forgery feature relies on the ASP.NET Core application being able to include an element in an HTML form that
the browser sends back when the form is submitted. This doesn’t work for JavaScript clients because the ASP.NET Core application
provides data and not HTML, so there is no way to insert the hidden element and receive it in a future request.

For web services, the anti-forgery token can be sent as a JavaScript-readable cookie, which the JavaScript client code reads and
includes as a header in its POST requests. Some JavaScript frameworks, such an Angular, will automatically detect the cookie and
include a header in requests. For other frameworks and custom JavaScript code, additional work is required.

Listing 27-31 shows the changes required to the ASP.NET Core application to configure the anti-forgery feature for use with
JavaScript clients.

Listing 27-31.  Configuring the Anti-forgery Token in the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Antiforgery;
using Microsoft.AspNetCore.Http;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });
 }

 public void Configure(IApplicationBuilder app, DataContext context,
 IAntiforgery antiforgery) {

Chapter 27 ■ Using the Forms Tag Helpers

700

 app.UseRequestLocalization();

 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

 app.Use(async (context, next) => {
 if (!context.Request.Path.StartsWithSegments("/api")) {
 context.Response.Cookies.Append("XSRF-TOKEN",
 antiforgery.GetAndStoreTokens(context).RequestToken,
 new CookieOptions { HttpOnly = false });
 }
 await next();
 });

 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapControllerRoute("forms",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The options pattern is used to configure the anti-forgery feature, through the AntiforgeryOptions class. The HeaderName
property is used to specify the name of a header through which anti-forgery tokens will be accepted, which is X-XSRF-TOKEN in this
case.

A custom middleware component is required to set the cookie, which is named XSRF-TOKEN in this example. The value of the
cookie is obtained through the IAntiForgery service and must be configured with the HttpOnly option set to false so that the
browser will allow JavaScript code to read the cookie.

■■ Tip I have followed the names that are supported by Angular in this example. Other frameworks follow their own conventions but
can usually be configured to use any set of cookie and header names.

To create a simple JavaScript client that uses the cookie and header, add a Razor Page named JavaScriptForm.cshtml to the
Pages folder with the content shown in Listing 27-32.

Listing 27-32.  The Contents of the JavaScriptForm.cshtml File in the Pages Folder

@page "/pages/jsform"

<script type="text/javascript">
 async function sendRequest() {
 const token = document.cookie
 .replace(/(?:(?:^|.*;\s*)XSRF-TOKEN\s*\=\s*([^;]*).*$)|^.*$/, "$1");

 let form = new FormData();
 form.append("name", "Paddle");
 form.append("price", 100);
 form.append("categoryId", 1);
 form.append("supplierId", 1);

Chapter 27 ■ Using the Forms Tag Helpers

701

 let response = await fetch("@Url.Page("FormHandler")", {
 method: "POST",
 headers: { "X-XSRF-TOKEN": token },
 body: form
 });
 document.getElementById("content").innerHTML = await response.text();
 }

 document.addEventListener("DOMContentLoaded",
 () => document.getElementById("submit").onclick = sendRequest);
</script>

<button class="btn btn-primary m-2" id="submit">Submit JavaScript Form</button>
<div id="content"></div>

The JavaScript code in this Razor Page responds to a button click by sending an HTTP POST request to the FormHandler
Razor Page. The value of the XSRF-TOKEN cookie is read and included in the X-XSRF-TOKEN request header. The response from the
FormHandler page is a redirection to the Results page, which the browser will follow automatically. The response from the Results
page is read by the JavaScript code and inserted into an element so it can be displayed to the user. To test the JavaScript code, use
a browser to request http://localhost:5000/pages/jsform and click the button. The JavaScript code will submit the form and
display the response, as shown in Figure 27-10.

Figure 27-10.  Using a security token in JavaScript code

�Summary
In this chapter, I explained the features that ASP.NET Core provides for creating HTML forms. I showed you how tag helpers are used
to select the form target and associate input, textarea, and select elements with view model or page model properties. In the next
chapter, I describe the model binding feature, which extracts data from requests so that it can easily be consumed in action and
handler methods.

703© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_28

CHAPTER 28

Using Model Binding

Model binding is the process of creating .NET objects using the values from the HTTP request to provide easy access to the data
required by action methods and Razor Pages. In this chapter, I describe the way the model binding system works; show how it binds
simple types, complex types, and collections; and demonstrate how you can take control of the process to specify which part of the
request provides the data values your application requires. Table 28-1 puts model binding in context.

Table 28-1.  Putting Model Binding in Context

Question Answer

What is it? Model binding is the process of creating the objects that action methods and page handlers require using data
values obtained from the HTTP request.

Why is it useful? Model binding lets controllers or page handlers declare method parameters or properties using C# types and
automatically receive data from the request without having to inspect, parse, and process the data directly.

How is it used? In its simplest form, methods declare parameters or classes define properties whose names are used to
retrieve data values from the HTTP request. The part of the request used to obtain the data can be configured
by applying attributes to the method parameters or properties.

Are there any
pitfalls or
limitations?

The main pitfall is getting data from the wrong part of the request. I explain the way that requests are searched
for data in the “Understanding Model Binding” section, and the search locations can be specified explicitly
using the attributes that I describe in the “Specifying a Model Binding Source” section.

Are there any
alternatives?

Data can be obtained without model binding using context objects. However, the result is more complicated
code that is hard to read and maintain.

Table 28-2 summarizes the chapter.

Table 28-2.  Chapter Summary

Problem Solution Listing

Binding simple types Define method parameters with primitive types 5–9

Binding complex types Define method parameters with class types 10

Binding to a property Use the BindProperty attribute 11, 12

Binding nested types Ensure the form value types follow the dotted notation 13–17

Selecting properties for binding Use the Bind and BindNever attributes 18–19

Binding collections Follow the sequence binding conventions 20–25

Specifying the source for binding Use one of the source attributes 26–31

Manually performing binding Use the TryUpdateModel method 32

Chapter 28 ■ Using Model Binding

704

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 27. To prepare for this chapter, replace the contents of the Form.cshtml file in
the Views/Form folder with the content shown in Listing 28-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 28-1.  The Contents of the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

Next, comment out the DisplayFormat attribute that has been applied to the Product model class, as shown in Listing 28-2.

Listing 28-2.  Removing an Attribute in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;

namespace WebApp.Models {
 public class Product {

 public long ProductId { get; set; }

 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 //[DisplayFormat(DataFormatString = "{0:c2}", ApplyFormatInEditMode = true)]
 public decimal Price { get; set; }

 public long CategoryId { get; set; }
 public Category Category { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 28 ■ Using Model Binding

705

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 28-3 to drop the database.

Listing 28-3.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 28-4.

Listing 28-4.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers/form, which will display an HTML form. Click the Submit
button, and the form data will be displayed, as shown in Figure 28-1.

Figure 28-1.  Running the example application

�Understanding Model Binding
Model binding is an elegant bridge between the HTTP request and action or page handler methods. Most ASP.NET Core
applications rely on model binding to some extent, including the example application for this chapter.

You can see model binding at work by using the browser to request http://localhost:5000/controllers/form/index/5. This
URL contains the value of the ProductId property of the Product object that I want to view, like this:

http://localhost:5000/controllers/form/index/5

Chapter 28 ■ Using Model Binding

706

This part of the URL corresponds to the id segment variable defined by the controller routing pattern and matches the name of
the parameter defined by the Form controller’s Index action:

...
public async Task<IActionResult> Index(long id = 1) {
...

A value for the id parameter is required before the MVC Framework can invoke the action method, and finding a suitable
value is the responsibility of the model binding system. The model binding system relies on model binders, which are components
responsible for providing data values from one part of the request or application. The default model binders look for data values in
these four places:

•	 Form data

•	 The request body (only for controllers decorated with ApiController)

•	 Routing segment variables

•	 Query strings

Each source of data is inspected in order until a value for the argument is found. There is no form data in the example
application, so no value will be found there, and the Form controller isn’t decorated with the ApiController attribute, so the request
body won’t be checked. The next step is to check the routing data, which contains a segment variable named id. This allows the
model binding system to provide a value that allows the Index action method to be invoked. The search stops after a suitable data
value has been found, which means that the query string isn’t searched for a data value.

■■ Tip I n the “Specifying a Model Binding Source” section, I explain how you can specify the source of model binding data using
attributes. This allows you to specify that a data value is obtained from, for example, the query string, even if there is also suitable data
in the routing data.

Knowing the order in which data values are sought is important because a request can contain multiple values, like this URL:

http://localhost:5000/controllers/Form/Index/5?id=1

The routing system will process the request and match the id segment in the URL template to the value 3, and the query string
contains an id value of 1. Since the routing data is searched for data before the query string, the Index action method will receive the
value 3, and the query string value will be ignored.

On the other hand, if you request a URL that doesn’t have an id segment, then the query string will be examined, which means
that a URL like this one will also allow the model binding system to provide a value for the id argument so that it can invoke the
Index method.

http://localhost:5000/controllers/Form/Index?id=4

You can see the effect of both these URLs in Figure 28-2.

Chapter 28 ■ Using Model Binding

707

�Binding Simple Data Types
Request data values must be converted into C# values so they can be used to invoke action or page handler methods. Simple types
are values that originate from one item of data in the request that can be parsed from a string. This includes numeric values, bool
values, dates, and, of course, string values.

Data binding for simple types makes it easy to extract single data items from the request without having to work through the
context data to find out where it is defined. Listing 28-5 adds parameters to the SubmitForm action method defined by the Form
controller method so that the model binder will be used to provide name and price values.

Listing 28-5.  Adding Method Parameters in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long id = 1) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm(string name, decimal price) {
 TempData["name param"] = name;
 TempData["price param"] = price.ToString();
 return RedirectToAction(nameof(Results));
 }

Figure 28-2.  The effect of model binding data source order

Chapter 28 ■ Using Model Binding

708

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

The model binding system will be used to obtain name and price values when ASP.NET Core receives a request that will be
processed by the SubmitForm action method. The use of parameters simplifies the action method and takes care of converting the
request data into C# data types so that the price value will be converted to the C# decimal type before the action method is invoked.
(I had to convert the decimal back to a string to store it as temp data in this example. I demonstrate more useful ways of dealing with
form data in Chapter 31.) Restart ASP.NET Core so the change to the controller takes effect and request http://localhost:5000/
controllers/Form. Click the Submit button, and you will see the values that were extracted from the request by the model binding
feature, as shown in Figure 28-3.

Figure 28-3.  Model binding for simple types

�Binding Simple Data Types in Razor Pages
Razor Pages can use model binding, but care must be taken to ensure that the value of the form element’s name attribute matches
the name of the handler method parameter, which may not be the case if the asp-for attribute has been used to select a nested
property. To ensure the names match, the name attribute can be defined explicitly, as shown in Listing 28-6, which also simplifies the
HTML form so that it matches the controller example.

Listing 28-6.  Using Model Binding in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Product.Name" name="name"/>
 </div>
 <div class="form-group">
 <label>Price</label>

Chapter 28 ■ Using Model Binding

709

 <input class="form-control" asp-for="Product.Price" name="price" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>

@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost(string name, decimal price) {
 TempData["name param"] = name;
 TempData["price param"] = price.ToString();
 return RedirectToPage("FormResults");
 }
 }
}

The tag helper would have set the name attributes of the input elements to Product.Name and Product.Price, which prevents
the model binder from matching the values. Explicitly setting the name attribute overrides the tag helper and ensures the model
binding process works correctly. Use a browser to request http://localhost:5000/pages/form and click the Submit button, and
you will see the values found by the model binder, as shown in Figure 28-4.

Figure 28-4.  Model binding in a Razor Page

Chapter 28 ■ Using Model Binding

710

�Understanding Default Binding Values
Model binding is a best-effort feature, which means the model binder will try to get values for method parameters but will still
invoke the method if data values cannot be located. You can see how this works by removing the default value for the id parameter
in the Form controller’s Index action method, as shown in Listing 28-7.

Listing 28-7.  Removing a Parameter in the FormController.cs File in the Controllers Folder

...
public async Task<IActionResult> Index(long id) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
}
...

Restart ASP.NET Core and request http://localhost:5000/controllers/Form. The URL doesn’t contain a value that the
model binder can use for the id parameter, and there is no query string or form data, but the method is still invoked, producing the
error shown in Figure 28-5.

Figure 28-5.  An error caused by a missing data value

This exception isn’t reported by the model binding system. Instead, it occurred when the Entity Framework Core query was
executed. The MVC Framework must provide some value for the id argument to invoke the Index action method, so it uses a default
value and hopes for the best. For long arguments, the default value is 0, and this is what leads to the exception. The Index action
method uses the id value as the key to query the database for a Product object, like this:

...
public async Task<IActionResult> Index(long id) {
 ViewBag.Categories = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id));
}
...

Chapter 28 ■ Using Model Binding

711

When there is no value available for model binding, the action method tries to query the database with an id of zero. There is no
such object, which causes the error shown in the figure when Entity Framework Core tries to process the result.

Applications must be written to cope with default argument values, which can be done in several ways. You can add fallback
values to the routing URL patterns used by controllers (as shown in Chapter 21) or pages (as shown in Chapter 23). You can assign
default values when defining the parameter in the action or page handler method, which is the approach that I have taken so far in
this part of the book. Or you can simply write methods that accommodate the default values without causing an error, as shown in
Listing 28-8.

Listing 28-8.  Avoiding a Query Error in the FormController.cs File in the Controllers Folder

...
public async Task<IActionResult> Index(long id) {
 ViewBag.Categories = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstOrDefaultAsync(p => p.ProductId == id));
}
...

The Entity Framework Core FirstOrDefaultAsync method will return null if there is no matching object in the database and
won’t attempt to load related data. The tag helpers cope with null values and display empty fields, which you can see by restarting
ASP.NET Core and requesting http://localhost:5000/controllers/Form, which produces the result shown in Figure 28-6.

Figure 28-6.  Avoiding an error

Some applications need to differentiate between a missing value and any value provided by the user. In these situations, a
nullable parameter type can be used, as shown in Listing 28-9.

Listing 28-9.  Using a Nullable Parameter in the FormController.cs File in the Controllers Folder

...
public async Task<IActionResult> Index(long? id) {
 ViewBag.Categories = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
}
...

Chapter 28 ■ Using Model Binding

712

The id parameter will be null only if the request doesn’t contain a suitable value, which allows the expression passed to the
FirstOrDefaultAsync method to default to the first object in the database when there is no value and to query for any other value.
To see the effect, restart ASP.NET Core and request http://localhost:5000/controllers/Form and http://localhost:5000/
controllers/Form/index/0. The first URL contains no id value, so the first object in the database is selected. The second URL
provides an id value of zero, which doesn’t correspond to any object in the database. Figure 28-7 shows both results.

Figure 28-7.  Using a nullable type to determine whether a request contains a value

�Binding Complex Types
The model binding system shines when dealing with complex types, which are any type that cannot be parsed from a single string
value. The model binding process inspects the complex type and performs the binding process on each of the public properties it
defines. This means that instead of dealing with individual values such as name and price, I can use the binder to create complete
Product objects, as shown in Listing 28-10.

Listing 28-10.  Binding a Complex Type in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long? id) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

Chapter 28 ■ Using Model Binding

713

 [HttpPost]
 public IActionResult SubmitForm(Product product) {
 TempData["product"] = System.Text.Json.JsonSerializer.Serialize(product);
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

The listing changes the SubmitForm action method so that it defines a Product parameter. Before the action method is invoked,
a new Product object is created, and the model binding process is applied to each of its public properties. The SubmitForm method
is then invoked, using the Product object as its argument.

To see the model binding process, restart ASP.NET Core, navigate to http://localhost:5000/controllers/Form, and click the
Submit button. The model binding process will extract the data values from the request and produce the result shown in Figure 28-8.
The Product object created by the model binding process is serialized as JSON data so that it can be stored as temp data, making it
easy to see the request data.

Figure 28-8.  Data binding a complex type

The data binding process for complex types remains a best-effort feature, meaning that a value will be sought for each public
property defined by the Product class, but missing values won’t prevent the action method from being invoked. Instead, properties
for which no value can be located will be left as the default value for the property type. The example provided values for the Name and
Price properties, but the ProductId, CategoryId, and SupplierId properties are zero, and the Category and Supplier properties
are null.

�Binding to a Property
Using parameters for model binding doesn’t fit with the Razor Pages development style because the parameters often duplicate
properties defined by the page model class, as shown in Listing 28-11.

Listing 28-11.  Binding a Complex Type in the FormHandler.cshtml File in the Pages Folder

...
@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

Chapter 28 ■ Using Model Binding

714

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost(Product product) {
 TempData["product"] = System.Text.Json.JsonSerializer.Serialize(product);
 return RedirectToPage("FormResults");
 }
 }
}
...

This code works, but the OnPost handler method has its own version of the Product object, mirroring the property used by the
OnGetAsync handler. A more elegant approach is to use the existing property for model binding, as shown in Listing 28-12.

Listing 28-12.  Using a Property for Model Binding in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Product.Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Product.Price" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>

@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 [BindProperty]
 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)

Chapter 28 ■ Using Model Binding

715

 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost() {
 TempData["product"] = System.Text.Json.JsonSerializer.Serialize(Product);
 return RedirectToPage("FormResults");
 }
 }
}

Decorating a property with the BindProperty attribute indicates that its properties should be subject to the model binding
process, which means the OnPost handler method can get the data it requires without declaring a parameter. When the
BindProperty attribute is used, the model binder uses the property name when locating data values, so the explicit name attributes
added to the input element are not required. By default, BindProperty won’t bind data for GET requests, but this can be changed by
setting the BindProperty attribute’s SupportsGet argument to true.

■■ Note T he BindProperties attribute can be applied to classes that require the model binding process for all the public properties
they define, which can be more convenient than applying BindProperty to many individual properties. Decorate properties with the
BindNever attribute to exclude them from model binding.

�Binding Nested Complex Types
If a property that is subject to model binding is defined using a complex type, then the model binding process is repeated using the
property name as a prefix. For example, the Product class defines the Category property, whose type is the complex Category type.
Listing 28-13 adds elements to the HTML form to provide the model binder with values for the properties defined by the Category
class.

Listing 28-13.  Adding Nested Form Elements in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>Category Name</label>
 <input class="form-control" name="Category.Name"
 value="@Model.Category.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

The name attribute combines the property names, separated by periods. In this case, the element is for the Name property of the
object assigned to the view model’s Category property, so the name attribute is set to Category.Name. The input element tag helper
will automatically use this format for the name attribute when the asp-for attribute is applied, as shown in Listing 28-14.

Chapter 28 ■ Using Model Binding

716

Listing 28-14.  Using a Tag Helper in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>Category Name</label>
 <input class="form-control" asp-for="Category.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

The tag helper is a more reliable method of creating elements for nested properties and avoids the risk of typos producing
elements that are ignored by the model binding process. To see the effect of the new elements, request http://localhost:5000/
controllers/Form and click the Submit button, which will produce the response shown in Figure 28-9.

Figure 28-9.  Model binding a nested property

During the model binding process, a new Category object is created and assigned to the Category property of the Product
object. The model binder locates the value for the Category object’s Name property, which can be seen in the figure, but there is no
value for the CategoryId property, which is left as the default value.

�Specifying Custom Prefixes for Nested Complex Types
There are occasions when the HTML you generate relates to one type of object but you want to bind it to another. This means
that the prefixes containing the view won’t correspond to the structure that the model binder is expecting, and your data won’t
be properly processed. Listing 28-15 demonstrates this problem by changing the type of the parameter defined by the controller’s
SubmitForm action method.

Chapter 28 ■ Using Model Binding

717

Listing 28-15.  Changing a Parameter in the FormController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult SubmitForm(Category category) {
 TempData["category"] = System.Text.Json.JsonSerializer.Serialize(category);
 return RedirectToAction(nameof(Results));
}
...

The new parameter is a Category, but the model binding process won’t be able to pick out the data values correctly, even though
the form data sent by the Form view will contain a value for the Category object’s Name property. Instead, the model binder will
find the Name value for the Product object and use that instead, which you can see by restarting ASP.NET Core, requesting http://
localhost:5000/controllers/Form, and submitting the form data, which will produce the first response shown in Figure 28-10.

This problem is solved by applying the Bind attribute to the parameter and using the Prefix argument to specify a prefix for the
model binder, as shown in Listing 28-16.

Listing 28-16.  Setting a Prefix in the FormController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult SubmitForm([Bind(Prefix ="Category")] Category category) {
 TempData["category"] = System.Text.Json.JsonSerializer.Serialize(category);
 return RedirectToAction(nameof(Results));
}
...

The syntax is awkward, but the attribute ensures the model binder can locate the data the action method requires. In this
case, setting the prefix to Category ensures the correct data values are used to bind the Category parameter. Restart ASP.NET
Core, request http://localhost:5000/controllers/form, and submit the form, which produces the second response shown in
Figure 28-10.

Figure 28-10.  Specifying a model binding prefix

When using the BindProperty attribute, the prefix is specified using the Name argument, as shown in Listing 28-17.

Listing 28-17.  Specifying a Model Binding Prefix in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div class="form-group">

Chapter 28 ■ Using Model Binding

718

 <label>Name</label>
 <input class="form-control" asp-for="Product.Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Product.Price" />
 </div>
 <div class="form-group">
 <label>Category Name</label>
 <input class="form-control" asp-for="Product.Category.Name" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>

@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 [BindProperty]
 public Product Product { get; set; }

 [BindProperty(Name = "Product.Category")]
 public Category Category { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier).FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost() {
 TempData["product"] = System.Text.Json.JsonSerializer.Serialize(Product);
 TempData["category"]
 = System.Text.Json.JsonSerializer.Serialize(Category);
 return RedirectToPage("FormResults");
 }
 }
}

This listing adds an input element that uses the asp-for attribute to select the Product.Category property. A page handler
class defined a Category property that is decorated with the BindProperty attribute and configured with the Name argument. To see
the result of the model binding process, use a browser to request http://localhost:5000/pages/form and click the Submit button.
The model binding finds values for both the decorated properties, which produces the response shown in Figure 28-11.

Chapter 28 ■ Using Model Binding

719

Figure 28-11.  Specifying a model binding prefix in a Razor Page

�Selectively Binding Properties
Some model classes define properties that are sensitive and for which the user should not be able to specify values. A user may be
able to change the category for a Product object, for example, but should not be able to alter the price.

You might be tempted to simply create views that omit HTML elements for sensitive properties but that won’t prevent malicious
users from crafting HTTP requests that contain values anyway, which is known as an over-binding attack. To prevent the model binder
from using values for sensitive properties, the list of properties that should be bound can be specified, as shown in Listing 28-18.

Listing 28-18.  Selectively Binding Properties in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long? id) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

Chapter 28 ■ Using Model Binding

720

 [HttpPost]
 public IActionResult SubmitForm([Bind("Name", "Category")] Product product) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["category name"] = product.Category.Name;
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

I have returned to the Product type for the action method parameter, which has been decorated with the Bind attribute to
specify the names of the properties that should be included in the model binding process. This example tells the model binding
feature to look for values for the Name and Category properties, which excludes any other property from the process. Restart ASP.NET
Core, navigate to http://localhost:5000/controller/Form, and submit the form. Even though the browser sends a value for the
Price property as part of the HTTP POST request, it is ignored by the model binder, as shown in Figure 28-12.

Figure 28-12.  Selectively binding properties

�Selectively Binding in the Model Class
If you are using Razor Pages or you want to use the same set of properties for model binding throughout the application, you can
apply the BindNever attribute directly to the model class, as shown in Listing 28-19.

Listing 28-19.  Decorating a Property in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

Chapter 28 ■ Using Model Binding

721

namespace WebApp.Models {
 public class Product {

 public long ProductId { get; set; }

 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 [BindNever]
 public decimal Price { get; set; }

 public long CategoryId { get; set; }
 public Category Category { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The BindNever attribute excludes a property from the model binder, which has the same effect as omitting it from the list used
in the previous section. To see the effect, restart ASP.NET Core so the change to the Product class takes effect, request http://
localhost:5000/pages/form, and submit the form. Just as with the previous example, the model binder ignores the value for the
Price property, as shown in Figure 28-13.

■■ Tip T here is also a BindRequired attribute that tells the model binding process that a request must include a value for a property. If
the request doesn’t have a required value, then a model validation error is produced, as described in Chapter 29.

Figure 28-13.  Excluding a property from model binding

Chapter 28 ■ Using Model Binding

722

�Binding to Arrays and Collections
The model binding process has some nice features for binding request data to arrays and collections, which I demonstrate in the
following sections.

�Binding to Arrays
One elegant feature of the default model binder is how it supports arrays. To see how this feature works, add a Razor Page named
Bindings.cshtml to the Pages folder with the content shown in Listing 28-20.

Listing 28-20.  The Contents of the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 <div class="form-group">
 <label>Value #1</label>
 <input class="form-control" name="Data" value="Item 1" />
 </div>
 <div class="form-group">
 <label>Value #2</label>
 <input class="form-control" name="Data" value="Item 2" />
 </div>
 <div class="form-group">
 <label>Value #3</label>
 <input class="form-control" name="Data" value="Item 3" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>
 <div class="col">
 <ul class="list-group">
 @foreach (string s in Model.Data.Where(s => s != null)) {
 <li class="list-group-item">@s
 }

 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 [BindProperty(Name = "Data")]
 public string[] Data { get; set; } = Array.Empty<string>();
 }
}

Chapter 28 ■ Using Model Binding

723

Model binding for an array requires setting the name attribute to the same value for all the elements that will provide an array
value. This page displays three input elements, all of which have a name attribute value of Data. To allow the model binder to find the
array values, I have decorated the page model’s Data property with the BindProperty attribute and used the Name argument.

■■ Tip N otice that the page model class in Listing 28-20 defines no handler methods. This is unusual, but it works because there is no
explicit processing required for any requests since requests only provide values for and display the Data array.

When the HTML form is submitted, a new array is created and populated with the values from all three input elements, which
are displayed to the user. To see the binding process, request http://localhost:5000/pages/bindings, edit the form fields, and click
the Submit button. The contents of the Data array are displayed in a list using an @foreach expression, as shown in Figure 28-14.

Figure 28-14.  Model binding for array values

Notice that I filter out null values when displaying the array contents.

...
@foreach (string s in Model.Data.Where(s => s != null)) {
 <li class="list-group-item">@s
}
...

Empty form fields produce null values in the array, which I don’t want to show in the results. In Chapter 29, I show you how to
ensure that values are provided for model binding properties.

�Specifying Index Positions for Array Values
By default, arrays are populated in the order in which the form values are received from the browser, which will generally be the
order in which the HTML elements are defined. The name attribute can be used to specify the position of values in the array if you
need to override the default, as shown in Listing 28-21.

Chapter 28 ■ Using Model Binding

724

Listing 28-21.  Specifying Array Position in the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 <div class="form-group">
 <label>Value #1</label>
 <input class="form-control" name="Data[1]" value="Item 1" />
 </div>
 <div class="form-group">
 <label>Value #2</label>
 <input class="form-control" name="Data[0]" value="Item 2" />
 </div>
 <div class="form-group">
 <label>Value #3</label>
 <input class="form-control" name="Data[2]" value="Item 3" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>
 <div class="col">
 <ul class="list-group">
 @foreach (string s in Model.Data.Where(s => s != null)) {
 <li class="list-group-item">@s
 }

 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 [BindProperty(Name = "Data")]
 public string[] Data { get; set; } = Array.Empty<string>();
 }
}

The array index notation is used to specify the position of a value in the data-bound array. Use a browser to request http://
localhost:5000/pages/bindings and submit the form, and you will see the items appear in the order dictated by the name
attributes, as shown in Figure 28-15. The index notation must be applied to all the HTML elements that provide array values, and
there must not be any gaps in the numbering sequence.

Chapter 28 ■ Using Model Binding

725

�Binding to Simple Collections
The model binding process can create collections as well as arrays. For sequence collections, such as lists and sets, only the type of
the property or parameter that is used by the model binder is changed, as shown in Listing 28-22.

Listing 28-22.  Binding to a List in the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 <div class="form-group">
 <label>Value #1</label>
 <input class="form-control" name="Data[1]" value="Item 1" />
 </div>
 <div class="form-group">
 <label>Value #2</label>
 <input class="form-control" name="Data[0]" value="Item 2" />
 </div>
 <div class="form-group">
 <label>Value #3</label>
 <input class="form-control" name="Data[2]" value="Item 3" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>

Figure 28-15.  Specifying array position

Chapter 28 ■ Using Model Binding

726

Figure 28-16.  Model binding to a collection

 <div class="col">
 <ul class="list-group">
 @foreach (string s in Model.Data.Where(s => s != null)) {
 <li class="list-group-item">@s
 }

 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 [BindProperty(Name = "Data")]
 public SortedSet<string> Data { get; set; } = new SortedSet<string>();
 }
}

I changed the type of the Data property to SortedSet<string>. The model binding process will populate the set with the values
from the input elements, which will be sorted alphabetically. I have left the index notation on the input element name attributes,
but they have no effect since the collection class will sort its values alphabetically. To see the effect, use a browser to request http://
localhost:5000/pages/bindings, edit the text fields, and click the Submit button. The model binding process will populate the
sorted set with the form values, which will be presented in order, as shown in Figure 28-16.

�Binding to Dictionaries
For elements whose name attribute is expressed using the index notation, the model binder will use the index as the key when
binding to a Dictionary, allowing a series of elements to be transformed into key/value pairs, as shown in Listing 28-23.

Chapter 28 ■ Using Model Binding

727

Listing 28-23.  Binding to a Dictionary in the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 <div class="form-group">
 <label>Value #1</label>
 <input class="form-control" name="Data[first]" value="Item 1" />
 </div>
 <div class="form-group">
 <label>Value #2</label>
 <input class="form-control" name="Data[second]" value="Item 2" />
 </div>
 <div class="form-group">
 <label>Value #3</label>
 <input class="form-control" name="Data[third]" value="Item 3" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>
 <div class="col">
 <table class="table table-sm table-striped">
 <tbody>
 @foreach (string key in Model.Data.Keys) {
 <tr>
 <th>@key</th><td>@Model.Data[key]</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 [BindProperty(Name = "Data")]
 public Dictionary<string, string> Data { get; set; }
 = new Dictionary<string, string>();
 }
}

All elements that provide values for the collection must share a common prefix, which is Data in this example, followed by the
key value in square brackets. The keys for this example are the strings first, second, and third, and will be used as the keys for the
content the user provides in the text fields. To see the binding process, request http://localhost:5000/pages/bindings, edit the
text fields, and submit the form. The keys and values from the form data will be displayed in a table, as shown in Figure 28-17.

Chapter 28 ■ Using Model Binding

728

Figure 28-17.  Model binding to a dictionary

�Binding to Collections of Complex Types
The examples in this section have all been collections of simple types, but the same process can be used for complex types, too. To
demonstrate, Listing 28-24 revises the Razor Page to gather details used to bind to an array of Product objects.

Listing 28-24.  Binding to Complex Types in the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 @for (int i = 0; i < 2; i++) {
 <div class="form-group">
 <label>Name #@i</label>
 <input class="form-control" name="Data[@i].Name"
 value="Product-@i" />
 </div>
 <div class="form-group">
 <label>Price #@i</label>
 <input class="form-control" name="Data[@i].Price"
 value="@(100 + i)" />
 </div>
 }
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>

Chapter 28 ■ Using Model Binding

729

 <div class="col">
 <table class="table table-sm table-striped">
 <tbody>
 <tr><th>Name</th><th>Price</th></tr>
 @foreach (Product p in Model.Data) {
 <tr>
 <td>@p.Name</td><td>@p.Price</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 [BindProperty(Name = "Data")]
 public Product[] Data { get; set; } = Array.Empty<Product>();
 }
}

The name attributes for the input elements use the array notation, followed by a period, followed by the name of the complex
type properties they represent. To define elements for the Name and Price properties, this requires elements like this:

...
<input class="form-control" name="Data[0].Name" />
...
<input class="form-control" name="Data[0].Price" />
...

During the binding process, the model binder will attempt to locate values for all the public properties defined by the target
type, repeating the process for each set of values in the form data.

This example relies on model binding for the Price property defined by the Product class, which was excluded from the
binding process with the BindNever attribute. Remove the attribute from the property, as shown in Listing 28-25.

Listing 28-25.  Removing an Attribute in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace WebApp.Models {
 public class Product {

 public long ProductId { get; set; }

 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 //[BindNever]
 public decimal Price { get; set; }

Chapter 28 ■ Using Model Binding

730

 public long CategoryId { get; set; }
 public Category Category { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

Restart ASP.NET Core so the change to the Product class takes effect and use a browser to request http://localhost:5000/
pages/bindings. Enter names and prices into the text fields and submit the form, and you will see the details of the Product objects
created from the data displayed in a table, as shown in Figure 28-18.

Figure 28-18.  Binding to a collection of complex types

�Specifying a Model Binding Source
As I explained at the start of the chapter, the default model binding process looks for data in four places: the form data values, the
request body (for web service controllers only), the routing data, and the request query string.

The default search sequence isn’t always helpful, either because you always want data to come from a specific part of the
request or because you want to use a data source that isn’t searched by default. The model binding feature includes a set of attributes
used to override the default search behavior, as described in Table 28-3.

■■ Tip T here is also the FromService attribute, which doesn’t get a value from the request, but through the dependency injection
feature described in Chapter 14.

Chapter 28 ■ Using Model Binding

731

Table 28-3.  The Model Binding Source Attributes

Name Description

FromForm This attribute is used to select form data as the source of binding data. The name of the parameter is used to locate
a form value by default, but this can be changed using the Name property, which allows a different name to be
specified.

FromRoute This attribute is used to select the routing system as the source of binding data. The name of the parameter is used
to locate a route data value by default, but this can be changed using the Name property, which allows a different
name to be specified.

FromQuery This attribute is used to select the query string as the source of binding data. The name of the parameter is used
to locate a query string value by default, but this can be changed using the Name property, which allows a different
query string key to be specified.

FromHeader This attribute is used to select a request header as the source of binding data. The name of the parameter is used
as the header name by default, but this can be changed using the Name property, which allows a different header
name to be specified.

FromBody This attribute is used to specify that the request body should be used as the source of binding data, which is
required when you want to receive data from requests that are not form-encoded, such as in API controllers that
provide web services.

The FromForm, FromRoute, and FromQuery attributes allow you to specify that the model binding data will be obtained from one
of the standard locations but without the normal search sequence. Earlier in the chapter, I used this URL:

http://localhost:5000/controllers/Form/Index/5?id=1

This URL contains two possible values that can be used for the id parameter of the Index action method on the Form controller.
The routing system will assign the final segment of the URL to a variable called id, which is defined in the default URL pattern for
controllers, and the query string also contains an id value. The default search pattern means that the model binding data will be
taken from the route data and the query string will be ignored.

In Listing 28-26, I have applied the FromQuery attribute to the id parameter defined by the Index action method, which
overrides the default search sequence.

Listing 28-26.  Selecting the Query String in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

Chapter 28 ■ Using Model Binding

732

 public async Task<IActionResult> Index([FromQuery] long? id) {
 ViewBag.Categories
 = new SelectList(context.Categories, "CategoryId", "Name");
 return View("Form", await context.Products.Include(p => p.Category)
 .Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm([Bind("Name", "Category")] Product product) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["category name"] = product.Category.Name;
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

The attribute specifies the source for the model binding process, which you can see by restarting ASP.NET Core and using a
browser to request http://localhost:5000/controllers/Form/Index/5?id=1. Instead of using the value that has been matched
by the routing system, the query string will be used instead, producing the response shown in Figure 28-19. No other location will be
used if the query string doesn’t contain a suitable value for the model binding process.

■■ Tip  You can still bind complex types when specifying a model binding source such as the query string. For each simple property in
the parameter type, the model binding process will look for a query string key with the same name.

Figure 28-19.  Specifying a model binding data source

Chapter 28 ■ Using Model Binding

733

�Selecting a Binding Source for a Property
The same attributes can be used to model bind properties defined by a page model or a controller, as shown in Listing 28-27.

Listing 28-27.  Selecting the Query String in the Bindings.cshtml File in the Pages Folder

...
@functions {

 public class BindingsModel : PageModel {

 //[BindProperty(Name = "Data")]
 [FromQuery(Name = "Data")]
 public Product[] Data { get; set; } = Array.Empty<Product>();
 }
}
...

The use of the FromQuery attribute means the query string is used as the source of values for the model binder as it creates
the Product array, which you can see by requesting http://localhost:5000/pages/bindings?data[0].name=Skis&data[0].
price=500, which produces the response shown in Figure 28-20.

■■ Note I n this example, I have used a GET request because it allows the query string to be easily set. Although it is harmless in such
a simple example, care must be taken when sending GET requests that modify the state of the application. As noted previously, making
changes in GET requests can lead to problems.

Figure 28-20.  Specifying a model binding data source in a Razor Page

■■ Tip A lthough it is rarely used, you can bind complex types using header values by applying the FromHeader attribute to the
properties of a model class.

�Using Headers for Model Binding
The FromHeader attribute allows HTTP request headers to be used as the source for binding data. In Listing 28-28, I have added
a simple action method to the Form controller that defines a parameter that will be model bound from a standard HTTP request
header.

Chapter 28 ■ Using Model Binding

734

Listing 28-28.  Model Binding from a Header in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 // ...other action methods omitted for brevity...

 public string Header([FromHeader]string accept) {
 return $"Header: {accept}";
 }
 }
}

The Header action method defines an accept parameter, the value for which will be taken from the Accept header in the current
request and returned as the method result. Restart ASP.NET Core and request http://localhost:5000/controllers/form/header,
and you will see a result like this:

Header: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,
 image/apng,*/*;q=0.8,application/signed-exchange;v=b3

Not all HTTP header names can be easily selected by relying on the name of the action method parameter because the model
binding system doesn’t convert from C# naming conventions to those used by HTTP headers. In these situations, you must configure
the FromHeader attribute using the Name property to specify the name of the header, as shown in Listing 28-29.

Listing 28-29.  Selecting a Header by Name in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 // ...other action methods omitted for brevity...

 public string Header([FromHeader(Name = "Accept-Language")] string accept) {
 return $"Header: {accept}";
 }
 }
}

Chapter 28 ■ Using Model Binding

735

I can’t use Accept-Language as the name of a C# parameter, and the model binder won’t automatically convert a name like
AcceptLanguage into Accept-Language so that it matches the header. Instead, I used the Name property to configure the attribute so
that it matches the right header. If you restart ASP.NET Core and request http://localhost:5000/controllers/form/header, you
will see a result like this, which will vary based on your locale settings:

Header: en-US;q=0.9,en;q=0.8

�Using Request Bodies as Binding Sources
Not all data sent by clients is sent as form data, such as when a JavaScript client sends JSON data to an API controller. The FromBody
attribute specifies that the request body should be decoded and used as a source of model binding data. In Listing 28-30, I have
added a new action method to the Form controller with a parameter that is decorated with the FromBody attribute.

■■ Tip T he FromBody attribute isn’t required for controllers that are decorated with the ApiController attribute.

Listing 28-30.  Adding an Action Method in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 // ...other action methods omitted for brevity...

 [HttpPost]
 [IgnoreAntiforgeryToken]
 public Product Body([FromBody] Product model) {
 return model;
 }
 }
}

To test the model binding process, restart ASP.NET Core, open a new PowerShell command prompt, and run the command in
Listing 28-31 to send a request to the application.

■■ Note I added the IgnoreAntiforgeryToken to the action method in Listing 28-31 because the request that I am going to send
won’t include an anti-forgery token, which I described in Chapter 27.

Chapter 28 ■ Using Model Binding

736

Listing 28-31.  Sending a Request

Invoke-RestMethod http://localhost:5000/controllers/form/body -Method POST -Body (@{ Name="Soccer Boots";
Price=89.99} | ConvertTo-Json) -ContentType "application/json"

The JSON-encoded request body is used to model bind the action method parameter, which produces the following response:

productId : 0
name : Soccer Boots
price : 89.99
categoryId : 0
category :
supplierId : 0
supplier :

�Manually Model Binding
Model binding is applied automatically when you define a parameter for an action or handler method or apply the BindProperty
attribute. Automatic model binding works well if you can consistently follow the name conventions and you always want the process
to be applied. If you need to take control of the binding process or you want to perform binding selectively, then you can perform
model binding manually, as shown in Listing 28-32.

Listing 28-32.  Manually Binding in the Bindings.cshtml File in the Pages Folder

@page "/pages/bindings"
@model BindingsModel
@using Microsoft.AspNetCore.Mvc
@using Microsoft.AspNetCore.Mvc.RazorPages

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <form asp-page="Bindings" method="post">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" asp-for="Data.Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" asp-for="Data.Price"
 value="@(Model.Data.Price + 1)" />
 </div>
 <div class="form-check m-2">
 <input class="form-check-input" type="checkbox" name="bind"
 value="true" checked />
 <label class="form-check-label">Model Bind?</label>
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 Reset
 </form>
 </div>

Chapter 28 ■ Using Model Binding

737

 <div class="col">
 <table class="table table-sm table-striped">
 <tbody>
 <tr><th>Name</th><th>Price</th></tr>
 <tr>
 <td>@Model.Data.Name</td><td>@Model.Data.Price</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

@functions {

 public class BindingsModel : PageModel {

 public Product Data { get; set; }
 = new Product() { Name = "Skis", Price = 500 };

 public async Task OnPostAsync([FromForm] bool bind) {
 if (bind) {
 await TryUpdateModelAsync<Product>(Data,
 "data", p => p.Name, p => p.Price);
 }
 }
 }
}

Manual model binding is performed using the TryUpdateModelAsync method, which is provided by the PageModel and
ControllerBase classes, which means it is available for both Razor Pages and MVC controllers.

This example mixes automatic and manual model binding. The OnPostAsync method uses automatic model binding to receive
a value for its bind parameter, which has been decorated with the FromForm attribute. If the value of the parameter is true, the
TryUpdateModelAsync method is used to apply model binding. The arguments to the TryUpdateModelAsync method are the object
that will be model bound, the prefix for the values, and a series of expressions that select the properties that will be included in the
process, although there are other versions of the TryUpdateModelAsync method available.

The result is that the model binding process for the Data property is performed only when the user checks the checkbox added
to the form in Listing 28-32. If the checkbox is unchecked, then no model binding occurs, and the form data is ignored. To make it
obvious when model binding is used, the value of the Price property is incremented when the form is rendered. To see the effect,
request http://localhost:5000/pages/bindings and submit the form with the checkbox checked and then unchecked, as shown
in Figure 28-21.

Chapter 28 ■ Using Model Binding

738

�Summary
In this chapter, I introduced the model binding feature, which makes it easy to work with request data. I showed you how to use
model binding with parameters and properties, how to bind simple and complex types, and the conventions required to bind to
arrays and collections. I also explained how to control which part of the request is used for model binding and how to take control of
when model binding is performed. In the next chapter, I describe the features that ASP.NET Core provides to validate form data.

Figure 28-21.  Using manual model binding

739© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_29

CHAPTER 29

Using Model Validation

In the previous chapter, I showed you how the model binding process creates objects from HTTP requests. Throughout that chapter,
I simply displayed the data that the application received. That’s because the data that users provide should not be used until it has
been inspected to ensure that the application is able to use it. The reality is that users will often enter data that isn’t valid and cannot
be used, which leads me to the topic of this chapter: model validation.

Model validation is the process of ensuring the data received by the application is suitable for binding to the model and, when
this is not the case, providing useful information to the user that will help explain the problem.

The first part of the process, checking the data received, is one of the most important ways to preserve the integrity of an
application’s data. Rejecting data that cannot be used can prevent odd and unwanted states from arising in the application. The
second part of the validation process is helping the user correct the problem and is equally important. Without the feedback needed
to correct the problem, users become frustrated and confused. In public-facing applications, this means users will simply stop
using the application. In corporate applications, this means the user’s workflow will be hindered. Neither outcome is desirable, but
fortunately, ASP.NET Core provides extensive support for model validation. Table 29-1 puts model validation in context.

Table 29-1.  Putting Model Validation in Context

Question Answer

What is it? Model validation is the process of ensuring that the data provided in a request is valid for use in the
application.

Why is it useful? Users do not always enter valid data, and using it in the application can produce unexpected and
undesirable errors.

How is it used? Controllers and Razor Pages check the outcome of the validation process, and tag helpers are
used to include validation feedback in views displayed to the user. Validation can be performed
automatically during the model binding process and can be supplemented with custom validation.

Are there any pitfalls or
limitations?

It is important to test the efficacy of your validation code to ensure that it covers the full range of
values that the application can receive.

Are there any alternatives? Model validation is optional, but it is a good idea to use it whenever using model binding.

Table 29-2 summarizes the chapter.

Table 29-2.  Chapter Summary

Problem Solution Listing

Validating data Manually use the ModelState features or apply validation attributes 5, 13–20

Displaying validation messages Use the classes to which form elements are assigned and the validation tag helpers 6–12

Validating data before the form
is submitted

Use client-side and remote validation 21–25

Chapter 29 ■ Using Model Validation

740

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 28. To prepare for this chapter, change the contents of the Form controller’s Form
view so it contains input elements for each of the properties defined by the Product class, excluding the navigation properties used
by Entity Framework Core, as shown in Listing 29-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 29-1.  Changing Elements in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>CategoryId</label>
 <input class="form-control" asp-for="CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>
 <input class="form-control" asp-for="SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

Replace the contents of the FormController.cs file with those shown in Listing 29-2, which adds support for displaying the
properties defined in Listing 29-1 and removes model binding attributes and action methods that are no longer required.

Listing 29-2.  Replacing the Contents of the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 29 ■ Using Model Validation

741

 public async Task<IActionResult> Index(long? id) {
 return View("Form", await context.Products
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm(Product product) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 29-3 to drop the database.

Listing 29-3.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 29-4.

Listing 29-4.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers/Form, which will display an HTML form. Click the Submit
button, and the form data will be displayed, as shown in Figure 29-1.

Chapter 29 ■ Using Model Validation

742

Figure 29-1.  Running the example application

�Understanding the Need for Model Validation
Model validation is the process of enforcing the requirements that an application has for the data it receives from clients. Without
validation, an application will try to operate on any data it receives, which can lead to exceptions and unexpected behavior that appear
immediately or long-term problems that appear gradually as the database is populated with bad, incomplete, or malicious data.

Currently, the action and handler methods that receive form data will accept any data that the user submits, which is why the
examples just display the form data and don’t store it in the database.

Most data values have constraints of some sort. This can involve requiring a value to be provided, requiring the value to be a
specific type, and requiring the value to fall within a specific range.

As an example, before I can safely store a Product object in the database, for example, I need to make sure that the user provides
values for the Name, Price, CategoryId, and SupplierId properties. The Name value can be any valid string, the Price property must
be a valid currency amount, and the CategoryId and SupplierId properties must correspond to existing Supplier and Category
products in the database. In the following sections, I demonstrate how model validation can be used to enforce these requirements
by checking the data that the application receives and providing feedback to the user when the application cannot use the data the
user has submitted.

�Explicitly Validating Data in a Controller
The most direct way of validating data is to do so in an action or handler method, as shown in Listing 29-5, recording details of any
problems so they can be displayed to the user.

Listing 29-5.  Explicitly Validating Data in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;

Chapter 29 ■ Using Model Validation

743

using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long? id) {
 return View("Form", await context.Products
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm(Product product) {

 if (string.IsNullOrEmpty(product.Name)) {
 ModelState.AddModelError(nameof(Product.Name), "Enter a name");
 }

 if (ModelState.GetValidationState(nameof(Product.Price))
 == ModelValidationState.Valid && product.Price < 1) {
 ModelState.AddModelError(nameof(Product.Price),
 "Enter a positive price");
 }

 if (!context.Categories.Any(c => c.CategoryId == product.CategoryId)) {
 ModelState.AddModelError(nameof(Product.CategoryId),
 "Enter an existing category ID");
 }

 if (!context.Suppliers.Any(s => s.SupplierId == product.SupplierId)) {
 ModelState.AddModelError(nameof(Product.SupplierId),
 "Enter an existing supplier ID");
 }

 if (ModelState.IsValid) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
 } else {
 return View("Form");
 }
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

Chapter 29 ■ Using Model Validation

744

For each of the properties of the Product parameter created, I check to see the value provided by the user and record any errors
I find using the ModelStateDictionary object that is returned by the ModelState property inherited from the ControllerBase class.

As its name suggests, the ModelStateDictionary class is a dictionary used to track details of the state of the model object, with
an emphasis on validation errors. Table 29-3 describes the most important ModelStateDictionary members.

Table 29-3.  Selected ModelStateDictionary Members

Name Description

AddModelError(property, message) This method is used to record a model validation error for the specified property.

GetValidationState(property) This method is used to determine whether there are model validation errors for a specific
property, expressed as a value from the ModelValidationState enumeration.

IsValid This property returns true if all the model properties are valid and returns false otherwise.

Clear() This property clears the validation state.

Table 29-4.  The ModelValidationState Values

Name Description

Unvalidated This value means that no validation has been performed on the model property, usually because there was no
value in the request that corresponded to the property name.

Valid This value means that the request value associated with the property is valid.

Invalid This value means that the request value associated with the property is invalid and should not be used.

Skipped This value means that the model property has not been processed, which usually means that there have been so
many validation errors that there is no point continuing to perform validation checks.

As an example of using the ModelStateDictionary, consider how the Name property was validated.

...
if (string.IsNullOrEmpty(product.Name)) {
 ModelState.AddModelError(nameof(Product.Name), "Enter a name");
}
...

One of the validation requirements for the Product class is to ensure the user provides a value for the Name property, so I use the
static string.IsNullOrEmpty method to test the property value that the model binding process has extracted from the request. If the
Name property is null or an empty string, then I know that the value cannot be used by the application, and I use the ModelState.
AddModelError method to register a validation error, specifying the name of the property (Name) and a message that will be displayed
to the user to explain the nature of the problem (Enter a name).

The ModelStateDictionary is also used during the model binding process to record any problems with finding and assigning
values to model properties. The GetValidationState method is used to see whether there have been any errors recorded for a
model property, either from the model binding process or because the AddModelError method has been called during explicit
validation in the action method. The GetValidationState method returns a value from the ModelValidationState enumeration,
which defines the values described in Table 29-4.

For the Price property, I check to see whether the model binding process has reported a problem parsing the value sent by the
browser into a decimal value, like this:

...
if (ModelState.GetValidationState(nameof(Product.Price))
 == ModelValidationState.Valid && product.Price < 1) {
 ModelState.AddModelError(nameof(Product.Price), "Enter a positive price");
}
...

Chapter 29 ■ Using Model Validation

745

I want to make sure that the user provides a Price value that is equal to or greater than 1, but there is no point in recording an
error about zero or negative values if the user has provided a value that the model binder cannot convert into a decimal value. I use the
GetValidationState method to determine the validation status of the Price property before performing my own validation check.

After I have validated all the properties in the Product object, I check the ModelState.IsValid property to see whether there
were errors. This method returns true if the Model.State.AddModelError method was called during the checks or if the model
binder had any problems creating the object.

...
if (ModelState.IsValid) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
} else {
 return View("Form");
}
...

The Product object is valid if the IsValid property returns true, in which case the action method redirects the browser to the
Results action, where the validated form values will be displayed. There is a validation problem if the IsValue property returns
false, which is dealt with by calling the View method to render the Form view again.

�Displaying Validation Errors to the User
It may seem odd to deal with a validation error by calling the View method, but the context data provided to the view contains details
of the model validation errors; these details are used by the tag helper to transform the input elements.

To see how this works, restart ASP.NET Core so the changes to the controller take effect and use a browser to request http://
localhost:5000/controllers/form. Clear the contents of the Name field and click the Submit button. There won’t be any visible
change in the content displayed by the browser, but if you examine the input element for the Name field, you will see the element has
been transformed. Here is the input element before the form was submitted:

<input class="form-control" type="text" id="Name" name="Name" value="Kayak">

Here is the input element after the form has been submitted:

<input class="form-control input-validation-error" type="text" id="Name"
 name="Name" value="">

The tag helper adds elements whose values have failed validation to the input-validation-error class, which can then be
styled to highlight the problem to the user.

You can do this by defining custom CSS styles in a stylesheet, but a little extra work is required if you want to use the built-in
validation styles that CSS libraries like Bootstrap provides. The name of the class added to the input elements cannot be changed,
which means that some JavaScript code is required to map between the name used by ASP.NET Core and the CSS error classes
provided by Bootstrap.

■■ Tip  Using JavaScript code like this can be awkward, and it can be tempting to use custom CSS styles, even when working with
a CSS library like Bootstrap. However, the colors used for validation classes in Bootstrap can be overridden by using themes or by
customizing the package and defining your own styles, which means you have to ensure that any changes to the theme are matched
by corresponding changes to any custom styles you define. Ideally, Microsoft will make the validation class names configurable in a
future release of ASP.NET Core, but until then, using JavaScript to apply Bootstrap styles is a more robust approach than creating custom
stylesheets.

Chapter 29 ■ Using Model Validation

746

To define the JavaScript code so that it can be used by both controllers and Razor Pages, use the Visual Studio JavaScript File
template to add a file named _Validation.cshtml to the Views/Shared folder with the content shown in Listing 29-6. Visual Studio
Code doesn’t require templates, and you can just add a file named _Validation.cshtml in the Views/Shared folder with the code
shown in the listing.

Listing 29-6.  The Contents of the _Validation.cshtml File in the Views/Shared Folder

<script src="/lib/jquery/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error").addClass("is-invalid");
 });
</script>

I will use the new file as a partial view, which contains a script element that loads the jQuery library and contains a custom
script that locates input elements that are members of the input-validation-error class and adds them to the is-invalid class
(which Bootstrap uses to set the error color for form elements). Listing 29-7 uses the partial tag helper to incorporate the new
partial view into the HTML form so that fields with validation errors are highlighted.

Listing 29-7.  Including a Partial View in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<partial name="_Validation" />

<form asp-action="submitform" method="post" id="htmlform">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>CategoryId</label>
 <input class="form-control" asp-for="CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>
 <input class="form-control" asp-for="SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

The jQuery code runs when the browser has finished parsing all the elements in the HTML document, and the effect is to
highlight the input elements that have been assigned to the input-validaton-error class. You can see the effect by navigating to
http://localhost:5000/controllers/form, clearing the contents of the Name field, and submitting the form, which produces the
response shown in Figure 29-2.

Chapter 29 ■ Using Model Validation

747

Figure 29-2.  Highlighting a validation error

The user will not be shown the Results view until the form is submitted with data that can be parsed by the model browser and
that passes the explicit validation checks in the action method. Until that happens, submitting the form will cause the Form view to
be rendered with the highlighted validation errors.

�Displaying Validation Messages
The CSS classes that the tag helpers apply to input elements indicate that there are problems with a form field, but they do not
tell the user what the problem is. Providing the user with more information requires the use of a different tag helper, which adds a
summary of the problems to the view, as shown in Listing 29-8.

Listing 29-8.  Displaying a Summary in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<partial name="_Validation" />

<form asp-action="submitform" method="post" id="htmlform">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>CategoryId</label>

Chapter 29 ■ Using Model Validation

748

 <input class="form-control" asp-for="CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>
 <input class="form-control" asp-for="SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

The ValidationSummaryTagHelper class detects the asp-validation-summary attribute on div elements and responds by
adding messages that describe any validation errors that have been recorded. The value of the asp-validation-summary attribute is
a value from the ValidationSummary enumeration, which defines the values shown in Table 29-5 and which I demonstrate shortly.

Table 29-5.  The ValidationSummary Values

Name Description

All This value is used to display all the validation errors that have been recorded.

ModelOnly This value is used to display only the validation errors for the entire model, excluding those that have been recorded
for individual properties, as described in the “Displaying Model-Level Messages” section.

None This value is used to disable the tag helper so that it does not transform the HTML element.

Figure 29-3.  Displaying validation messages

Presenting error messages helps the user understand why the form cannot be processed. As an example, try submitting the
form with a negative value in the Price field, such as –10, and with a value that cannot be converted into a decimal value, such as
ten. Each value results in a different error message, as shown in Figure 29-3.

�Configuring the Default Validation Error Messages
The model binding process performs its own validation when it tries to provide the data values required to invoke an action
method, which is why you see a validation message when the Price value cannot be converted to a decimal, for example. Not all
the validation messages produced by the model binder are helpful to the user, which you can see by clearing the Price field and
submitting the form. The empty field produces the following message:

The value '' is invalid

Chapter 29 ■ Using Model Validation

749

This message is added to the ModelStateDictionary by the model binding process when it can’t find a value for a property or
does find a value but can’t parse it. In this case, the error has arisen because the empty string sent in the form data can’t be parsed
into a decimal value for the Price property of the Product class.

The model binder has a set of predefined messages that it uses for validation errors. These can be replaced with custom
messages using the methods defined by the DefaultModelBindingMessageProvider class, as described in Table 29-6.

Table 29-6.  The DefaultModelBindingMessageProvider Methods

Name Description

SetValueMustNotBeNullAccessor The function assigned to this property is used to generate a validation error message
when a value is null for a model property that is non-nullable.

SetMissingBindRequiredValueAccessor The function assigned to this property is used to generate a validation error message
when the request does not contain a value for a required property.

SetMissingKeyOrValueAccessor The function assigned to this property is used to generate a validation error message
when the data required for dictionary model object contains null keys or values.

SetAttemptedValueIsInvalidAccessor The function assigned to this property is used to generate a validation error message
when the model binding system cannot convert the data value into the required C# type.

SetUnknownValueIsInvalidAccessor The function assigned to this property is used to generate a validation error message
when the model binding system cannot convert the data value into the required C# type.

SetValueMustBeANumberAccessor The function assigned to this property is used to generate a validation error message
when the data value cannot be parsed into a C# numeric type.

SetValueIsInvalidAccessor The function assigned to this property is used to generate a fallback validation error
message that is used as a last resort.

Each of the methods described in the table accepts a function that is invoked to get the validation message to display to the user.
These methods are applied through the options pattern in the Startup class, as shown in Listing 29-9, in which I have replaced the
default message that is displayed when a value is null or cannot be converted.

Listing 29-9.  Changing a Validation Message in the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Antiforgery;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });

Chapter 29 ■ Using Model Validation

750

 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });

 services.Configure<MvcOptions>(opts => opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value"));
 }

 public void Configure(IApplicationBuilder app, DataContext context,
 IAntiforgery antiforgery) {

 app.UseRequestLocalization();

 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

 app.Use(async (context, next) => {
 if (!context.Request.Path.StartsWithSegments("/api")) {
 context.Response.Cookies.Append("XSRF-TOKEN",
 antiforgery.GetAndStoreTokens(context).RequestToken,
 new CookieOptions { HttpOnly = false });
 }
 await next();
 });

 app.UseEndpoints(endpoints => {
 endpoints.MapControllers();
 endpoints.MapControllerRoute("forms",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 SeedData.SeedDatabase(context);
 }
 }
}

The function that you specify receives the value that the user has supplied, although that is not especially useful when
dealing with null values. To see the custom message, restart ASP.NET Core, use the browser to request http://localhost:5000/
controllers/form, and submit the form with an empty Price field. The response will include the custom error message, as shown in
Figure 29-4.

Chapter 29 ■ Using Model Validation

751

�Displaying Property-Level Validation Messages
Although the custom error message is more meaningful than the default one, it still isn’t that helpful because it doesn’t clearly
indicate which field the problem relates to. For this kind of error, it is more useful to display the validation error messages alongside
the HTML elements that contain the problem data. This can be done using the ValidationMessageTag tag helper, which looks for
span elements that have the asp-validation-for attribute, which is used to specify the property for which error messages should be
displayed.

In Listing 29-10, I have added property-level validation message elements for each of the input elements in the form.

Listing 29-10.  Adding Property-Level Messages in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<partial name="_Validation" />

<form asp-action="submitform" method="post" id="htmlform">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <div></div>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <div></div>
 <input class="form-control" asp-for="Price" />
 </div>
 <div class="form-group">
 <label>CategoryId</label>
 <div></div>
 <input class="form-control" asp-for="CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>

Figure 29-4.  Changing the default validation messages

Chapter 29 ■ Using Model Validation

752

Figure 29-5.  Displaying property-level validation messages

 <div></div>
 <input class="form-control" asp-for="SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

Since span elements are displayed inline, care must be taken to present the validation messages to make it obvious which
element the message relates to. You can see the effect of the new validation messages by requesting http://localhost:5000/
controllers/form, clearing the Name and Price fields, and submitting the form. The response, shown in Figure 29-5, includes
validation messages alongside the text fields.

�Displaying Model-Level Messages
It may seem that the validation summary message is superfluous because it duplicates the property-level messages. But the
summary has a useful trick, which is the ability to display messages that apply to the entire model and not just individual properties.
This means you can report errors that arise from a combination of individual properties, which would otherwise be hard to express
with a property-level message.

In Listing 29-11, I have added a check to the FormController.SubmitForm action that records a validation error when the Price
value exceeds 100 at the time that the Name value starts with Small.

Listing 29-11.  Performing Model-Level Validation in the FormController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult SubmitForm(Product product) {

 if (string.IsNullOrEmpty(product.Name)) {
 ModelState.AddModelError(nameof(Product.Name), "Enter a name");
 }

 if (ModelState.GetValidationState(nameof(Product.Price))
 == ModelValidationState.Valid && product.Price < 1) {
 ModelState.AddModelError(nameof(Product.Price), "Enter a positive price");
 }

Chapter 29 ■ Using Model Validation

753

 if (ModelState.GetValidationState(nameof(Product.Name))
 == ModelValidationState.Valid
 && ModelState.GetValidationState(nameof(Product.Price))
 == ModelValidationState.Valid
 && product.Name.ToLower().StartsWith("small") && product.Price > 100) {
 ModelState.AddModelError("", "Small products cannot cost more than $100");
 }

 if (!context.Categories.Any(c => c.CategoryId == product.CategoryId)) {
 ModelState.AddModelError(nameof(Product.CategoryId),
 "Enter an existing category ID");
 }

 if (!context.Suppliers.Any(s => s.SupplierId == product.SupplierId)) {
 ModelState.AddModelError(nameof(Product.SupplierId),
 "Enter an existing supplier ID");
 }

 if (ModelState.IsValid) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
 } else {
 return View("Form");
 }
}
...

If the user enters a Name value that starts with Small and a Price value that is greater than 100, then a model-level validation
error is recorded. I check for the combination of values only if there are no validation problems with the individual property values,
which ensures the user doesn’t get conflicting messages. Validation errors that relate to the entire model are recorded using the
AddModelError with the empty string as the first argument.

Listing 29-12 changes the value of the asp-validation-summary attribute to ModelOnly, which excludes property-level errors,
meaning that the summary will display only those errors that apply to the entire model.

Listing 29-12.  Configuring the Validation Summary in the Form.cshtml File in the Views/Form Folder

@model Product
@{ Layout = "_SimpleLayout"; }

<h5 class="bg-primary text-white text-center p-2">HTML Form</h5>

<partial name="_Validation" />

<form asp-action="submitform" method="post" id="htmlform">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <div></div>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <div></div>
 <input class="form-control" asp-for="Price" />
 </div>

Chapter 29 ■ Using Model Validation

754

 <div class="form-group">
 <label>CategoryId</label>
 <div></div>
 <input class="form-control" asp-for="CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>
 <div></div>
 <input class="form-control" asp-for="SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

Restart ASP.NET Core and request http://localhost:5000/controllers/form. Enter Small Kayak into the Name field and
150 into the Price field and submit the form. The response will include the model-level error message, as shown in Figure 29-6.

Figure 29-6.  Displaying a model-level validation message

�Explicitly Validating Data in a Razor Page
Razor Page validation relies on the features used in the controller in the previous section. Listing 29-13 adds explicit validation
checks and error summaries to the FormHandler page.

Listing 29-13.  Validating Data in the FormHandler.cshtml File in the Pages Folder

@page "/pages/form/{id:long?}"
@model FormHandlerModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore
@using Microsoft.AspNetCore.Mvc.ModelBinding

<partial name="_Validation" />

<div class="m-2">
 <h5 class="bg-primary text-white text-center p-2">HTML Form</h5>
 <form asp-page="FormHandler" method="post" id="htmlform">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label>Name</label>
 <div>

Chapter 29 ■ Using Model Validation

755

 </div>
 <input class="form-control" asp-for="Product.Name" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.Price" />
 </div>
 <div class="form-group">
 <label>CategoryId</label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.CategoryId" />
 </div>
 <div class="form-group">
 <label>SupplierId</label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.SupplierId" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
</div>

@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 [BindProperty]
 public Product Product { get; set; }

 //[BindProperty(Name = "Product.Category")]
 //public Category Category { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost() {

 if (string.IsNullOrEmpty(Product.Name)) {
 ModelState.AddModelError("Product.Name", "Enter a name");
 }

Chapter 29 ■ Using Model Validation

756

 if (ModelState.GetValidationState("Product.Price")
 == ModelValidationState.Valid && Product.Price < 1) {
 ModelState.AddModelError("Product.Price", "Enter a positive price");
 }

 if (ModelState.GetValidationState("Product.Name")
 == ModelValidationState.Valid
 && ModelState.GetValidationState("Product.Price")
 == ModelValidationState.Valid
 && Product.Name.ToLower().StartsWith("small")
 && Product.Price > 100) {
 ModelState.AddModelError("",
 "Small products cannot cost more than $100");
 }

 if (!context.Categories.Any(c => c.CategoryId == Product.CategoryId)) {
 ModelState.AddModelError("Product.CategoryId",
 "Enter an existing category ID");
 }

 if (!context.Suppliers.Any(s => s.SupplierId == Product.SupplierId)) {
 ModelState.AddModelError("Product.SupplierId",
 "Enter an existing supplier ID");
 }

 if (ModelState.IsValid) {
 TempData["name"] = Product.Name;
 TempData["price"] = Product.Price.ToString();
 TempData["categoryId"] = Product.CategoryId.ToString();
 TempData["supplierId"] = Product.SupplierId.ToString();
 return RedirectToPage("FormResults");
 } else {
 return Page();
 }
 }
 }
}

The PageModel class defines a ModelState property that is the equivalent of the one I used in the controller and allows
validation errors to be recorded. The process for validation is the same, but you must take care when recording errors to ensure the
names match the pattern used by Razor Pages. When I recorded an error, I used the nameof keyword to select the property to which
the error relates, like this:

...
ModelState.AddModelError(nameof(Product.Name), "Enter a name");
...

This is a common convention because it ensures that a typo won’t cause errors to be recorded incorrectly. This expression won’t
work in the Razor Page, where the error must be recorded against Product.Name, rather than Name, to reflect that @Model expressions
in Razor Pages return the page model object, like this:

...
ModelState.AddModelError("Product.Name", "Enter a name");
...

Chapter 29 ■ Using Model Validation

757

To test the validation process, use a browser to request http://localhost:5000/pages/form and submit the form with empty
fields or with values that cannot be converted into the C# types required by the Product class. The error messages are displayed just
as they are for controllers, as shown in Figure 29-7. (The values 1, 2, and 3 are valid for both the CategoryId and SupplierId fields.)

■■ Tip T he methods described in Table 29-6 that change the default validation messages affect Razor Pages as well as controllers.

Figure 29-7.  Validating data in a Razor Page

�Specifying Validation Rules Using Metadata
One problem with putting validation logic into an action method is that it ends up being duplicated in every action or handler
method that receives data from the user. To help reduce duplication, the validation process supports the use of attributes to express
model validation rules directly in the model class, ensuring that the same set of validation rules will be applied regardless of which
action method is used to process a request. In Listing 29-14, I have applied attributes to the Product class to describe the validation
required for the Name and Price properties.

Chapter 29 ■ Using Model Validation

758

Listing 29-14.  Applying Validation Attributes in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace WebApp.Models {
 public class Product {

 public long ProductId { get; set; }

 [Required]
 [Display(Name = "Name")]
 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 [Required(ErrorMessage = "Please enter a price")]
 [Range(1, 999999, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 public long CategoryId { get; set; }
 public Category Category { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

I used two validation attributes in the listing: Required and Range. The Required attribute specifies that it is a validation error if
the user doesn’t submit a value for a property. The Range attribute specifies a subset of acceptable values. Table 29-7 shows the set of
built-in validation attributes available.

Table 29-7.  The Built-in Validation Attributes

Attribute Example Description

Compare [Compare
("OtherProperty")]

This attribute ensures that properties must have the same value, which is useful
when you ask the user to provide the same information twice, such as an e-mail
address or a password.

Range [Range(10, 20)] This attribute ensures that a numeric value (or any property type that implements
IComparable) is not outside the range of specified minimum and maximum
values. To specify a boundary on only one side, use a MinValue or MaxValue
constant.

RegularExpression [RegularExpression
("pattern")]

This attribute ensures that a string value matches the specified regular
expression pattern. Note that the pattern must match the entire user-supplied
value, not just a substring within it. By default, it matches case sensitively,
but you can make it case insensitive by applying the (?i) modifier—that is,
[RegularExpression("(?i)mypattern")].

Required [Required] This attribute ensures that the value is not empty or a string
consisting only of spaces. If you want to treat whitespace as valid, use
[Required(AllowEmptyStrings = true)].

StringLength [StringLength(10)] This attribute ensures that a string value is no longer than a specified
maximum length. You can also specify a minimum length: [StringLength(10,
MinimumLength=2)].

Chapter 29 ■ Using Model Validation

759

All the validation attributes support specifying a custom error message by setting a value for the ErrorMessage property, like
this:

...
[Column(TypeName = "decimal(8, 2)")]
[Required(ErrorMessage = "Please enter a price")]
[Range(1, 999999, ErrorMessage = "Please enter a positive price")]
public decimal Price { get; set; }
...

If there is no custom error message, then the default messages will be used, but they tend to reveal details of the model class
that will make no sense to the user unless you also use the Display attribute, like this:

...
[Required]
[Display(Name = "Name")]
public string Name { get; set; }
...

The default message generated by the Required attribute reflects the name specified with the Display attribute and so doesn’t
reveal the name of the property to the user.

VALIDATION WORK AROUNDS

Getting the validation results you require can take some care when using the validation attributes. For example, you cannot use
the Required attribute if you want to ensure that a user has checked a checkbox because the browser will send a false value
when the checkbox is unchecked, which will always pass the checks applied by the Required attribute. Instead, use the Range
attribute and specify the minimum and maximum values as true, like this:

...
[Range(typeof(bool), "true", "true", ErrorMessage="You must check the box")]
...

If this sort of workaround feels uncomfortable, then you can create custom validation attributes, as described in the next section.

The use of the validation attributes on the Product class allows me to remove the explicit validation checks for the Name and
Price properties, as shown in Listing 29-15.

Listing 29-15.  Removing Explicit Validation in the FormController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult SubmitForm(Product product) {

 //if (string.IsNullOrEmpty(product.Name)) {
 // ModelState.AddModelError(nameof(Product.Name), "Enter a name");
 //}

 //if (ModelState.GetValidationState(nameof(Product.Price))
 // == ModelValidationState.Valid && product.Price < 1) {
 // ModelState.AddModelError(nameof(Product.Price), "Enter a positive price");
 //}

 if (ModelState.GetValidationState(nameof(Product.Name))
 == ModelValidationState.Valid
 && ModelState.GetValidationState(nameof(Product.Price))
 == ModelValidationState.Valid

Chapter 29 ■ Using Model Validation

760

 && product.Name.ToLower().StartsWith("small") && product.Price > 100) {
 ModelState.AddModelError("", "Small products cannot cost more than $100");
 }

 if (!context.Categories.Any(c => c.CategoryId == product.CategoryId)) {
 ModelState.AddModelError(nameof(Product.CategoryId),
 "Enter an existing category ID");
 }

 if (!context.Suppliers.Any(s => s.SupplierId == product.SupplierId)) {
 ModelState.AddModelError(nameof(Product.SupplierId),
 "Enter an existing supplier ID");
 }

 if (ModelState.IsValid) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
 } else {
 return View("Form");
 }
}
...

The validation attributes are applied before the action method is called, which means that I can still rely on the model state
to determine whether individual properties are valid when performing model-level validation. To see the validation attributes
in action, restart ASP.NET Core MVC, request http://localhost:5000/controllers/form, clear the Name and Price fields, and
submit the form. The response will include the validation errors produced by the attributes, as shown in Figure 29-8.

Figure 29-8.  Using validation attributes

Chapter 29 ■ Using Model Validation

761

UNDERSTANDING WEB SERVICE CONTROLLER VALIDATION

Controllers that have been decorated with the ApiController attribute do not need to check the ModelState.IsValid property.
Instead, the action method is invoked only if there are no validation errors, which means you can always rely on receiving
validated objects through the model binding feature. If any validation errors are detected, then the request is terminated, and an
error response is sent to the browser.

�Creating a Custom Property Validation Attribute
The validation process can be extended by creating an attribute that extends the ValidationAttribute class. To demonstrate, I
created the WebApp/Validation folder and added to it a class file named PrimaryKeyAttribute.cs, which I used to define the class
shown in Listing 29-16.

Listing 29-16.  The Contents of the PrimaryKeyAttribute.cs File in the Validation Folder

using Microsoft.EntityFrameworkCore;
using System;
using System.ComponentModel.DataAnnotations;

namespace WebApp.Validation {
 public class PrimaryKeyAttribute : ValidationAttribute {

 public Type ContextType { get; set; }

 public Type DataType { get; set; }

 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext) {
 DbContext context
 = validationContext.GetService(ContextType) as DbContext;
 if (context.Find(DataType, value) == null) {
 return new ValidationResult(ErrorMessage
 ?? "Enter an existing key value");
 } else {
 return ValidationResult.Success;
 }
 }
 }
}

Custom attributes override the IsValid method, which is called with the value to check, and a ValidationContext object that
provides context about the validation process and provides access to the application’s services through its GetService method.

In Listing 29-16, the custom attribute receives the type of an Entity Framework Core database context class and the type of
a model class. In the IsValid method, the attribute obtains an instance of the context class and uses it to query the database to
determine whether the value has been used as a primary key value.

REVALIDATING DATA

You may need to perform the validation process again if you modify the object received from the model binder. For these
situations, use the ModelState.Clear method to clear any existing validation errors and call the TryValidateModel method.

Custom validation attributes can also be used to perform model-level validation. To demonstrate, I added a class file named
PhraseAndPriceAttribute.cs to the Validation folder and used it to define the class shown in Listing 29-17.

Chapter 29 ■ Using Model Validation

762

Listing 29-17.  The Contents of the PhraseAndPriceAttribute.cs File in the Validation Folder

using System;
using System.ComponentModel.DataAnnotations;
using WebApp.Models;

namespace WebApp.Validation {
 public class PhraseAndPriceAttribute: ValidationAttribute {

 public string Phrase { get; set; }

 public string Price { get; set; }

 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext) {
 Product product = value as Product;
 if (product != null
 && product.Name.StartsWith(Phrase,
 StringComparison.OrdinalIgnoreCase)
 && product.Price > decimal.Parse(Price)) {
 return new ValidationResult(ErrorMessage
 ?? $"{Phrase} products cannot cost more than ${Price}");
 }
 return ValidationResult.Success;
 }
 }
}

This attribute is configured with Phrase and Price properties, which are used in the IsValid method to check the Name and
Price properties of the model object. Property-level custom validation attributes are applied directly to the properties they validate,
and model-level attributes are applied to the entire class, as shown in Listing 29-18.

Listing 29-18.  Applying Custom Validation Attributes in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using WebApp.Validation;

namespace WebApp.Models {

 [PhraseAndPrice(Phrase ="Small", Price = "100")]
 public class Product {

 public long ProductId { get; set; }

 [Required]
 [Display(Name = "Name")]
 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 [Required(ErrorMessage = "Please enter a price")]
 [Range(1, 999999, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [PrimaryKey(ContextType= typeof(DataContext), DataType = typeof(Category))]
 public long CategoryId { get; set; }
 public Category Category { get; set; }

Chapter 29 ■ Using Model Validation

763

 [PrimaryKey(ContextType = typeof(DataContext), DataType = typeof(Category))]
 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The custom attributes allow the remaining explicit validation statements to be removed from the Form controller’s action
method, as shown in Listing 29-19.

Listing 29-19.  Removing Explicit Validation in the FormController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using System.Threading.Tasks;
using WebApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class FormController : Controller {
 private DataContext context;

 public FormController(DataContext dbContext) {
 context = dbContext;
 }

 public async Task<IActionResult> Index(long? id) {
 return View("Form", await context.Products
 .FirstOrDefaultAsync(p => id == null || p.ProductId == id));
 }

 [HttpPost]
 public IActionResult SubmitForm(Product product) {
 if (ModelState.IsValid) {
 TempData["name"] = product.Name;
 TempData["price"] = product.Price.ToString();
 TempData["categoryId"] = product.CategoryId.ToString();
 TempData["supplierId"] = product.SupplierId.ToString();
 return RedirectToAction(nameof(Results));
 } else {
 return View("Form");
 }
 }

 public IActionResult Results() {
 return View(TempData);
 }
 }
}

The validation attributes are applied automatically before the action method is invoked, which means that the validation
outcome can be determined simply by reading the ModelState.IsValid property. The same simplification can be applied to the
Razor Page, as shown in Listing 29-20.

Chapter 29 ■ Using Model Validation

764

Listing 29-20.  Removing Explicit Validation in the FormHandler.cshtml File in the Pages Folder

...
@functions {

 public class FormHandlerModel : PageModel {
 private DataContext context;

 public FormHandlerModel(DataContext dbContext) {
 context = dbContext;
 }

 [BindProperty]
 public Product Product { get; set; }

 public async Task OnGetAsync(long id = 1) {
 Product = await context.Products.FirstAsync(p => p.ProductId == id);
 }

 public IActionResult OnPost() {
 if (ModelState.IsValid) {
 TempData["name"] = Product.Name;
 TempData["price"] = Product.Price.ToString();
 TempData["categoryId"] = Product.CategoryId.ToString();
 TempData["supplierId"] = Product.SupplierId.ToString();
 return RedirectToPage("FormResults");
 } else {
 return Page();
 }
 }
 }
}
...

Expressing the validation through the custom attributes removes the code duplication between the controller and the Razor
Page and ensures that validation is applied consistently wherever model binding is used for Product objects. To test the validation
attributes, restart ASP.NET Core and navigate to http://localhost:5000/controllers/form or http://localhost:5000/pages/
form. Clear the form fields or enter bad key values and submit the form, and you will see the error messages produced by the
attributes, some of which are shown in Figure 29-9. (The values 1, 2, and 3 are valid for both the CategoryId and SupplierId fields.)

Chapter 29 ■ Using Model Validation

765

�Performing Client-Side Validation
The validation techniques I have demonstrated so far have all been examples of server-side validation. This means the user submits
their data to the server, and the server validates the data and sends back the results of the validation (either success in processing the
data or a list of errors that need to be corrected).

In web applications, users typically expect immediate validation feedback—without having to submit anything to the server.
This is known as client-side validation and is implemented using JavaScript. The data that the user has entered is validated before
being sent to the server, providing the user with immediate feedback and an opportunity to correct any problems.

ASP.NET Core supports unobtrusive client-side validation. The term unobtrusive means that validation rules are expressed using
attributes added to the HTML elements that views generate. These attributes are interpreted by a JavaScript library distributed by
Microsoft that, in turn, configures the jQuery Validation library, which does the actual validation work. In the following sections,
I will show you how the built-in validation support works and demonstrate how I can extend the functionality to provide custom
client-side validation.

The first step is to install the JavaScript packages that deal with validation. Open a new PowerShell command prompt, navigate
to the WebApp project folder, and run the command shown in Listing 29-21.

■■ Tip T he core jQuery command was added to the project in Chapter 26. Run the following command if you need to install it again:
libman install jquery@3.4.1 -d wwwroot/lib/jquery.

Listing 29-21.  Installing the Validation Packages

libman install jquery-validate@1.19.1 -d wwwroot/lib/jquery-validate
libman install jquery-validation-unobtrusive@3.2.11 -d wwwroot/lib/jquery-validation-unobtrusive

Once the packages are installed, add the elements shown in Listing 29-22 to the _Validation.cshtml file in the Views/Shared
folder, which provides a convenient way to introduce the validation alongside the existing jQuery code in the application.

■■ Tip T he elements must be defined in the order in which they are shown.

Figure 29-9.  Using custom validation attributes

Chapter 29 ■ Using Model Validation

766

Listing 29-22.  Adding Elements in the _Validation.cshtml File in the Views/Shared Folder

<script src="/lib/jquery/jquery.min.js"></script>
<script src="~/lib/jquery-validate/jquery.validate.min.js"></script>
<script
 src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">
</script>
<script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error").addClass("is-invalid");
 });
</script>

The tag helpers add data-val* attributes to input elements that describe validation constraints for fields. Here are the
attributes added to the input element for the Name field, for example:

...
<input class="form-control valid" type="text" data-val="true" data-val-required="The name field is required."
id="Name" name="Name" value="Kayak" aria-describedby="Name-error" aria-invalid="false">
...

The unobtrusive validation JavaScript code looks for these attributes and performs validation in the browser when the user
attempts to submit the form. The form won’t be submitted, and an error will be displayed if there are validation problems. The data
won’t be sent to the application until there are no outstanding validation issues.

The JavaScript code looks for elements with the data-val attribute and performs local validation in the browser when the user
submits the form, without sending an HTTP request to the server. You can see the effect by running the application and submitting
the form while using the F12 tools to note that validation error messages are displayed even though no HTTP request is sent to the
server.

AVOIDING CONFLICTS WITH BROWSER VALIDATION

Some of the current generation of HTML5 browsers support simple client-side validation based on the attributes applied to
input elements. The general idea is that, say, an input element to which the required attribute has been applied, for example,
will cause the browser to display a validation error when the user tries to submit the form without providing a value.

If you are generating form elements using tag helpers, as I have been doing in this chapter, then you won’t have any problems
with browser validation because the elements that are assigned data attributes are ignored by the browser.

However, you may run into problems if you are unable to completely control the markup in your application, something that
often happens when you are passing on content generated elsewhere. The result is that the jQuery validation and the browser
validation can both operate on the form, which is just confusing to the user. To avoid this problem, you can add the novalidate
attribute to the form element to disable browser validation.

One of the nice client-side validation features is that the same attributes that specify validation rules are applied at the client
and at the server. This means that data from browsers that do not support JavaScript are subject to the same validation as those that
do, without requiring any additional effort.

To test the client-side validation feature, request http://localhost:5000/controllers/form or http://localhost:5000/
pages/form, clear the Name field, and click the Submit button.

The error message looks like the ones generated by server-side validation, but if you enter text into the field, you will see the
error message disappear immediately as the JavaScript code responds to the user interaction, as shown in Figure 29-10.

Chapter 29 ■ Using Model Validation

767

Figure 29-10.  Performing client-side validation

EXTENDING CLIENT-SIDE VALIDATION

The client-side validation feature supports the built-in property-level attributes. The feature can be extended but requires
fluency in JavaScript and requires working directly with the jQuery Validation package. See https://jqueryvalidation.org/
documentation for details.

If you don’t want to start writing JavaScript code, then you can follow the common pattern of using client-side validation for the
built-in validation checks and server-side validation for custom validation.

�Performing Remote Validation
Remote validation blurs the line between client- and server-side validation: the validation checks are enforced by the client-side
JavaScript code, but the validation checking is performed by sending an asynchronous HTTP request to the application to test the
value entered into the form by the user.

A common example of remote validation is to check whether a username is available in applications when such names must
be unique, the user submits the data, and the client-side validation is performed. As part of this process, an asynchronous HTTP
request is made to the server to validate the username that has been requested. If the username has been taken, a validation error is
displayed so that the user can enter another value.

This may seem like regular server-side validation, but there are some benefits to this approach. First, only some properties will
be remotely validated; the client-side validation benefits still apply to all the other data values that the user has entered. Second, the
request is relatively lightweight and is focused on validation, rather than processing an entire model object.

The third difference is that the remote validation is performed in the background. The user doesn’t have to click the submit
button and then wait for a new view to be rendered and returned. It makes for a more responsive user experience, especially when
there is a slow network between the browser and the server.

That said, remote validation is a compromise. It strikes a balance between client-side and server-side validation, but it does
require requests to the application server, and it is not as quick to validate as normal client-side validation.

For the example application, I am going to use remote validation to ensure the user enters existing key values for the
CategoryId and SupplierId properties. The first step is to create a web service controller whose action methods will perform
the validation checks. I added a class file named ValidationController.cs to the Controllers folder with the code shown in
Listing 29-23.

https://jqueryvalidation.org/documentation
https://jqueryvalidation.org/documentation

Chapter 29 ■ Using Model Validation

768

Listing 29-23.  The Contents of the ValidationController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WebApp.Models;

namespace WebApp.Controllers {

 [ApiController]
 [Route("api/[controller]")]
 public class ValidationController: ControllerBase {
 private DataContext dataContext;

 public ValidationController(DataContext context) {
 dataContext = context;
 }

 [HttpGet("categorykey")]
 public bool CategoryKey(string categoryId) {
 long keyVal;
 return long.TryParse(categoryId, out keyVal)
 && dataContext.Categories.Find(keyVal) != null;
 }

 [HttpGet("supplierkey")]
 public bool SupplierKey(string supplierId) {
 long keyVal;
 return long.TryParse(supplierId, out keyVal)
 && dataContext.Suppliers.Find(keyVal) != null;
 }
 }
}

Validation action methods must define a parameter whose name matches the field they will validate, which allows the model
binding process to extract the value to test from the request query string. The response from the action method must be JSON and
can be only true or false, indicating whether a value is acceptable. The action methods in Listing 29-23 receive candidate values and
check they have been used as database keys for Category or Supplier objects.

■■ Tip I could have taken advantage of model binding so that the parameter to the action methods would be converted to a long value,
but doing so would mean that the validation method wouldn’t be called if the user entered a value that cannot be converted to the long
type. If the model binder cannot convert a value, then the MVC Framework is unable to invoke the action method and validation can’t be
performed. As a rule, the best approach to remote validation is to accept a string parameter in the action method and perform any type
conversion, parsing, or model binding explicitly.

To use the remote validation method, I apply the Remote attribute to the CategoryId and SupplierId properties in the Product
class, as shown in Listing 29-24.

Listing 29-24.  Using the Remote Attribute in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using WebApp.Validation;
using Microsoft.AspNetCore.Mvc;

Chapter 29 ■ Using Model Validation

769

namespace WebApp.Models {

 [PhraseAndPrice(Phrase ="Small", Price = "100")]
 public class Product {

 public long ProductId { get; set; }

 [Required]
 [Display(Name = "Name")]
 public string Name { get; set; }

 [Column(TypeName = "decimal(8, 2)")]
 [Required(ErrorMessage = "Please enter a price")]
 [Range(1, 999999, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [PrimaryKey(ContextType= typeof(DataContext),
 DataType = typeof(Category))]
 [Remote("CategoryKey", "Validation", ErrorMessage = "Enter an existing key")]
 public long CategoryId { get; set; }
 public Category Category { get; set; }

 [PrimaryKey(ContextType = typeof(DataContext),
 DataType = typeof(Category))]
 [Remote("SupplierKey", "Validation", ErrorMessage = "Enter an existing key")]
 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The arguments to the Remote attribute specify the name of the validation controller and its action method. I have also used
the optional ErrorMessage argument to specify the error message that will be displayed when validation fails. To see the remote
validation, restart ASP.NET Core and navigate to http://localhost:5000/controllers/form, enter an invalid key value, and
submit the form. You will see an error message, and the value of the input element will be validated after each key press, as shown in
Figure 29-11. (Only the values 1, 2, and 3 are valid for both the CategoryId and SupplierId fields.)

Figure 29-11.  Performing remote validation

Chapter 29 ■ Using Model Validation

770

■■ Caution T he validation action method will be called when the user first submits the form and again each time the data is edited. For
text input elements, every keystroke will lead to a call to the server. For some applications, this can be a significant number of requests
and must be accounted for when specifying the server capacity and bandwidth that an application requires in production. Also, you
might choose not to use remote validation for properties that are expensive to validate (the example repeatedly queries the database for
key values, which may not be sensible for all applications or databases).

�Performing Remote Validation in Razor Pages
Remote validation works in Razor Pages, but attention must be paid to the names used in the asynchronous HTTP request used to
validate values. For the controller example in the previous section, the browser will send requests to URLs like this:

http://localhost:5000/api/Validation/categorykey?CategoryId=1

But for the example Razor Page, the URL will be like this, reflecting the use of the page model:

http://localhost:5000/api/Validation/categorykey?Product.CategoryId=1

The way I prefer to address this difference is by adding parameters to the validation action methods that will accept both types
of request, which is easy to do using the model binding features described in previous chapters, as shown in Listing 29-25.

Listing 29-25.  Adding Parameters in the ValidationController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WebApp.Models;

namespace WebApp.Controllers {

 [ApiController]
 [Route("api/[controller]")]
 public class ValidationController: ControllerBase {
 private DataContext dataContext;

 public ValidationController(DataContext context) {
 dataContext = context;
 }

 [HttpGet("categorykey")]
 public bool CategoryKey(string categoryId, [FromQuery] KeyTarget target) {
 long keyVal;
 return long.TryParse(categoryId ?? target.CategoryId, out keyVal)
 && dataContext.Categories.Find(keyVal) != null;
 }

 [HttpGet("supplierkey")]
 public bool SupplierKey(string supplierId, [FromQuery] KeyTarget target) {
 long keyVal;
 return long.TryParse(supplierId ?? target.SupplierId, out keyVal)
 && dataContext.Suppliers.Find(keyVal) != null;
 }
 }

Chapter 29 ■ Using Model Validation

771

 [Bind(Prefix = "Product")]
 public class KeyTarget {
 public string CategoryId { get; set; }
 public string SupplierId{ get; set; }
 }
}

The KeyTarget class is configured to bind to the Product part of the request, with properties that will match the two types of
remote validation request. Each action method has been given a KeyTarget parameter, which is used if no value is received for
existing parameters. This allows the same action method to accommodate both types of request, which you can see by restarting
ASP.NET Core, navigating to http://localhost:5000/pages/form, entering a nonexistent key value, and clicking the Submit button,
which will produce the response shown in Figure 29-12.

Figure 29-12.  Performing remote validation using a Razor Page

�Summary
In this chapter, I described the ASP.NET Core data validation features. I explained how to explicitly perform validation, how to
use attributes to describe validation constraints, and how to validate individual properties and entire objects. I showed you how
to display validation messages to the user and how to improve the user’s experience of validation with client-side and remote
validation. In the next chapter, I describe the ASP.NET Core filters feature.

773© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_30

CHAPTER 30

Using Filters

Filters inject extra logic into request processing. Filters are like middleware that is applied to a single endpoint, which can be an
action or a page handler method, and they provide an elegant way to manage a specific set of requests. In this chapter, I explain how
filters work, describe the different types of filter that ASP.NET Core supports, and demonstrate the use of custom filters and the filters
provided by ASP.NET Core. Table 30-1 summarizes the chapter.

Table 30-1.  Chapter Summary

Problem Solution Listing

Implementing a security policy Use an authorization filter 15, 16

Implementing a resource policy, such as caching Use a resource filter 17–19

Altering the request or response for an action method Use an action filter 20–23

Altering the request or response for a page handler method Use a page filter 24–26

Inspecting or altering the result produced by an endpoint Use a result filter 27–29

Inspecting or altering uncaught exceptions Use an exception filter 30–31

Altering the filter lifecycle Use a filter factory or define a service 32–35

Applying filters throughout an application Use a global filter 36, 37

Changing the order in which filters are applied Implement the IOrderedFilter interface 38–42

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 29. To prepare for this chapter, open a new PowerShell command prompt,
navigate to the WebApp project folder, and run the command shown in Listing 30-1 to remove the files that are no longer required.

Listing 30-1.  Removing Files from the Project

Remove-Item -Path Controllers,Views,Pages -Recurse -Exclude _*,Shared

This command removes the controllers, views, and Razor Pages, leaving behind the shared layouts, data model, and
configuration files.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 30 ■ Using Filters

774

Create the WebApp/Controllers folder and add a class file named HomeController.cs to the Controllers folder with the code
shown in Listing 30-2.

Listing 30-2.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace WebApp.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }
}

The action method renders a view called Message and passes a string as the view data. I added a Razor view named Message.
cshtml with the content shown in Listing 30-3.

Listing 30-3.  The Contents of the Message.cshtml File in the Views/Shared Folder

@{ Layout = "_SimpleLayout"; }

@if (Model is string) {
 @Model
} else if (Model is IDictionary<string, string>) {
 var dict = Model as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

Add a Razor Page named Message.cshtml to the Pages folder and add the content shown in Listing 30-4.

Listing 30-4.  The Contents of the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>

Chapter 30 ■ Using Filters

775

 </table>
}

@functions {
 public class MessageModel : PageModel {

 public object Message { get; set; } = "This is the Message Razor Page";
 }
}

�Enabling HTTPS Connections
Some of the examples in this chapter require the use of SSL. Add the configuration entries shown in Listing 30-5 to the
launchSettings.json file in the Properties folder to enable SSL and set the port to 44350.

Listing 30-5.  Enabling HTTPS in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000",
 "sslPort": 44350
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "WebApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000;https://localhost:44350"
 }
 }
}

The .NET Core runtime includes a test certificate that is used for HTTPS requests. Run the commands shown in Listing 30-6 in
the WebApp folder to regenerate and trust the test certificate.

Listing 30-6.  Regenerating the Development Certificates

dotnet dev-certs https --clean

dotnet dev-certs https --trust

Chapter 30 ■ Using Filters

776

Figure 30-1.  Regenerating the HTTPS certificate

Click Yes to the prompts to delete the existing certificate that has already been trusted and click Yes to trust the new certificate,
as shown in Figure 30-1.

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 30-7 to drop the database.

Listing 30-7.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 30-8.

Listing 30-8.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000 and https://localhost:44350. Both URLs will be handled by the Index
action defined by the Home controller, producing the responses shown in Figure 30-2.

Chapter 30 ■ Using Filters

777

Figure 30-2.  Responses from the Home controller

Request http://localhost:5000/pages/message and https://localhost:44350/pages/message to see the response from the
Message Razor Page, delivered over HTTP and HTTPS, as shown in Figure 30-3.

Figure 30-3.  Responses from the Message Razor Page

�Using Filters
Filters allow logic that would otherwise be applied in a middleware component or action method to be defined in a class where it
can be easily reused.

Imagine that you want to enforce HTTPS requests for some action methods. In Chapter 16, I showed you how this can be done
in middleware by reading the IsHttps property of the HttpRequest object. The problem with this approach is that the middleware
would have to understand the configuration of the routing system to know how to intercept requests for specific action methods. A
more focused approach would be to read the HttpRequest.IsHttps property within action methods, as shown in Listing 30-9.

Listing 30-9.  Selectively Enforcing HTTPS in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace WebApp.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 if (Request.IsHttps) {
 return View("Message",
 "This is the Index action on the Home controller");
 } else {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 }
 }
 }
}

Chapter 30 ■ Using Filters

778

Restart ASP.NET Core and request http://localhost:5000. This method now requires HTTPS, and you will see an error
response. Request https://localhost:44350, and you will see the message output. Figure 30-4 shows both responses.

■■ Tip  Clear your browser’s history if you don’t get the results you expect from the examples in this section. Browsers will often refuse
to send requests to servers that have previously generated HTTPS errors, which is a good security practice but can be frustrating during
development.

This approach works but has problems. The first problem is that the action method contains code that is more about implementing
a security policy than about handling the request. A more serious problem is that including the HTTP-detecting code within the action
method doesn’t scale well and must be duplicated in every action method in the controller, as shown in Listing 30-10.

Listing 30-10.  Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace WebApp.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 if (Request.IsHttps) {
 return View("Message",
 "This is the Index action on the Home controller");
 } else {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 }
 }

 public IActionResult Secure() {
 if (Request.IsHttps) {
 return View("Message",
 "This is the Secure action on the Home controller");

Figure 30-4.  Enforcing HTTPS in an action method

Chapter 30 ■ Using Filters

779

 } else {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 }
 }
 }
}

I must remember to implement the same check in every action method in every controller for which I want to require
HTTPS. The code to implement the security policy is a substantial part of the—admittedly simple—controller, which makes the
controller harder to understand, and it is only a matter of time before I forget to add it to a new action method, creating a hole in my
security policy.

This is the type of problem that filters address. Listing 30-11 replaces my checks for HTTPS and implements a filter instead.

Listing 30-11.  Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace WebApp.Controllers {

 public class HomeController : Controller {

 [RequireHttps]
 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 [RequireHttps]
 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }
 }
}

The RequireHttps attribute applies one of the built-in filters provided by ASP.NET Core. This filter restricts access to action
methods so that only HTTPS requests are supported and allows me to remove the security code from each method and focus on
handling the successful requests.

■■ Note T he RequireHttps filter doesn’t work the same way as my custom code. For GET requests, the RequireHttps attribute
redirects the client to the originally requested URL, but it does so by using the https scheme so that a request to http://
localhost:5000 will be redirected to https://localhost:5000. This makes sense for most deployed applications but not during
development because HTTP and HTTPS are on different local ports. The RequireHttpsAttribute class defines a protected method
called HandleNonHttpsRequest that you can override to change the behavior. Alternatively, I re-create the original functionality from
scratch in the “Understanding Authorization Filters” section.

I must still remember to apply the RequireHttps attribute to each action method, which means that I might forget. But filters
have a useful trick: applying the attribute to a controller class has the same effect as applying it to each individual action method, as
shown in Listing 30-12.

Chapter 30 ■ Using Filters

780

Listing 30-12.  Applying a Filter to All Actions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace WebApp.Controllers {

 [RequireHttps]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }
 }
}

Filters can be applied with differing levels of granularity. If you want to restrict access to some actions but not others, then you
can apply the RequireHttps attribute to just those methods. If you want to protect all the action methods, including any that you add
to the controller in the future, then the RequireHttps attribute can be applied to the class. If you want to apply a filter to every action
in an application, then you can use global filters, which I describe later in this chapter.

�Using Filters in Razor Pages
Filters can also be used in Razor Pages. To implement the HTTPS-only policy in the Message Razor Pages, for example, I would have
to add a handler method that inspects the connection, as shown in Listing 30-13.

Listing 30-13.  Checking Connections in the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic
@using Microsoft.AspNetCore.Http

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

Chapter 30 ■ Using Filters

781

@functions {

 public class MessageModel : PageModel {

 public object Message { get; set; } = "This is the Message Razor Page";

 public IActionResult OnGet() {
 if (!Request.IsHttps) {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 } else {
 return Page();
 }
 }
 }
}

The handler method works, but it is awkward and presents the same problems encountered with action methods. When using
filters in Razor Pages, the attribute can be applied to the handler method or, as shown in Listing 30-14, to the entire class.

Listing 30-14.  Applying a Filter in the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic
@using Microsoft.AspNetCore.Http

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

@functions {

 [RequireHttps]
 public class MessageModel : PageModel {

 public object Message { get; set; } = "This is the Message Razor Page";
 }
}

You will see a normal response if you request https://localhost:44350/pages/message. If you request the regular HTTP
URL, http://localhost:5000/pages/messages, the filter will redirect the request, and you will see an error (as noted earlier, the
RequireHttps filter redirects the browser to a port that is not enabled in the example application).

Chapter 30 ■ Using Filters

782

�Understanding Filters
ASP.NET Core supports different types of filters, each of which is intended for a different purpose. Table 30-2 describes the filter
categories.

Table 30-2.  The Filter Types

Name Description

Authorization filters This type of filter is used to apply the application’s authorization policy.

Resource filters This type of filter is used to intercept requests, typically to implement features such as caching.

Action filters This type of filter is used to modify the request before it is received by an action method or to modify the
action result after it has been produced. This type of filter can be applied only to controllers and actions.

Page filters This type of filter is used to modify the request before it is received by a Razor Page handler method or to
modify the action result after it has been produced. This type of filter can be applied only to Razor Pages.

Result filters This type of filter is used to alter the action result before it is executed or to modify the result after
execution.

Exception filters This type of filter is used to handle exceptions that occur during the execution of the action method or page
handler.

Filters have their own pipeline and are executed in a specific order, as shown in Figure 30-5.

Filters can short-circuit the filter pipeline to prevent a request from being forwarded to the next filter. For example, an
authorization filter can short-circuit the pipeline and return an error response if the user is unauthenticated. The resource, action,
and page filters are able to inspect the request before and after it has been handled by the endpoint, allowing these types of filter
to short-circuit the pipeline; to alter the request before it is handled; or to alter the response. (I have simplified the flow of filters in
Figure 30-5. Page filters run before and after the model binding process, as described in the “Understanding Page Filters” section.)

Each type of filter is implemented using interfaces defined by ASP.NET Core, which also provides base classes that make it easy
to apply some types of filters as attributes. I describe each interface and the attribute classes in the sections that follow, but they are
shown in Table 30-3 for quick reference.

Figure 30-5.  The filter pipeline

Chapter 30 ■ Using Filters

783

�Creating Custom Filters
Filters implement the IFilterMetadata interface, which is in the Microsoft.AspNetCore.Mvc.Filters namespace. Here is the
interface:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IFilterMetadata { }
}

The interface is empty and doesn’t require a filter to implement any specific behaviors. This is because each of the categories of
filter described in the previous section works in a different way. Filters are provided with context data in the form of a FilterContext
object. For convenience, Table 30-4 describes the properties that FilterContext provides.

Table 30-3.  The Filter Types, Interfaces, and Attribute Base Classes

Filter Type Interfaces Attribute Class

Authorization filters IAuthorizationFilter
IAsyncAuthorizationFilter

No attribute class is provided.

Resource filters IResourceFilter
IAsyncResourceFilter

No attribute class is provided.

Action filters IActionFilter
IAsyncActionFilter

ActionFilterAttribute

Page filters IPageFilter
IAsyncPageFilter

No attribute class is provided.

Result filters IResultFilter
IAsyncResultFilter
IAlwaysRunResultFilter
IAsyncAlwaysRunResultFilter

ResultFilterAttribute

Exception Filters IExceptionFilter
IAsyncExceptionFilter

ExceptionFilterAttribute

Table 30-4.  The FilterContext Properties

Name Description

ActionDescriptor This property returns an ActionDescriptor object, which describes the action method.

HttpContext This property returns an HttpContext object, which provides details of the HTTP request and the HTTP
response that will be sent in return.

ModelState This property returns a ModelStateDictionary object, which is used to validate data sent by the client.

RouteData This property returns a RouteData object that describes the way that the routing system has processed the request.

Filters This property returns a list of filters that have been applied to the action method, expressed as an
IList<IFilterMetadata>.

�Understanding Authorization Filters
Authorization filters are used to implement an application’s security policy. Authorization filters are executed before other types of
filter and before the endpoint handles the request. Here is the definition of the IAuthorizationFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAuthorizationFilter : IFilterMetadata {

 void OnAuthorization(AuthorizationFilterContext context);
 }
}

Chapter 30 ■ Using Filters

784

The OnAuthorization method is called to provide the filter with the opportunity to authorize the request. For asynchronous
authorization filters, here is the definition of the IAsyncAuthorizationFilter interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncAuthorizationFilter : IFilterMetadata {

 Task OnAuthorizationAsync(AuthorizationFilterContext context);
 }
}

The OnAuthorizationAsync method is called so that the filter can authorize the request. Whichever interface is used, the
filter receives context data describing the request through an AuthorizationFilterContext object, which is derived from the
FilterContext class and adds one important property, as described in Table 30-5.

Table 30-5.  The AuthorizationFilterContext Property

Name Description

Result This IActionResult property is set by authorization filters when the request doesn’t comply with the
application’s authorization policy. If this property is set, then ASP.NET Core executes the IActionResult
instead of invoking the endpoint.

�Creating an Authorization Filter
To demonstrate how authorization filters work, I created a Filters folder in the example project, added a class file called
HttpsOnlyAttribute.cs, and used it to define the filter shown in Listing 30-15.

Listing 30-15.  The Contents of the HttpsOnlyAttribute.cs File in the Filters Folder

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;

namespace WebApp.Filters {
 public class HttpsOnlyAttribute : Attribute, IAuthorizationFilter {

 public void OnAuthorization(AuthorizationFilterContext context) {
 if (!context.HttpContext.Request.IsHttps) {
 context.Result =
 new StatusCodeResult(StatusCodes.Status403Forbidden);
 }
 }
 }
}

An authorization filter does nothing if a request complies with the authorization policy and inaction allows ASP.NET Core
to move on to the next filter and, eventually, to execute the endpoint. If there is a problem, the filter sets the Result property of
the AuthorizationFilterContext object that is passed to the OnAuthorization method. This prevents further execution from
happening and provides a result to return to the client. In the listing, the HttpsOnlyAttribute class inspects the IsHttps property
of the HttpRequest context object and sets the Result property to interrupt execution if the request has been made without
HTTPS. Authorization filters can be applied to controllers, action methods, and Razor Pages. Listing 30-16 applies the new filter to
the Home controller.

Chapter 30 ■ Using Filters

785

Listing 30-16.  Applying a Custom Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;

namespace WebApp.Controllers {

 [HttpsOnly]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }
 }
}

This filter re-creates the functionality that I included in the action methods in Listing 30-10. This is less useful in real projects
than doing a redirection like the built-in RequireHttps filter because users won’t understand the meaning of a 403 status code, but
it does provide a useful example of how authorization filters work. Restart ASP.NET Core and request http://localhost:5000, and
you will see the effect of the filter, as shown in Figure 30-6. Request https://localhost:44350, and you will receive the response
from the action method, also shown in the figure.

Figure 30-6.  Applying a custom authorization filter

Chapter 30 ■ Using Filters

786

Table 30-6.  The Property Defined by the ResourceExecutingContext Class

Name Description

Result This IActionResult property is used to provide a result to short-circuit the pipeline.

�Understanding Resource Filters
Resource filters are executed twice for each request: before the ASP.NET Core model binding process and again before the action
result is processed to generate the result. Here is the definition of the IResourceFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IResourceFilter : IFilterMetadata {

 void OnResourceExecuting(ResourceExecutingContext context);

 void OnResourceExecuted(ResourceExecutedContext context);
 }
}

The OnResourceExecuting method is called when a request is being processed, and the OnResourceExecuted method is called
after the endpoint has handled the request but before the action result is executed. For asynchronous resource filters, here is the
definition of the IAsyncResourceFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IAsyncResourceFilter : IFilterMetadata {

 Task OnResourceExecutionAsync(ResourceExecutingContext context,
 ResourceExecutionDelegate next);
 }
}

This interface defines a single method that receives a context object and a delegate to invoke. The resource filter is able to
inspect the request before invoking the delegate and inspect the response before it is executed. The OnResourceExecuting method
is provided with context using the ResourceExecutingContext class, which defines the property shown in Table 30-6 in addition to
those defined by the FilterContext class.

Table 30-7.  The Properties Defined by the ResourceExecutedContext Class

Name Description

Result This IActionResult property provides the action result that will be used to produce a response.

ValueProviderFactories This property returns an IList<IValueProviderFactory>, which provides access to the objects
that provide values for the model binding process.

The OnResourceExecuted method is provided with context using the ResourceExecutedContext class, which defines the
properties shown in Table 30-7, in addition to those defined by the FilterContext class.

�Creating a Resource Filter
Resource filters are usually used where it is possible to short-circuit the pipeline and provide a response early, such as when
implementing data caching. To create a simple caching filter, add a class file called SimpleCacheAttribute.cs to the Filters folder
with the code shown in Listing 30-17.

Chapter 30 ■ Using Filters

787

FILTERS AND DEPENDENCY INJECTION

Filters that are applied as attributes cannot declare dependencies in their constructors unless they implement the
IFilterFactory interface and take responsibility for creating instances directly, as explained in the “Creating Filter Factories”
section later in this chapter.

Listing 30-17.  The Contents of the SimpleCacheAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using System;
using System.Collections.Generic;

namespace WebApp.Filters {

 public class SimpleCacheAttribute : Attribute, IResourceFilter {
 private Dictionary<PathString, IActionResult> CachedResponses
 = new Dictionary<PathString, IActionResult>();

 public void OnResourceExecuting(ResourceExecutingContext context) {
 PathString path = context.HttpContext.Request.Path;
 if (CachedResponses.ContainsKey(path)) {
 context.Result = CachedResponses[path];
 CachedResponses.Remove(path);

 }
 }

 public void OnResourceExecuted(ResourceExecutedContext context) {
 CachedResponses.Add(context.HttpContext.Request.Path, context.Result);
 }
 }
}

This filter isn’t an especially useful cache, but it does show how a resource filter works. The OnResourceExecuting method
provides the filter with the opportunity to short-circuit the pipeline by setting the context object’s Result property to a previously
cached action result. If a value is assigned to the Result property, then the filter pipeline is short-circuited, and the action result is
executed to produce the response for the client. Cached action results are used only once and then discarded from the cache. If no
value is assigned to the Result property, then the request passes to the next step in the pipeline, which may be another filter or the
endpoint.

The OnResourceExecuted method provides the filter with the action results that are produced when the pipeline is not short-
circuited. In this case, the filter caches the action result so that it can be used for subsequent requests. Resource filters can be applied
to controllers, action methods, and Razor Pages. Listing 30-18 applies the custom resource filter to the Message Razor Page and adds
a timestamp that will help determine when an action result is cached.

Listing 30-18.  Applying a Resource Filter in the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic
@using Microsoft.AspNetCore.Http
@using WebApp.Filters

Chapter 30 ■ Using Filters

788

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

@functions {

 [RequireHttps]
 [SimpleCache]
 public class MessageModel : PageModel {

 public object Message { get; set; } =
 $"{DateTime.Now.ToLongTimeString()}: This is the Message Razor Page";
 }
}

To see the effect of the resource filter, restart ASP.NET Core and request https://localhost:44350/pages/message. Since this
is the first request for the path, there will be no cached result, and the request will be forwarded along the pipeline. As the response
is processed, the resource filter will cache the action result for future use. Reload the browser to repeat the request, and you will see
the same timestamp, indicating that the cached action result has been used. The cached item is removed when it is used, which
means that reloading the browser will generate a response with a fresh timestamp, as shown in Figure 30-7.

Figure 30-7.  Using a resource filter

�Creating an Asynchronous Resource Filter
The interface for asynchronous resource filters uses a single method that receives a delegate used to forward the request
along the filter pipeline. Listing 30-19 reimplements the caching filter from the previous example so that it implements the
IAsyncResourceFilter interface.

Listing 30-19.  Creating an Asynchronous Filter in the SimpleCacheAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

Chapter 30 ■ Using Filters

789

namespace WebApp.Filters {

 public class SimpleCacheAttribute : Attribute, IAsyncResourceFilter {
 private Dictionary<PathString, IActionResult> CachedResponses
 = new Dictionary<PathString, IActionResult>();

 public async Task OnResourceExecutionAsync(ResourceExecutingContext context,
 ResourceExecutionDelegate next) {
 PathString path = context.HttpContext.Request.Path;
 if (CachedResponses.ContainsKey(path)) {
 context.Result = CachedResponses[path];
 CachedResponses.Remove(path);
 } else {
 ResourceExecutedContext execContext = await next();
 CachedResponses.Add(context.HttpContext.Request.Path,
 execContext.Result);
 }
 }
 }
}

The OnResourceExecutionAsync method receives a ResourceExecutingContext object, which is used to determine whether
the pipeline can be short-circuited. If it cannot, the delegate is invoked without arguments and asynchronously produces a
ResourceExecutedContext object when the request has been handled and is making its way back along the pipeline. Restart ASP.
NET Core and repeat the requests described in the previous section, and you will see the same caching behavior, as shown in
Figure 30-7.

■■ Caution I t is important not to confuse the two context objects. The action result produced by the endpoint is available only in the
context object that is returned by the delegate.

�Understanding Action Filters
Like resource filters, action filters are executed twice. The difference is that action filters are executed after the model binding
process, whereas resource filters are executed before model binding. This means that resource filters can short-circuit the pipeline
and minimize the work that ASP.NET Core does on the request. Action filters are used when model binding is required, which means
they are used for tasks such as altering the model or enforcing validation. Action filters can be applied only to controllers and action
methods, unlike resource filters, which can also be used with Razor Pages. (The Razor Pages equivalent to action filters is the page
filter, described in the “Understanding Page Filters” section.) Here is the IActionFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IActionFilter : IFilterMetadata {

 void OnActionExecuting(ActionExecutingContext context);

 void OnActionExecuted(ActionExecutedContext context);
 }
}

When an action filter has been applied to an action method, the OnActionExecuting method is called just before the action
method is invoked, and the OnActionExecuted method is called just after. Action filters are provided with context data through
two different context classes: ActionExecutingContext for the OnActionExecuting method and ActionExecutedContext for the
OnActionExecuted method.

Chapter 30 ■ Using Filters

790

The ActionExecutingContext class, which is used to describe an action that is about to be invoked, defines the properties
described in Table 30-8, in addition to the FilterContext properties.

Table 30-8.  The ActionExecutingContext Property

Name Description

Controller This property returns the controller whose action method is about to be invoked. (Details of the action
method are available through the ActionDescriptor property inherited from the base classes.)

ActionArguments This property returns a dictionary of the arguments that will be passed to the action method, indexed by
name. The filter can insert, remove, or change the arguments.

Result If the filter assigns an IActionResult to this property, then the pipeline will be short-circuited, and the
action result will be used to generate the response to the client without invoking the action method.

The ActionExecutedContext class is used to represent an action that has been executed and defines the properties described in
Table 30-9, in addition to the FilterContext properties.

Table 30-9.  The ActionExecutedContext Properties

Name Description

Controller This property returns the Controller object whose action method will be invoked.

Canceled This bool property is set to true if another action filter has short-circuited the pipeline by assigning an
action result to the Result property of the ActionExecutingContext object.

Exception This property contains any Exception that was thrown by the action method.

ExceptionDispatchInfo This method returns an ExceptionDispatchInfo object that contains the stack trace details of any
exception thrown by the action method.

ExceptionHandled Setting this property to true indicates that the filter has handled the exception, which will not be
propagated any further.

Result This property returns the IActionResult produced by the action method. The filter can change or
replace the action result if required.

Asynchronous action filters are implemented using the IAsyncActionFilter interface.

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncActionFilter : IFilterMetadata {

 Task OnActionExecutionAsync(ActionExecutingContext context,
 ActionExecutionDelegate next);
 }
}

This interface follows the same pattern as the IAsyncResourceFilter interface described earlier in the chapter.
The OnActionExecutionAsync method is provided with an ActionExecutingContext object and a delegate. The
ActionExecutingContext object describes the request before it is received by the action method. The filter can short-circuit the
pipeline by assigning a value to the ActionExecutingContext.Result property or pass it along by invoking the delegate. The
delegate asynchronously produces an ActionExecutedContext object that describes the result from the action method.

Chapter 30 ■ Using Filters

791

�Creating an Action Filter
Add a class file called ChangeArgAttribute.cs to the Filters folder and use it to define the action filter shown in Listing 30-20.

Listing 30-20.  The Contents of the ChangeArgAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc.Filters;
using System;
using System.Threading.Tasks;

namespace WebApp.Filters {
 public class ChangeArgAttribute : Attribute, IAsyncActionFilter {

 public async Task OnActionExecutionAsync(ActionExecutingContext context,
 ActionExecutionDelegate next) {

 if (context.ActionArguments.ContainsKey("message1")) {
 context.ActionArguments["message1"] = "New message";
 }
 await next();
 }
 }
}

The filter looks for an action argument named message1 and changes the value that will be used to invoke the action method.
The values that will be used for the action method arguments are determined by the model binding process. Listing 30-21 adds an
action method to the Home controller and applies the new filter.

Listing 30-21.  Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;

namespace WebApp.Controllers {

 [HttpsOnly]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }

 [ChangeArg]
 public IActionResult Messages(string message1, string message2 = "None") {
 return View("Message", $"{message1}, {message2}");
 }
 }
}

Chapter 30 ■ Using Filters

792

Restart ASP.NET Core and request https://localhost:44350/home/messages?message1=hello&message2=world. The model
binding process will locate values for the parameters defined by the action method from the query string. One of those values is then
modified by the action filter, producing the response shown in Figure 30-8.

�Implementing an Action Filter Using the Attribute Base Class
Action attributes can also be implemented by deriving from the ActionFilterAttribute class, which extends Attribute and
inherits both the IActionFilter and IAsyncActionFilter interfaces so that implementation classes override just the methods they
require. In Listing 30-22, I have reimplemented the ChangeArg filter so that it is derived from ActionFilterAttribute.

Listing 30-22.  Using a Filter Base Class in the ChangeArgsAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc.Filters;
using System;
using System.Threading.Tasks;

namespace WebApp.Filters {
 public class ChangeArgAttribute : ActionFilterAttribute {

 public override async Task OnActionExecutionAsync(
 ActionExecutingContext context,
 ActionExecutionDelegate next) {

 if (context.ActionArguments.ContainsKey("message1")) {
 context.ActionArguments["message1"] = "New message";
 }
 await next();
 }
 }
}

This attribute behaves in just the same way as the earlier implementation, and the use of the base class is a matter of preference.
Restart ASP.NET Core and request https://localhost:44350/home/messages?message1=hello&message2=world, and you will see
the response shown in Figure 30-8.

�Using the Controller Filter Methods
The Controller class, which is the base for controllers that render Razor views, implements the IActionFilter and
IAsyncActionFilter interfaces, which means you can define functionality and apply it to the actions defined by a controller and any
derived controllers. Listing 30-23 implements the ChangeArg filter functionality directly in the HomeController class.

Figure 30-8.  Using an action filter

Chapter 30 ■ Using Filters

793

Listing 30-23.  Using Action Filter Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;

namespace WebApp.Controllers {

 [HttpsOnly]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }

 //[ChangeArg]
 public IActionResult Messages(string message1, string message2 = "None") {
 return View("Message", $"{message1}, {message2}");
 }

 public override void OnActionExecuting(ActionExecutingContext context) {
 if (context.ActionArguments.ContainsKey("message1")) {
 context.ActionArguments["message1"] = "New message";
 }
 }
 }
}

The Home controller overrides the Controller implementation of the OnActionExecuting method and uses it to modify the
arguments that will be passed to the execution method.

Restart ASP.NET Core and request https://localhost:44350/home/messages?message1=hello&message2=world, and you will
see the response shown in Figure 30-8.

�Understanding Page Filters
Page filters are the Razor Page equivalent of action filters. Here is the IPageFilter interface, which is implemented by synchronous
page filters:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IPageFilter : IFilterMetadata {

 void OnPageHandlerSelected(PageHandlerSelectedContext context);

 void OnPageHandlerExecuting(PageHandlerExecutingContext context);

 void OnPageHandlerExecuted(PageHandlerExecutedContext context);
 }
}

Chapter 30 ■ Using Filters

794

The OnPageHandlerSelected method is invoked after ASP.NET Core has selected the page handler method but before model
binding has been performed, which means the arguments for the handler method have not been determined. This method receives
context through the PageHandlerSelectedContext class, which defines the properties shown in Table 30-10, in addition to those
defined by the FilterContext class. This method cannot be used to short-circuit the pipeline, but it can alter the handler method
that will receive the request.

Table 30-10.  The PageHandlerSelectedContext Properties

Name Description

ActionDescriptor This property returns the description of the Razor Page.

HandlerMethod This property returns a HandlerMethodDescriptor object that describes the selected handler method.

HandlerInstance This property returns the instance of the Razor Page that will handle the request.

The OnPageHandlerExecuting method is called after the model binding process has completed but before the page handler
method is invoked. This method receives context through the PageHandlerExecutingContext class, which defines the properties
shown in Table 30-11.

Table 30-11.  The PageHandlerExecutingContext Properties

Name Description

HandlerArguments This property returns a dictionary containing the page handler arguments, indexed by name.

Result The filter can short-circuit the pipeline by assigning an IActionResult object to this property.

The OnPageHandlerExecuted method is called after the page handler method has been invoked but before the action result is
processed to create a response. This method receives context through the PageHandlerExecutedContext class, which defines the
properties shown in Table 30-12 in addition to the PageHandlerSelectedContext properties.

Table 30-12.  The PageHandlerExecutedContext Properties

Name Description

Canceled This property returns true if another filter short-circuited the filter pipeline.

Exception This property returns an exception if one was thrown by the page handler method.

ExceptionHandled This property is set to true to indicate that an exception thrown by the page handler has been handled by
the filter.

Result This property returns the action result that will be used to create a response for the client.

Asynchronous page filters are created by implementing the IAsyncPageFilter interface, which is defined like this:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IAsyncPageFilter : IFilterMetadata {

 Task OnPageHandlerSelectionAsync(PageHandlerSelectedContext context);

 Task OnPageHandlerExecutionAsync(PageHandlerExecutingContext context,
 PageHandlerExecutionDelegate next);
 }
}

Chapter 30 ■ Using Filters

795

The OnPageHandlerSelectionAsync is called after the handler method is selected and is equivalent to the synchronous
OnPageHandlerSelected method. The OnPageHandlerExecutionAsync is provided with a PageHandlerExecutingContext
object that allows it to short-circuit the pipeline and a delegate that is invoked to pass on the request. The delegate produces a
PageHandlerExecutedContext object that can be used to inspect or alter the action result produced by the handler method.

�Creating a Page Filter
To create a page filter, add a class file named ChangePageArgs.cs to the Filters folder and use it to define the class shown in
Listing 30-24.

Listing 30-24.  The Contents of the ChangePageArgs.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Filters {
 public class ChangePageArgs : Attribute, IPageFilter {

 public void OnPageHandlerSelected(PageHandlerSelectedContext context) {
 // do nothing
 }

 public void OnPageHandlerExecuting(PageHandlerExecutingContext context) {
 if (context.HandlerArguments.ContainsKey("message1")) {
 context.HandlerArguments["message1"] = "New message";
 }
 }

 public void OnPageHandlerExecuted(PageHandlerExecutedContext context) {
 // do nothing
 }
 }
}

The page filter in Listing 30-24 performs the same task as the action filter I created in the previous section. In Listing 30-25, I
have modified the Message Razor Page to define a handler method and have applied the page filter. Page filters can be applied to
individual handler methods or, as in the listing, to the page model class, in which case the filter is used for all handler methods. (I
also disabled the SimpleCache filter in Listing 30-25. Resource filters can work alongside page filters. I disabled this filter because
caching responses makes some of the examples more difficult to follow.)

Listing 30-25.  Using a Page Filter in the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic
@using Microsoft.AspNetCore.Http
@using WebApp.Filters

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>

Chapter 30 ■ Using Filters

796

 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

@functions {

 [RequireHttps]
 //[SimpleCache]
 [ChangePageArgs]
 public class MessageModel : PageModel {

 public object Message { get; set; } =
 $"{DateTime.Now.ToLongTimeString()}: This is the Message Razor Page";

 public void OnGet(string message1, string message2) {
 Message = $"{message1}, {message2}";
 }
 }
}

Restart ASP.NET Core and request https://localhost:44350/pages/message?message1=hello&message2=world. The
page filter will replace the value of the message1 argument for the OnGet handler method, which produces the response shown in
Figure 30-9.

Figure 30-9.  Using a page filter

�Using the Page Model Filter Methods
The PageModel class, which is used as the base for page model classes, implements the IPageFilter and IAsyncPageFilter
interfaces, which means you can add filter functionality directly to a page model, as shown in Listing 30-26.

Listing 30-26.  Using the PageModel Filter Methods in the Message.cshtml File in the Pages Folder

@page "/pages/message"
@model MessageModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using System.Collections.Generic
@using Microsoft.AspNetCore.Http
@using WebApp.Filters
@using Microsoft.AspNetCore.Mvc.Filters

Chapter 30 ■ Using Filters

797

@if (Model.Message is string) {
 @Model.Message
} else if (Model.Message is IDictionary<string, string>) {
 var dict = Model.Message as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
}

@functions {

 [RequireHttps]
 //[SimpleCache]
 //[ChangePageArgs]
 public class MessageModel : PageModel {

 public object Message { get; set; } =
 $"{DateTime.Now.ToLongTimeString()}: This is the Message Razor Page";

 public void OnGet(string message1, string message2) {
 Message = $"{message1}, {message2}";
 }

 public override void OnPageHandlerExecuting(
 PageHandlerExecutingContext context) {
 if (context.HandlerArguments.ContainsKey("message1")) {
 context.HandlerArguments["message1"] = "New message";
 }
 }
 }
}

Request https://localhost:44350/pages/message?message1=hello&message2=world. The method implemented by the page
model class in Listing 30-26 will produce the same result as shown in Figure 30-9.

�Understanding Result Filters
Result filters are executed before and after an action result is used to generate a response, allowing responses to be modified after
they have been handled by the endpoint. Here is the definition of the IResultFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IResultFilter : IFilterMetadata {

 void OnResultExecuting(ResultExecutingContext context);

 void OnResultExecuted(ResultExecutedContext context);
 }
}

The OnResultExecuting method is called after the endpoint has produced an action result. This method receives context
through the ResultExecutingContext class, which defines the properties described in Table 30-13, in addition to those defined by
the FilterContext class.

Chapter 30 ■ Using Filters

798

The OnResultExecuted method is called after the action result has been executed to generate the response for the client. This
method receives context through the ResultExecutedContext class, which defines the properties shown in Table 30-14, in addition
to those it inherits from the FilterContext class.

Table 30-13.  The ResultExecutingContext Class Properties

Name Description

Result This property returns the action result produced by the endpoint.

ValueProviderFactories This property returns an IList<IValueProviderFactory>, which provides access to the objects that
provide values for the model binding process.

Table 30-14.  The ResultExecutedContext Class

Name Description

Canceled This property returns true if another filter short-circuited the filter pipeline.

Controller This property returns the object that contains the endpoint.

Exception This property returns an exception if one was thrown by the page handler method.

ExceptionHandled This property is set to true to indicate that an exception thrown by the page handler has been handled by
the filter.

Result This property returns the action result that will be used to create a response for the client. This property is
read-only.

Asynchronous result filters implement the IAsyncResultFilter interface, which is defined like this:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncResultFilter : IFilterMetadata {

 Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next);
 }
}

This interface follows the pattern established by the other filter types. The OnResultExecutionAsync method is invoked with
a context object whose Result property can be used to alter the response and a delegate that will forward the response along the
pipeline.

�Understanding Always-Run Result Filters
Filters that implement the IResultFilter and IAsyncResultFilter interfaces are used only when a request is handled
normally by the endpoint. They are not used if another filter short-circuits the pipeline or if there is an exception. Filters that
need to inspect or alter the response, even when the pipeline is short-circuited, can implement the IAlwaysRunResultFilter or
IAsyncAlwaysRunResultFilter interface. These interfaces derived from IResultFilter and IAsyncResultFilter but define no
new features. Instead, ASP.NET Core detects the always-run interfaces and always applies the filters.

�Creating a Result Filter
Add a class file named ResultDiagnosticsAttribute.cs to the Filters folder and use it to define the filter shown in Listing 30-27.

Chapter 30 ■ Using Filters

799

Listing 30-27.  The Contents of the ResultDiagnosticsAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace WebApp.Filters {

 public class ResultDiagnosticsAttribute : Attribute, IAsyncResultFilter {

 public async Task OnResultExecutionAsync(
 ResultExecutingContext context, ResultExecutionDelegate next) {

 if (context.HttpContext.Request.Query.ContainsKey("diag")) {
 Dictionary<string, string> diagData =
 new Dictionary<string, string> {
 {"Result type", context.Result.GetType().Name }
 };
 if (context.Result is ViewResult vr) {
 diagData["View Name"] = vr.ViewName;
 diagData["Model Type"] = vr.ViewData.Model.GetType().Name;
 diagData["Model Data"] = vr.ViewData.Model.ToString();
 } else if (context.Result is PageResult pr) {
 diagData["Model Type"] = pr.Model.GetType().Name;
 diagData["Model Data"] = pr.ViewData.Model.ToString();
 }
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = diagData
 }
 };
 }
 await next();
 }
 }
}

This filter examines the request to see whether it contains a query string parameter named diag. If it does, then the filter creates
a result that displays diagnostic information instead of the output produced by the endpoint. The filter in Listing 30-27 will work with
the actions defined by the Home controller or the Message Razor Page. Listing 30-28 applies the result filter to the Home controller.

■■ Tip N otice that I use a fully qualified name for the view when I create the action result in Listing 30-27. This avoids a problem with
filters applied to Razor Pages, where ASP.NET Core tries to execute the new result as a Razor Page and throws an exception about the
model type.

Chapter 30 ■ Using Filters

800

Listing 30-28.  Applying a Result Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;

namespace WebApp.Controllers {

 [HttpsOnly]
 [ResultDiagnostics]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }

 //[ChangeArg]
 public IActionResult Messages(string message1, string message2 = "None") {
 return View("Message", $"{message1}, {message2}");
 }

 public override void OnActionExecuting(ActionExecutingContext context) {
 if (context.ActionArguments.ContainsKey("message1")) {
 context.ActionArguments["message1"] = "New message";
 }
 }
 }
}

Restart ASP.NET Core and request https://localhost:44350/?diag. The query string parameter will be detected by the filter,
which will generate the diagnostic information shown in Figure 30-10.

Figure 30-10.  Using a result filter

Chapter 30 ■ Using Filters

801

�Implementing a Result Filter Using the Attribute Base Class
The ResultFilterAttribute class is derived from Attribute and implements the IResultFilter and IAsyncResultFilter
interfaces and can be used as the base class for result filters, as shown in Listing 30-29. There is no attribute base class for the
always-run interfaces.

Listing 30-29.  Using the Attribute Base Class in the ResultDiagnosticsAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace WebApp.Filters {

 public class ResultDiagnosticsAttribute : ResultFilterAttribute {

 public override async Task OnResultExecutionAsync(
 ResultExecutingContext context, ResultExecutionDelegate next) {

 if (context.HttpContext.Request.Query.ContainsKey("diag")) {
 Dictionary<string, string> diagData =
 new Dictionary<string, string> {
 {"Result type", context.Result.GetType().Name }
 };
 if (context.Result is ViewResult vr) {
 diagData["View Name"] = vr.ViewName;
 diagData["Model Type"] = vr.ViewData.Model.GetType().Name;
 diagData["Model Data"] = vr.ViewData.Model.ToString();
 } else if (context.Result is PageResult pr) {
 diagData["Model Type"] = pr.Model.GetType().Name;
 diagData["Model Data"] = pr.ViewData.Model.ToString();
 }
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = diagData
 }
 };
 }
 await next();
 }
 }
}

Restart ASP.NET Core and request https://localhost:44350/?diag. The filter will produce the output shown in
Figure 30-10.

Chapter 30 ■ Using Filters

802

�Understanding Exception Filters
Exception filters allow you to respond to exceptions without having to write try...catch blocks in every action method. Exception
filters can be applied to controller classes, action methods, page model classes, or handler methods. They are invoked when an
exception is not handled by the endpoint or by the action, page, and result filters that have been applied to the endpoint. (Action,
page, and result filters can deal with an unhandled exception by setting the ExceptionHandled property of their context objects to
true.) Exception filters implement the IExceptionFilter interface, which is defined as follows:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IExceptionFilter : IFilterMetadata {

 void OnException(ExceptionContext context);
 }
}

The OnException method is called if an unhandled exception is encountered. The IAsyncExceptionFilter interface can be
used to create asynchronous exception filters. Here is the definition of the asynchronous interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncExceptionFilter : IFilterMetadata {

 Task OnExceptionAsync(ExceptionContext context);
 }
}

The OnExceptionAsync method is the asynchronous counterpart to the OnException method from the IExceptionFilter
interface and is called when there is an unhandled exception. For both interfaces, context data is provided through the
ExceptionContext class, which is derived from FilterContext and defines the additional properties shown in Table 30-15.

Table 30-15.  The ExceptionContext Properties

Name Description

Exception This property contains any Exception that was thrown.

ExceptionHandled This bool property is used to indicate if the exception has been handled.

Result This property sets the IActionResult that will be used to generate the response.

�Creating an Exception Filter
Exception filters can be created by implementing one of the filter interfaces or by deriving from the ExceptionFilterAttribute
class, which is derived from Attribute and implements both the IExceptionFilter and IAsyncException filters. The most
common use for an exception filter is to present a custom error page for a specific exception type in order to provide the user with
more useful information than the standard error-handling capabilities can provide.

To create an exception filter, add a class file named RangeExceptionAttribute.cs to the Filters folder with the code shown in
Listing 30-30.

Listing 30-30.  The Contents of the RangeExceptionAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;

Chapter 30 ■ Using Filters

803

namespace WebApp.Filters {
 public class RangeExceptionAttribute : ExceptionFilterAttribute {

 public override void OnException(ExceptionContext context) {
 if (context.Exception is ArgumentOutOfRangeException) {
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = @"The data received by the
 application cannot be processed"
 }
 };
 }
 }
 }
}

This filter uses the ExceptionContext object to get the type of the unhandled exception and, if the type is
ArgumentOutOfRangeException, creates an action result that displays a message to the user. Listing 30-31 adds an action
method to the Home controller to which I have applied the exception filter.

Listing 30-31.  Applying an Exception Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Controllers {

 [HttpsOnly]
 [ResultDiagnostics]
 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }

 public IActionResult Secure() {
 return View("Message",
 "This is the Secure action on the Home controller");
 }

 //[ChangeArg]
 public IActionResult Messages(string message1, string message2 = "None") {
 return View("Message", $"{message1}, {message2}");
 }

 public override void OnActionExecuting(ActionExecutingContext context) {
 if (context.ActionArguments.ContainsKey("message1")) {
 context.ActionArguments["message1"] = "New message";
 }
 }

Chapter 30 ■ Using Filters

804

Figure 30-11.  Using an exception filter

 [RangeException]
 public ViewResult GenerateException(int? id) {
 if (id == null) {
 throw new ArgumentNullException(nameof(id));
 } else if (id > 10) {
 throw new ArgumentOutOfRangeException(nameof(id));
 } else {
 return View("Message", $"The value is {id}");
 }
 }
 }
}

The GenerateException action method relies on the default routing pattern to receive a nullable int value from the
request URL. The action method throws an ArgumentNullException if there is no matching URL segment and throws an
ArgumentOutOfRangeException if its value is greater than 50. If there is a value and it is in range, then the action method returns a
ViewResult.

Restart ASP.NET Core and request https://localhost:44350/Home/GenerateException/100. The final segment will exceed
the range expected by the action method, which will throw the exception type that is handled by the filter, producing the result
shown in Figure 30-11. If you request /Home/GenerateException, then the exception thrown by the action method won’t be handled
by the filter, and the default error handling will be used.

�Managing the Filter Lifecycle
By default, ASP.NET Core manages the filter objects it creates and will reuse them for subsequent requests. This isn’t always the
desired behavior, and in the sections that follow, I describe different ways to take control of how filters are created. To create a filter
that will show the lifecycle, add a class file called GuidResponseAttribute.cs to the Filters folder, and use it to define the filter
shown in Listing 30-32.

Listing 30-32.  The Contents of the GuidResponseAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

Chapter 30 ■ Using Filters

805

namespace WebApp.Filters {

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public class GuidResponseAttribute : Attribute, IAsyncAlwaysRunResultFilter {
 private int counter = 0;
 private string guid = Guid.NewGuid().ToString();

 public async Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next) {

 Dictionary<string, string> resultData;
 if (context.Result is ViewResult vr
 && vr.ViewData.Model is Dictionary<string, string> data) {
 resultData = data;
 } else {
 resultData = new Dictionary<string, string>();
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = resultData
 }
 };
 }
 while (resultData.ContainsKey($"Counter_{counter}")) {
 counter++;
 }
 resultData[$"Counter_{counter}"] = guid;
 await next();
 }
 }
}

This result filter replaces the action result produced by the endpoint with one that will render the Message view and display a
unique GUID value. The filter is configured so that it can be applied more than once to the same target and will add a new message
if a filter earlier in the pipeline has created a suitable result. Listing 30-33 applies the filter twice to the Home controller. (I have also
removed all but one of the action methods for brevity.)

Listing 30-33.  Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Controllers {

 [HttpsOnly]
 [ResultDiagnostics]
 [GuidResponse]
 [GuidResponse]
 public class HomeController : Controller {

Chapter 30 ■ Using Filters

806

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }
}

To confirm that the filter is being reused, restart ASP.NET Core and request https://localhost:44350/?diag. The response
will contain GUID values from the two GuidResponse filter attributes. Two instances of the filter have been created to handle the
request. Reload the browser, and you will see the same GUID values displayed, indicating that the filter objects created to handle the
first request have been reused (Figure 30-12).

Figure 30-12.  Demonstrating filter reuse

�Creating Filter Factories
Filters can implement the IFilterFactory interface to take responsibility for creating instances of filters and specify whether those
instances can be reused. The IFilterFactory interface defines the members described in Table 30-16.

Listing 30-34 implements the IFilterFactory interface and returns false for the IsReusable property, which prevents the
filter from being reused.

Listing 30-34.  Implementing an Interface in the GuidResponseAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.Extensions.DependencyInjection;

Table 30-16.  The IFilterFactory Members

Name Description

IsReusable This bool property indicates whether instances of the filter can be reused.

CreateInstance(servicePr
ovider)

This method is invoked to create new instances of the filter and is provided with an
IServiceProvider object.

Chapter 30 ■ Using Filters

807

namespace WebApp.Filters {

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public class GuidResponseAttribute : Attribute,
 IAsyncAlwaysRunResultFilter, IFilterFactory {
 private int counter = 0;
 private string guid = Guid.NewGuid().ToString();

 public bool IsReusable => false;

 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider) {
 return ActivatorUtilities
 .GetServiceOrCreateInstance<GuidResponseAttribute>(serviceProvider);
 }

 public async Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next) {

 Dictionary<string, string> resultData;
 if (context.Result is ViewResult vr
 && vr.ViewData.Model is Dictionary<string, string> data) {
 resultData = data;
 } else {
 resultData = new Dictionary<string, string>();
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = resultData
 }
 };
 }
 while (resultData.ContainsKey($"Counter_{counter}")) {
 counter++;
 }
 resultData[$"Counter_{counter}"] = guid;
 await next();
 }
 }
}

I create new filter objects using the GetServiceOrCreateInstance method, defined by the ActivatorUtilities class in the
Microsoft.Extensions.DependencyInjection namespace. Although you can use the new keyword to create a filter, this approach
will resolve any dependencies on services that are declared through the filter’s constructor.

To see the effect of implementing the IFilterFactory interface, restart ASP.NET Core and request https://localhost:44350/?diag.
Reload the browser, and each time the request is handled, new filters will be created, and new GUIDs will be displayed, as shown in
Figure 30-13.

Chapter 30 ■ Using Filters

808

Figure 30-13.  Preventing filter reuse

�Using Dependency Injection Scopes to Manage Filter Lifecycles
Filters can be registered as services, which allows their lifecycle to be controlled through dependency injection, which I described in
Chapter 14. Listing 30-35 registers the GuidResponse filter as a scoped service.

Listing 30-35.  Creating a Filter Service in the Startup.cs File in the WebApp Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using WebApp.Models;
using Microsoft.AspNetCore.Antiforgery;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using WebApp.Filters;

namespace WebApp {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });

Chapter 30 ■ Using Filters

809

Figure 30-14.  Using dependency injection to manage filters

 services.Configure<MvcOptions>(opts => opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value"));

 services.AddScoped<GuidResponseAttribute>();
 }

 public void Configure(IApplicationBuilder app, DataContext context,
 IAntiforgery antiforgery) {

 // ...statements omitted for brevity...
 }
 }
}

By default, ASP.NET Core creates a scope for each request, which means that a single instance of the filter will be created for
each request. To see the effect, restart ASP.NET Core and request https://localhost:44350/?diag. Both attributes applied to the
Home controller are processed using the same instance of the filter, which means that both GUIDs in the response are the same.
Reload the browser; a new scope will be created, and a new filter object will be used, as shown in Figure 30-14.

USING FILTERS AS SERVICES WITHOUT THE IFILTERFACTORY INTERFACE

The change in lifecycle took effect immediately in this example because I used the ActivatorUtilities.
GetServiceOrCreateInstance method to create the filter object when I implemented the IFilterFactory interface. This
method will check to see whether there is a service available for the requested type before invoking its constructor. If you
want to use filters as services without implementing IFilterFactory and using ActivatorUtilities, you can apply the
filter using the ServiceFilter attribute, like this:

...
[ServiceFilter(typeof(GuidResponseAttribute))]
...

ASP.NET Core will create the filter object from the service and apply it to the request. Filters that are applied in this way do not
have to be derived from the Attribute class.

Chapter 30 ■ Using Filters

810

�Creating Global Filters
Global filters are applied to every request that ASP.NET Core handles, which means they don’t have to be applied to individual
controllers or Razor Pages. Any filter can be used as a global filter; however, action filters will be applied to requests only where the
endpoint is an action method, and page filters will be applied to requests only where the endpoint is a Razor Page.

Global filters are set up using the options pattern in the Startup class, as shown in Listing 30-36.

Listing 30-36.  Creating a Global Filter in the Startup.cs File in the WebApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });

 services.Configure<MvcOptions>(opts => opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value"));

 services.AddScoped<GuidResponseAttribute>();
 services.Configure<MvcOptions>(opts => opts.Filters.Add<HttpsOnlyAttribute>());
}
...

The MvcOptions.Filters property returns a collection to which filters are added to apply them globally, either using the Add<T>
method or using the AddService<T> method for filters that are also services. There is also an Add method without a generic type
argument that can be used to register a specific object as a global filter.

The statement in Listing 30-36 registers the HttpsOnly filter I created earlier in the chapter, which means that it no longer needs
to be applied directly to individual controllers or Razor Pages, so Listing 30-37 removes the filter from the Home controller.

■■ Note N otice that I have disabled the GuidResponse filter in Listing 30-37. This is an always-run result filter and will replace the
result generated by the global filter.

Listing 30-37.  Removing a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Controllers {

 //[HttpsOnly]
 [ResultDiagnostics]
 //[GuidResponse]
 //[GuidResponse]

Chapter 30 ■ Using Filters

811

 public class HomeController : Controller {

 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }
}

Restart ASP.NET Core and request http://localhost:5000 to confirm that the HTTPS-only policy is being applied even though
the attribute is no longer used to decorate the controller. The global authorization filter will short-circuit the filter pipeline and
produce the response shown in Figure 30-15.

�Understanding and Changing Filter Order
Filters run in a specific sequence: authorization, resource, action, or page, and then result. But if there are multiple filters of a given
type, then the order in which they are applied is driven by the scope through which the filters have been applied.

To demonstrate how this works, add a class file named MessageAttribute.cs to the Filters folder and use it to define the filter
shown in Listing 30-38.

Listing 30-38.  The Contents of the MessageAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

Figure 30-15.  Using a global filter

Chapter 30 ■ Using Filters

812

namespace WebApp.Filters {

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public class MessageAttribute : Attribute, IAsyncAlwaysRunResultFilter {
 private int counter = 0;
 private string msg;

 public MessageAttribute(string message) => msg = message;

 public async Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next) {
 Dictionary<string, string> resultData;
 if (context.Result is ViewResult vr
 && vr.ViewData.Model is Dictionary<string, string> data) {
 resultData = data;
 } else {
 resultData = new Dictionary<string, string>();
 context.Result = new ViewResult() {
 ViewName = "/Views/Shared/Message.cshtml",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = resultData
 }
 };
 }
 while (resultData.ContainsKey($"Message_{counter}")) {
 counter++;
 }
 resultData[$"Message_{counter}"] = msg;
 await next();
 }
 }
}

This result filter uses techniques shown in earlier examples to replace the result from the endpoint and allows multiple filters to
build up a series of messages that will be displayed to the user. Listing 30-39 applies several instances of the Message filter to the Home
controller.

Listing 30-39.  Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;
using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Controllers {

 [Message("This is the controller-scoped filter")]
 public class HomeController : Controller {

 [Message("This is the first action-scoped filter")]
 [Message("This is the second action-scoped filter")]
 public IActionResult Index() {
 return View("Message",

Chapter 30 ■ Using Filters

813

 "This is the Index action on the Home controller");
 }
 }
}

Listing 30-40 registers the Message filter globally.

Listing 30-40.  Creating a Global Filter in the Startup.cs File in the WebApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });

 services.Configure<MvcOptions>(opts => opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value"));

 services.AddScoped<GuidResponseAttribute>();
 services.Configure<MvcOptions>(opts => {
 opts.Filters.Add<HttpsOnlyAttribute>();
 opts.Filters.Add(new MessageAttribute("This is the globally-scoped filter"));
 });
}
...

There are four instances of the same filter. To see the order in which they are applied, restart ASP.NET Core and request
https://localhost:44350, which will produce the response shown in Figure 30-16.

Figure 30-16.  Applying the same filter in different scopes

Chapter 30 ■ Using Filters

814

By default, ASP.NET Core runs global filters, then filters applied to controllers or page model classes, and finally filters applied
to action or handler methods.

�Changing Filter Order
The default order can be changed by implementing the IOrderedFilter interface, which ASP.NET Core looks for when it is working
out how to sequence filters. Here is the definition of the interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IOrderedFilter : IFilterMetadata {
 int Order { get; }
 }
}

The Order property returns an int value, and filters with low values are applied before those with higher Order values.
In Listing 30-41, I have implemented the interface in the Message filter and defined a constructor argument that will allow the value
for the Order property to be specified when the filter is applied.

Listing 30-41.  Adding Ordering Support in the MessageAttribute.cs File in the Filters Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace WebApp.Filters {

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public class MessageAttribute : Attribute, IAsyncAlwaysRunResultFilter,
 IOrderedFilter {
 private int counter = 0;
 private string msg;

 public MessageAttribute(string message) => msg = message;

 public int Order { get; set; }

 public async Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next) {

 // ...statements omitted for brevity...
 }
 }
}

In Listing 30-42, I have used the constructor argument to change the order in which the filters are applied.

Listing 30-42.  Setting Filter Order in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;
using WebApp.Filters;

Chapter 30 ■ Using Filters

815

using Microsoft.AspNetCore.Mvc.Filters;
using System;

namespace WebApp.Controllers {

 [Message("This is the controller-scoped filter", Order = 10)]
 public class HomeController : Controller {

 [Message("This is the first action-scoped filter", Order = 1)]
 [Message("This is the second action-scoped filter", Order = -1)]
 public IActionResult Index() {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }
}

Order values can be negative, which is a helpful way of ensuring that a filter is applied before any global filters with the
default order (although you can also set the order when creating global filters, too). Restart ASP.NET Core and request https://
localhost:44350 to see the new filter order, which is shown in Figure 30-17.

�Summary
In this chapter, I described the ASP.NET Core filter feature and explained how it can be used to alter requests and results for specific
endpoints. I described the different types of filters and demonstrated how to create and apply each of them. I also showed you how
to manage the lifecycle of filters and control the order in which they are executed. In the next chapter, I show you how to combine
the features described in this part of the book to create form applications.

Figure 30-17.  Changing filter order

817© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_31

CHAPTER 31

Creating Form Applications

The previous chapters have focused on individual features that deal with one aspect of HTML forms, and it can sometimes be
difficult to see how they fit together to perform common tasks. In this chapter, I go through the process of creating controllers, views,
and Razor Pages that support an application with create, read, update, and delete (CRUD) functionality. There are no new features
described in this chapter, and the objective is to demonstrate how features such as tag helpers, model binding, and model validation
can be used in conjunction with Entity Framework Core.

�Preparing for This Chapter
This chapter uses the WebApp project from Chapter 30. To prepare for this chapter, replace the contents of the HomeController.cs
file in the Controllers folder with those shown in Listing 31-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 31-1.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class HomeController : Controller {
 private DataContext context;

 private IEnumerable<Category> Categories => context.Categories;
 private IEnumerable<Supplier> Suppliers => context.Suppliers;

 public HomeController(DataContext data) {
 context = data;
 }

 public IActionResult Index() {
 return View(context.Products.
 Include(p => p.Category).Include(p => p.Supplier));
 }
 }
}

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 31 ■ Creating Form Applications

818

Create the Views/HomeIndex.cshtml,

Listing 31-2.  The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{ Layout = "_SimpleLayout"; }

<h4 class="bg-primary text-white text-center p-2">Products</h4>
<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Price</th><th>Category</th><th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr>
 <td>@p.ProductId</td>
 <td>@p.Name</td>
 <td>@p.Price</td>
 <td>@p.Category.Name</td>
 <td class="text-center">
 <a asp-action="Details" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-info">Details
 <a asp-action="Edit" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-warning">Edit
 <a asp-action="Delete" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-danger">Delete
 </td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create

Next, update the Product class as shown in Listing 31-3 to change the validation constraints to remove the model-level checking
and disable remote validation.

Listing 31-3.  Changing Validation in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using WebApp.Validation;
using Microsoft.AspNetCore.Mvc;

namespace WebApp.Models {

 //[PhraseAndPrice(Phrase = "Small", Price = "100")]
 public class Product {

 public long ProductId { get; set; }

 [Required]
 [Display(Name = "Name")]
 public string Name { get; set; }

Chapter 31 ■ Creating Form Applications

819

 [Column(TypeName = "decimal(8, 2)")]
 [Required(ErrorMessage = "Please enter a price")]
 [Range(1, 999999, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [PrimaryKey(ContextType = typeof(DataContext),
 DataType = typeof(Category))]
 //[Remote("CategoryKey", "Validation",
 // ErrorMessage = "Enter an existing key")]
 public long CategoryId { get; set; }
 public Category Category { get; set; }

 [PrimaryKey(ContextType = typeof(DataContext),
 DataType = typeof(Category))]
 //[Remote("SupplierKey", "Validation",
 // ErrorMessage = "Enter an existing key")]
 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

Finally, disable the global filters in the Startup class, as shown in Listing 31-4.

Listing 31-4.  Disabling Filters in the Startup.cs File in the WebApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:ProductConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddSingleton<CitiesData>();

 services.Configure<AntiforgeryOptions>(opts => {
 opts.HeaderName = "X-XSRF-TOKEN";
 });

 services.Configure<MvcOptions>(opts => opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value"));

 services.AddScoped<GuidResponseAttribute>();
 //services.Configure<MvcOptions>(opts => {
 // opts.Filters.Add<HttpsOnlyAttribute>();
 // opts.Filters.Add(new MessageAttribute(
 // "This is the globally-scoped filter"));
 //});
}
...

Chapter 31 ■ Creating Form Applications

820

�Dropping the Database
Open a new PowerShell command prompt, navigate to the folder that contains the WebApp.csproj file, and run the command shown
in Listing 31-5 to drop the database.

Listing 31-5.  Dropping the Database

dotnet ef database drop --force

�Running the Example Application
Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to run
the command shown in Listing 31-6.

Listing 31-6.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers, which will display a list of products, as shown in Figure 31-1.
There are anchor elements styled to appear as buttons, but these will not work until later when I add the features to create, edit, and
delete objects.

Figure 31-1.  Running the example application

Chapter 31 ■ Creating Form Applications

821

�Creating an MVC Forms Application
In the sections that follow, I show you how to perform the core data operations using MVC controllers and views. Later in the
chapter, I create the same functionality using Razor Pages.

�Preparing the View Model and the View
I am going to define a single form that will be used for multiple operations, configured through its view model class. To create the
view model class, add a Class File named ProductViewModel.cs to the Models folder and add the code shown in Listing 31-7.

Listing 31-7.  The Contents of the ProductViewModel.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace WebApp.Models {

 public class ProductViewModel {
 public Product Product { get; set; }
 public string Action { get; set; } = "Create";
 public bool ReadOnly { get; set; } = false;
 public string Theme { get; set; } = "primary";
 public bool ShowAction { get; set; } = true;
 public IEnumerable<Category> Categories { get; set; }
 = Enumerable.Empty<Category>();
 public IEnumerable<Supplier> Suppliers { get; set; }
 = Enumerable.Empty<Supplier>();
 }
}

This class will allow the controller to pass data and display settings to its view. The Product property provides the data to
display, and the Categories and Suppliers properties provide access to the Category and Suppliers objects when they are
required. The other properties configure aspects of how the content is presented to the user: the Action property specifies the name
of the action method for the current task, the ReadOnly property specifies whether the user can edit the data, the Theme property
specifies the Bootstrap theme for the content, and the ShowAction property is used to control the visibility of the button that submits
the form.

To create the view that will allow the user to interact with the application’s data, add a Razor View named ProductEditor.cshtml
to the Views/Home folder with the content shown in Listing 31-8.

Listing 31-8.  The Contents of the ProductEditor.cshtml File in the Views/Home Folder

@model ProductViewModel
@{ Layout = "_SimpleLayout"; }

<partial name="_Validation" />

<h5 class="bg-@Model.Theme text-white text-center p-2">@Model.Action</h5>

<form asp-action="@Model.Action" method="post">
 <div class="form-group">
 <label asp-for="Product.ProductId"></label>
 <input class="form-control" asp-for="Product.ProductId" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Product.Name"></label>

Chapter 31 ■ Creating Form Applications

822

 <div>

 </div>
 <input class="form-control" asp-for="Product.Name"
 readonly="@Model.ReadOnly" />
 </div>
 <div class="form-group">
 <label asp-for="Product.Price"></label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.Price"
 readonly="@Model.ReadOnly" />
 </div>
 <div class="form-group">
 <label asp-for="Product.CategoryId">Category</label>
 <div>

 </div>
 <select asp-for="Product.CategoryId" class="form-control"
 disabled="@Model.ReadOnly"
 asp-items="@(new SelectList(Model.Categories,
 "CategoryId", "Name"))">
 <option value="" disabled selected>Choose a Category</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Product.SupplierId">Supplier</label>
 <div>

 </div>
 <select asp-for="Product.SupplierId" class="form-control"
 disabled="@Model.ReadOnly"
 asp-items="@(new SelectList(Model.Suppliers,
 "SupplierId", "Name"))">
 <option value="" disabled selected>Choose a Supplier</option>
 </select>
 </div>
 @if (Model.ShowAction) {
 <button class="btn btn-@Model.Theme" type="submit">@Model.Action</button>
 }
 Back
</form>

This view can look complicated, but it combines only the features you have seen in earlier chapters and will become clearer
once you see it in action. The model for this view is a ProductViewModel object, which provides both the data that is displayed to the
user and some direction about how that data should be presented.

For each of the properties defined by the Product class, the view contains a set of elements: a label element that describes the
property, an input or select element that allows the value to be edited, and a span element that will display validation messages. Each
of the elements is configured with the asp-for attribute, which ensures tag helpers will transform the elements for each property. There
are div elements to define the view structure, and all the elements are members of Bootstrap CSS classes to style the form.

�Reading Data
The simplest operation is reading data from the database and presenting it to the user. In most applications, this will allow the user
to see additional details that are not present in the list view. Each task performed by the application will require a different set of
ProductViewModel properties. To manage these combinations, add a class file named ViewModelFactory.cs to the Models folder
with the code shown in Listing 31-9.

Chapter 31 ■ Creating Form Applications

823

Listing 31-9.  The Contents of the ViewModelFactory.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace WebApp.Models {

 public static class ViewModelFactory {

 public static ProductViewModel Details(Product p) {
 return new ProductViewModel {
 Product = p, Action = "Details",
 ReadOnly = true, Theme = "info", ShowAction = false,
 Categories = p == null ? Enumerable.Empty<Category>()
 : new List<Category> { p.Category },
 Suppliers = p == null ? Enumerable.Empty<Supplier>()
 : new List<Supplier> { p.Supplier},
 };
 }
 }
}

The Details method produces a ProductViewModel object configured for viewing an object. When the user views the details,
the category and supplier details will be read-only, which means that I need to provide only the current category and supplier
information.

Next, add an action method to the Home controller that uses the ViewModelFactory.Details method to create a
ProductViewModel object and display it to the user with the ProductEditor view, as shown in Listing 31-10.

Listing 31-10.  Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class HomeController : Controller {
 private DataContext context;

 private IEnumerable<Category> Categories => context.Categories;
 private IEnumerable<Supplier> Suppliers => context.Suppliers;

 public HomeController(DataContext data) {
 context = data;
 }

 public IActionResult Index() {
 return View(context.Products.
 Include(p => p.Category).Include(p => p.Supplier));
 }

 public async Task<IActionResult> Details(long id) {
 Product p = await context.Products.
 Include(p => p.Category).Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => p.ProductId == id);

Chapter 31 ■ Creating Form Applications

824

 ProductViewModel model = ViewModelFactory.Details(p);
 return View("ProductEditor", model);
 }
 }
}

The action method uses the id parameter, which will be model bound from the routing data, to query the database and passes
the Product object to the ViewModelFactory.Details method. Most of the operations are going to require the Category and
Supplier data, so I have added properties that provide direct access to the data.

To test the details feature, restart ASP.NET Core and request http://localhost:5000/controllers. Click one of the Details
buttons, and you will see the selected object presented in read-only form using the ProductEditor view, as shown in Figure 31-2.

If the user navigates to a URL that doesn’t correspond to an object in the database, such as http://localhost:5000/
controllers/Home/Details/100, for example, then an empty form will be displayed.

�Creating Data
Creating data relies on model binding to get the form data from the request and relies on validation to ensure the data can be stored in
the database. The first step is to add a factory method that will create the view model object for creating data, as shown in Listing 31-11.

Listing 31-11.  Adding a Method in the ViewModelFactory.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace WebApp.Models {

Figure 31-2.  Viewing data

Chapter 31 ■ Creating Form Applications

825

 public static class ViewModelFactory {

 public static ProductViewModel Details(Product p) {
 return new ProductViewModel {
 Product = p, Action = "Details",
 ReadOnly = true, Theme = "info", ShowAction = false,
 Categories = p == null ? Enumerable.Empty<Category>()
 : new List<Category> { p.Category },
 Suppliers = p == null ? Enumerable.Empty<Supplier>()
 : new List<Supplier> { p.Supplier},
 };
 }

 public static ProductViewModel Create(Product product,
 IEnumerable<Category> categories, IEnumerable<Supplier> suppliers) {
 return new ProductViewModel {
 Product = product, Categories = categories, Suppliers = suppliers
 };
 }
 }
}

The defaults I used for the ProductViewModel properties were set for creating data, so the Create method in Listing 31-11 sets only
the Product, Categories, and Suppliers properties. Listing 31-12 adds the action methods that will create data to the Home controller.

Listing 31-12.  Adding Actions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class HomeController : Controller {
 private DataContext context;

 private IEnumerable<Category> Categories => context.Categories;
 private IEnumerable<Supplier> Suppliers => context.Suppliers;

 public HomeController(DataContext data) {
 context = data;
 }

 public IActionResult Index() {
 return View(context.Products.
 Include(p => p.Category).Include(p => p.Supplier));
 }

 public async Task<IActionResult> Details(long id) {
 Product p = await context.Products.
 Include(p => p.Category).Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => p.ProductId == id);
 ProductViewModel model = ViewModelFactory.Details(p);
 return View("ProductEditor", model);
 }

Chapter 31 ■ Creating Form Applications

826

 public IActionResult Create() {
 return View("ProductEditor",
 ViewModelFactory.Create(new Product(), Categories, Suppliers));
 }

 [HttpPost]
 public async Task<IActionResult> Create([FromForm] Product product) {
 if (ModelState.IsValid) {
 product.ProductId = default;
 product.Category = default;
 product.Supplier = default;
 context.Products.Add(product);
 await context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 return View("ProductEditor",
 ViewModelFactory.Create(product, Categories, Suppliers));
 }
 }
}

There are two Create methods, which are differentiated by the HttpPost attribute and method parameters. HTTP GET requests
will be handled by the first method, which selects the ProductEditor view and provides it with a ProductViewModel object. When
the user submits the form, it will be received by the second method, which relies on model binding to receive the data and model
validation to ensure the data is valid.

If the data passes validation, then I prepare the object for storage in the database by resetting three properties, like this:

...
product.ProductId = default;
product.Category = default;
product.Supplier = default;
...

Entity Framework Core configures the database so that primary keys are allocated by the database server when new data is
stored. If you attempt to store an object and provide a ProductId value other than zero, then an exception will be thrown.

I reset the Category and Supplier properties to prevent Entity Framework Core from trying to deal with related data when
storing an object. Entity Framework Core is capable of processing related data, but it can produce unexpected outcomes. (I show you
how to create related data in the “Creating New Related Data Objects” section, later in this chapter.)

Notice I call the View method with arguments when validation fails, like this:

...
return View("ProductEditor",
 ViewModelFactory.Create(product, Categories, Suppliers));
...

I do this because the view model object expected by the view isn’t the same data type that I have extracted from the request
using model binding. Instead, I create a new view model object that incorporates the model bound data and passes this to the View
method.

Restart ASP.NET Core, request http://localhost:5000/controllers, and click Create. Fill out the form and click the Create
button to submit the data. The new object will be stored in the database and displayed when the browser is redirected to the Index
action, as shown in Figure 31-3.

Chapter 31 ■ Creating Form Applications

827

Notice that select elements allow the user to select the values for the CategoryId and SupplierId properties, using the
category and supplier names, like this:

...
<select asp-for="Product.SupplierId" class="form-control" disabled="@Model.ReadOnly"
 asp-items="@(new SelectList(Model.Suppliers, "SupplierId", "Name"))">
 <option value="" disabled selected>Choose a Supplier</option>
</select>
...

In Chapter 30, I used input elements to allow the value of these properties to be set directly, but that was because I wanted to
demonstrate different types of validation. In real applications, it is a good idea to provide the user with restricted choices when the
application already has the data it expects the user to choose from. Making the user enter a valid primary key, for example, makes
no sense in a real project because the application can easily provide the user with a list of those keys to choose from, as shown in
Figure 31-4.

■■ Tip I show you different techniques for creating related data in the “Creating New Related Data Objects” section.

Figure 31-3.  Creating a new object

Chapter 31 ■ Creating Form Applications

828

�Editing Data
The process for editing data is similar to creating data. The first step is to add a new method to the view model factory that will
configure the way the data is presented to the user, as shown in Listing 31-13.

Listing 31-13.  Adding a Method in the ViewModelFactory.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace WebApp.Models {

 public static class ViewModelFactory {

 public static ProductViewModel Details(Product p) {
 return new ProductViewModel {
 Product = p, Action = "Details",
 ReadOnly = true, Theme = "info", ShowAction = false,
 Categories = p == null ? Enumerable.Empty<Category>()
 : new List<Category> { p.Category },
 Suppliers = p == null ? Enumerable.Empty<Supplier>()
 : new List<Supplier> { p.Supplier},
 };
 }

 public static ProductViewModel Create(Product product,
 IEnumerable<Category> categories, IEnumerable<Supplier> suppliers) {
 return new ProductViewModel {
 Product = product, Categories = categories, Suppliers = suppliers
 };
 }

 public static ProductViewModel Edit(Product product,
 IEnumerable<Category> categories, IEnumerable<Supplier> suppliers) {
 return new ProductViewModel {
 Product = product, Categories = categories, Suppliers = suppliers,
 Theme = "warning", Action = "Edit"
 };
 }
 }
}

Figure 31-4.  Presenting the user with a choice

Chapter 31 ■ Creating Form Applications

829

The next step is to add the action methods to the Home controller that will display the current properties of a Product object to
the user and receive the changes the user makes, as shown in Listing 31-14.

Listing 31-14.  Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class HomeController : Controller {
 private DataContext context;

 private IEnumerable<Category> Categories => context.Categories;
 private IEnumerable<Supplier> Suppliers => context.Suppliers;

 public HomeController(DataContext data) {
 context = data;
 }

 // ...other action methods omitted for brevity...

 public async Task<IActionResult> Edit(long id) {
 Product p = await context.Products.FindAsync(id);
 ProductViewModel model = ViewModelFactory.Edit(p, Categories, Suppliers);
 return View("ProductEditor", model);
 }

 [HttpPost]
 public async Task<IActionResult> Edit([FromForm]Product product) {
 if (ModelState.IsValid) {
 product.Category = default;
 product.Supplier = default;
 context.Products.Update(product);
 await context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 return View("ProductEditor",
 ViewModelFactory.Edit(product, Categories, Suppliers));
 }
 }
}

To see the editing feature at work, restart ASP.NET Core, navigate to http://localhost:5000/controllers, and click one of the
Edit buttons. Change one or more property values and submit the form. The changes will be stored in the database and reflected in
the list displayed when the browser is redirected to the Index action, as shown in Figure 31-5.

Chapter 31 ■ Creating Form Applications

830

Notice that the ProductId property cannot be changed. Attempting to change the primary key of an object should be avoided
because it interferes with the Entity Framework Core understanding of the identity of its objects. If you can’t avoid changing the
primary key, then the safest approach is to delete the existing object and store a new one.

�Deleting Data
The final basic operation is removing objects from the database. By now the pattern will be clear, and the first step is to add a method
to create a view model object to determine how the data is presented to the user, as shown in Listing 31-15.

Listing 31-15.  Adding a Method in the ViewModelFactory.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace WebApp.Models {

 public static class ViewModelFactory {

 // ...other methods omitted for brevity...

 public static ProductViewModel Delete(Product p,
 IEnumerable<Category> categories, IEnumerable<Supplier> suppliers) {
 return new ProductViewModel {
 Product = p, Action = "Delete",
 ReadOnly = true, Theme = "danger",

Figure 31-5.  Editing a product

Chapter 31 ■ Creating Form Applications

831

 Categories = categories, Suppliers = suppliers
 };
 }
 }
}

Listing 31-16 adds the action methods to the Home controller that will respond to the GET request by displaying the selected
object and the POST request to remove that object from the database.

Listing 31-16.  Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using WebApp.Models;

namespace WebApp.Controllers {

 [AutoValidateAntiforgeryToken]
 public class HomeController : Controller {
 private DataContext context;

 private IEnumerable<Category> Categories => context.Categories;
 private IEnumerable<Supplier> Suppliers => context.Suppliers;

 public HomeController(DataContext data) {
 context = data;
 }

 // ...other action methods removed for brevity...

 public async Task<IActionResult> Delete(long id) {
 ProductViewModel model = ViewModelFactory.Delete(
 await context.Products.FindAsync(id), Categories, Suppliers);
 return View("ProductEditor", model);
 }

 [HttpPost]
 public async Task<IActionResult> Delete(Product product) {
 context.Products.Remove(product);
 await context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 }
}

The model binding process creates a Product object from the form data, which is passed to Entity Framework Core to remove
from the database. Once the data has been removed from the database, the browser is redirected to the Index action, as shown in
Figure 31-6.

Chapter 31 ■ Creating Form Applications

832

�Creating a Razor Pages Forms Application
Working with Razor Forms relies on similar techniques as the controller examples, albeit broken up into smaller chunks of
functionality. As you will see, the main difficulty is preserving the modular nature of Razor Pages without duplicating code and
markup. The first step is to create the Razor Page that will display the list of Product objects and provide the links to the other
operations. Add a Razor Page named Index.cshtml to the Pages folder with the content shown in Listing 31-17.

Listing 31-17.  The Contents of the Index.cshtml File in the Pages Folder

@page "/pages/{id:long?}"
@model IndexModel
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

<div class="m-2">
 <h4 class="bg-primary text-white text-center p-2">Products</h4>
 <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Price</th><th>Category</th><th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model.Products) {

Figure 31-6.  Deleting data

Chapter 31 ■ Creating Form Applications

833

 <tr>
 <td>@p.ProductId</td>
 <td>@p.Name</td>
 <td>@p.Price</td>
 <td>@p.Category.Name</td>
 <td class="text-center">
 <a asp-page="Details" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-info">Details
 <a asp-page="Edit" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-warning">Edit
 <a asp-page="Delete" asp-route-id="@p.ProductId"
 class="btn btn-sm btn-danger">Delete
 </td>
 </tr>
 }
 </tbody>
 </table>
 <a asp-page="Create" class="btn btn-primary">Create
</div>

@functions {

 public class IndexModel: PageModel {
 private DataContext context;

 public IndexModel(DataContext dbContext) {
 context = dbContext;
 }

 public IEnumerable<Product> Products { get; set; }

 public void OnGetAsync(long id = 1) {
 Products = context.Products
 .Include(p => p.Category).Include(p => p.Supplier);
 }
 }
}

This view part of the page displays a table populated with the details of the Product objects obtained from the database by
the page model. Use a browser to request http://localhost:5000/pages, and you will see the response shown in Figure 31-7.
Alongside the details of the Product objects, the page displays anchor elements that navigate to other Razor Pages, which I define in
the sections that follow.

Chapter 31 ■ Creating Form Applications

834

�Creating Common Functionality
I don’t want to duplicate the same HTML form and supporting code in each of the pages required by the example application.
Instead, I am going to define a partial view that defines the HTML form and a base class that defines the common code required
by the page model classes. For the partial view, a Razor View named _ProductEditor.cshtml to the Pages folder with the content
shown in Listing 31-18.

USING MULTIPLE PAGE

The asp-page-handler attribute can be used to specify the name of a handler method, which allows a Razor Page to be used
for more than one operation. I don’t like this feature because the result is too close to a standard MVC controller and undermines
the self-contained and modular aspects of Razor Page development that I like.

The approach I prefer is, of course, the one that I have taken in this chapter, which is to consolidate common content in partial
views and a shared base class. Either approach works, and I recommend you try both to see which suits you and your project.

Figure 31-7.  Listing data using a Razor Page

Chapter 31 ■ Creating Form Applications

835

Listing 31-18.  The Contents of the _ProductEditor.cshtml File in the Pages Folder

@model ProductViewModel

<partial name="_Validation" />

<h5 class="bg-@Model.Theme text-white text-center p-2">@Model.Action</h5>

<form asp-page="@Model.Action" method="post">
 <div class="form-group">
 <label asp-for="Product.ProductId"></label>
 <input class="form-control" asp-for="Product.ProductId" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Product.Name"></label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.Name"
 readonly="@Model.ReadOnly" />
 </div>
 <div class="form-group">
 <label asp-for="Product.Price"></label>
 <div>

 </div>
 <input class="form-control" asp-for="Product.Price"
 readonly="@Model.ReadOnly" />
 </div>
 <div class="form-group">
 <label asp-for="Product.CategoryId">Category</label>
 <div>

 </div>
 <select asp-for="Product.CategoryId" class="form-control"
 disabled="@Model.ReadOnly"

 asp-items="@(new SelectList(Model.Categories,
 "CategoryId", "Name"))">
 <option value="" disabled selected>Choose a Category</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Product.SupplierId">Supplier</label>
 <div>

 </div>
 <select asp-for="Product.SupplierId" class="form-control"
 disabled="@Model.ReadOnly"
 asp-items="@(new SelectList(Model.Suppliers,
 "SupplierId", "Name"))">
 <option value="" disabled selected>Choose a Supplier</option>
 </select>
 </div>
 @if (Model.ShowAction) {
 <button class="btn btn-@Model.Theme" type="submit">@Model.Action</button>
 }
 Back
</form>

Chapter 31 ■ Creating Form Applications

836

The partial view uses the ProductViewModel class as its model type and relies on the built-in tag helpers to present input and
select elements for the properties defined by the Product class. This is the same content used earlier in the chapter, except with the
asp-action attribute replaced with asp-page to specify the target for the form and anchor elements.

To define the page model base class, add a class file named EditorPageModel.cs to the Pages folder and use it to define the
class shown in Listing 31-19.

Listing 31-19.  The Contents of the EditorPageModel.cs File in the Pages Folder

using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;
using WebApp.Models;

namespace WebApp.Pages {

 public class EditorPageModel : PageModel {

 public EditorPageModel(DataContext dbContext) {
 DataContext = dbContext;
 }

 public DataContext DataContext { get; set; }

 public IEnumerable<Category> Categories => DataContext.Categories;
 public IEnumerable<Supplier> Suppliers => DataContext.Suppliers;

 public ProductViewModel ViewModel { get; set; }
 }
}

The properties defined by this class are simple, but they will help simplify the page model classes of the Razor Pages that handle
each operation.

All the Razor Pages required for this example depend on the same namespaces. Add the expressions shown in Listing 31-20 to
the _ViewImports.cshtml file in the Pages folder to avoid duplicate expressions in the individual pages.

■■ Tip M ake sure you alter the _ViewImports.cshtml file in the Pages folder and not the file with the same name in the Views folder.

Listing 31-20.  Adding Namespaces in the _ViewImports.cshtml File in the Pages Folder

@namespace WebApp.Pages
@using WebApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, WebApp
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore
@using WebApp.Pages
@using System.Text.Json
@using Microsoft.AspNetCore.Http

�Defining Pages for the CRUD Operations
With the partial view and shared base class in place, the pages that handle individual operations are simple. Add a Razor Page
named Details.cshtml to the Pages folder with the code and content shown in Listing 31-21.

Chapter 31 ■ Creating Form Applications

837

Listing 31-21.  The Contents of the Details.cshtml File in the Pages Folder

@page "/pages/details/{id}"
@model DetailsModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class DetailsModel: EditorPageModel {

 public DetailsModel(DataContext dbContext): base(dbContext) {}

 public async Task OnGetAsync(long id) {
 Product p = await DataContext.Products.
 Include(p => p.Category).Include(p => p.Supplier)
 .FirstOrDefaultAsync(p => p.ProductId == id);
 ViewModel = ViewModelFactory.Details(p);
 }
 }
}

The constructor receives an Entity Framework Core context object, which it passes to the base class. The handler
method responds to requests by querying the database and using the response to create a ProductViewModel object using the
ViewModelFactory class.

Add a Razor Page named Create.cshtml to the Pages folder with the code and content shown in Listing 31-22.

■■ Tip  Using a partial view means that the asp-for attributes set element names without an additional prefix. This allows me to use
the FromForm attribute for model binding without using the Name argument.

Listing 31-22.  The Contents of the Create.cshtml File in the Pages Folder

@page "/pages/create"
@model CreateModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class CreateModel: EditorPageModel {

 public CreateModel(DataContext dbContext): base(dbContext) {}

 public void OnGet() {
 ViewModel = ViewModelFactory.Create(new Product(),
 Categories, Suppliers);
 }

Chapter 31 ■ Creating Form Applications

838

 public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 if (ModelState.IsValid) {
 product.ProductId = default;
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Add(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Create(product, Categories, Suppliers);
 return Page();
 }
 }
}

Add a Razor Page named Edit.cshtml to the Pages folder with the code and content shown in Listing 31-23.

Listing 31-23.  The Contents of the Edit.cshtml File in the Pages Folder

@page "/pages/edit/{id}"
@model EditModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class EditModel: EditorPageModel {

 public EditModel(DataContext dbContext): base(dbContext) {}

 public async Task OnGetAsync(long id) {
 Product p = await this.DataContext.Products.FindAsync(id);
 ViewModel = ViewModelFactory.Edit(p, Categories, Suppliers);
 }

 public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 if (ModelState.IsValid) {
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Update(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Edit(product, Categories, Suppliers);
 return Page();
 }
 }
}

Add a Razor Page named Delete.cshtml to the Pages folder with the code and content shown in Listing 31-24.

Chapter 31 ■ Creating Form Applications

839

Listing 31-24.  The Contents of the Delete.cshtml File in the Pages Folder

@page "/pages/delete/{id}"
@model DeleteModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class DeleteModel: EditorPageModel {

 public DeleteModel(DataContext dbContext): base(dbContext) {}

 public async Task OnGetAsync(long id) {
 ViewModel = ViewModelFactory.Delete(
 await DataContext.Products.FindAsync(id), Categories, Suppliers);
 }

 public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 DataContext.Products.Remove(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 }
}

Restart ASP.NET Core and navigate to http://localhost:5000/pages, and you will be able to click the links to view, create,
edit, and remove data, as shown in Figure 31-8.

Figure 31-8.  Using Razor Pages

Chapter 31 ■ Creating Form Applications

840

�Creating New Related Data Objects
Some applications will need to allow the user to create new related data so that, for example, a new Category can be created along
with a Product in that Category. There are two ways to approach this problem, as described in the sections that follow.

�Providing the Related Data in the Same Request
The first approach is to ask the user to provide the data required to create the related data in the same form. For the example
application, this means collecting details for a Category object in the same form that the user enters the values for the Product object.

This can be a useful approach for simple data types, where only a small amount of data is required to create the related object
but is not well suited for types with many properties.

I prefer to define the HTML elements for the related data type in their own partial view. Add a Razor View named
_CategoryEditor.cshtml to the Pages folder with the content shown in Listing 31-25.

Listing 31-25.  The Contents of the _CategoryEditor.cshtml File in the Pages Folder

@model Product
<script type="text/javascript">
 $(document).ready(() => {
 const catGroup = $("#categoryGroup").hide();
 $("select[name='Product.CategoryId']").on("change", (event) =>
 event.target.value === "-1" ? catGroup.show() : catGroup.hide());
 });
</script>

<div class="form-group bg-info p-1" id="categoryGroup">
 <label class="text-white" asp-for="Category.Name">
 New Category Name
 </label>
 <input class="form-control" asp-for="Category.Name" value="" />
</div>

The Category type requires only one property, which the user will provide using a standard input element. The script element
in the partial view contains jQuery code that hides the new elements until the user selects an option element that sets a value of
-1 for the Product.CategoryId property. (Using JavaScript is entirely optional, but it helps to emphasize the purpose of the new
elements.)

Listing 31-26 adds the partial view to the editor, along with the option element that will display the elements for creating a new
Category object.

Listing 31-26.  Adding Elements in the _ProductEditor.cshtml File in the Pages Folder

...
<div class="form-group">
 <label asp-for="Product.CategoryId">Category</label>
 <div>

 </div>
 <select asp-for="Product.CategoryId" class="form-control"
 disabled="@Model.ReadOnly" asp-items="@(new SelectList(Model.Categories,
 "CategoryId", "Name"))">
 <option value="-1">Create New Category...</option>
 <option value="" disabled selected>Choose a Category</option>
 </select>
</div>

Chapter 31 ■ Creating Form Applications

841

<partial name="_CategoryEditor" for="Product" />
<div class="form-group">
 <label asp-for="Product.SupplierId">Supplier</label>
 <div></div>
 <select asp-for="Product.SupplierId" class="form-control" disabled="@Model.ReadOnly"
 asp-items="@(new SelectList(Model.Suppliers,
 "SupplierId", "Name"))">
 <option value="" disabled selected>Choose a Supplier</option>
 </select>
</div>
...

I need the new functionality in multiple pages, so to avoid code duplication, I have added a method that handles the related
data to the page model base class, as shown in Listing 31-27.

Listing 31-27.  Adding a Method in the EditorPageModel.cs File in the Pages Folder

using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;
using WebApp.Models;
using System.Threading.Tasks;

namespace WebApp.Pages {

 public class EditorPageModel : PageModel {

 public EditorPageModel(DataContext dbContext) {
 DataContext = dbContext;
 }

 public DataContext DataContext { get; set; }

 public IEnumerable<Category> Categories => DataContext.Categories;
 public IEnumerable<Supplier> Suppliers => DataContext.Suppliers;

 public ProductViewModel ViewModel { get; set; }

 protected async Task CheckNewCategory(Product product) {
 if (product.CategoryId == -1
 && !string.IsNullOrEmpty(product.Category?.Name)) {
 DataContext.Categories.Add(product.Category);
 await DataContext.SaveChangesAsync();
 product.CategoryId = product.Category.CategoryId;
 ModelState.Clear();
 TryValidateModel(product);
 }
 }
 }
}

The new code creates a Category object using the data received from the user and stores it in the database. The database
server assigns a primary key to the new object, which Entity Framework Core uses to update the Category object. This allows me to
update the CategoryId property of the Product object and then re-validate the model data, knowing that the value assigned to the
CategoryId property will pass validation because it corresponds to the newly allocated key. To integrate the new functionality into
the Create page, add the statement shown in Listing 31-28.

Chapter 31 ■ Creating Form Applications

842

Listing 31-28.  Adding a Statement in the Create.cshtml File in the Pages Folder

...
public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 await CheckNewCategory(product);
 if (ModelState.IsValid) {
 product.ProductId = default;
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Add(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Create(product, Categories, Suppliers);
 return Page();
}
...

Add the same statement to the handler method in the Edit page, as shown in Listing 31-29.

Listing 31-29.  Adding a Statement in the Edit.cshtml File in the Pages Folder

...
public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 await CheckNewCategory(product);
 if (ModelState.IsValid) {
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Update(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Edit(product, Categories, Suppliers);
 return Page();
}
...

Restart ASP.NET Core so the page model base class is recompiled and use a browser to request http://localhost:5000/pages/
edit/1. Click the Category select element and choose Create New Category from the list of options. Enter a new category name into
the input element and click the Edit button. When the request is processed, a new Category object will be stored in the database and
associated with the Product object, as shown in Figure 31-9.

Chapter 31 ■ Creating Form Applications

843

�Breaking Out to Create New Data
For related data types that have their own complex creation process, adding elements to the main form can be overwhelming to the
user; a better approach is to navigate away from the main form to another controller or page, let the user create the new object, and
then return to complete the original task. I will demonstrate this technique for the creation of Supplier objects, even though the
Supplier type is simple and requires only two values from the user.

To create a form that will let the user create Supplier objects, add a Razor Page named SupplierBreakOut.cshtml to the Pages
folder with the content shown in Listing 31-30.

Listing 31-30.  The Contents of the SupplierBreakOut.cshtml File in the Pages Folder

@page "/pages/supplier"
@model SupplierPageModel

<div class="m-2">
 <h5 class="bg-secondary text-white text-center p-2">New Supplier</h5>
 <form asp-page="SupplierBreakOut" method="post">
 <div class="form-group">
 <label asp-for="Supplier.Name"></label>
 <input class="form-control" asp-for="Supplier.Name" />
 </div>
 <div class="form-group">
 <label asp-for="Supplier.City"></label>
 <input class="form-control" asp-for="Supplier.City" />
 </div>
 <button class="btn btn-secondary" type="submit">Create</button>
 <a class="btn btn-outline-secondary"
 asp-page="@Model.ReturnPage" asp-route-id="@Model.ProductId">
 Cancel

 </form>
</div>

Figure 31-9.  Creating related data

Chapter 31 ■ Creating Form Applications

844

@functions {

 public class SupplierPageModel: PageModel {
 private DataContext context;

 public SupplierPageModel(DataContext dbContext) {
 context = dbContext;
 }

 [BindProperty]
 public Supplier Supplier { get; set; }

 public string ReturnPage { get; set; }
 public string ProductId { get; set; }

 public void OnGet([FromQuery(Name="Product")] Product product,
 string returnPage) {
 TempData["product"] = Serialize(product);
 TempData["returnAction"] = ReturnPage = returnPage;
 TempData["productId"] = ProductId = product.ProductId.ToString();
 }

 public async Task<IActionResult> OnPostAsync() {
 context.Suppliers.Add(Supplier);
 await context.SaveChangesAsync();
 Product product = Deserialize(TempData["product"] as string);
 product.SupplierId = Supplier.SupplierId;
 TempData["product"] = Serialize(product);
 string id = TempData["productId"] as string;
 return RedirectToPage(TempData["returnAction"] as string,
 new { id = id });
 }

 private string Serialize(Product p) => JsonSerializer.Serialize(p);
 private Product Deserialize(string json) =>
 JsonSerializer.Deserialize<Product>(json);
 }
}

The user will navigate to this page using a GET request that will contain the details of the Product the user has provided and the
name of the page that the user should be returned to. This data is stored using the temp data feature.

This page presents the user with a form containing fields for the Name and City properties required to create a new Supplier
object. When the form is submitted, the POST handler method stores a new Supplier object and uses the key assigned by the
database server to update the Product object, which is then stored as temp data again. The user is redirected back to the page from
which they arrived.

Listing 31-31 adds elements to the _ProductEditor partial view that will allow the user to navigate to the new page.

Listing 31-31.  Adding Elements in the _ProductEditor.cshtml File in the Pages Folder

...
<partial name="_CategoryEditor" for="Product" />

<div class="form-group">
 <label asp-for="Product.SupplierId">
 Supplier
 @if (!Model.ReadOnly) {
 <input type="hidden" name="returnPage" value="@Model.Action" />
 <button class="btn btn-sm btn-outline-primary ml-3"

Chapter 31 ■ Creating Form Applications

845

 asp-page="SupplierBreakOut" formmethod="get" formnovalidate>
 Create New Supplier
 </button>
 }
 </label>
 <div>

 </div>
 <select asp-for="Product.SupplierId" class="form-control"
 disabled="@Model.ReadOnly" asp-items="@(new SelectList(Model.Suppliers,
 "SupplierId", "Name"))">
 <option value="" disabled selected>Choose a Supplier</option>
 </select>
</div>
...

The new elements add a hidden input element that captures the page to return to and a button element that submits the form
data to the SupplierBreakOut page using a GET request, which means the form values will be encoded in the query string (and
is the reason I used the FromQuery attribute in Listing 31-30). Listing 31-32 shows the change required to the Create page to add
support for retrieving the temp data and using it to populate the Product form.

Listing 31-32.  Retrieving Data in the Create.cshtml File in the Pages Folder

@page "/pages/create"
@model CreateModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class CreateModel: EditorPageModel {

 public CreateModel(DataContext dbContext): base(dbContext) {}

 public void OnGet() {
 Product p = TempData.ContainsKey("product")
 ? JsonSerializer.Deserialize<Product>(TempData["product"] as string)
 : new Product();
 ViewModel = ViewModelFactory.Create(p, Categories, Suppliers);
 }

 public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 await CheckNewCategory(product);
 if (ModelState.IsValid) {
 product.ProductId = default;
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Add(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Create(product, Categories, Suppliers);
 return Page();
 }
 }
}

Chapter 31 ■ Creating Form Applications

846

A similar change is required in the Edit page, as shown in Listing 31-33. (The other pages do not require a change since the
breakout is required only when the user is able to create or edit Product data.)

Listing 31-33.  Retrieving Data in the Edit.cshtml File in the Pages Folder

@page "/pages/edit/{id}"
@model EditModel

<div class="m-2">
 <partial name="_ProductEditor" model="@Model.ViewModel" />
</div>

@functions {

 public class EditModel: EditorPageModel {

 public EditModel(DataContext dbContext): base(dbContext) {}

 public async Task OnGetAsync(long id) {
 Product p = TempData.ContainsKey("product")
 ? JsonSerializer.Deserialize<Product>(TempData["product"] as string)
 : await this.DataContext.Products.FindAsync(id);
 ViewModel = ViewModelFactory.Edit(p, Categories, Suppliers);
 }

 public async Task<IActionResult> OnPostAsync([FromForm]Product product) {
 await CheckNewCategory(product);
 if (ModelState.IsValid) {
 product.Category = default;
 product.Supplier = default;
 DataContext.Products.Update(product);
 await DataContext.SaveChangesAsync();
 return RedirectToPage(nameof(Index));
 }
 ViewModel = ViewModelFactory.Edit(product, Categories, Suppliers);
 return Page();
 }
 }
}

The effect is that the user is presented with a Create New Supplier button, which sends the browser to a form that can be used
to create a Supplier object. Once the Supplier has been stored in the database, the browser is sent back to the originating page,
and the form is populated with the data the user had entered, and the Supplier select element is set to the newly created object, as
shown in Figure 31-10.

Chapter 31 ■ Creating Form Applications

847

�Summary
In this chapter, I demonstrated how the features described in earlier chapters can be combined with Entity Framework Core to
create, read, update, and delete data. In Part 4, I describe some of the advanced features that ASP.NET Core provides.

Figure 31-10.  Breaking out to create related data

PART IV

Advanced ASP.NET Core Features

851© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_32

CHAPTER 32

Creating the Example Project

In this chapter, you will create the example project used throughout this part of the book. The project contains a data model that is
displayed using simple controllers and Razor Pages.

�Creating the Project
Open a new PowerShell command prompt from the Windows Start menu and run the commands shown in Listing 32-1.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 32-1.  Creating the Project

dotnet new globaljson --sdk-version 3.1.101 --output Advanced
dotnet new web --no-https --output Advanced --framework netcoreapp3.1
dotnet new sln -o Advanced

dotnet sln Advanced add Advanced

If you are using Visual Studio, open the Advanced.sln file in the Advanced folder. Select Project ➤ Platform Properties, navigate
to the Debug page, and change the App URL field to http://localhost:5000, as shown in Figure 32-1. This changes the port that will
be used to receive HTTP requests. Select File ➤ Save All to save the configuration changes.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 32 ■ Creating the Example Project

852

If you are using Visual Studio Code, open the Advanced folder. Click the Yes button when prompted to add the assets required
for building and debugging the project, as shown in Figure 32-2.

�Adding NuGet Packages to the Project
The data model will use Entity Framework Core to store and query data in a SQL Server LocalDB database. To add the NuGet
packages for Entity Framework Core, use a PowerShell command prompt to run the commands shown in Listing 32-2 in the
Advanced project folder.

Listing 32-2.  Adding Packages to the Project

dotnet add package Microsoft.EntityFrameworkCore.Design --version 3.1.1
dotnet add package Microsoft.EntityFrameworkCore.SqlServer --version 3.1.1

If you are using Visual Studio, you can add the packages by selecting Project ➤ Manage NuGet Packages. Take care to choose
the correct version of the packages to add to the project.

If you have not followed the examples in earlier chapters, you will need to install the global tool package that is used to create
and manage Entity Framework Core migrations. Run the commands shown in Listing 32-3 to remove any existing version of the
package and install the version required for this book.

Figure 32-2.  Adding project assets

Figure 32-1.  Changing the HTTP port

Chapter 32 ■ Creating the Example Project

853

Listing 32-3.  Installing a Global Tool Package

dotne.t tool uninstall --global dotnet-ef
dotnet tool install --global dotnet-ef --version 3.1.1

�Adding a Data Model
The data model for this application will consist of three classes, representing people, the department in which they work, and their
location. Create a Models folder and add to it a class file named Person.cs with the code in Listing 32-4.

Listing 32-4.  The Contents of the Person.cs File in the Models Folder

using System.Collections.Generic;

namespace Advanced.Models {

 public class Person {

 public long PersonId { get; set; }
 public string Firstname { get; set; }
 public string Surname { get; set; }
 public long DepartmentId { get; set; }
 public long LocationId { get; set; }

 public Department Department {get; set; }
 public Location Location { get; set; }
 }
}

Add a class file named Department.cs to the Models folder and use it to define the class shown in Listing 32-5.

Listing 32-5.  The Contents of the Department.cs File in the Models Folder

using System.Collections.Generic;

namespace Advanced.Models {
 public class Department {

 public long Departmentid { get; set; }
 public string Name { get; set; }

 public IEnumerable<Person> People { get; set; }
 }
}

Add a class file named Location.cs to the Models folder and use it to define the class shown in Listing 32-6.

Listing 32-6.  The Contents of the Location.cs File in the Models Folder

using System.Collections.Generic;

namespace Advanced.Models {
 public class Location {

 public long LocationId { get; set; }
 public string City { get; set; }
 public string State { get; set; }

Chapter 32 ■ Creating the Example Project

854

 public IEnumerable<Person> People { get; set; }
 }
}

Each of the three data model classes defines a key property whose value will be allocated by the database when new objects are
stored and defines foreign key properties that define the relationships between the classes. These are supplemented by navigation
properties that will be used with the Entity Framework Core Include method to incorporate related data into queries.

To create the Entity Framework Core context class that will provide access to the database, add a file called DataContext.cs to
the Models folder and add the code shown in Listing 32-7.

Listing 32-7.  The Contents of the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace Advanced.Models {
 public class DataContext: DbContext {

 public DataContext(DbContextOptions<DataContext> opts)
 : base(opts) { }

 public DbSet<Person> People { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Location> Locations { get; set; }
 }
}

The context class defines properties that will be used to query the database for Person, Department, and Location data.

�Preparing the Seed Data
Add a class called SeedData.cs to the Models folder and add the code shown in Listing 32-8 to define the seed data that will be used
to populate the database.

Listing 32-8.  The Contents of the SeedData.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace Advanced.Models {
 public static class SeedData {

 public static void SeedDatabase(DataContext context) {
 context.Database.Migrate();
 if (context.People.Count() == 0 && context.Departments.Count() == 0 &&
 context.Locations.Count() == 0) {

 Department d1 = new Department { Name = "Sales" };
 Department d2 = new Department { Name = "Development" };
 Department d3 = new Department { Name = "Support" };
 Department d4 = new Department { Name = "Facilities" };

 context.Departments.AddRange(d1, d2, d3, d4);
 context.SaveChanges();

 Location l1 = new Location { City = "Oakland", State = "CA" };
 Location l2 = new Location { City = "San Jose", State = "CA" };

Chapter 32 ■ Creating the Example Project

855

 Location l3 = new Location { City = "New York", State = "NY" };
 context.Locations.AddRange(l1, l2, l3);

 context.People.AddRange(
 new Person {
 Firstname = "Francesca", Surname = "Jacobs",
 Department = d2, Location = l1
 },
 new Person {
 Firstname = "Charles", Surname = "Fuentes",
 Department = d2, Location = l3
 },
 new Person {
 Firstname = "Bright", Surname = "Becker",
 Department = d4, Location = l1
 },
 new Person {
 Firstname = "Murphy", Surname = "Lara",
 Department = d1, Location = l3
 },
 new Person {
 Firstname = "Beasley", Surname = "Hoffman",
 Department = d4, Location = l3
 },
 new Person {
 Firstname = "Marks", Surname = "Hays",
 Department = d4, Location = l1
 },
 new Person {
 Firstname = "Underwood", Surname = "Trujillo",
 Department = d2, Location = l1
 },
 new Person {
 Firstname = "Randall", Surname = "Lloyd",
 Department = d3, Location = l2
 },
 new Person {
 Firstname = "Guzman", Surname = "Case",
 Department = d2, Location = l2
 });
 context.SaveChanges();
 }
 }
 }
}

The static SeedDatabase method ensures that all pending migrations have been applied to the database. If the database is
empty, it is seeded with data. Entity Framework Core will take care of mapping the objects into the tables in the database, and the
key properties will be assigned automatically when the data is stored.

Chapter 32 ■ Creating the Example Project

856

�Configuring Entity Framework Core Services and Middleware
Make the changes to the Startup class shown in Listing 32-9, which configure Entity Framework Core and set up the DataContext
services that will be used throughout this part of the book to access the database.

Listing 32-9.  Preparing Services and Middleware in the Startup.cs File in the Advanced Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Advanced.Models;

namespace Advanced {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:PeopleConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 }

 public void Configure(IApplicationBuilder app, DataContext context) {

 app.UseDeveloperExceptionPage();
 app.UseRouting();

 app.UseEndpoints(endpoints => {
 endpoints.MapGet("/", async context => {
 await context.Response.WriteAsync("Hello World!");
 });
 });

 SeedData.SeedDatabase(context);
 }
 }
}

To define the connection string that will be used for the application’s data, add the configuration settings shown in Listing 32-10
in the appsettings.json file. The connection string should be entered on a single line.

Chapter 32 ■ Creating the Example Project

857

Listing 32-10.  Defining a Connection String in the appsettings.json File in the Advanced Folder

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "PeopleConnection": "Server=(localdb)\\MSSQLLocalDB;Database=People;MultipleActiveResultSets=True"
 }
}

In addition to the connection string, Listing 32-10 increases the logging detail for Entity Framework Core so that the SQL
queries sent to the database are logged.

�Creating and Applying the Migration
To create the migration that will set up the database schema, use a PowerShell command prompt to run the command shown in
Listing 32-11 in the Advanced project folder.

Listing 32-11.  Creating an Entity Framework Core Migration

dotnet ef migrations add Initial

Once the migration has been created, apply it to the database using the command shown in Listing 32-12.

Listing 32-12.  Applying the Migration to the Database

dotnet ef database update

The logging messages displayed by the application will show the SQL commands that are sent to the database.

■■ Note I f you need to reset the database, then run the dotnet ef database drop --force command and then the command in
Listing 32-12.

�Adding the Bootstrap CSS Framework
Following the pattern established in earlier chapters, I will use the Bootstrap CSS framework to style the HTML elements produced
by the example application. To install the Bootstrap package, run the commands shown in Listing 32-13 in the Advanced project
folder. These commands rely on the Library Manager package.

Listing 32-13.  Installing the Bootstrap CSS Framework

libman init -p cdnjs
libman install twitter-bootstrap@4.3.1 -d wwwroot/lib/twitter-bootstrap

Chapter 32 ■ Creating the Example Project

858

If you are using Visual Studio, you can install client-side packages by right-clicking the Advanced project item in the Solution
Explorer and selecting Add ➤ Client-Side Library from the popup menu.

�Configuring the Services and Middleware
I am going to enable runtime Razor view compilation in this project. Run the command shown in Listing 32-14 in the Advanced
project folder to install the package that will provide the runtime compilation service.

Listing 32-14.  Adding a Package to the Example Project

dotnet add package Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation --version 3.1.1

The example application in this part of the book will respond to requests using both MVC controllers and Razor Pages. Add the
statements shown in Listing 32-15 to the Startup class to configure the services and middleware the application will use.

Listing 32-15.  Adding Services and Middleware in the Startup.cs File in the Advanced Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Advanced.Models;

namespace Advanced {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:PeopleConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {

 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

Chapter 32 ■ Creating the Example Project

859

 app.UseEndpoints(endpoints => {
 endpoints.MapControllerRoute("controllers",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });

 SeedData.SeedDatabase(context);
 }
 }
}

In addition to the default controller route, I have added a route that matches URL paths that begin with controllers, which
will make it easier to follow the examples in later chapters as they switch between controllers and Razor Pages. This is the same
convention I adopted in earlier chapters, and I will route URL paths beginning with /pages to Razor Pages.

�Creating a Controller and View
To display the application’s data using a controller, create a folder named Controllers in the Advanced project folder and add to it a
class file named HomeController.cs, with the content shown in Listing 32-16.

Listing 32-16.  The Contents of the HomeController.cs File in the Controllers Folder

using Advanced.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

namespace Advanced.Controllers {
 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext dbContext) {
 context = dbContext;
 }

 public IActionResult Index([FromQuery] string selectedCity) {
 return View(new PeopleListViewModel {
 People = context.People
 .Include(p => p.Department).Include(p => p.Location),
 Cities = context.Locations.Select(l => l.City).Distinct(),
 SelectedCity = selectedCity
 });
 }
 }

 public class PeopleListViewModel {
 public IEnumerable<Person> People { get; set; }
 public IEnumerable<string> Cities { get; set; }
 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
 }
}

Chapter 32 ■ Creating the Example Project

860

To provide the controller with a view, create the Views/Home folder and add to it a Razor View named Index.cshtml with the
content shown in Listing 32-17.

Listing 32-17.  The Contents of the Index.cshtml File in the Views/Home Folder

@model PeopleListViewModel

<h4 class="bg-primary text-white text-center p-2">People</h4>

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Person p in Model.People) {
 <tr class="@Model.GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<form asp-action="Index" method="get">
 <div class="form-group">
 <label for="selectedCity">City</label>
 <select name="selectedCity" class="form-control">
 <option disabled selected>Select City</option>
 @foreach (string city in Model.Cities) {
 <option selected="@(city == Model.SelectedCity)">
 @city
 </option>
 }
 </select>
 </div>
 <button class="btn btn-primary" type="submit">Select</button>
</form>

To enable tag helpers and add the namespaces that will be available by default in views, add a Razor View Imports file named
_ViewImports.cshtml to the Views folder with the content shown in Listing 32-18.

Listing 32-18.  The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using Advanced.Models
@using Advanced.Controllers

To specify the default layout for controller views, add a Razor View Start start file named _ViewStart.cshtml to the Views folder
with the content shown in Listing 32-19.

Listing 32-19.  The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

Chapter 32 ■ Creating the Example Project

861

To create the layout, create the Views/Shared folder and add to it a Razor Layout named _Layout.cshtml with the content
shown in Listing 32-20.

Listing 32-20.  The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
</body>
</html>

�Creating a Razor Page
To display the application’s data using a Razor Page, create the Pages folder and add to it a Razor Page named Index.cshtml with the
content shown in Listing 32-21.

Listing 32-21.  The Contents of the Index.cshtml File in the Pages Folder

@page "/pages"
@model IndexModel

<h4 class="bg-primary text-white text-center p-2">People</h4>

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Person p in Model.People) {
 <tr class="@Model.GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<form asp-page="Index" method="get">
 <div class="form-group">
 <label for="selectedCity">City</label>
 <select name="selectedCity" class="form-control">
 <option disabled selected>Select City</option>
 @foreach (string city in Model.Cities) {
 <option selected="@(city == Model.SelectedCity)">
 @city
 </option>
 }

Chapter 32 ■ Creating the Example Project

862

 </select>
 </div>
 <button class="btn btn-primary" type="submit">Select</button>
</form>

@functions {

 public class IndexModel: PageModel {
 private DataContext context;

 public IndexModel(DataContext dbContext) {
 context = dbContext;
 }

 public IEnumerable<Person> People { get; set; }

 public IEnumerable<string> Cities { get; set; }

 [FromQuery]
 public string SelectedCity { get; set; }

 public void OnGet() {
 People = context.People.Include(p => p.Department)
 .Include(p => p.Location);
 Cities = context.Locations.Select(l => l.City).Distinct();
 }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
 }
}

To enable tag helpers and add the namespaces that will be available by default in the view section of the Razor Pages, add a
Razor view imports file named _ViewImports.cshtml to the Pages folder with the content shown in Listing 32-22.

Listing 32-22.  The Contents of the _ViewImports.cshtml File in the Pages Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using Advanced.Models
@using Microsoft.AspNetCore.Mvc.RazorPages
@using Microsoft.EntityFrameworkCore

To specify the default layout for Razor Pages, add a Razor View Start file named _ViewStart.cshtml to the Pages folder with the
content shown in Listing 32-23.

Listing 32-23.  The Contents of the _ViewStart.cshtml File in the Pages Folder

@{
 Layout = "_Layout";
}

To create the layout, add a Razor Layout named _Layout.cshtml to the Pages folder with the content shown in Listing 32-24.

Listing 32-24.  The Contents of the _Layout.cshtml File in the Pages Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>

Chapter 32 ■ Creating the Example Project

863

 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <div class="m-2">
 <h5 class="bg-secondary text-white text-center p-2">Razor Page</h5>
 @RenderBody()
 </div>
</body>
</html>

�Running the Example Application
Start the application, either by selecting Start Without Debugging or Run Without Debugging from the Debug menu or by running
the command shown in Listing 32-25 in the Advanced project folder.

Listing 32-25.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers and http://localhost:5000/pages. Select a city using the
select element and click the Select button to highlight rows in the table, as shown in Figure 32-3.

Figure 32-3.  Running the example application

Chapter 32 ■ Creating the Example Project

864

�Summary
In this chapter, I showed how to create the example application that is used throughout this part of the book. The project was created
with the Empty template, and it contains a data model that relies on Entity Framework Core and handles requests using a controller
and a Razor Page. In the next chapter, I introduce Blazor, which is a new addition to ASP.NET Core.

865© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_33

CHAPTER 33

Using Blazor Server, Part 1

Blazor is a new addition to ASP.NET Core that adds client-side interactivity to web applications. There are two varieties of Blazor,
and in this chapter, I focus on Blazor Server. I explain the problem it solves and how it works. I show you how to configure an ASP.
NET Core application to use Blazor Server and describe the basic features available when using Razor Components, which are the
building blocks for Blazor Server projects. I describe more advanced Blazor Server features in Chapters 34–36, and in Chapter 37,
I describe Blazor WebAssembly, which is the other variety of Blazor. Table 33-1 puts Blazor Server in context.

Table 33-2 summarizes the chapter.

Table 33-1.  Putting Blazor Server in Context

Question Answer

What is it? Blazor Server uses JavaScript to receive browser events, which are forwarded to ASP.NET Core and evaluated
using C# code. The effect of the event on the state of the application is sent back to the browser and displayed
to the user.

Why is it useful? Blazor Server can produce a richer and more responsive user experience compared to standard web
applications.

How is it used? The building block for Blazor Server is the Razor Component, which uses a syntax similar to Razor Pages.
The view section of the Razor Component contains special attributes that specify how the application will
respond to user interaction.

Are there any pitfalls
or limitations?

Blazor Server relies on a persistent HTTP connection to the server and cannot function when that
connection is interrupted. Blazor Server is not supported by older browsers.

Are there any
alternatives?

The features described in Part 3 of this book can be used to create web applications that work broadly but
that offer a less responsive experience. You could also consider a client-side JavaScript framework, such as
Angular, React, or Vue.js.

Table 33-2.  Chapter Summary

Problem Solution Listing

Configuring Blazor Use the AddServerSideBlazor and MapBlazorHub methods to set up the required
services and middleware and configure the JavaScript file

3–6

Creating a Blazor Component Create a .blazor file and use it to define code and markup 7

Applying a component Use a component element 8, 9

Handling events Use an attribute to specify the method or expression that will handle an event 10–15

Creating a two-way relationship
with an element

Create a data binding 16–20

Defining the code separately
from the markup

Use a code-behind class 21–23

Defining a component without
declarative markup

Use a Razor Component class 24, 25

Chapter 33 ■ Using Blazor Server, Part 1

866

�Preparing for This Chapter
This chapter uses the Advanced project from Chapter 32. No changes are required to prepare for this chapter.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Open a new PowerShell command prompt, navigate to the folder that contains the Advanced.csproj file, and run the command
shown in Listing 33-1 to drop the database.

Listing 33-1.  Dropping the Database

dotnet ef database drop --force

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 33-2.

Listing 33-2.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers, which will display a list of data items. Pick a city from the drop-
down list and click the Select button to highlight elements, as shown in Figure 33-1.

Figure 33-1.  Running the example application

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 33 ■ Using Blazor Server, Part 1

867

�Understanding Blazor Server
Consider what happens when you choose a city and click the Select button presented by the example application. The browser
sends an HTTP GET request that submits a form, which is received by either an action method or a handler method, depending
on whether you use the controller or Razor Page. The action or handler renders its view, which sends a new HTML document that
reflects the selection to the browser, as illustrated by Figure 33-2.

This cycle is effective but can be inefficient. Each time the Submit button is clicked, the browser sends a new HTTP request
to ASP.NET Core. Each request contains a complete set of HTTP headers that describe the request and the types of responses the
browser is willing to receive. In its response, the server includes HTTP headers that describe the response and includes a complete
HTML document for the browser to display.

The amount of data sent by the example application is about 3KB on my system, and almost all of it is duplicated between
requests. The browser only wants to tell the server which city has been selected, and the server only wants to indicate which table
rows should be highlighted; however, each HTTP request is self-contained, so the browser must parse a complete HTML document
each time. The root issue that every interaction is the same: send a request and get a complete HTML document in return.

Blazor takes a different approach. A JavaScript library is included in the HTML document that is sent to the browser. When the
JavaScript code is executed, it opens an HTTP connection back to the server and leaves it open, ready for user interaction. When the
user picks a value using the select element, for example, details of the selection are sent to the server, which responds with just the
changes to apply to the existing HTML, as shown in Figure 33-3.

The persistent HTTP connection minimizes the delay, and replying with just the differences reduces the amount of data sent
between the browser and the server.

�Understanding the Blazor Server Advantages
The biggest attraction of Blazor is that it is based on Razor Pages written in C#. This means you can increase efficiency and
responsiveness without having to learn a new framework, such as Angular or React, and a new language, such as TypeScript or
JavaScript. Blazor is nicely integrated into the rest of ASP.NET Core and is built on features described in earlier chapters, which
makes it easy to use (especially when compared to a framework like Angular, which has a dizzyingly steep learning curve).

Figure 33-2.  Interacting with the example application

Figure 33-3.  Interacting with Blazor

Chapter 33 ■ Using Blazor Server, Part 1

868

�Understanding the Blazor Server Disadvantages
Blazor requires a modern browser to establish and maintain its persistent HTTP connection. And, because of this connection,
applications that use Blazor stop working if the connection is lost, which makes them unsuitable for offline use, where connectivity
cannot be relied on or where connections are slow. These issues are addressed by Blazor WebAssembly, described in Chapter 36,
but, as I explain, this has its own set of limitations.

�Choosing Between Blazor Server and Angular/React/Vue.js
Decisions between Blazor and one of the JavaScript frameworks should be driven by the development team’s experience and the
users’ expected connectivity. If you have no JavaScript expertise and have not used one of the JavaScript frameworks, then you
should use Blazor, but only if you can rely on good connectivity and modern browsers. This makes Blazor a good choice for line-of-
business applications, for example, where the browser demographic and network quality can be determined in advance.

If you have JavaScript experience and you are writing a public-facing application, then you should use one of the JavaScript
frameworks because you won’t be able to make assumptions about browsers or network quality. (It doesn’t matter which framework
you choose—I have written books about Angular, React, and View, and they are all excellent. My advice for choosing a framework is
to create a simple app in each of them and pick the one whose development model appeals to you the most.)

If you are writing a public-facing application and you don’t have JavaScript experience, then you have two choices. The safest
option is to stick to the ASP.NET Core features described in earlier chapters and accept the inefficiencies this can bring. This isn’t
a terrible choice to make, and you can still produce top-quality applications. A more demanding choice is to learn TypeScript
or JavaScript and one Angular, React, or Vue.js—but don’t underestimate the amount of time it takes to master JavaScript or the
complexity of these frameworks.

�Getting Started with Blazor
The best way to get started with Blazor is to jump right in. In the sections that follow, I configure the application to enable Blazor
and re-create the functionality offered by the controller and Razor Page. After that, I’ll go right back to basics and explain how Razor
Components work and the different features they offer.

�Configuring ASP.NET Core for Blazor Server
Preparation is required before Blazor can be used. The first step is to add the services and middleware to the Startup class, as shown
in Listing 33-3.

Listing 33-3.  Adding Services and Middleware in the Startup.cs File in the Advanced Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Advanced.Models;

namespace Advanced {
 public class Startup {

 public Startup(IConfiguration config) {
 Configuration = config;
 }

Chapter 33 ■ Using Blazor Server, Part 1

869

 public IConfiguration Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:PeopleConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();
 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddServerSideBlazor();
 }

 public void Configure(IApplicationBuilder app, DataContext context) {

 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

 app.UseEndpoints(endpoints => {
 endpoints.MapControllerRoute("controllers",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 endpoints.MapBlazorHub();
 });

 SeedData.SeedDatabase(context);
 }
 }
}

The “hub” in the MapBlazorHub method relates to SignalR, which is the part of ASP.NET Core that handles the persistent HTTP
request. I don’t describe SignalR in this book because it is rarely used directly, but it can be useful if you need ongoing communication
between clients and the server. See https://docs.microsoft.com/en-gb/aspnet/core/signalr for details. For this book—and most
ASP.NET Core applications—it is enough to know that SignalR is used to manage the connections that Blazor relies on.

�Adding the Blazor JavaScript File to the Layout
Blazor relies on JavaScript code to communicate with the ASP.NET Core server. Add the elements shown in Listing 33-4 to the
_Layout.cshtml file in the Views/Shared folder to add the JavaScript file to the layout used by controller views.

Listing 33-4.  Adding Elements in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <base href="~/" />
</head>
<body>
 <div class="m-2">
 @RenderBody()
 </div>
 <script src="_framework/blazor.server.js"></script>
</body>
</html>

https://docs.microsoft.com/en-gb/aspnet/core/signalr

Chapter 33 ■ Using Blazor Server, Part 1

870

The script element specifies the name of the JavaScript file, and requests for it are intercepted by the middleware added to the
request pipeline in Listing 33-3 so that no additional package is required to add the JavaScript code to the project. The base element
must also be added to specify the root URL for the application. The same elements must be added to the layout used by Razor Pages,
as shown in Listing 33-5.

Listing 33-5.  Adding Elements in the _Layout.cshtml File in the Pages Folder

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <base href="~/" />
</head>
<body>
 <div class="m-2">
 <h5 class="bg-secondary text-white text-center p-2">Razor Page</h5>
 @RenderBody()
 </div>
 <script src="_framework/blazor.server.js"></script>
</body>
</html>

�Creating the Blazor Imports File
Blazor requires its own imports file to specify the namespaces that it uses. It is easy to forget to add this file to a project, but, without
it, Blazor will silently fail. Add a file named _Imports.razor to the Advanced folder with the content shown in Listing 33-6. (If you are
using Visual Studio, you can use the Razor View Imports template to create this file, but ensure you use the .razor file extension.)

Listing 33-6.  The Contents of the _Imports.razor File in the Advanced Folder

@using Microsoft.AspNetCore.Components
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.JSInterop
@using Microsoft.EntityFrameworkCore
@using Advanced.Models

The first five @using expressions are for the namespaces required for Blazor. The last two expressions are for convenience in the
examples that follow because they will allow me to use Entity Framework Core and the classes in the Models namespace.

�Creating a Razor Component
There is a clash in terminology: the technology is Blazor, but the key building block is called a Razor Component. Razor Components
are defined in files with the .razor extension and must begin with a capital letter. Components can be defined anywhere, but they
are usually grouped together to help keep the project organized. Create a Blazor folder in the Advanced folder and add to it a Razor
Component named PeopleList.razor with the content shown in Listing 33-7.

Listing 33-7.  The Contents of the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th>
 </tr>
 </thead>
 <tbody>

Chapter 33 ■ Using Blazor Server, Part 1

871

 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<div class="form-group">
 <label for="city">City</label>
 <select name="city" class="form-control" @bind="SelectedCity">
 <option disabled selected>Select City</option>
 @foreach (string city in Cities) {
 <option value="@city" selected="@(city == SelectedCity)">
 @city
 </option>
 }
 </select>
</div>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People =>
 Context.People.Include(p => p.Department).Include(p => p.Location);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
}

Razor Components are similar to Razor Pages. The view section relies on the Razor features you have seen in earlier chapters,
with @ expressions to insert data values into the component’s HTML or to generate elements for objects in a sequence, like this:

...
@foreach (string city in Cities) {
 <option value="@city" selected="@(city == SelectedCity)">
}
...

This @foreach expression generates option elements for each value in the Cities sequence and is identical to the equivalent
expression in the controller view and Razor Page created in Chapter 32.

Chapter 33 ■ Using Blazor Server, Part 1

872

Although Razor Components look familiar, there are some important differences. The first is that there is no page model
class and no @model expression. The properties and methods that support a component’s HTML are defined directly in an @code
expression, which is the counterpart to the Razor Page @functions expression. To define the property that will provide the view
section with Person objects, for example, I just define a People property in the @code section, like this:

...
public IEnumerable<Person> People =>
 Context.People.Include(p => p.Department).Include(p => p.Location);
...

And, because there is no page model class, there is no constructor through which to declare service dependencies. Instead, the
dependency injection sets the values of properties that have been decorated with the Inject attribute, like this:

...
[Inject]
public DataContext Context { get; set; }
...

The most significant difference is the use of a special attribute on the select element.

...
<select name="city" class="form-control" @bind="SelectedCity">
 <option disabled selected>Select City</option>
...

This Blazor attribute creates a data binding between the value of the select element and the SelectedCity property defined in
the @code section.

I describe data bindings in more detail in the “Working with Data Bindings” section, but for now, it is enough to know that the
value of the SelectedCity will be updated when the user changes the value of the select element.

�Using a Razor Component
Razor components are delivered to the browser as part of a Razor Page or a controller view. Listing 33-8 shows how to use a Razor
Component in a controller view.

Listing 33-8.  Using a Razor Component in the Index.cshtml File in the Views/Home Folder

@model PeopleListViewModel

<h4 class="bg-primary text-white text-center p-2">People</h4>

<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server" />

Razor Components are applied using the component element, for which there is a tag helper. The component element
is configured using the type and render-mode attributes. The type attribute is used to specify the Razor Component. Razor
Components are compiled into classes just like controller views and Razor Pages. The PeopleList component is defined in the
Blazor folder in the Advanced project, so the type will be Advanced.Blazor.PeopleList, like this:

...
<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server" />
...

The render-mode attribute is used to select how content is produced by the component, using a value from the RenderMode
enum, described in Table 33-3.

Chapter 33 ■ Using Blazor Server, Part 1

873

For most applications, the Server option is a good choice. The ServerPrerendered includes a static rendition of the Razor
Component’s view section in the HTML document sent to the browser. This acts as placeholder content so that the user isn’t
presented with an empty browser window while the JavaScript code is loaded and executed. Once the persistent HTTP connection
has been established, the placeholder content is deleted and replaced with a dynamic version sent by Blazor. The idea of showing
static content to the user is a good one, but it can be confusing because the HTML elements are not wired up to the server-side part
of the application, and any interaction from the user either doesn’t work or will be discarded once the live content arrives.

To see Blazor in action, restart ASP.NET Core and use a browser to request http://localhost:5000/controllers. No form
submission is required when using Blazor because the data binding will respond as soon as the select element’s value is changed,
as shown in Figure 33-4.

When you use the select element, the value you choose is sent over the persistent HTTP connection to the ASP.NET Core
server, which updates the Razor Component’s SelectedCity property and rerenders the HTML content. A set of updates is sent to
the JavaScript code, which updates the table.

Table 33-3.  The RenderMode Values

Name Description

Static The Razor Component renders its view section as static HTML with no client-side support.

Server The HTML document is sent to the browser with a placeholder for the component. The HTML displayed
by the component is sent to the browser over the persistent HTTP connection and displayed to the user.

ServerPrerendered The view section of the component is included in the HTML and displayed to the user immediately. The
HTML content is sent again over the persistent HTTP connection.

Figure 33-4.  Using a Razor Component

Chapter 33 ■ Using Blazor Server, Part 1

874

Razor Components can also be used in Razor Pages. Add a Razor Page named Blazor.cshtml to the Pages folder and add the
content shown in Listing 33-9.

Listing 33-9.  The Contents of the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<script type="text/javascript">
 window.addEventListener("DOMContentLoaded", () => {
 document.getElementById("markElems").addEventListener("click", () => {
 document.querySelectorAll("td:first-child")
 .forEach(elem => {
 elem.innerText = `M:${elem.innerText}`
 elem.classList.add("border", "border-dark");
 });
 });
 });
</script>

<h4 class="bg-primary text-white text-center p-2">Blazor People</h4>

<button id="markElems" class="btn btn-outline-primary mb-2">Mark Elements</button>

<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server" />

The Razor Page in Listing 33-9 contains additional JavaScript code that helps demonstrate that only changes are sent, instead
of an entirely new HTML table. Restart ASP.NET Core and request http://localhost:5000/pages/blazor. Click the Mark Elements
button, and the cells in the ID column will be changed to display different content and a border. Now use the select element to pick
a different city, and you will see that the elements in the table are modified without being deleted, as shown in Figure 33-5.

UNDERSTANDING BLAZOR CONNECTION MESSAGES

When you stop ASP.NET Core, you will see an error message in the browser window, which indicates the connection to the server
has been lost and prevents the user from interacting with the displayed component. Blazor will attempt to reconnect and pick up
where it left off when the disconnection is caused by temporary network issues, but it won’t be able to do so when the server
has been stopped or restarted because the context data for the connection has been lost; you will have to explicitly request a
new URL.

There is a default reload link in the connection message, but that goes to the default URL for the website, which isn’t useful for
this book where I direct you to specific URLs to see the effect of examples. See Chapter 34 for details of how to configure the
connection messages.

Chapter 33 ■ Using Blazor Server, Part 1

875

�Understanding the Basic Razor Component Features
Now that I have demonstrated how Blazor can be used and how it works, it is time to go back to the basics and introduce the features
that Razor Components offer. Although the example in the previous section showed how standard ASP.NET Core features can be
reproduced using Blazor, there is a much wider set of features available.

�Understanding Blazor Events and Data Bindings
Events allow a Razor Component to respond to user interaction, and Blazor uses the persistent HTTP connection to send details of
the event to the server where it can be processed. To see Blazor events in action, add a Razor Component named Events.razor to
the Blazor folder with the content shown in Listing 33-10.

Listing 33-10.  The Contents of the Events.razor File in the Blazor Folder

<div class="m-2 p-2 border">
 <button class="btn btn-primary" @onclick="IncrementCounter">Increment</button>
 Counter Value: @Counter
</div>

Figure 33-5.  Demonstrating that only changes are used

Chapter 33 ■ Using Blazor Server, Part 1

876

@code {
 public int Counter { get; set; } = 1;

 public void IncrementCounter(MouseEventArgs e) {
 Counter++;
 }
}

You register a handler for an event by adding an attribute to an HTML element, where the attribute name is @on, followed by the
event name. In the example, I have set up a handler for the click events generated by a button element, like this:

...
<button class="btn btn-primary" @onclick="IncrementCounter">Increment</button>
...

The value assigned to the attribute is the name of the method that will be invoked when the event is triggered. The method
can define an optional parameter that is either an instance of the EventArgs class or a class derived from EventArgs that provides
additional information about the event.

For the onclick event, the handler method receives a MouseEventArgs object, which provides additional details, such as the
screen coordinates of the click. Table 33-4 lists the event description events and the events for which they are used.

The Blazor JavaScript code receives the event when it is triggered and forwards it to the server over the persistent HTTP
connection. The handler method is invoked, and the state of the component is updated. Any changes to the content produced by the
component’s view section will be sent back to the JavaScript code, which will update the content displayed by the browser.

In the example, the click event will be handled by the IncrementCounter method, which changes the value of the Counter
property. The value of the Counter property is included in the HTML rendered by the component, so Blazor sends the changes to the
browser so that the JavaScript code can update the HTML elements displayed to the user. To display the Events component, replace
the contents of the Blazor.cshtml file in the Pages folder, as shown in Listing 33-11.

Table 33-4.  The EventArgs Classes and the Events They Represent

Class Events

ChangeEventArgs onchange, oninput

ClipboardEventArgs oncopy, oncut, onpaste

DragEventArgs ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop

ErrorEventArgs onerror

FocusEventArgs onblur, onfocus, onfocusin, onfocusout

KeyboardEventArgs onkeydown, onkeypress, onkeyup

MouseEventArgs onclick, oncontextmenu, ondblclick, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onwheel

PointerEventArgs ongotpointercapture, onlostpointercapture, onpointercancel, onpointerdown, onpointerenter,
onpointerleave, onpointermove, onpointerout, onpointerover, onpointerup

ProgressEventArgs onabort, onload, onloadend, onloadstart, onprogress, ontimeout

TouchEventArgs ontouchcancel, ontouchend, ontouchenter, ontouchleave, ontouchmove, ontouchstart

EventArgs onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate, onbeforepaste,
oncanplay, oncanplaythrough, oncuechange, ondeactivate, ondurationchange, onemptied, onended,
onfullscreenchange, onfullscreenerror, oninvalid, onloadeddata, onloadedmetadata, onpause,
onplay, onplaying, onpointerlockchange, onpointerlockerror, onratechange, onreadystatechange,
onreset, onscroll, onseeked, onseeking, onselect, onselectionchange, onselectstart, onstalled,
onstop, onsubmit, onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 33 ■ Using Blazor Server, Part 1

877

Listing 33-11.  Using a New Component in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Events</h4>

<component type="typeof(Advanced.Blazor.Events)" render-mode="Server" />

Listing 33-11 changes the type attribute of the component element and removes the custom JavaScript and the button element
I used to mark elements in the previous example. Restart ASP.NET Core and request http://localhost:5000/pages/blazor to see
the new component. Click the Increment button, and the click event will be received by the Blazor JavaScript code and sent to the
server for processing by the IncrementCounter method, as shown in Figure 33-6.

�Handling Events from Multiple Elements
To avoid code duplication, elements from multiple elements can be received by a single handler method, as shown in Listing 33-12.

Listing 33-12.  Handling Events in the Events.razor File in the Blazor Folder

<div class="m-2 p-2 border">
 <button class="btn btn-primary" @onclick="@(e => IncrementCounter(e, 0))">
 Increment Counter #1
 </button>
 Counter Value: @Counter[0]
</div>

<div class="m-2 p-2 border">
 <button class="btn btn-primary" @onclick="@(e => IncrementCounter(e, 1))">
 Increment Counter #2
 </button>
 Counter Value: @Counter[1]
</div>

@code {
 public int[] Counter { get; set; } = new int[] { 1, 1 };

 public void IncrementCounter(MouseEventArgs e, int index) {
 Counter[index]++;
 }
}

Figure 33-6.  Handling an event

Chapter 33 ■ Using Blazor Server, Part 1

878

Blazor event attributes can be used with lambda functions that receive the EventArgs object and invoke a handler method
with additional arguments. In this example, I have added an index parameter to the IncrementCounter method, which is used to
determine which counter value should be updated. The value for the argument is defined in the @onclick attribute, like this:

...
<button class="btn btn-primary" @onclick="@(e => IncrementCounter(e, 0))">
...

This technique can also be used when elements are generated programmatically, as shown in Listing 33-13. In this example, I
use an @for expression to generate elements and use the loop variable as the argument to the handler method. I have also removed
the EventArgs parameter from the handler method, which isn’t being used.

AVOIDING THE HANDLER METHOD NAME PITFALL

The most common mistake when specifying an event handler method is to include parentheses, like this:

...
<button class="btn btn-primary" @onclick="IncrementCounter()">
...

The error message this produces will depend on the event handler method. You may see a warning telling you a formal
parameter is missing or that void cannot be converted to an EventCallback. When specifying a handler method, you must
specify just the event name, like this:

...
<button class="btn btn-primary" @onclick="IncrementCounter">
...

You can specify the method name as a Razor expression, like this:

...
<button class="btn btn-primary" @onclick="@IncrementCounter">
...

Some developers find this easier to parse, but the result is the same. A different set of rules applies when using a lambda
function, which must be defined within a Razor expression, like this:

...
<button class="btn btn-primary" @onclick="@(...)">
...

Within the Razor expression, the lambda function is defined as it would be in a C# class, which means defining the parameters,
followed by the “goes to” arrow, followed by the function body, like this:

...
<button class="btn btn-primary" @onclick="@((e) => HandleEvent(e, local))">
...

If you don’t need to use the EventArgs object, then you can omit the parameter from the lambda function, like this:

...
<button class="btn btn-primary" @onclick="@(() => IncrementCounter(local))">
...

You will quickly become used to these rules as you start to work with Blazor, even if they seem inconsistent at first.

Chapter 33 ■ Using Blazor Server, Part 1

879

Listing 33-13.  Generating Elements in the Events.razor File in the Blazor Folder

@for (int i = 0; i < ElementCount; i++) {
 int local = i;
 <div class="m-2 p-2 border">
 <button class="btn btn-primary" @onclick="@(() => IncrementCounter(local))">
 Increment Counter #@(i + 1)
 </button>
 Counter Value: @GetCounter(i)
 </div>
}

@code {
 public int ElementCount { get; set; } = 4;

 public Dictionary<int, int> Counters { get; } = new Dictionary<int, int>();

 public int GetCounter(int index) =>
 Counters.ContainsKey(index) ? Counters[index] : 0;

 public void IncrementCounter(int index) =>
 Counters[index] = GetCounter(index) + 1;
}

The important point to understand about event handlers is that the @onclick lambda function isn’t evaluated until the server
receives the click event from the browser. This means care must be taken not to use the loop variable i as the argument to the
IncrementCounter method because it will always be the final value produced by the loop, which would be 4 in this case. Instead, you
must capture the loop variable in a local variable, like this:

...
int local = i;
...

The local variable is then used as the argument to the event handler method in the attribute, like this:

...
<button class="btn btn-primary" @onclick="@(() => IncrementCounter(local))">
...

The local variable fixes the value for the lambda function for each of the generated elements. Restart ASP.NET Core and use
a browser to request http://localhost:5000/pages/blazor, which will produce the response shown in Figure 33-7. The click
events produced by all the button elements are handled by the same method, but the argument provided by the lambda function
ensures that the correct counter is updated.

Chapter 33 ■ Using Blazor Server, Part 1

880

�Processing Events Without a Handler Method
Simple event handling can be done directly in a lambda function, without using a handler method, as shown in Listing 33-14.

Listing 33-14.  Handling Events in the Events.razor File in the Blazor Folder

@for (int i = 0; i < ElementCount; i++) {
 int local = i;
 <div class="m-2 p-2 border">
 <button class="btn btn-primary" @onclick="@(() => IncrementCounter(local))">
 Increment Counter #@(i + 1)
 </button>
 <button class="btn btn-info" @onclick="@(() => Counters.Remove(local))">
 Reset
 </button>
 Counter Value: @GetCounter(i)
 </div>
}

@code {
 public int ElementCount { get; set; } = 4;

 public Dictionary<int, int> Counters { get; } = new Dictionary<int, int>();

 public int GetCounter(int index) =>
 Counters.ContainsKey(index) ? Counters[index] : 0;

 public void IncrementCounter(int index) =>
 Counters[index] = GetCounter(index) + 1;
}

Complex handlers should be defined as methods, but this approach is more concise for simple handlers. Restart ASP.NET Core
and request http://localhost:5000/pages/blazor. The Reset buttons remove values from the Counters collection without relying
on a method in the @code section of the component, as shown in Figure 33-8.

Figure 33-7.  Handling events from multiple elements

Chapter 33 ■ Using Blazor Server, Part 1

881

�Preventing Default Events and Event Propagation
Blazor provides two attributes that alter the default behavior of events in the browser, as described in Table 33-5. These attributes,
where the name of the event is followed by a colon and then a keyword, are known as parameters.

Listing 33-15 demonstrates what these parameters do and why they are useful.

Listing 33-15.  Overriding Event Defaults in the Events.razor File in the Blazor Folder

<form action="/pages/blazor" method="get">
 @for (int i = 0; i < ElementCount; i++) {
 int local = i;
 <div class="m-2 p-2 border">
 <button class="btn btn-primary"
 @onclick="@(() => IncrementCounter(local))"
 @onclick:preventDefault="EnableEventParams">
 Increment Counter #@(i + 1)
 </button>
 <button class="btn btn-info" @onclick="@(() => Counters.Remove(local))">
 Reset
 </button>
 Counter Value: @GetCounter(i)
 </div>
 }
</form>

Figure 33-8.  Handling events in a lambda expression

Table 33-5.  The Event Configuration Parameters

Name Description

@on{event}:preventDefault This parameter determines whether the default event for an element is triggered.

@on{event}:stopPropagation This parameter determines whether an event is propagated to its ancestor elements.

Chapter 33 ■ Using Blazor Server, Part 1

882

<div class="m-2" @onclick="@(() => IncrementCounter(1))">
 <button class="btn btn-primary" @onclick="@(() => IncrementCounter(0))"
 @onclick:stopPropagation="EnableEventParams">Propagation Test</button>
</div>

<div class="form-check m-2">
 <input class="form-check-input" type="checkbox"
 @onchange="@(() => EnableEventParams = !EnableEventParams)" />
 <label class="form-check-label">Enable Event Parameters</label>
</div>

@code {
 public int ElementCount { get; set; } = 4;

 public Dictionary<int, int> Counters { get; } = new Dictionary<int, int>();

 public int GetCounter(int index) =>
 Counters.ContainsKey(index) ? Counters[index] : 0;

 public void IncrementCounter(int index) =>
 Counters[index] = GetCounter(index) + 1;

 public bool EnableEventParams { get; set; } = false;
}

This example creates two situations in which the default behavior of events in the browser can cause problems. The first is
caused by adding a form element. By default, button elements contained in a form will submit that form when they are clicked, even
when the @onclick attribute is present. This means that whenever one of the Increment Counter buttons is clicked, the browser will
send the form data to the ASP.NET Core server, which will respond with the contents of the Blazor.cshtml Razor Page.

The second problem is demonstrated by an element whose parent also defines an event handler, like this:

...
<div class="m-2" @onclick="@(() => IncrementCounter(1))">
 <button class="btn btn-primary" @onclick="@(() => IncrementCounter(0))"
...

Events go through a well-defined lifecycle in the browser, which includes being passed up the chain of ancestor elements. In
the example, this means clicking the button will cause two counters to be updated, once by the @onclick handler for the button
element and once by the @onclick handler for the enclosing div element.

To see these problems, restart ASP.NET Core and request http://localhost:5000/pages/blazor. Click an Increment Counter
button; you will see that the form is submitted and the page is essentially reloaded. Click the Propagation Test button, and you will
see that two counters are updated. Figure 33-9 shows both problems.

Chapter 33 ■ Using Blazor Server, Part 1

883

The checkbox in Listing 33-15 toggles the property that applies the parameters described in Table 33-5, with the effect that the
form isn’t submitted and only the handler on the button element receives the event. To see the effect, check the checkbox and then
click an Increment Counter button and the Propagation Test buttons, which produces the result shown in Figure 33-10.

�Working with Data Bindings
Event handlers and Razor expressions can be used to create a two-way relationship between an HTML element and a C# value,
which is useful for elements that allow users to make changes, such as input and select elements. Add a Razor Component named
Bindings.razor to the Blazor folder with the content shown in Listing 33-16.

Listing 33-16.  The Contents of the Bindings.razor File in the Blazor Folder

<div class="form-group">
 <label>City:</label>
 <input class="form-control" value="@City" @onchange="UpdateCity" />
</div>
<div class="p-2 mb-2">City Value: @City</div>

Figure 33-9.  Problems caused by the default behavior of events in the browser

Figure 33-10.  Overriding the default behavior of events in the browser

Chapter 33 ■ Using Blazor Server, Part 1

884

<button class="btn btn-primary" @onclick="@(() => City = "Paris")">Paris</button>
<button class="btn btn-primary" @onclick="@(() => City = "Chicago")">Chicago</button>

@code {

 public string City { get; set; } = "London";

 public void UpdateCity(ChangeEventArgs e) {
 City = e.Value as string;
 }
}

The @onchange attribute registers the UpdateCity method as a handler for the change event from the input element. The events
are described using the ChangeEventArgs class, which provides a Value property. Each time a change event is received, the City
property is updated with the contents of the input element.

The input element’s value attribute creates a relationship in the other direction so that when the value of the City property
changes, so does the element’s value attribute, which changes the text displayed to the user. To apply the new Razor Component,
change the component attribute in the Razor Page, as shown in Listing 33-17.

Listing 33-17.  Using a Razor Component in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Events</h4>

<component type="typeof(Advanced.Blazor.Bindings)" render-mode="Server" />

To see both parts of the relationship defined by the binding in Listing 33-16, restart ASP.NET Core, navigate to http://
localhost:5000/pages/blazor, and edit the content of the input element. The change event is triggered only when the input
element loses the focus, so once you have finished editing, press the Tab key or click outside of the input element; you will see the
value you entered displayed through the Razor expression in the div element, as shown on the left of Figure 33-11. Click one of the
buttons, and the City property will be changed to Paris or Chicago, and the selected value will be displayed by both the div element
and the input element, as shown on the right of the figure.

Two-way relationships involving the change event can be expressed as data bindings, which allows both the value and the event
to be configured with a single attribute, as shown in Listing 33-18.

Figure 33-11.  Creating a two-way relationship between an element and a property

Chapter 33 ■ Using Blazor Server, Part 1

885

Listing 33-18.  Using a Data Binding in the Bindings.razor File in the Blazor Folder

<div class="form-group">
 <label>City:</label>
 <input class="form-control" @bind="City" />
</div>
<div class="p-2 mb-2">City Value: @City</div>
<button class="btn btn-primary" @onclick="@(() => City = "Paris")">Paris</button>
<button class="btn btn-primary" @onclick="@(() => City = "Chicago")">Chicago</button>

@code {

 public string City { get; set; } = "London";

 //public void UpdateCity(ChangeEventArgs e) {
 // City = e.Value as string;
 //}
}

The @bind attribute is used to specify the property that will be updated when the change event is triggered and that will update
the value attribute when it changes. The effect in Listing 33-18 is the same as Listing 33-16 but expressed more concisely and
without the need for a handler method or a lambda function to update the property.

�Changing the Binding Event
By default, the change event is used in bindings, which provides reasonable responsiveness for the user without requiring too many
updates from the server. The event used in a binding can be changed by using the attributes described in Table 33-6.

These attributes are used instead of @bind, as shown in Listing 33-19, but can be used only with events that are represented with
the ChangeEventArgs class. This means that only the onchange and oninput events can be used, at least in the current release.

Table 33-6.  The Binding Attributes for Specifying an Event

Attribute Description

@bind-value This attribute is used to select the property for the data binding.

@bind-value:event This attribute is used to select the event for the data binding.

Listing 33-19.  Specifying an Event for a Binding in the Bindings.razor File in the Blazor Folder

<div class="form-group">
 <label>City:</label>
 <input class="form-control" @bind-value="City" @bind-value:event="oninput" />
</div>
<div class="p-2 mb-2">City Value: @City</div>
<button class="btn btn-primary" @onclick="@(() => City = "Paris")">Paris</button>
<button class="btn btn-primary" @onclick="@(() => City = "Chicago")">Chicago</button>

@code {
 public string City { get; set; } = "London";
}

This combination of attributes creates a binding for the City property that is updated when the oninput event is triggered,
which happens after every keystroke, rather than only when the input element loses the focus. To see the effect, restart ASP.NET
Core, navigate to http://localhost:5000/pages/blazor, and start typing into the input element. The City property will be
updated after every keystroke, as shown in Figure 33-12.

Chapter 33 ■ Using Blazor Server, Part 1

886

�Creating DateTime Bindings
Blazor has special support for creating bindings for DateTime properties, allowing them to be expressed using a specific culture or a
format string. This feature is applied using the parameters described in Table 33-7.

■■ Tip I f you have used the @bind-value and @bind-value:event attributes to select an event, then you must use the @bind-
value:culture and @bind-value:format parameters instead.

Listing 33-20 shows the use of these attributes with a DateTime property.

■■ Note T he formatting strings used in these examples are described at https://docs.microsoft.com/en-us/dotnet/api/system.
datetime?view=netcore-3.1.

Figure 33-12.  Changing the event in a data binding

Table 33-7.  The DateTime Parameters

Name Description

@bind:culture This attribute is used to select a CultureInfo object that will be used to format the DateTime value.

@bind:format This attribute is used to specify a data formatting string that will be used to format the DateTime value.

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=netcore-3.1

Chapter 33 ■ Using Blazor Server, Part 1

887

Listing 33-20.  Using a DateTime Property in the Bindings.razor File in the Blazor Folder

@using System.Globalization

<div class="form-group">
 <label>City:</label>
 <input class="form-control" @bind-value="City" @bind-value:event="oninput" />
</div>
<div class="p-2 mb-2">City Value: @City</div>
<button class="btn btn-primary" @onclick="@(() => City = "Paris")">Paris</button>
<button class="btn btn-primary" @onclick="@(() => City = "Chicago")">Chicago</button>

<div class="form-group mt-2">
 <label>Time:</label>
 <input class="form-control my-1" @bind="Time" @bind:culture="Culture"
 @bind:format="MMM-dd" />
 <input class="form-control my-1" @bind="Time" @bind:culture="Culture" />
 <input class="form-control" type="date" @bind="Time" />
</div>
<div class="p-2 mb-2">Time Value: @Time</div>

<div class="form-group">
 <label>Culture:</label>
 <select class="form-control" @bind="Culture">
 <option value="@CultureInfo.GetCultureInfo("en-us")">en-US</option>
 <option value="@CultureInfo.GetCultureInfo("en-gb")">en-GB</option>
 <option value="@CultureInfo.GetCultureInfo("fr-fr")">fr-FR</option>
 </select>
</div>

@code {
 public string City { get; set; } = "London";

 public DateTime Time { get; set; } = DateTime.Parse("2050/01/20 09:50");

 public CultureInfo Culture { get; set; } = CultureInfo.GetCultureInfo("en-us");
}

There are three input elements that are used to display the same DataTime value, two of which have been configured using the
attributes from Table 33-7. The first element has been configured with a culture and a format string, like this:

...
<input class="form-control my-1" @bind="Time" @bind:culture="Culture"
 @bind:format="MMM-dd" />
...

The DateTime property is displayed using the culture picked in the select element and with a format string that displays
an abbreviated month name and the numeric date. The second input element specifies just a culture, which means the default
formatting string will be used.

...
<input class="form-control my-1" @bind="Time" @bind:culture="Culture" />
...

To see how dates are displayed, restart ASP.NET Core, request http://localhost:5000/pages/blazor, and use the select
element to pick different culture settings. The settings available represent English as it is used in the United States, English as it used
in the United Kingdom, and French as it is used in France. Figure 33-13 shows the formatting each produces.

The initial locale in this example is en-US. When you switch to en-GB, the order in which the month and date appear changes.
When you switch to en-FR, the abbreviated month name changes.

Chapter 33 ■ Using Blazor Server, Part 1

888

LETTING THE BROWSER FORMAT DATES

Notice that the value displayed by the third input element in Listing 33-20 doesn’t change, regardless of the locale you choose.
This input element has neither of the attributes described in Table 33-7 but does have its type attribute set to date, like this:

...
<input class="form-control" type="date" @bind="Time" />
...

You should not specify a culture or a format string when setting the type attribute to date, datetime-local, month, or time,
because Blazor will automatically format date values into a culture-neutral format that the browser translates into the user’s
locale. Figure 33-11 shows how the date is formatted in the en-US locale but the user will see the date expressed in their local
convention.

�Using Class Files to Define Components
If you don’t like the mix of code and markup that Razor Components support, you can use C# class files to define part, or all, of the
component.

�Using a Code-Behind Class
The @code section of a Razor Component can be defined in a separate class file, known as a code-behind class or code-behind file.
Code-behind classes for Razor Components are defined as partial classes with the same name as the component they provide
code for.

Add a Razor Component named Split.razor to the Blazor folder with the content shown in Listing 33-21.

Listing 33-21.  The Contents of the Split.razor File in the Blazor Folder

<ul class="list-group">
 @foreach (string name in Names) {
 <li class="list-group-item">@name
 }

Figure 33-13.  Formatting DateTime values

Chapter 33 ■ Using Blazor Server, Part 1

889

This file contains only HTML content and Razor expressions and renders a list of names that it expects to receive through a
Names property. To provide the component with its code, add a class file named Split.razor.cs to the Blazor folder and use it to
define the partial class shown in Listing 33-22.

Listing 33-22.  The Contents of the Split.razor.cs File in the Blazor Folder

using Advanced.Models;
using Microsoft.AspNetCore.Components;
using System.Collections.Generic;
using System.Linq;

namespace Advanced.Blazor {

 public partial class Split {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<string> Names => Context.People.Select(p => p.Firstname);
 }
}

The partial class must be defined in the same namespace as its Razor Component and have the same name. For this example,
that means the namespace is Advanced.Blazor, and the class name is Splt. Code-behind classes do not define constructors and
receive services using the Inject attribute. Listing 33-23 applies the new component.

Listing 33-23.  Applying a New Component in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Code-Behind</h4>

<component type="typeof(Advanced.Blazor.Split)" render-mode="Server" />

Restart ASP.NET Core and request http://localhost:5000/pages/blazor, and you will see the response shown in Figure 33-14.

Chapter 33 ■ Using Blazor Server, Part 1

890

�Defining a Razor Component Class
Razor Components can be defined entirely in a class file, although this can be less expressive than using Razor expressions. Add a
class file named CodeOnly.cs to the Blazor folder and use it to define the class shown in Listing 33-24.

Listing 33-24.  The Contents of the CodeOnly.cs File in the Blazor Folder

using Advanced.Models;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Rendering;
using Microsoft.AspNetCore.Components.Web;
using System.Collections.Generic;
using System.Linq;

namespace Advanced.Blazor {

 public class CodeOnly : ComponentBase {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<string> Names => Context.People.Select(p => p.Firstname);

 public bool Ascending { get; set; } = false;

 protected override void BuildRenderTree(RenderTreeBuilder builder) {
 IEnumerable<string> data = Ascending
 ? Names.OrderBy(n => n) : Names.OrderByDescending(n => n);

Figure 33-14.  Using a code-behind class to define a Razor Component

Chapter 33 ■ Using Blazor Server, Part 1

891

 builder.OpenElement(1, "button");
 builder.AddAttribute(2, "class", "btn btn-primary mb-2");
 builder.AddAttribute(3, "onclick",
 EventCallback.Factory.Create<MouseEventArgs>(this,
 () => Ascending = !Ascending));
 builder.AddContent(4, new MarkupString("Toggle"));
 builder.CloseElement();

 builder.OpenElement(5, "ul");
 builder.AddAttribute(6, "class", "list-group");
 foreach (string name in data) {
 builder.OpenElement(7, "li");
 builder.AddAttribute(8, "class", "list-group-item");
 builder.AddContent(9, new MarkupString(name));
 builder.CloseElement();
 }
 builder.CloseElement();
 }
 }
}

The base class for components is ComponentBase. The content that would normally be expressed as annotated HTML
elements is created by overriding the BuildRenderTree method and using the RenderTreeBuilder parameter. Creating content
can be awkward because each element is created and configured using multiple code statements, and each statement must have
a sequence number that the compiler uses to match up code and content. The OpenElement method starts a new element, which
is configured using the AddElement and AddContent methods and then completed with the CloseElement method. All the features
available in regular Razor Components are available, including events and bindings, which are set up by adding attributes to
elements, just as if they were defined literally in a .razor file. The component in Listing 33-24 displays a list of sorted names, with
the sort direction altered when a button element is clicked. Listing 33-25 applies the component so that it will be displayed to the
user.

Listing 33-25.  Applying a New Component in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Class Only</h4>

<component type="typeof(Advanced.Blazor.CodeOnly)" render-mode="Server" />

Restart ASP.NET Core and request http://localhost:5000/pages/blazor to see the content produced by the class-based
Razor Component. When you click the button, the sort direction of the names in the list is changed, as shown in Figure 33-15.

Chapter 33 ■ Using Blazor Server, Part 1

892

�Summary
In this chapter, I introduced Blazor Server, explained the problem it solves, and described the advantages and disadvantages it
presents. I showed you how to configure an ASP.NET Core application to enable Blazor Server and showed you the basic features
that are available when using Razor Components, which are the Blazor building blocks. In the next chapter, I continue to describe
the features provided by Blazor.

Figure 33-15.  Defining a component entirely in code

893© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_34

CHAPTER 34

Using Blazor Server, Part 2

In this chapter, I continue to describe Blazor Server, focusing on the way that Razor Components can be used together to create more
complex features. Table 34-1 summarizes the chapter.

�Preparing for This Chapter
This chapter uses the Advanced project from Chapter 33. No changes are required to prepare for this chapter.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Open a new PowerShell command prompt, navigate to the folder that contains the Advanced.csproj file, and run the command
shown in Listing 34-1 to drop the database.

Listing 34-1.  Dropping the Database

dotnet ef database drop --force

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 34-2.

Table 34-1.  Chapter Summary

Problem Solution Listing

Creating complex features using Blazor Combine components to reduce duplication 3, 4

Configuring a component Use the Parameter attribute to receive a value from an attribute 5–10

Defining custom events and bindings Use EventCallbacks to receive the handler for the event and follow
the convention to create bindings

11–14

Displaying child content in a component Use a RenderFragment named ChildContent 15, 16

Creating templates Use named RenderFragment properties 17, 25

Distributing configuration settings widely Use a cascading parameter 26, 27

Responding to connection errors Use the connection element and classes 28, 29

Responding to unhandled errors Use the error element and classes 30, 31

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 34 ■ Using Blazor Server, Part 2

894

Listing 34-2.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers, which will display a list of data items. Request
http://localhost:5000/pages/blazor, and you will see the component from Chapter 33 I used to demonstrate data
bindings. Figure 34-1 shows both responses.

�Combining Components
Blazor components can be combined to create more complex features. In the sections that follow, I show you how multiple
components can be used together and how components can communicate. To get started, add a Razor Component named
SelectFilter.razor to the Blazor folder with the content shown in Listing 34-3.

Listing 34-3.  The Contents of the SelectFilter.razor File in the Blazor Folder

<div class="form-group">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control" @bind="SelectedValue">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

@code {

Figure 34-1.  Running the example application

Chapter 34 ■ Using Blazor Server, Part 2

895

 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

 public string SelectedValue { get; set; }

 public string Title { get; set; } = "Placeholder";
}

The component renders a select element that will allow the user to choose a city. In Listing 34-4, I have applied the
SelectFilter component, replacing the existing select element.

Listing 34-4.  Applying a Component in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter />

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People =>
 Context.People.Include(p => p.Department).Include(p => p.Location);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
}

When a component is added to the content rendered by a controller view or Razor Page, the component element is used,
as shown in Chapter 33. When a component is added to the content rendered by another component, then the name of the
component is used as an element instead. In this case, I am adding the SelectFilter component to the content rendered by
the PeopleList component, which I do with a SelectFilter element. It is important to pay close attention to the capitalization,
which must match exactly.

When combining components, the effect is that one component delegates responsibility for part of its layout to another. In
this case, I have removed the select element that the PeopleList component used to present the user with a choice of cities
and replaced it with the SelectFilter component, which will provide the same feature. The components form a parent/child
relationship; the PeopleList component is the parent, and the SelectFilter component is the child.

Additional work is required before everything is properly integrated, but you can see that adding the SelectFilter element
displays the SelectFilter component by restarting ASP.NET Core and requesting http://localhost:5000/controllers, which
produces the response shown in Figure 34-2.

Chapter 34 ■ Using Blazor Server, Part 2

896

�Configuring Components with Attributes
My goal with the SelectList component is to create a general-purpose feature that I can use throughout the application,
configuring the values it displays each time it is used. Razor Components are configured using attributes added to the HTML
element that applies them. The values assigned to the HTML element attributes are assigned to the component’s C# properties. The
Parameter attribute is applied to the C# properties that a component allows to be configured, as shown in Listing 34-5.

Listing 34-5.  Declaring Configurable Properties in the SelectFilter.razor File in the Blazor Folder

<div class="form-group">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control" @bind="SelectedValue">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

@code {

 [Parameter]
 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

 public string SelectedValue { get; set; }

 [Parameter]
 public string Title { get; set; } = "Placeholder";
}

Components can be selective about the properties they allow to be configured. In this case, the Parameter attribute has
been applied to two of the properties defined by the SelectFilter component. In Listing 34-6, I have modified the element the
PeopleList component uses to apply the SelectFilter component to add configuration attributes.

Listing 34-6.  Configuring a Component in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {

Figure 34-2.  Adding one component to the content rendered by another

Chapter 34 ■ Using Blazor Server, Part 2

897

 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter values="@Cities" title="City" />

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People =>
 Context.People.Include(p => p.Department).Include(p => p.Location);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
}

For each property that should be configured, an attribute of the same name is added to the parent’s HTML element. The
attribute values can be fixed values, such as the City string assigned to the title attribute, or Razor expressions, such as @Cities,
which assigns the sequence of objects from the Cities property to the values attribute.

�Setting and Receiving Bulk Configuration Settings
Defining individual properties to receive values can be error-prone if there are many configuration settings, especially if those values
are being received by a component so they can be passed on, either to a child component or to a regular HTML element. In these
situations, a single property can be designated to receive any attribute values that have not been matched by other properties, which
can then be applied as a set, as shown in Listing 34-7.

Listing 34-7.  Receiving Bulk Attributes in the SelectFilter.razor File in the Blazor Folder

<div class="form-group">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control"
 @bind="SelectedValue" @attributes="Attrs">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

@code {

Chapter 34 ■ Using Blazor Server, Part 2

898

 [Parameter]
 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

 public string SelectedValue { get; set; }

 [Parameter]
 public string Title { get; set; } = "Placeholder";

 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> Attrs { get; set; }
}

Setting the Parameter attribute’s CaptureUnmatchedValues argument to true identifies a property as the catchall for attributes
that are not otherwise matched. The type of the property must be Dictionary<string, object>, which allows the attribute names
and values to be represented.

Properties whose type is Dictionary<string, object> can be applied to elements using the @attribute expression, like this:

...
<select name="select-@Title" class="form-control" @bind="SelectedValue"
 @attributes="Attrs">
...

This is known as attribute splatting, and it allows a set of attributes to be applied in one go. The effect of the changes in Listing 34-7
means that the SelectFilter component will receive the Values and Title attribute values and that any other attributes will be assigned
to the Attrs property and passed on to the select element. Listing 34-8 adds some attributes to demonstrate the effect.

Listing 34-8.  Adding Element Attributes in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter values="@Cities" title="City" autofocus="true" name="city"
 required="true" />

@code {

 // ...statements omitted for brevity...
}

Restart ASP.NET Core and navigate to http://localhost:5000/controllers. The attributes passed on to the select element
do not affect appearance, but if you right-click the select element and select Inspect from the popup menu, you will see the
attributes added to the SelectFilter element in the PeopleList component have been added to the element rendered by the
SelectFilter component, like this:

...
<select class="form-control" autofocus="true" name="city" required="true">
...

Chapter 34 ■ Using Blazor Server, Part 2

899

�Configuring a Component in a Controller View or Razor Page
Attributes are also used to configure components when they are applied using the component element. In Listing 34-9, I have added
properties to the PeopleList component that specify how many items from the database should be displayed and a string value that
will be passed on to the SelectFilter component.

Listing 34-9.  Adding Configuration Properties in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter values="@Cities" title="@SelectTitle" />

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People.Include(p => p.Department)
 .Include(p => p.Location).Take(ItemCount);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";

 [Parameter]
 public int ItemCount { get; set; } = 4;

 [Parameter]
 public string SelectTitle { get; set; }
}

Values for the C# properties are provided by adding attributes whose name begins with param-, followed by the property name,
to the component element, as shown in Listing 34-10.

Listing 34-10.  Adding Configuration Attributes in the Index.cshtml File in the Views/Home Folder

@model PeopleListViewModel

<h4 class="bg-primary text-white text-center p-2">People</h4>

<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server"
 param-itemcount="5" param-selecttitle="@("Location")" />

Chapter 34 ■ Using Blazor Server, Part 2

900

The param-itemcount attribute provides a value for the ItemCount property, and the param-selecttitle attribute provides a
value for the SelectTitle property.

When using the component element, attributes values that can be parsed into numeric or bool values are handled as literal
values and not Razor expressions, which is why I am able to specify the value for the ItemCount property as 4. Other values are
assumed to be Razor expressions and not literal values, even though they are not prefixed with @. This oddity means that since I want
to specify the value for the SelectTitle property as a literal string, I need a Razor expression, like this:

...
<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server"
 param-itemcount="5" param-selecttitle="@("Location")" />
...

To see the effect of the configuration attributes, restart ASP.NET Core and request http://localhost:5000/controllers, which
will produce the response shown in Figure 34-3.

Figure 34-3.  Configuring components with attributes

Chapter 34 ■ Using Blazor Server, Part 2

901

�Creating Custom Events and Bindings
The SelectFilter component receives its data values from its parent component, but it has no way to indicate when the user makes
a selection. For this, I need to create a custom event for which the parent component can register a handler method, just as it would
for events from regular HTML elements. Listing 34-11 adds a custom event to the SelectFilter component.

Listing 34-11.  Creating an Event in the SelectFilter.razor File in the Blazor Folder

<div class="form-group">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control"
 @onchange="HandleSelect" value="@SelectedValue">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

@code {

 [Parameter]
 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

 public string SelectedValue { get; set; }

 [Parameter]
 public string Title { get; set; } = "Placeholder";

 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> Attrs { get; set; }

 [Parameter]
 public EventCallback<string> CustomEvent { get; set; }

 public async Task HandleSelect(ChangeEventArgs e) {
 SelectedValue = e.Value as string;
 await CustomEvent.InvokeAsync(SelectedValue);
 }
}

The custom event is defined by adding a property whose type is EventCallback<T>. The generic type argument is the type
that will be received by the parent’s event handler and is string in this case. I have changed the select element so the @onchange
attribute registers the HandleSelect method when the select element triggers its onchange event.

The HandleSelect method updates the SelectedValue property and triggers the custom event by invoking the
EventCallback<T>.InvokeAsync method, like this:

...
await CustomEvent.InvokeAsync(SelectedValue);
...

The argument to the InvokeAsync method is used to trigger the event using the value received from the ChangeEventArgs object
that was received from the select element. Listing 34-12 changes the PeopleList component so that it receives the custom event
emitted by the SelectList component.

Chapter 34 ■ Using Blazor Server, Part 2

902

Listing 34-12.  Handling an Event in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter values="@Cities" title="@SelectTitle" CustomEvent="@HandleCustom" />

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People.Include(p => p.Department)
 .Include(p => p.Location).Take(ItemCount);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity as string == city ? "bg-info text-white" : "";

 [Parameter]
 public int ItemCount { get; set; } = 4;

 [Parameter]
 public string SelectTitle { get; set; }

 public void HandleCustom(string newValue) {
 SelectedCity = newValue;
 }
}

To set up the event handler, an attribute is added to the element that applies the child component using the name of its
EventCallback<T> property. The value of the attribute is a Razor expression that selects a method that receives a parameter of type T.

Restart ASP.NET Core, request http://localhost:5000/controllers, and select a value from the list of cities. The custom
event completes the relationship between the parent and child components. The parent configures the child through its attributes
to specify the title and the list of data values that will be presented to the user. The child component uses a custom event to tell
the parent when the user selects a value, allowing the parent to highlight the corresponding rows in its HTML table, as shown in
Figure 34-4.

Chapter 34 ■ Using Blazor Server, Part 2

903

�Creating a Custom Binding
A parent component can create a binding on a child component if it defines a pair of properties, one of which is assigned a data
value and the other of which is a custom event. The names of the property are important: the name of the event property must be the
same as the data property plus the word Changed. Listing 34-13 updates the SelectFilter component so it presents the properties
required for the binding.

Listing 34-13.  Preparing for Custom Binding in the SelectFilter.razor File in the Blazor Folder

<div class="form-group">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control"
 @onchange="HandleSelect" value="@SelectedValue">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

@code {

 [Parameter]
 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

Figure 34-4.  Using a custom event

Chapter 34 ■ Using Blazor Server, Part 2

904

 [Parameter]
 public string SelectedValue { get; set; }

 [Parameter]
 public string Title { get; set; } = "Placeholder";

 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> Attrs { get; set; }

 [Parameter]
 public EventCallback<string> SelectedValueChanged { get; set; }

 public async Task HandleSelect(ChangeEventArgs e) {
 SelectedValue = e.Value as string;
 await SelectedValueChanged.InvokeAsync(SelectedValue);
 }
}

Notice that the Parameter attribute must be applied to both the SelectedValue and SelectedValueChanged properties. If either
attribute is omitted, the data binding won’t work as expected.

The parent component binds to the child with the @bind-<name> attribute, where <name> corresponds to the property defined
by the child component. In this example, the name of the child component’s property is SelectedValue, and the parent can create a
binding using @bind-SelectedValue, as shown in Listing 34-14.

Listing 34-14.  Using a Custom Binding in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

<SelectFilter values="@Cities" title="@SelectTitle"
 @bind-SelectedValue="SelectedCity" />

<button class="btn btn-primary"
 @onclick="@(() => SelectedCity = "San Jose")">
 Change
</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People.Include(p => p.Department)
 .Include(p => p.Location).Take(ItemCount);

 public IEnumerable<string> Cities => Context.Locations.Select(l => l.City);

Chapter 34 ■ Using Blazor Server, Part 2

905

 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity as string == city ? "bg-info text-white" : "";

 [Parameter]
 public int ItemCount { get; set; } = 4;

 [Parameter]
 public string SelectTitle { get; set; }

 //public void HandleCustom(string newValue) {
 // SelectedCity = newValue;
 //}
}

Restart ASP.NET Core, request http://localhost:5000/controllers, and select New York from the list of cities. The custom
binding will cause the value chosen in the select element to be reflected by the highlighting in the table. Click the Change button to
test the binding in the other direction, and you will see the highlighted city change, as shown in Figure 34-5.

�Displaying Child Content in a Component
Components that display child content act as wrappers around elements provided by their parents. To see how child content is
managed, add a Razor Component named ThemeWrapper.razor to the Blazor folder with the content shown in Listing 34-15.

Listing 34-15.  The Contents of the ThemeWrapper.razor File in the Blazor Folder

<div class="p-2 bg-@Theme border text-white">
 <h5 class="text-center">@Title</h5>
 @ChildContent
</div>

@code {
 [Parameter]
 public string Theme { get; set; }

Figure 34-5.  Using a custom binding

Chapter 34 ■ Using Blazor Server, Part 2

906

 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }
}

To receive child content, a component defines a property named ChildContent whose type is RenderFragment and that has
been decorated with the Parameter attribute. The @ChildContent expression includes the child content in the component’s HTML
output. The component in the listing wraps its child content in a div element that is styled using a Bootstrap theme color and that
displays a title. The name of the theme color and the text of the title are also received as parameters.

RESTRICTING ELEMENT REUSE

When updating the content presented to the user, Blazor will reuse elements if it can because creating new elements is a
relatively expensive operation. This is particularly true when displaying elements for a sequence of values, such as with @for or
@foreach expressions. If the sequence changes, Blazor will reuse the elements it created for the old data values to display the
new data.

This can cause problems if changes have been made to the elements outside of the control of Blazor, such as with custom
JavaScript code. Blazor isn’t aware of the changes, which will persist when the elements are reused. Although this is a rare
situation, you can restrict the reuse of elements by using an @key attribute and providing an expression that associates the
element with one of the data values in the sequence, like this:

...
@foreach (Person p in People) {
 <tr @key="p.PersonId" class="@GetClass(p.Location.City)">

 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
}
...

Blazor will reuse an element only if there is a data item that has the same key. For other values, new elements will be created.

Child content is defined by adding HTML elements between the start and end tags when applying the component, as shown
in Listing 34-16.

Listing 34-16.  Defining Child Content in the PeopleList.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </tbody>
</table>

Chapter 34 ■ Using Blazor Server, Part 2

907

<ThemeWrapper Theme="info" Title="Location Selector">
 <SelectFilter values="@Cities" title="@SelectTitle"
 @bind-SelectedValue="SelectedCity" />
 <button class="btn btn-primary"
 @onclick="@(() => SelectedCity = "San Jose")">
 Change
 </button>
</ThemeWrapper>

@code {

 // ...statements omitted for brevity...
}

No additional attributes are required to configure the child content, which is processed and assigned to the ChildContent
property automatically. To see how the ThemeWrapper component presents its child content, restart ASP.NET Core and request
http://localhost:5000/controllers. You will see the configuration attributes that selected the theme and the title text used to
produce the response shown in Figure 34-6.

�Creating Template Components
Template components bring more structure to the presentation of child content, allowing multiple sections of content to be
displayed. Template components are a good way of consolidating features that are used throughout an application to prevent the
duplication of code and content.

To see how this works, add a Razor Component named TableTemplate.razor to the Blazor folder with the content shown in
Listing 34-17.

Listing 34-17.  The Contents of the TableTemplate.razor File in the Blazor Folder

<table class="table table-sm table-bordered table-striped">
 @if (Header != null) {
 <thead>@Header</thead>
 }
 <tbody>@Body</tbody>
</table>

@code {
 [Parameter]
 public RenderFragment Header { get; set; }

Figure 34-6.  Using child content

Chapter 34 ■ Using Blazor Server, Part 2

908

 [Parameter]
 public RenderFragment Body { get; set; }
}

The component defines a RenderFragment property for each region of child content it supports. The TableTemplate component
defines two RenderFragment properties, named Header and Body, which represent the content sections of a table. Each region of
child content is rendered using a Razor expression, @Header and @Body, and you can check to see whether content has been provided
for a specific section by checking to see whether the property value is null, which this component does for the Header section.

When using a template component, the content for each region is enclosed in an HTML element whose tag matches the name
of the corresponding RenderFragment property, as shown in Listing 34-18.

Listing 34-18.  Applying a Template Component in the PeopleList.razor File in the Blazor Folder

<TableTemplate>
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <Body>
 @foreach (Person p in People) {
 <tr class="@GetClass(p.Location.City)">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </tr>
 }
 </Body>
</TableTemplate>

<ThemeWrapper Theme="info" Title="Location Selector">
 <SelectFilter values="@Cities" title="@SelectTitle"
 @bind-SelectedValue="SelectedCity" />
 <button class="btn btn-primary"
 @onclick="@(() => SelectedCity = "San Jose")">
 Change
 </button>
</ThemeWrapper>

@code {

 // ...statements omitted for brevity...
}

The child content is structured into sections that correspond to the template component’s properties, Header and Body, which
leaves the TableTemplate component responsible for the table structure and the PeopleList component responsible for providing
the detail. Restart ASP.NET Core and request http://localhost:5000/controllers, and you will see the output produced by the
template component, as shown in Figure 34-7.

Chapter 34 ■ Using Blazor Server, Part 2

909

�Using Generic Type Parameters in Template Components
The template component I created in the previous section is useful, in the sense that it provides a consistent representation of a
table that I can use throughout the example application. But it is also limited because it relies on the parent component to take
responsibility for generating the rows for the table body. The template component doesn’t have any insight into the content it
presents, which means it cannot do anything with that content other than display it.

Template components can be made data-aware with the use of a generic type parameter, which allows the parent component to
provide a sequence of data objects and a template for presenting them. The template component becomes responsible for generating
the content for each data object and, consequently, can provide more useful functionality. As a demonstration, I am going to add
support to the template component for selecting how many table rows are displayed and for selecting table rows. The first step is to
add a generic type parameter to the component and use it to render the content for the table body, as shown in Listing 34-19.

Listing 34-19.  Adding a Generic Type Parameter in the TableTemplate.razor File in the Blazor Folder

@typeparam RowType

<table class="table table-sm table-bordered table-striped">
 @if (Header != null) {
 <thead>@Header</thead>
 }
 <tbody>
 @foreach (RowType item in RowData) {
 <tr>@RowTemplate(item)</tr>
 }
 </tbody>
</table>

Figure 34-7.  Using a template component

Chapter 34 ■ Using Blazor Server, Part 2

910

@code {
 [Parameter]
 public RenderFragment Header { get; set; }

 [Parameter]
 public RenderFragment<RowType> RowTemplate{ get; set; }

 [Parameter]
 public IEnumerable<RowType> RowData { get; set; }
}

The generic type parameter is specified using the @typeparam attribute, and, in this case, I have given the parameter the name
RowType because it will refer to the data type for which the component will generate table rows.

The data the component will process is received by adding a property whose type is a sequence of objects of the generic type. I
have named the property RowData, and its type is IEnumerable<RowType>. The content the component will display for each object is
received using a RenderFragment<T> property. I have named this property RowTemplate, and its type is RenderFragment<RowType>,
reflecting the name I selected for the generic type parameter.

When a component receives a content section through a RenderFragment<T> property, it can render it for a single object by
invoking the section as a method and using the object as the argument, like this:

...
@foreach (RowType item in RowData) {
 <tr>@RowTemplate(item)</tr>
}
...

This fragment of code enumerates the RowType objects in the RowData sequence and renders the content section received
through the RowTemplate property for each of them.

�Using a Generic Template Component
I have simplified the PeopleList component so it only uses the template component to produce a table of Person objects, and I have
removed earlier features, as shown in Listing 34-20.

Listing 34-20.  Using a Generic Template Component in the PeopleList.razor File in the Blazor Folder

<TableTemplate RowType="Person" RowData="People">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </RowTemplate>
</TableTemplate>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);
}

Chapter 34 ■ Using Blazor Server, Part 2

911

The RowType attribute is used to specify the value for the generic type argument. The RowData attribute specifies the data the
template component will process.

The RowTemplate element denotes the elements that will be produced for each data object. When defining a content section
for a RenderFragment<T> property, the Context attribute is used to assign a name to the current object being processed. In this case,
the Context attribute is used to assign the name p to the current object, which is then referred to in the Razor expressions used to
populate the content section’s elements.

The overall effect is that the template component is configured to display Person objects. The component will generate a table
row for each Person, which will contain td elements whose content is set using the current Person object’s properties.

Since I removed properties that were decorated with the Parameter attribute in Listing 34-20, I need to remove the
corresponding attributes from the element that applies the PepleList component, as shown in Listing 34-21.

Listing 34-21.  Removing Attributes in the Index.cshtml File in the Views/Home Folder

@model PeopleListViewModel

<h4 class="bg-primary text-white text-center p-2">People</h4>

<component type="typeof(Advanced.Blazor.PeopleList)" render-mode="Server" />

To see the generic template component, restart ASP.NET Core and request http://localhost:5000/controllers. The data and
content sections provided by the PeopleList component have been used by the TableTemplate component to produce the table
shown in Figure 34-8.

�Adding Features to the Generic Template Component
This may feel like a step backward, but, as you will see, giving the template component insight into the data it handles sets the
foundation for adding features, as shown in Listing 34-22.

Figure 34-8.  Using a generic template component

Chapter 34 ■ Using Blazor Server, Part 2

912

Listing 34-22.  Adding a Feature in the TableTemplate.razor File in the Blazor Folder

@typeparam RowType

<div class="container-fluid">
 <div class="row">
 <div class="col">
 <SelectFilter Title="@("Sort")" Values="@SortDirectionChoices"
 @bind-SelectedValue="SortDirectionSelection" />
 </div>
 <div class="col">
 <SelectFilter Title="@("Highlight")" Values="@HighlightChoices()"
 @bind-SelectedValue="HighlightSelection" />
 </div>
 </div>
</div>

<table class="table table-sm table-bordered table-striped">
 @if (Header != null) {
 <thead>@Header</thead>
 }
 <tbody>
 @foreach (RowType item in SortedData()) {
 <tr class="@IsHighlighted(item)">@RowTemplate(item)</tr>
 }
 </tbody>
</table>

@code {
 [Parameter]
 public RenderFragment Header { get; set; }

 [Parameter]
 public RenderFragment<RowType> RowTemplate{ get; set; }

 [Parameter]
 public IEnumerable<RowType> RowData { get; set; }

 [Parameter]
 public Func<RowType, string> Highlight { get; set; }

 public IEnumerable<string> HighlightChoices() =>
 RowData.Select(item => Highlight(item)).Distinct();

 public string HighlightSelection { get; set; }

 public string IsHighlighted(RowType item) =>
 Highlight(item) == HighlightSelection ? "bg-dark text-white": "";

 [Parameter]
 public Func<RowType, string> SortDirection { get; set; }

 public string[] SortDirectionChoices =
 new string[] { "Ascending", "Descending" };

 public string SortDirectionSelection{ get; set; } = "Ascending";

Chapter 34 ■ Using Blazor Server, Part 2

913

 public IEnumerable<RowType> SortedData() =>
 SortDirectionSelection == "Ascending"
 ? RowData.OrderBy(SortDirection)
 : RowData.OrderByDescending(SortDirection);
}

The changes present the user with two select elements that are presented using the SelectFilter component created earlier
in the chapter. These new elements allow the user to sort the data in ascending and descending order and to select a value used to
highlight rows in the table. The parent component provides additional parameters that give the template component functions that
select the properties used for sorting and highlighting, as shown in Listing 34-23.

Listing 34-23.  Configuring Template Component Features in the PeopleList.razor File in the Blazor Folder

<TableTemplate RowType="Person" RowData="People"
 Highlight="@(p => p.Location.City)" SortDirection="@(p => p.Surname)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </RowTemplate>
</TableTemplate>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);
}

The Highlight attribute provides the template component with a function that selects the property used for highlighting table
rows, and the SortDirection attribute provides a function that selects a property used for sorting. To see the effect, restart ASP.NET
Core and request http://localhost:5000/controllers. The response will contain the new select elements, which can be used to
change the sort order or select a city for filtering, as shown in Figure 34-9.

Chapter 34 ■ Using Blazor Server, Part 2

914

�Reusing a Generic Template Component
The features added to the template component all relied on the generic type parameter, which allows the component to modify the
content it presents without being tied to a specific class. The result is a component that can be used to display, sort, and highlight
any data type wherever a table is required. Add a Razor Component named DepartmentList.razor to the Blazor folder with the
content shown in Listing 34-24.

Listing 34-24.  The Contents of the DepartmentList.razor File in the Blazor Folder

<TableTemplate RowType="Department" RowData="Departments"
 Highlight="@(d => d.Name)"
 SortDirection="@(d => d.Name)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
 </Header>
 <RowTemplate Context="d">
 <td>@d.Departmentid</td>
 <td>@d.Name</td>
 <td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
 <td>
 @(String.Join(", ", d.People.Select(p => p.Location.City).Distinct()))
 </td>
 </RowTemplate>
</TableTemplate>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Department> Departments => Context.Departments
 .Include(d => d.People).ThenInclude(p => p.Location);
}

Figure 34-9  Adding features to a template component

Chapter 34 ■ Using Blazor Server, Part 2

915

The TableTemplate component is used to present the user with a list of the Department objects in the database, along with
details of the related Person and Location objects, which are queried with the Entity Framework Core Include and ThenInclude
methods. Listing 34-25 changes the Razor Component displayed by the Razor Page named Blazor.

Listing 34-25.  Changing the Component in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Departments</h4>

<component type="typeof(Advanced.Blazor.DepartmentList)" render-mode="Server" />

Restart ASP.NET Core and request http://localhost:5000/pages/blazor. The response will be presented using the templated
component, as shown in Figure 34-10.

�Cascading Parameters
As the number of components increases, it can be useful for a component to provide configuration data to descendants deep in
the hierarchy of components. This can be done by having each component in the chain receive the data and pass it on to all of its
children, but that is error-prone and requires every component to participate in the process, even if none of its descendants uses the
data it passes on.

Blazor provides a solution to this problem by supporting cascading parameters, in which a component provides data values
that are available directly to any of its descendants, without being relayed by intermediate components. Cascading parameters are
defined using the CascadingValue component, which is used to wrap a section of content, as shown in Listing 34-26.

Listing 34-26.  Creating a Cascading Parameter in the DepartmentList.razor File in the Blazor Folder

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
 <TableTemplate RowType="Department" RowData="Departments"
 Highlight="@(d => d.Name)"
 SortDirection="@(d => d.Name)">
 <Header>

Figure 34-10.  Reusing a generic template component

Chapter 34 ■ Using Blazor Server, Part 2

916

 <tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
 </Header>
 <RowTemplate Context="d">
 <td>@d.Departmentid</td>
 <td>@d.Name</td>
 <td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
 <td>
 @(String.Join(", ",
 d.People.Select(p => p.Location.City).Distinct()))
 </td>
 </RowTemplate>
 </TableTemplate>
</CascadingValue>

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Department> Departments => Context.Departments
 .Include(d => d.People).ThenInclude(p => p.Location);

 public string Theme { get; set; } = "info";
 public string[] Themes = new string[] { "primary", "info", "success" };
}

The CascadingValue element makes a value available to the components it encompasses and their descendants. The Name
attribute specifies the name of the parameter, the Value attribute specifies the value, and the isFixed attribute is used to specify
whether the value will change. The CascadingValue element has been used in Listing 34-26 to create a cascading parameter named
BgTheme, whose value is set by an instance of the SelectFilter component that presents the user with a selection of Bootstrap CSS
theme names.

■■ Tip E ach CascadingValue element creates one cascading parameter. If you need to pass on multiple values, then you can nest the
CascadingValue or create a simple parameter that provides multiple settings through a dictionary.

Cascading parameters are received directly by the components that require them with the CascadingParameter attribute, as
shown in Listing 34-27.

Listing 34-27.  Receiving a Cascading Parameter in the SelectFilter.razor File in the Blazor Folder

<div class="form-group p-2 bg-@Theme @TextColor()">
 <label for="select-@Title">@Title</label>
 <select name="select-@Title" class="form-control"
 @onchange="HandleSelect" value="@SelectedValue">
 <option disabled selected>Select @Title</option>
 @foreach (string val in Values) {
 <option value="@val" selected="@(val == SelectedValue)">
 @val
 </option>
 }
 </select>
</div>

Chapter 34 ■ Using Blazor Server, Part 2

917

@code {

 [Parameter]
 public IEnumerable<string> Values { get; set; } = Enumerable.Empty<string>();

 [Parameter]
 public string SelectedValue { get; set; }

 [Parameter]
 public string Title { get; set; } = "Placeholder";

 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> Attrs { get; set; }

 [Parameter]
 public EventCallback<string> SelectedValueChanged { get; set; }

 public async Task HandleSelect(ChangeEventArgs e) {
 SelectedValue = e.Value as string;
 await SelectedValueChanged.InvokeAsync(SelectedValue);
 }

 [CascadingParameter(Name ="BgTheme")]
 public string Theme { get; set; }

 public string TextColor() => Theme == null ? "" : "text-white";
}

The CascadingParameter attribute’s Name argument is used to specify the name of the cascading parameter. The BgTheme
parameter defined in Listing 34-26 is received by the Theme property in Listing 34-27 and used to set the background for the
component. Restart ASP.NET Core and request http://localhost:5000/pages/blazor, which produces the response shown in
Figure 34-11.

There are three instances of the SelectFilter component used in this example, but only two of them are within the hierarchy
contained by the CascadingValue element. The other instance is defined outside of the CascadingValue element and does not
receive the cascading value.

Figure 34-11.  Using a cascading parameter

Chapter 34 ■ Using Blazor Server, Part 2

918

�Handling Errors
In the following sections, I describe the features Blazor provides for dealing with connection errors and unhandled application errors.

�Handling Connection Errors
Blazor relies on its persistent HTTP connection between the browser and the ASP.NET Core server. The application cannot function
when the connection is disrupted, and a modal error message is displayed that prevents the user from interacting with components.

Blazor allows the connection errors to be customized by defining an element with a specific id, as shown in Listing 34-28.

Listing 34-28.  Defining a Connection Error Element in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Departments</h4>

<link rel="stylesheet" href="connectionErrors.css" />

<div id="components-reconnect-modal"
 class="h4 bg-dark text-white text-center my-2 p-2 components-reconnect-hide">
 Blazor Connection Lost
 <div class="reconnect">
 Trying to reconnect...
 </div>
 <div class="failed">
 Reconnection Failed.
 <button class="btn btn-light" onclick="window.Blazor.reconnect()">
 Reconnect
 </button>
 </div>
 <div class="rejected">
 Reconnection Rejected.
 <button class="btn btn-light" onclick="location.reload()">
 Reload
 </button>
 </div>
</div>

<component type="typeof(Advanced.Blazor.DepartmentList)" render-mode="Server" />

The id attribute of the custom error element must be components-reconnect-modal. When there is a connection error, Blazor
locates this element and adds it to one of four classes, described in Table 34-2.

Table 34-2.  The Connection Error Classes

Name Description

components-
reconnect-show

The element is added to this class when the connection has been lost and Blazor is attempting a
reconnection. The error message should be displayed to the user, and interaction with the Blazor content
should be prevented.

components-
reconnect-hide

The element is added to this class if the connection is reestablished. The error message should be hidden,
and interaction should be permitted.

components-
reconnect-failed

The element is added to this class if Blazor reconnection fails. The user can be presented with a button
that invokes window.Blazor.reconnect() to attempt reconnection again.

components-
reconnect-rejected

The element is added to this class if Blazor is able to reach the server, but the user’s connection state has
been lost. This typically happens when the server has been restarted. The user can be presented with a
button that invokes location.reload() to reload the application and try again.

Chapter 34 ■ Using Blazor Server, Part 2

919

The element isn’t added to any of these classes initially, so I have explicitly added it to the components-reconnect-hide class so
that it isn’t visible until a problem occurs.

I want to present specific messages to the user for each of the conditions that can arise during reconnection. To this
end, I added elements that display a message for each condition. To manage their visibility, add a CSS Stylesheet named
connectionErrors.css to the wwwroot folder and use it to define the styles shown in Listing 34-29.

Listing 34-29.  The Contents of the connectionErrors.css File in the wwwroot Folder

#components-reconnect-modal {
 position: fixed; top: 0; right: 0; bottom: 0;
 left: 0; z-index: 1000; overflow: hidden; opacity: 0.9;
}

.components-reconnect-hide { display: none; }

.components-reconnect-show { display: block; }

.components-reconnect-show > .reconnect { display: block; }

.components-reconnect-show > .failed,

.components-reconnect-show > .rejected {
 display: none;
}

.components-reconnect-failed > .failed {
 display: block;
}
.components-reconnect-failed > .reconnect,
.components-reconnect-failed > .rejected {
 display: none;
}

.components-reconnect-rejected > .rejected {
 display: block;
}
.components-reconnect-rejected > .reconnect,
.components-reconnect-rejected > .failed {
 display: none;
}

These styles show the components-reconnect-modal element as a modal item, with its visibility determined by the components-
reconnect-hide and components-reconnect-show classes. The visibility of the specific messages is toggled based on the application
of the classes in Table 34-2.

To see the effect, restart ASP.NET Core and request http://localhost:5000/pages/blazor. Wait until the component is
displayed and then stop the ASP.NET Core server. You will see an initial error message as Blazor attempts to reconnect. After a few
seconds, you will see the message that indicates that reconnection has failed.

Restart ASP.NET Core and request http://localhost:5000/pages/blazor. Wait until the component is displayed and then
restart ASP.NET Core. This time Blazor will be able to connect to the server, but the connection will be rejected because the server
restart has caused the connection state to be lost. Figure 34-12 shows both sequences of error messages.

■■ Tip I t is not possible to test successful connection recovery with just the browser because there is no way to interrupt the persistent
HTTP connection. I use the excellent Fiddler proxy, https://www.telerik.com/fiddler, which allows me to terminate the connection
without stopping the ASP.NET Core server.

https://www.telerik.com/fiddler

Chapter 34 ■ Using Blazor Server, Part 2

920

�Handling Uncaught Application Errors
Blazor does not respond well to uncaught application errors, which are almost always treated as terminal. To see the default error
behavior, add the elements shown in Listing 34-30 to the DepartmentList component.

Listing 34-30.  Adding Elements in the DepartmentList.razor File in the Blazor Folder

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
 <TableTemplate RowType="Department" RowData="Departments"
 Highlight="@(d => d.Name)"
 SortDirection="@(d => d.Name)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
 </Header>
 <RowTemplate Context="d">
 <td>@d.Departmentid</td>
 <td>@d.Name</td>
 <td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
 <td>
 @(String.Join(", ",
 d.People.Select(p => p.Location.City).Distinct()))
 </td>
 </RowTemplate>
 </TableTemplate>
</CascadingValue>

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />

<button class="btn btn-danger" @onclick="@(() => throw new Exception())">
 Error
</button>

@code {

 // ...statements omitted for brevity...
}

Figure 34-12.  Handling connection errors

Chapter 34 ■ Using Blazor Server, Part 2

921

Restart ASP.NET Core, request http://localhost:5000/pages/blazor, and click the Error button. There is no visible change
in the browser, but the exception thrown at the server when the button was clicked has proved fatal: the user can still choose values
using the select elements because these are presented by the browser, but the event handlers that respond to selections no longer
work, and the application is essentially dead.

When there is an unhandled application error, Blazor looks for an element whose id is blazor-error-ui and sets its CSS
display property to block. Listing 34-31 adds an element with this id to the Blazor.cshtml file styled to present a useful message.

Listing 34-31.  Adding an Error Element in the Blazor.cshtml File in the Pages Folder

@page "/pages/blazor"

<h4 class="bg-primary text-white text-center p-2">Departments</h4>

<link rel="stylesheet" href="connectionErrors.css" />

<div id="components-reconnect-modal"
 class="h4 bg-dark text-white text-center my-2 p-2 components-reconnect-hide">
 Blazor Connection Lost
 <div class="reconnect">
 Trying to reconnect...
 </div>
 <div class="failed">
 Reconnection Failed.
 <button class="btn btn-light" onclick="window.Blazor.reconnect()">
 Reconnect
 </button>
 </div>
 <div class="rejected">
 Reconnection Rejected.
 <button class="btn btn-light" onclick="location.reload()">
 Reload
 </button>
 </div>
</div>

<div id="blazor-error-ui"
 class="text-center bg-danger h6 text-white p-2 fixed-top w-100"
 style="display:none">
 An error has occurred. This application will not respond until reloaded.
 <button class="btn btn-sm btn-primary" onclick="location.reload()">
 Reload
 </button>
</div>

<component type="typeof(Advanced.Blazor.DepartmentList)" render-mode="Server" />

When the element is shown, the user will be presented with a warning and a button that reloads the browser. To see the effect,
restart ASP.NET Core, request http://localhost:5000/pages/blazor, and click the Error button, which will display the message
shown in Figure 34-13.

Chapter 34 ■ Using Blazor Server, Part 2

922

�Summary
In this chapter, I showed you how to combine Razor Components to create more complex features. I showed you how to create
parent/child relationships between components, how to configure components with attributes, and how to create custom events to
signal when important changes occur. I also showed you how a component can receive content from its parent and how to generate
content consistently using template components, which can be defined with one or more generic type parameters. I finished the
chapter by demonstrating how Blazor applications can react to connection and application errors. In the next chapter, I describe the
advanced features that Blazor provides.

Figure 34-13.  Displaying an error message

923© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_35

CHAPTER 35

Advanced Blazor Features

In this chapter, I explain how Blazor supports URL routing so that multiple components can be displayed through a single request.
I show you how to set up the routing system, how to define routes, and how to create common content in a layout.

This chapter also covers the component lifecycle, which allows components to participate actively in the Blazor
environment, which is especially important once you start using the URL routing feature. Finally, this chapter explains the
different ways that components can interact outside of the parent/child relationships described in earlier chapters. Table 35-1
puts these features in context.

Table 35-2 summarizes the chapter.

Table 35-1.  Putting Blazor Routing and Lifecycle Component Interactions in Context

Question Answer

What are they? The routing feature allows components to respond to changes in the URL without requiring a new
HTTP connection. The lifecycle feature allows components to define methods that are invoked as the
application executes, and the interaction features provide useful ways of communicating between
components and with other JavaScript code.

Why are they useful? These features allow the creation of complex applications that take advantage of the Blazor architecture.

How are they used? URL routing is set up using built-in components and configured using @page directives. The lifecycle
features are used by overriding methods in a component’s @code section. The interaction features are
used in different ways depending on what a component is interacting with.

Are there any pitfalls or
limitations?

These are advanced features that must be used with care, especially when creating interactions outside
of Blazor.

Are there any
alternatives?

All of the features described in this chapter are optional, but it is hard to create complex applications
without them.

Table 35-2.  Chapter Summary

Problem Solution Listing

Selecting components based on the current URL Use URL routing 6–12

Defining content that will be used by multiple components Use a layout 13, 14

Responding to the stages of the component’s lifecycle Implement the lifecycle notification methods 15–17

Coordinating the activities of multiple components Retain references with the @ref expression 18–19

Coordinating with code outside of Blazor Use the interoperability features 20–35

Chapter 35 ■ Advanced Blazor Features

924

�Preparing for This Chapter
This chapter uses the Advanced project from Chapter 35. No changes are required for this chapter.

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/
apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Open a new PowerShell command prompt, navigate to the folder that contains the Advanced.csproj file, and run the command
shown in Listing 35-1 to drop the database.

Listing 35-1.  Dropping the Database

dotnet ef database drop --force

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 35-2.

Listing 35-2.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/controllers, which will display a list of data items. Request
http://localhost:5000/pages/blazor, and you will see the component from Chapter 34 that I used to demonstrate bindings.
Figure 35-1 shows both responses.

�Using Component Routing
Blazor includes support for selecting the components to display to the user based on the ASP.NET Core routing system so that the
application responds to changes in the URL by displaying different Razor Components. To get started, add a Razor Component
named Routed.razor to the Blazor folder with the content shown in Listing 35-3.

Figure 35-1.  Running the example application

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 35 ■ Advanced Blazor Features

925

Listing 35-3.  The Contents of the Routed.razor File in the Blazor Folder

<Router AppAssembly="typeof(Startup).Assembly">
 <Found>
 <RouteView RouteData="@context" />
 </Found>
 <NotFound>
 <h4 class="bg-danger text-white text-center p-2">
 No Matching Route Found
 </h4>
 </NotFound>
</Router>

The Router component is included with ASP.NET Core and provides the link between Blazor and the ASP.NET Core routing
features. Router is a generic template component that defines Found and NotFound sections.

The Router component requires the AppAssembly attribute, which specifies the .NET assembly to use. For most projects this is
the current assembly, which is specified like this:

...
<Router AppAssembly="typeof(Startup).Assembly">
...

The type of the Router component’s Found property is RenderFragment<RouteData>, which is passed on to the RouteView
component through its RouteData property, like this:

...
<Found>
 <RouteView RouteData="@context" />
</Found>
...

The RouteView component is responsible for displaying the component matched by the current route and, as I explain shortly,
for displaying common content through layouts. The type of the NotFound property is RenderFragment, without a generic type
argument, and displays a section of content when no component can be found for the current route.

�Preparing the Razor Page
Individual components can be displayed in existing controller views and Razor Pages, as previous chapters have shown. But when
using component routing, it is preferable to create a set of URLs that are distinct to working with Blazor because the way that URLs
are supported is limited and leads to tortured workarounds. Add a Razor Page named _Host.cshtml to the Pages folder and add the
content shown in Listing 35-4.

Listing 35-4.  The Contents of the _Host.cshtml File in the Pages Folder

@page "/"
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <base href="~/" />
</head>
<body>

Chapter 35 ■ Advanced Blazor Features

926

 <div class="m-2">
 <component type="typeof(Advanced.Blazor.Routed)" render-mode="Server" />
 </div>
 <script src="_framework/blazor.server.js"></script>
</body>
</html>

This page contains a component element that applies the Routed component defined in Listing 35-4 and a script element for the
Blazor JavaScript code. There is also a link element for the Bootstrap CSS stylesheet. Alter the configuration for the example application
to use the _Host.cshtml file as a fallback when requests are not matched by the existing URL routes, as shown in Listing 35-5.

Listing 35-5.  Adding the Fallback in the Startup.cs File in the Advanced Folder

...
public void Configure(IApplicationBuilder app, DataContext context) {

 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseRouting();

 app.UseEndpoints(endpoints => {
 endpoints.MapControllerRoute("controllers",
 "controllers/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
 });

 SeedData.SeedDatabase(context);
}
...

The MapFallbackToPage method configures the routing system to use the _Host page as a last resort for unmatched requests.

�Adding Routes to Components
Components declare the URLs for which they should be displayed using @page directives. Listing 35-6 adds the @page directive to the
PeopleList component.

Listing 35-6.  Adding a Directive in the PeopleList.razor File in the Blazor Folder

@page "/people"

<TableTemplate RowType="Person" RowData="People"
 Highlight="@(p => p.Location.City)" SortDirection="@(p => p.Surname)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </RowTemplate>
</TableTemplate>

@code {

Chapter 35 ■ Advanced Blazor Features

927

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);
}

The directive in Listing 35-6 means the PeopleList component will be displayed for the http://localhost:5000/people
URL. Components can declare support for more than one route using multiple @page directives. Listing 35-7 adds @page directives to
the DepartmentList component to support two URLs.

Listing 35-7.  Adding a Directive in the DepartmentList.razor File in the Blazor Folder

@page "/departments"
@page "/depts"

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
 <TableTemplate RowType="Department" RowData="Departments"
 Highlight="@(d => d.Name)"
 SortDirection="@(d => d.Name)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
 </Header>
 <RowTemplate Context="d">
 <td>@d.Departmentid</td>
 <td>@d.Name</td>
 <td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
 <td>
 @(String.Join(", ",
 d.People.Select(p => p.Location.City).Distinct()))
 </td>
 </RowTemplate>
 </TableTemplate>
</CascadingValue>

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />

<button class="btn btn-danger" @onclick="@(() => throw new Exception())">
 Error
</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Department> Departments => Context.Departments
 .Include(d => d.People).ThenInclude(p => p.Location);

 public string Theme { get; set; } = "info";
 public string[] Themes = new string[] { "primary", "info", "success" };
}

Chapter 35 ■ Advanced Blazor Features

928

Most of the routing pattern features described in Chapter 13 can be used in @page expressions, except catchall segment
variables and optional segment variables. Using two @page expressions, one with a segment variable, can be used to re-create the
optional variable feature, as demonstrated in Chapter 36, where I show you how to implement a CRUD application using Blazor.

To see the basic Razor Component routing feature at work, restart ASP.NET Core and request http://localhost:5000/people
and http://localhost:5000/depts. Each URL displays one of the components in the application, as shown in Figure 35-2.

�Setting a Default Component Route
The configuration change in Listing 35-5 set up the fallback route for requests in the Startup class. A corresponding route is required
in one of the application’s components to identify the component that should be displayed for the application’s default URL,
http://localhost:5000, as shown in Listing 35-8.

Listing 35-8.  Defining the Default Route in the PeopleList.razor File in the Blazor Folder

@page "/"
@page "/people"

<TableTemplate RowType="Person" RowData="People"
 Highlight="@(p => p.Location.City)" SortDirection="@(p => p.Surname)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </RowTemplate>
</TableTemplate>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);
}

Figure 35-2.  Enabling Razor Component routing in the example application

Chapter 35 ■ Advanced Blazor Features

929

Restart ASP.NET Core and request http://localhost:5000, and you will see the content produced by the PeopleList
component, as shown in Figure 35-3.

�Navigating Between Routed Components
The basic routing configuration is in place, but it may not be obvious why using routes offers any advantages over the independent
components demonstrated in earlier chapters. Improvements come through the NavLink component, which renders anchor
elements that are wired into the routing system. Listing 35-9 adds NavLink to the PeopleList component.

Listing 35-9.  Adding Navigation in the PeopleList.razor File in the Blazor Folder

@page "/"
@page "/people"

<TableTemplate RowType="Person" RowData="People"
 Highlight="@(p => p.Location.City)" SortDirection="@(p => p.Surname)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th></tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 </RowTemplate>
</TableTemplate>

<NavLink class="btn btn-primary" href="/depts">Departments</NavLink>

@code {

 [Inject]
 public DataContext Context { get; set; }

Figure 35-3.  Displaying a component for the default URL

Chapter 35 ■ Advanced Blazor Features

930

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);
}

Unlike the anchor elements used in other parts of ASP.NET Core, Navlink components are configured using URLs and not
component, page, or action names. The NavLink in this example navigates to the URL supported by the @page directive of the
DepartmentList component.

Navigation can also be performed programmatically, which is useful when a component responds to an event and then needs
to navigate to a different URL, as shown in Listing 35-10.

Listing 35-10.  Navigating Programmatically in the DepartmentList.razor File in the Blazor Folder

@page "/departments"
@page "/depts"

<CascadingValue Name="BgTheme" Value="Theme" IsFixed="false" >
 <TableTemplate RowType="Department" RowData="Departments"
 Highlight="@(d => d.Name)"
 SortDirection="@(d => d.Name)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>People</th><th>Locations</th></tr>
 </Header>
 <RowTemplate Context="d">
 <td>@d.Departmentid</td>
 <td>@d.Name</td>
 <td>@(String.Join(", ", d.People.Select(p => p.Surname)))</td>
 <td>
 @(String.Join(", ",
 d.People.Select(p => p.Location.City).Distinct()))
 </td>
 </RowTemplate>
 </TableTemplate>
</CascadingValue>

<SelectFilter Title="@("Theme")" Values="Themes" @bind-SelectedValue="Theme" />

<button class="btn btn-primary" @onclick="HandleClick">People</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Department> Departments => Context.Departments
 .Include(d => d.People).ThenInclude(p => p.Location);

 public string Theme { get; set; } = "info";
 public string[] Themes = new string[] { "primary", "info", "success" };

 [Inject]
 public NavigationManager NavManager { get; set; }

 public void HandleClick() => NavManager.NavigateTo("/people");
}

The NavigationManager class provides programmatic access to navigation. Table 35-3 describes the most important members
provided by the NavigationManager class.

Chapter 35 ■ Advanced Blazor Features

931

The NavigationManager class is provided as a service and is received by Razor Components using the Inject attribute, which
provides access to the dependency injection features described in Chapter 14.

The NavigationManager.NavigateTo method navigates to a URL and is used in this example to navigate to the /people URL,
which will be handled by the PeopleList component.

To see why routing and navigation are important, restart ASP.NET Core and request http://localhost:5000/people. Click the
Departments link, which is styled as a button, and the DepartmentList component will be displayed. Click the People link, and you
will return to the PeopleList component, as shown in Figure 35-4.

If you perform this sequence with the F12 developer tools open, you will see that the transition from one component to the
next is done without needing a separate HTTP request, even though the URL displayed by the browser changes. Blazor delivers the
content rendered by each component over the persistent HTTP connection that is established when the first component is displayed
and uses a JavaScript API to navigate without loading a new HTML document.

Table 35-3.  Useful NavigationManager Members

Name Description

NavigateTo(url) This method navigates to the specified URL without sending a new HTTP request.

ToAbsoluteUri(path) This method converts a relative path to a complete URL.

ToBaseRelativePath(url) This method gets a relative path from a complete URL.

LocationChanged This event is triggered when the location changes.

Uri This property returns the current URL.

Figure 35-4.  Navigating between routed components

Chapter 35 ■ Advanced Blazor Features

932

■■ Tip T he NavigationManager.NavigateTo method accepts an optional argument that, when true, forces the browser to send a
new HTTP request and reload the HTML document.

�Receiving Routing Data
Components can receive segment variables by decorating a property with the Parameter attribute. To demonstrate, add a Razor
Component named PersonDisplay.razor to the Blazor folder with the content shown in Listing 35-11.

Listing 35-11.  The Contents of the PersonDisplay.razor in the Blazor Folder

@page "/person"
@page "/person/{id:long}"

<h5>Editor for Person: @Id</h5>

<NavLink class="btn btn-primary" href="/people">Return</NavLink>

@code {

 [Parameter]
 public long Id { get; set; }
}

This component doesn’t do anything other than displaying the value it receives from the routing data until I add features
later in the chapter. The @page expression includes a segment variable named id, whose type is specified as long. The component
receives the value assigned to the segment variable by defining a property with the same name and decorating it with the Parameter
attribute.

■■ Tip  If you don’t specify a type for segment variables in the @page expression, then you must set the type of the property to be string.

Listing 35-12 uses the NavLink component to create navigation links for each of the Person objects displayed by the PeopleList
component.

Listing 35-12.  Adding Navigation Links in the PeopleList.razor File in the Blazor Folder

@page "/"
@page "/people"

<TableTemplate RowType="Person" RowData="People"
 Highlight="@(p => p.Location.City)" SortDirection="@(p => p.Surname)">
 <Header>
 <tr><th>ID</th><th>Name</th><th>Dept</th><th>Location</th>
 <td></td>
 </tr>
 </Header>
 <RowTemplate Context="p">
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City, @p.Location.State</td>
 <td>
 <NavLink class="btn btn-sm btn-info" href="@GetEditUrl(p.PersonId)">
 Edit
 </NavLink>

Chapter 35 ■ Advanced Blazor Features

933

 </td>
 </RowTemplate>
</TableTemplate>

<NavLink class="btn btn-primary" href="/depts">Departments</NavLink>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People => Context.People
 .Include(p => p.Department)
 .Include(p => p.Location);

 public string GetEditUrl(long id) => $"/person/{id}";
}

Razor Components do no support mixing static content and Razor expressions in attribute values. Instead, I have defined the
GetEditUrl method to generate the navigation URLs for each Person object, which is called to produce the value for the NavLink
href attributes.

Restart ASP.NET Core, request http://localhost:5000/people, and click one of the Edit buttons. The browser will navigate
to the new URL without reloading the HTML document and display the placeholder content generated by the PersonDisplay
component, as shown in Figure 35-5, which shows how a component can receive data from the routing system.

�Defining Common Content Using Layouts
Layouts are template components that provide common content for Razor Components. To create a layout, add a Razor Component
called NavLayout.razor to the Blazor folder and add the content shown in Listing 35-13.

Listing 35-13.  The Contents of the NavLayout.razor File in the Blazor Folder

@inherits LayoutComponentBase

<div class="container-fluid">
 <div class="row">
 <div class="col-3">
 @foreach (string key in NavLinks.Keys) {
 <NavLink class="btn btn-outline-primary btn-block"
 href="@NavLinks[key]"
 ActiveClass="btn-primary text-white"
 Match="NavLinkMatch.Prefix">

Figure 35-5.  Receiving data from the routing system in a Razor Component

Chapter 35 ■ Advanced Blazor Features

934

 @key
 </NavLink>
 }
 </div>
 <div class="col">
 @Body
 </div>
 </div>
</div>

@code {

 public Dictionary<string, string> NavLinks
 = new Dictionary<string, string> {
 {"People", "/people" },
 {"Departments", "/depts" },
 {"Details", "/person" }
 };
}

Layouts use @inherits expression to specify the LayoutComponentBase class as the base for the class generated from the Razor
Component. The LayoutComponentBase class defines a RenderFragment class named Body that is used to specify the content from
components within the common content displayed by the layout. In this example, the layout component creates a grid layout that
displays a set of NavLink components for each of the components in the application. The NavLink components are configured with
two new attributes, described in Table 35-4.

The NavLink components are configured to use Prefix matching and to add the anchor elements they render to the Bootstrap
btn-primary and text-white classes when there is a match.

�Applying a Layout
There are three ways that a layout can be applied. A component can select its own layout using an @layout expression. A parent
can use a layout for its child components by wrapping them in the built-in LayoutView component. A layout can be applied to all
components by setting the DefaultLayout attribute of the RouteView component, as shown in Listing 35-14.

Listing 35-14.  Applying a Layout in the Routed.razor File in the Blazor Folder

<Router AppAssembly="typeof(Startup).Assembly">
 <Found>
 <RouteView RouteData="@context" DefaultLayout="typeof(NavLayout)" />
 </Found>
 <NotFound>
 <h4 class="bg-danger text-white text-center p-2">
 Not Matching Route Found
 </h4>
 </NotFound>
</Router>

Table 35-4.  The NavLink Configuration Attributes

Name Description

ActiveClass This attribute specifies one or more CSS classes that the anchor element rendered by the NavLink component
will be added to when the current URL matches the href attribute value.

Match This attribute specifies how the current URL is matched to the href attribute, using a value from the
NavLinkMatch enum. The values are Prefix, which considers a match if the href matches the start of the URL,
and All, which requires the entire URL to be the same.

Chapter 35 ■ Advanced Blazor Features

935

Restart ASP.NET Core and request http://localhost:5000/people. The layout will be displayed with the content rendered by
the PeopleList component. The navigation buttons on the left side of the layout can be used to navigate through the application, as
shown in Figure 35-6.

■■ Note  If you request http://localhost:5000, you will see the content from the PeopleList component, but the corresponding
navigation button will not be highlighted. I show you how to resolve this problem in the next section.

�Understanding the Component Lifecycle Methods
Razor Components have a well-defined lifecycle, which is represented with methods that components can implement to receive
notifications of key transitions. Table 35-5 describes the lifecycle methods.

Using either the OnInitialized or OnParameterSet method is useful for setting the initial state of the component. The layout
defined in the previous section doesn’t deal with the default URL because the NavLink component matches only a single URL. The
same issue exists for the DepartmentList component, which can be requested using the /departments and /depts paths.

UNDERSTANDING LIFECYCLES FOR ROUTED COMPONENTS

When using URL routing, components can be removed from the display when the URL changes. Components can implement the
System.IDisposable interface, and Blazor will call the method when the component is removed.

Figure 35-6.  Using a layout component

Table 35-5.  The Razor Component Lifecycle Methods

Name Description

OnInitialized()
OnInitializedAsync()

These methods are invoked when the component is first initialized.

OnParametersSet()
OnParametersSetAsync()

These methods are invoked after the values for properties decorated with the Parameter
attribute have been applied.

ShouldRender() This method is called before the component’s content is rendered to update the content
presented to the user. If the method returns false, the component’s content will not be
rendered, and the update is suppressed. This method does not suppress the initial rendering
for the component.

OnAfterRender(first)
OnAfterRenderAsync(first)

This method is invoked after the component’s content is rendered. The bool parameter is
true when Blazor performs the initial render for the component.

Chapter 35 ■ Advanced Blazor Features

936

Creating a component that matches multiple URLs requires the use of lifecycle methods. To understand why, add a Razor
Component named MultiNavLink.razor to the Blazor folder with the content shown in Listing 35-15.

Listing 35-15.  The Contents of the MultiNavLink.razor File in the Blazor Folder

 @ChildContent

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Parameter]
 public IEnumerable<string> Href { get; set; }

 [Parameter]
 public string Class { get; set; }

 [Parameter]
 public string ActiveClass { get; set; }

 [Parameter]
 public NavLinkMatch? Match { get; set; }

 public NavLinkMatch ComputedMatch { get =>
 Match ?? (Href.Count() == 1 ? NavLinkMatch.Prefix : NavLinkMatch.All); }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 public string ComputedClass { get; set; }

 public void HandleClick() {
 NavManager.NavigateTo(Href.First());
 }

 private void CheckMatch(string currentUrl) {
 string path = NavManager.ToBaseRelativePath(currentUrl);
 path = path.EndsWith("/") ? path.Substring(0, path.Length - 1) : path;
 bool match = Href.Any(href => ComputedMatch == NavLinkMatch.All
 ? path == href : path.StartsWith(href));
 ComputedClass = match ? $"{Class} {ActiveClass}" : Class;
 }

 protected override void OnParametersSet() {
 ComputedClass = Class;
 NavManager.LocationChanged += (sender, arg) => CheckMatch(arg.Location);
 Href = Href.Select(h => h.StartsWith("/") ? h.Substring(1) : h);
 CheckMatch(NavManager.Uri);
 }
}

This component works in the same way as a regular NavLink but accepts an array of paths to match. The component relies on
the OnParametersSet lifecycle method because some initial setup is required that cannot be performed until after values have been
assigned to the properties decorated with the Parameter attribute, such as extracting the individual paths.

Chapter 35 ■ Advanced Blazor Features

937

This component responds to changes in the current URL by listening for the LocationChanged event defined by the
NavigationManager class. The event’s Location property provides the component with the current URL, which is used to alter the
classes for the anchor element. Listing 35-16 applies the new component in the layout.

■■ Tip N otice that I have removed the Match attribute in Listing 35-14. The new component supports this attribute but defaults to
matching based on the number of paths that it receives through the href attribute.

Listing 35-16.  Applying a New Component in the NavLayout.razor File in the Blazor Folder

@inherits LayoutComponentBase

<div class="container-fluid">
 <div class="row">
 <div class="col-3">
 @foreach (string key in NavLinks.Keys) {
 <MultiNavLink class="btn btn-outline-primary btn-block"
 href="@NavLinks[key]" ActiveClass="btn-primary text-white">
 @key
 </MultiNavLink>
 }
 </div>
 <div class="col">
 @Body
 </div>
 </div>
</div>

@code {

 public Dictionary<string, string[]> NavLinks
 = new Dictionary<string, string[]> {
 {"People", new string[] {"/people", "/" } },
 {"Departments", new string[] {"/depts", "/departments" } },
 {"Details", new string[] { "/person" } }
 };
}

Restart ASP.NET Core and request http://localhost:5000 and http://localhost:5000/departments. Both URLs are
recognized, and the corresponding navigation buttons are highlighted, as shown in Figure 35-7.

Figure 35-7.  Using the lifecycle methods

Chapter 35 ■ Advanced Blazor Features

938

�Using the Lifecycle Methods for Asynchronous Tasks
The lifecycle methods are also useful for performing tasks that may complete after the initial content from the component has been
rendered, such as querying the database. Listing 35-17 replaces the placeholder content in the PersonDisplay component and uses
the lifecycle methods to query the database using values received as parameters.

Listing 35-17.  Querying for Data in the PersonDisplay.razor File in the Blazor Folder

@page "/person"
@page "/person/{id:long}"

@if (Person == null) {
 <h5 class="bg-info text-white text-center p-2">Loading...</h5>
} else {
 <table class="table table-striped table-bordered">
 <tbody>
 <tr><th>Id</th><td>@Person.PersonId</td></tr>
 <tr><th>Surname</th><td>@Person.Surname</td></tr>
 <tr><th>Firstname</th><td>@Person.Firstname</td></tr>
 </tbody>
 </table>
}

<button class="btn btn-outline-primary" @onclick="@(() => HandleClick(false))">
 Previous
</button>
<button class="btn btn-outline-primary" @onclick="@(() => HandleClick(true))">
 Next
</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Parameter]
 public long Id { get; set; } = 0;

 public Person Person { get; set; }

 protected async override Task OnParametersSetAsync() {
 await Task.Delay(1000);
 Person = await Context.People
 .FirstOrDefaultAsync(p => p.PersonId == Id) ?? new Person();
 }

 public void HandleClick(bool increment) {
 Person = null;
 NavManager.NavigateTo($"/person/{(increment ? Id + 1 : Id -1)}");
 }
}

The component can’t query the database until the parameter values have been set and so the value of the Person property is
obtained in the OnParametersSetAsync method. Since the database is running alongside the ASP.NET Core server, I have added a
one-second delay before querying the database to help emphasize the way the component works.

Chapter 35 ■ Advanced Blazor Features

939

The value of the Person property is null until the query has completed, at which point it will be either an object representing
the query result or a new Person object if the query doesn’t produce a result. A loading message is displayed while the Person object
is null.

Restart ASP.NET Core and request http://localhost:5000. Click one of the Edit buttons presented in the table, and the
PersonDisplay component will display a summary of the data. Click the Previous and Next buttons to query for the objects with the
adjacent primary key values, producing the results shown in Figure 35-8.

Notice that Blazor doesn’t wait for the Task performed in the OnParametersSetAsync method to complete before displaying
content to the user, which is why a loading message is useful when the Person property is null. Once the Task is complete and a
value has been assigned to the Person property, the component’s view is automatically re-rendered, and the changes are sent to the
browser over the persistent HTTP connection to be displayed to the user.

�Managing Component Interaction
Most components work together through parameters and events, allowing the user’s interaction to drive changes in the application.
Blazor also provides advanced options for managing interaction with components, which I describe in the following sections.

�Using References to Child Components
A parent component can obtain a reference to a child component and use it to consume the properties and methods it defines.
In preparation, Listing 35-18 adds a disabled state to the MultiNavLink component.

Listing 35-18.  Adding a Feature in the MultiNavLink.razor File in the Blazor Folder

 @if (Enabled) {
 @ChildContent
 } else {
 @("Disabled")
 }

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Parameter]
 public IEnumerable<string> Href { get; set; }

Figure 35-8.  Performing asynchronous tasks in a component

Chapter 35 ■ Advanced Blazor Features

940

 [Parameter]
 public string Class { get; set; }

 [Parameter]
 public string ActiveClass { get; set; }

 [Parameter]
 public string DisabledClasses { get; set; }

 [Parameter]
 public NavLinkMatch? Match { get; set; }

 public NavLinkMatch ComputedMatch { get =>
 Match ?? (Href.Count() == 1 ? NavLinkMatch.Prefix : NavLinkMatch.All); }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 public string ComputedClass { get; set; }

 public void HandleClick() {
 NavManager.NavigateTo(Href.First());
 }

 private void CheckMatch(string currentUrl) {
 string path = NavManager.ToBaseRelativePath(currentUrl);
 path = path.EndsWith("/") ? path.Substring(0, path.Length - 1) : path;
 bool match = Href.Any(href => ComputedMatch == NavLinkMatch.All
 ? path == href : path.StartsWith(href));
 if (!Enabled) {
 ComputedClass = DisabledClasses;
 } else {
 ComputedClass = match ? $"{Class} {ActiveClass}" : Class;
 }
 }

 protected override void OnParametersSet() {
 ComputedClass = Class;
 NavManager.LocationChanged += (sender, arg) => CheckMatch(arg.Location);
 Href = Href.Select(h => h.StartsWith("/") ? h.Substring(1) : h);
 CheckMatch(NavManager.Uri);
 }

 private bool Enabled { get; set; } = true;

 public void SetEnabled(bool enabled) {
 Enabled = enabled;
 CheckMatch(NavManager.Uri);
 }
}

In Listing 35-19, I have updated the shared layout so that it retains references to the MultiNavLink components and a button
that toggles their Enabled property value.

Chapter 35 ■ Advanced Blazor Features

941

Listing 35-19.  Retaining References in the NavLayout.razor File in the Blazor Folder

@inherits LayoutComponentBase

<div class="container-fluid">
 <div class="row">
 <div class="col-3">
 @foreach (string key in NavLinks.Keys) {
 <MultiNavLink class="btn btn-outline-primary btn-block"
 href="@NavLinks[key]"
 ActiveClass="btn-primary text-white"
 DisabledClasses="btn btn-dark text-light btn-block disabled"
 @ref="Refs[key]">
 @key
 </MultiNavLink>
 }
 <button class="btn btn-secondary btn-block mt-5 " @onclick="ToggleLinks">
 Toggle Links
 </button>
 </div>
 <div class="col">
 @Body
 </div>
 </div>
</div>

@code {

 public Dictionary<string, string[]> NavLinks
 = new Dictionary<string, string[]> {
 {"People", new string[] {"/people", "/" } },
 {"Departments", new string[] {"/depts", "/departments" } },
 {"Details", new string[] { "/person" } }
 };

 public Dictionary<string, MultiNavLink> Refs
 = new Dictionary<string, MultiNavLink>();

 private bool LinksEnabled = true;

 public void ToggleLinks() {
 LinksEnabled = !LinksEnabled;
 foreach (MultiNavLink link in Refs.Values) {
 link.SetEnabled(LinksEnabled);
 }
 }
}

References to components are created by adding an @ref attribute and specifying the name of a field or property to which the
component should be assigned. Since the MultiNavLink components are created in a @foreach loop driven by a Dictionary, the
simplest way to retain references is also in a Dictionary, like this:

...
<MultiNavLink class="btn btn-outline-primary btn-block"
 href="@NavLinks[key]" ActiveClass="btn-primary text-white"
 DisabledClasses="btn btn-dark text-light btn-block disabled"
 @ref="Refs[key]">
...

Chapter 35 ■ Advanced Blazor Features

942

As each MultiNavLink component is created, it is added to the Refs dictionary. Razor Components are compiled into standard
C# classes, which means that a collection of MultiNavLink components is a collection of MultiNavlink objects.

...
public Dictionary<string, MultiNavLink> Refs
 = new Dictionary<string, MultiNavLink>();
...

Restart ASP.NET Core, request http://localhost:5000, and click the Toggle Links button. The event handler invokes the
ToggleLinks method, which sets the value of the Enabled property for each of the MultiNavLink components, as shown in Figure 35-9.

■■ Caution R eferences can be used only after the component’s content has been rendered and the OnAfterRender/OnAfterRenderAsync
lifecycle methods have been invoked. This makes references ideal for use in event handlers but not the earlier lifecycle methods.

�Interacting with Components from Other Code
Components can be used by other code in the ASP.NET Core application, allowing a richer interaction between parts of complex
projects. Listing 35-20 alters the method in the MultiNavLink component so it can be invoked by other parts of the ASP.NET Core
application to enable and disable navigation.

Listing 35-20.  Replacing a Method in the MultiNavLink.razor File in the Blazor Folder

 @if (Enabled) {
 @ChildContent
 } else {
 @("Disabled")
 }

@code {

 // ...other properties and methods omitted for brevity...

 public void SetEnabled(bool enabled) {
 InvokeAsync(() => {
 Enabled = enabled;
 CheckMatch(NavManager.Uri);

Figure 35-9.  Retaining references to components

Chapter 35 ■ Advanced Blazor Features

943

 StateHasChanged();
 });
 }
}

Razor Components provide two methods that are used in code that is invoked outside of the Blazor environment, as described
in Table 35-6.

The InvokeAsync method is used to invoke a function within the Blazor environment, ensuring that changes are processed
correctly. The StateHasChanged method is invoked when all the changes have been applied, triggering a Blazor update and ensuring
changes are reflected in the component’s output.

To create a service that will be available throughout the application, create the Advanced/Services folder and add to it a class
file named ToggleService.cs, with the code shown in Listing 35-21.

Listing 35-21.  The Contents of the ToggleService.cs File in the Services Folder

using Advanced.Blazor;
using System.Collections.Generic;

namespace Advanced.Services {
 public class ToggleService {
 private List<MultiNavLink> components = new List<MultiNavLink>();
 private bool enabled = true;

 public void EnrolComponents(IEnumerable<MultiNavLink> comps) {
 components.AddRange(comps);
 }

 public bool ToggleComponents() {
 enabled = !enabled;
 components.ForEach(c => c.SetEnabled(enabled));
 return enabled;
 }
 }
}

This service managed a collection of components and invokes the SetEnabled method on all of them when its
ToggleComponents method is called. There is nothing specific to Blazor in this service, which relies on the C# classes that are
produced when Razor Component files are compiled. Listing 35-22 updates the application configuration to configure the
ToggleService class as a singleton service.

Listing 35-22.  Configuring a Service in the Startup.cs File in the Advanced Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(opts => {
 opts.UseSqlServer(Configuration[
 "ConnectionStrings:PeopleConnection"]);
 opts.EnableSensitiveDataLogging(true);
 });
 services.AddControllersWithViews().AddRazorRuntimeCompilation();

Table 35-6.  The Razor Component External Invocation Methods

Name Description

InvokeAsync(func) This method is used to execute a function inside the Blazor environment.

StateHasChanged() This method is called when a change occurs outside of the normal lifecycle, as shown in the next section.

Chapter 35 ■ Advanced Blazor Features

944

 services.AddRazorPages().AddRazorRuntimeCompilation();
 services.AddServerSideBlazor();
 services.AddSingleton<Services.ToggleService>();
}
...

Listing 35-23 updates the Blazor layout so that references to the MultiNavLink components are retained and registered with the
new service.

Listing 35-23.  Using the Service in the NavLayout.razor File in the Blazor Folder

@inherits LayoutComponentBase
@using Advanced.Services

<div class="container-fluid">
 <div class="row">
 <div class="col-3">
 @foreach (string key in NavLinks.Keys) {
 <MultiNavLink class="btn btn-outline-primary btn-block"
 href="@NavLinks[key]"
 ActiveClass="btn-primary text-white"
 DisabledClasses="btn btn-dark text-light btn-block disabled"
 @ref="Refs[key]">
 @key
 </MultiNavLink>
 }
 <button class="btn btn-secondary btn-block mt-5 " @onclick="ToggleLinks">
 Toggle Links
 </button>
 </div>
 <div class="col">
 @Body
 </div>
 </div>
</div>

@code {

 [Inject]
 public ToggleService Toggler { get; set; }

 public Dictionary<string, string[]> NavLinks
 = new Dictionary<string, string[]> {
 {"People", new string[] {"/people", "/" } },
 {"Departments", new string[] {"/depts", "/departments" } },
 {"Details", new string[] { "/person" } }
 };

 public Dictionary<string, MultiNavLink> Refs
 = new Dictionary<string, MultiNavLink>();

 protected override void OnAfterRender(bool firstRender) {
 if (firstRender) {
 Toggler.EnrolComponents(Refs.Values);
 }
 }

Chapter 35 ■ Advanced Blazor Features

945

 public void ToggleLinks() {
 Toggler.ToggleComponents();
 }
}

As noted in the previous section, component references are not available until after the content has been rendered.
Listing 35-23 uses the OnAfterRender lifecycle method to register the component references with the service, which is
received via dependency injection.

The final step is to use the service from a different part of the ASP.NET Core application. Listing 35-24 adds a simple action
method to the Home controller that invokes the ToggleService.ToggleComponents method every time it handles a request.

Listing 35-24.  Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Advanced.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using Advanced.Services;

namespace Advanced.Controllers {
 public class HomeController : Controller {
 private DataContext context;
 private ToggleService toggleService;

 public HomeController(DataContext dbContext, ToggleService ts) {
 context = dbContext;
 toggleService = ts;
 }

 public IActionResult Index([FromQuery] string selectedCity) {
 return View(new PeopleListViewModel {
 People = context.People
 .Include(p => p.Department).Include(p => p.Location),
 Cities = context.Locations.Select(l => l.City).Distinct(),
 SelectedCity = selectedCity
 });
 }

 public string Toggle() => $"Enabled: { toggleService.ToggleComponents() }";
 }

 public class PeopleListViewModel {
 public IEnumerable<Person> People { get; set; }
 public IEnumerable<string> Cities { get; set; }
 public string SelectedCity { get; set; }

 public string GetClass(string city) =>
 SelectedCity == city ? "bg-info text-white" : "";
 }
}

Restart ASP.NET Core and request http://localhost:5000. Open a separate browser window and request http://
localhost:5000/controllers/home/toggle. When the second request is processed by the ASP.NET Core application, the action
method will use the service, which toggles the state of the navigation button. Each time you request /controllers/home/toggle, the
state of the navigation buttons will change, as shown in Figure 35-10.

Chapter 35 ■ Advanced Blazor Features

946

�Interacting with Components Using JavaScript
Blazor provides a range of tools for interaction between JavaScript and server-side C# code, as described in the following sections.

�Invoking a JavaScript Function from a Component
To prepare for these examples, add a JavaScript file named interop.js to the wwwroot folder and add the code shown in
Listing 35-25.

Listing 35-25.  The Contents of the interop.js File in the wwwroot Folder

function addTableRows(colCount) {
 let elem = document.querySelector("tbody");
 let row = document.createElement("tr");
 elem.append(row);
 for (let i = 0; i < colCount; i++) {
 let cell = document.createElement("td");
 cell.innerText = "New Elements"
 row.append(cell);
 }
}

The JavaScript code uses the API provided by the browser to locate a tbody element, which denotes the body of a table and adds
a new row containing the number of cells specified by the function parameter.

To incorporate the JavaScript file into the application, add the element shown in Listing 35-26 to the _Host Razor Page, which
was configured as the fallback page that delivers the Blazor application to the browser.

Listing 35-26.  Adding an Element in the _Host.cshtml File in the Pages Folder

@page "/"
@{ Layout = null; }

<!DOCTYPE html>
<html>

Figure 35-10.  Invoking component methods

Chapter 35 ■ Advanced Blazor Features

947

<head>
 <title>@ViewBag.Title</title>
 <link href="/lib/twitter-bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <base href="~/" />
</head>
<body>
 <div class="m-2">
 <component type="typeof(Advanced.Blazor.Routed)" render-mode="Server" />
 </div>
 <script src="_framework/blazor.server.js"></script>
 <script src="~/interop.js"></script>
</body>
</html>

Listing 35-27 revises the PersonDisplay component so that it renders a button that invokes the JavaScript function when the
onclick event is triggered. I have also removed the delay that I added earlier to demonstrate the use of the component lifecycle methods.

Listing 35-27.  Invoking a JavaScript Function in the PersonDisplay.razor File in the Blazor Folder

@page "/person"
@page "/person/{id:long}"

@if (Person == null) {
 <h5 class="bg-info text-white text-center p-2">Loading...</h5>
} else {
 <table class="table table-striped table-bordered">
 <tbody>
 <tr><th>Id</th><td>@Person.PersonId</td></tr>
 <tr><th>Surname</th><td>@Person.Surname</td></tr>
 <tr><th>Firstname</th><td>@Person.Firstname</td></tr>
 </tbody>
 </table>
}

<button class="btn btn-outline-primary" @onclick="@HandleClick">
 Invoke JS Function
</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Inject]
 public IJSRuntime JSRuntime { get; set; }

 [Parameter]
 public long Id { get; set; } = 0;

 public Person Person { get; set; }

 protected async override Task OnParametersSetAsync() {
 //await Task.Delay(1000);
 Person = await Context.People
 .FirstOrDefaultAsync(p => p.PersonId == Id) ?? new Person();
 }

Chapter 35 ■ Advanced Blazor Features

948

 public async Task HandleClick() {
 await JSRuntime.InvokeVoidAsync("addTableRows", 2);
 }
}

Invoking a JavaScript function is done through the IJSRuntime interface, which components receive through dependency
injection. The service is created automatically as part of the Blazor configuration and provides the methods described in Table 35-7.

In Listing 35-27, I use the InvokeVoidAsync method to invoke the addTableRows JavaScript function, providing a value for the
function parameter. Restart ASP.NET Core, navigate to http://localhost:5000/person/1, and click the Invoke JS Function button.
Blazor will invoke the JavaScript function, which adds a row to the end of the table, as shown in Figure 35-11.

�Retaining References to HTML Elements
Razor Components can retain references to the HTML elements they create and pass those references to JavaScript code. Listing 35-28
changes the JavaScript function from the previous example so that it operates on an HTML element it receives through a parameter.

Listing 35-28.  Defining a Parameter in the interop.js File in the wwwroot Folder

function addTableRows(colCount, elem) {
 //let elem = document.querySelector("tbody");
 let row = document.createElement("tr");
 elem.parentNode.insertBefore(row, elem);
 for (let i = 0; i < colCount; i++) {
 let cell = document.createElement("td");
 cell.innerText = "New Elements"
 row.append(cell);
 }
}

Table 35-7.  The IJSRuntime Methods

Name Description

InvokeAsync<T>(name, args) This method invokes the specified function with the arguments provided. The result type is
specified by the generic type parameter.

InvokeVoidAsync(name, args) This method invokes a function that doesn’t produce a result.

Figure 35-11.  Invoking a JavaScript function

Chapter 35 ■ Advanced Blazor Features

949

In Listing 35-29, the PersonDisplay component retains a reference to one of the HTML elements it creates and passes it as an
argument to the JavaScript function.

Listing 35-29.  Retaining a Reference in the PersonDisplay.razor File in the Blazor Folder

@page "/person"
@page "/person/{id:long}"

@if (Person == null) {
 <h5 class="bg-info text-white text-center p-2">Loading...</h5>
} else {
 <table class="table table-striped table-bordered">
 <tbody>
 <tr><th>Id</th><td>@Person.PersonId</td></tr>
 <tr @ref="RowReference"><th>Surname</th><td>@Person.Surname</td></tr>
 <tr><th>Firstname</th><td>@Person.Firstname</td></tr>
 </tbody>
 </table>
}

<button class="btn btn-outline-primary" @onclick="@HandleClick">
 Invoke JS Function
</button>

@code {

 [Inject]
 public DataContext Context { get; set; }

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Inject]
 public IJSRuntime JSRuntime { get; set; }

 [Parameter]
 public long Id { get; set; } = 0;

 public Person Person { get; set; }

 protected async override Task OnParametersSetAsync() {
 //await Task.Delay(1000);
 Person = await Context.People
 .FirstOrDefaultAsync(p => p.PersonId == Id) ?? new Person();
 }

 public ElementReference RowReference { get; set; }

 public async Task HandleClick() {
 await JSRuntime.InvokeVoidAsync("addTableRows", 2, RowReference);
 }
}

The @ref attribute assigns the HTML element to a property, whose type must be ElementReference. Restart ASP.NET Core,
request http://localhost:5000/person/1, and click the Invoke JS Function button. The value of the ElementReference property
is passed as an argument to the JavaScript function through the InvokeVoidAsync method, producing the result shown in
Figure 35-12.

Chapter 35 ■ Advanced Blazor Features

950

■■ Note T he only use for a reference to a regular HTML element is to pass it to a JavaScript function. Use the binding and event
features described in earlier chapters to interact with the elements rendered by a component.

�Invoking a Component Method from JavaScript
The basic approach for invoking a C# method from JavaScript is to use a static method. Listing 35-30 adds a static method to the
MultiNavLink component that changes the enabled state.

Listing 35-30.  Introducing Static Members in the MultiNavLink.razor File in the Blazor Folder

 @if (Enabled) {
 @ChildContent
 } else {
 @("Disabled")
 }

@code {

 // ...other methods and properties omitted for brevity...

 [JSInvokable]
 public static void ToggleEnabled() => ToggleEvent.Invoke(null, new EventArgs());

 private static event EventHandler ToggleEvent;

 protected override void OnInitialized() {
 ToggleEvent += (sender, args) => SetEnabled(!Enabled);
 }
}

Static methods must be decorated with the JSInvokable attribute before they can be invoked from JavaScript code. The main
limitation of using static methods is that it makes it difficult to update individual components, so I have defined a static event that
each instance of the component will handle. The event is named ToggleEvent, and it is triggered by the static method that will be
called from JavaScript. To listen for the event, I have used the OnInitialized lifecycle event. When the event is received, the enabled
state of the component is toggled through the instance method SetEnabled, which uses the InvokeAsync and StateHasChanged
methods required when a change is made outside of Blazor.

Figure 35-12.  Retaining a reference to an HTML element

Chapter 35 ■ Advanced Blazor Features

951

Listing 35-31 adds a function to the JavaScript file that creates a button element that invokes the static C# method when it is clicked.

Listing 35-31.  Adding a Function in the interop.js File in the wwwroot Folder

function addTableRows(colCount, elem) {
 //let elem = document.querySelector("tbody");
 let row = document.createElement("tr");
 elem.parentNode.insertBefore(row, elem);
 for (let i = 0; i < colCount; i++) {
 let cell = document.createElement("td");
 cell.innerText = "New Elements"
 row.append(cell);
 }
}

function createToggleButton() {
 let sibling = document.querySelector("button:last-of-type");
 let button = document.createElement("button");
 button.classList.add("btn", "btn-secondary", "btn-block");
 button.innerText = "JS Toggle";
 sibling.parentNode.insertBefore(button, sibling.nextSibling);
 button.onclick = () => DotNet.invokeMethodAsync("Advanced", "ToggleEnabled");
}

The new function locates one of the existing button elements and adds a new button after it. When the button is clicked, the
component method is invoked, like this:

...
button.onclick = () => DotNet.invokeMethodAsync("Advanced", "ToggleEnabled");
...

It is important to pay close attention to the capitalization of the JavaScript function used to C# methods: it is DotNet, followed
by a period, followed by invokeMethodAsync, with a lowercase i. The arguments are the name of the assembly and the name of the
static method. (The name of the component is not required.)

The button element that the function in Listing 35-31 looks for isn’t available until after Blazor has rendered content for the
user. For this reason, Listing 35-32 adds a statement to the OnAfterRenderAsync method defined by the NavLayout component
to invoke the JavaScript function only when the content has been rendered. (The NavLayout component is the parent to the
MultiNavLink components that will be affected when the static method is invoked and allows me to ensure the JavaScript function
is invoked only once.)

Listing 35-32.  Invoking a JavaScript Function in the NavLayout.razor File in the Blazor Folder

...
@code {

 [Inject]
 public IJSRuntime JSRuntime { get; set; }

 [Inject]
 public ToggleService Toggler { get; set; }

 public Dictionary<string, string[]> NavLinks
 = new Dictionary<string, string[]> {
 {"People", new string[] {"/people", "/" } },
 {"Departments", new string[] {"/depts", "/departments" } },
 {"Details", new string[] { "/person" } }
 };

Chapter 35 ■ Advanced Blazor Features

952

 public Dictionary<string, MultiNavLink> Refs
 = new Dictionary<string, MultiNavLink>();

 protected async override Task OnAfterRenderAsync(bool firstRender) {
 if (firstRender) {
 Toggler.EnrolComponents(Refs.Values);
 await JSRuntime.InvokeVoidAsync("createToggleButton");
 }
 }

 public void ToggleLinks() {
 Toggler.ToggleComponents();
 }
}
...

Restart ASP.NET Core and request http://localhost:5000. Once Blazor has rendered its content, the JavaScript function will
be called and creates a new button. Clicking the button invokes the static method, which triggers the event that toggles the state of
the navigation buttons and causes a Blazor update, as shown in Figure 35-13.

�Invoking an Instance Method from a JavaScript Function
Part of the complexity in the previous example comes from responding to a static method to update the Razor Component objects.
An alternative approach is to provide the JavaScript code with a reference to an instance method, which it can then invoke directly.

The first step is to add the JSInvokable attribute to the method that the JavaScript code will invoke. I am going to invoke the
ToggleComponents methods defined by the ToggleService class, as shown in Listing 35-33.

Listing 35-33.  Applying an Attribute in the ToggleService.cs File in the Services Folder

using Advanced.Blazor;
using System.Collections.Generic;
using Microsoft.JSInterop;

namespace Advanced.Services {
 public class ToggleService {
 private List<MultiNavLink> components = new List<MultiNavLink>();
 private bool enabled = true;

Figure 35-13.  Invoking a component method from JavaScript

Chapter 35 ■ Advanced Blazor Features

953

 public void EnrolComponents(IEnumerable<MultiNavLink> comps) {
 components.AddRange(comps);
 }

 [JSInvokable]
 public bool ToggleComponents() {
 enabled = !enabled;
 components.ForEach(c => c.SetEnabled(enabled));
 return enabled;
 }
 }
}

The next step is to provide the JavaScript function with a reference to the object whose method will be invoked, as shown in
Listing 35-34.

Listing 35-34.  Providing an Instance in the NavLayout.razor File in the Blazor Folder

...
protected async override Task OnAfterRenderAsync(bool firstRender) {
 if (firstRender) {
 Toggler.EnrolComponents(Refs.Values);
 await JSRuntime.InvokeVoidAsync("createToggleButton",
 DotNetObjectReference.Create(Toggler));
 }
}
...

The DotNetObjectReference.Create method creates a reference to an object, which is passed to the JavaScript function as an
argument using the JSRuntime.InvokeVoidAsync method. The final step is to receive the object reference in JavaScript and invoke
its method when the button element is clicked, as shown in Listing 35-35.

Listing 35-35.  Invoking a C# Method in the interop.js File in the wwwroot Folder

function addTableRows(colCount, elem) {
 //let elem = document.querySelector("tbody");
 let row = document.createElement("tr");
 elem.parentNode.insertBefore(row, elem);
 for (let i = 0; i < colCount; i++) {
 let cell = document.createElement("td");
 cell.innerText = "New Elements"
 row.append(cell);
 }
}

function createToggleButton(toggleServiceRef) {
 let sibling = document.querySelector("button:last-of-type");
 let button = document.createElement("button");
 button.classList.add("btn", "btn-secondary", "btn-block");
 button.innerText = "JS Toggle";
 sibling.parentNode.insertBefore(button, sibling.nextSibling);
 button.onclick = () => toggleServiceRef.invokeMethodAsync("ToggleComponents");
}

The JavaScript function receives the reference to the C# object as a parameter and invokes its methods using
invokeMethodAsync, specifying the name of the method as the argument. (Arguments to the method can also be provided but are
not required in this example.)

Chapter 35 ■ Advanced Blazor Features

954

Restart ASP.NET Core, request http://localhost:5000, and click the JS Toggle button. The result is the same as shown in
Figure 35-13, but the change in the components is managed through the ToggleService object.

�Summary
In this chapter, I explained how components can be combined with routing to alter the content displayed to the user based on the
current URL. I described the component lifecycle and the methods it can implement for each stage in the process, and I finished this
chapter by explaining the different ways that component methods can be invoked from outside of Blazor, including interoperability
with JavaScript. In the next chapter, I describe the features that Blazor provides for HTML forms.

955© Adam Freeman 2020
A. Freeman, Pro ASP.NET Core 3, https://doi.org/10.1007/978-1-4842-5440-0_36

CHAPTER 36

Blazor Forms and Data

In this chapter, I describe the features that Blazor provides for dealing with HTML forms, including support for data validation.
I describe the built-in components that Blazor provides and show you how they are used. In this chapter, I also explain how the
Blazor model can cause unexpected results with Entity Framework Core and show you how to address these issues. I finish the
chapter by creating a simple form application for creating, reading, updating, and deleting data (the CRUD operations) and explain
how to extend the Blazor form features to improve the user’s experience. Table 36-1 puts the Blazor form features in context.

Table 36-2 summarizes the chapter.

�Preparing for This Chapter
This chapter uses the Advanced project from Chapter 35. To prepare for this chapter, create the Blazor/Forms folder and add to it a
Razor Component named EmptyLayout.razor with the content shown in Listing 36-1. I will use this component as the main layout
for this chapter.

Table 36-1.  Putting Blazor Form Features in Context

Question Answer

What are they? Blazor provides a set of built-in components that present the user with a form that can be easily validated.

Why are they useful? Forms remain one of the core building blocks of web applications, and these components provide
functionality that will be required in most projects.

How are they used? The EditForm component is used as a parent for individual form field components.

Are there any pitfalls
or limitations?

There can be issues with the way that Entity Framework Core and Blazor work together, and these become
especially apparent when using forms.

Are there any
alternatives?

You could create your own form components and validation features, although the features described in
this chapter are suitable for most projects and, as I demonstrate, can be easily extended.

Table 36-2.  Chapter Summary

Problem Solution Listing

Creating an HTML form Use the EditForm and Input* components 7–9, 13

Validating data Use the standard validation attributes and the events emitted by
the EditForm component

10–12

Discarding unsaved data Explicitly release the data or create new scopes for components 14–16

Avoiding repeatedly querying
the database

Manage query execution explicitly 17–19

Chapter 36 ■ Blazor Forms and Data

956

■■ Tip  You can download the example project for this chapter—and for all the other chapters in this book—from https://github.
com/apress/pro-asp.net-core-3. See Chapter 1 for how to get help if you have problems running the examples.

Listing 36-1.  The Contents of the EmptyLayout.razor File in the Blazor/Forms Folder

@inherits LayoutComponentBase
<div class="m-2">
 @Body
</div>

Add a RazorComponent named FormSpy.razor to the Blazor/Forms folder with the content shown in Listing 36-2. This is a
component I will use to display form elements alongside the values that are being edited.

Listing 36-2.  The Contents of the FormSpy.razor File in the Blazor/Forms Folder

<div class="container-fluid no-gutters">
 <div class="row">
 <div class="col">
 @ChildContent
 </div>
 <div class="col">
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th colspan="2" class="text-center">Data Summary</th></tr>
 </thead>
 <tbody>
 <tr><th>ID</th><td>@PersonData?.PersonId</td></tr>
 <tr><th>Firstname</th><td>@PersonData?.Firstname</td></tr>
 <tr><th>Surname</th><td>@PersonData?.Surname</td></tr>
 <tr><th>Dept ID</th><td>@PersonData?.DepartmentId</td></tr>
 <tr><th>Location ID</th><td>@PersonData?.LocationId</td></tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

@code {

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 [Parameter]
 public Person PersonData { get; set; }
}

Next, add a component named Editor.razor to the Blazor/Forms folder and add the content shown in Listing 36-3. This
component will be used to edit existing Person objects and to create new ones.

■■ Caution D o not use the Editor and List components in real projects until you have read the rest of the chapter. I have included
common pitfalls that I explain later in the chapter.

https://github.com/apress/pro-asp.net-core-3
https://github.com/apress/pro-asp.net-core-3

Chapter 36 ■ Blazor Forms and Data

957

Listing 36-3.  The Contents of the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout

<h4 class="bg-primary text-center text-white p-2">Edit</h4>

<FormSpy PersonData="PersonData">
 <h4 class="text-center">Form Placeholder</h4>
 <div class="text-center">
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
 </div>
</FormSpy>

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Inject]
 DataContext Context { get; set; }

 [Parameter]
 public long Id { get; set; }

 public Person PersonData { get; set; } = new Person();

 protected async override Task OnParametersSetAsync() {
 PersonData = await Context.People.FindAsync(Id);
 }
}

The component in Listing 36-3 uses an @layout expression to override the default layout and select EmptyLayout. The side-by-
side layout is used to present the PersonTable component alongside a placeholder, which is where I will add a form.

Finally, create a component named List.razor in the Blazor/Forms folder and add the content shown in Listing 36-4 to define
a component that will present the user with a list of Person objects, presented as a table.

Listing 36-4.  The Contents of the List.razor File in the Blazor/Forms Folder

@page "/forms"
@page "/forms/list"
@layout EmptyLayout

<h5 class="bg-primary text-white text-center p-2">People</h5>

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
 </tr>
 </thead>
 <tbody>
 @if (People.Count() == 0) {
 <tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
 } else {
 @foreach (Person p in People) {
 <tr>

Chapter 36 ■ Blazor Forms and Data

958

 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City</td>
 <td>
 <NavLink class="btn btn-sm btn-warning"
 href="@GetEditUrl(p.PersonId)">
 Edit
 </NavLink>
 </td>
 </tr>
 }
 }
 </tbody>
</table>

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People { get; set; } = Enumerable.Empty<Person>();

 protected override void OnInitialized() {
 People = Context.People.Include(p => p.Department).Include(p => p.Location);
 }

 string GetEditUrl(long id) => $"/forms/edit/{id}";
}

�Dropping the Database and Running the Application
Open a new PowerShell command prompt, navigate to the folder that contains the Advanced.csproj file, and run the command
shown in Listing 36-5 to drop the database.

Listing 36-5.  Dropping the Database

dotnet ef database drop --force

Select Start Without Debugging or Run Without Debugging from the Debug menu or use the PowerShell command prompt to
run the command shown in Listing 36-6.

Listing 36-6.  Running the Example Application

dotnet run

Use a browser to request http://localhost:5000/forms, which will produce a data table. Click one of the Edit buttons, and
you will see a placeholder for the form and a summary showing the current property values of the selected Person object, as shown
in Figure 36-1.

Chapter 36 ■ Blazor Forms and Data

959

�Using the Blazor Form Components
Blazor provides a set of built-in components that are used to render form elements, ensuring that the server-side component
properties are updated after user interaction and integrating validation. Table 36-3 describes the components that Blazor provides.

The EditForm component must be used for any of the other components to work. In Listing 36-7, I have added an EditForm,
along with InputText components that represent two of the properties defined by the Person class.

Listing 36-7.  Using Form Components in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout

<h4 class="bg-primary text-center text-white p-2">Edit</h4>

<FormSpy PersonData="PersonData">
 <EditForm Model="PersonData">
 <div class="form-group">
 <label>Person ID</label>
 <InputNumber class="form-control"
 @bind-Value="PersonData.PersonId" disabled />
 </div>

Figure 36-1.  Running the example application

Table 36-3.  The Bazor Form Components

Name Description

EditForm This component renders a form element that is wired up for data validation.

InputText This component renders an input element that is bound to a C# string property.

InputCheckbox This component renders an input element whose type attribute is checkbox and that is bound to a C# bool
property.

InputDate This component renders an input element those type attribute is date and that is bound to a C# DateTime
or DateTimeOffset property.

InputNumber This component renders an input element those type attribute is number and that is bound to a C# int,
long, float, double, or decimal value.

InputTextArea This component renders a textarea component that is bound to a C# string property.

Chapter 36 ■ Blazor Forms and Data

960

 <div class="form-group">
 <label>Firstname</label>
 <InputText class="form-control" @bind-Value="PersonData.Firstname" />
 </div>
 <div class="form-group">
 <label>Surname</label>
 <InputText class="form-control" @bind-Value="PersonData.Surname" />
 </div>
 <div class="form-group">
 <label>Dept ID</label>
 <InputNumber class="form-control"
 @bind-Value="PersonData.DepartmentId" />
 </div>
 <div class="text-center">
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
 </div>
 </EditForm>
</FormSpy>

@code {

 // ...statements omitted for brevity...
}

The EditForm component renders a form element and provides the foundation for the validation features described in the “Validating
Form Data” section. The Model attribute is used to provide the EditForm with the object that the form is used to edit and validate.

The components in Table 36-3 whose names begin with Input are used to display an input or textarea element for a single
model property. These components define a custom binding named Value that is associated with the model property using the
@bind-Value attribute. The property-level components must be matched to the type of the property they present to the user. It is
for this reason that I have used the InputText component for the Firstname and Surname properties of the Person class, while the
InputNumber component is used for the PersonId and DepartmentId properties. If you use a property-level component with a model
property of the wrong type, you will receive an error when the component attempts to parse a value entered into the HTML element.

Restart ASP.NET Core and request http://localhost:5000/forms/edit/2, and you will see the three input elements
displayed. Edit the values and move the focus by pressing the Tab key, and you will see the summary data on the right of the window
update, as shown in Figure 36-2. The built-in form components support attribute splatting, which is why the disabled attribute
applied to the InputNumber component for the PersonId property has been applied to the input element.

Figure 36-2.  Using the Blazor form elements

Chapter 36 ■ Blazor Forms and Data

961

�Creating Custom Form Components
Blazor provides built-in components for only input and textarea elements. Fortunately, creating a custom component that
integrates into the Blazor form features is a simple process. Add a Razor Component named CustomSelect.razor to the Blazor/
Forms folder and use it to define the component shown in Listing 36-8.

Listing 36-8.  The Contents of the CustomSelect.razor File in the Blazor/Forms Folder

@typeparam TValue
@inherits InputBase<TValue>

<select class="form-control @CssClass" value="@CurrentValueAsString"
 @onchange="@(ev => CurrentValueAsString = ev.Value as string)">
 @ChildContent
 @foreach (KeyValuePair<string, TValue> kvp in Values) {
 <option value="@kvp.Value">@kvp.Key</option>
 }
</select>

@code {

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 [Parameter]
 public IDictionary<string, TValue> Values { get; set; }

 [Parameter]
 public Func<string, TValue> Parser { get; set; }

 protected override bool TryParseValueFromString(string value, out TValue result,
 out string validationErrorMessage) {
 try {
 result = Parser(value);
 validationErrorMessage = null;
 return true;
 } catch {
 result = default(TValue);
 validationErrorMessage = "The value is not valid";
 return false;
 }
 }
}

The base class for form components is InputBase<TValue>, where the generic type argument is the model property type the
component represents. The base class takes care of most of the work and provides the CurrentValueAsString property, which is
used to provide the current value in event handlers when the user selects a new value, like this:

...
<select class="form-control @CssClass" value="@CurrentValueAsString"
 @onchange="@(ev => CurrentValueAsString = ev.Value as string)">
...

In preparation for data validation, which I describe in the next section, this component includes the value of the CssClass
property in the select element’s class attribute, like this:

...
<select class="form-control @CssClass" value="@CurrentValueAsString"
 @onchange="@(ev => CurrentValueAsString = ev.Value as string)">
...

Chapter 36 ■ Blazor Forms and Data

962

The abstract TryParseValueFromString method has to be implemented so that the base class is able to map between string
values used by HTML elements and the corresponding value for the C# model property. I don’t want to implement my custom
select element to any specific C# data type, so I have used an @typeparam expression to define a generic type parameter. The Values
property is used to receive a dictionary mapping string values that will be displayed to the user and TValue values that will be used as
C# values. The method receives two out parameters that are used to set the parsed value and a parser validation error message that
will be displayed to the user if there is a problem. Since I am working with generic types, the Parser property receives a function that
is invoked to parse a string value into a TValue value.

Listing 36-9 applies the new form component so the user can select values for the DepartmentId and LocationId properties
defined by the Person class.

Listing 36-9.  Using a Custom Form Element in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout

<h4 class="bg-primary text-center text-white p-2">Edit</h4>

<FormSpy PersonData="PersonData">

 <EditForm Model="PersonData">
 <div class="form-group">
 <label>Firstname</label>
 <InputText class="form-control" @bind-Value="PersonData.Firstname" />
 </div>
 <div class="form-group">
 <label>Surname</label>
 <InputText class="form-control" @bind-Value="PersonData.Surname" />
 </div>
 <div class="form-group">
 <label>Dept ID</label>
 <CustomSelect TValue="long" Values="Departments"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.DepartmentId">
 <option selected disabled value="0">Choose a Department</option>
 </CustomSelect>
 </div>
 <div class="form-group">
 <label>Location ID</label>
 <CustomSelect TValue="long" Values="Locations"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.LocationId">
 <option selected disabled value="0">Choose a Location</option>
 </CustomSelect>
 </div>
 <div class="text-center">
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
 </div>
 </EditForm>
</FormSpy>

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 [Inject]
 DataContext Context { get; set; }

Chapter 36 ■ Blazor Forms and Data

963

 [Parameter]
 public long Id { get; set; }

 public Person PersonData { get; set; } = new Person();

 public IDictionary<string, long> Departments { get; set; }
 = new Dictionary<string, long>();
 public IDictionary<string, long> Locations { get; set; }
 = new Dictionary<string, long>();

 protected async override Task OnParametersSetAsync() {
 PersonData = await Context.People.FindAsync(Id);
 Departments = await Context.Departments
 .ToDictionaryAsync(d => d.Name, d => d.Departmentid);
 Locations = await Context.Locations
 .ToDictionaryAsync(l => $"{l.City}, {l.State}", l => l.LocationId);
 }
}

I use the Entity Framework Core ToDictionaryAsync method to create collections of values and labels from the
Department and Location data and use them to configure the CustomSelect components. Restart ASP.NET Core and
request http://localhost:5000/forms/edit/2; you will see the select elements shown in Figure 36-3. When you pick a
new value, the CustomSelect component will update the CurrentValueAsString property, which will result in a call to the
TryParseValueFromString method, with the result used to update the Value binding.

Figure 36-3.  Using a custom form element

Chapter 36 ■ Blazor Forms and Data

964

�Validating Form Data
Blazor provides components that perform validation using the standard attributes. Table 36-4 describes the validation components.

The validation components generate elements assigned to classes, described in Table 36-5, which can be styled with CSS to
draw the user’s attention.

The Blazor Input* components add the HTML elements they generate to the classes described in Table 36-6 to indicate
validation status. This includes the InputBase<TValue> class from which I derived the CustomSelect component and is the purpose
of the CssClass property in Listing 36-8.

This combination of components and classes can be confusing at first, but the key is to start by defining the CSS styles you
require based on the classes in Tables 36-5 and 36-6. Add a CSS Stylesheet named blazorValidation.css to the wwwroot folder with
the content shown in Listing 36-10.

Listing 36-10.  The Contents of the blazorValidation.css File in the wwwroot Folder

.validation-errors {
 background-color: rgb(220, 53, 69); color: white; padding: 8px;
 text-align: center; font-size: 16px; font-weight: 500;
}
div.validation-message { color: rgb(220, 53, 69); font-weight: 500 }
.modified.valid { border: solid 3px rgb(40, 167, 69); }
.modified.invalid { border: solid 3px rgb(220, 53, 69); }

These styles format error messages in red and apply a red or green border to individual form elements. Listing 36-11 imports the
CSS stylesheet and applies the Blazor validation components.

Table 36-4.  The Blazor Validation Components

Name Description

DataAnnotationsValidator This component integrates the validation attributes applied to the model class into the Blazor
form features.

ValidationMessage This component displays validation error messages for a single property.

ValidationSummary This component displays validation error messages for the entire model object.

Table 36-5.  The Classes Used by the Blazor Validation Components

Name Description

validation-errors The ValidationSummary component generates a ul element that is assigned to this class and is the
top-level container for the summary of validation messages.

validation-message The ValidationSummary component populates its ul element with li elements assigned to this class for
each validation message. The ValidationMessage component renders a div element assigned to this
class for its property-level messages.

Table 36-6.  The Validation Classes Added to Form Elements

Name Description

modified Elements are added to this class once the user has edited the value.

valid Elements are added to this class if the value they contain passes validation.

invalid Elements are added to this class if the value they contain fails validation.

Chapter 36 ■ Blazor Forms and Data

965

Listing 36-11.  Applying Validation Components in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout

<link href="/blazorValidation.css" rel="stylesheet" />
<h4 class="bg-primary text-center text-white p-2">Edit</h4>

<FormSpy PersonData="PersonData">
 <EditForm Model="PersonData">
 <DataAnnotationsValidator />
 <ValidationSummary />
 <div class="form-group">
 <label>Firstname</label>
 <ValidationMessage For="@(() => PersonData.Firstname)" />
 <InputText class="form-control" @bind-Value="PersonData.Firstname" />
 </div>
 <div class="form-group">
 <label>Surname</label>
 <ValidationMessage For="@(() => PersonData.Surname)" />
 <InputText class="form-control" @bind-Value="PersonData.Surname" />
 </div>
 <div class="form-group">
 <label>Dept ID</label>
 <ValidationMessage For="@(() => PersonData.DepartmentId)" />
 <CustomSelect TValue="long" Values="Departments"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.DepartmentId">
 <option selected disabled value="0">Choose a Department</option>
 </CustomSelect>
 </div>
 <div class="form-group">
 <label>Location ID</label>
 <ValidationMessage For="@(() => PersonData.LocationId)" />
 <CustomSelect TValue="long" Values="Locations"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.LocationId">
 <option selected disabled value="0">Choose a Location</option>
 </CustomSelect>
 </div>
 <div class="text-center">
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
 </div>
 </EditForm>
</FormSpy>

@code {

 // ...statements omitted for brevity...
}

The DataAnnotationsValidator and ValidationSummary components are applied without any configuration attributes.
The ValidationMessage attribute is configured using the For attribute, which receives a function that returns the property the
component represents. For example, here is the expression that selects the Firstname property:

..s.
<ValidationMessage For="@(() => PersonData.Firstname)" />
...

Chapter 36 ■ Blazor Forms and Data

966

The expression defines no parameters and selects the property from the object used for the Model attribute of the EditForm
component and not the model type. For this example, this means the expression operates on the PersonData object and not the
Person class.

■■ Tip  Blazor isn’t always able to determine the type of the property for the ValidationMessage component. If you receive an
exception, then you can add a TValue attribute to set the type explicitly. For example, if the type of the property the ValidationMessage
represents is long, then add a TValue="long" attribute.

The final step for enabling data validation is to apply attributes to the model class, as shown in Listing 36-12.

Listing 36-12.  Applying Validation Attributes in the Person.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Advanced.Models {

 public class Person {

 public long PersonId { get; set; }

 [Required(ErrorMessage = "A firstname is required")]
 [MinLength(3, ErrorMessage = "Firstnames must be 3 or more characters")]
 public string Firstname { get; set; }

 [Required(ErrorMessage = "A surname is required")]
 [MinLength(3, ErrorMessage = "Surnames must be 3 or more characters")]
 public string Surname { get; set; }

 [Required]
 [Range(1, long.MaxValue,
 ErrorMessage = "A department must be selected")]
 public long DepartmentId { get; set; }

 [Required]
 [Range(1, long.MaxValue,
 ErrorMessage = "A location must be selected")]
 public long LocationId { get; set; }

 public Department Department { get; set; }
 public Location Location { get; set; }
 }
}

To see the effect of the validation components, restart ASP.NET Core and request http://localhost:5000/forms/edit/2.
Clear the Firstname field and move the focus by pressing the Tab key or clicking on another field. As the focus changes, validation is
performed, and error messages will be displayed. The Editor component shows both summary and per-property messages, so you
will see the same error message shown twice. Delete all but the first two characters from the Surname field, and a second validation
message will be displayed when you change the focus, as shown in Figure 36-4. (There is validation support for the other properties,
too, but the select element doesn’t allow the user to select an invalid valid. If you change a value, the select element will be
decorated with a green border to indicate a valid selection, but you won’t be able to see an invalid response until I demonstrate how
the form components can be used to create new data objects.)

Chapter 36 ■ Blazor Forms and Data

967

�Handling Form Events
The EditForm component defines events that allow an application to respond to user action, as described in Table 36-7.

These events are triggered by adding a conventional submit button within the content contained by the EditForm component.
The EditForm component handles the onsubmit event sent by the form element it renders, applies validation, and triggers the events
described in the table. Listing 36-13 adds a submit button to the Editor component and handles the EditForm events.

Listing 36-13.  Handling EditForm Events in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout

<link href="/blazorValidation.css" rel="stylesheet" />

<h4 class="bg-primary text-center text-white p-2">Edit</h4>
<h6 class="bg-info text-center text-white p-2">@FormSubmitMessage</h6>

<FormSpy PersonData="PersonData">

Figure 36-4.  Using the Blazor validation features

Table 36-7.  The EditForm Events

Name Description

OnValidSubmit This event is triggered when the form is submitted and the form data passes validation.

OnInvalidSubmit This event is triggered when the form is submitted and the form data fails validation.

OnSubmit This event is triggered when the form is submitted and before validation is performed.

Chapter 36 ■ Blazor Forms and Data

968

 <EditForm Model="PersonData" OnValidSubmit="HandleValidSubmit"
 OnInvalidSubmit="HandleInvalidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />
 <div class="form-group">
 <label>Firstname</label>
 <ValidationMessage For="@(() => PersonData.Firstname)" />
 <InputText class="form-control" @bind-Value="PersonData.Firstname" />
 </div>
 <div class="form-group">
 <label>Surname</label>
 <ValidationMessage For="@(() => PersonData.Surname)" />
 <InputText class="form-control" @bind-Value="PersonData.Surname" />
 </div>
 <div class="form-group">
 <label>Dept ID</label>
 <ValidationMessage For="@(() => PersonData.DepartmentId)" />
 <CustomSelect TValue="long" Values="Departments"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.DepartmentId">
 <option selected disabled value="0">Choose a Department</option>
 </CustomSelect>
 </div>
 <div class="form-group">
 <label>Location ID</label>
 <ValidationMessage For="@(() => PersonData.LocationId)" />
 <CustomSelect TValue="long" Values="Locations"
 Parser="@(str => long.Parse(str))"
 @bind-Value="PersonData.LocationId">
 <option selected disabled value="0">Choose a Location</option>
 </CustomSelect>
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Submit</button>
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
 </div>
 </EditForm>
</FormSpy>

@code {

 // ...other statements omitted for brevity...

 public string FormSubmitMessage { get; set; } = "Form Data Not Submitted";
 public void HandleValidSubmit() => FormSubmitMessage = "Valid Data Submitted";
 public void HandleInvalidSubmit() =>
 FormSubmitMessage = "Invalid Data Submitted";
}

Restart ASP.NET Core and request http://localhost:5000/forms/edit/2. Clear the Firstname field, and click the Submit
button. In addition to the validation error, you will see a message indicating that the form was submitted with invalid data. Enter a
name into the field and click Submit again, and the message will change, as shown in Figure 36-5.

Chapter 36 ■ Blazor Forms and Data

969

�Using Entity Framework Core with Blazor
The Blazor model changes the way that Entity Framework Core behaves, which can lead to unexpected results if you are used to writing
conventional ASP.NET Core applications. In the sections that follow, I explain the issues and how to avoid the problems that can arise.

�Understanding the Entity Framework Core Context Scope Issue
To see the first issue, request http://localhost:5000/forms/edit/2, clear the Firstname field, and change the contents of the
Surname field to La. Neither of these values passes validation, and you will see error messages as you move between the form
elements. Click the Back button, and you will see that the data table reflects the changes you made, as shown in Figure 36-6, even
though they were not valid.

Figure 36-5.  Handling EditForm events

Figure 36-6.  The effect of editing data

Chapter 36 ■ Blazor Forms and Data

970

In a conventional ASP.NET Core application, written using controllers or Razor Pages, clicking a button triggers a new HTTP
request. Each request is handled in isolation, and each request receives its own Entity Framework Core context object, which is
configured as a scoped service. The result is that the data created when handling one request affects other requests only once it has
been written to the database.

In a Blazor application, the routing system responds to URL changes without sending new HTTP requests, which means that
multiple components are displayed using only the persistent HTTP connection that Blazor maintains to the server. This results in a
single dependency injection scope being shared by multiple components, as shown in Figure 36-7, and the changes made by one
component will affect other components even if the changes are not written to the database.

Entity Framework Core is trying to be helpful, and this approach allows complex data operations to be performed over time
before being stored (or discarded). Unfortunately, much like the helpful approach Entity Framework Core takes to dealing with
related data, which I described in Chapter 35, it presents a pitfall for the unwary developer who expects components to handle data
like the rest of ASP.NET Core.

�Discarding Unsaved Data Changes
If sharing a context between components is appealing, which it will be for some applications, then you can embrace the approach
and ensure that components discard any changes when they are destroyed, as shown in Listing 36-14.

Listing 36-14.  Discarding Unsaved Data Changes in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout
@implements IDisposable

<!-- ...elements omitted for brevity... -->

@code {

 // ...statements omitted for brevity...

 public string FormSubmitMessage { get; set; } = "Form Data Not Submitted";
 public void HandleValidSubmit() => FormSubmitMessage = "Valid Data Submitted";
 public void HandleInvalidSubmit() =>
 FormSubmitMessage = "Invalid Data Submitted";

 public void Dispose() => Context.Entry(PersonData).State = EntityState.Detached;
}

As I noted in Chapter 35, components can implement the System.IDisposable interface, and the Dispose method
will be invoked when the component is about to be destroyed, which happens when navigation to another component occurs. In
Listing 36-14, the implementation of the Dispose method tells Entity Framework Core to disregard the PersonData object, which
means it won’t be used to satisfy future requests. To see the effect, restart ASP.NET Core, request http://localhost:5000/forms/
edit/2, clear the Firstname field, and click the Back button. The modified Person object is disregarded when Entity Framework Core
provides the List component with its data, as shown in Figure 36-8.

Figure 36-7.  The use of an Entity Framework Core context in a Blazor application

Chapter 36 ■ Blazor Forms and Data

971

�Creating New Dependency Injection Scopes
You must create new dependency injection scopes if you want to preserve the model used by the rest of ASP.NET Core and have each
component receive its own Entity Framework Core context object. This is done by using the @inherits expression to set the base
class for the component to OwningComponentBase or OwningComponentBase<T>.

The OwningComponentCase class defines a ScopedServices property that is inherited by the component and that provides an
IServiceProvider object that can be used to obtain services that are created in a scope that is specific to the component’s lifecycle
and will not be shared with any other component, as shown in Listing 36-15.

Listing 36-15.  Using a New Scope in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout
@inherits OwningComponentBase
@using Microsoft.Extensions.DependencyInjection

<link href="/blazorValidation.css" rel="stylesheet" />

<h4 class="bg-primary text-center text-white p-2">Edit</h4>
<h6 class="bg-info text-center text-white p-2">@FormSubmitMessage</h6>

<!-- ...elements omitted for brevity... -->

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 //[Inject]
 DataContext Context => ScopedServices.GetService<DataContext>();

 [Parameter]
 public long Id { get; set; }

 // ...statements omitted for brevity...

Figure 36-8.  Discarding data objects

Chapter 36 ■ Blazor Forms and Data

972

 //public void Dispose() =>
 // Context.Entry(PersonData).State = EntityState.Detached;
}

In the listing, I commented out the Inject attribute and set the value of the Context property by obtaining a DataContext
service. The Microsoft.Extensions.DependencyInjection namespace contains extension methods that make it easier to obtain
services from an IServiceProvider object, as described in Chapter 14.

■■ Note  Changing the base class doesn’t affect services that are received using the Inject attribute, which will still be obtained within
the request scope. Each service that you require in the dedicated component’s scope must be obtained through the ScopedServices
property, and the Inject attribute should not be applied to that property.

The OwningComponentBase<T> class defines an additional convenience property that provides access to a scoped service of type
T and that can be useful if a component requires only a single scoped service, as shown in Listing 36-16 (although further services
can still be obtained through the ScopedServices property).

Listing 36-16.  Using the Typed Base Class in the Editor.razor File in the Blazor/Forms Folder

@page "/forms/edit/{id:long}"
@layout EmptyLayout
@inherits OwningComponentBase<DataContext>

<link href="/blazorValidation.css" rel="stylesheet" />

<h4 class="bg-primary text-center text-white p-2">Edit</h4>
<h6 class="bg-info text-center text-white p-2">@FormSubmitMessage</h6>

<!-- ...elements omitted for brevity... -->

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 //[Inject]
 DataContext Context => Service;

 // ...statements omitted for brevity...
}

The scoped service is available through a property named Service. In this example, I specified DataContext as the type
argument for the base class.

Regardless of which base class is used, the result is that the Editor component has its own dependency injection scope and its
own DataContext object. The List component has not been modified, so it will receive the request-scoped DataContext object, as
shown in Figure 36-9.

Figure 36-9.  Using scoped services for components

Chapter 36 ■ Blazor Forms and Data

973

Restart ASP.NET Core, navigate to http://localhost:5000/forms/edit/2, clear the Firstname field, and click the Back button.
The changes made by the Editor component are not saved to the database, and since the Editor component’s data context is separate
from the one used by the List component, the edited data is discarded, producing the same response as shown in Figure 36-8.

�Understanding the Repeated Query Issue
Blazor responds to changes in state as efficiently as possible but still has to render a component’s content to determine the changes
that should be sent to the browser.

One consequence of the way that Blazor works is that it can lead to a sharp increase in the number of queries sent to the
database. To demonstrate the issue, Listing 36-17 adds a button that increments a counter to the List component.

Listing 36-17.  Adding a Button in the List.razor File in the Blazor/Forms Folder

@page "/forms"
@page "/forms/list"
@layout EmptyLayout

<h5 class="bg-primary text-white text-center p-2">People</h5>

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
 </tr>
 </thead>
 <tbody>
 @if (People.Count() == 0) {
 <tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
 } else {
 @foreach (Person p in People) {
 <tr>
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City</td>
 <td>
 <NavLink class="btn btn-sm btn-warning"
 href="@GetEditUrl(p.PersonId)">
 Edit
 </NavLink>
 </td>
 </tr>
 }
 }
 </tbody>
</table>

<button class="btn btn-primary" @onclick="@(() => Counter++)">Increment</button>
Counter: @Counter

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People { get; set; } = Enumerable.Empty<Person>();

Chapter 36 ■ Blazor Forms and Data

974

 protected override void OnInitialized() {
 People = Context.People.Include(p => p.Department).Include(p => p.Location);
 }

 string GetEditUrl(long id) => $"/forms/edit/{id}";

 public int Counter { get; set; } = 0;
}

Restart ASP.NET Core and request http://localhost:5000/forms. Click the button and watch the output from the ASP.
NET Core server. Each time you click the button, the event handler is invoked, and a new database query is sent to the database,
producing logging messages like these:

...
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (1ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
 SELECT [p].[PersonId], [p].[DepartmentId], [p].[Firstname], [p].[LocationId],
 [p].[Surname], [d].[Departmentid], [d].[Name], [l].[LocationId], [l].[City],
 [l].[State]
 FROM [People] AS [p]
 INNER JOIN [Departments] AS [d] ON [p].[DepartmentId] = [d].[Departmentid]
 INNER JOIN [Locations] AS [l] ON [p].[LocationId] = [l].[LocationId]
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (0ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
 SELECT [p].[PersonId], [p].[DepartmentId], [p].[Firstname], [p].[LocationId],
 [p].[Surname], [d].[Departmentid], [d].[Name], [l].[LocationId], [l].[City],
 [l].[State]
 FROM [People] AS [p]
 INNER JOIN [Departments] AS [d] ON [p].[DepartmentId] = [d].[Departmentid]
 INNER JOIN [Locations] AS [l] ON [p].[LocationId] = [l].[LocationId]
...

Each time the component is rendered, Entity Framework Core sends two identical requests to the database, even when the
Increment button is clicked where no data operations are performed.

This issue can arise whenever Entity Framework Core is used and is exacerbated by Blazor. Although it is common practice
to assign database queries to IEnumerable<T> properties, doing so masks an important aspect of Entity Framework Core, which
is that its LINQ expressions are expressions of queries and not results, and each time the property is read, a new query is sent to
the database. The value of the People property is read twice by the List component: once by the Count property to determine
whether the data has loaded and once by the @foreach expression to generate the rows for the HTML table. When the user clicks the
Increment button, Blazor renders the List component again to figure out what has changed, which causes the People property to be
read twice more, producing two additional database queries.

Blazor and Entity Framework Core are both working the way they should. Blazor must rerender the component’s output to
figure out what HTML changes need to be sent to the browser. It has no way of knowing what effect clicking the button has until after
it has rendered the elements and evaluated all the Razor expressions. Entity Framework Core is executing its query each time the
property is read, ensuring that the application always has fresh data.

This combination of features presents two issues. The first is that needless queries are sent to the database, which can increase
the capacity required by an application (although not always because database servers are adept at handling queries).

The second issue is that changes to the database will be reflected in the content presented to the user after they make an unrelated
interaction. If another user adds a Person object to the database, for example, it will appear in the table the next time the user clicks the
Increment button. Users expect applications to reflect only their actions, and unexpected changes are confusing and distracting.

�Managing Queries in a Component
The interaction between Blazor and Entity Framework Core won’t be a problem for all projects, but, if it is, then the best approach is
to query the database once and requery only for operations where the user might expect an update to occur. Some applications may
need to present the user with an explicit option to reload the data, especially for applications where updates are likely to occur that
the user will want to see, as shown in Listing 36-18.

Chapter 36 ■ Blazor Forms and Data

975

Listing 36-18.  Controlling Queries in the List.razor File in the Blazor/Forms Folder

@page "/forms"
@layout EmptyLayout

<h5 class="bg-primary text-white text-center p-2">People</h5>

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
 </tr>
 </thead>
 <tbody>
 @if (People.Count() == 0) {
 <tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
 } else {
 @foreach (Person p in People) {
 <tr>
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City</td>
 <td></td>
 </tr>
 }
 }
 </tbody>
</table>

<button class="btn btn-danger" @onclick="UpdateData">Update</button>

<button class="btn btn-primary" @onclick="@(() => Counter++)">Increment</button>
Counter: @Counter

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People { get; set; } = Enumerable.Empty<Person>();

 protected async override Task OnInitializedAsync() {
 await UpdateData();
 }

 private async Task UpdateData() =>
 People = await Context.People.Include(p => p.Department)
 .Include(p => p.Location).ToListAsync<Person>();

 public int Counter { get; set; } = 0;
}

The UpdateData method performs the same query but applies the ToListAsync method, which forces evaluation of the Entity
Framework Core query. The results are assigned to the People property and can be read repeatedly without triggering additional
queries. To give the user control over the data, I added a button that invokes the UpdateData method when it is clicked. Restart ASP.
NET Core, request http://localhost:5000/forms, and click the Increment button. Monitor the output from the ASP.NET Core
server, and you will see that there is a query made only when the component is initialized. To explicitly trigger a query, click the
Update button.

Chapter 36 ■ Blazor Forms and Data

976

Some operations may require a new query, which is easy to perform. To demonstrate, Listing 36-19 adds a sort operation to
the List component, which is implemented both with and without a new query.

Listing 36-19.  Adding Operations to the List.razor File in the Blazor/Forms Folder

@page "/forms"
@page "/forms/list"
@layout EmptyLayout

<h5 class="bg-primary text-white text-center p-2">People</h5>

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
 </tr>
 </thead>
 <tbody>
 @if (People.Count() == 0) {
 <tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
 } else {
 @foreach (Person p in People) {
 <tr>
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City</td>
 <td>
 <NavLink class="btn btn-sm btn-warning"
 href="@GetEditUrl(p.PersonId)">
 Edit
 </NavLink>
 </td>
 </tr>
 }
 }
 </tbody>
</table>

<button class="btn btn-danger" @onclick="@(() => UpdateData())">Update</button>
<button class="btn btn-info" @onclick="SortWithQuery">Sort (With Query)</button>
<button class="btn btn-info" @onclick="SortWithoutQuery">Sort (No Query)</button>
<button class="btn btn-primary" @onclick="@(() => Counter++)">Increment</button>
Counter: @Counter

@code {

 [Inject]
 public DataContext Context { get; set; }

 public IEnumerable<Person> People { get; set; } = Enumerable.Empty<Person>();

 protected async override Task OnInitializedAsync() {
 await UpdateData();
 }

 private IQueryable<Person> Query => Context.People.Include(p => p.Department)
 .Include(p => p.Location);

Chapter 36 ■ Blazor Forms and Data

977

 private async Task UpdateData(IQueryable<Person> query = null) =>
 People = await (query ?? Query).ToListAsync<Person>();

 public async Task SortWithQuery() {
 await UpdateData(Query.OrderBy(p => p.Surname));
 }

 public void SortWithoutQuery() {
 People = People.OrderBy(p => p.Firstname).ToList<Person>();
 }

 string GetEditUrl(long id) => $"/forms/edit/{id}";

 public int Counter { get; set; } = 0;
}

Entity Framework Core queries are expressed as IQueryable<T> objects, allowing the query to be composed with additional
LINQ methods before it is dispatched to the database server. The new operations in the example both use the LINQ OrderBy
method, but one applies this to the IQueryable<T>, which is then evaluated to send the query with the ToListAsync method.
The other operation applies the OrderBy method to the existing result data, sorting it without sending a new query. To see both
operations, restart ASP.NET Core, request http://localhost:5000/forms, and click the Sort buttons, as shown in Figure 36-10.
When the Sort (With Query) button is clicked, you will see a log message indicating that a query has been sent to the database.

AVOIDING THE OVERLAPPING QUERY PITFALL

You may encounter an exception telling you that “a second operation started on this context before a previous operation
completed.” This happens when a child component uses the OnParametersSetAsync method to perform an asynchronous
Entity Framework Core query and a change in the parent’s data triggers a second call to OnParametersSetAsync before the
query is complete. The second method call starts a duplicate query that causes the exception. This problem can be resolved by
performing the Entity Framework Core query synchronously. You can see an example in Listing 36-12, where I perform queries
synchronously because the parent component will trigger an update when it receives its data.

Figure 36-10.  Managing component queries

Chapter 36 ■ Blazor Forms and Data

978

�Performing Create, Read, Update, and Delete Operations
To show how the features described in previous sections fit together, I am going to create a simple application that allows the user to
perform CRUD operations on Person objects.

�Creating the List Component
The List component contains the basic functionality I require. Listing 36-20 removes some of the features from earlier sections that
are no longer required and adds buttons that allow the user to navigate to other functions.

Listing 36-20.  Preparing the Component in the List.razor File in the Blazor/Forms Folder

@page "/forms"
@page "/forms/list"
@layout EmptyLayout
@inherits OwningComponentBase<DataContext>

<h5 class="bg-primary text-white text-center p-2">People</h5>

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Dept</th><th>Location</th><th></th>
 </tr>
 </thead>
 <tbody>
 @if (People.Count() == 0) {
 <tr><th colspan="5" class="p-4 text-center">Loading Data...</th></tr>
 } else {
 @foreach (Person p in People) {
 <tr>
 <td>@p.PersonId</td>
 <td>@p.Surname, @p.Firstname</td>
 <td>@p.Department.Name</td>
 <td>@p.Location.City</td>
 <td class="text-center">
 <NavLink class="btn btn-sm btn-info"
 href="@GetDetailsUrl(p.PersonId)">
 Details
 </NavLink>
 <NavLink class="btn btn-sm btn-warning"
 href="@GetEditUrl(p.PersonId)">
 Edit
 </NavLink>
 <button class="btn btn-sm btn-danger"
 @onclick="@(() => HandleDelete(p))">
 Delete
 </button>
 </td>
 </tr>
 }
 }
 </tbody>
</table>

<NavLink class="btn btn-primary" href="/forms/create">Create</NavLink>

Chapter 36 ■ Blazor Forms and Data

979

@code {

 public DataContext Context => Service;

 public IEnumerable<Person> People { get; set; } = Enumerable.Empty<Person>();

 protected async override Task OnInitializedAsync() {
 await UpdateData();
 }

 private IQueryable<Person> Query => Context.People.Include(p => p.Department)
 .Include(p => p.Location);

 private async Task UpdateData(IQueryable<Person> query = null) =>
 People = await (query ?? Query).ToListAsync<Person>();

 string GetEditUrl(long id) => $"/forms/edit/{id}";
 string GetDetailsUrl(long id) => $"/forms/details/{id}";

 public async Task HandleDelete(Person p) {
 Context.Remove(p);
 await Context.SaveChangesAsync();
 await UpdateData();
 }
}

The operations for creating, viewing, and editing objects navigate to other URLs, but the delete operations are performed by the
List component, taking care to reload the data after the changes have been saved to reflect the change to the user.

�Creating the Details Component
The details component displays a read-only view of the data, which doesn’t require the Blazor form features or present any issues
with Entity Framework Core. Add a Blazor Component named Details.razor to the Blazor/Forms folder with the content shown in
Listing 36-21.

Listing 36-21.  The Contents of the Details.razor File in the Blazor/Forms Folder

@page "/forms/details/{id:long}"
@layout EmptyLayout
@inherits OwningComponentBase<DataContext>

<h4 class="bg-info text-center text-white p-2">Details</h4>

<div class="form-group">
 <label>ID</label>
 <input class="form-control" value="@PersonData.PersonId" disabled />
</div>
<div class="form-group">
 <label>Firstname</label>
 <input class="form-control" value="@PersonData.Firstname" disabled />
</div>
<div class="form-group">
 <label>Surname</label>
 <input class="form-control" value="@PersonData.Surname" disabled />
</div>

Chapter 36 ■ Blazor Forms and Data

980

<div class="form-group">
 <label>Department</label>
 <input class="form-control" value="@PersonData.Department?.Name" disabled />
</div>
<div class="form-group">
 <label>Location</label>
 <input class="form-control"
 value="@($"{PersonData.Location?.City}, {PersonData.Location?.State}")"
 disabled />
</div>
<div class="text-center">
 <NavLink class="btn btn-info" href="@EditUrl">Edit</NavLink>
 <NavLink class="btn btn-secondary" href="/forms">Back</NavLink>
</div>

@code {

 [Inject]
 public NavigationManager NavManager { get; set; }

 DataContext Context => Service;

 [Parameter]
 public long Id { get; set; }

 public Person PersonData { get; set; } = new Person();

 protected async override Task OnParametersSetAsync() {
 PersonData = await Context.People.Include(p => p.Department)
 .Include(p => p.Location).FirstOrDefaultAsync(p => p.PersonId == Id);
 }

 public string EditUrl => $"/forms/edit/{Id}";
}

All the input elements displayed by this component are disabled, which means there is no need to handle events or process
user input.

�Creating the Editor Component
The remaining features will be handled by the Editor component. Listing 36-22 removes the features from earlier examples that are
no longer required and adds support for creating and editing objects, including persisting the data.

Listing 36-22.  Adding Application Features in the Editor.razor File in the Forms/Blazor Folder

@page "/forms/edit/{id:long}"
@page "/forms/create"
@layout EmptyLayout
@inherits OwningComponentBase<DataContext>

<link href="/blazorValidation.css" rel="stylesheet" />

<h4 class="bg-@Theme text-center text-white p-2">@Mode</h4>

<EditForm Model="PersonData" OnValidSubmit="HandleValidSubmit">
 <DataAnnotationsValidator />

