The Complete
ASP.NET Core 3
API Tutorial

Hands-On Building, Testing,
and Deploying

Les Jackson

The Complete ASPNET
Core 3 API Tutorial

Hands-On Building, Testing,
and Deploying

Les Jackson

Apress’

The Complete ASP.NET Core 3 API Tutorial: Hands-On Building, Testing, and
Deploying

Les Jackson
Melbourne, VIC, Australia

ISBN-13 (pbk): 978-1-4842-6254-2 ISBN-13 (electronic): 978-1-4842-6255-9
https://doi.org/10.1007/978-1-4842-6255-9

Copyright © 2020 by Les Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262542. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6255-9

For Quynh

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns xvii
About the Technical REVIEWETccsssusssassssassssnsssansssssssssssssssssassssnssssssssassssasssansssans Xix
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
Chapter 1: Introduction..........ccccmiinsmmmmmnnssssnmmmssssnmmmssssmmmsssssnssss . 1
WhyY [Wrote THiS BOOKccecerirerriresirrssesrnesssese s ssssess e s e s e s ssssessssssesssssssssessssssessnns 1
0TI 10 [1] O 1
The Approach 0f ThiS BOOKc.cccveiiriiininiiniirsis s s s s s se s e se s s s s s ssesssesnesaesneas 2
Where Can You Get the COUB?.........covrerererererineseseseresss s se s sesassssssssnens 2
Main Solution Repository (APl and Unit TESES)......ccceecrerererenernserenesesene s 3
Secure Daemon Client REPOSITONYcocverrerererrnsesre s 3
Conventions Used in ThiS BOOK..........ccuvererrenernesssesssssesssesssssssssssesessessssssesssssssssssssssssssssssssssnnns 3
Version of the .net Core Framework ... 3
Contacting the AUTNOKcocoeccr s s sr e e e s a e e ene s 4
Defects and Feature IMProvemMENtS..........ccvcvvereririerne s s e s sn e s s 4
Chapter 2: Setting Up Your Development Environment..........ccccnnemnmnnssssnsnsnsssssnnnnns 5
ChapLer SUMMANY ..o s r e s n e re e e e nnnnn s 5
WHen DONe, YOU WIllcovieeieereririeeseesersessesssessesesssessessessssssessesssssssssssaessssssssassasssssssssaesasnnes 5

The Three Amigos: Windows, Mac, and LiNUXcccucererninienennsnsenesssessessessssssessessessssessessens 5

B (010 T 0T =T LT 1) RS 6
Links to the Software and SiteS.........c.curererrnisnsn s 8
INSTAII VS COUE ... ne s 8
C# fOor Visual StUAIO COUEcoveeeereeereecrerere e s 10
LTS o A S 11

TABLE OF CONTENTS

INSAll .NET COre SDKcccoureiriiiineresisssssse s e se e s s e ss s sessssssssssssesssssssaes 12
11 21 TP 13
Name and EMAIl ..o 14
Install Docker [OPLioNal].........cooueerrererrerereer e 15
WhAL IS DOCKEI?veueeirieerieess s sss s s e s ss s se e sr e ss s sns e e sssessnssssnnsnnns 15
Docker Desktop VS. DOCKEF CEcccvvrirnnirinere s sss s s ssssessessessssessessenes 15
Post-installation CRECK...........ccceriririinrnerie s 16
Docker PIUGIn TOr VS COUE........ccvcerererrererereesessersersesessessessesssssssessesssssssessesssssssessessesssssssessees 18
1Ty L 0 ES] (0] RS 18
INSEall DBEAVEK CE.........ceeeeeereeereecrescse e s e sse e se s s sessesessssesessssenssssssssesessssenns 19
DBeaver VS. POAUMINcccovveeerenerenesess s e sre e sen e nsssensnns 19
INSTAI POSIMAN ... e s s 20
Trust Local Host DeVElopPMENt CEISccccevuererrriererirsirsere s sessese s e e s e ssessessssessessesesssssessessens 21
L eV 01 oL SR 22
Chapter 3: Overview of Qur APlccccuisemnmmnsssnsnsmssssssssessssssssssssssssssssssnsssssssnnnnssss 23
Chapter SUMMANYooo e n e e e e e e nnn e 23
WHen Done, YOU WIllccvceverererieeseresesssessesessssssessessesssessessessesssssasssssssessesaessesssesaesassnees 23
What IS @ REST API?.......cucieccrss sttt bbbttt 23
0T o OSSR 24
21 0 L0 S S 26
Five Minutes 0N JSONcccoeeererinnemsese s sesss s 26
Chapter 4: Scaffold Our APl Solution........ccccussseenrmsssssnnnessssnsssmsssssnsssssssnsnessssnsnnsess 31
Chapter SUMMANYcco o e ne s e nrn e 31
WHen Done, YOU WIllccvceieriririeesesesesseessesessssssessessesssessessessesssssasssesssessesaessssssesaessssnees 31
SOIULION OVEIVIBWveveeeieeeieesisse e s b e ep e nn e 31
Scaffold Our Solution COMPONENTScccrererirrriere e e ae s 33
Creating Solution and Project ASSOCIAtIONS........ccceverervererrererserereses s s ssesessessessessssessessens 36
Anatomy Of AN ASP.NET COFE APP....ccuierrrerinerersnerissesessesesssse s sessesessssestssessssssessssssessesessssessnnes 41
The Program and Startup CIaSSES........cccrerirniniennsinsise s se s ssessssessesnes 43

TABLE OF CONTENTS

Chapter 5: The “C” in MVC......ccccunsemnmmmssssnnsmssssssssesssssssssssssssssssssssssssssssnsnssssssnnnsssss 47
Chapter SUMMANY ...t e e e 47
WHen Done, YOU WIllcoceoeceeeesee e reres e s reses e e s ssessaessessessess e saesaesneessesaesaesnsesaesnsnnens 47
Quick Word 0n My DEV SETUPccueeeererrrerrnsseeseressssssesesesssssesssesessssssssssssssssssssssssssesssssssaes 48
Call the POSTMANcccceveeriierinc e np s 53
WRAL IS IMVC? ... bbb 56
MOdEl-VieW—CONIOIIENcceerererrecere e 57
Models, Data Transfer Objects, Repositories, and Data ACCESS.........cvvrrerererrersereressensersenes 58
(01T 0T 0]] PSSR 60
1. USING DIrECHIVES....ccvecreecereer e s nre s 65

2. Inherit from Controller BASEccoovceverenernseriseserese s ssssesenns 65

3. SEEUP ROULING.....cctivieriserirece et sn s s 66

4. APIController ALDULEccceeerericc 67

5. HIEPGET ARFDULEccv et sa s s a e e s a e r e s nnen 67

6. OUr CONEFOHIEr ACLIONvvececcreresre e 68
SOUICE CONTIOL ... e s ae e n e nnn e 69
Git @NA GIEHUD......eeeeee s 70
Setting Up Your LOCal Git REPO.......cccevviiriereriniinnine s sss s s ses e s s sesses e s s 71
GIHIGNOTE FIlB 1.t e e 72
Track and Commit YOUF FIlESccccereririniscririsssssesssesssse s 75
Set Up YOUr GItHUD BP0civeerererererereree s sersesse e ssessesseseessssessessesassessessesssssssessesassssssssesnees 77
Create a GitHUb REPOSITOrYccovviivicrirc st 78

S0 What Just HAPPENEU?c.eeoerr st s 82
Chapter 6: Our Model and RepoSitOry........cccussmmsmsmssmssssmsssssssssssssssssssassssassssnsnsansas 85
(081 1o (T T T T RS 85
When Done, YOU WIll ... s e sn s 85
L0 0o L P 85
Data ANNOLALIONScccerrcrereerese e 87

vii

TABLE OF CONTENTS

0T T =T 105 (0] 89
What IS an INTErfaCe?........cccvrerericesirires s 90
What About Implementation? ... ————————— 94

Dependency INJECLION..........ccoviirerrrereree s 99
Back 10 the Start (UP) ...cceveveresmreserrnesssssssssessssesssssse s sessessssssessssessssessssssessssesesssssssssensans 99
Applying Dependency INJECHIONccoevvvrierienn e 102

Chapter 7: Persisting Our Data...........c.ccossemmmnnsssemnmnnsssssnnmnsssssssssssssssssssssssssssssssnnns 113

(1 10 (T AT O 113
When Done, YOU Wiloooreece et s s e re e s saesessa e s saeseesa e saesaesnessnesnesaennes 113
Architecture Progress ChECKccoeeoerenerrscreresese e ses s snsseseenis 113
POStGreSAL DAADASEcccrvrererreerreserenesesesesre s ses s se s e sessssenns 115
USING DOCKETveeeerreerieesesessss s e e s ss s ss s s e s ne s e s nsnsis 115
Docker Command PrOMPLcccvievriniereninsene s see s ssessessssessessesssssssessesasssssessesnes 118
ConNecting With DBRAVETcceveverrerieressssersessessessssessessessssessessesssssssessesassssssssessesssnsssesseses 120
Entity FramEWOIK COTEcceuevreierreriereessrserersessesessessesssssssessessessssessessesssssssessessssssensessesssnsnsessens 126
The What and Why 0f ORMS.........cccriniininrsr s s ss s s sn s snes 127
Entity Framework Command-Ling TOOIS..........ccccorrerrnenrneneresc e 127
Create Our DB CONEXL.......cuoierererreserrsesessese s sese e e ses s se s e e s s ssesesessssssssssnsanes 128
Update appsettingS.jSON.......cccvucernsernesenesersse e ss s srs s ses s s ssanes 132
Revisit the STArtup ClaSsscccvcerierririerenirrerere e sse e ses e ssessssessessesasssssessesnes 139
Create and ApPlY MIigrationsccvvvverernrensenienesessessese s sessessessssessessessessssessessesssssssesseses 143
Adding SOME DALacoeeeeiecrrcrr e e e e p s 148
TYING It ARROGELNET ...t s s e nne e 153
Create a New Repository Implementation..........cccccucvvrinnnninnnnnnne s 154
Get All COMMANG EMSceveereereserrnesese s 161
Get A Single Command (EXiStiNG)cveererrererierierenensersese s sessesessssessessessesessessessesssssssessees 161
Get A Single Command (NOt EXiStiNg)........ccorrerierererserseriensssensesessssessessessessssessessessssessessees 162
Wrapping Up the ChapIer.......cccvevevrrere s sessere e ssessesse s sesessessessssessesaesesssssessssaesessessessees 163
Redact Qur Login and PaSSWOIdccoceurmnrenennnnnsenesssissesse e sesse s ssssessessesssssssessesnes 164

viii

TABLE OF CONTENTS

Chapter 8: Environment Variables and User SecCrets......cc.cccenmnnsnnmnnnsssssnsssssssnnns 167
Chapter SUMMANY ... s et eeeens 167
When Done, YOU Wil ..o s erere s s e rsesee s seseesnesaesaesnessnesaessesnssssssnesaennes 167
AT 1T 1T S 167
Our ENvironment SELUPccvvverinnr s s e 169
The Development ENVIFONMENTcccovvirineninnn e se e ssssessesaesnes 170
SOWRAL? ... 173
Make the DiStINCHON..........coveeirieree e 173
Order Of PreCEUBNCE.........coeeereereecr e 174

IS TIME 10 MOVE ... 176
(LS e g T (] TSSO 180
What Are USEr SECIEIS?......cucrieerresinesere s sae e e s s 180
Setting UP USEI SECIELS.....civrerierirere st re s st sas e saesaesassensesnens 181
DECIHING YOUE SECIBS....ciuerrererrerereserserersessssessessessssessessesaesassessessessssessesaesssssssessesasssssessesaes 183
WREIE AFE THEY?....c ettt e e et st b et st s e e bt p e e st eae e ene e 184
[T (=N | OSSOSO 185
WEAD B UD e e e e e s 189
Chapter 9: Data Transfer Objects.......ccccusmmmmnssnnmmmmmssnnnmmssssnnmmsssssnsmessssssensssnnn 191
(081 10 (T AT T R 191
When Done, YOU WIll ..o s s sesssss s 191
ArchiteCture RBVIBW ..ot s 191
The What and Why 0f DTOScccciiiiiirn s ss s s sss s 193
Decouple Interface from Implementation (Again)..........ccocveeeererrnrennneseniesese s 193
IMPIEMENTING DTOS ... e e ne e e 195
Create QU DTOS ... e 196
Setting Up AULOIMAPPEL......cceverereeririeresesrssese s sss e s e sse s ssssessessesaesassessessesassessessesasssssessessens 197

L 1T I AU L 0] o] T S 199

ix

TABLE OF CONTENTS

Chapter 10: Completing Our APl Endpointsccccnssmmmnmnssssnnnmnsssssnnsssssssssssssssnnns 207
Chapter SUMMANY ... s st se e 207
When Done, YOU Wil ..o eereeee e rere s s e ressee s ssesessne s saesessnesaesaesnssnnesnesaesnes 207
Persisting Changes in EF COTEcuucrreererenereness s e ses e ssssessssesessssenns 207
DB Context Tracks CRaNGES.........cccvererrnsesrnsesmsssesssessssessssse s sessesssss s ssssessssssssssssssnses 208
The Create ENAPOint (POST).....ccuerirrrrieresis s sese s sssses s ssessssessesaesssssssessesaesessessessees 209
1T o100 T O 210
SUCCESS DULPULS.....ereereerrerererereeserererre s e sessesaese s e rae s saesesaesaesae e s e saesaesaesessesaesasssnsensenaens 210
IHEMPOLENCY ... e e 210
Updating the REPOSIIOrYccocvererrrrcrrrerereseresse s se s s seenis 211
ComMMANACIEAtEDTOccovrererreerese s nr s 214
Updating the CONTIOIIEN.........cccvecereierneserese e 217
Manually Testing the Create ENAPOiNtccccvcrierrininieninrerrere s s sessessesnes 222
The Update Endpoint #1 (PUT) ..o e s s sse s se s sne s ssesssesnesae s 226
T 0T 0 T4 OO 227
SUCCESS QUIPULS.....coueriie et e e s r s e nne s 228
IHEMPOLENT ... ——————————— 228
Updating the REPOSITOrYccccveeernsesnesesese s ss s sr s ses s s nsanis 228
CommAaNAUPAALEDI0........ccu i e 230
Updating the CONTIOIIE.........ccveveverrerere s s se e e saesr e e sne s 232
Manually Testing the Update (PUT) ENdPOINt..........cccoorvrienircrrece e 235
The Update Endpoint #2 (PATCH) ... s s se s 238
0 010 T O 240
1IHEMPOLENT ... ——————————— 241
Updating the REPOSITOrYcccveeerisernesinese s s srs s ssanis 241

(0] 10T TR0 0 0T L (=T (O 242
Install Dependencies fOr PATCH.........ccccvevririeniennsensese s sesessessssesessessesessessessesssssssessees 242
Updating the Startup Class.........cccuevvreniresrrienre st ssenes 243
Updating the CONIOIIE ... s 244
Manually Testing the Update (PATCH) ENdPOINt...........cocovenrerrrcrereser e 247

TABLE OF CONTENTS

The Delete Endpoint (DELETE).........ccccvvirininiinrin s s sse s sessss s s ssssssssnesaenns 248
Updating the REPOSITOrYcceeiiiriirie i s 249
COMMANADEIBIEDTO. e 250
Updating the CONTIOIIEN.........ccceeeereeerresere e e 250

L LT SO SSRRPS 251

Chapter 11: Unit Testing Our APIccocccmmmmnssenmnmmmssssnnmmssssssnmssssssssssssssssssssssnnnss 253

(081 10 T T T OO 253
When Done, YOU Will ..o s sssssssssssssens 253

What IS UNit TESTING ...evcverieiirier e s n e s s s s s s 253
Protection AgainSt REGreSSIiON..........ccvveriereriirier e s res e s s e s e s s s s seesnesaesseens 254
Executable DOCUMENTAtION...........cccoeeerieerereriree e 255

Characteristics of @ GO0 UNit TEST.........ccoererrrrerrererese e 255

WREE 0 TESE? ... e s e ne e r e e s e nne e 256

Unit Testing FrameWOrKS ..o s 256

Arrange, ACt, AN ASSEI........cccveri i e s e nne s 257
1 140 TSR 257
AT e ————————————————————————————— 257
ASSEIT ...t ——————— 257

L LT T €5 A (=T 258
TESHING OUF MOTEL.......ccveererereeserrere s ses e se s sa e e e saesa e e s aesae e s e e s aesr e e e e naennes 261

Don’t RePeat YOUISEIT........cccooe ettt e e s a e s s e e s ae s 268

TESt QU CONEFONIET ...t 272
Revisit Unit Testing CharacteristiCs ... sessesnes 272

GetAllCommands Unit Tests and GroUNUWOIK..........ccoceeecrrreererenerescrenesesese s sseesessesenns 274
GetAlICOMMANAS OVEIVIBWcc.eerveerereserreseresesessesessesesessesessssesss e sessssessssessssesessssssssnsssenes 274
GetAlICOMMANAS UNit TESTS.....ccuorvrerrererese s s nsnnes 274
Groundwork for CONTIOlEr TESES.......ccvvererenernseresese s 275
Finish Test 1.1 — Check 200 OK HTTP Response (Empty DB)........c.ccovrerrnrernsesenenessenenennes 283
Test 1.2 — Check Single Resource RetUrNed..........cccevvevererrerierenessinsensesesessessesessssessesseses 286
Test 1.3 — Check 200 OK HTTP RESPONSE.....ccuerrererrersersersesersessessessssessessessessssessessesssssssessesses 288
Test 1.4 — Check the Correct Object Type REtUINEdcccvvvvererevrenierienesesseneressesessessenes 289

TABLE OF CONTENTS

GetCommandBYID UNit TESTS.....cucvierererrerereresseresesresessessessessssessessessssessessesssssssessessesssssssessens 290
GetCommANUBYID OVEIVIBW.......cccvuierirererieserine s se st se s s st se s sse s 290
GetCommandByID Uit TESTS ... e s 291
Test 2.1 — Check 404 Not Found HTTP RESPONSE......ccccoivververierenssiniesesie s e sessesnes 291
Test 2.2 — Check 200 OK HTTP RESPONSE....c.ccvvrrrreriererinsessesessessssessessessessssessessesssssssessesees 292
Test 2.3 — Check the Correct Object Type Returnedccccvvrevvrninnennnensensene s sessenenens 293

CreateCommand UNit TESTSccccvrrnienmrrirsssse s s 294
CreateCommand OVEIVIEWcccccecrerereneenssesesssssssse e se s e ssssssesesssssnsas 294
CreateCommand UNit TESTSc.ccocreecrrererese s 295
Test 3.1 Check If the Correct Object Type Is Returned..........occoveerrcnnccnnsencresc s 296
Test 3.2 Check 201 HTTP RESPONSEccccvverererinsinene s ses e ssesesse s sssssssessesaes 296

UpdateCommand Unit TESESccuveeererernsesrnesesese s s s sss s s s s sessssssessesssessesenns 297
UpdateCommand OVEIVIEWccuververierrereenersereseesessessessessssessessesssssssessesaesssssssessesssssssesseses 297
UpdateCommand UNit TESES.......cvrvvrrrierensnrerseresesessesessessssessessesssssssessessessssessessesssssssessees 298
Test 4.1 Check 204 HTTP RESPONSE ...coueeruverineririenisieerisesesesesse e s e sessesessssessssesessessssenens 298
Test 4.2 Check 404 HTTP RESPONSEccvvererininsinene s ses e ses s s sssse s sssssssessesnes 299

PartialCommandUpdate Unit TESES.......ccccvvririinini s snens 300
PartialCommandUpdate OVErVIBWc.ccucevrvrrerernnensene s se s s sassessessesnes 300
PartialCommandUpdate Unit TESESccvcererrinieniennsirsene s saesessessesaes 301
Test 5.1 Check 404 HTTP RESPONSEcuecervereerrerersersersessesessessessesssssssessessessssessessesssssssessesses 301

DeleteCommand UNit TESESccccvererrrnenrsenrressssse s s aes 302
DeleteCommand OVEIVIEWcccoceeeereererererersese e sesese s sse e ses e se e se e sssesenns 302
DeleteCommand UNit TESTS......c.cuourerrenerrrserersereresesrnsesesesessse e sesesessssessssesessesessssesssessnss 303
Test 6.1 Check for 204 No Content HTTP RESPONSEcccvvrrerernsinsenesessnsessesessssessessesees 303
Test 6.2 Check for 404 Not Found HTTP RESPONSE........cccucererrererrenerrnsesesessssesessssesessessssenens 303

L 0 {0 o S SP 304

Chapter 12: The CI/CD Pipeline.......ccccrusssnnmrsssssnssssssssnssssssssnsssssssssnssssssssnssssssnnnnss 305

(TG 1T T T 305

WHen Done, YOU WIllc.coevirieenerirerseeseresessse e ssessssaessessessssssssessessssssesaesssssssssssaesassnes 305

xii

TABLE OF CONTENTS

WRAL IS Cl/CD? ... e et 305
CI/CD OF CI/CD? ...eovveetririresesesesesesseess s s s s st ss s s se s s s s sssssssssasssssssssssnsnsnenes 306
What's the DIffErENCE?ccoeerrcrerere s 306
SOWRICH IS HE?....eeee et 307
BTN o1 RS 307
What IS AZUFE DEVOPS?....ccceeerreririerese st se s sas e s ss s s s sae s s s s sae e s saesnes 308
ARBINALIVESvviecccsirisieeeere e sp e 309
Technology in CONTEXLccecevererrerrerererrersere e s s s e e s s sae s e e s e saesaese s e saesaesae e s e naesaes 309
Create a Build PIPElINe.........cccvvreiisirsircc et 311
What Just HAPPENEd? ...t 324
Azure-PipelineS.yMI File........ccoveeiiierrreerese s e sesnenens 325
Triggering @ BUIld........ucceeecerinesineserese e s sn s s s sse e sessessnnenens 328
Revisit azure-pipelineS.YMl.......cccccvirerririereresrrrere s se s s sre e s e s nnens 331
Another VS Code EXTENSIONccccccverrrmnnssmseresssssssse s sssssssssssssssssssssssssssens 332
RUNNING UNIE TESES ...t s e s s s 333
Breaking Our Unit TESTS.....cccviirirririn et snens 338
Testing — The Great CatCh All? ... e 342
Release/PaCKagingcccucrurererenmrresersssesssesessese s e sssse e sss e ssssesssssse s ssssessssssnssassssssssnns 343
L TN {0 SO P 347
Chapter 13: Deploying t0 AZUre........ccccusseennrsssssnssssssssnsssssssssnssssssssnnssssssnnssssssnnnnss 349
Chapter SUMMANY ...t st e e 349
When Done, YOU WIlloooreececereree e rere s reseesee s sseseesne e saeseesnesaessesnsssnesnesaeenes 349
Creating AZUre RESOUICEScovurerrrseresesrssesesessessssssessssesssssssssssssssssssssssssssnssssssssnsssssssnsssssssnns 349
Create QUM APLADD .ttt e b e s e s e e b e ae s 350
Create Our POSTGreSQAL SEIVENccvcvcererereriererie s s e s e se s e ssesaesss e ssessesssssssesnees 359
Connect and Create Our DB USET ... sssssssssss 368
Revisit Our Dev ENVIFONMENTcooiieirnenirnsssese s e sesss s sssssssesssssnsas 370

xiii

TABLE OF CONTENTS

Setting Up Config iN AZUIEccvevererensereresssssssesse e ssssessessesssssssessesssssssessessessssssssssesasssssessesaes 371
Configure Our ConNection StriNg.......ccccccricininninn s 371
Configure Our DB User Credentials............ccccvvririnnnnnninnnsnnc e sessesse s 374
Configure OUr ENVIFONMENTcccovieirrcerese s 377

Completing OUF PIPEIINEcovvirceiiririn s s se s s s st nn 379
Creating Our Azure DevOps Release PipeliNeccccvvrernsnseniennsensense s ssssessessessssessessens 380

Pull the Trigger — ContinUOUSIY DEPIOYcccvverrererrererrerersereresessessessessssessessessessssessessesssssssensens 388
Wait! What About EF MigrationS?cccecvvrierenensenseresssessessesessssessessessessssessessesssssssessenees 388
DOUDIE-CRECK ...t 392

Chapter 14: Securing Our APl.........ccccinnsmmmmmmnssssnnmmsssssnmssssssnmsssssssnsssssssnssssssnnnnss 395

Chapter SUMMANYccoveirirrese e e ne e 395
WHEn DONE, YOU WIllccoeiiriieieecerieres e se s ssssae s ssessn e s saesnesssesnesnesnesnsssnesnesnnnns 395

What We're BUIlAING.......cceeeieriererenirririe s sessesessessssese e ssssessessessessssessesaesssssssessesnesesssssessees 395
Our Authentication USE CaSEcccvrrmrrienmsesesmsssssse s ss e sesesssssssas 395
Overview of Bearer AUthentiCation............cccccvnnnninnnnnsssssses e 396
BUILA STEPS ... e e e e e e e 397

Registering Our APl N AZUIE ADccomeererenerrenerensesesesessesesessesessesessesessssesessssssssssssessssssssenns 399
Create @ NEW AD?......ccoeerrcerese s se s ne s nne e nr s 400
3 Te 0Ly (=T 0T Y O 401
EXPOSE QU AP ...t sere et s e sa s s s e e ae s ae st s sae b e e e aesae e s naennes 406
Update Our ManifeSt.........cvovvrernirrire s s s e sae e s e ssesnesassssnesaees 408

Add Configuration EIBMENtS..........cccucviiiniinin s ss e snens 411

Update Our ProjeCt PACKAGESccveerersererererrenerensesesesessesesessesessessssssessssesessssssssnssssnssessssenns 413

Updating our STartup ClaSSccccvirininininennsine st se s s ses e sse s st sessesnens 413
Update Configure SEIVICESuiuvmrvrerneseriserssess s ses s s ssanis 413
UPAate CONFIQUIE.....ccecereerrereriere st re s s b e e e e s e aesa e e nae e 415

UpPdate OUF CONIONIETcveeuerrererererresessere e sse e s e ssesse e s e ssesreses e ssesaessssessesaesaesasnesaesaessssensenaens 416

Register OUr CHENT APP ... e e 418
Create @ ClENT SECIEL..........ooceeeeeecr e 420
Configure APl PEIMISSIONScccccrveeerereserenerensesesesessesesessesessssesse e sessssessssessesesesssssssssessnns 422

Xiv

TABLE OF CONTENTS

Create OUF ClIENT ADPD ..ccvierrerrererieresresessesessessssessessessessssessessesssssssessesasssssessesaessesessesaesssssssessenses 427
Our Client Configuration ... e s 428

Add Our Package REfEreNCES........cccurirnireriesnsinse s ss s 430
Client Configuration ClASSccvererrrereresernsesesese s s ssans 431
Finalize Our Program CIaSSccovunerrnsesrnsesmsesessssessssesssssssssssessssessssssssssssssssessssssssssssssnnes 435
UPAAting fOr AZUIEcovecerererinsirre s re s e se s st s s a e s sae b e e nne 442
Client CoNfigUIALIONScoecerierereserrere s r e s a e sae e e s s sae e e e s naees 446
DEPIOY QU APIE0 AZUIE.....veererereererseressesessesessessssessessesasssssessessessssessessesssssssessesasssssensesaes 447
EPIlOQUE ...ueeeiiiisnnnnnisssnnnnnnssssnnnnnssssnsnnsssssnnnnssssnnnnnsssssnnnnsssssnnnnssssnnnnsssssnnnnsssssnnnnnsssn 449
1T = 451

About the Author

Les Jackson is originally from Glasgow, Scotland, but has
lived and worked in Melbourne, Australia, since 2009. Since
completing his computer science degree in 1998, he has
worked in IT, primarily in the telecommunications industry
and with the incumbent national telecom providers. Les
holds several industry accreditations and has reacquired

a Microsoft Certified Solutions Developer certification,
although he still believes there is no substitute for experience
and passion and says, “beware of people touting certifications!” Aside from his day job,
Les enjoys producing content for his YouTube channel and blog, where he hopes to grow
his wonderful audience over the coming years. In his downtime he likes cycling, trying to
grow vegetables, making (and drinking) beer, and traveling with his partner.

xvii

About the Technical Reviewer

As a freelance Microsoft technologies expert,

Kris van der Mast helps his clients to reach their goals.
Actively involved in the global community, he is a
Microsoft MVP since 2007. First for ASP.NET and since 2016
achieving in two disciplines: Azure and Visual Studio and
Development Technologies. Kris is also a Microsoft ASP
Insider, Microsoft Azure Advisor, aOS ambassador, and a

Belgian Microsoft Extended Experts Team (MEET) member.
In the Belgian community, Kris is active as a board member
of the Belgian Azure User Group AZUG and is chairman of the Belgian User Group
Initiative (BUG). Since he started with .NET back in 2002, he’s also been active on the
ASP.NET forums where he is also a moderator. His personal site can be found at www.
krisvandermast.com. Kris is a public (inter)national speaker and is a co-organizer of the
CloudBrew conference.

Personal note:

I enjoyed reviewing this book. It's easy to follow, and I liked the fact that unit tests were
added to the story. The approach of using Docker, and how to set it up, gives this book
that extra which the reader will find handy in her/his professional environment.

https://urldefense.proofpoint.com/v2/url?u=https-3A__mvp.microsoft.com_en-2Dus_PublicProfile_38656-3FfullName-3DKris-2520-2520van-2520der-2520Mast&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=hDY0m-4KXUMwr9DFkfaNyeZ9L7HWfVmG1h9Mb8ddjJg&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=yj29V34tnh2wjWuWzuR_GndqGSIlUlP5FhTKNGvDTe4&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.azug.be_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=ap3XZwtH_Gb3lVHTGE18s-iCSY2z_KyV_3hBw9-Xcrw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__forums.asp.net_members_XIII.aspx&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=Z15_kvUcU8LVUv8xfjp362TyYqbSHOvPc1rXjbleDds&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.krisvandermast.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=UISkEcmRYgubHdFM8ord9dcrkk7wOCjKIuqp1O7GNL4&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.krisvandermast.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=UISkEcmRYgubHdFM8ord9dcrkk7wOCjKIuqp1O7GNL4&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.cloudbrew.be_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=g_hI2iyjQE9TrqRmaQQFuBxZROwJHaNqMMRXl6cZuAw&e=

Acknowledgments

Writing this book (my first) has been a real eye-opener for me... I greatly underestimated
the extent to which I would rely on other people (either directly or indirectly) to inspire,
encourage, and just generally help me to finish it. So, in true “Oscars style,” and in no
particular order, I'd like to thank the following groups of people in helping to bring this
book into the world. Without them, this book would not exist.

For their good humor, endless support, and indulgence of me, I'd like to thank my
friends, family, and wonderful partner (to whom this book is dedicated).

For their patience, support, and belief in a first-time author, I'd like to express sincere
thanks to the wonderful, professional editorial staff at Apress.

For their insights, time, and willingness to share their knowledge, I'd like to thank the
fantastic community of C#/.NET professionals.

And finally, along with the countless others that have read my blog or watched my
YouTube channel, I'd like to thank you - the reader of this book. You may never know just
how significant supporting me in this way has been...

xxi

CHAPTER 1

Introduction

Why | Wrote This Book

Aside from the fact that everyone is supposed to have “at least one book in them,” the
main reason I wrote this book was for you - the reader. Yes, that’s right; I wanted to write
a no-nonsense, no-fluff/filler book that would enable the general reader! to follow along
and build, test, and deploy an ASP.NET Core API to Azure. I wanted it to be a practical,
straightforward text, producing a tangible, valuable outcome for the reader.

Of course, you will be the judge on whether I succeeded (or not)!

Apress Edition

Prior to publishing this book now with Apress, I had released two earlier editions of the
book. Having taken a Lean Startup approach (releasing versions as is when they were
ready), I received feedback on each of those to make each successive version better. With
the release of .NET Core 3.1 in November 2019, it seemed like the perfect time to release
the second edition which was updated for that version of the framework, as well as some
other updates, primarily a move to PostgreSQL as the backend Database.

This Apress edition sees the introduction of the use of Data Transfer Objects (DTOs),
as well as the use of the Repository Pattern, both of which speak to the idea of decoupling
interfaces from implementation, which has a range of benefits as you will see. I've also
added an endpoint to our example API that responds to the “PATCH” verb, which allows
us to perform partial updates on resources. This was a sorely missing component from
the previous versions of the book and was long overdue for inclusion.

'Fans of Peep Show, 1took this term from one of my favorite episodes of Season 9: www. imdb . com/
title/tt2128665/?ref =ttep _ep4

© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_1

https://doi.org/10.1007/978-1-4842-6255-9_1#DOI
https://www.imdb.com/title/tt2128665/?ref_=ttep_ep4
https://www.imdb.com/title/tt2128665/?ref_=ttep_ep4

CHAPTER 1 INTRODUCTION

The Approach of This Book

I've taken a “thin and wide” approach with this book, meaning that I wanted to cover
a lot of material from the different stages in the development of an API (wide), without
delving into extraneous detail or theory for each (thin). We will, however, cover all the
areas in enough practical detail, in order that you gain a decent understanding of each -
that is, we won’t skip anything important!

Ilike to think of it like a tasting menu. You'll get to try a little bit of everything, so that
by the end of the meal you'll have an appreciation of what you'd like to eat more of at
some other time, you should also feel suitably satisfied!

Wide

Thin Git Entity
REST Framework

xUnit
Azure Azure

ASP.NET DevOps
Core

Figure 1-1. Thin and wide approach

o

& Les’ Personal Anecdote The first time | tried (or even heard of) a tasting

menu was in a Las Vegas casino (I think it was the MGM Grand) in the
early 2000s. In addition to trying the eight items on the menu, we also went with
the “wine pairing” option — which as the name suggests meant you got a different
glass of wine with each course, specifically selected to compliment the dish.

&8 jay,
¢4

| think this is the reason why | can’t remember the name of the casino.

Where Can You Get the Code?

While I think you'll get more value by following along throughout the book and typing in
the code yourself (the book has been written so you can follow along step by step), you
may of course prefer to download the code and use that as a reference. Indeed, as there

2

CHAPTER 1 INTRODUCTION

may be errata (heaven forbid!), it’s prudent that I provide a repository for you, so you can
just head over to GitHub and get the code there.

Main Solution Repository (APl and Unit Tests)

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

Secure Daemon Client Repository

https://github.com/binarythistle/Secure-Daemon-Client

Conventions Used in This Book

The following style conventions are used in this book.

O General additional information for the reader on top of the main narrative, hint
or tip.

Aarning! Some point of notice, so the reader should proceed with caution.

= Learning Opportunity Self-directed learning opportunity. Something the
reader can do on their own to facilitate learning and understanding.

Ciahration Checkpoint Good job, milestone, worth calling out. Allows you to
reflect and check learning.

-
3 h <Y

N% Les’ Personal Anecdote Personal story or viewpoint to add context to a
point I'm making. I'll usually try to be humorous here — so be warned. Not
required reading to complete working through the book!

Version of the .net Core Framework

At the time of writing (May 2020), I'm using version 3.1 of the .NET Core Framework.

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book
https://github.com/binarythistle/Secure-Daemon-Client

CHAPTER 1 INTRODUCTION

Contacting the Author

You can contact me through the following channels:
e les@dotnetplaybook.com
o https://dotnetplaybook.com/
e www.youtube.com/binarythistle

While I'll do my best to reply to you, I'm unlikely to be able to respond to detailed,
lengthy technical questions.

Defects and Feature Improvements

Defects (errata) and suggestions for improvement should be sent to
les@dotnetplaybook.com

Any corrections, additions, or improvements to the code will be reflected in the
GitHub Repository.

https://dotnetplaybook.com/
http://www.youtube.com/binarythistle

CHAPTER 2

Setting Up Your
Development Environment

Chapter Summary

In this chapter, we detail the tools and setup you'll require to follow the examples in this
book.

When Done, You Will

e Understand what tools you'll need to install

o Have installed those tools and configured your environment ready for
development

The Three Amigos: Windows, Mac, and Linux

One of the benefits of the .NET Core Framework (when compared with the original .NET
Framework) is that it’s truly cross-platform,! meaning that you can develop and run the
same apps on Windows, OSX (Mac), or Linux. For the vast majority of this book, the OS
that you run on should make little difference in following along with the examples, so the
choice of OS is almost irrelevant and of course entirely up to you.

Yes, there were things like “Mono,” but overall, I'd say the original .NET Framework was Microsoft
Windows-centric.

© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_2

https://doi.org/10.1007/978-1-4842-6255-9_2#DOI

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

I've moved to PostgreSQL as the database backend which is available natively on
Windows, Linux, and OSX. I will, however, be running it as a Docker container, but more
of that later.

© | list the additional software that you need to follow along with the book below
but have decided not to go into step-by-step detail about how to install them, for
the following reasons:

¢ The book would become way too bloated if | provided instructions
for all three 0Ss (remember — no filler content!).

e My instructions would go out of date quickly and would possibly
confuse more than help.

e The various vendors typically provide perfectly decent install guides
that they maintain and keep up to date (if not, I'll provide them!).

Note If there’s any additional nonstandard config/setup required, | will of course
cover that.

Your Ingredients

I'm going to assume you have the absolute basic things like a PC or Mac, a web browser,
and an Internet connection (if not, you'll have to get all of those!), so the software I've
listed below is the extra stuff you'll likely need to follow along.?

Ingredient What is it? Cost Required for Platform
VS Code Cross-platform, fully Free Writing code! Cross-platform
featured text editor Note: This is just my personal

preference; you can of course
choose an editor that you are more
comfortable with

(continued)

Links to where you can locate the software have been provided separately in the section that
follows.

6

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Ingredient What is it? Cost Required for Platform

.NET Core .NET Core Runtime Free It's the framework we’ll be building Cross-platform
SDK and SDK our API on. As mentioned in the
opening, we’ll use 3.1 in this book

Git Local source Code Free Local source control and pushing our Cross-platform
control code to GitHub for eventual publishing
to Azure
PostgreSQL Local database Free We’ll use this as our local Cross-platform or
development/test database Docker image
DBeaver CE Database- Free Writing and executing SQL queries, Cross-platform
independent setting up DB users, etc.
management tool
Postman APl Testing Tool Free You can opt to use a web browser Cross-platform

to test our API; Postman just gives
us more options and is highly
recommended

Docker Containerization Free [Optional] | use Docker to quickly Cross-platform:

Desktop/ platform (run spin up and run a PostgreSQL Docker Desktop —
Docker CE Docker containers) database without the need to install it Windows and 0SX
(PostgreSQL) locally on my desktop Docker CE — Linux
GitHub.com Cloud-based git Free Used as the code repository N/A — browser-
repository used for component of our continuous based
team collaboration integration/continuous delivery (CI/CD)
pipeline
Azure The Microsoft cloud Free® We’ll use Azure to host our production N/A — browser-
services offering APl as well as our “production” based
PostgreSQL Database
(continued)

At the time of writing new, sign-ups get $280USD credit (to use within first 30 days), with an
additional 12 months of “popular” services free. Other charges may be applicable though; please
check the Azure website for the latest offer: https://azure.microsoft.com/

https://azure.microsoft.com/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Ingredient What is it? Cost Required for Platform
Azure Cloud-based build/ Free We use Azure DevOps primarily as the N/A — browser-
DevOps test/deployment vehicle to publish our API to Azure. We based
platform will also leverage its centralized build/
test features

Links to the Software and Sites

e VS Code: https://code.visualstudio.com/download

e .NET Core SDK: https://dotnet.microsoft.com/download

o Git: https://git-scm.com/downloads

o PostgreSQL (Native Install): www.postgresql.org/download/

o PostgreSQL (Docker Image): https://hub.docker.com/_/postgres
o DBeaver: https://dbeaver.io/download/

o Postman: www.postman.com/

o Docker Desktop (Windows and OSX): www.docker.com/products/
docker-desktop

o Docker CE (Linux): https://docs.docker.com/get-docker/
o GitHub: https://github.com/
e Azure: https://portal.azure.com/

o Azure DevOps: https://dev.azure.com/

Install VS Code

I'm suggesting Visual Studio Code (referred to now on only as VS Code) as the text editor
of choice for following this book as it has some nice features, for example, IntelliSense
code completion, syntax highlighting, integrated command/terminal, git integration,
debug support, etc.

https://code.visualstudio.com/download
https://dotnet.microsoft.com/download
https://git-scm.com/downloads
http://www.postgresql.org/download/
https://hub.docker.com/_/postgres
https://dbeaver.io/download/
http://www.postman.com/
http://www.docker.com/products/docker-desktop
http://www.docker.com/products/docker-desktop
https://docs.docker.com/get-docker/
https://github.com/
https://portal.azure.com/
https://dev.azure.com/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

It’s also cross-platform, so no matter if you're using Windows, OSX, or Linux, the
experience is pretty much the same (which is beneficial for someone writing a book!).

You do of course have other options, most notably Visual Studio,* which is a fully
integrated development environment (IDE) available on Windows and now OSX. If you
don’t want to use a full IDE, then there are a range of other text editors, for example,
Notepad ++ on Windows, TextMate on OSX, etc., that you can use.

P

.% oy

% Les’ Personal Anecdote I'm often asked why | choose to use VS Code

r

over Visual Studio, and | always answer with the same analogy.

| compare it to learning to drive @ manual transmission (aka “stick shift) vs.
learning to drive a car with an automatic transmission. In my view, if you learn to
drive a manual transmission, you can transfer to driving an automatic with relative
ease. | don’t think the reverse is as true.

Therefore, while VS Code can be a little more “involved” and may not do as much
for you as Visual Studio, | think it just provides you with a better understanding

of how things work. Once you get the hang of things though, Visual Studio is an
incredible tool.

Anyway, to install VS Code, go to https://code.visualstudio.com/download, select
your OS, (see Figure 2-1), and follow the provided instructions for your OS.

“The “free” version of Visual Studio is called the “Community Edition”; just Google it for the
download site.

https://code.visualstudio.com/download

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Download Visual Studio Code

Free and open source. Integrated Git, debugging and extensions.

4 Windows

User Installer
System Installer
zip

pm
targz it
Snap Store

Figure 2-1. VS Code download

Once installed start it up and we’ll install a few useful extensions.

C# for Visual Studio Code

Like a lot of other text editors, VS Code allows you to install Microsoft or third-party
provided “extensions” (or plugins if you prefer) that extend the functionality of VS Code
to meet your specific development requirements. For this project the most important
extension is C# For Visual Studio Code. It gives us C# support for syntax highlighting
and IntelliSense code completion among other things; to be honest I'd be quite lost
without it.

Anyway, to install this extension (and any others if you wish)

1. Click the “Extensions” icon in the left-hand toolbar of VS Code.

2. Type all or part of the name of the extension you want, for
example, C#.

3. Click the name of the extension you'd like.

10

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

] File Edit

Selection View Go Debug Terminal Help

mments EXTENSIONS: MARKETPLACE

A= C# 1219 D620 ¥k
C# for Visual Studio Code (powered by OmniSharp).

ice ~

Microsoft

C# FixFormat 0024 D3ITK K 45

Fix format of usings / indents / braces / empty lines

588K * 4

jchannon

C# XML Documentation Comments 0.1.2 292K K 45

Figure 2-2. Install C# extension for VS Code

Upon clicking the desired extension, you'll get a detail page explaining a bit about
the extension (along with the number of downloads and a review/rating). To install,
simply click the “Install” button - that’s it!

Insert GUID

We'll be using “GUIDs” later in the tutorial, so we may as well install the “Insert GUID”
extension too; see the following extension details.

Insert GUID

Heath Stewart D 19,872 L. 0 & ¢ Repository License

Insert GUIDs in different formats directly into the editor.

m m This extension is enabled globally.

Figure 2-3. Install Insert GUID extension for VS Code

11

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

= Learning Opportunity Install the “Insert GUID” VS Code extension yourself —
it’s not hard!

OK, we're done with VS Code setup for now so let’s move on to the next install.

Install .NET Core SDK

You can check to see if you already have .NET Core installed by opening a command
prompt and typing

dotnet --version

If installed, you should see something like this.

PROBLEMS CUTPUT DEBUG CONSOLE TERMINAL

PS_C:\Users\lesja\OneDrive\Documents\VSCode\Book\v3> --version

PS C:\Users\lesja\OneDrive\Documents\VSCode\Book\v3> l

Figure 2-4. Check .NET Core Version

Even if it is installed, it’s probably worth checking to see what the latest version is to
make sure that you're not too far behind. From the screenshot in Figure 2-4, you can see
I'm running 3.1 which at the time of writing is the latest version.

If it’s not installed (or you want to update your version), pop over to https://
dotnet.microsoft.com/download, and select “Download .NET Core SDK,” as shown in
the following figure.

12

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

NET

Core

—

.NET Core 3.1

.NET Core is a cross-platform version of .NET for building
websites, services, and console apps.

Run Apps @ Download .NET Core Runtime
@ild Apps ® Download .NET Core SDK)
Advanced © All .NET Core downloads...

Figure 2-5. Download .NET Core SDK

It's important to select the “SDK” (software development toolkit) option as opposed
to the “Runtime” option for what I think are quite obvious reasons. (The runtime version
is just that it provides only the necessary resources to run .NET Core apps. The SDK
Version allows us to build and run apps; it includes everything in the Runtime package.)

As usual follow the respective install procedures for your OS; once completed,
you should now be able to run the same dotnet --version command as shown in
Figure 2-5, resulting in the latest version being returned.

Install GIT

As with .NET Core, you may already have Git installed (indeed there’s probably a much
greater chance that it is given its ubiquity).
At a command prompt/terminal, type

git --version

If already installed, you'll see something similar to that shown in Figure 2-6.

13

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

PROBLEMS OUTPU DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1> git --version

git version 2.23.0.windows.1
PS D:\APITutorial\NET Core 3.1> |

Figure 2-6. Check GIT version

© FYI 'm using the integrated terminal in VS Code running on Windows;
depending on your setup, it may look slightly different (you should still see a
version number returned if installed though).

If not installed, or the version you are running is somewhat out of date, go over to
https://git-scm.com/downloads, and follow the download and install options for
your OS.

Name and Email

Just to complete the setup of Git, we need to tell it who we are by way of a name and
email address, as this information is required by Git in order for it to know who is making
changes to the code.

To do so enter the following commands in a terminal session, replacing “you@
example.com” and “Your Name” with suitable values:

git config --global user.email “you@example.com”
git config --global user.name "Your Name"

For example see my configuration in Figure 2-7.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
PS D:\APITutorial\NET Core 3.1> config --global user.email "les.jackson@t com'}
PS D:\APITutorial\NET Core 3.1> config --global user.name “Les }L‘.f_kg'_‘-‘."l

Figure 2-7. Configure GIT name and email

14

https://git-scm.com/downloads

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

There are no additional setup instructions for Git at this stage. We'll cover setting up
and using Git repositories later in the book. For now, though, we’re done!

Install Docker [Optional]

If you're intending to install PostgreSQL directly on your development machine, or
you already have a version running somewhere that you can use, then you can skip
this section if you like. However, if like me you don’t like “faffing” around installing
large apps on your local machine, then Docker is a great option for you (although
paradoxically, Docker is quite a large application as of itself!)

What Is Docker?

Docker is a containerization platform that enables you to

o Package your apps as images and allow others to download and run
them as containers (on Docker).

o Obtain other developer or software vendor “images” (from a
repository), and run them as containers on your machine (so long as
you've installed Docker).

The core concept of a Docker image is that they are self-contained, meaning that
the image has everything it needs for it to run, avoiding complex installations, locating
and installing third-party support libraries, etc. It ultimately avoids the “it works on my
machine” argument.

There is a little bit of a learning curve to it (not much though), and once you
master the basics, it can save you so much time and effort, that as a developer, I can’t
recommend it highly enough.

Docker Desktop vs. Docker CE

Confusingly (for me at least), if you're running Windows or OSX, you need to install
something called Docker Desktop. If, however, you're a Linux person, then you should
install Docker Community Edition or CE. There are probably torturously pedantic
reasons for this, which I'm not aware of, nor would I be interested in learning about, so
all you really need to know is where to get them!

15

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

o Docker Desktop Here: www.docker.com/products/docker-desktop

o Docker CE Here: https://docs.docker.com/get-docker/

Before you can download and install Docker Desktop, you need to sign up for a

Docker Hub account; this is a free sign-up so nothing really to worry about. It also comes

in useful if you want to upload your own images to the Docker Hub for distribution.

A Warning! At the time of writing, Docker Desktop can only be installed
“directly” on Windows 10 Professional. However, if you’re running Windows 10
Home, you can work around this by using something called Windows Subsystem

for Linux (WSL).

As I've said before, I'm not going to go into detail on how to do this as the Docker

guys have provided great instructions for this here:

https://docs.docker.com/docker-for-windows/install-windows-

home/.

Docker Desktop installation is super simple; for Docker CE you will need to refer to

the install instructions for your specific distro - again, however, it’s straightforward.

Post-installation Check

Irrespective of which flavor of Docker you install, post-installation, open a command

line, and type
docker --version

You should get something like the following.

PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1> --version
Docker version 19.03.5, build 633a@ea
PS D:\APITutorial\NET Core 3.1> |]

MW

Figure 2-8. Check Docker version

16

http://www.docker.com/products/docker-desktop
https://docs.docker.com/get-docker/
https://docs.docker.com/docker-for-windows/install-windows-home/
https://docs.docker.com/docker-for-windows/install-windows-home/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT
To further test that it is fully working, type

docker run hello-world

If this is the first time you’ve run this, Docker will go to the Docker Hub, pull down
the hello-world image, and run it; you should see something like this.

d----- ©9/11/201° 11:00 AM 1 Raw Video Dump

PS D:\APITutorial\NET Core 3.1> docker run hello-world

Unable to find image 'hello-world:latest’ locally

latest: Pulling from library/hello-world

1b930de10525: Pull complete

Digest: sha256:9572f7cdcee8591948c2963463447a53466950b3fc15a247fcad1917ca215a2f
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-star

Figure 2-9. Hello World Docker image download and run

We don’t need to go into too much more detail about what’s happening here
(although the output generated by hello-world does a pretty good job); suffice to say

that Docker is set up and ready to go. I'll cover more on Docker as we move through the
tutorial.

17

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Docker Plugin for VS Code

If you're using VS Code as your development editor and you've decided to go with
Docker, then I highly recommend you install the Docker extension from Microsoft. I've
shown this below but will leave it to you to install.

] File Edit Selection View Go Debug Terminal He

Search Extensions in Marketplace
“ ENABLED

Azure Account 0zs
A common Sign-In and Subscription manageme

Will add this icon to VS Code
PTE PIBEITREE T .
Syntax highlighting, IntelliSense, and more for Af

Microsoft
C# 1219

C# for Visual Studio Code (powered by OmniShagg
Microsoft

Docker 090
Adds syntax highlighting, commands, hover tips,
Microsoft

Insert GUID 1419
wsggt GUIDgiadiffere

Figure 2-10. Docker extension for VS Code

Install PostgreSQL

If you don’t want to use Docker and want to install PostgreSQL directly on your
development machine (or on another server, virtual machine, etc.), then you'll need to
follow the install steps for your OS. As mentioned previously, I won’t be detailing those
steps in detail here as the PostgreSQL guys have done a great job of that already here:
www . postgresql.org/download/.

18

http://www.postgresql.org/download/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

A Warning! [I've spent many hours getting PostgreSQL up and running on a

Linux box and connecting in from another machine. Now this is due largely to the
fact I'm not particularly great with Linux, and so those of you that are adept with

Linux would undoubtedly have less trouble.

For me though, struggling with the nuances of installing a DB detract from the act
of coding, which is what | really want to be doing. Hence the reason why | strongly
suggest the use of Docker.

Native Windows and OSX installations of PostgreSQL are (as usual) much easier.

Install DBeaver CE

Whether you're going to use Docker or a native PostgreSQL install, either way we’ll want
to do some small bits of DB admin as well as write SQL queries to read and write data into
our DB. You can of course use the command-line options that come with the PostgreSQL
install, but I like to also have a graphical environment at my disposal as the “barrier to
entry” is significantly reduced when compared to the command-line alternative.

Just remember: My focus in this book is coding an API, not being an expert
PostgreSQL DB administrator.

DBeaver vs. pgAdmin

Probably the most popular admin tool for PostgreSQL is pgAdmin,® and in fact this
would have been the tool I'd have recommended previously.

-
X Y

“&;« Les’ Personal Anecdote The choice of admin tool here is a totally
personal one. | have used pgAdmin in its prior iterations, and it was totally fine,
but since they moved it to a “web version,” running in its own little webserver, I've
avoided it. Can’t quite put my finger on why; | think mostly it just comes across as
a bloated and counterintuitive piece of software. It’s a web app that requires the
install of a local webserver? Doesn’t “smell” right to me.

*Www. pgadmin.org/

19

http://www.pgadmin.org/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Having looked at several graphical database management tools for PostgreSQL,
I've landed on DBeaver Community Edition - which is free. This is a database agnostic
management tool that you can use to connect to and manage most of the popular
RDBMSs® out there. It’s also cross-platform, which is even better - you can download
your copy here: https://dbeaver.io/download/.

We'll go through connecting to and setting up PostgreSQL later in the book. For now,

though, we're done.

.\"‘ -
i

%\ Les’ Personal Anecdote Just before we move on, | just wanted to
say that for me, the king of database management tools is still SQL Server
Management Studio. In my personal view, nothing comes close to it in terms of
usability, speed, features, etc.

The only reason I've not used it is simply because I've decided to use PostgeSQL
as the RDBMS (you can only use SQL Server Management Studio to manage MS
SQL Servers — it also only runs on Windows).

Install Postman

This is optional, and up to you if you want to install - but I highly recommend it. I'll be
using it at various points throughout the book, and given that it’s both free and excellent,
I don’t see why you wouldn't. If you're going to be doing API development going
forward, then it’s essentially mandatory. It’s available as both a browser plugin or as a
stand-alone client. For more details on how to install and download, go over to
www . getpostman.com/downloads/, and take a look.

No further configuration is required at this point - I cover how to use it later.

®Relational Database Management Systems.

20

https://dbeaver.io/download/
http://www.getpostman.com/downloads/

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Trust Local Host Development Certs

Throughout the tutorial we’ll be hitting localhost endpoints over http and https. For
those connections using https, we may encounter some errors/exceptions along the
lines that the certificate is not valid. We do not want to turn off SSL certificate validation;
instead, we want to trust our local development certificate.

To do that, at a command prompt, type

dotnet dev-certs https --trust

You'll get a message box similar to the following.

Security Warning

You are about to install a certificate from a certification
/ l_\ authority (CA) claiming to represent:

localhost

Windows cannot validate that the certificate is actually from
“localhost”. You should confirm its origin by contacting
“localhost™, The following number will assist you in this
process:

Thumbprint (sha1): 67C690AE B6472443 23BD8F1E SDFF96B5
F90C9C54

Warning:

If you install this root certificate, Windows will automatically
trust any certificate issued by this CA. Installing a certificate
with an unconfirmed thumbprint is a security risk. If you click
“Yes® you acknowledge this risk.

Do you want to install this certificate?

Figure 2-11. Trust local certificates

Click “Yes” to install the certificate and you should be good to go.

21

CHAPTER 2 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Wrapping It Up

All the other required components are Web-based and only require
e Web browser
o Internet connection
e User account

Iwon't insult your intelligence by detailing how to create an account on those
services - it’s easy. When we come on to the later sections, I will cover the setup and
configuration for each where required - so don’t worry. For now, all you need is an
account on each of the following:

o GitHub: https://github.com/
e Azure: https://portal.azure.com/
o Azure DevOps: https://dev.azure.com/

All of which (at least initially!) are free.

22

https://github.com/
https://portal.azure.com/
https://dev.azure.com/

CHAPTER 3

Overview of Our API

Chapter Summary

In this (very short!) chapter, I'll take you through the API that you're going to build and
the problem it’s attempting to solve. We'll also cover the REST API pattern at a high level.

When Done, You Will

e Understand a bit more about the REST pattern.

e Understand what you are going to build throughout the rest of
this book.

e Understand why you are going to be building this solution.

e Have an appreciation of JavaScript Object Notation (JSON).

What Is a REST API?

APIs will eventually cure world hunger, bring about lasting peace, and enable mankind
to explore the universe together, forever, in harmony” - or so some people (usually
salesmen types) would have you believe. I of course don’t believe that and am being
somewhat facetious.

REST (or representational state transfer if you prefer) is an architectural style defined
by Roy Fielding in 2000, that is used for creating web services. OK yes, but what does
that mean? In short REST, or RESTful APIs, are a lightweight way to transfer textual

!Credits to the late great Bill Hicks, whom I'm paraphrasing.

23
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_3

https://doi.org/10.1007/978-1-4842-6255-9_3#DOI

CHAPTER 3 OVERVIEW OF OUR API

representations of “resources,” for example, books, authors, cars, etc. They are usually
(although don’t need to be) built around the HTTP protocol and the standard set of
HTTP verbs, for example, GET, POST, PUT, etc.

In recent years REST APIs have gained favor over other web services design patterns, for
example, SOAP, as they are considered simpler and quicker to develop, as well as lending
themselves to the concept of interoperability more than other approaches. ASP.NET Core
APIs have a RESTful approach built in, which we see as we start to build out our example.

For me personally, actually building out the API is going to help you understand
“REST” more fully than if I were to continue writing about it here, so we’ll leave the
theory there for now. Be assured though that I do cover the central REST concepts as we

build out our API endpoints.

= Learning Opportunity If you’re not comfortable with my description of REST,
there are loads of resources already produced on this topic, so if you’d like more
info, I'd suggest you do some Googling!

Again though, | think you’ll learn more about REST APIs when you come to building
them.

Our API

The API we are going to develop is a simple but useful one (well useful for me anyway!).
With my ever-advancing years and worsening state of decrepitude, I wanted to write
an API that would store “command-line snippets,” (e.g., dotnet new web -n <project
name>), as I'm finding it harder and harder to recall them when needed. In essence it'll
become a command-line repository that you can query should the need arise.

Each “resource” will have the following attributes:

e Howto: Description of what the prompt will do, for example, add a
firewall exception, run unit tests, etc.

o Platform: Application or platform domain, for example, Ubuntu
Linux, Dot Net Core, etc.

e Commandline: The actual command line snippet, for example, dotnet
build.

24

CHAPTER 3 OVERVIEW OF OUR API

Here’s a list of some snippets (aka “resources”) as an example.

HowTo Platform

How to genrate a migration in EF Core .Net Core EF
How to update the database (run migration) .Net Core EF
List Service Status - Linux Ubuntu

Start a service ubuntu Ubuntu

Stop a service Ubuntu Ubuntu
Restart a service Ubunti Ubuntu

How to List all active migrations .Net Core EF
Roll back a migration Met Core EF
Create a Solutuon File .Net Core CLI
Add a Project Reference to another project .Net Core CLI
Add Projects to Solution File Net Core CLI
Ovemide run command Docker CLI
List running containers Docker CLI
List all containers that have ever run Docker CLI
Create a container from an image Docker CLI

Commandiine
dotnet ef migrations add <Name of Migration>

dotnet ef database update

service —status-all

sudo service <service name> start

sudo service <service name> stop

sudo service <service name> restart

dotnet ef migrations list

dotnet ef migrations remove

dotnet new sin -name <Name of Solution>

dotnet add <path to "host” proejct> reference <path to referenced project>
dotnet sin <Solution File> add <project 1 .csproj file> <projectn .csproj file>
docker run <image name> command!

dockerps

docker ps —all

docker create <mage name>

Figure 3-1. Example command-line snippets

Our API will follow the standard set of create, read, update, and delete (CRUD)
operations common to most REST APISs, as described in the following table below.

Verb URI Operation Description

GET /api/commands Read Read all command resources

GET /api/commands/{ld} Read Read a single resource (by Id)

POST /api/commands Create Create a new resource

PUT /api/commands/{ld} Update (Full) Update all of a single resource (by Id)
PATCH /api/commands/{ld} Update (Partial) Update part of a single resource (by Id)
DELETE /api/commands/{ld} Delete Delete a single resource (by Id)

© Quick Note The Verb and URI in combination should be unique for a given
API. We cover this in more detail later, but just make a mental note of that

for now.

25

CHAPTER 3 OVERVIEW OF OUR API

Payloads

As mentioned earlier, REST APIs are “a lightweight way to transfer textual
representations of resources.” What do we mean by this?

Well, when you make a call to retrieve data from a REST AP], the data will be
returned to you in some serialized, textual format, for example:

e JavaScript Object Notation (JSON)

o Extensible Markup Language (XML)

e Hypertext Markup Language (HTML)

e Yet Another Markup Language (YAML)

and so on.

Upon receiving that serialized string payload, you'll then do something with it, most
likely some kind of deserialization operation so you can use the resource or object within
the consuming application. With regard to REST APIs, there is no prescribed payload
format, although most usually JSON will be used and returned. We will be using JSON as
our payload format in this book given its lightweight nature and ubiquity in the industry.

Five Minutes On JSON

What is JSON?
e Stands for “JavaScript Object Notation.”

e Open format used for the transmission of “object” data (primarily)
over the Web.

o It consists of attribute-value pairs (see the following examples).

o AJSON object can contain other “nested” objects.

26

CHAPTER 3 OVERVIEW OF OUR API

Anatomy of a Simple JSON Object

/ Start of object }

“firstname” : “Roger”,
“lastname” : ”MOOI’E”, — 4 attribute-value pairs

" s In this object (comma separated)
age” : 89, 7
“isAlive” : false
\ End of object

Figure 3-2. A Simple JSON object

{

}

In the example in Figure 3-2, we have a “Person” object with four attributes:
o firstname
o lastname
o age
o isAlive
With the following respective values

o Roger [This is a string data-type and is therefore delineated by double
quotes ‘" ‘]

e Moore [Again this is a string and needs double quotes]
e 89 [Number value that does not need quotes]
o false [Boolean value, again does not need the double quotes]

Paste this JSON into something like jsoneditoronline.org, and you can interrogate its
structure some more.

27

CHAPTER 3 OVERVIEW OF OUR API

O
JSON Editor Online

@ https;/jsoneditoronline.org/

New document 1 New document 2

‘code [iree] + +

Select a node...

Copy »

2 "firstname”: "Roger”,

3 "lastname": "Moore”, v object {4}
4 “age": 89,)
5 “isAlive”: false < Copy firstname : Roger
s 0 lastname : Moore
7

0O Diff age : 89

isAlive : O false

Figure 3-3. JSON Editor Online

A (Slightly) More Complex Example

As mentioned in the overview of JSON, an object can contain “nested” objects; observe
our person example with a nested address object:

“firstname” : “Roger”,
“lasthame” : “Moore”,

“age” : 89, “Object” Attribute
“isAlive” : fal
IS%’- Start of “nested” object value

“address” :

{

“streetAddress” : “1 Main Street”,
“city”: “London”, > 3 Attribute-Value pairs
“postcode” : “N1 3XX"

Figure 3-4. Nested JSON object

28

CHAPTER 3 OVERVIEW OF OUR API

Here, we can see that we have a fifth Person object attribute, address, which does
not have a standard value like the others but in fact contains another object with three
attributes:

o streetAddress
e city
e postcode

The values of all these attributes contain strings, so no need to labor that point
further. This nesting can continue ad nauseum.

Again, posting this JSON into our online editor yields a slightly more interesting
structure.

JSON Editor Online

i {
2 "firstname™: “Roger”, Copy »
3 "lastname”: “Moore", v object {5}
4 "age™: 89, ’)
5 "isAlive”: false, < Copy firstname : Roger
2 Address:: lastname : Moore
7> {
8 “streetAddress™: "1 Main Street”, O Diff age : 89
9 "eity™: “London"™, ;
3 e isAlive : (J false

1@ “postcode™: "N1 3X"
1

v address {3}
. - " " strestAddress : in Stree
3 Attributes in "address w s

postcode : N1 3XX

Figure 3-5. Object navigation in JSON Editor Online

A Final Example

On to our last example which this time includes an array of phone number objects.

29

CHAPTER 3 OVERVIEW OF OUR API

“firstname” : “Roger”,
“lastname” : "Moore”,
“address” :

{

“streetAddress” : “1 Main Street”,

“city”: “London” “Array” Attribute
2 / Square brackets denote the

“phoneNumbers” : — S
beginning, (and end), of array

.
{ “type” : “home”, “number” : “+61 03 1234 5678" },

{ “type” : “mobile”, “number” : “+61 0405 111 222"} K
] 2 (object) array items

Figure 3-6. Introducing JSON arrays

Note |removed “age” and “isAlive” attributes from the person object as
well as the “postcode” attribute from the address object purely for brevity and
readability.

You'll observe that we added an additional attribute to our Person object,
“phoneNumbers’, and unlike the “address” attribute, it contains an array of other objects
as opposed to just a single nested object.

The reason I chose these specific examples was to get you familiar with JSON and
some of its core constructs, specifically

e The start and end of an object, “curly brackets”: { }
o Attribute-value pairs

o Nested objects (or objects as attribute values)

e Array of objects, “square brackets”: []

Personally, on my JSON travels, these constructs are the main ones you'll come
across and, as far as an introduction goes, should give you pretty good coverage of most
scenarios - certainly with regard to the API we're building, which will both return and
accept simple JSON objects.

30

CHAPTER 4

Scaffold Our API Solution

Chapter Summary

In this chapter we will “scaffold” our two projects and place them within a solution. We’ll
also talk about the “bare-bones” contents of a typical ASP.NET Core application and
introduce you to two key classes: Program and Startup.

When Done, You Will

e Have created our main API Project
e Have created our Unit Test Project
o Place both projects within a solution

e Have a solid understanding of the anatomy of an ASP.NET Core
project

e Getintroduced to the Program and Startup classes in an ASP.NET
Core project

Solution Overview

Before we start creating projects, I just wanted to give you an overview of what we’ll end
up with at the end of this chapter (I don’t know about you, but it helps me if know the
end goal I'm working toward). First off, a bit about our “solution hierarchy.”

31
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_4

https://doi.org/10.1007/978-1-4842-6255-9_4#DOI

CHAPTER 4 SCAFFOLD OUR API SOLUTION

Component What is it? Main Config. File Relationships

Solution Primary container, holds 1 or more .sin Projects are Children
related Projects

Project Self-contained “project” of related .CSProj Solution is Parent
functionality Projects are siblings

A “Solution” is really nothing more than a container for one or more related projects;

projects in turn contain the code and other resources to do something useful. You would

not put code directly into a Solution.

Projects can of course exist without a parent Solution; going further, Projects can

reference one and other without the need for a Solution. So why bother with a solution?

Great question; it boils down to
e Personal preference on how you want to “group” related projects

o Ifyou’re using Visual Studio (this always usually creates a solution
for you)

e Whether you want to “build” all projects within a solution together
We will use a Solution as we are going to have two interrelated Projects:

e Source Code Project (Our API)

e Unit Test Project (Unit Tests for our API)

The overall layout for our solution is detailed in Figure 4-1.

%= CommandAPISolution
@ CommandAPISolution.sin
& src
& CommandAPI
@ CommandAPl.csproj
& test
> CommandAP] Tests
@ CommandAP]. Tests.csproj

Figure 4-1. Our Solution hierarchy

32

CHAPTER 4 SCAFFOLD OUR API SOLUTION

You'll see that we have subfolders within the main solution folder to segregate
source code (src) and unit test projects (test). OK, so let’s start creating our solution and
projects!

Scaffold Our Solution Components

Move to your working directory (basically where you like to store the solution and
projects), and create the following folders:

¢ Create main “solution” folder called CommandAPISolution.
e Create two subdirectories called in solution folder called src and test.

You should have something like the following.

CommandAPISelution

src

test

Figure 4-2. Basic folder setup

e Open aterminal window (if you haven’t already), and navigate to the
“inside” of the src folder you just created.

© NET Core provides a number of “templates” we can use when creating a new
project; selecting a particular template will impact any additional “scaffold” code
automatically generated.

To see a list of the templates available, type
dotnet new

You should see something like the following.

33

CHAPTER 4 SCAFFOLD OUR API SOLUTION

MVC ViewStart viewstart [c#]
Blazor Server App blazorserver [C#]
@g.NET Core Empty web) [c#], F
ASP.NET Core Web App (Model-View-Controller) mve [c#], F
ASP.NET Core lieb App webapp [C#]
ASP.NET Core with Angular angular [C#]
ASP.NET Core with React.js react [C#]
ASP.NET Core with React.js and Redux reactredux [c#]
i Y razorclasslib [c#]
((ASP.NET Core heb API webapi) [c#], F&
ASP.NET Core gRPC Service grpc [c#]

Figure 4-3. .NET Core Project templates

You'll notice that there’s a template called “webapi” that we could use to generate
this project. However, I felt that as most of the auto-generated scaffold code is important,
we create this ourselves. Therefore, for this tutorial we’ll be using the “web” template,
which effectively is the simplest, empty, ASP.NET Core template.

To generate our new “API” project, type (again ensure you are “inside” the src

directory)
dotnet new web -n CommandAPI
Where
e web is our template type.
e -n CommandAPI names our project and creates our project and folder.

You should see something like the following.

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src> dotnet new web -n CommandAPI
The template "ASP.NET Core Empty" was created successfully.

Processing post-creation actions...

Running ‘dotnet restore’ on CommandAPI\CommandAPI.csproj...
Restore completed in 92.05 ms for D:\APITutorial\NET Core 3.1\CommandAPISolution\sr

Restore succeeded.

PS D:\APITutorjel

Figure 4-4. API Project generation

34

CHAPTER 4 SCAFFOLD OUR API SOLUTION

As per our given layout, a folder called CommandAPI should have been created in
src; change into this folder and listing the contents you should see.

[Change "into" the CommandAPI Folder N
PS D:\APITutorial\NET Core 3.1\CommandAPISolution\srcX(Cd Com*)
PS D:\APITutorial\WET Core 3.1\CommandAPTSolution\src\CommangaP>(1<)

List the contents of the directory
Directory: D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI

Mode LastiiriteTime Length Name

d----- 19/01/2020 12:22 PM obj

de=e-- 19/01/2020 12:22 PM Properties

-3---- 19/01/2020 12:22 PM 162 appsettings.Development.json
-3---- 19/e1/2020 12:22 PM 192 appsettings.json

-3---- 19/e1/2020 12:22 PM 148 CommandAPI.csproj

-g---- 19/01/2020 12:22 PM 718 Program.cs

-g---- 19/e1/2020 12:22 PM 1290 Startup.cs

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandaPI>]

Figure 4-5. Listing the contents of our API Project

© If you're not familiar with navigating folders using a command-line interface,
it may be worth Googling some basic commands. As I’'m using a “PowerShell”
terminal, the commands | used are similar to those you’d find on a Unix/Linux
system. If you’re using a Windows Command Prompt, you’d type cd <name of
directory> followed by dir; the dir command is similar to 1s here in that it
lists the content of the current directory.

35

CHAPTER 4 SCAFFOLD OUR API SOLUTION

OK, we're done scaffolding our API project; now we need to repeat for our Unit Test
project.

o Navigate into the test folder' contained in the main solution directory
CommandAPISolution.

e Atthe command line, type
dotnet new xunit -n CommandAPI.Tests

You should see the following output.

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\test> new xunit -n CommandAPI.Tests
The template "xUnit Test Project” was created successfully.

Processing post-creation actions...

Running 'dotnet restore’ on CommandAPI.Tests\CommandAPI.Tests.csproj...
Restore completed in 1.37 sec for D:\APITutorial\NET Core 3.1\CommandAPISolution\test\Comman

Restore succeeded.

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\test> l

Figure 4-6. Unit Test Project creation

= Learning Opportunity What is xUnit? Remember the command we typed
to get a list of all available templates? Try that again to see what the xUnit
template is. Can you see any templates that look similar, maybe with a similar
name component? Perhaps do some research into what they are too.

Creating Solution and Project Associations

OK, so we've created our two projects, but now we need to
o Create a Solution File that links both projects to the overall solution.

o Reference Our API Project in our Unit Test Project.

'Hint: cd .. moves you up a directory.

36

CHAPTER 4 SCAFFOLD OUR API SOLUTION

Back at our terminal/command line, change back into the main Solution folder:
CommandAPISolution; to check if you're in the right place, perform a directory listing,
and you should see something like this.

= .

PROBLEMS QUTPUT DEBUG CONSOLE ~ TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\test> «
PS D:\APITutorial\NET Core 3.1\CommandaPISolution>

Directory: D:\APITutorial\NET Core 3.1\CommandAPISolution

LastiriteTime Length Name
19/01/2020 12:22 PM src
19/01/2020 12:28 PM test

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> I

Figure 4-7. Check our directory listing

You should see the two directories: src and test.

Now, issue the following command to create our solution (.sln) file:
dotnet new sln --name CommandAPISolution

This should create our empty solution file, as shown here.

QUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> net new sln --name CommandAPISolution

The template “Solution File" was created successfully.
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> l

Figure 4-8. Create the solution file

We now want to associate both our “child” projects to our solution; to do so, issue the
following command:

dotnet sln CommandAPISolution.sln add src/CommandAPI/CommandAPI.csproj test/
CommandAPI.Tests/CommandAPI.Tests.csproj

37

CHAPTER 4 SCAFFOLD OUR API SOLUTION

Note The preceding command is all one line.

You should see that both projects are added to the solution file.

-
PROBLEMS ~OUTPUT DEBUG CONSOLE TERMINAL 1: powershell + 0 @
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> t new sln --name CommandAPISolu
tion

The template "Solution File" was created successfully.
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> t sln CommandAPISolution.sln ad
d src/CommandAPI/CommandAPI.csproj test/CommandAPI.Tests/CommandAPI.Tests.csproj
Project " src\CommandAPI\CommandAPI.csproj added to the solution.
Project " test\CommandAPI.Tests\CommandAPI.Tests.csproj’ added to the solution.
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> ||

Figure 4-9. Projects added to our solution

A I you get an error, double-check that you have typed the full path correctly.
It’s quite long, so the opportunity to make a mistake is there. Believe me — | have
spent many a time rectifying typos of this sort.

All this really does is tell our solution that it has two projects. The projects
themselves are unaware of each other. This is similar to a parent knowing that they have
two children, but the children being unaware of each other - we’re going to rectify that
now, well for one of the siblings anyway.

We need to place a “reference” to our CommandAPI project in our CommandAPL.
Tests project; this will enable us to reference the CommandAPI project and “test” it from
our CommandAPI.Tests project. You can either manually edit the CommandAPI.Tests.
cspraj file or type the following command:

dotnet add test/CommandAPI.Tests/CommandAPI.Tests.csproj reference src/
CommandAPI/CommandAPI.csproj

You should get something like the following.

38

CHAPTER 4 SCAFFOLD OUR API SOLUTION

OBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: powershell <l < B B

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> et add test/CommandAPI.Tests/CommandA
PI.Tests.csproi reference src/CommandAPI/CommandAPI.csproi

Reference "..\..\src\CommandAPI\CommandAPI.csproj’ added to the pr‘ojectD
PS D:\APITutoria ore 3. T\Comman ion

Figure 4-10. API Project added as a reference

Open VS Code (or whatever editor you chose), and open the CommandAPISolution
folder? find the CommandAPLTests.csproj file, and open it - you should see a reference
(as well as other things) to the CommandAPI project:

) File Edit Selection View Go Debug Terminal Help CommandAPLTests.csproj

EXPLORER ™ CommandAPi Tests.csprgj X

“ OPENEDITORS 5 M @ test » CommandAPLTests > % CommandAPl.Tests.csproj
X & CommandAPLTests.csp... <Project Sdk="Microsoft.NET.Sdk">

 COMMANDAPISOLUTION
<PropertyGroup>

» wscode
<TargetFramework>netcoreapp3.1</TargetFramework>

? sIc

v test| CommandAPI.Tests 6 <IsPackable>false</IsPackable>
> bin </PropertyGroup>
> obj
® CommandAPI.Tests.csproj = <ItemGroup>
<PackageReference Include="Microsoft.NET.Test.5dk™ Version="16.2.8" />
<PackageReference Include="xunit" Version="2.4.8" />
¢<PackageReference Include="xunit.runner.visualstudio” Version="2.4.8" />
<PackageReference Include="coverlet.collector” Version="1.8.1" />
</ItemGroup>

C* UnitTestl.cs
CommandAPiSolution.sin

<ItemGroup>
<ProjectReference Include="..\..\src\CommandAPI\CommandAPI.csproj” />
</ItemGroup>

</Project>

Figure 4-11. Check reference has been added

™= Learning Opportunity Why do we only place a reference this way? Why
don’t we place a reference to our unit test project in our API projects .csproj file?

*In VS Code got to File » Open Folder and select your solution or project folder.

39

CHAPTER 4 SCAFFOLD OUR API SOLUTION

You can now build both projects (ensure you are still in the root solution folder) by

issuing

dotnet build

Note This is one of the advantages of using a solution file (you can build both
projects from here).

Assuming all is well, the solution build should succeed, which comprises our two

projects.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution
Microsoft (R) Build Engine version 16.4.8+e201037fe for .N ore

Copyright (C) Microsoft Corporation. All rights reserved.

Restore completed in 21.15 ms for D:\APITutorial\NET Core 3.1\CommandAPISo
Restore completed in 288.28 ms for D:\APITutorial\NET Core 3.1\CommandAPI
CommandAPI -> D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAl
CommandAPI.Tests -> D:\APITutorial\NET Core 3.1\CommandAPISolution\test\C

~ © Warning(s)
@ Error(s)

Time Elapsed ©9:00:03.03
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> ||

Figure 4-12. Perform our first build

4 Celebration Checkpoint Good Job! You've reached your first milestone; our
app is scaffolded up and ready to rock and roll (that means coding).

But (there’s always a but isn’t there?), before we move on to the next chapter, I think
alittle bit about the anatomy of a ASP.NET Core app is probably appropriate. The more
familiar you are with this, the easier you'll find the rest of the tutorial.

40

CHAPTER 4 SCAFFOLD OUR API SOLUTION

Anatomy of An ASP.NET Core App

The following table describes the core® files and folders that you will typically encounter

when you create an ASP.NET Core project. Just be aware that depending on the project

(or scaffold template) type you select, you may have additional files and folders -

however, the ones described here are common to most project types.

File/folder What is it?

.VS Code This folder stores your VS Code workspace settings, so it’s not really anything
to do with the actual project. In fact, if you’ve chosen to dev this in something
other than VS Code, you won’t have this file (you may have something else)

bin (folder) Location where final output binaries along with any dependencies and or
other deployable files will be written to

obj (folder) Used to house intermediate object files and other transient data files that are
generated by the compiler during a build

Properties (folder) Contains the launchSettings.json file. This file can be used to configure

launchSettings.json application environment variables, for example, Development. It is also used
to configure how the webserver running your app will operate, for example,
which port it will listen on, etc.

appsettings.json File used to hold, surprise surprise, “application settings.” In the sections that

appsettings. follow, we’ll store the connection string to our database here

Development.json Also, environment-specific settings can be contained in additional settings
files (e.g., Development) as shown by the appsettings.Development. json file

<ProjectName>. The configuration for the project principally tells us the .NET Core Framework

csproj version we’re using along with other Nuget packages (see info box) that the
application will reference and use
Also, as you’ve previously seen, this is where we can place references to
other projects that we need to be aware of

Program.cs It all starts here

This class configures the “hosting” platform, along with the “Main()” entry
point method for the entire app

(continued)

3Core in this sense is pertaining to “part of something that is central to its existence or character,’

not .NET Core.

41

CHAPTER 4 SCAFFOLD OUR API SOLUTION

File/folder What is it?

Startup.cs This class is used to configure the application services and the request
pipeline. More on those later.
In my opinion, if you learn the workings of the Startup class, you’ll be in
a really good position to understand how ASP.NET Core applications work
generally — so it’s worth investing some effort here

O Nuget is a package management platform that allows developers to reference
and consume external, prepackaged code that they can use in their apps. We’ll add
different packages to our project files as we move through the book and require
extra functionality.

In short
o launchSettings.json
e appsettings.json (and other environment-specific settings files)
o <ProjectName>.csproj
e Program.cs
o Startup.cs

All work in symbiotic bliss with each other to get the application up and running and
working according to the runtime environment. As we go through the book, we’ll cover
off more and more of the functions and features of each of the given items when they
become relevant.

However, as they are so foundational to every ASP.NET Core solution, we’re going to
talk briefly about both the Program and Startup classes here.

42

CHAPTER 4 SCAFFOLD OUR API SOLUTION

The Program and Startup Classes
The Program Class

As previously mentioned, this is the main entry point for the entire app and is used to
configure the “hosting” environment. It then goes on to use the Startup class to finalize
the configuration of the app.

Let’s take a quick look at the templated code (which we’re not going to change) and
see what it does.

O Unless otherwise stated, when we’re working with a project, it’s going to be
our main “API Project” (and not the unit test project). So, for the examples coming
up, and elsewhere in the book, reference this project first.

I'll explicitly state when we need to use the unit test project.

namespace CommandAPI

{
public class Program
{
public static void Main(string[] args)
{
CreateHostBuilder(args).Build().Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureliebHostDefaults(webBuilder =>

{

webBuilder.UseStartup<Startup>();
H

Figure 4-13. Standard contents of Program class

The execution sequence is as follows.

43

CHAPTER 4 SCAFFOLD OUR API SOLUTION

Application
Starts

Load .Net Core
runtime

Main() method
executes

CreateDefaultBuilder

Figure 4-14. Program Class execution sequence

The CreateDefaultBuilder method uses the default builder pattern to create a web
host, which can specify things like the webserver to use and config sources as well as
selecting the class we use to complete the configuration of the app services. In this case
we use the default Startup class for this; indeed, since the default contents are sufficient
for our needs, we'll move on.

Note We do cover .NET Core Configuration in more detail later in the book.

The Startup Class

The Program class is the entry point for the app, but most of the interesting startup stuff is
done in the Startup class. The Startup class contains two methods that we should look
further at:

o ConfigureServices
o Configure

The execution sequence is as follows.

44

CHAPTER 4 SCAFFOLD OUR API SOLUTION

CreateDefaultBuilder .
Instantiates

(see above) l

ConfigureServices
(Services Registered)

Configure
(Pipeline setup)

Request Handling
available

Figure 4-15. Startup class execution sequence

ConfigureServices

In ASP.NET Core we have the concept of “services,” which are just objects that provide
functionality to other parts of the application. For those of you familiar with the concept of
dependency injection,* this is where dependencies are registered inside the default Inversion
of Control (IoC) container provided by .NET Core. We'll cover dependency injection in
much more detail when we come to working with our “repository” in Chapter 6.

Configure

Once services have been registered, Configure is then called to set up the request
pipeline. The request pipeline can be built up of multiple middleware components that
take (in this case http) requests and perform some operation on them.
Depending on how the multiple middleware components are created, it will affect at
what stage they get involved with the request and what (if anything) they do to impact it.
In the following diagram, you can see how a request would traverse the middleware
components added in the Configure method. The nature of the request (e.g., is it an

“This can be a tricky subject; I cover this in some detail in Chapter 6 and throughout the tutorial.

45

CHAPTER 4 SCAFFOLD OUR API SOLUTION

attempt to open a Web Socket?) and the logic in the middleware will determine what will
happen to that request, with the ability to “short-circuit” traversing further middleware if
required (not shown).

"UseMiddleware" methods are added in the
configure method of the Startup Class.
The order in which they are added dictates the
execution sequence in the pipeline.

r'd Y

app.UseMiddlewarel () ; | | app.UseMiddleware2 () ;

Middleware 1 Middleware 2

Request Logic

Next();

Figure 4-16. Very simple example of .NET Core Middleware

= Learning Opportunity In the preceding diagram, I've use a generic
construct to describe the middleware components — app.UseMiddleware1(),
etc. Take a look at the Configure method in our Startup class, and have a look
at the actual middleware components that are being added.

Hint They’ll start with “app.”

The Request Pipeline and middleware, in general, are an expansive area which
could occupy a whole chapter of the book on its own. In keeping with the “thin and
wide” approach, I feel we've covered enough to move on and start coding (we cover
the Request Pipeline in more detail in Chapter 14 when we discuss Authentication and
Authorization).

46

CHAPTER 5

The “C” in MVC

Chapter Summary

In this chapter we’ll go over some high-level theory on the Model-View-Controller

(MVC) pattern, detail out our API application architecture, and start to code up our API

controller class.

When Done, You Will

e Understand what the MVC pattern is

e Understand our API application architecture, including concepts
such as

o Repositories
« Data transfer objects (DTOs)
o Database contexts

e Add a controller class to our API project.

o Create a Controller Action (or API Endpoint if you prefer) that returns

“hard-coded” JSON.

¢ Place our solution under source control.

© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_5

47

https://doi.org/10.1007/978-1-4842-6255-9_5#DOI

CHAPTER5 THE“C” IN MVC

Quick Word on My

Dev Setup

I just want to level set here on the current state of my development setup I'm going to use

moving forward:

I'have VS Code open and running.

e InVS Code I have opened the CommandAPISolution solution folder.

o This displays my folder and file tree down the left-hand side

(containing both our projects).

e I'malso using the

commands.

o The integrated terminal I'm using is “PowerShell” - you can change

this; see info box i

integrated terminal within VS Code to run my

n the following.

¢ File Edit Selection = I. Exol bug i Help Program.cs - CommandAPISclution - Visual Studio Code
Ile Explorer {
[1;’] EXPLORER f_— Program.cs X Code editing window:
(currently editing Program.cs)
“ OPEN EDITORS src > CommandAPl > € Program.cs > ...

X € Program.cs src\CommandAPI
~ COMMANDAPISOLUTION
> ~Nscode

bin
obj

!

W

Properties
2P Qur 2 Projects
} ap S

& CommandAPl.csproj

C* Program.cs
Cr Startup.cs
v test’, CommandAP| Tests

> bin

> obj

® CommandAPl Tests.csproj
C* UniltTest1.cs

CommandAPISolution.sin

/

8 Warning(s)
@ Error(s)

Time Elapsed ©0:00:03.08
PS D:\APITutorial\NET Core 3.1\CommandAPISolution>

» OUTLINE
@oAh0 & B CommandAPiSolutionsin

\ integrated

Ln 1, Col 1

Figure 5-1. My VS Code setup

48

Spaces:4 UTF-8

1
. ons
3 sing S
a4 sing System.Threading.Tasks;
5 using Microsoft.AspNetCore.Hosting;
& sing Microsoft.Extensions.Configuration;
7 using Microsoft.Extensions.Hosting;
8 ising Microsoft.Extensions.l g
9
10 namespace CommandAPI
1 {

public class Program

{

public static void Main(string[] args)
MS TERMINAL 1: powershell + w A~

ce @ 0

CHAPTERS5 THE“C” IN MVC

O You can change the terminal/shell/command-line type within VS Code quite

easily.
1. InVS Code hit “F1” (this opens the “command palette” in VS
Code).
2. Type shell at the resulting prompt, and select “ Terminal: Select
Default Shell.”
3. You can then select from the Terminals that you have installed.
Start Coding!

First, let’s just check that everything is set up and working OK from a very basic startup

perspective. To do this from a command-line type (ensure that you're “in” the API

project directory - CommandAPI)

dotnet run

You should see the webserver start with output similar to the following.

info

info:

info:

info:

QUTPUT DEBUG CONSOLE = TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CmandﬁPI)@
info:

Microsoft.Hosting.Lifetime[@]

Now listening on: https://localhost:5001
Microsoft.Hosting.Lifetime[0]

Now listening on: http://localhost:5@00
Microsoft.Hosting.Lifetime[@]

Application started. Press Ctrl+C to shut down.
Microsoft.Hosting.Lifetime[@]

Hosting environment: Development

: Microsoft.Hosting.Lifetime[@]

Content root path: D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI

Figure 5-2. Running our API for the first time

49

CHAPTER5 THE“C” IN MVC

You can see that the webserver host has started and is listening on ports 5000 and
5001 for http and https, respectively.

O To change that port allocation, you can edit the launchSettings.json file in
the Properties folder; for now though there would be no benefit to that. We’ll talk
more about this file when we come to our discussion on setting the runtime
environment in Chapter 8.

If you go to a web browser and navigate to
http://localhost:5000
You'll see the following.

localhost:5000/

&« c @ @ localhost:5000

Hello World!

Figure 5-3. Hello World!

Not hugely useful, but it does tell us that everything is wired up correctly. Looking in
the Configure method of our Startup class, we can see where this response is coming
from.

50

CHAPTERS5 THE“C” IN MVC

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

if (env.IsDevelopment())

{

app.UseDeveloperExceptionPage();
¥

app.UseRouting();

app.UseEndpoints(endpoints =>
{

endpoints.MapGet("/", async context =>

{

await context.Response.WriteAsync("Hello World!");

3

3

Figure 5-4. Where our greeting comes from

O For those of you that have worked with any of the 2.x versions of the .NET
Core Framework (for those of you that haven’t, you can ignore this), this will look
slightly different to what you may have seen before. As opposed to

e app.UseEndPoints
You would have seen
e app.Run(async)
The previous version of the framework would also make use of
e services.AddMvc(): In our ConfigurerServices method
e app.UseMVC(): Inour Configure method

Further discussion on the differences between versions 2.x and 3.x of the .NET
Core Framework can be found here: https://docs.microsoft.com/en-us/
aspnet/core/migration/22-to-30.

51

https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.0

CHAPTER5 THE“C” IN MVC

Stop our host from listening (Ctrl+C on Windows - should be the same for Linux/
0SX), and remove the highlighted section of code (shown previously) from our
Configure method. Add the highlighted code shown next to our Startup class, making
sure to update both the ConfigureServices and Configure methods:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace CommandAPI

{
public class Startup
{
public void ConfigureServices(IServiceCollection services)
{
//SECTION 1. Add code below
services.AddControllers();
}
public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)
{
if (env.IsDevelopment())
{
app.UseDeveloperExceptionPage();
}
app.UseRouting();
app.UseEndpoints(endpoints =>
{
//SECTION 2. Add code below
endpoints.MapControllers();
1);
}
}
}

52

CHAPTERS5 THE“C” IN MVC

What does this code do?

1. Registers services to enable the use of “Controllers” throughout
our application. As mentioned in the info box, in previous
versions of .NET Core Framework, you would have specified
services.AddMVC. Don’t worry; we cover what the Model-View-
Controller (MVC) pattern is below.

2. We “MapControllers” to our endpoints. This means we make use
of the Controller services (registered in the ConfigureServices
method) as endpoints in the Request Pipeline.

© Reminder The code for the entire solution can be found here on GitHub:

https://github.com/binarythistle/Complete-ASP-NET-3-API-
Tutorial-Book

As we have done before, run the project (ensure you save the file before doing this')
dotnet run

Now, navigate to the same URL in a web browser (http://localhost:5000), and we
should get “nothing.”

Call the Postman

Now is probably a good time to get Postman up and running as it’s a useful tool that
allows you to have a more detailed look at what’s going on.

So, if you've not done so already, go to the Postman website (www.getpostman.com),
and download the version most suitable for your environment, (I use the Windows
desktop client, but there’s a Chrome plugin along with desktop versions for other
operating systems).

We want to make a request to our API using Postman, so click “New.”

Plenty of times I've run code after making changes, and the changes were not reflected. Yes,
that’s right - hadn’t saved the file.

53

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book
https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book
http://www.getpostman.com

CHAPTER5 THE“C” IN MVC

0 Postman

File Edit View Help

Figure 5-5. Start a New Request in Postman

The select “request.”

Create New

BUILDING BLOCKS

Request

Creare a basic request \

E APl Documentation

Create and publish beautiful documentation for your AP

GET

ADVANCED

Figure 5-6. Create a basic request

Give the request a simple name, for example, “Test Request.”

Requests in Postman are saved in collections (a group of requests).

Learn more about crea

ting collections

Request name

Test Rec:_ues:l

Request description (Optional)

Figure 5-7. Name your request

54

CHAPTERS5 THE“C” IN MVC

You'll also need to create a “Collection” to house the various API requests you want
to create (e.g., GET, POST, etc.):

1.

2.

Click “+ Create Collection”
Give it a name, for example, “CommandAPI”

Select OK (the tick), and ensure you select your newly created
collection (not shown).

Click Save to Command API.

Descriptions suppeort Markdown
Selecr a collection or folder to save to:

a o,

All Collections + Create Collection

|Commard:ke‘-"| 'Y
s RES

AEST course
IS Tests for Command AP

Figure 5-8. Request Collection

You should then have a new tab available to populate with the details of your

request. Simply type

http://localhost:5000

or

https://localhost:5001

into the “Enter request URL’ text box, ensure “GET” is selected from the drop-down next
to it, and hit SEND; it should look something like the following.

55

CHAPTER5 THE“C” IN MVC

GET v hupi/fiocalhost5000 m z
Params Authorization Headers (7) Body Pre-request Script Tests Sewings C
Query Params
KEY VALUE DESCRIPTION
Body Cookies Headers (3) TestResults @ Swtus: 404NotFound Time: S6ms Size: 998 Save Re®
KEY VALUE
Date Thu, 02 Jul 2020 00:02:03 GMT
Server Kestre!
Conzent-Lengzh

Figure 5-9. GET Request results in Postman

If you've clicked Send, then you should see a response of “404 Not Found”; clicking
on the headers tab, you can see the headers returned.

We'll return to Postman a bit later, but it’s just useful to get it up, running, and tested
now.

What have we broken?

We've not actually broken anything, but we have taken the first steps in setting up
our application to use the MVC pattern to provide our API endpoint.

What Is MVG?

I'm guessing if you're here, you probably have some idea of what the MVC (Model-View-
Controller) pattern is. If not, I provide a brief explanation here, but as

1. There are already 1000s of articles on MVC.
2. MVC theory is not the primary focus of this tutorial.

I'won’t go into oo much detail. Again, I feel you'll learn more about MVC by building
a solution, rather than reading long textual explanations. I think when we cover off the
Application Architecture below, things will make much more sense though.

56

CHAPTERS5 THE“C” IN MVC

Model-View-Controller

Put simply, the MVC pattern allows us to separate the concerns of different parts of our
application:

e Model (our Domain Data)
e View (User Interface)
e Controller (Requests and Actions)

In fact, to make things even simpler, as we're developing an API, we won’t even have
any View artefacts.” A high-level representation of this architecture for our API is shown
here.

| .NET Core 3.1 ASP MVC App

HTTP Request sy
API Client I

(e.g. Postman)
e HTTP RESPONS © s

JSON Payload

Serialize Write

y
% ?

Mapped Read / Write

Data Access
M
(DB Context)

PostgreSQL

Figure 5-10. Our API Application Architecture

%You could argue that the serialized JSON payload is a “view” from a conceptual perspective.

57

CHAPTER5 THE“C” IN MVC

It's also worth noting, in case it wasn't clear, that the MVC pattern is just that - an
application architecture pattern - it is agnostic from technical implementation. As this
happens to be a book about a particular technology (.NET Core), we cover how .NET
Core implements MVC; however, there are other implementations of the MVC pattern
using different frameworks and languages.

Models, Data Transfer Objects, Repositories, and Data
Access

You're probably happy enough with the concept of a Model - it’s just data, right? Yes,
that’s simple enough. So, looking at the architecture diagram in Figure 5-10, you're then
wondering what’s a DTO, a Repository, and a DB Context. And I don’t blame you - I
struggled with the distinction between these concepts too at first. In fact, we could leave
out DTOs and Repositories from our solution and it would work without them. So why
include them at all? Great question; let me try and explain.

First, let me answer the “what” before I answer the “why.

What’s the Distinction?

Let’s step through each of those classes:

e Model: Represents the internal domain data of our application (the
“M” in MVC).

o Data Transfer Objects (DTOs): Are the representations of our
Domain Models to our external consumers, meaning that we don'’t
expose internal implementation detail (our Models) to external
concerns. This has multiple benefits as we’ll discuss later.

o Data Access (aka DB Context): Takes our Models and represents
(or “mediates”) them down to a specific persistence layer (e.g.,
PostgreSQL, SQL Server, etc.). Going forward, I'll refer to our Data
Access class as a “DB Context” which is a technology-specific term
taken from “Entity Framework Core” - don’t worry; more on that later
in Chapter 7.

58

CHAPTERS5 THE“C” IN MVC

Repository: Provides a technology agnostic (or persistence ignorant)

view of our permanently stored data to our application.

So, what do you take from this? The main concept (which is repeated throughout

the book) is that we should be decoupling implementational detail from the interface or

contract we want to provide to consumers. But why is that a good thing?

Why Decoupling Is Good?

I've kind of alluded to that earlier, and we’ll cover it in more detail when we come to

implementing these concepts, but in short decoupling our interfaces (or contracts) from

our implementations provides the following benefits:

Security: We may not want to expose potentially sensitive data
contained in our implementation (think our Model) to our external
consumers. Providing an external representation (e.g., a DTO) with
sensitive information removed addresses this.

Change Agility: Separating out our interface - which should remain
consistent so as not to break our “contract” with our consumers -
means we can then change our implementation detail without
impacting that interface. We then have the confidence to react
quickly to market demands without fear of breaking existing
agreements. We'll demonstrate this concept more when we come
onto using dependency injection and our repository.

Bringing It Together

In the chapters that follow, we’ll leverage MVC as well as the other concepts discussed

earlier to

Chapter 5: Create a Controller to manage all our API requests (see
our CRUD actions in Chapter 3).

Chapter 6: Create a Model to internally represent our resources (in
this case our library of command-line prompts)

Chapter 6: Create a Repository to provide a technology agnostic
view of our persisted data.

59

CHAPTER5 THE“C” IN MVC

e Chapter 7: Leverage Entity Framework Core to create a DB Context
that will allow us to persist our Model down to PostgreSQL.

o Chapter 9: Create DTO representations of our Model for external use.

Let’s wrap our architectural overview there (again, don’t worry - we’ll deep dive
these concepts later) and move on to creating our Controller.

Our Controller

Making sure that you are in the main API project directory (CommandAPI), create a
folder named “Controllers” underneath CommandAPI as a subfolder.

v COMMANDAPISOLUTION
> .vscode

v src’, CommandAPI

bin

b
> Controllers
>
b

obj
Properties
appsettings.Development.json
appsettings.json
CommandAPI.csproj

Qv

Program.cs

tartup.cs

Figure 5-11. Controllers Folder in our API Project

Inside the Controllers folder you just created, create a file called
CommandsController.cs.

© Quick Tip If you're using VS Code, you can create both folders and files from
within the VS Code directory explorer. Just make sure when you’re creating either
that you have the correct “parent” folder selected.

60

CHAPTERS5 THE“C” IN MVC

v COMMANDAPISOLUTION DBaLAa
> {ceaerie p—p
v src ', commandAPI
> bin

v Controllers

Create Folder

C* CommandsController.cs

Figure 5-12. File and folder creation in VS Code

Your directory structure should now look like this.

“ COMMANDAPISOLUTION i
> wvscode

v src '\ CommandAPI

> bin

CControilers)
C* CommandsController.cs
> obj

Dy

Figure 5-13. Our directory structure

Ensure that you postfix the CommandsController file with a “cs” extension to
denote it’s a C# file.

Both the folder and naming convention of our controller file follow a standard,
conventional approach; this makes our applications more readable to other developers;
it also allows us to leverage from the principles of “Convention over Configuration.”

Now, to begin with we’re just going to create a simple “action” in our Controller that
will return some hard-coded JSON (as opposed to serializing data that will ultimately
come from our DB). Again, this just makes sure we have everything wired up correctly.

O A controller “Action” (I may also refer to it as an endpoinf) maps to our APl

CRUD operations as listed in Chapter 3; our first action though will just return a
simple hard-coded string.

61

CHAPTER 5 THE “C” IN MVC
The code in your CommandsController class should now look like this:

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Controllers

{
[Route("api/[controller]")]
[ApiController]
public class CommandsController : ControllerBase
{
[HttpGet]
public ActionResult<IEnumerable<string>> Get()
{
return new string[] {"this", "is", "hard", "coded"};
}
}
}

Again, if you don’t fancy typing this in, the code is available here on GitHub:
https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

We'll come onto what all this means next, but first lets’ build it.

Ensure that you don’t have the server running from our recent example (Ctrl + C to
terminate), save the file, then type

dotnet build

This command just compiles (or builds) the code. If you have any errors, it'll call
them out here; assuming all’s well (which is should be), you should see the following.

62

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

CHAPTERS5 THE“C” IN MVC

PROBLEMS OUTAUT

DEBUG CONSOLE ~ TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI>
Microsoft (R) Build Engine version 16.4.0+e981037fe for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

t build

Restore completed in 17.5 ms for D:\APITutorial\NET Core 3.1\CommandAPISolutio
CommandAPI -> D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI\bi

@ Warning(s)

@ Error(s)
Time Elapsed ©0:00:00.61
PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI> l

Figure 5-14. Successful API run

Now, run the app.

™= Learning Opportunity I'm deliberately not going to detail that command
going forward now; you should be picking this stuff up as we move on. If in doubt,

refer to earlier in the chapter on how to run your code (as opposed to building it as
we’ve just done).

Go to Postman (or a web browser if you like), and in the URL box, type
http://localhost:5000/api/commands

Ensure that “Get” is selected in the drop-down (in Postman), then click “Send”; you
should see something like this.

63

CHAPTER5 THE“C” IN MVC

GET » | hup:/flocalhost5000/apifcommands “

Params Authorization Headars (7) Body Pre-request Script Tests Setings
Query Params
KEY VALUE DESCRIPTION
Body Cockies Headers (4) Test Results @ Status: 20006 Time: 86ms Size: 1768 Saw

Pretty Raw Preview Visualize JSON ~ 5

Figure 5-15. Our first API endpoint response

1. This is the hard-coded json string returned.
2. We have a 200 OK HTTP response (basically everything is good).

I guess technically you could say that we have implemented an API that services a
simple “GET” request! Excellent, but I'm sure most of you want to take the example a
little further.

Back to Our Code

OK so that’s great, but what did we actually do? Let’s go back to our code and pick it

apart.

64

CHAPTERS5 THE“C” IN MVC

Startup.cs C* CommandsController.cs X

¢ > CommandAP! > Controllers > €* CommandsController.cs > ..
using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;

1
2
3
4 namespace CommandAPI.Controllers
5
6
7
8

{

[Route("api/[controller]”)]

[ApiController]
public class CommandsController(: ControllerBase

{
HttpGet
11 @ublic ActionResult<IEnumerable<string>> Get(}ﬁ
12 {
13 return new string[] {"this", "is", "hard", "coded"};

Figure 5-16. Deep dive on our first controller action

1. Using Directives

We included two using directives here:
o System.Collections.Generic (supports IEnumerable)

e Microsoft.AspNetCore.Mvc (supports pretty much everything else
detailed below)

2. Inherit from Controller Base

Our Controller class inherits from ControllerBase (it does not provide View support
which we don’t need). You can inherit from Controller also if you like, but as you can
probably guess, this provides additional support for Views that we just don’t need.

ControllerBase is further detailed on Microsoft Build.3

*https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.
controllerbase?view=aspnetcore-3.1

65

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase?view=aspnetcore-3.1

CHAPTER5 THE“C” IN MVC

3. Set Up Routing

As you will have seen when you used Postman to issue a GET request to our API, you had
to navigate to

http://localhost:5000/api/commands
The URI convention for an API controllers is
http://<server_address>/api/<controller_name»

where we use the route pattern /api/<controller name> following the main part of the
URL

To enable this, we have “decorated” our CommandsController class with a [Route]
attribute:

[Route("api/[controller]")]

© You'll notice that when we talk about the name of our controller from a route
perspective, we use “Commands” as opposed to the fuller
“CommandsController”.

Indeed, the name of our controller really is “Commands”; the use of the
“Controller” postfix in our class definition is an example of configuration over
convention. Basically, it makes the code easier to read if we use this convention,
that is, we know it’s a controller class.

A Warning! We have specified our route using the [controller]
“wildcard,” which dynamically derives that segment of the route from the name of
our controller (minus the “Controller” portion) as we’ve explained before. So, in our
case, this gives us the route:

api/commands

What this means is that if you change the name of your Controller for whatever
reason, the route will change also. This may have quite unexpected consequences
for our consumers, in effect breaking our contract - so be careful!

66

CHAPTERS5 THE“C” IN MVC

You can “rectify” this behavior by hardcoding the name of your route as so it would
become

[Route("api/commands")]

I'll leave the semi-dynamically declared route for now as I think that is what you’ll
most likely see out there in the field, but feel free to change to the hard-coded
approach if you’re more comfortable with that.

4. APIController Attribute

Decorating our class with this attribute provides the following out-of-the-box behaviors
for our controller:

o Attribute Routing

e Automatic HTTP 400 Error responses (e.g., 400 Bad Request, 405 Not
Allowed, etc.)

o Default Binding Sources (more on these later)
¢ Problem details for error status codes

It’s not mandatory to use it but highly recommended, as the default behaviors
it provides are really useful; for a further deep dive on this, refer to the Microsoft
documentation.*

5. HttpGet Attribute

Cast your mind back to the start of the tutorial, and you'll remember that we specified
our standard CRUD actions for our API and that each of those actions aligns to a
particular http verb, for example, GET, POST, PUT, etc.

Decorating our first simple action with [HttpGet] is really just specifying which verb
our action responds to.

*https://docs.microsoft.com/en-us/aspnet/core/web-api/
index?view=aspnetcore-2.2#annotation-with-apicontroller-attribute

67

https://docs.microsoft.com/en-us/aspnet/core/web-api/index?view=aspnetcore-2.2#annotation-with-apicontroller-attribute
https://docs.microsoft.com/en-us/aspnet/core/web-api/index?view=aspnetcore-2.2#annotation-with-apicontroller-attribute

CHAPTER5 THE“C” IN MVC

You can test this by changing the verb type in Postman to “POST” and calling our API
again. As we have no defined action in our API Controller that responds to POST, we’ll
receive a 4xx HTTP error response.

© As mentioned before, the Verb Attribute (e.g., GET) in combination with the
route (e.g., api/commands) should be unique for each action (endpoint) within
our API.

If you take a look back to our full list of the API endpoints in Chapter 3, you’ll notice
that this is indeed the case.

6. Our Controller Action

This is quite an expansive area,® and there are multiple ways you can write your
controller actions. I've just opted for the “ActionResult” return type which was
introduced as part of .NET Core 2.1.

In short, you'll have an ActionResult return type for each API CRUD action, so we'll
end up with six by the time we're finished.

Synchronous vs. Asynchronous?

In the recent example, our controller actions are synchronous, meaning that when they
get called by a client (e.g., Postman), they will wait until a result is returned and in doing
so occupy a thread (think of a thread as a small slice of a CPU’s time). Once a result is
returned, that thread is then released (back to a thread pool) where it can be reused by
some other operation.

The problem with synchronous operations is that if there is enough of them (think
a high traffic API), eventually all the available threads will be used from the thread
pool, blocking further operations from running. That is where asynchronous Controller
Actions would come in.

An asynchronous controller action will not wait for a long-running operation (e.g.,
complex Database query or call over the network) to complete and will hand the thread

*https://docs.microsoft.com/en-us/aspnet/core/web-api/action-return-types?view=
aspnetcore-3.1

68

https://docs.microsoft.com/en-us/aspnet/core/web-api/action-return-types?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/web-api/action-return-types?view=aspnetcore-3.1

CHAPTERS5 THE“C” IN MVC

back to the pool while it waits. When the long-running operation does eventually have a
result for us, a thread is reacquired by the controller action to complete the operation.

In short, asynchronous operations are really about scalability and not (as is
sometimes claimed) speed. Just using an asynchronous controller action does nothing
to improve the time the I/O operation (e.g., database query) takes to complete. It does,
however, improve the situation where we may run out of threads (due to blocking) which
has positive implications for scaling. There is also some nice usability implications when
applied to User Interface design (have you ever used an application that “freezes” when
performing a long-running operation?).

I did debate whether to use asynchronous controller actions in our example;
however, in keeping with the “Thin and Wide” approach of the book, I thought it would
introduce unnecessary complexity that would detract from the core thrust of the book,
so I have omitted for now.

This section has already taken up enough space, so let’s move on!

Source Control

OK this has been quite a long chapter, and we’ve covered a lot of ground. Before we wrap
it up, I want to introduce the concept of source control.

What is source control?

Source control is really about the following two concepts:

1. Tracking (and rolling back) changes in code

2. Coordinating those changes when there are multiple developers/
contributors to the code (referred to as Continuous Integration;
we’ll deep dive into this in Chapter 12)

The general idea is that throughout a code project’s life cycle, many changes will be
made to the source code, and we really need a way to track those changes, for reasons
including but not limited to

o Requirements Traceability: Ensuring that the changes relate back to
arequested feature/bug fix.

o Release Notes: Wrapping up our changes so we can publish new
release notes for our app.

69

CHAPTER5 THE“C” IN MVC

e Rolling Back: If we know what changed (and we broke something),
we can either (a) fix it or (b) roll back the change - a source control
system allows us to do that.

On top of tracking changes, the other primary reason for using a source control
solution is to coordinate the changes to the codebase when multiple developers are
working on it. If you're the only person working on your code, you're not going to really
conflict with yourself (well not usually anyway). What about when you have more than
one person making changes to the same codebase? How can that happen without things
like overwriting each other’s changes? Again, this is where a source control solution
comes in to play - it coordinates those changes and identifies conflicts should they arise.

Now, we're not going to delve too deep into the workings of source control, but we
are going to put our project “under source control” for two reasons:

1. To introduce you to the concept

2. Sowe can automatically deploy our app to production via a
CI/CD® pipeline - more in Chapter 12

Git and GitHub

Now, there are various source control solutions out there, but by far the most common
is Git (and those based around Git), to such an extent that “source control” and Git

are almost synonyms. Think about “vacuum cleaners” and “Hoover” (or perhaps now
Dyson), and you'll get the picture.

What’s the difference?

Git is the source control system that

e You can have running on your local machine to track local code
changes

e You can have running on a server to manage parallel, distributed
team changes

éContinuous Integration/Continuous Delivery (or Deployment).

70

CHAPTERS5 THE“C” IN MVC

While you can use Git in a distributed team environment, there are a number of
companies that have taken it further placing “Git in the Cloud,” with such examples as

e GitHub (probably the most well-recognized - and now acquired by
Microsoft)

o Bitbucket (from Atlassian - the makers of Jira and Confluence)
¢ Gitlabs

We're going to use both Git (locally on our machine) and GitHub as part of this
tutorial (as mentioned in Chapter 2).

Setting Up Your Local Git Repo

If you followed along in Chapter 2, you should already have Git up and running locally; if
not, or you're unsure, pop back to Chapter 2, and take a look.

At a terminal/command line in the main solution directory,
(CommandAPISolution), type (if your API app is still running you may want to stop it by
hitting Ctrl + c)

git init

This should initialize a local Git repository in the solution directory that will track the
code changes in a hidden folder called .git (note the period “’ prefixing “git”).
Now type

git status

This will show you all the “untracked” files in your directory (basically files that are
not under source control); at this stage, that is everything.

71

CHAPTER5 THE“C” IN MVC

on

VS QUTPU ONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git init

Initialized empty Git repository in D:/APITutorial/NET Core 3.1/CommandAPISolution/.git/
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git status

On branch master

ntracked files:
(use "git add <file>..." to include in what will be committed)
CommandAPISolution.sln
src/
test/

nothing added to commit but untracked files present (use "git add" to track)
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> l

Figure 5-17. Untracked files in our new Git Repo

.gitignore file

Before we start to track our solution files (and bring them under source control), there
are certain files that you shouldn’t bring under source control, in particular, files that are
“generated” as the result of a build, primarily as they are surplus to requirements (they're
not “source” files™).

In order to “ignore” these file types, you create a file in your “root” solution directory
called .gitignore, (again note the period ’ at the beginning). Now this can become quite
a personal choice on what you want to include or not, but I have provided an example
that you can use (or ignore altogether - excuse the pun!):

*.swp

* ke
project.lock.json
.DS_Store

*.p;c

Visual Studio Code
.VS Code

72

User-specific files
*_suo

*.user

*_userosscache

*

.sln.docstates

Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/

x86/

build/

bld/
[Bb]in/
[0o]bj/
msbuild.log
msbuild.err
msbuild.wrn

Visual Studio
.vs/

Compiled Source
.com

.class

.dll

.exe

.0

EEE O T R S =<

.SO

CHAPTERS5 THE“C” IN MVC

So if you want to use a .gitignore file (I recommend it - you don’t want to put

compiled assets in a source repository), create one, and pop it in the root of your solution

directory, as I've done here (this shows the file in VS Code).

73

CHAPTER5 THE“C” IN MVC

) File Edit Selection View Go Debug Terminal Heff

EXPLORER

v OP

.gitignore file is in the root of our
solution folder (the same level as the
solution file we created earlier)

X & .gitignore
~ COMMANDAPISOLUTION
> Wvscode
> src\ CommandAR,
> test\ Commay
.gitignore
CommandAPISolution.sin

Figure 5-18. Our .gitignore file

Type git status again, and you should see this file now as one of the “untracked”

files also.

]

PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git status
On branch master

No commits yet
Untracked files:

(use "git add <file>..." to include in what will be committed)
CommandAPISolution.sln

src/
test/

add

Figure 5-19. Untracked .gitignore file

74

CHAPTERS5 THE“C” IN MVC

Track and Commit Your Files

OK, we want to track “everything” (except those files ignored!); to do so, type (ensure you

put the trailing period ")
git add .

Followed by
git status

You should see the following.

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git add .

warning: LF will be replaced by CRLF in src/CommandAPI/appsettings.Development.json.
The file will have its original line endings in your working directory

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git status

On branch master

No commits yet
Changes to be committed:

(use "git rm --cached <file>..." to unstage)
ew file:

andAPI/Properties/launchSettings.json

CommandAPI

ison

1

mand

test/CommandAPI.Tests/Com API.Tests.csproj

test/CommandAPI.Tests/UnitTestl.cs

Figure 5-20. Tracked Files ready for Commit

These files are being tracked and are “staged” for commit.
Finally, we want to “commit” the changes (essentially lock them in) by typing

git commit -m "Initial Commit"

This commits the code with a note (or “message”; hence the -m switch) about that
particular commit. You typically use this to describe the changes or additions you have
made to the code (more about this later); you should see the following.

75

CHAPTER5 THE“C” IN MVC

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git commit -m “"Initial Commit"
[master (root-commit) 86576b7] Initial Commit

11 files changed, 248 insertions(+)

create mode 100644 .gitignore

create mode 100644 CommandAPISolution.sln

create mode 100644 src/CommandAPI/CommandAPI.csproj

create mode 100644 src/CommandAPI/Controllers/CommandsController.cs

create mode 180644 src/CommandAPI/Program.cs

create mode 108644 src/CommandAPI/Properties/launchSettings.json

create mode 100644 src/CommandAPI/Startup.cs

create mode 100644 src/CommandAPI/appsettings.Development.json

create mode 100644 src/CommandAPI/appsettings.json

create mode 100644 test/CommandAPI.Tests/CommandAPI.Tests.csproj

create mode 100644 test/CommandAPI.Tests/UnitTestl.cs

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> []

Figure 5-21. Committed Files

A quick additional git status and you should see the following.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git status
On branch master
Cpothing to commit, working tree clean)

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> l

Figure 5-22. No further changes have occurred

76

CHAPTERS5 THE“C” IN MVC

i Celebration Checkpoint Good job! We have basically placed our solution
under Jocal source control and have committed all our “changes” to our master
branch in our first commit.

A |f this is the first time you’ve seen or used Git, I'd suggest you pause reading
here and do a bit of Googling to find some additional resources. It’s a fairly big
subject on its own, and | don’t want to cover it in depth here, mainly because I'd be
repeating noncore content.

I will of course cover the necessary amount of Git to get the job done in this
tutorial; further reading is purely optional!

The Git website also allows you to download the full Pro Git ebook; you can find
that here: https://git-scm.com/book/en/v2

Set Up Your GitHub Repo

OK so the last section took you through the creation of a local Git repository, and that’s
fine for tracking code changes on your local machine. However, if you're working as

part of alarger team, or even as an individual programmer, and want to make use of
Azure DevOps (as we will in Chapters 12, 13, and 14), we need to configure a “remote Git

repository” that we will
e Push to from our local machine.
o Linkto an Azure DevOps Build Pipeline to kick off the build process.

Jump over to https://github.com (and if you haven’t already - sign up for an
account); you should see your own landing page once you've created an account/logged

in; here’s mine.

77

https://git-scm.com/book/en/v2
https://github.com

CHAPTER5 THE“C” IN MVC

Pull requests Issues Marketplace Explore

Follg

Stars 0

Overview Repositories 6 Projects 0

Popular repositories

VP-0-REST-Client S02E01

Set your status VP-10-Post-to-a-REST-API VP-15-Te!

Les Jackson oc: oc:

binarythistle

VP-17 -Intro-to-Entity-Framework VP-1-

© Melbo

Figure 5-23. GitHub Landing Page

Create a GitHub Repository

In the top right-hand corner of the site, click on your face (or whatever the default image
is if you're not a narcissist like me), and select “Your repositories.”

78

CHAPTERS5 THE“C” IN MVC

i @ «

Signed in as
binarythistle

@ Set your status
Your profile

e
Your repositories 8

Your projects

Your stars

Figure 5-24. Select your repositories

Then click “New” and you should see the “Create a new repository” screen.

79

CHAPTER5 THE“C” IN MVC

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Owner Repository name *

£ binarythistle~ / [CommandAP| v

Great repository names are short and memorable. Need inspiration? How about symmetrical-palm-tree?

Description (opticonal)

® ' Public

“#— Anyone can see this repository. You choose who can commit.

o) Private

You choose who can see and commit to this repository.

[Initialize this repository with a README

This will let you immediately clone the repository te your computer. Skip this step if you're imperting an existing repository.

Add .gitignore: None v Add a license: None~ | (D

Create repository

Figure 5-25. Create your repository

Give the repository a name (I just called mine CommandAPI, but you can call
it anything you like), and select either Public or Private. For this tutorial, I strongly
recommend selecting Public, primarily as that’s the option I've developed this tutorial
with - and I know it works with the later sections of the book. Indeed, the option you
select here is important as it has impacts when we come to set up our CI/CD pipeline in
Chapter 12.

Then click “Create Repository”; you should see the following.

80

CHAPTERS5 THE“C” IN MVC

L binarythistle / CommandAPI © Unwatch~ 1

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Quick setup — if you've done this kind of thing before
:ﬂSetupin Desktop or HTTPS SSH https://github.com/binarythistle/CommandAPL.git

Get started by creating a new file or uploading an existing file. We recommend every repository indude a README, LICENSE, al

...Or create a new repository on the command line

echo "# CommandAPI"™ >> README.md

git init

git add README.md

git commit -m "first commit”

git remote add origin https://github.com/binarythistle/CommandAPI.git
git push -u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/binarythistle/CommandAPI.git
git push -u origin master

Figure 5-26. GitHub repository created

This page details how you can now link and push your local repository to this remote
one (the section I've circled). So copy that text, and paste it into your terminal window
(you need to make sure you're still in the root solution folder we were working in
previously).

81

CHAPTER5 THE“C” IN MVC

PROBLEMS QuTPUT DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> git status
On branch master

nothing to commit, working tree clean
PS D:\APITutorial\NET Core 3.1\CommandAPISolution>fGit remote add origin https://github.com/binarythistl
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> push -u origin master
Enumerating objects: 19, done.

Counting objects: 10e% (19/19), done.
Delta compression using up to 8 threads
Compressing objects: 100% (15/15), done.
Wiriting objects: 100% (19/19), 3.42 KiB | 876.00 KiB/s, done.

Total 12 (delta 2), reused @ (delta @)

remote: Resolving deltas: 1@e% (2/2), done.

To https://github.com/binarythistle/Complete-ASP.NET-Core-API-Tutorial-2nd-Edition-Net-Core-3.1.git
* [new branch] master -> master

Branch 'master’ set up to track remote branch ‘master’ from ‘origin’.
PS D:\APITutorial\NET Core 3.1\CommandAPISolution> []

Figure 5-27. Add remote repo and push your local repo

4B . .
& Les’ Personal Anecdote You may get asked to authenticate to GitHub
when you issue the second command: git push -u origin master.

I've had some issues with this on Windows until | updated the “Git Credential
Manager for Windows”; after | updated, it was all smooth sailing. Google “Git

Credential Manager for Windows” if you’re having authentication issues, and install
the latest version!

So What Just Happened?

Well, in short

e We “registered” our remote GitHub repo with our local repo (first
command).

e We then pushed our local repo up to GitHub (second command).

Note The first command line only needs to be issued once; the second one we’ll
be using more throughout the rest of the tutorial.

82

CHAPTERS5 THE“C” IN MVC

If you refresh your GitHub repository page, instead of seeing the instructions you just

issued, you should see our solution!

Figure 5-28. Our code is now on GitHub

[binarythistle / CommandAPI @Unwatch 1 %Sar 0 Yok 0
<> Code lssues 0 1 Pull requests 0 1l Projects 0 I Insights ¥ Settings
No description, website, or topics provided. Edit
Manage topics
P 1 commit 71 branch T 0 releases A2 1 contributer
Branch: master » New pull request Create new file Upload files | Find File Clone or download +
£9 . " X « "
- binarythistle Initial Commit Latest commit c3a468b an hour ago
B src/CommandAP| Initial Commit an hour ago
il test/CommandAPi.Tests Initial Commit an hour ago
[E .gitignore Initial Commit an hour ago
[E CommandAPISolution.sin Initial Commit an hour ago

Help people interested in this repository understand your project by adding a README.

Add a README

You'll notice “Initial Commit” as a comment against every file and folder - seem

familiar?

Well that’s it for this chapter - great job!

83

CHAPTER 6

Our Model and Repository

Chapter Summary

In this chapter we’re going to introduce “data” to our API, so we’ll begin our journey with
our Model and Repository classes.

When Done, You Will

e Understand what a “Model” class is and code one up.

e Define our Repository Interface, and implement a “mock”

instance of it.

e Understand how we use Dependency Injection to decouple interfaces
from implementation.

Our Model

OK so we've done the “Controller” part of the MVC pattern (well a bit of it; it’s still not
fully complete - but the groundwork is in), so let’s turn our attention to the Model part of
the equation.

Just like our Controller, the first thing we want to do is create a Models folder in our
main project directory.

Once you've done that, create a file in that folder, and name it Command.cs; your
directory and file structure should look like this.

85
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_6

https://doi.org/10.1007/978-1-4842-6255-9_6#DOI

CHAPTER6 OUR MODEL AND REPOSITORY

v COMMANDAPISOLUTION b i O e O T =1
> Jvscode
v src ', CommandAPI
> bin
v Controllers
€ CommandsController.cs
v Models

Command.cs

>o0)

> Properties

appsettings.Development.json

Figure 6-1. Model Folder and Command Class

Once created, lets code up our “Command” model - it’s super simple and when
done should look like this:

namespace CommandAPI.Models

{
public class Command
{
public int Id {get; set;}
public string HowTo {get; set;}
public string Platform {get; set;}
public string CommandLine {get; set;}
}
}

As promised, very simple; just be sure that you've specified the correct namespace at
the top of the code:

CommandAPI.Models

The rest of the class is a simplistic model that we’ll use to “model” our command-
line snippets. Possibly the only thing really of note is the Id attribute.

This will form the Primary Key when we eventually create a table in our PostgreSQL
DB (noting this is required by Entity Framework Core.)

86

CHAPTER6 OUR MODEL AND REPOSITORY

Additionally, it conforms to the concept of “Convention over Configuration.” That is,
we could have named this attribute differently, but it would potentially require further
configuration so that Entity Framework could work with it as a primary key attribute.
Naming it this way, however, means that we don'’t need to do this.

Data Annotations

We could leave our model class like that, but when we come to working with it, especially
for creation and update actions, we want to ensure that we specify the properties of our
Model that are mandatory and those that are not. For example, would there be any value
in adding a command-line snippet to our solution without specifying some data for our
CommandLine property? Probably not. We solve this by adding some Data Annotations to
our class.

We can decorate our class properties with Data Annotations to specify things like

o Isitrequired or not?

e Maximum length of our strings

o Whether the property should be defined as Primary Key
e Andsoon.

In order to use them in the Command class, make the following updates to our code,
making sure to include the using directive as shown:

using System.ComponentModel.DataAnnotations;

namespace CommandAPI.Models

{

public class Command

{
[Key]
[Required]
public int Id {get; set;}

[Required]
[MaxLength(250)]
public string HowTo {get; set;}

87

CHAPTER6 OUR MODEL AND REPOSITORY

[Required]
public string Platform {get; set;}

[Required]
public string CommandLine {get; set;}

The Data Annotations added should be self-explanatory:
o All Properties are required (they cannot be null).
e Our Id property is a primary key.

e In addition, the HowTo property can only have a maximum of 250
characters.

With our annotations in place, when we come to creating an instance of our Model
later, a validation error (or errors) will be thrown if any of them are not adhered to. They
also provide a means by which to generate our database schema, which we’ll come onto
in Chapter 7.

As we have made a simple, yet significant, change to our code, let’s add the file
to source control, commit it, then push up to GitHub; to do so, issue the following
commands in order (make sure you're in the Solution folder CommandAPISolution):

git add .
git commit -m “Added Command Model to API Project”
git push origin master

You have used these all before, but to reiterate

e First command adds all files to our local Git repo (this means our new
Command.cs file).

e Second command commits the code with a message.
e Third command pushes the commit up to GitHub.

If all worked correctly, you should see the commit has been pushed up to GitHub;
see the following.

88

CHAPTER6 OUR MODEL AND REPOSITORY

I binarythistle / CommandAPI o

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Sety

No description, website, or topics provided.

Manage topics

D 2 commits ¥ 1 branch © 0 releases

Create new file

Branch: master ~ New pull request

£ binarythistle Added Command Model to Project

I sr¢/CommandAPI Added Command Model to Project
B test/CommandAPi.Tests Initial Commit
[.gitignore Initial Commit
E CommandAPISolution.sin Initial Commit

Help people interested in this repository understand your project by adding a README.

Figure 6-2. Our Committed Model Class

= Learning Opportunity Looking at the GitHub page presented earlier, how
can you tell which parts of our solution we included in the last commit and which
were only included in the initial commit?

Our Repository

Taking a quick look back at our application architecture, I've outlined the components
we've either started or, in the case of our Model, completed.

89

CHAPTER6 OUR MODEL AND REPOSITORY

NET Core 3.LAR MVCARP, caua.

Program

3
;)
o)
1",
Kol
[=
m
wv
[
l&

API Client
(e.g. Postman)

s TTP RESPONS @ g

JSON Payload

Serialize

| JUp e pep———

1
|]
\)

Cmm--—-—--

Read/
Write

\

Mapped Read / Write

fo :

4

PLEL L LY T

-

Data Access
(DB Context)

PostgreSQL

Figure 6-3. Progress through our architecture

It’s all still a bit disjointed; to review we have
o Started our Controller that currently returns hard coded data
e Created our Model

The next step in our journey is to define our Repository Interface, which will provide
our controller with a technology-agnostic way to obtain data.

What Is an Interface?

An interface is just as it sounds; it’s a specification for what functionality we want it to
provide (in this case to our Controller), but we don’t detail how it will be provided -
that comes later. It’s essentially an agreement, or contract, with the consumer of that
Interface.

90

CHAPTER6 OUR MODEL AND REPOSITORY

When we think about what methods our Repository Interface should provide to

our Controller (don’t think about how yet), we can look back at out CRUD actions from

Chapter 3 for some guidance.

Verb URI Operation Description

GET /api/commands Read Read all command resources

GET /api/commands/{Id} Read Read a single resource (by Id)

POST /api/commands Create Create a new resource

PUT /api/commands/{Id} Update (full) Update all of a single resource (by Id)
PATCH /api/commands/{Id} Update (partial) Update part of a single resource (by Id)
DELETE /api/commands/{Id} Delete Delete a single resource (by Id)

In this case, they almost directly drive what out Repository should provide:

Return a collection of all Commands.
Return a single Command (based on its Id).
Create a new Command Resource.

Update an existing Command Resource (this covers PUT and
PATCH).

Delete an existing Command Resource.

To start implementing our Repository, back in the root our API Project (in the

CommandAPI folder), create another folder and call it Data as shown here.

91

CHAPTER6 OUR MODEL AND REPOSITORY

“ COMMANDAPISOLUTION
> &wscode
v src’ CommandAPI 0
> bin
v Controllers
andsController.cs

v Models

C: Command.cs

Figure 6-4. Data Folder will hold our Repository Interface

Inside this folder, create a file and name it ICommandAPIRepo.cs.

“ COMMANDAPISOLUTION
> .vscode
v src’, CommandAPI
> bin
v Controllers
€ CommandsController.cs

ICommandAPIRepo.cs

C* Command.cs
> obj

> Properties

Figure 6-5. Our ICommanderRepo.cs File

92

CHAPTER 6
Inside the file, add the following code:

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{
public interface ICommandAPIRepo

{
bool SaveChanges();

IEnumerable<Command> GetAllCommands();
Command GetCommandById(int id);
void CreateCommand(Command cmd);
void UpdateCommand(Command cmd);
void DeleteCommand(Command cmd);

OUR MODEL AND REPOSITORY

Your file should look like this; make sure you save the file, and let’s take a look at

what we have done.

Using System.Collections.Generic;
using CommandAPI.Models;
¥ namespace CommandAPI.Data

{
public(interface ICommandAPIRepo
{
bool SaveChanges(); 9

IEnumerable<Command> GetAllCommands();
Command GetCommandById(int id);
void CreateCommand(Command cmd);
void UpdateCommand(Command cmd);
void DeleteCommand(Command cmd);

Figure 6-6. ICommandAPIRepo Interface

93

CHAPTER6 OUR MODEL AND REPOSITORY

1. Using directives, noting that we have brought in the namespace
for our Models.

2. We specify a public interface and give it a name starting with
capital “I” to denote it’s an interface.

3. We specify that our Repository should provide a “Save Changes”
method; stick a pin in that for now, we’ll revisit when we come to
talking about Entity Framework Core in Chapter 7.

4. Section 4 defines all the other method signatures that consumers
of this interface can use to obtain and manipulate data. They also
serve another purpose, which I detail in the section below.

What About Implementation?

That'’s our Repository Interface complete. Yes, that’s right; it’s done, fully complete. So,
your next question (well it was my next question when I was learning about interfaces),
will be: OK, but where does stuff “get done”?

Great question!

Again, to labor the point, our interface is just a specification (or a contract) for our
consumers. We still need to implement that contract with a concrete class. And this is
the power and the beauty of using interfaces: we can create multiple implementations
(concrete classes) to provide the same interface, but the consumer doesn’t know, or care,
about the implementation being used. All they care about is the interface and what it
ultimately provides to them.

Still confused? Let’s move to an example.

Our Mock Repository Implementation

We are going to create a concrete class that implements our interface using our
model; however, we'll just be using “mock” data at this stage (we’ll create another
implementation of our interface to use “real” data in the next chapter).

94

CHAPTER6 OUR MODEL AND REPOSITORY

So, in the same Data folder where we placed our repository interface definition,
create a new file called MockCommandAPIRepo.cs, and add the following code:

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{
public class MockCommandAPIRepo : ICommandAPIRepo
{
}

}

You should see something like this in your editor.

namespace CommandAPI.Data

{

:\ ICommandAPIRepo

=} ¥ { We are "implementing" :|

public class MockCommandAPIRepo

ICommanderRepo and it's complaining

Figure 6-7. Our Concrete Class Definition is complaining

We have created a public class definition and specified that we want it to implement
ICommanderRepo, as denoted by

: ICommanderRepo

95

CHAPTER6 OUR MODEL AND REPOSITORY

And we can see that it's complaining; this is because we haven’t “implemented”
anything yet. If you're using VS Code or Visual Studio, place your cursor in the
complaining section and press

CTRL + .

This will bring up some helpful suggestions on resolution; we want to select the first
option “Implement Interface,” as shown in the next figure.

Data > ¢ CommandAPI.Data.MockComnm

ndAPIRepo.cs > {} CommandAPI.

namespace CommandAPI.Data

{
¥ public class MockCommandAPIRepo : ICommandAPIRepo

{ Implement interface

} Implement all members explicitly

} Generate constructor ‘MockCommandAPIRepo()’

Figure 6-8. Help is always appreciated!

This should then generate some placeholder implementation code for our class.

96

CHAPTER6 OUR MODEL AND REPOSITORY

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{
public class MockCommandAPIRepo : ICommandAPIRepo
{

public void CreateCommand(Command cmd)

{
throw new System.NotImplementedException();

}

public void DeleteCommand(Command cmd)

{
throw new System.NotImplementedException();

}

/’;ublic I1Enumerable<Command> GetAllCommands() ﬂ\\

{
throw new System.NotImplementedException();

}

public Command GetCommandById(int id)

{
throw new System.NotImplementedException();

\\? _ J

1 1 We're only going to

E“b ic bool SaveChanges() write code for these
throw new System.NotImplementedException();

}

public void UpdateCommand(Command cmd)

{
throw new System.NotImplementedException();

}

Figure 6-9. Auto-generated Implementation code

97

CHAPTER6 OUR MODEL AND REPOSITORY

As you can seg, it has provided all the method signatures for the members of our
interface and populated them with a throw new System.NotImpementedException();
In our example we're only going to update our two “read” methods:

e GetAllCommands
o GetCommandById

This is enough to demonstrate the core concepts of using interfaces and by extension
Dependency Injection. So, in those two methods, add the following code as shown below,
remembering to save your work when done:

public IEnumerable<Command> GetAllCommands(){
var commands = new List<Command>
{
new Command{
Id=0, HowTo="How to generate a migration",
CommandLine="dotnet ef migrations add <Name of Migration>",
Platform=".Net Core EF"},
new Command{
Id=1, HowTo="Run Migrations",
CommandLine="dotnet ef database update",
Platform=".Net Core EF"},
new Command{
Id=2, HowTo="List active migrations",
CommandLine="dotnet ef migrations list",
Platform=".Net Core EF"}
};
return commands;

}

public Command GetCommandById(int id){
return new Command{
Id=0, HowTo="How to generate a migration",
CommandLine="dotnet ef migrations add <Name of Migration>",

98

CHAPTER6 OUR MODEL AND REPOSITORY

Platform=".Net Core EF"};

What this does is take our Model class and use it to create some simple mock data
(again just hard-coded) and return it when these two methods are called. Not earth-
shattering, but it is an implementation (of sorts) of our repository interface.

We now need to move on to making use of the ICommandAPIRepo interface (and by
extension the MockCommandAPIRepo concrete class) from within our controller.

To do this we use Dependency Injection.

Dependency Injection

Dependency Injection (DI) has struck fear into many a developer getting to grips with it
(myself included), but once you grasp the concept, not only is it pretty straightforward,
it’s also really powerful and you'll want to use it.

What makes it even easier in this instance is that DI is baked right into the heart of
ASP.NET Core, so we can get up and running with it quickly without much fuss at all.
Next, I'll take you through a quick theoretical overview; then we’ll employ DI practically
in our project (indeed, we'll continue to use it throughout the tutorial).

Again, as with many of the concepts and technologies in this tutorial, you could fill
an entire book on DI, which I'm not going to attempt to do here. If you want a deep dive
on this subject beyond what I outline below, the MSDN docs are decent'.

Back to the Start (Up)

To talk about DI in .NET Core, we need to move back to our Startup class and in
particular the ConfigureServices method.

'https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?
view=aspnetcore-3.1

99

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1

CHAPTER6 OUR MODEL AND REPOSITORY

CreateDefaultBuilder
(see above)

ConfigureServices
(Services Registered)

Configure
(Pipeline setup)

[Where the magic happens! 1

Request Handling
available

Figure 6-10. Startup Class Sequence

Casting your mind back, it is in the ConfigureServices method where our “services”
are registered (in this case think of a service as both an interface and an implementation
of it). But what exactly do we mean by register?

When we talk about registering services, what we are really talking about is
something called a Service Container; this is where we “register” our services. Or to put
it another way, this is where we tell the DI system to associate an interface to a given
concrete class. See the following diagram.

100

CHAPTER6 OUR MODEL AND REPOSITORY

Startup.ConfigureServices

Configures

Service Container

Interface Implementation
(Asked for this) (Give them this)

ICommandAPIRepo MockCommandAPIRepo

Figure 6-11. Service Container with our Repository Service Registered

Once we have registered our service in the Service Container, whenever we request
to make use of a given interface from somewhere else in our app, the DI system will
serve up, or “inject,” the concrete class we've associated with the interface (aka the
“dependency”) in its place.

This means that if we ever need to swap out our concrete class for some other
implementation, we only need to make the change in one place (the ConfigureServices
method); the rest of our code does not need to change.

We will follow this practice in this tutorial by first registering our mock repository
implementation against the ICommandAPIRepo interface; then we’ll swap it out for
something more useful in the next chapter without the need to change any other code
(except the registration).

This decoupling of interface (contract) from implementation means that our code is
infinitely more maintainable as it grows larger.

Enough theory; let’s code.

101

CHAPTER6 OUR MODEL AND REPOSITORY

Applying Dependency Injection

Back over in our API Project, open the Startup class, and add the following code to our
ConfigureServices method:

public void ConfigureServices(IServiceCollection services)

{

services.AddControllers();

//Add the code below
sexrvices.AddScoped<ICommandAPIRepo, MockCommandAPIRepo>();

}

The code is quite straightforward; it uses the service collection: services, to register
our ICommandAPIRepo with MockCommandAPIRepo. The only other novelty is the use of the
AddScoped method.

This has to do with something called “Service Lifetimes,” which in essence tells the
DI system how it should provision a service requested via DI; there are three methods
available:

e AddTransient: A service is created each time it is requested from the
Service Container.

o AddScoped: A service is created once per client request
(connection).

o AddSingleton: A service is created once and reused.

Beyond what I've just outlined, I feel we may get ourselves off track from our core
subject matter: building an API! So, we'll leave it there for now; again refer to Microsoft
Docs as mentioned earlier if you want more info.

OK, so now that we have registered our service, the next step is to make use of it from
within our Controller - how do we do that?

Constructor Dependency Injection

If 'm being honest, it was this next bit that tripped me up when I was learning DI, so I'll
try and be a as clear as I can when describing how it works.

102

CHAPTER6 OUR MODEL AND REPOSITORY

We can’t just “new-up” an interface in the same way that we can with regular classes;
see Figure 6-12.

using System.Collections.Generic;
using CommandAPI.Data;
using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Controllers

{

W 't "new o
[Route("api/[controller]")] r.\e can't "new-up" an Interface 1

[ApiController]
public class CommandsController : ControllerBa
{

(E%ivate readonly ICommandAPIRepo _repository = new ICommandAPIRego;;E:)

[HttpGet]
public ActionResult<IEnumerable<string>> Get()

{

return new string[] {"this", "is", "hard", "coded"};

Figure 6-12. You can't write this code!

You will get an error along the lines of “Can’t create an instance of an abstract
class or interface.” You could revert to “newing-up” a concrete instance of our
MockCommandAPIRepo class, but that would defeat the entire purpose of what we have just
been talking about. So how do we do it?

The answer is that we have to give the DI system an entry point where it can
perform the “injection of the dependency,” which in this case, it means creating a class
constructor for our Controller and providing ICommandAPIRepo as a required input
parameter. We call this Constructor Dependency Injection.

© Pay very careful attention to the Constructor Dependency Injection code
pattern that follows; as you’ll see, this pattern is used time and time again
throughout our code as well as in other projects.

103

CHAPTER6 OUR MODEL AND REPOSITORY

Let’s implement this. Move back over to our API project, and open our
CommandsController class, and add the following constructor code (make sure you add
the new using statement too):

// Remember this using statement
using CommandAPI.Data;

namespace CommandAPI.Controllers

{
[Route("api/[controller]")]

[ApiController]
public class CommandsController : ControllerBase

{
//Add the following code to our class

private readonly ICommandAPIRepo _repository;

public CommandsController(ICommandAPIRepo repository)

{

_repository = repository;

}

Let’s go through what’s happening.

104

CHAPTER6 OUR MODEL AND REPOSITORY

using System.Collections.Generic;
(Using CommandAPI.DataD
using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Controllers

b private readonly ICommandAPIRepo _repository;

eﬁublic CommandsController(ICommandAPIRepo repository) D

{
}

_repository = repository;e

Figure 6-13. Constructor Dependency Injection Pattern

1. Add the new using statement to reference ICommandAPIRepo.

2. We create a private read-only field repository that will
be assigned the injected MockCommandAPIRepo object in our
constructor and used throughout the rest of our code.

3. The Class constructor will be called when we want to make use of
our Controller.

4. Atthe point when the constructor is called, the DI system will
spring into action and inject the required dependency when
we ask for an instance of ICommandAPIRepo. This is Constructor
Dependency Injection.

5. We assign the injected dependency (in this case
MockCommandAPIRepo) to our private field (see point 1).

{
[Route("api/[controller]") ICommandAPIRepo -> MockCommandAPIRepo
[ApiController]
public class CommandsController : ControllerBase o

And that’s pretty much it! We can then use _repository to make use of our concrete

implementation class, in this case MockCommandAPIRepo.

As I've stated earlier, we’ll reuse this pattern multiple times through the rest of the

tutorial; you'll also see it everywhere in code in other projects - take note.

105

CHAPTER6 OUR MODEL AND REPOSITORY

Update Our Controller

We'll wrap up this chapter by implementing our two “Read” API controller actions using
the mock repository implementation we have. So just to be clear we’ll be implementing
the following endpoints.

Verb URI Operation Description
GET /api/commands Read Read all command resources
GET /api/commands/{ld} Read Read a single resource (by Id)

We'll start with implementing the endpoint that returns a collection of all our
command resources, so move back into our Controller, and first remove our existing
controller action.

namespace CommandAPI.Controllers

{

[Route("api/[controller]™)]
[ApiController]
public class CommandsController : ControllerBase

{

private readonly ICommandAPIRepo _repository;

public CommandsController(ICommandAPIRepo repository)
{
_repository = repository;

}

HttpGet]
public ActionResult<IEnumerable<string>> Get()

{

return new string[] {"this", "is", "hard", "coded"};

Remove or comment this action out

Figure 6-14. Removal of our old Controller Action

106

CHAPTER6 OUR MODEL AND REPOSITORY

In its place, add the following code, remembering to add the required using
statement at the top of the class too:

// Remember this using statement
using CommandAPI.Models;

namespace CommandAPI.Controllers

{
[Route("api/[controller]")]

[ApiController]
public class CommandsController : ControllerBase

{

private readonly ICommandAPIRepo repository;

public CommandsController(ICommandAPIRepo repository)

{

_repository = repository;
}
//Add the following code
[HttpGet]

public ActionResult<IEnumerable<Command>> GetAllCommands()

{

var commandItems = _repository.GetAllCommands();

return Ok(commandItems);

}

I think the code is relatively straightforward but let’s just step through it.

107

CHAPTER6 OUR MODEL AND REPOSITORY

[HttpGet] o

public ActionResult<IEnumerable<Command>> GetAllCommands() e
{

var commandItems = _repository.GetAllCommands(); o

return Ok(commandItems); o

}

Figure 6-15. New Controller Action using our Repository

1. The controller action responds to the GET verb.

2. The controller action should return an enumeration
(IEnumerable) of Command objects.

3. We call GetAl1Commands on our repository and populate a local
variable with the result.

4. We return a HTTP 200 Result (OK) and pass back our result set.

Make sure you save everything, run your code, and call the endpoint from Postman.

108

CHAPTER6 OUR MODEL AND REPOSITORY

GET o - Qﬂp:ﬂlocalros::SOODIapi!command@

Params Authorization Headers (9) Body ® Pre-request Script Tests Seutings

Query Params

KEY VALUE DESCRIPTION
Body Cookies Headers (4] TestResuls e‘}:a:-\.y 2000K Time: 97 ms Size: 4948 Sa
Pretty Raw Preview Visualize JSON 5
(€ -0
2 {
3 "id": o,
4 "howTo": “How to genrate a migration”,
5 “platform”: ".Net Core EF",
6 "commandLine”: "dotnet ef migrations add <Mame of Migration>"
7 1
8 {
9 "id": 1,
1@ "howTo": "Run Migrations",
11 "platform": ".Net Core EF",
12 “commandlLine": “dotnet &f database update"”
13]
14 {
15 Gy [t
16 "howTo": "List active migrations",
17 "platform”: ".Net Core EF",
“commandLine”: "dotnet ef migrations list”

Figure 6-16. Successful API Endpoint Result

1. Verbsetto GET.
2. Our URI s exactly the same as the one we have used before.
3. We geta 200 OK status result.

4. We have the hardcoded data returned from our mock repository!

& Celebration Checkpoint This is actually a really important checkpoint! We
have implemented our repository interface, created and used a concrete (mock)
implementation of it, and used it in our Controller via Dependency Injection!

Give yourself five gold stars and a pat on the back.

109

CHAPTER6 OUR MODEL AND REPOSITORY

We have one more controller action to implement in this section: returning a single
resource by supplying its Id. Back over in the Controller, add the following code to
implement:

[HttpGet]
public ActionResult<IEnumerable<Command>> GetAllCommands()

{

var commandItems = repository.GetAllCommands();
return Ok(commandItems);

}

//Add the following code for our second ActionResult
[HttpGet("{id}")]
public ActionResult<Command> GetCommandById(int id)

{
var commandItem = _repository.GetCommandById(id);
if (commandItem == null)

{

return NotFound();

}

return Ok(commandItem);

There’s a bit more going on here; let’s review.

110

CHAPTER6 OUR MODEL AND REPOSITORY

[HttpGet("{id}")] 9
public ActionResult<Command> GetCommandById(int id
{
var commandItem = _repository.GetCommandById(id};e
if |(commandItem == null)
{
return NotFound();o
}
return Ok(commandItem); e
}

Figure 6-17. GetCommandByID endpoint

1. The route to this controller action includes an additional route
parameter, in this case the Id of the resource we want to retrieve;
we can specify this in the HttpGet attribute as shown.

2. The controller action requires an id to be passed in as a
parameter (this comes from our route; see point 1) and returns an
ActionResult of type Command.

3. We call GetCommandByID on our repository passing in the Id from
our route, storing the result in a local variable.

4. We check to see if our result is null and, if so, return a 404 Not
Found result.

5. Otherwise if we have a Command object, we return a 200 OK and
the result.

Note Our mock repository will always return a result irrespective of what Id
we pass in, so the null check will never return false in this case. That will change
when we come to our “real” repository implementation in Chapter 7.

Let’s check our code by testing it in Postman; note that the route we’ll require is
/api/commands/n

where n is an integer value.

111

CHAPTER6 OUR MODEL AND REPOSITORY

GETo - @p:mocamosz:socwapi:ccmmands,z)e

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION
Body Cookies Headers (4) TestResults oS:a:-.s. 2000K Time: 23ms
Pretty fo-.,- Preview Visualize JSON ~ =

1 K

2 nid=:

3 "howTo": "How to genrate a migration”,

4 "platform": ".MNet Core EF",

5 "commandLine”: "dotnet ef migrations add <Name of Migration>"

o
=

Figure 6-18. Single Command Resource Returned

1. We're still using a GET request.

2. Our URI has changed to reflect the route we need to use to hit our
endpoint.

3. 200 OK Status Retrieved.
4. Single Resource returned.

We’ll wrap this chapter up here for now as we’ve covered a lot of ground, but we
will revisit these two controller actions later when we come on to discussing Entity
Framework Core, Data Transfer Objects, and Unit Testing.

Before we finish here though, remember to save everything and (ensuring you're in
the main solution folder CommandAPISolution):

e git add .
e git commit -m “Added Model and Mock Repository”
o git push origin master

to update our Git repository (local and remote) with our changes.
In the next chapter, we move on to using “real” data that’s persisted in a database
backend rather than relying on hard-coded mock data.

112

CHAPTER 7

Persisting Our Data

Chapter Summary

In this chapter we’ll move away from mock data and implement our data access and
persistence layers to store and retrieve data in a PostgreSQL database.

When Done, You Will

» Have configured a PostgreSQL instance (including setting up a new
instance in Docker if required)

o Have created a Database Context (DB Context) class using Entity
Framework Core

e Have used “migrations” to create the necessary schema in our
database

o Have created a new implementation of our repository interface to use
our DB Context

e Have used Dependency Injection to swap out our mock repository for
our DB Context version

We have a lot to cover so let’s get cracking!

Architecture Progress Check

Before we move on with all of the given learning points, let’s just check where we are in
terms of progressing our application architecture. In the following diagram, I've outlined
the components we've either started work on or in some cases completed altogether.

113
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_7

https://doi.org/10.1007/978-1-4842-6255-9_7#DOI

CHAPTER 7 PERSISTING OUR DATA

.NET Core 3.1 ASP MVC App

r-------------------------

3
")
e
(1]
0
=
1))
il
-nuu-l-

API Client
(e.g. Postman)

A———=HTTP ReSponse =————ldem—

JSON Payload

T2 b
Serialize Write

|
------mm7mm--

Mapped

‘- - - *
Data Access
(DB Context)

PostgreSQL

FLL L L T

- - -

Figure 7-1. Application Architecture Progress

To review
e Our Model is completed.
e Ourrepository interface definition is complete.

e We've implemented a mock instance of our repository interface to
return mock Model data.

e We've used constructor dependency injection in our controller to use
our repository to implement our 2 GET controller actions. These both
return mocked Model data.

We want to tie this altogether with a Database, DB Context, and an updated instance
of our repository so we can work with real dynamic data that persists over time. So, what
are we waiting for?

114

CHAPTER 7 PERSISTING OUR DATA

PostgreSQL Database

Before moving on to writing our DB Context, I first want to make sure we have an
instance of PostgreSQL up and running and configured correctly.

Using Docker

Now, I'm going to use Docker to run my instance of PostgreSQL on my development
machine, so if you've chosen that approach too (or you want to see how easy it is to spin
up an instance), read on. If you've already got a PostgreSQL instance running, you can
skip to the Connecting with DBeaver section.

Ensuring you have Docker installed and running (see Chapter 2) at a command

prompt; simply type

docker run --name some-postgres -e POSTGRES PASSWORD=mysecretpassword -p
5432:5432 -d postgres

Note This is all on one line.

Assuming you have Docker installed and it’s running (I don’t like having Docker
Desktop run automatically at startup, so I manually start it when needed), you should
see the following.

115

CHAPTER 7 PERSISTING OUR DATA

PROBLEMS OQUTPUT DEBUG CONSOLE = TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> docker run --name some-postgres -e POSTGRES,
Unable to find image 'postgres:latest’ locally

latest: Pulling from library/postgres

8ec308bco356: Pull complete

65a7b8e7¢8f7: Pull complete

b7a5676ed96c: Pull complete

3e0ac8617d40: Pull complete

633091ee8d02: Pull complete

b@1fa%e356ea: Pull complete

4¢d472257298: Pull complete

1716325d7dcd: Pull complete

9b625d69c7c8: Pull complete

74d8b4do818¢: Pull complete

c36f5edbeb97: Pull complete

ob38bbofb36e: Pull complete

6b5eelc74b%a: Pull complete

5fcc518252b4: Pull complete

Digest: sha256:3657548077d503¢0ab6d70d1ffca3ceb3b51642e07ac0f542d2ea139664eb6b3
Status: Downloaded newer image for postgres:latest
4586¢c4f3e8323ab%a2a932144d54457b5b3b08ad1530713f588f5b7756f28ba

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> l

Figure 7-2. PostgreSQL Image Downloaded and Running

If this is the first time you’ve run this command, you'll see that Docker is “Unable to
find image” locally, so it pulls one down from Docker Hub. Typing

docker ps

should show you the number of running containers.

PROBLEMS OUTPUT TERMINAL --- 1: powershell v i + 0 @

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
4586c4f3e83f postgres “docker-entrypoint.s..” 40 seconds ago
Up 39 seconds 0.0.0.0:5432->5432/tcp some-postgres

PS D:\APITutorial\NET Core 3.1\CommandAPISolution> l

Figure 7-3. The Docker PS Command

116

CHAPTER 7 PERSISTING OUR DATA

Here, you can see that we have one, which should be our PostgreSQL instance.
Just before I take you through the command, we just issued in a bit more detail; if you
installed the Docker plugin for VS Code, you should see something like this.

®] File Edit Selection View Go Debug Terminal
DOCKER

v CONTAINERS

D> postgres (some-postgres - Up Less than a seco...

Running PostgreSQL Conramerq

v IMAGES
> [@ postgres

Figure 7-4. Container Status in VS Code

From here, you can stop the running container (right-click any entry in the
containers box), and start it again, etc. You will also see that it lists the available images
you have on your machine.

O When you execute the “docker run” command again, assuming there isn’t
a later version of the PostgreSQL image on Docker Hub, Docker will not attempt to
download a new image; it will simply use the cached copy locally available to you.

117

CHAPTER 7 PERSISTING OUR DATA

Docker Command Prompt

Just so you understand what'’s happening, let’s just set through each of the command line

arguments :
docker run

o Simple enough, this is just the primary command we use to run a
container.

--name

e Bydefault, a running Docker container will just be identified by
an ID; this is OK, but when you come to issuing start and stop
commands at the command line, these IDs can be cumbersome and
prone to mistyping. The -- name argument just allows you to “name”
your container.

-e POSTGRES_PASSWORD=mysecretpassword

o The -e argument just means that we are supplying one or more
“environment variables” into the container at startup. In this case, we

are setting the password for the default user: postgres.
-p [internal port] : [external port]

e The -p argument is REALLY important - this is our port mapping.
Without going into too much detail, a container will usually have an
“internal” port, and we need to map an “external” port through to
itin order for us to connect. Here, the internal port our PostgreSQL
is listening on is the standard 5432 PostgreSQL port, and we're just
mapping externally to that same port number.

-d

o This argument just tells docker to run “detached,” meaning that the
command prompt is returned to us for subsequent use.

postgres

o This last argument is just the name of the image we want from
Docker Hub.

118

CHAPTER 7 PERSISTING OUR DATA

If we go to https://hub.docker.com/ and click “Explore” near the top of the screen,
you'll get a list of the most popular Docker images available. These are most usually
images provided by the vendor of the product in question.

montent (e.g., mysql) 1Explar¢: Repositories Organizations Get Help ~ binarythistle ~ %

lainers M Plugins

1-25 of 2,828,124 available images. Most Popular -

OFFICIALIMAGE @

couchbase 10M+ 502
Updated 5 minutes ago Downloads Stars

Couchbase Server is a NoSQL document database with a distributed architecture.

Container Linux x86-64 Storage Application Frameworks
mongo 10M+ 6.4K
Downloads S
Updated & minutes ago s Stars

MongoDB document databases provide high availability and easy scalability.

Container Linux Windows «86-64 1IBM £ ARM B4 Databases

ubuntu 10M+ 10K+
Updated & minutes ago Downloads Stars
Ubuntu is a Debian-based Linux operating system based on free software.

Container Linux 386 IBMZ x8664 ARM PowerPC64LE ARMG4 Baseimages Operating Systems

@ postgres 10M+ 7.2K

Downloads &:
Updated & minutes ago rloads Stars

The PostgreSQL object-relational database system provides reliability and data integrity.

Figure 7-5. Postgres Image on Docker Hub

119

https://hub.docker.com/

CHAPTER 7 PERSISTING OUR DATA

Here, you can see that Postgres is among the most popular image downloads.

© The other Docker commands you're likely to use are

docker start <container Id or Name): Start an existing
container.

docker ps: List running containers.
docker ps - -all.:List all containers that have run.

docker stop <container Id or Name): Stop a running
container.

A more detailed description of these and others can be found here:

https://docs.docker.com/engine/reference/commandline/docker/

Or of course if you prefer a “graphical” interface to manage your containers, again
| suggest the VS Code plugin.

Connecting with DBeaver

Before continuing you should either

1.

2.

Have followed along with the given Docker steps and have a
running PostgreSQL Docker container

Have an instance of PostgreSQL running somewhere else that you
can connect to from the machine you're running the API code on

Now, we want to connect in and see what we have.

Open DBeaver and

1.

2.

3.

120

Click the New Connection icon.
Select PostgreSQL.
Click Next.

https://docs.docker.com/engine/reference/commandline/docker/

CHAPTER 7

PERSISTING OUR DATA

File Edit Navigate Search SQLEditor Database Window Help
(e 9 N | T 5 Ti0 commit [
= B [<none> Script &2

= 7 »

% Database Navigator 32 [Projects

&0 =

Tl na |D

=

Enter 2 part of table name he rw Connect to database

Select your database
PostgreSQL standard driver

Type part of database/driver name to filter

£ Al |
< Popular

C3 saL

3 NoSQL

CN Analytical

W Timeseries

3 Embedded

T} Hadoop / BigData
8 Full-text search
¥ Graph databases

[Project - General 53 8 = + 4 VE
MName

> 7 Bookmarks

> B5 ER Diagrams 3

A [Vet]

SQLite

$

Finish Cancel

Apache Drill

(@5

7 BB Classic

~

Test Connection ...

Figure 7-6. PostgreSQL Connection in DBeaver

You'll then be presented with the Connection Configuration settings for

PostgreSQL. On the Main tab, enter the details as appropriate for you; note that the

details I have here are good for the PostgreSQL instance I have running in Docker

(localhost is fine for the host).

121

CHAPTER 7 PERSISTING OUR DATA

ry Connect to database

Connection Settings
Database connection settings.
mﬁiﬂ PostgreSQL Driver properties SSH Proxy SSL
Host: | Jocalhost] Port: [5432 |
Database: | postgres |
User: | postgres [
Password: | YT YT YT YY) [[Save password Iocy
Local Client: | PostgreSQL Binaries v
(@ You can use variables in connection parameters. Connection details (name, type, ...)
Driver name: PostgreSQL Edit Driver Settings
Test Connection ... ' <Back | Next > | Cancel

Figure 7-7. Connecting to PostgreSQL

Then move over to the PostgreSQL tab and tick “Show all databases.”

122

CHAPTER 7 PERSISTING OUR DATA

¢ Connect to database

Connection Settings
Database connection settings.

Main PostgreSQL Driver properties SSH Proxy SSL

Settings
C@ Show all databases)
[] Show template databases
saL |
Show S§ quote as: Code block v

Show StagNameS quote as: | Code block v

Figure 7-8. Tick Show All Databases

I'd then suggest you test the connection by clicking the “Test Connection...” button.

123

CHAPTER 7 PERSISTING OUR DATA

fy Connect to database

Connection Settings

Database connection settings.

Main PostgreSQL Driver properties SSH Proxy SSL

Settings
[£] Show all databases
[J Show template databases

| osa
Show $§ quote as: Code block

Show StagName$ quote as: Code block

™8 B

Figure 7-9. Test Connection before moving on

Assuming the connection is successful, you should see something like this.

124

CHAPTER 7 PERSISTING OUR DATA

= Connection Test (] X

) Connected (42 ms)

Server: PostgreSQL 12.0 (Debian 12.0-2.pgdg100+1)
Driver: PostgreSQL JDBC Driver 42.2.5

Figure 7-10. Test Connection Successful

You should be OK to click “Finish”; this will add your connection to the main
DBeaver environment.

*s DBeaver 6.2.0 - <PostgreSQL - postgres> Script
File Edit MNavigate Search SQL Editor Database Window Help

®-| ¥ &% T8 Ti0commt RRolback T v
f® Database Navigator £3 Projects = B [T <none> Script
h - E_Ji - v »
Enter a part of table name here >,
~ W PostgreSQL - postgres o}
v = postgres
> B Schemas n
> F% Roles g
» B3 Administer
> B3 Extensions
> (M Storage
> [l System Info

Figure 7-11. PosigreSQL Connection in DB Beaver

Here, you can see we have connected to the default database postgres; don’t worry,
we’ll be creating our own database for our API later.

125

CHAPTER 7 PERSISTING OUR DATA

Connection Issues

Connection issues will most usually be down to
e Incorrect user credentials (username or password)
o Incorrect/wrongly configured network attributes (e.g., firewalls, etc.)

If you're running your PostgreSQL server locally on the same machine as your
code environment, you can usually avoid all the pain of a “remote” database. If you are
running your database on a separate machine or even in a virtual machine, issues here
are almost always due to firewall or other network settings. I'm afraid I don’t have the
space to troubleshoot that here; in fact, it’s one of the reasons I recommend Docker as
I've spent many an unhappy hour troubleshooting exactly this!

The default “super user” for PostgreSQL is (not surprisingly) called postgres.
Again, depending on how you installed, the server will depend on whether you set the
password value for this. There are articles on how to reset this password (assuming you
have administrator/root privileges on the machine you've installed on) if you get stuck.

Assuming you have successfully connected though, we can move on.

Entity Framework Core

Entity Framework Core (EF Core) is what’s termed generically as an Object Relational
Mapper (ORM), so what’s that, and why should we use it?

To best answer that, I think you would look at the approach you’d need to take to
reading and writing data to a database without the use of an ORM. In that case, you'd

typically
o Need a (relatively low-level) working knowledge of the database

schema.

e Have to write (vendor specific) SQL queries to manipulate the data
set you wanted.

e Place your results into some kind of semi-proprietary result set
object, ensure everything was mapped correctly (DB columns to your
object attributes), and iterate through your results.

This all works, but it’s a fairly manual process distracting developers from their core
focus; surely there is a better way. Enter the ORM.

126

CHAPTER 7 PERSISTING OUR DATA

The What and Why of ORMs

An ORM acts as an “object wrapper” around specific database implementations,

meaning

o Developers can use an object-oriented software development
approach to data access.

e Developers don’t need to know the nuances of vendor SQL.

o Developers don’t need to perform proprietary mappings from
database tables to code-based result sets.

This really equates to the following primary benefits:
e Speed of Development
e Code portability
o Code maintainability

We'll be using Entity Framework Core as our ORM of choice, but there are
alternatives available, so again please remember to distinguish between our technology
implementation of choice (Entity Framework Core) and the generic concept of ORMs.

If that’s all still a bit abstract, as I've said before, I think the best way to understand
and learn something new is to get our hands dirty and start coding.

Entity Framework Command-Line Tools

We're going to make use of the Entity Framework Core Command-Line tools (they
basically allow you to create migrations, update the database, etc.; don’t worry if you
don’t know what that means yet!). Just trust me; we need the tools!

First, check if you already have them installed; to do so, type

dotnet ef

You should see output similar to the following if you do.

127

CHAPTER 7 PERSISTING OUR DATA

T I T ————
PROBLEMS

CUTPU DEEUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAMSolution\src\CommandAPIO

Entity Framework Core .NET Command-line Tools 3.1.4

Usage: dotnet ef [options] [command]

Options:
--version Show version information
-h|--help Show help information
-v|--verbose Show verbose output.
--no-color Don’t colorize output.

--prefix-output Prefix output with level.

Figure 7-12. Entity Framework Command Line Tools
If you don'’t see that, simply run the following at the command line:
dotnet tool install --global dotnet-ef

and this will make the tools available to you globally.

Create Our DB Context

The next step in producing the data access layer via Entity Framework Core (EF Core)

is to create a Database Context Class. The DB Context class acts as a representation of

the Database and mediates between our data Models and their existence in the DB, as
shown in Figure 7-13.

128

CHAPTER 7 PERSISTING OUR DATA

| .NET Core 3.1 ASP MVC App

HTTP Request =
API Client |

(e.g. Postman)
e HTTP RESPONS @ s

JSON Payload

f f

Mapped Read / Write

----*------------------- -

Read/

Write

Serialize

4

Data Access
(DB Context)

PostgreSQL

PLEL L L L L LD L]

- -

R .

Figure 7-13. The importance of the DB Context

As mentioned in Chapter 5, we could use the DB Context direct from the Controller
without using a repository. As you are aware though, we will be using both a repository
and DB Context in this tutorial.

Reference Packages

In order to use the features of EF Core, we're going to have to add reference three
packages in our API Project .csproj file:

e Microsoft.EntityFrameworkCore: Primary Entity Framework Core
Package

e Microsoft.EntityFrameworkCore.Design: Design time components
(required for migrations)

129

CHAPTER 7 PERSISTING OUR DATA

o Npgsql.EntityFrameworkCore.PostgreSQL: PosrgreSQL provider
for Entity Framework Core

You can add these manually to the .csproj file, but I'd rather use the .NET Core

CLI. To do so, run the following commands in a terminal (making sure you're “inside
the API Project folder: CommandAPI):

dotnet add package Microsoft.EntityFrameworkCore
dotnet add package Microsoft.EntityFrameworkCore.Design
dotnet add package Npgsql.EntityFrameworkCore.PostgreSQL

Opening the .csproj file for our API project, you should see something like this.

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework>
</PropertyGroup>

<ItemGroup>

¢PackageReference Include="Microsoft.EntityFrameworkCore” Version="3.1.1" />

<PackageReference Include="Microsoft.EntityFrameworkCore.Design” Version="3.1.1">
¢<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
<PrivateAssets>all</PrivateAssets>

</PackagerReference>

<PackageReference Include="Npgsql.EntityFrameworkCore.PostgreSQL"” Version="3.1.0" />

oup>

& l Newly added package references

</Project>

Figure 7-14. Package references added for persistence

With the necessary packages added, we can move on.

© As mentioned, the third package we added
(Npgsql.EntityFrameworkCore.PostgreSQL)

is the EF Core provider for PostgreSQL. If you want to use another database, then
you’d add the relevant package here. For example, if you want to use SQL Server,
you’d add the following package instead:

Microsoft.EntityFrameworkCore.SqlServer

130

CHAPTER 7 PERSISTING OUR DATA

WEe'll create the DB Context class in the “Data” folder along with our repository
interface and classes, so create a new file called CommandContext.cs, and place it in the
Data folder; it should look like this.

v COMMANDAPISOLUTION 1)) (D) (=

> wvscode
v src’, CommandAPI

? bin

v Controllers

€+ CommandsController.cs

v Data :
G? CommandContext.cs) U

C* ICommandAPIRepo.cs

C* MockCommandAPIRepo.cs
v Models

Figure 7-15. Added DB Context

Now, update the code in the CommandContext.cs file to mirror the following; be
sure to include the “using” directives also:

using Microsoft.EntityFrameworkCore;
using CommandAPI.Models;

namespace CommandAPI.Data

{
public class CommandContext : DbContext
{
public CommandContext(DbContextOptions<CommandContext> options)
: base(options)
{
}
public DbSet<Command> CommandItems {get; set;}
}
}

131

CHAPTER 7 PERSISTING OUR DATA

Some points of note

o Ensure you have the EntityFrameworkCore and CommandAPI.Models
using statements.

e Our class inherits from DbContext.

o It’sreally important that we create a DbSet of Command objects (see
the following).

© While you can think of the DbContext class as a representation of the
Database, you could think of a DbSet as a representation of a table in the
Database. That is, we are telling our DbContext class that we want to “model”
our Commands in the Database (so we can persistently store them as a table).

This means that we can choose which classes (model classes) we want to put
under DbContext “control” and hence represent in the DB.

Save the file and perform a dotnet build to ensure there are no compilation
errors. As we've added a new class, it’s probably worth performing the “trifecta” of Git
commands to

¢ Place the new untracked file under source control.
e Commit the class to the repository (with a message).

e Push the code up to GitHub.

= Learning Opportunity Try to remember the git commands that you need to
issue in order to achieve the items previously discussed — I'm not going to detail
them again.

If you can’t remember, refer to Chapter 5.

Update appsettings.json

OK, so that’s all well and good, but there is still a “disconnect” between the PostgreSQL
Server DB and our application (specifically our CommandContext class).

132

CHAPTER 7 PERSISTING OUR DATA

For those of you that have done a bit of programming before, you won'’t be surprised
to hear that we have to provide a “Connection String” to our application that tells it how

to connect to our database server.
WEe'll place our DB connection string in our appsettings.json file to begin with.
Before we do this though, we need to create a PostgreSQL Login that we can use as
the “application user” of our (as yet to be created) database. This is the account that the
APIwill use to authenticate to the PostgreSQL server with and derive its permissions to

run our Entity Framework Core “migrations” that will
o C(Create a new database.
o Create or alter any tables.

¢ Read, write, and delete data.

= Learning Opportunity Why should we not use the postgres user account
that we previously used from within DBeaver to connect to our PostgreSQL server?

Creating a user can be done in one of two ways using DBeaver:
¢ SQL Command
e Using the Graphical Interface

I'll show you how to do this Via SQL; once you learn that, using the Graphical UI to

perform the same action should be a piece of cake.

Create User — SQL

Open DBeaver (make sure you're connected to your PostgreSQL instance), and select

SQL Editor » New SQL Editor from the menu.

133

CHAPTER 7 PERSISTING OUR DATA

SQL Editor Database Window Help

IT sqL Editor F3
I Recent SQL Editor Ctrl+Enter
T New SQL Editor Ctrl+]

Set active connection
Select active schema

Toggle results panel

Maximize results panel

Switch active panel

Figure 7-16. Opening a New SQL Editor

s

This should open up a new query widow; then simply enter the following SQL:

create user cmddbuser with encrypted password 'pa55wOrd!' createdb;

I've called our user cmddbuser and given it a password of pa55w0rd!; you can of

course alter these values to your own needs.
You can the hold Ctrl + Enter to execute the SQL statement or select “Execute SQL
Statement” from the SQL Editor menu.

a

SQL Editor Database

Window Help
SQL Editor

Recent SQL Editor

MNew SQL Editor

Execute SQOL Statement

Execute SQL in new tab

Execute SQL Script

Execute Statements In Separate Tabs
Select row count

Select all rows

Evaluate SOL expression

F3

Ctrl+]
h Ctrl+Enter
Crl+\,
Alt+X
Ctrl+Alt+ Shift+X
Ctrl+ Alt+Shift+ C
Ctrl+Alt+ Shift+ A
Ctrl+Alt+

Figure 7-17. Create our user by executing the SQL

The command should execute successfully, and if you then expand: postgres »

Roles, you should see your newly created user. If you don't, right-click the “Roles” folder,

and select “Refresh.”

134

CHAPTER 7 PERSISTING OUR DATA

f® Database.. &2 @Projects = B |=
-

WE| -
Enter a part of table name here b
v 1§, PostgreSQL - postgres
v S postgres
> i) Schemas
v B RO'S
2, postgres
-\ pg_monitor
= pg_read_all_settings
2. pg_read_all_stats
2. pg_stat_scan_tables
2 pg_signal_backend
2% pg_read_server_files
= pg_write_server_files
2!, pg_execute_server_program
> B3 Administer
> =3 Extensions
> [Storage
> Bl System Info

Figure 7-18. Newly created DB User for our API
Right-click the newly created role and select “View Role” (or you can just press F4).

PY_EXELULE_SEIVEl_pIuyidin

rencdbhicar

2. Create New Role

4’ View Role F4

Y Filter)h
%2 Compare/Migrate >
¥ Tools >
0 Copy Ctrl+C

] Paste Ctrl+V

B Delete Delete

@ Refresh F5

Figure 7-19. View Role Details

135

CHAPTER 7 PERSISTING OUR DATA

The resulting information should detail that our user can log-in and create databases
which is critical when we come to running migrations.

2 Properties ¥ Post

Name: | cmddbuser Object ID: | 16387 :
[JSuper User [AInherit [] Create Role []Create Database [] Can Login

[JReplication []Bypass Ris
Rele tor) Admin option

Figure 7-20. Role permissions required for our new user

= Learning Opportunity Using the properties that we’ve set earlier as a guide,
see if you can use DBeaver to create a new Role using the Graphical Ul and menus.

Open appsettings.json, and append the following json string to the correct point in
the file (again make sure you replace the User ID and password to match the user you
just created):

"ConnectionStrings":

{

"PostgreSqlConnection”:"User ID=cmddbuser;
Password=pa55word!;

Host=1localhost;

Port=5432;

Database=CmdAPI,;

Pooling=true;"

So, your file should look something like this.*

'If you get errors copying and pasting, check the double-quote characters and ensure the
connection string value is on one line.

136

CHAPTER 7

{

"Logging™: {
"LogLevel”: {
"Default”: “Information”,
"Microsoft”: "Warning”,
"Microsoft.Hosting.Lifetime": "Information”
y } Put a comma after the
2 v
"AllowedHosts": "*", last key / value pair
"ConnectionStrings™:
{

"PostgreSglConnection™:"User ID=cmddbuser;Passwor

Figure 7-21. Connection string in appsettings.json

Some points to note about the connection string

PERSISTING OUR DATA

o The “name” of the connection string is PosrgreSqlConnection.

e The connection string is made up of the following components,

separated by a semicolon:

last section).

very secure!?
Host: The host name of our PostgreSQL server.

Port: The port our PostgreSQL server is listening on.

not exist yet).

*We will remedy this in the next chapter.

User ID: The login for our Postgres Server (we created this in the

Password: The password for our login - stored in pain text - not

Database: This is our database (or will be our database - it does

Pooling: Connection pooling (essentially sharing) is being used.

137

CHAPTER 7 PERSISTING OUR DATA

= Learning Opportunity If you want to check the validity of any json (including
the contents of the entire appsettings.json file), you can paste the JSON into
something like https://jsoneditoronline.org/ which will check the syntax
for you.

Where’s Our Database?

As previously mentioned, we have specified the name of our database in our connection
string (CmdAPI), but the actual database does not yet exist on our server; a quick look at
the databases in DBeaver will confirm that.

f® Database.. £2 [@Projects = O

h - - =t vV

Enter a part of table name here

v --, Pcsti reSQL - postgres

Schemas
F¥ Roles

53 Administer
B3 Extensions
W Storage

B System Info

Figure 7-22. Where’s our database?

We only have the default postgres database, but as yet, CmdAPI is not there. That
is because our database will be created when we perform our first Entity Framework
“migration.” I explain what this is later in this section.

138

https://jsoneditoronline.org/

CHAPTER 7 PERSISTING OUR DATA

Revisit the Startup Class

To recap we have

A Database Server (but actually no CmdAPI “database” as yet!)
A Model (Command)

DBContext (CommandContext)

DBSet (CommandItems)

Connection String to our database server

The last few things we have to do are

Point our DBContext class to the connection string (currently it’s not
aware of it).

“Register” our DBContext class in Startup » ConfigureServices so
that it can be used throughout our application as a “service” - seem
familiar?

In order to supply our connection string (currently in appsettings.json) to our

DbContext class, we have to update our Startup class to provide a “Configuration” object

for use (we use this configuration object to access the connection string).

Side note: Casting your mind back to the start of the tutorial, when we had a choice

of project templates.
MVC ViewStart viewstart [c#
Blazor Server App blazorserver [c#
(ASP.NET Core Empty web [
ASP.NET Core Web App (Model-View-Controller) mve [
ASP.NET Core Web App webapp [
ASP.NET Core with Angular angular [
ASP.NET Core with React.js react [
ASP.NET Core with React.js and Redux reactredux [
j y razorclasslib [
K ASP.NET Core kieb API webapi) [
ASP.NET Core gRPC Service grpc [

Figure 7-23. .NET Core Project Templates

139

CHAPTER 7 PERSISTING OUR DATA

We chose “web” to provide us with an empty shell project. Well if you had chosen
“webapi,” the “Configuration” code we're about to introduce would have been provided
as part of that project template. I deliberately choose not to do that so we have to
manually add the following code - as I think it will help you learn the core concepts
more fully.

OK, so add the following code (shown in bold) to our startup class:

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;

namespace CommandAPI

{
public class Startup

{

public IConfiguration Configuration {get;}
public Startup(IConfiguration configuration)

{

Configuration = configuration;

}

public void ConfigureServices(IServiceCollection services)...

I've shown the new sections in context of the whole file here.

140

CHAPTER 7 PERSISTING OUR DATA

using Microsoft.AspNetCore.Hosting;

- i soft c atCara HiE+n:

CUusing Micr‘cso-Ft.Extensions.Configur‘ation£
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace CommandAPI

{
public class Startup

{

public IConfiguration Configuration {get;}
public Startup(IConfiguration configuration)

{

Configuration = configuration;

}

public void ConfigureServices(IServiceCollection services)

Figure 7-24. Using Dependency Injection to Add the Configuration API

1. Add anew using directive: Microsoft.Extensions.Configuration.

2. Create an IConfiguration interface and set up in the class
constructor.

Does this pattern seem familiar? If not, maybe return to Chapter 6 and review. What
this code provides for us is access to the “Configuration API” (via an implementation of
the IConfiguration interface), which means that we can now access the configuration
stored in (among other places) the appsettings.json file. In particular, it means we can
read in our connection string and pass it to the DB Context.

For more information on the IConfiguration interface, refer to the Microsoft Build
Docs.?

The last thing we have to do is register our DbContext in the ConfigureServices
method and pass it the connection string (via the configuration API). Add the following
using directive to your Startup class:

e using Microsoft.EntityFrameworkCore;

Shttps://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.
iconfiguration?view=dotnet-plat-ext-3.1

141

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration?view=dotnet-plat-ext-3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration?view=dotnet-plat-ext-3.1

CHAPTER 7 PERSISTING OUR DATA

And add the following (bold) lines of code to the ConfigureServices method in your
Startup class:

public void ConfigureServices(IServiceCollection services)
{
services.AddDbContext<CommandContexts(opt => opt.UseNpgsql
(Configuration.GetConnectionString("PostgreSqlConnection")));

services.AddControllers();

To put those changes in context, they are shown here.

- . F
i using Microsoft. EntityFramemrkCorw

namespace CommandAPI

{
public class Startup
{
public IConfiguration Configuration {get;}
public Startup(IConfiguration configuration)
{
Configuration = configuration;
®

public void ConfigureServices(IServiceCollection services)

{

services.AddDbContext<CommandContext>(opt => opt.UseNpgsql
(Configuration.GetConnectionString("PostgresqlConnection”)));

services.AddControllers();

dScoped<ICommandAPIRepo, MockCommandAPIRepo>();

Figure 7-25. Registering our DB Context with our Services Container

You'll observe the following:

1. Weinclude a new using directive.

142

CHAPTER 7 PERSISTING OUR DATA

2. We register our CommandContext class as a solution-wide DBContext
(in the Service Container), and we point it to the connection string
(PostgreSqlConnection) that is contained in our appsesstings.json
file. This is accessed via our Configuration object.

O If you're using a different database to PostgreSQL, you’d need to change the
code in point 2; specifically, you'd swap out the

opt.UseNpgsql
For something else, for example, in the case of SQL Server, you’d use

opt.UseSqlServer

Phew! Quite a bit of coding there to wire up everything; we're almost done, but now
we need to move on to “migrating” our model from the app to the DB.

Create and Apply Migrations

We should have everything in place to create our database and the table containing our
Command Objects.

Code First vs. Database First

Just another side note, you may hear about “Code First” and “Database First” approaches
when it comes to Entity Framework - it speaks to whether

e We write “code first” then “push” or “migrate” that code to create our
database and tables, or

e We create out Database and tables first and “import” or “generate”
code (models) from the DB.

Here we are using “code first” (we've already created our command model), so we
now have to “migrate” that to our database; we do this via something called, drum roll,
Migrations!

143

CHAPTER 7 PERSISTING OUR DATA

Go to your command line, and ensure that you are “in” the API project folder
(CommandAPI), and type the following (hitting Enter when you're done):

dotnet ef migrations add AddCommandsToDB

Now all being well, a number of things should have happened here.
First off, your command line should report something along the lines of the

following.

-

PROBLEMS QUTPU DEBUG CONSOLE TERMINAL

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI> d ef migrations add AddCommandsToDB
Build started...

Build succeeded.

Done. To undo this action, use 'ef migrations remove’

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandaPI> []

Figure 7-26. Create our migration files ready to run

Next you should see a new folder appear in our project structure, called “Migrations.”

v src\ CommandAP I;l {

> bin 16
v Controllers 17
C* CommandsController.cs 18
~ Data 3
C* CommandContext.cs i?
C+ ICommandAPIRepo.cs 22
C: MockCommandAPIRepo.cs 23

24
C: 20200524224711_AddCommandsToDB.cs 25
C* 20200524224711_AddCommandsToDB.Des... i?
C+ CommandContextModelSnapshot.cs 28
> Models

Figure 7-27. Newly created migrations

Specifically, you should make note of a new file called date time stamp + migration
name_.cs, for example:

20200524224711_AddCommandsToDB. cs

144

CHAPTER 7 PERSISTING OUR DATA

It is the contents of this file that when applied to the database will create our new

table (and as it’s the first time we’ve run a migration, our actual database will be created

too). A quick look in the file and you'll see the following.

{

public partial class AddCommandsToDE : Migration

protected override void Up(MigrationBuilder migrationBuilder) o

{
migrationBuilder.CreateTable(

name: “CommandItems”, 9
columns: table => new

{
Id = table.Column<int>({nullable: false)
(.'_Knnotation{"Mpgsql:\.falueGenerationStrategy', NpgsqlValueGenerationStrategy.IdentityByDefaultColumn),
HowTo = table.Column<string>(maxLength: 252, nullable: false),
Platform = table.Column<string>(nullable: false),
CommandLine = table.Column<string>(nullable: false)

b

constraints: table =>

{

151 The data annotations we added to our

table.PrimaryKey("PK_CommandItems”, x => x.Id);
Command Model have been replicated.

protected override void Down(MigrationBuilder migrationBuilder) 6
{

migrationBuilder.DropTable(
name: “CommandItems™);

Figure 7-28. Contexts of our Migrations File

1. An “Up” method. This method is called to create new items.

2. The creation of a table “CommandItems” (where does this name
come from?).

3. Database provider specific annotations/instructions.

4. Our table columns; note the data annotations we added to our
model have been replicated.

5. A “Down” method. Used to roll back the changes made in the Up
method.

145

CHAPTER 7 PERSISTING OUR DATA

A Warning! Point 3 is of note here. | previously thought the migrations file
(not sure why | thought this) was agnostic of the database that you’re using.
That is incorrect.

The migrations file will look slightly different depending on which type of database
you choose to use (e.g., SQL Server Vs. PostgreSQL etc.). | learned this when |

1. Used SQL Server as my database

2. Registered my DB Context in ConfigureServices with
opt.UseSqlServer... (and not opt.UseNpgsql)

3. Ran and generated my Migrations File

4. Switched my provider to PostgreSQL (opt.UseNpgsql)
then attempted to use that migrations file to generate my DB
(we’ll do this in a bit)

It failed.

You can examine an “SQL Server” migrations file and look for the differences in the
Source Code for an older project here on GitHub.*

Long story short, you'll need to regenerate your migrations if you switch database
providers.

Note At this stage, we still do not have the CmdAPI database created; that
comes next.

Finally, all that’s left to is “update the database” to apply our changes - to do this,
type

dotnet ef database update

Our migration is run, as reflected in the following output.

*https://github.com/binarythistle/Complete-ASP.NET-Core-API-Tutorial

146

https://github.com/binarythistle/Complete-ASP.NET-Core-API-Tutorial

CHAPTER 7 PERSISTING OUR DATA

v d

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI> ef database update
Build started...

Build succeeded.

Done.

PS D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandaPI>

Figure 7-29. Successfully run our migration

© Tip Ifyou getan error at this stage, in my experience, it usually always has
to do with database “connection” issues. So, I'd check:

1. Can you still connect to the PostgreSQL server using DBeaver?

2. Double-check the formatting of the connection string. For
example, copy and paste it into something like jsoneditoronline.
org to check for syntactical JSON errors.

3. Double-check the values you’ve put into the connection string.
For example, passwords are case-sensitive.

4. Double-check if you’re using the correct connection string
“name” when you’re setting up the DBContext on the
ConfigureServices method.

5. Perform a dotnet build to check that there are no syntax
errors in the code (this is actually run when you do a dotnet
ef database update —but it’s worth checking separately).

6. Check that (a) the database user you created exists on the
server and (b) check that it has the necessary permissions.

All going well, a number of things happen here:

1. Our database (CmdAPI) is created as it did not yet exist on the
target server.

147

CHAPTER 7 PERSISTING OUR DATA

2. Atable called _EFMigrationsHistory is created; this just stores
the IDs of the migrations that have been run and allows Entity
Framework to both roll back migrations to a certain point or

correctly run migrations on a new endpoint server.

3. Our CommandItems table is created which is the persistent
equivalent of our Command model.

If we also take a look at our PostgreSQL instance, this is reflected by the fact that we
have both our CmdAPI database and our CommandItems table.

Enter a part of table name here

v B, PostgreSQL - postgres

1
v [if] Schemas

v [£) public

v [Tables
(2 Commanditems

» B __EFMigrationsHistory

» [5] Views

. [51 Materialized Views

» I Indexes

» @ Functions

» Il Sequences

» [l Data types

» I Aggregate functions
. 9 Roles
» 3 Administer
£3 Extensions

Figure 7-30. Our Database and Table have been created

1. CmdAPI database

2. CommandItems table

Adding Some Data

Up until now, we've been using hard-coded mock data in our API code. With the
establishment of our Database and DB context, we can now start to add some “real” data

for use in by our APL

148

CHAPTER 7 PERSISTING OUR DATA

You can add data a number of ways (including fully scripting this to import a lot of
test data - we're not covering that today), but by far the simplest and most ubiquitous
way to do thatis viaa SQL INSERT command that we can run from inside the DBeaver
query window.

In terms of the data we should put in, I'd like to circle back to the creation and
updating of the database and table; we used the following two commands:

o dotnet ef migrations add
e dotnet ef database update

Therefore, if we wanted to store this data in our table, we’'d add the following data.

ID® HowTo Platform CommandLine
1 Create an EF Migration EF Core CLI dotnet ef migrations add
2 Apply Migrations to DB EF Core CLI dotnet ef database update

To add this data via a SQL INSERT command in DBeaver
e Open DBeaver and connect to the server.

e From the SQL Editor Menu, select “New SQL Editor.”

SQL Editor Database Window Help

[T sQL Editor F3
[Recent SQL Editor Ctrl+Enter
New SQL Editor h Ctrl+]

3

Execute SQL Statement
Execute SQL in new tab
Execute SQL Script

Execute Statements In Separate Tabs

By v

Figure 7-31. Add new Query window

*You do not need to provide a value for ID when you add data to the database; this is auto-created
by PostgreSQL for us.

149

CHAPTER 7 PERSISTING OUR DATA

This will not surprisingly open a new query window. We then need to set the “active”
database so that when we write a query, DBeaver knows which one we want to use.
Simply right-click the database you want to set as the active one (in our case CmdAPI),
and select “Set as default”:

- postgres
Set as default k Ctrl+Shift+A
Create >
4 View Database F4
#2 Compare/Migrate >
% Tools >
0 Copy Ctrl+C
"] Paste Ctrl+V
B Delete Delete
7" Rename F2
@ Refresh F5

Figure 7-32. Set Default Database

This should change the name of the database to “bold.”

'y DBeaver 6.2.0 - <PostgreSQL - postgres> Script-1
File Edit MNavigate Search SQL Editor Data

G| e v g0 00

f® Database Navigat.. 2 [Projects = O
-

Enter a part of table name here

v W, PostgreSQL - postgres
. & CmdAPI -
, & postgres Active DB

Figure 7-33. Our Default DB has been set

150

CHAPTER 7 PERSISTING OUR DATA

In the query window, type the following SQL to insert both of our command-line
snippets into the database:

insert into "CommandItems" ("HowTo", "Platform", "CommandLine")
values ('Create an EF migration', 'Entity Framework Core Command Line',
"dotnet ef migrations add');

insert into "CommandItems" ("HowTo", "Platform", "CommandLine")
VALUES ('Apply Migrations to DB', 'Entity Framework Core Command Line',
"dotnet ef database update');

After that, press Ctrl+Enter, or select “Execute SQL Statement” from the SQL Editor
menu to run the SQL - this should insert the lines into our database. To check this, clear
the SQL from the window (otherwise, if you execute it again, it'll insert two more rows,
effectively duplicating the data), and type

select * from “CommandItems”;

This should return something like the following.

Iselect * from "CommandItems";

£ Commanditems 2 [Output

- . . K2
] select * from "Commanditems” | 2§

1251d [} e HowTo 71| avc Platform 71| moc CommandLine T3

Create an EF migration Entity Framework Core Command Line dotnet ef migrations add
2 Apply Migrations to DB Entity Framework Core Command Line dotnet ef database update

Figure 7-34. Our two new rows of "real” data

If you read my blog post on Entity Framework,® you'll have noticed by now that the
commands used in that tutorial are different to those used here. That’s because in that

https://dotnetplaybook.com/introduction-to-entity-framework/
151

https://dotnetplaybook.com/introduction-to-entity-framework/

CHAPTER 7 PERSISTING OUR DATA

online tutorial, we're using the “Package Manager Console” in Visual Studio to issue
commands for Entity Framework (not Entity Framework Core/.NET Core Command
line) - quite confusing I know!

I think, therefore, just to labor that point, let’s add two new command-line prompts
in our DB.

HowTo Platform CommandLine

Create an EF Migration Entity Framework Package Manager Console add-migration <name of
migration>

Apply Migrations to DB Entity Framework Package Manager Console update database

= Learning Opportunity You’ll need to write the SQL to insert these additional
command snippets to our DB!

After executing the SQL INSERT commands, perform another SELECT "all"
(i.e., SELECT *...), and you should see the following.

select * from "CommandItems”;

=7 3 W

[Commanditems £2 | [Output

»[select * from “"Commanditems” ::

1231d ?35 aoc HowTo 73| rec Platform 71| aec CommandLine L+

Create an EF migration Entity Fi rk Core Cor d Line dotnet ef migrations add

Apply Migrations to DB Entity Framework Core Command Line dotnet ef database update

Create an EF migration Entity Framework Package Manager Console add-migration <name of migration>
Apply Migrations to DB Entity Framework Package Manager Conscle update database

o
ro

] TEXL
£

Figure 7-35. Commands in the DB

152

CHAPTER 7 PERSISTING OUR DATA

Hopefully, you can see that as you build out the data in our table, this APT will
become useful; if like me, your memory is not as good as it once was!
To round out this chapter, let’s update our existing API Actions to return this data!

Tying It Altogether

A quick progress check to see where we are with our architecture, and this time I've just
highlighted the interaction that we have not yet implemented.

.NET Core 3.1 ASP MVC App

FL L L T

,

HTTP Request s
API Client |

(e.g. Postman)

g——=HTTP Response

JSON Payload

Read/
Serialize Write

B

+E

- P

Mapped

Read / Write

¥

Data Access
(DB Context)

T.--.

.

‘mmmm

PostgreSQL

Figure 7-36. We need to make use of our DB Context Class

153

CHAPTER 7 PERSISTING OUR DATA

Currently, we are using our repository to return data using a mock implementation,
so what we need to do next to make use of our “real” data (and, therefore, DB Context) is

o Create a new implementation of our repository interface (to use the
DB Context).

e “Swap” out our existing mock implementation for our new one.

I've depicted our current state with our desired end state in Figure 7-37.

Current State End State

Controller Controller

Repository Repository

Interface Interface

Mock DB Context
Implementation Implementation

DB Context

PostgreSQL

Figure 7-37. Current State vs. End State

Create a New Repository Implementation

The first thing we want to do is create a new concrete implementation of our
ICommandAPIRepo interface, so add a new file to the Data folder in our API project, and
call it SglCommandAPIRepo.cs as shown in Figure 7-38.

154

CHAPTER 7 PERSISTING OUR DATA

v COMMANDAPISOLUTION
> .vscode
v src'\ CommandAP!
> bin
~ Controllers
C* CommandsController.cs
v Data
C* CommandContext.cs
C* ICommandAPIRepo.cs

C MockCommandAPIRepo.cs

C_C’ SqlCommandAPlRepc.cD

Migrations

Figure 7-38. New Concrete implementation class

Add the following code to that file:

namespace CommandAPI.Data

{
public class SqlCommandAPIRepo : ICommandAPIRepo
{
}

}

As you've done before with our mock implementation in Chapter 6, place your
cursor “in” the ICommandAPIRepo statement, and press

CTRL + .

To auto-generate the template implementation code for our API, see Figure 7-39.

155

CHAPTER 7 PERSISTING OUR DATA

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{
|® public class SqlCommandAPIRepo : IComn41dAPIRepo
{
public void CreateCommand(Command cmd)
{
throw new System.NotImplementedException();
}
public void DeleteCommand(Command cmd)
{
throw new System.NotImplementedException();
}
public IEnumerable<Command> GetAllCommands()
{
throw new System.MNotImplementedException();
}
public Command GetCommandById(int id)
{
throw new System.NotImplementedException();
}
public bool SaveChanges()
{
throw new System.NotImplementedException();
}

public void UpdateCommand(Command cmd)

{

throw new System.NotImplementedException();

Figure 7-39. Auto-generated interface implementation code

For now, we're just going to implement the same two methods that we implemented
in out mock implementation:

o GetAllCommands
o GetCommandById

156

CHAPTER 7 PERSISTING OUR DATA

To begin, we're going to use Constructor Dependency Injection to inject our DB
Context into our SqlCommandAPIRepo class (so we can use it). Remember that we
registered our DB Context class with the Service Container in the Startup class so itis
available for “injection.”

public void ConfigureServices(IServiceCollection services)

{
(:f%rvices.AddDbContext<CommandContext>(opt => opt.Usehpgsql
(;

Configuration.GetConnectionString(“PostgreSglConnection™)))

services.AddControllers();

services.AddScoped<ICommandAPIRepo, MockCommandAPIRepo>();

Figure 7-40. We registered our DB Context Class with the Service Container in the
startup class

So, to inject our DB Context into our new concrete repository class, add the following
class constructor to Sq1CommandAPIRepo:

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{
public class SqlCommandAPIRepo : ICommandAPIRepo

{

private readonly CommandContext _context;

public SqlCommandAPIRepo(CommandContext context)
{

_context = context;

157

CHAPTER 7 PERSISTING OUR DATA

Again, this pattern should be familiar to you now:
e A DB Context instance is injected in via our constructor (as context).

o We then assign context to a private read-only field (_context) that
we can use in the rest of the SqlCommandAPIRepo class.

We then need to update our two methods as shown by the code here(making sure to
add the using statement to using System.Ling at the top of the file):

using System.Ling;

public IEnumerable<Command> GetAllCommands()

{
return _context.CommandItems.ToList();
}
public Command GetCommandById(int id)
{
return _context.CommandItems.FirstOrDefault(p => p.Id == id);
}

To put the changes in context, I've shown them here.

158

CHAPTER 7

PERSISTING OUR DATA

using System.Collections.Generic;

using System.Ling;
using CommandAPI.Models;

namespace CommandAPI.Data

{

public class SqlCommandAPIRepo : ICommandAPIRepo

{

private readonly CommandContext _context;

public SqlCommandAPIRepo(CommandContext context)

{
}

_context = context;

public void CreateCommand(Command cmd)

{
¥

throw new System.NotImplementedException();

public void DeleteCommand(Command cmd)

{

| throw new System.NotImplementedException();

public IEnumerable<Command> GetAllCommands()

{
return _context.CommandItems.ToList();
}
public Command GetCommandById(int id)
{
return _context.CommandItems.FirstOrDefault(p => p.Id == id);
}

Figure 7-41. Concrete Implementation of our Repository

To review
1. Class constructor utilizing the injection of or DB Context.
2. Wereference “CommandItems” on our DB Context (_context) and
return as a List of Command objects.
3. We call the FirstOrDefault method on our “CommandItems” to

return a Command object (if one exists) that matches our desired ID.

159

CHAPTER 7 PERSISTING OUR DATA

As you can see, we can reference our object collections (in this case, we just have
Commands) via our DB Context with relative ease (this is the power of the “ORM”).
That’s our new repository implementation complete (for now - we’ll complete
the other methods later). All that remains to do is to change our Service Container
registration in the Startup class as shown next - it goes without saying that you should
make these changes in your own code too.

public void ConfigureServices(IServiceCollection services)

{
services.AddDbContext<CommandContext>(opt => opt.UseNpgsql

(Configuration.GetConnectionString(“"PostgreSqlConnection™)));
services.AddControllers();

//services.AddScoped<ICommandAPIRepo, MockCommandAPIRepo>();

éer‘vices.ﬁddScoped(ICommandAPIRepo, SqlCommandAPIRepm()D
¥ New Registration

Configure(IA

public voi

Figure 7-42. We swap out our mock implementation for our new Implementation

And that’s it! That’s how easy it is to swap out implementations of our repository - we
didn’t have to change a single line of code in our Controller. While our codebase is quite
small, you can imagine in situations where we’re making use of our repository elsewhere
in our code just how powerful (and convenient) this is.

Let’s save everything and test to see if this is working, so

dotnet build
Assuming all is well, let’s run
dotnet run

And let’s trigger some calls in Postman.

160

CHAPTER 7 PERSISTING OUR DATA

Get All Command Items

Using the URI http://localhost:5000/api/commands/ along with GET in Postman
yields the following.

GET - p:/localhost:5000/apifcommand

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION

Body Cookies Headers (4) TestResults Status: 2000K Time: 11ms Size: 6868

Premy Raw Preview Visualize JSON ~ 5

1

2 {

3 o 1 L

4 "howTo": "Apply Migrations to DB",

5 "platform”: "Entity Framework Core Command Line”,
6 "commandLine": “"dotnet ef database update”

? }’

8 {

9 “ja"y 2y

18 "howTo": "Create an EF migration”,

11 "platform”: "Entity Framework Core Command Line",
12 "commandLine”: "dotnet ef migrations add"

13 7

14 {

15 “id": 3;

16 "howTo": "Create an EF migration”,

17 "platform": "Entity Framework Package Manager Console”,
18 “commandLine”: "add-migration <name of migraticn>"
19 ¥

Figure 7-43. Our APl working with database derived data

Get A Single Command (Existing)

Using the URI http://localhost:5000/api/commands/1 along with GET in Postman
yields the following.

161

CHAPTER 7 PERSISTING OUR DATA

GET v b:tp:f!!ocalhos:SDOD!apifcommand@

Params Authorization Headers (9) Pre-request Script Tests Settings
Query Params
KEY VALUE DESCRIPTION
Body Cookies Headers (4) t Results Status: 2000K Time: 24ms Size: 2798 Sa
Pretty Raw Pr Visualize JSON - 5

1

2 ia*@

3 "howTo™: "Apply Migrations to DB",

4 "platform”: “Entity Framework Core Command Line",
S "commandLine": "dotnet ef database update”

6

Figure 7-44. Returning a Single Resource

Get A Single Command (Not Existing)

Using the URI http://localhost:5000/api/commands/67 along with GET in Postman
yields the following.

162

CHAPTER 7 PERSISTING OUR DATA

GET v | hup:/ilocalhost:5000/apifcommands/67

Params Autherization Headers (9) Body ® Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION

Body Coockies Headers (4) Test Results 7ms
Premy Raw Preview Visualize JSON v =
1 {
2 "type": "https://tools.ietf.org/html/rfc72314section-6.5.4",
3 "title": "Not Found",
4 "status": 4e4,
5 "traceld”: "|82f13165-4522396e6b064070."

Figure 7-45. 404 Not Found Error

ik Celebration Checkpoint Possibly the most significant celebration in the

whole book — well done! You’ve basically built a data drive APl in .NET Core!

We've covered a lot of material in this chapter. To be honest, I was going to try and
make it smaller, but then I felt the flow would not be as good.

Wrapping Up the Chapter
As we have our code under source control, we want to
¢ Add untracked (aka “new”) files to source control/Git.
e Commit to those changes.
o Push our code up to GitHub [WARNING before you do this!!!!].

Why am I warning you about pushing our code up to our public GitHub repository?
That'’s right, we have placed the user login and password to our database in the
appsettings.json file - this will become publicly available if we push our code.

163

CHAPTER 7 PERSISTING OUR DATA

Redact Our Login and Password

If your API is still running, stop it (Ctrl + C), and edit the connection string in your
appsettings.json file, redacting or changing the values for User ID and Password to
something nonsensical (note that if you run the API again, it will fail when we come to
retrieve data!). See Figure 7-46.

%ConnectionStrings" -
{
"PostgreSqlConnection” :@er ID=HomerSimpson;Password=Doh @stdocal'
¥
i

Figure 7-46. Nonsense User ID and Password

Save the file, then perform the three steps to Add/Track, Commit, and Push your
code to GitHub (remember to do this at the Solution level: CommandAPISolution
folder).

Go over to GitHub, and look at the appsetting.json file there.

164

CHAPTER 7 PERSISTING OUR DATA

Branch: master+ CommandAPI / src / CommandAPI /

’f&‘ binarythistle Added CommandContext to solution

m Controllers Added CommandContext to solution
m Migrations Added CommandContext to solution
i Models Added DBContect Class
m Properties M)" latest commit Initial Commit

message
CommandAP|.cspre Initial Commit

[E) Program.cs Initial Commit

[E) Startup.cs Gdded CommandContext to solution)

[E) appsettings.Development.json Initial Commit

[E) appsettings,json Gdded CommandContext to solutioD

Figure 7-47. Latest Commits

See the appsettings.json file as it exists publicly on GitHub.

165

CHAPTER 7 PERSISTING OUR DATA

<> Edit file ¢ Preview changes Spaces

{
"Logging": {
"LogLevel™: {
“Default”: “"Information",
"Microsoft”: "Warning®,
"Microsoft.Hosting.Lifetime": "Information™

}
¥ Although redacted, it highlights the
“ConnectionStrings": need to improve this!
{ —

"PostgreSqlConnection” :Gser ID-HomerSimpson;Pasmord-Dc@st-loc alhost ;Port=5432;Dat

}
A

Figure 7-48. Redacted User ID and Password on GitHub

We have two major problems now:
o It’sterribly insecure (even if we have put in temporary “fake” values).
e Our code does not work now! (We'll get authentication errors.)

Clearly, we can’t publish user IDs and password to GitHub; even if we made the
GitHub repository private, this is still terrible practice. We need a way of keeping these
details secret.

166

CHAPTER 8

Environment Variables
and User Secrets

Chapter Summary

In this chapter we discuss what runtime environments are and how to configure them;
we'll then discuss what user secrets are and how to use them.

When Done, You Will

¢ Understand what runtime environments are.
o How to set them via the ASPNETCORE_ENVIRONMENT variable.

e Understand the role of launchSettings.json and

appsettings.json files.
o What user secrets are.

o How to use user secrets to solve the problem we had at the end of the

last chapter.

Environments

When developing anything, you typically want the freedom to try new code, refactor
existing code, and basically feel free to fail without impacting the end user. Imagine if
you had to make code changes directly to a live customer environment? That would be

o Stressful for you as a developer

167
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_8

https://doi.org/10.1007/978-1-4842-6255-9_8#DOI

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

o Showing great irresponsibility as an application owner
o Potentially impactful to the end user

Therefore, to avoid such a scenario, most, if not all organizations, will have some
kind of “Development” environment where developers can roam free and go for it,

without fear of screwing up.

-~

’%m Les’ Personal Anecdote If you’ve ever worked as part of a development
team, you’ll know the preceding statement is not quite true. Yes, you can break
things in the development environment without fear of impacting customers, but if
you break the build, you will have the wrath of the other members of your team to
deal with!

| know this from bitter experience.

Anyway, you'll almost always have a Development environment, but what other
environments can you have? Well, jumping to the other end of the spectrum, you’ll
always have a Production environment. This is where the live production code sits and
runs as the actual application, be it a customer-facing web site or in our case an API
available for use by other applications.

You will typically never make code changes directly in production; indeed
deployments and changes to production should be done, where possible, in as
automated (and trackable) a way as possible, where the “human hand” doesn’t intervene
to any large extent.

So, are they the only two environments you can have? Of course not, and this is
where you'll find the most differences in the real world. Most usually you will have some
kind of “intermediate” environment (or environments) that sits in between Development
and Production; it’s primary use is to “stage” the build in as close to a Production
environment as possible to allow for integration and even user testing. Names for this
this environment vary, but you'll hear Microsoft refer to it as the “Staging” environment;

I've also heard it called PR or “Production Replica”

168

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

A

Bl
¥

“w Les’ Personal Anecdote Replicating a Production environment
accurately can be tricky (and expensive), especially if you work in a large corporate
environment with lots of “legacy” systems that are maintained by different third-

party vendors — coordinating this can be a nightmare.

There are of course ways to simulate these legacy systems, but again, there is
really no substitute for the real thing. If you’re not simulating the legacy systems
your app is interacting with precisely, that’s when you find those lovely bugs in
production.

| remember being caught out with SQL case sensitivity on an Oracle DB while on
site at a customer deployment. An easy fix when | realized the issue, but something
as simple as that can be stressful and also damaging to your own reputation!

Our Environment Setup

We are going to dispense with the Staging or Production Replica environment and
use only Development and Production - this is more than sufficient to demonstrate
the necessary concepts we need to cover. Refer to the following diagram to see my
environmental setup (yours should mirror this to a large extent).

169

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

Development Environment Production Environment

Local Windows 10 PC Microsoft Azure

Powershell App Service

Kestrel Web Server

ASP.NET
APl app

ASP.NET
APl app

Docker Azure Container Instance

PosgreSQL PostgeSQL

Figure 8-1. Development and Production Environments

Asyou can see, the “components” that are there are effectively the same; it’s really
only the underlying platform that is different (a local Windows PC vs. Microsoft Azure).

We'll park further discussion on the Production Environment for now and come back
to that in later chapters; for now, we’ll focus on our Development environment.

The Development Environment

How does our app know which environment it’s in? Quite simply - we tell it!

This is where “Environment Variables” come into play, specifically the
ASPNETCORE_ENVIRONMENT variable. Environment variables can be specified, or set,
in a number of different ways depending on the physical environment (Windows, OSX,
Linux, Azure, etc.). So, while they can be set at the OS level, our discussion will focus
setting them in the launchSettings.json file (this can be found in the Properties folder of
your project) for now.

170

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

© Environment variables set in the launchSettings.json file will override
environment variables set at the OS layer; that is why for the purposes of our
discussion, we’ll just focus on setting out values in the launchSettings.json file.

A fuller discussion on multiple environments in ASP.NET Core can be found here.

Opening the launchSettings.json file in the API project; you should see something
similar to the following.

{
"iisSettings": {
"windowsAuthentication": false,
"anonymousAuthentication”: true,
"iisExpress": {
"applicationUrl”: "http://localhost:12662",
"sslPort": 44343

}
},
“profiles”: {
"IIS Express"”: {
"commandName"”: “"IISExpress”,
“launchBrowser": true,
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT"”: "Development” é
}
}.I
/"ComandAPI": { \
"commandName": “Project”,

"launchBrowser”: true,
"applicationurl™: “https://localhost:5@01;http://localhost:5080",

"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": “Development™

Figure 8-2. LaunchSettings.json File

'https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

171

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

When you issue dotnet run at the .NET CLI the first profile with "commandName"
"Project” is used. The value of commandName specifies the webserver to launch.
commandName can be any one of the following:

o IISExpress
o IIS
e Project (which launches the Kestrel web server)

In the preceding highlighted profile section, there are also additional details that
are specified including the “applicationUrl” for both http and https and well as our
environmentVariables; in this instance we only have one: ASPNETCORE_ENVIRONMENT, set
to: Development.

So, when an application is launched (via dotnet run)

o launchSettings.json is read (if available).

e environmentVariables settings override system/OS-defined
environment variables.

e The hosting environment is displayed.

For example, see Figure 8-3.

PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL

PS D \APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI> run
ifo: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:5e@1
info: Microsoft.Hosting.Lifetime[@]
Now listening on: http://localhost:5000
fo: Microsoft.Hosting.Lifetime[8]
Application started. Press Ctrl+C to shut down.

Hosting environment: Development

info: Microsoft.Hosting.Lifetime[@]
Content root path: D:\APITutorial\NET Core 3.1\CommandAPISolution\src\CommandAPI

Figure 8-3. Our environment is set to Development

172

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

So What?

At this stage I hear you all saying, “Yeah that’s great and everything, but so what?”
Good question; I'm glad you asked that question!?
Looking back at our simple environment setup, we need to connect to our
Development database and eventually our Production database, and in almost all
instances, they will be different, with different

e Endpoints (e.g., Server Name/IP address, etc.)
o Different log-in credentials, etc.

Therefore, depending on our environment, we’ll want to change our configuration.
I'm using the database connection string as an example here, but there are many
other configurations that will change depending on the environment. That is why it is so

important we are aware of our environment.

Make the Distinction

OK, so what approach should you take within your application to make determinations
on configuration based on the development environment (e.g., use this connection string
for Development and this one for Production)? Well there are a number of different
answers to that; to my mind there are two broad approaches:

1. “Manually” determine the environment in your code, and take the

necessary action.

2. Leverage the power and behavior of the .NET Core
Configuration API.

We're going to go with option 2. While option 1 is a possibility (indeed this pattern is
used in many of the default .NET Core Projects - see the following example), I personally
prefer to decouple code from configuration where possible, although it’s not always
possible - that is why we’ll go with option 2.

“Beware when you get this response from either Salesman, an Executive, or Politician - it usually
means that they don’t know the answer and will either deflect the question somewhere else or
lay on some major bullsh!t.

173

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

if (env.IsDevelopment()) Using "code" to determine the
¢ runtime environment and make

app.UseDeveloperExceptionPage(); a decision

}

Figure 8-4. Code-based determination of environment

The preceding snippet is taken from our very own Startup class, where the default
project template uses the IsDevelopment parameter to determine which exception page
to use.

Order of Precedence

OK, so we’re going to leverage from the behavior of the .NET Core Configuration API to
change the config as required for our two different environments (we've already made
use of this when we configured the connection string for the DB Context).

Let’s quickly revisit the Program Class startup sequence for our app as covered in
Chapter 4.

174

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

Where we set:
ASPNETCORE_ENVIRONMENT

Application
Starts

Load .Net Core)
R Our Connection String is set here
appsettings.json

Main() method

executes
Appsettings.

Development.json

CreateDefaultBuilder ._

Environment
Variables
g Command Line Args

Figure 8-5. Configuration sources and order of preference

You'll see I've added some extra detail:

o The launchSettings.json file is loaded when we issue the dotnet run
command and set the value for ASPNETCORE_ENVIRONMENT.

e Anumber of configuration sources that are used by the
CreateDefaultBuilder method.

e By default these sources are loaded in the precedence order
specified previously, so appsettings.json is loaded first, followed by
appsettings.Development.json, and so on.

175

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

A tis really important to note here that The Last Key Loaded Wins.

What this means (and we’ll demonstrate this below) is that if we have two
configuration items with the same name, for example, our connection string,
PostgreSqlConnection, that appears in different configuration sources, for
example, appsettings.json and appsettings.Development.json, the value
contained in appsettings.Development.json will be used.

So, you'll notice here that Environment Variables will take precedence over
the values in appsettings.json. This is the opposite of how this works when
we talk about launchSettings.json. As previously mentioned, the contents of
launchSettings.json take precedence over our system-defined environment
variables.

So be careful!

I've referenced a great Blog Post on the Order of Precedence with Configuring ASP.
NET Core here,? for a further overview.

It’s Time to Move

OK, let’s put a bit of this theory into practice and demonstrate what we mean.

o Gointo your appsettings.json file, and copy the ConnectionStrings
key-value pair that contains our PostgreSqlConnection connection

string.
e Make sure you have the correct values* for User ID and Password.

o Insert this JSON segment into the appsettings.Development.json
file - see Figure 8-6.

Shttps://devblogs.microsoft.com/premier-developer/order-of-precedence-when-
configuring-asp-net-core/

‘Remember we had changed them at the end of the last chapter to avoid publishing them to
GitHub.

176

https://devblogs.microsoft.com/premier-developer/order-of-precedence-when-configuring-asp-net-core/
https://devblogs.microsoft.com/premier-developer/order-of-precedence-when-configuring-asp-net-core/

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

This means we will have the same configuration element in both appsettings.json

and appsettings.Development.json.

C: Commands.cs (appsenings.De-.*elcpment,json X
src » CommandAPI > {} appsettings.Developmentjson > {} ConnectionStrings
1 {
2 "Logging": {
3 "LogLevel": {
4 "Default”: "Information",
5 "Microsoft”: "Warning",
6 "Microsoft.Hosting.Lifetime": "Information"
5 } Don't forget the commas!
8 }}
9 “ConnectionStrings":
10 {
11 "PostgreSglConnection”:"User ID=cmddbuser;Password=paSsword!;

Figure 8-6. Appsettings.Development.json

Again, if you're unsure that your JSON is well-formed, use something like http://
jsoneditoronline.org/ to check.
Save the files you've made any changes to, run your API, and make the same call - it

all still works as usual.

Let’s Break It

OK, so to prove the point we were previously making

Stop your API from running (Ctrl + c).

Go back into appsettings.Development.json file, and edit the
Password parameter in the connection string so that authentication
to the PostgreSQL Server will fail - see Figure 8-7.

Save your file.

177

http://jsoneditoronline.org/
http://jsoneditoronline.org/

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

C* Commands.cs {} appsettings.Developmentjson X (\.
src > CommandAPIl > {} appsettings.Developmentjson 2> ...

1 {

2 "Logging": {

3 "LogLevel": {

- "Default”: "Information”,

5 "Microsoft": "Warning”,

6 "Microsoft.Hosting.Lifetime": "Information"

7 }

8 1

9 "ConnectionStrings":

10 {

11 "PostgreSglConnection”:"User ID=cmddbuse@’assword=sornewr‘ongpaasswor‘@lost—

12 }

13 }

14 |

Figure 8-7. The wrong credentials

OK, now run the app again, and try to make the API Call.
Looking at the terminal output, you'll see you get a database connection error; this is
because the last value for our connection string was invalid.

PROBLEMS OUTPUT DEBUG CONSOLE ~ TERMINAL

Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[©]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[@]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: D:\APITutoriall\NET Core 3.1\CommandAPISolution\src\CommandAPI
: Microsoft.EntityFrameworkCore.Database.Connection[20004]
An error occurred using the connection to database 'CmdAPI' on server 'tcp://localhost:5432°,
. . T
An exception occurred while iterating over the results of a query for context type 'CommandAPI
Npgsql.PostgresException (©x80004005): 28PO1: password authentication failed for user “"cmddbuse
.Npgsql

Figure 8-8. As expected, we can't connect

178

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

Fix It Up

0K, so let’s fix this:

o Edit your appsettings.Development.json file, and correct the value
for the Password parameter

o Delete the ConnectionStrings json from the appsettings.json file.

This means that only our appsettings. Development.json file now contains our
connection string; your appsettings.json file should now look like that in Figure 8-9.

Cappsettings.json D appsettings.Developmentjson
src > CommandAP appsettings.json > (53 AllowedHosts
1
2 "Logging": {
3 "LogLevel”: {
4 "Default”: "Information",
5 "Microsoft”: "Warning”,
6 "Microsoft.Hosting.Lifetime": "Information”
7 }
8 ¥
9 "AllowedHosts": "*"|

Figure 8-9. Cleaned up Appsettings.json

This means that currently, we only have a valid source for our connection string
when running in a Development environment.

= Learning Opportunity What will happen if you edit the launchSettings.
Json file and change the value of ASPNETCORE_ENVIRONMENT to “Production”?

Do this, run your app, and explain why you get this result.

We will cover our Production connection string in the Chapter 13.

179

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

User Secrets

We've covered the different environments you can have and why you have them and
have even reconfigured our app to have a development environment-only connection
string. But we still have not solved the issue we were left with at the end of the previous
chapter - that being that, our User ID and Password are still in plaintext and are therefore
available to anyone who has access to our source code - for example, someone looking
at our repo in GitHub.

We solve that here.

Where we set:
ASPNETCORE_ENVIRONMENT

Application
Starts

launchSettings.json

Load .Net Core Our Dev Connection String is set
runtime here now

appsettings.json

Main() method
Invokes)
executes <
l o appsettings

Development.json

CreateDefaultBuilder '

Environment 4
Variables

R Command Line Args 5

The Clue!

Figure 8-10. Secrets.json in the scheme of things

What Are User Secrets?

Well I gave you a bit of a clue in this chapter already.
In short, they are another location where you can store configuration elements; some
points to note

e User Secrets are “tied” to the individual developer - that is, you!

180

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

o They are abstracted away from our source code and are not checked
into any code repository.

e They are stored in the “secrets.json” file.

o The secrets.json file is unencrypted but is stored in a file system-
protected user profile folder on the local dev machine.

This means that individual users can store (among other things) the credentials
that they use to connect to a database. As the file is secured by the local file system, they
remain secure (assuming no one has log-in access to your PC).

In terms of what you can store, this can be anything; it’s just string data. We're now
going to set up User Secrets for our development connection string.

Setting Up User Secrets

We need to make use of something called The Secret Manager Tool in order to make use
of user secrets; this tool works on a project-by-project basis and therefore needs a way to
uniquely identify each project. For this we need to make use of GUIDs.

= Learning Opportunity Find out what GUID stands for, and do a little bit of
reading on what they are and where they can be used (assuming you don’t know
this already!)

Cast your mind back to Chapter 2 where we set up our development lab, and one of
the extensions we suggested for VS Code was Insert GUID - well now we get to use it!

In VS Code open your CommandAPI.csproj file, and in the <PropertyGroup> xml
element, place the xml highlighted in the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework>
<UserSecretsldy</UserSecretsId>

</PropertyGroup>

<ItemGroup>

181

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

<PackageReference Include="Microsoft.EntityFrameworkCore"
Version="3.0.0" />

</Project>

o Place your cursor in between the opening <UserSecretsId> and the
closing </UserSecretsId> elements.

e Open the VS Code “Command Palette”:
e PressFl
e Or Ctrl + Shift + P
e OrView » Command Palette

o Type “Insert”

Help e CommandAPl.csproj -

} appsettings.json N CommandAPL.gsp | >ing

src » CommandAPl » & CommandAPl.cspra

Insert GUID

1 <Project Sdk="Microsoft.NET. " GGra"6nen Bash in Cloud Shell
2 Azure: Open PowerShell in Cloud Shell
3 <PropertyGroup> :
Convert Indentation to Spaces
4 <TargetFramework>netcore:
s| | <usersecretsIid></usersecr Developer: Inspect Context Keys
6 </PropertyGroup> Developer: Inspect Key Mappings
2

Developer: Inspect Key Mappings (JSON)
evel -

Figure 8-11. Insert GUID

o Insert GUID should appear; select it and select the first GUID Option.

182

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

o CommandAPl.csproj - CommandAPISclution - Visual Studio Code

Pl.csp

EProj (1 5893b32b-dal1-4dfb-a2ac-287ef575d88e)
NET .S

207,

2 {5893b32b-da11-4dfb-a2ac-287ef575d88¢e)

4 DEFINE_GUID(_NAM

core:

hSecr 9 5893b32bdall4dibalac287ef57

Figure 8-12. Select this GUID Format

o This should place the auto-generated GUID into the xml elements
specified; see the following example.

{} appsettings.json » CommandAPl.csproj X {} appsettings.Development.json
src > CommandAPl > & CommandAPIl.csproj
1 <Project Sdk="Microsoft.NET.Sdk.web">
2
3 <PropertyGroup>
4 <TargetFramework>netcoreapp3.1</TargetFramework>
5 I GUser'Secr'etsId)5893b32b-da:ll -4d-Fb»a2ac»237ef575d88e</UserSecretsIdD
6 </PropertyGroup>
7
8 <ItemGroup>
9 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="3.1.1
1e <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Versio
11 <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildt
12 <PrivateAssets>all</PrivateAssets>
</PackageRefer~ence>|

Figure 8-13. GUID Inserted into the .CSPROJ File

Now save your file.

Deciding Your Secrets

Now we come to actually adding our secrets via The Secret Manager Tool, which will

generate a secrets.json file.

183

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

Before we do that though, we have a decision to make in regard to our connection
string. Do we

1. Want to store our entire connection string as a single secret.

2. Store our User Id and Password as individual secrets and retain
the remainder of the connection string in the appsettings.
Developent.json file.

Either will work, but I'm going to go with option 2 where we will store the individual
components as “secrets.”
So, to add our two secrets:

e Ensure you have generated the GUID as described earlier, and save
the .csproj file.

e Ataterminal command (and make sure you're “inside” the
CommandAPI project folder), type

dotnet user-secrets set “UserID” “cmddbuser”

You should get a “Successfully saved UserID...” message.

CUNTLENTL TUUL DAl V. WP LTULLT Lal et LS o A VAATIRRST LT LoV L UL AU T ST W VLRI ILAF L
nfo: Microsoft.Hosting.Lifetime[@]
Application is shutting down...
PS D:\APITutorial\MET Core 3.1\CommandAPISolution\src\CommandAPI> user-secrets set “UserID” "cmddbuser”
Successfully saved UserID = cmddbuser to the secret store.
PS D:\APITutorial\NET Core 3. APISolution\spc\CommandAPI> D

Figure 8-14. Adding our first user secret

Repeat the same step and add the “Password” secret
dotnet user-secrets set “Password” “pa55word!”

Again, you should get a similar success message.

Where Are They?

So where did our secrets end up? That’s right, in our secrets.json file. You can find this
file in a system-protected user profile folder on your local machine at the following
location:

184

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

e Windows: %APPDATA%\Microsoft\UserSecrets\<user secrets id>\
secrets.json

o Linux/OSX:~/.microsoft/usersecrets/<user_secrets_id>/
secrets.json

So, on my machine, it can be found here.?

Local DKQC:} » Users » lesja » AppData » Roaming » Microsoft » UserSecrets » 5b8a229'9‘d8h3~42c2‘n350~ldfd5?c11?01>

) Name Date medified Type Size

Blocks 29/05/2019T:08PM JSON File 1KB

Figure 8-15. Location of Secrets.Json on Windows

Open this file, and have a look at the contents:

"UserID": "cmddbuser",
"Password": "pa55word!"

}

It’s just a simple, non-encrypted JSON file.

Code It Up

OK, so now to the really exciting bit where we’ll actually use these secrets to build out
our full connection string.

Step 1: Remove User ID and Password

We want to remove the “offending articles” from our existing connection string in our
appsettings.Development.json file.

*0On Windows you may need to ensure that you can see “Hidden items”; there is a tick box on the
View ribbon on Windows Explorer where you can set this.

185

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

1

1
"ConnectionStrings"”:

"chtg"ESq‘_(onnectior‘.":"@r‘ ID-cmdc’bJser‘;Pas5'.-:3rd-so*.|e‘.-.r'ongpaass‘.:or@os:-lccaihost;Port-SﬂZ;Database-(mdAPI;Doolirg-trug;"

\Rt‘mt:vu these from the connection string —]

Figure 8-16. Removal of sensitive connection string attributes

So our appsettings.Development.json file should now contain only

"Logging": {
"LoglLevel": {
"Default": "Debug",
"System": "Information",
"Microsoft": "Information"

}
b

"ConnectionStrings":

{

"PostgreSqlConnection”:
"Host=localhost;Port=5432;Database=CmdAPI;Pooling=true;"

Make sure you save your file.

Step 2: Build Our Connection String

Move over into our Startup class, and add the following code to the ConfigureServices
method (noting the inclusion of the new using statement at the top):

using Npgsql;

186

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

namespace CommandAPI

{
public class Startup

{
public IConfiguration Configuration {get;}
public Startup(IConfiguration configuration) => Configuration =
configuration;

public void ConfigureServices(IServiceCollection services)
{
var builder = new NpgsqlConnectionStringBuilder();
builder.ConnectionString =
Configuration.GetConnectionString("PostgreSqlConnection");
builder.Username = Configuration["UserID"];
builder.Password = Configuration["Password"];

services.AddDbContext<CommandContext>
(opt => opt.UseNpgsql(builder.ConnectionString));

services.AddControllers();
services.AddScoped<ICommandAPIRepo, SqlCommandAPIRepo>();

Again, for clarity I've circled the new/updated sections below:

187

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

using Microsoft.EntityFrameworkCore;
using Npgsql;

namespace CommandAPI

{

public class Startup

{
public IConfiguration Configuration {get;}
public Startup(IConfiguration configuration)

{
}

Configuration = configuration;

public void ConfigureServices(IServiceCollection services)

{

var builder = new NpgsqlConnectionStringBuilder();

builder.ConnectionString =
Configuration.GetConnectionString("PostgreSqlConnection™);
builder.Username = Configuration["UserID"];
builder.Password = Configuration["Password"];

services.AddDbContext<CommandContext>(opt -X:E?t.UseNpgsql(builder.CanectionString)QE)

services.AddCOntrollers()J

services.AddScoped<ICommandAPIRepo, SqlCommandAPIRepo>();

Figure 8-17. Updated Startup class

1. We need to add a reference to Npgqsql in order to use
NpgsqlConnectionStringBuilder.

2. Thisis where we

a. Create a NpgsqlConnectionStringBuilder object, and pass in our
“base” connection string PostgreSqlConnection from our appsettings.
Development.json file.

b. Continue to “build” the string by passing in both our UserID and Password
secret from our secrets.json file.

3. Replace the original connection string with the newly constructed
string using our builder object.

Save your work, build it, then run it. Fire up Postman, and issue our GET request to
our API. You should get a success!

188

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

& Celebration Checkpoint You have now dynamically created a connection
string using a combination of configuration sources, one of which is User Secrets
from our secrets.json file!

Just cast your mind back to the following diagram.

Where we set:

ASPNETCORE_ENVIRONMENT
S R e launchSettings.json
Starts

Load .Net Core Our Dev Connection String is set
runtime here now

appsettings.json

Main() method
Invokes .
executes o
l appsettings

Development.json

CreateDefaultBuilder "

Environment
Variables

g Command Line Args 5

Figure 8-18. Revisit of precedence

The .NET Configuration layer by default provides us access to the configuration
sources as shown in Figure 8-18; in this case we used a combination of 2 + 3.

Wrap It Up

Again, we covered a lot in this chapter; the main points are

e We moved our connection string to a development-only config file:
appsetting.Development.json.

e Weremoved the sensitive items from our connection string.

189

CHAPTER 8 ENVIRONMENT VARIABLES AND USER SECRETS

e We moved the sensitive items (User ID and Password) to secrets.json
via The Secret Manager Tool.

e We constructed a fully working connection string using a
combination of configuration sources.

All that's left to do is commit all our changes to Git then push up to GitHub!

Moving over to our repository and taking a look in the appsettings.Development.
json file, we see an innocent connection string without user credentials (the secrets.json
file is not added to source control)!

Branch: master v+ | Complete-ASP.NET-Core-API-Tutorial-2nd-Edition / src / CommandAPI /
appsettings.Development.json

[y | ! =
%), binarythistle Secured our connection string

1 contributor

13 lines (13 sloc) 255 Bytes

{
“Logging": {
“LogLevel™: {
"Default": "Debug",
“System”: “Information®,
"Microsoft": "Information"
2
}’
"ConnectionStrings":
{
"PostgreSqlConnection”: "Host=localhost;Port=5432;Database=CmdAPI;Pooling=true;"

3

Figure 8-19. Clean Appsettings.json on GitHub

190

CHAPTER 9

Data Transfer Objects

Chapter Summary

In this chapter we’ll complete the final piece of our architectural puzzled and introduce
Data Transfer Objects.

When Done, You Will

e Understand what Data Transfer Objects (DTOs) are.
e Understand why you should use DTOs.

e Have started to implement DTOs in our solution.

Architecture Review

Outlining what we’ve either (a) started to implement or (b) fully implemented, our

architectural is evolving nicely.

191
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_9

https://doi.org/10.1007/978-1-4842-6255-9_9#DOI

CHAPTER9 DATA TRANSFER OBJECTS

;NET Core 3:1

ASPMVCARR ...,

HTTP Request sy

v
1
API Client -
(e.g. Postman) :

g TTP RESPONS @ s

JSON Payload

Serialize Write

Repository

Read / Write

Data Access
M
(DB Context)

I
'
s|
‘-%—.‘
ﬁ
s
'
:

PostgreSQL

Figure 9-1. Architecture Progress

To summarize, we've
o Fully implemented our Model
o Fully implemented our Repository Interface

o Partially implemented our Concrete Repository Implementation
(using the DB Context)

e Fully implemented our DB Context
e Fully implemented our Database

o Partially completed our Controller (we still have four actions to
complete)

192

CHAPTER9 DATA TRANSFER OBJECTS

We have not yet started on the DTOs, so that is what we’ll turn our attention to in this
chapter.

The What and Why of DTOs

To answer both what DTOs are and why you’d use them, let’s take a look at what we have
implemented so far:

e We have implemented two Controller Actions that return serialized
Command objects to the consumer.
What’s wrong with that?
We are basically exposing “internal” domain detail out to our consumers; this has the
following potential consequences:

o We may be exposing “sensitive” information.
e We may be exposing irrelevant information.
e We may be exposing information in the wrong format.

¢ We have “coupled” our internal implementation to our external
contract, so changing our internals will be difficult if we want to
maintain our contract (or we break the contract altogether - not
advised).

This is not a great situation - so what is the answer?

Decouple Interface from Implementation (Again)

Again (similar to what we did with our repository), we want to decouple our external
contract (our interface) from our internal implementation (our Domain model). This is
where DTOs come in; observe the following diagram:

193

CHAPTER9 DATA TRANSFER OBJECTS

g .
External Internal

(DTOs) (Domain Models)

Dto Mapping

API Client HTTP Response

(e.g. Postman) Serialised JSON

- —

- - -

CommandAPI
Figure 9-2. Example of Read DTO

DTOs are “mapped” to our internal Domain Model classes and represented
externally as part of the contract, thus decoupling our implementation from our
interface. We can then benefit from

o Change Agility: We can feel free to change our internal
implementation, and as long as we perform the appropriate mapping
back to our DTO, our interface remains intact.

¢ We can remove both sensitive and irrelevant implementation detail
from our DTOs

e Aspartof our “mapping” operation, we can augment our internal
representations and present them in an entirely new way (e.g.,
combining First and Last name and presenting externally as Full
Name).

Taking it further, depending on what type of operation we are performing (Read,
Create, Update, etc.), we may employ different variants of our DTO to cater for each, as
shown below.

194

CHAPTER9 DATA TRANSFER OBJECTS

I, A
External Internal

(DTOs) (Domain Models)
HTTP Response

Command]
Read Dto

/
|
]
1
1
1
:
API Client HTTP PUT Request : AT
(e.g. Postman) 1
Serialised JSON : Update Dto G
1
1
]
1
1
\

b
-

v

HTTP POST Request

Serialised ISON

v

Command /
Create Dto

CommanderAPI|

- - - -

Figure 9-3. We can have DTO:s for different actions

I'll explain this concept as we start to implement; just bear it in mind for now. With
that I think we should move on to coding.

Implementing DTOs

To implement DTOs, we need to do the following:
e Create our DTO classes.
e Figure out how to perform the “mapping” mentioned previously.

The first point is actually very straightforward, but it is the second point that
introduces more options and/or complexity. We could simply perform the mapping
operations manually in code we write ourselves, and while this may be ok for small
objects, as our models grow in size and complexity, this would become

o Tiresome
e Error-prone

Therefore, we are going to employ an automation framework (called AutoMapper)
to perform the mapping function for us. While this does require a little bit more upfront
effort, believe me it’s worth it! Before we get involved with AutoMapper, let’s start with
implementing our DTO classes.

195

CHAPTER9 DATA TRANSFER OBJECTS

Create Our DTOs

Back in API Project (make sure the webserver has stopped), add a new folder to the root

of our API project called Dtos, and add a file to it called CommandReadDfto.cs as shown

in Figure 9-4.

v COMMANDAPISOLUTION
> Jvscode
v src’\ CommandAPI
> bir
> Controllers
> Data

v Dtos
C* CommandReadDto.cs U

> Migrations

> Models

Figure 9-4. New Dtos Folder and CommandReadDto.cs file

As the name suggests, we will use this DTO when we perform any read operation, so

in effect this is the object that will be serialized and sent back to the client whenever they

perform a GET request.

Now at this point, you may ask yourself the question: Won'’t the DTO be exactly the
same as our Command model? And to be honest, yes it will, but is nonetheless still a valid

use case. With that in mind, complete the code for our DTO as follows:

namespace CommandAPI.Dtos

{

public class CommandReadDto

{
public int Id {get; set;}

public string HowTo {get; set;}

public string Platform {get; set;}

196

CHAPTER9 DATA TRANSFER OBJECTS

public string CommandLine {get; set;}

You can see this has more than a passing resemblance to our Command model. You
will notice though that in this case, there are no Data Annotations (we will be utilizing
them again, just not for this DTO).

And that’s essentially it for our first DTO class - I told you it was simple. We now need
to move on to setting up AutoMapper.

Setting Up AutoMapper

The first thing we need to do is install another package in our API Project, so ensure
the webserver is not running (CTRL + C if it is), and at a command prompt “in” the API
project folder (CommandAPI), enter the following:

dotnet add package AutoMapper.Extensions.Microsoft.DependencyInjection

This will install the AutoMapper package; confirm this by checking the .csproj file for
the API project, and you should see something similar to Figure 9-5.

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework:
<UserSecretsId>cabd2435-beed-47b0-899@-0889111a5d36</UserSecretsId>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="AutoMapper.Extensions.Microsoft.DependencyInjection” Versions="7.8.8" EE)
<PackageReference Include="Microsoft.EntityFrameworkCore™ Version="3.1.4" />
<PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="3.1.4">
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
<PrivateAssets»all</PrivateAssets>
</PackageReference>
<PackageReference Include="Npgsql.EntityFrameworkCore.PostgreSQL"” Versions="3.1.3" />
</ItemGroup>

</Project>

Figure 9-5. Reference to Automapper

197

CHAPTER9 DATA TRANSFER OBJECTS

To use AutoMapper we move over to our Startup class and register it in our Service
Container by adding the following lines (making it available to us throughout our
application via our old friend Dependency Injection):

using AutoMapper;

services.AddControllers();

//Add the line below
services.AddAutoMapper (AppDomain.CurrentDomain.GetAssemblies());

services.AddScoped<ICommandAPIRepo, SqlCommandAPIRepo>();.

To put it in context, I've highlighted those new inclusions in Figure 9-6.

using Microsoft.Extensions.Hosting;
using Microsoft.EntityFrameworkCore;

using Npgsql;
sing AutoMapper;
namespace CommandAPI

{
public class Startup

{
public IConfiguration Configuration {get;}

public Startup(IConfiguration configuration)

{
Configuration = configuration;
ﬁ
public void ConfigureServices(IServiceCollection services)
{

var builder = new NpgsqlConnectionStringBuilder();

builder.ConnectionString =
Configuration.GetConnectionString("PostgreSqlConnection™);
builder.Username = Configuration["UserID"];
builder.Password = Configuration[“Password”];

services.AddDbContext<CommandContext>(opt => opt.UseNpgsql(builder.ConnectionString));

services.AddControllers();

(Eervices.Addnutcﬂapper(nppbomain.Currentnomain.GetAssemblies()i})

services, AddSgoped<ICommandAPIRepo, SglCommandAPIRegpo:();

Figure 9-6. AutoMapper service registered

198

CHAPTER9 DATA TRANSFER OBJECTS

Note The registration of Automapper can really be placed anywhere in the
ConfigureServices method; I've just chosen to place it here in case you're
wondering. For more detail on how to use AutoMapper with Dependency Injection
in .NET Core, refer to the AutoMapper Docs."

That’s our setup of AutoMapper complete - see, it wasn’t that bad; we now need to
move onto using it.

Using AutoMapper

In order to use AutoMapper, we need somewhere to configure the mapping of our
Model to our DTO, in this case mapping Command to CommandReadDto, and we do
that via a “profile.” To start using AutoMapper profiles, create another folder in the
root of our CommandAPI project called Praofiles, and in there create a file called
CommandsPrafile.cs as so.

v COMMANDAPISOLUTION
> .vscode
v src’\ CommandAPI
2 bir
> Controllers
» Data
> Dtos
> Migrations
> Models
p D)
v Profiles
(C CommandsProfile.cs)

Figure 9-7. New Profiles folder and CommandsProfile.cs file

'https://docs.automapper.org/en/stable/Dependency-injection.html#asp-net-core

199

https://docs.automapper.org/en/stable/Dependency-injection.html#asp-net-core

CHAPTER9 DATA TRANSFER OBJECTS
Now add the following code to the file:

using AutoMapper;
using CommandAPI.Dtos;
using CommandAPI.Models;

namespace CommandAPI.Profiles

{
public class CommandsProfile : Profile
{
public CommandsProfile()
{
CreateMap<Command, CommandReadDto>();
}
}
}

The class can be explained in Figure 9-8.

CommandAPI| > Profiles > € CommandsProfile.cs > {} CommandAPI.Profiles
using AutoMapper;
using CommandAPI.Dtos;
using CommandAPI.Models;

namespace CommandAPI.Profiles o

{
public class CommandsProfile :

{
public CommandsProfile()e
{

//Source -> Target
CreateMap<Command, CommandReadDto>();

Figure 9-8. Our first AutoMapper Mapping

1. Our class inherits from Automapper.Profile.

2. We add a simple class constructor.

200

CHAPTER9 DATA TRANSFER OBJECTS

3. We use the CreateMap method to map our source object (Command)
to our target object (CommandReadDto).

And that’s our mapping complete. It’s so straightforward in our case as the property

names of both classes are identical; AutoMapper can derive the mappings easily.

Finally, we want to update our Controller to return our DTO representation

(CommandReadDto) instead of Command Model for both our GET Actions. Before we do that
though, we need to make AutoMapper “available” to our Controller. Any ideas how we
do that?

For those of you that said Constructor Dependency Injection, well done! That’s exactly

what we’re going to do. So over in our Controller, add the following highlighted code:

using AutoMapper;
using CommandAPI.Dtos;

namespace CommandAPI.Controllers

{

[Route("api/[controller]")]
[ApiController]
public class CommandsController : ControllerBase

{

private readonly ICommandAPIRepo repository;
private readonly IMapper _mapper;

public CommandsController(ICommandAPIRepo repository, IMapper mapper)
{

_repository = repository;
_mapper = mapper;

}

To explain what we’ve done, have a look at the changes in context in Figure 9-9.

201

CHAPTER9 DATA TRANSFER OBJECTS

{

using System.Collections.Generic;

ing AutoMapper;) o
ing CommandAPI.Dtos;

G

using CommandAPI.Data;
using CommandAPI.Models;
using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Controllers

[Route("api/[controller]”)]
[ApiController]
public class CommandsController : ControllerBase

{
private readonly ICommandAPIRepo _repository;

C_pr'ivate readonly IMapper _mapper; Jé o
public CommandsController(ICommandAPIRepo repository,(IMapper mapper)

{
_repository = repository;

_mapper = mapper;
H

HttpGet]

Figure 9-9. Injecting AutoMapper into the controller

Added our two new using directives.
Created a new read-only field to hold an instance of IMapper.

An instance of IMapper will be injected by the DI system into our
constructor.

We assign our injected instance to the private member _mapper
for further use.

This pattern should be very familiar to you now as we have used it multiple times

within our APJ; the only point of note is that you can see we can inject multiple instances

into our Constructor.
We can now update our two existing controller actions to make use of AutoMapper

and return our DTO representation to our consumers as shown by the highlighted code

in the following:

[HttpGet]

202

CHAPTER9 DATA TRANSFER OBJECTS

public ActionResult<IEnumerable<CommandReadDto>> GetAllCommands()
{

var commandItems = repository.GetAllCommands();

return Ok(_mapper.Map<IEnumerable<CommandReadDto»»(commandItems));

}

[HttpGet("{id}")]
public ActionResult<CommandReadDto> GetCommandById(int id)
{

var commandItem = repository.GetCommandById(id);
if (commandItem == null){
return NotFound();

}

return Ok(_mapper.Map<CommandReadDto>(commandItem));

}

The changes are shown and explained in Figure 9-10.

[HttpGet] 1
public ActionResult<IEnumerablekCommandReadDto>> GetAllCommands()

{

var commandItems = _repository.GetAllCommands(); e

Getur‘n Ok(_mapper.Map<IEnumerable<CommandReadDto>>(commandItems));

}

[HttpGet("{id}")] e
public ﬁctionResul GetCommandById(int id)
{

var commandItem = _repository.GetCommandById(id);
if (commandItem == null)

{

return NotFound();

éturn Ok(_mapper.Map<CommandReadDto>(commandItem) &

}

Figure 9-10. Use of Automapper in our 2 GET Controller Actions
203

CHAPTER9 DATA TRANSFER OBJECTS

1. We ensure our ActionResult return type is changed from Command
to CommandReadDto.

2. We call the Map method on our _mapper instance. It maps
our collection of Command objects to an IEnumerable of
CommaneReadDtos that we return in our OK method.

3. We ensure our ActionResult return type is changed from Command
to CommandReadDto.

4. Does the same thing as #1, except we are working with a single
Command object as the source and returning (if available) a single
CommandReadDto object in our OK method.

Save all your code and run as before.

GET v | hup:/flecalhest:5000/api/commands/2

Params Authorization Headers (9) Body @ Pre-request Script ests Settings

Query Params

KEY VALUE DESCRIPTION
Body Cockies Headers (4) TestResuls Stawus: 2000K T
Pretty Raw Preview Visualize JSON ~)

11K

2 "id": 2,

3 "howTo": “Create an EF migration”,

4 platform”: "Entity Framework Core Command Line”,

5 "commandLine”: “dotnet ef migrations add”

o

Figure 9-11. CommandReadDTO Returned

The “problem” is that it looks exactly the same as before (well it’s not a problem;
technically it’s working). So just to demonstrate what is possible with DTOs, let’s
comment out the Platform property on our CommandReadDto, as shown here:

204

CHAPTER9 DATA TRANSFER OBJECTS

namespace CommandAPI.Dtos

{

public class CommandReadDto

{
public int Id {get; set;}

public string HowTo {get; set;}

//Comment out the line below
//public string Platform {get; set;}

public string CommandLine {get; set;}

Once you've saved your changes, restart the webserver and rerun your Postman
query.

GET v hupi/flocalhost:5000/api/commands/2

Params Authgrization Headers (%) Body @ Pre-request Script ests Settings

Query Params

KEY VALUE DESCRIPTION
Body Cookies Headers(4) TestResults Status: 200 OK
Pretty Raw Preview Visualize JSON - 5
1 9 :
5 ids 2, Platform property has gone J
3 "howTo™: "Create an EF migration”,
4 "commandLine”: "dotnet ef migrations add”
5 B

Figure 9-12. CommandReadDto returned with platform removed

You'll see that our DTO representation has in fact been returned! Once you're happy,
revert those changes so we're returning the full object.

205

CHAPTER9 DATA TRANSFER OBJECTS

A quick look at our application architecture and you can see that we have now
completed the groundwork for all our architectural components (although some
components are only partially complete as depicted in Figure 9-13):

.NET Core 3.1 ASP MVC App

L

Program
API Client

(e.g. Postman)

@—=HTTP Respons Startup

JSON Payload
.‘1 -l Read/ '-------------

Serialize

------J

Repository

Partially Complete ---+------------------*'-‘----
Mapped Read / Write

Data Access
(DB Context)

Fully Complete

Figure 9-13. Architecture Check

We can leave DTOs there for now, but we will return to them as we build out our
remaining controller actions next.

206

CHAPTER 10

Completing Our API
Endpoints

Chapter Summary

In the last few chapters, we have put a lot of work into the underlying architectural fabric
of our API, but we’ve only implemented two of our endpoints (controller actions). In this
chapter we address this and move up a gear to finalize our remaining four endpoints.

When Done, You Will

e Understand how data changes are persisted by Entity Framework
Core.

» Have fully implemented our Create (POST) resource endpoint.

o Have fully implemented our two Update (PUT and PATCH) resource
endpoints.

« Have fully implemented our Delete (DELETE) resource endpoint.

e Understand more about REST best practice.

Persisting Changes in EF Core

So far, we have used an EF Core DB Context (via our Repository) to read data from our
PostgreSQL database and return it to our consumer (using DTOs). These endpoints are
considered “safe” as they cannot change the data in our database; they can only read it.

207
© Les Jackson 2020

L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_10

https://doi.org/10.1007/978-1-4842-6255-9_10#DOI

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Our four remaining endpoints, (shown below) are slightly more dangerous in that
they are able to change the data in our database, or to use a slightly more dramatic term -
they are considered “unsafe.”

Verb URI Operation Description
POST /api/commands Create Create a new resource
PUT /api/commands/{Id} Update (full) Update all of a single resource (by Id)

PATCH /api/commands/{Id} Update (partial) Update part of a single resource (by Id)
DELETE /api/commands/{Id} Delete Delete a single resource (by Id)

The reason I'm calling out this fairly obvious point is because I want to shine a
little light on how changes to data occur in EF Core and in particular when using a DB
Context, as it becomes relevant in the sections that follow.

DB Context Tracks Changes

Let’s take a simple example of adding a new Command resource to the PostgreSQL DB;
using our DB Context, we will

1. Obtain the Command object to be added (don’t worry where we get
this for now).

2. Add that Command object to the CommandItems DBSet in our DB
Context.

3. Save the changes pending on the DB Context.
4. Changes will then be reflected in the PostgreSQL database.

The point I'm making here is that just by adding (or removing/updating) objects on
our DB Context does not mean those changes will be automatically reflected down on the
PostgreSQL database. We need to further Save the pending changes for that to happen.

What you can take from this is that the DB Context tracks (multiple) changes to the
data “internally,” be they create, update, or delete operations, but will only persist those
changes to the DB when we explicitly tell it to - by Saving Changes.

Again, I wanted to call that out here, as it becomes relevant in a couple of areas as we
move into implementing our remaining endpoints.

208

CHAPTER 10 COMPLETING OUR API ENDPOINTS

The Create Endpoint (POST)

The next endpoint we want to implement is the “Create” endpoint, which gives us the
ability to add resources to our DB. A quick reminder of our high-level definition is shown

here.
Verb URI Operation Description
POST /api/commands Create Create a new resource

We'll also introduce some other attributes that will help us understand, build, and
ultimately test our endpoint; they are shown in the following table.

Attribute Description
Inputs (x1) The “command” object to be created.
This will be added to the request body of our POST request; an example is
shown here:
{
"howTo": "Example how to",
"platform": "Example platform",
"commandLine": "Example command line"
}
Process Will attempt to add a new command object to our DB
Success e HTTP 201 Created Status
Outputs ¢ Newly Created Resource (response body)
¢ URI to newly created resource (response header)
Failure Outputs e HTTP 400 Bad Request
e HTTP 405 Not Allowed
Safe No — Endpoint can alter our resources
I[dempotent No — Repeating the same operation will incur a different result

Most of this should make sense, but there are probably three callouts for me before

we move onto coding.

209

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Input Object

You'll notice that the object we can expect to attach to the request body in order to
create a resource does not contain an “Id” attribute - why is that? Simply because the
responsibility for creating a unique id has been devolved down to our PostgreSQL
Database. When a new row is inserted to our CommandItems table, it is at that point that
anew (unique) id will be created for us. (You should remember this when we manually
added data to our DB via SQL commands in Chapter 7.)

= Learning Opportunity As our input command object is different to our
internal domain command model, what technique could we use to deal with this?

Success Outputs

The issuing of a 201 Created Http Status code is self-explanatory, but what you may not
have expected is that we should pass back both:

e The newly created resource (with Id)

e AURI (or “route”) to where we can obtain that resource again if
needed

The second point in particular is to allow us to align with the REST architectural
principles, so we’ll follow it here in our API. Further discussion on this can be found in
this article on REST.!

Idempotency

I've already mentioned “safety” in the opening to this chapter, but I've also included
whether this endpoint is “idempotent” What is idempotency?

An operation is idempotent when performing the same operation again gives the same
result.

So, in the case of our create endpoint, the first time we fire off a request (assuming it’s
successful), we'll get the newly created resource returned. If we perform the exact same

'https://en.wikipedia.org/wiki/Representational state transfer

210

https://en.wikipedia.org/wiki/Representational_state_transfer

CHAPTER 10 COMPLETING OUR API ENDPOINTS

request again, we'll get a different result. Why? Because we’ll have created a whole new
resource (with a new Id) in addition to the first one. Our create endpoint is therefore not
idempotent.

Compare that with one of our existing GET requests; we can perform the same
request time and time again and get the same result - these are idempotent.

Why have I included this? Simply because I've seen the use of the term increase
dramatically over the short term (although the concept is not new), so I would be doing
you a disservice if I didn’t introduce it to you here.

Enough theory - lets code.

Updating the Repository

Let’s work from “the ground up” and return to our repository. Refer to Figure 10-1 that
details the repository interface definition ICommandAPIRepo.

public interface ICommandAPIRepo

{
bool SaveChanges();

IEnumerable<Command> GetAllCommands();
Command GetCommandById(int id);
(:;oid CreateCommand(Command Cmd};jD

void UpdateCommand(Command cmd);
void DeleteCommand(Command cmd);

Figure 10-1. CreateCommand Repository Method

We can see that for the highlighted repository method, we simply require a Command
object to be passed in (and, as inferred, added to our DB Context - and ultimately
our PostgreSQL database). We don’t expect anything returned back. Moving over to
our concrete implementation, Sq1CommandAPIRepo, add the following code to the
CreateCommand method (making sure to include the using System namespace):

using System

211

CHAPTER 10 COMPLETING OUR API ENDPOINTS

public void CreateCommand(Command cmd)

{
if(emd == null)

{

throw new ArgumentNullException(nameof(cmd));

}
_context.CommandItems.Add(cmd);

}

To put these in context, see Figure 10-2.

public void CreateCommand(Command cmd)

{

if(cmd == null)
{

throw new ArgumentNullException(nameof(cmd));

_context.CommandItems.Add(cmd); e

Figure 10-2. Implementation of CreateCommand

e et s ismcd

1. We check to see if the object passed in is null, and if so throw an

exception (this case will be caught in our controller when it comes
to validate the command model we have; however, we don’t know

where else our repository implementation may be used, so it’s

good practice to put code like this in any way).

2. Using our DB Context instance (_context), we reference our
CommandItems DB Set and call the Add method, passing in our

Command object.

Going back to our discussion on how data is persisted in EF Core, you'll be aware
that just calling this method will not persist our changes down to the DB; at this point we
only have the Command object added to the DB Context/DB Set.

212

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Implement SaveChanges

Returning once again to our repository interface definition, ICommandAPIRepo, you'll
remember a mysterious method definition (well probably not that mysterious anymore).

using System.Collections.Generic;
using CommandAPI.Models;

namespace CommandAPI.Data

{

public interface ICommandAPIRepo

{
[(E}ol Savechanges();:>

* | IEnumerable<Command> GetAllCommands();
Command GetCommandById(int id);
void CreateCommand({Command cmd);
void UpdateCommand(Command cmd);
void DeleteCommand(Command cmd);

Figure 10-3. The SaveChanges Interface method
Well we need to implement that now in our concrete implementation, so back over
in SqlCommandAPIRepo, add the following code to the SaveChanges method:

public bool SaveChanges()
{

return (_context.SaveChanges() >= 0);

}

In context, these changes look like this.

public bool SaveChanges()
{
return ((context.SaveChanges())>= ©);

}

Figure 10-4. Implementation of SaveChanges

213

CHAPTER 10 COMPLETING OUR API ENDPOINTS

1. Call the SaveChanges method on our DB Context; this replicates
all pending changes on the DB Context down to the PostgreSQL
DB and persists them.

2. We use this comparison operator to return true if the result of
save changes is greater than or equal to 0 (this will be a positive
integer reflecting the number of entities affected or of course 0 if
none are?).

We'll use the SaveChanges repository operator from our Controller, and we’ll use
it for all four of our remaining “unsafe" endpoints in order to persist data (not just our
Create endpoint).

That'’s our repository sorted for our Create method, what’s next?

CommandCreateDto

Earlier in this chapter I asked what technique could we use to deal with the fact that

the representation of the command resource we expect from our POST request will be
different to our internal command model? For those of you that answered with “DTOs,’
give yourself a pat on the back - yes we're going to use a DTO to represent the input for
our command resource and, using AutoMapper, map it back to an internal command
model we can pass over to our repository, I've shown a slightly simplified version of this
scenario in Figure 10-5.

*https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.
dbcontext.savechanges

214

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges

CHAPTER 10 COMPLETING OUR API ENDPOINTS

4
/

HTTP Response

Serialised JSON

>
.

API Client

External

(DTOs) (Domain Models)

Command
Read Dto

(e.g. Postman)

HTTP POST Request

Serialised JSON

v

o e e e

Command /
Create Dto

We'll create a CommandCreateDto to
deal with this scenario

Figure 10-5. CommandCreate DTO Example

Create the New DTO

CommanderAPI

Internal

- - - - -

Back over in our project, create a file called CommandCreateDto.cs in the Dtos folder

as so.

v Data
C* CommandContext.cs
C* ICommandAPIRepo.cs
C* MockCommandAPIRepo.cs
C: SglCommandAPIRepo.cs
v Dtos

@- CommandCreateDto.cs)
'€ CommandReadDto.cs

> Migrations

Figure 10-6. CommandCreateDTO.cs created

¢ Cc Cc & C

215

CHAPTER 10 COMPLETING OUR API ENDPOINTS
Into that file add the following code:
using System.ComponentModel.DataAnnotations;

namespace CommandAPI.Dtos

{
public class CommandCreateDto
{
[Required]
[MaxLength(250)]
public string HowTo { get; set; }
[Required]
public string Platform { get; set; }
[Required]
public string CommandLine { get; set; }
}
}

This is exactly the same as our internal command model (noting we have included the
use of annotations), except that we have not included the 1d property. Make sure you
remember to save the file.

Update the AutoMapper Profile

You'll remember we had to create a profile mapping for our first DTO, which mapped
our “source” (a command model) to a target (our CommandReadDto). Well we have to do
the exact same thing here; we just have to be careful with what our “source” is vs. what
our “target” is. So over in the CommandsProfile.cs file in the Praofiles folder, add the
following mapping:

public class CommandsProfile : Profile

{
public CommandsProfile()

{
//Source » Target

CreateMap<Command, CommandReadDto>();

216

CHAPTER 10 COMPLETING OUR API ENDPOINTS

CreateMap<CommandCreateDto, Command>();

}
}

Iwon’t display the usual “code in context” image for explanation purposes as I feel
this is straightforward, but in essence our “source” is the CommandCreateDto (as will be
supplied in our POST request body), and the target is our internal Command model.

So with

¢ The new CommandCreateDto created
e Anupdated AutoMapper mapping profile

We can move on to implementing our controller action (our Create endpoint).

Updating the Controller

So fair warning, although the code for our next action is not particularly large in volume,
there are a lot of concepts in this section. Thinking about the best way to present it to
you, I'd decided to include all the code in one go (rather than layering it up which I feel
would not translate well to the written page and be more confusing than helpful). Don’t
worry, we go through it all line by line by way of explanation afterward.

So over in our CommandsController class, add the following code to create our new
controller action:

[HttpPost]
public ActionResult <CommandReadDto> CreateCommand
(CommandCreateDto commandCreateDto)

{

var commandModel = _mapper.Map<Command>(commandCreateDto);
_repository.CreateCommand(commandModel);
_repository.SaveChanges();

var commandReadDto = _mapper.Map<CommandReadDto>(commandModel);

return CreatedAtRoute(nameof(GetCommandById),
new {Id = commandReadDto.Id}, commandReadDto);

217

CHAPTER 10 COMPLETING OUR API ENDPOINTS

To put those changes in context, see Figure 10-7.

[Route("api/[controller]”)]
[ApiController]
public class CommandsController : ControllerBase

{

private readonly ICommandAPIRepo _repository;
private readonly IMapper _mapper;

public CommandsController(ICommandAPIRepo repository, IMapper mapper)

{

_repository = repository;

_mapper = mapper;
} o /

public ActionResult<CommandReadDto> CreateCommand(CommandCreateDto commandCreateDto)

{
[var commandModel = _mapper.Map<Command>(commandCreateDto); | o
_repository.CreateCommand (commandModel);
_repository.SaveChanges();
[var commandReadDto = _mapper.Map<CommandReadDto>(commandiodel); |@
| return CreatedAtRoute(nameof(GetCommandById), new { Id = commandReadDto.Id }, commandReatho)!
}

Figure 10-7. CreateCommand Implementation

Let’s go through this:

1. HitpPost

We decorate the action with [HttpPost], which I feel is straightforward enough. As
mentioned before, this action will respond to the Class-wide route of

api/commands

with the POST verb, which in combination makes it unique to this Controller.

2. Return DTO Type

As described in the endpoint attributes, we expect to return the newly created resource
as part of our response back to the consumer. In this instance (as with our existing two
GET actions), we return a CommandReadDto.

218

CHAPTER 10 COMPLETING OUR API ENDPOINTS

3. Input DTO Type

Our action expects CommandCreateDto as input, fair enough, but where does that
come from? As mentioned, when we come to using Postman to test this, we’ll place a
“CommandCreateDto” in the body of the request, as shown next.

Important Don’ttest this Action yet as we still have some more code changes to
make before it’ll work; I've just shown the Body payload in Figure 10-8 to illustrate
this point.

(POST v hup://localhost:5000/api/commands/)
Params Authorization Headers (9) Pre-request Script Tests Settings

none form-data x-www-form-urlencoded @ raw binary GraphQL

“howTo": “Create an EF migration®,
platform™: "Entity Framework Package Manager Console”,
commandLine”: "add-migration <name of migration>

Figure 10-8. POST Request in Postman

But that still doesn’t answer the question of how does our action “know” to get this
data from the Body of the request and pass it in as the commandCreateDto parameter.

The answer to that is Binding Sources.

A controller action can derive its inputs from a number of Binding Sources:

o From the Query String

o From the Route (we obtain the Id attribute in our URI form here)
o From the Request Body

e From Form fields

e From the Request Header

219

CHAPTER 10 COMPLETING OUR API ENDPOINTS

We can explicitly tell our action where to locate this data or we can fall back on
the default behaviors provided to us. For controllers that are decorated with the
[ApiController] attribute (as ours is), the default location of model objects is the
request Body.

Therefore, the commandCreateDto parameter of our action will be populated with the
object we provide in our POST request body.

For a deeper discussion in this, I'd refer you to the Microsoft docs.?

4. Map Our CommandCreateDto to a Command Object

In this step we make use of our AutoMapper profile mapping and, taking our input
commandCreateDto, map it to a newly created Command object.

5. Persist Our Data

In these two steps, we take the newly created Command model from step 4 and pass it to
the CreateCommand method of our repository.

We then call the SaveChanges method on our repository to persist the changes down
to the PostgreSQL DB.

6. Map Our Created Command Back to a CommandReadDto

We have already said that we need to pass back a CommandReadDto as part of our
endpoint specification, so we do this once again using AutoMapper, to map the newly
created Command object back to a CommandReadDto. What is of note here is that as we have
persisted the Command to the PostgreSQL DB; we now have access to the Id attribute (by
reference), which is needed going forward - see step 7.

7. Created at Route

Then finally we return CreatedAtRoute (see definition on Microsoft Docs*) where we:

o Specify the “route” where our Created resource resides (more on this
below).

Shttps://docs.microsoft.com/en-us/aspnet/core/mvc/models/
model-binding?view=aspnetcore-3.1

*https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.
createdatroute

220

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute

CHAPTER 10 COMPLETING OUR API ENDPOINTS

e The Id of the resource (used to generate the route).
o Content value of the body returned.
To summarize, this method will
e Return a 201 - Created Http status code.
o Passback the created resource in the body response.
e Passback the URI (or route if you prefer) in the response header.

It basically fulfills the desired behavior of our Create endpoint. If we take a look at
this method again, we need to explore one item a little further.

[HttpPost]
public ActionResult<CommandReadDto> CreateCommand(CommandCreateDto commandCreateDto)

{

var commandModel = _mapper.Map<Command>(commandCreateDto);
_repository.CreateCommand(commandModel);
_repository.SaveChanges();

var commandReadDto = _mapper.Map<CommandReadD ommandModel) ;

return createdAtRoute(E?meof(GettcmmandByIé}) new { Id = commandReadDto.Id }, commandReadDto);

}

Figure 10-9. CreatedAtRoute Route Name Parameter

The first parameter of CreatedAtRoute is the routeName which in our case is
just the existing GET action that returns a single resource based on a supplied Id:
GetCommandById. In order for the call to CreatedAtRoute to work, we need to return to
the GetCommandById action and “name” it.

So, staying in our controller code, make the necessary highlighted changes to the
GetCommandById action:

[HttpGet("{id}", Name="GetCommandById")]

public ActionResult<CommandReadDto> GetCommandById(int id)
{

var commandItem = repository.GetCommandById(id);
if (commandItem == null)

221

CHAPTER 10 COMPLETING OUR API ENDPOINTS

{
return NotFound();

}

return Ok(_mapper.Map<CommandReadDto> (commandItem));

}

I've highlighted what’s changed in Figure 10-10.

[HttpGet (" {id}", Name-"GetCommandById")]]
public ActionResult<CommandReadDto> GetCommandById(int id)

{

var commandItem = _repository.GetCommandById(id);
if (commandItem == null)

{

return NotFound();

}

return Ok(_mapper.Map<CommandReadDto>(commandItem));

Figure 10-10. Naming our GetCommandByld method

We have explicitly named our action so the call from CreatedAtRoute resolves
correctly.

Phew! I told you there was a lot to this action - don’t worry the remaining actions are
not that complex.

All that remains to do is perform some manual tests.

Manually Testing the Create Endpoint

Before you do anything else, make sure you save all your code (we've made quite a few
changes), and perform a dotnet build justto check for errors. Assuming all is well, run
up your server and move over to Postman.

Successful Test Case

Here we’ll supply the necessary inputs to generate a successful outcome; take a look at
my Postman setup in Figure 10-11.

222

CHAPTER 10 COMPLETING OUR API ENDPOINTS

POST o v hup://localhost:5000/api/commands/ e

Params Authorization Headers (9) iody [] Pre-request Script Tests Settings

none form-data x-www-form-urlencoded ® raw binary GraphQL JSON ~

i~

"howTo": "Build a .NET Core App",
"platforma™: ".NET Core CLI",
"commandLine”: “dotnet build”

3

Figure 10-11. Test our CreatCommand Endpoint

1. Ensure POST is the selected verb.

2. Make sure the route is correct (note there is no Id passed).
3. Select “Body” for the request.

4. Set “Raw” and “JSON” for the request body data type.

5. Supply a valid JSON object that adheres to our
CommandCreateDto.

With all that set up, click Send and you should get the following response.

Body Cookies Headers (5) Test Results

2978 Save

Pretty Raw Preview Visualize JSON ~ =

1/0q

2 "id": 5,

3 "howTo™: "Build a .NET Core App",
4 "platform": ".NET Core CLI",

5 "commandLine": "dotnet build"

L+]

Figure 10-12. Successful 201 Result

e 201 Http Created Status Code.

e The newly created resource with Id.

223

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Selecting the Headers Tab, you should get the following.

7

Body Cookies Headers (5) TestResults 201 Created 970ms 2978 Save Respon3
KEY VALUE
Date Wed, 27 May 2020 06:51:37 GMT
Content-Type application/json; charser=utf-8
Server Kestrel

Transfer-Encoding chunked

Gocation

htep://localhost:5000/api/Comma nds:’Sj

Figure 10-13. URI of our newly created resource is returned in the header

Looks good!

™= Learning Opportunity What else can you do to check that the resource has
been created?

Unsuccessful test Case — Badly Formed JSON

Let’s issue that exact same request, but this time make some change to the JSON body
(e.g., remove all the commas) so that we have badly formed JSON. Click Send, and you
should see the following.

224

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Body Cookies Heade Test Results 18ms 473B Save Resp
S—
Pretty Raw Preview Visualize JSON ~ =

1 {

2 "type": "https://tools.ietf.org/html/rfc72314section-6.5.1",

3 "title": "One or more validation errors occurred.”,

4 "status": 400,

5 "traceld": "|fo@2%aea-4d32749680399624.",

6 “errors": {

7 "$.howTo": [

8 ' is invalid after a value. Expected either ',"', '}', or ']'. Path: 3.howTo
LineMumber: 2 | BytePositionInLine: 4."

Figure 10-14. Bad request

We get a Http 400 - Bad request along with some helpful guidance on what’s wrong.
We didn’t specifically code this behavior in our controller action - we get this behavior
by default as we have decorated our controller with the [ApiController] attribute - see
how useful it is!

Unsuccessful Test Case — Contradict Our Annotations

The last unsuccessful test case I want to run is making sure we violate the data
annotations we've placed on our CommandCreateDto, specifically the [Required]
attribute on one of our properties. To test, reformat the JSON so it’s valid, and remove the
Platform property. Click Send again and you should get the following.

We get another 400 Bad Request Http response, with some detail about the

validation error.

225

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Body Cookies Headers (4) Test Results m
Prety Raw Preview Visualize JSON + 5
1
2 "type": "https://tools.ietf.org/html/rfc72318section-6.5.1",
3 "title": "One or more validation errors occurred.”,
4 "status": 400,
5 "traceld": "|fd@29aeb-4d3274968d399624.",
6 errors”: {
7 "Platform™: [
8 "The Platform field is required.”

Figure 10-15. Bad Request with validation detail

™= Learning Opportunity Test what will happen if you remove the
[Required] attribute from the P1latform property on our CommandCreateDto,
and rerun the same request.

We'll return to testing all our endpoints further in Chapter 11, but for now let’s move
on to implementing our Update endpoints.

The Update Endpoint #1 (PUT)

The next endpoint we want to implement is the first “Update” action which gives us the
ability to fully update a single resource in our DB using a PUT request. A quick reminder
of our high-level definition is shown in the table.

Verb URI Operation Description

PUT /api/commands/{Id} Update (Full) Update all of a single resource (by Id)

226

CHAPTER 10 COMPLETING OUR API ENDPOINTS

As before, I've introduced some other attributes that will help us understand, build,

and test our endpoint more effectively.

Attribute

Description

Inputs (x2)

Process
Success Outputs

Failure Outputs

Safe

I[dempotent

The Id of the resource to be updated. This will be present in the URI of our PUT
request.
The full “command” object to be updated.
This will be added to the request body of our PUT request; an example is
shown here:
{

"howTo": "Example how to",

"platform": "Example platform",

"commandLine": "Example command line"

}
Will attempt to fully update an existing command object in our DB
HTTP 204 No Content response code

HTTP 400 Bad Request
HTTP 404 Not Found
HTTP 405 Not Allowed

No — Endpoint can alter our resources

Yes — Repeating the same operation will not incur a different result

Again, quite straight forward, but I'd call out the following points of note.

Input Object

This is identical to our Create endpoint - does this mean we can reuse our

CommandCreateDto? Theoretically we could, but in the interests of true decoupling, we're

going to create a separate CommandUpdateDto, just to future-proof our solution should

these objects diverge in the future.
The other point of note is that this object does not contain the Id attribute. We do

require it for this operation (otherwise, how would we know which object to update), but

in this case, we get this value from the URI (which is another stipulation of REST), so we

don’t need to double up on it here.

227

CHAPTER 10 COMPLETING OUR API ENDPOINTS

Success Outputs

Very simple in this case, we just supply a 204 No Content http result.

Idempotent

This method is idempotent as you can repeat it multiple times and the result will be the

same.

P en,
- R
B

& Les’ Personal Anecdote The PUT request has fallen out of favor when

compared to the PATCH request these days, mainly due to the fact you have to
supply all the object attributes to be updated, even the ones that are not changing!

This is really inefficient for large objects. Say you have an object with 20 properties
and you only need to change 1, you still have to supply all 20 to the PUT request,
ensuring that you provide the correct (same) value for each of the 19 that are not
changing.

If you inadvertently provide the wrong value or omit it altogether for 1 of the 19,
you could end up in real strife! Cough, cough; | have never done that.

Not only is it problematic/inefficient in this respect; from a network perspective it’s
not optimal; you’re essentially sending potentially large amounts of redundant data
over the wire (or through the air).

The only reason I've included it here is for completeness and because I’'m a nice
guy.

Updating the Repository

Again, starting at the repository level, let’s take a look at the update method signature in
our ICommandRepoAPI interface.

228

CHAPTER 10 COMPLETING OUR API ENDPOINTS

public interface ICommandAPIRepo

{
bool SaveChanges();

I1Enumerable<Command> GetAllCommands();
Command GetCommandById(int id);
void CreateCommand(Command cmd);
void UpdateCommand(Command cmd);

void DeleteCommand(Command cmd);

Figure 10-16. UpdateCommand Interface Method

We accept a Command object (update the database if required), and don’t expect to
pass anything back. You'll notice my choice of words: “update the database ifrequired”;
the reason I've chosen these will become clearer below.

What I'd like to remind you about our repository interface is that it is technology-
agnostic - meaning that it is an interface specification we could use against different
persistence providers, for example, Entity Framework Core, nHibernate, Dapper, etc.
We just so happen to be using it with Entity Framework Core, and we therefore have
to provide a specific, concrete implementation for that ORM. And this is where it gets
weird.

Moving over to our SqlCommandAPIRepo implementation class, update the
UpdateCommand method as follows:

public void UpdateCommand(Command cmd)

{
//We don't need to do anything here

}

Yes, that’s right - it contains “no implementation” - just a smart-arsed comment
from me. I've not gone mad, let me explain.

Remember How Our DB Context Works

Cast your mind back to the lengthy explanation of how EF Core persists data at the start
of this chapter; not only was that just generally useful information to know, but it was
done in expectation of this explanation. This is the payoft.

229

CHAPTER 10 COMPLETING OUR API ENDPOINTS

We will actually perform the update of our existing Command object in our Controller
action, so we don’t need to put any code in our repository implementation. It will
probably become clearer when we come to code it up, but let me explain further how
this will work:

1. The Update action will be called (with the CommandUpdateDto
object in the request Body).

2. Inour controller: Based on the Id in the request URI, we'll search
the DB Context to see if we have an existing Command object with
that Id.

3. Ifitdoesn’t exist: We return a 404 Not Found Result and return.

4. Ifit does exist: We'll “Map” the CommandUpdateDto received in
the request body to the Command object we just received from our
DB Context in Step 2. It is at this point the Command object
is updated in the DB Context. We therefore don’t need any
implementation code in our SqlCommandAPIRepo repository.

5. We call the SaveChanges method on our repository, and the
changes will be persisted to the database.

You may then ask the very valid question: If we don’t need implementation code
here, why not remove it altogether from our repository interface? The answer to that is to
once again remind you that the repository interface is technology agnostic, so while we
don’t require an implementation in this instance, if we choose to switch our persistence
provider, they may require a coded implementation.

So logically speaking it makes sense to specify an Update method signature in our
interface, even if in this instance we don’t need to implement it.

Anyway, with that we’re done with the repository “implementation” and can move
on to the DTO.

CommandUpdateDto

As recently described, we're going to expect a CommandUpdateDto in our request body
and map it over to the Command retrieved from our DB Context. To enable this, create a
file in the Dtos folder called CommandUpdateDfto.cs, and add the following code:

230

CHAPTER 10 COMPLETING OUR API ENDPOINTS

using System.ComponentModel.DataAnnotations;

namespace CommandAPI.Dtos

{
public class CommandUpdateDto

{
[Required]
[MaxLength(250)]
public string HowTo {get; set;}

[Required]
public string Platform {get; set;}

[Required]
public string CommandLine {get; set;}

This is exactly the same as our CommandCreateDto, but we’ll maintain a separate
instance for future-proofing purposes. Save the file, and move on to updating out
AutoMapper profile mappings.

Update the AutoMapper Profile

We need to add a mapping with the CommandUpdateDto as the mapping source and the
Command model as the target, so update the CommandsProfile class with the following

mapping entry:
using AutoMapper;

using CommandAPI.Dtos;
using CommandAPI.Models;

namespace CommandAPI.Profiles

{

public class CommandsProfile : Profile

{
public CommandsProfile()

{

231

CHAPTER 10 COMPLETING OUR API ENDPOINTS

//Source » Target

CreateMap<Command, CommandReadDto>();
CreateMap<CommandCreateDto, Command>();
CreateMap<CommandUpdateDto, Command>();

I don’t believe at this stage we require any further explanation on this!

Updating the Controller

Moving back to our controller, we need to add a new controller action to host our new
endpoint, so in the CommandsController class, add the following code to achieve this:

[HttpPut("{id}")]
public ActionResult UpdateCommand(int id, CommandUpdateDto
commandUpdateDto)

{

var commandModelFromRepo = repository.GetCommandById(id);
if (commandModelFromRepo == null)

{
return NotFound();

}

_mapper .Map (commandUpdateDto, commandModelFromRepo);

_repository.UpdateCommand(commandModelFromRepo);
_repository.SaveChanges();

return NoContent();

}

Let’s walk through the code.

232

CHAPTER 10 COMPLETING OUR API ENDPOINTS

I[HttpPut("{id}"}] 0

public ActionResult UpdateComman4(int id, CommandUpdateDto commaﬂdUpdateDto)‘
|

var commandModelFromRepo = _repository.GetCommandById(id); |o
if (commandModelFromRepo == null)

{ 4
return NotFound();

}
_mapper.Map(commandUpdateDto, commandModelFromRepo); e

_repository.UpdateCommand (commandModelFromRepo); 6

_repository.SaveChanges() ,o

return NoContent(); e

}

Figure 10-17. UpdateCommand Controller Action Implementation

1. HitpPut

We decorate the UpdateCommand method with the [HttpPut] attribute (no real
controversy there), but we also expect an Id as part of the route; this means this endpoint
will respond to the class-wide route plus the Id, so

api/commands/{id}

2 Inputs

The UpdateCommand method expects two parameters:

1. id: this is the id passed in from the route, which equates to the
unique id of the resource we want to attempt update.

2. commandUpdateDto: this is the object passed in in the request
body.

3. Attempt Command Resource Retrieval

We make use of the id passed in from the route and, using our existing repository
method, GetCommandById, attempt to retrieve it. Irrespective of the result, we place the
result of this operation in commandModelFromRepo.

233

