
183

•	 This should place the auto-generated GUID into the xml elements

specified; see the following example.

Now save your file.

�Deciding Your Secrets
Now we come to actually adding our secrets via The Secret Manager Tool, which will

generate a secrets.json file.

Figure 8-12.  Select this GUID Format

Figure 8-13.  GUID Inserted into the .CSPROJ File

Chapter 8 Environment Variables and User Secrets

184

Before we do that though, we have a decision to make in regard to our connection

string. Do we

	 1.	 Want to store our entire connection string as a single secret.

	 2.	 Store our User Id and Password as individual secrets and retain

the remainder of the connection string in the appsettings.
Developent.json file.

Either will work, but I’m going to go with option 2 where we will store the individual

components as “secrets.”

So, to add our two secrets:

•	 Ensure you have generated the GUID as described earlier, and save

the .csproj file.

•	 At a terminal command (and make sure you’re “inside” the

CommandAPI project folder), type

dotnet user-secrets set “UserID” “cmddbuser”

You should get a “Successfully saved UserID…” message.

Repeat the same step and add the “Password” secret

dotnet user-secrets set “Password” “pa55w0rd!”

Again, you should get a similar success message.

�Where Are They?
So where did our secrets end up? That’s right, in our secrets.json file. You can find this

file in a system-protected user profile folder on your local machine at the following

location:

Figure 8-14.  Adding our first user secret

Chapter 8 Environment Variables and User Secrets

185

•	 Windows: %APPDATA%\Microsoft\UserSecrets\<user_secrets_id>\

secrets.json

•	 Linux/OSX: ~/.microsoft/usersecrets/<user_secrets_id>/

secrets.json

So, on my machine, it can be found here.5

Open this file, and have a look at the contents:

{

 "UserID": "cmddbuser",

 "Password": "pa55w0rd!"

}

It’s just a simple, non-encrypted JSON file.

�Code It Up
OK, so now to the really exciting bit where we’ll actually use these secrets to build out

our full connection string.

�Step 1: Remove User ID and Password

We want to remove the “offending articles” from our existing connection string in our

appsettings.Development.json file.

Figure 8-15.  Location of Secrets.Json on Windows

5�On Windows you may need to ensure that you can see “Hidden items”; there is a tick box on the
View ribbon on Windows Explorer where you can set this.

Chapter 8 Environment Variables and User Secrets

186

So our appsettings.Development.json file should now contain only

{

 "Logging": {

 "LogLevel": {

 "Default": "Debug",

 "System": "Information",

 "Microsoft": "Information"

 }

 },

 "ConnectionStrings":

 {

 "PostgreSqlConnection":

 "Host=localhost;Port=5432;Database=CmdAPI;Pooling=true;"

 }

}

Make sure you save your file.

�Step 2: Build Our Connection String

Move over into our Startup class, and add the following code to the ConfigureServices

method (noting the inclusion of the new using statement at the top):

.

.

.

using Npgsql;

Figure 8-16.  Removal of sensitive connection string attributes

Chapter 8 Environment Variables and User Secrets

187

namespace CommandAPI

{

 public class Startup

 {

 public IConfiguration Configuration {get;}

 �public Startup(IConfiguration configuration) => Configuration =

configuration;

 public void ConfigureServices(IServiceCollection services)

 {

 var builder = new NpgsqlConnectionStringBuilder();

 builder.ConnectionString =

 Configuration.GetConnectionString("PostgreSqlConnection");

 builder.Username = Configuration["UserID"];

 builder.Password = Configuration["Password"];

 services.AddDbContext<CommandContext>

 (opt => opt.UseNpgsql(builder.ConnectionString));

 services.AddControllers();

 services.AddScoped<ICommandAPIRepo, SqlCommandAPIRepo>();

 }

.

.

.

Again, for clarity I’ve circled the new/updated sections below:

Chapter 8 Environment Variables and User Secrets

188

	 1.	 We need to add a reference to Npqsql in order to use

NpgsqlConnectionStringBuilder.

	 2.	 This is where we

	 a.	 Create a NpgsqlConnectionStringBuilder object, and pass in our

“base” connection string PostgreSqlConnection from our appsettings.
Development.json file.

	 b.	 Continue to “build” the string by passing in both our UserID and Password

secret from our secrets.json file.

	 3.	 Replace the original connection string with the newly constructed

string using our builder object.

Save your work, build it, then run it. Fire up Postman, and issue our GET request to

our API. You should get a success!

Figure 8-17.  Updated Startup class

Chapter 8 Environment Variables and User Secrets

189

Celebration Checkpoint  You have now dynamically created a connection
string using a combination of configuration sources, one of which is User Secrets
from our secrets.json file!

Just cast your mind back to the following diagram.

The .NET Configuration layer by default provides us access to the configuration

sources as shown in Figure 8-18; in this case we used a combination of 2 + 3.

�Wrap It Up
Again, we covered a lot in this chapter; the main points are

•	 We moved our connection string to a development-only config file:

appsetting.Development.json.

•	 We removed the sensitive items from our connection string.

Figure 8-18.  Revisit of precedence

Chapter 8 Environment Variables and User Secrets

190

•	 We moved the sensitive items (User ID and Password) to secrets.json

via The Secret Manager Tool.

•	 We constructed a fully working connection string using a

combination of configuration sources.

All that’s left to do is commit all our changes to Git then push up to GitHub!

Moving over to our repository and taking a look in the appsettings.Development.
json file, we see an innocent connection string without user credentials (the secrets.json

file is not added to source control)!

Figure 8-19.  Clean Appsettings.json on GitHub

Chapter 8 Environment Variables and User Secrets

191
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_9

CHAPTER 9

Data Transfer Objects
�Chapter Summary
In this chapter we’ll complete the final piece of our architectural puzzled and introduce

Data Transfer Objects.

�When Done, You Will
•	 Understand what Data Transfer Objects (DTOs) are.

•	 Understand why you should use DTOs.

•	 Have started to implement DTOs in our solution.

�Architecture Review
Outlining what we’ve either (a) started to implement or (b) fully implemented, our

architectural is evolving nicely.

https://doi.org/10.1007/978-1-4842-6255-9_9#DOI

192

To summarize, we’ve

•	 Fully implemented our Model

•	 Fully implemented our Repository Interface

•	 Partially implemented our Concrete Repository Implementation

(using the DB Context)

•	 Fully implemented our DB Context

•	 Fully implemented our Database

•	 Partially completed our Controller (we still have four actions to

complete)

Figure 9-1.  Architecture Progress

Chapter 9 Data Transfer Objects

193

We have not yet started on the DTOs, so that is what we’ll turn our attention to in this

chapter.

�The What and Why of DTOs
To answer both what DTOs are and why you’d use them, let’s take a look at what we have

implemented so far:

•	 We have implemented two Controller Actions that return serialized

Command objects to the consumer.

What’s wrong with that?

We are basically exposing “internal” domain detail out to our consumers; this has the

following potential consequences:

•	 We may be exposing “sensitive” information.

•	 We may be exposing irrelevant information.

•	 We may be exposing information in the wrong format.

•	 We have “coupled” our internal implementation to our external

contract, so changing our internals will be difficult if we want to

maintain our contract (or we break the contract altogether – not

advised).

This is not a great situation – so what is the answer?

�Decouple Interface from Implementation (Again)
Again (similar to what we did with our repository), we want to decouple our external

contract (our interface) from our internal implementation (our Domain model). This is

where DTOs come in; observe the following diagram:

Chapter 9 Data Transfer Objects

194

DTOs are “mapped” to our internal Domain Model classes and represented

externally as part of the contract, thus decoupling our implementation from our

interface. We can then benefit from

•	 Change Agility: We can feel free to change our internal

implementation, and as long as we perform the appropriate mapping

back to our DTO, our interface remains intact.

•	 We can remove both sensitive and irrelevant implementation detail

from our DTOs

•	 As part of our “mapping” operation, we can augment our internal

representations and present them in an entirely new way (e.g.,

combining First and Last name and presenting externally as Full

Name).

Taking it further, depending on what type of operation we are performing (Read,

Create, Update, etc.), we may employ different variants of our DTO to cater for each, as

shown below.

Figure 9-2.  Example of Read DTO

Chapter 9 Data Transfer Objects

195

I’ll explain this concept as we start to implement; just bear it in mind for now. With

that I think we should move on to coding.

�Implementing DTOs
To implement DTOs, we need to do the following:

•	 Create our DTO classes.

•	 Figure out how to perform the “mapping” mentioned previously.

The first point is actually very straightforward, but it is the second point that

introduces more options and/or complexity. We could simply perform the mapping

operations manually in code we write ourselves, and while this may be ok for small

objects, as our models grow in size and complexity, this would become

•	 Tiresome

•	 Error-prone

Therefore, we are going to employ an automation framework (called AutoMapper)

to perform the mapping function for us. While this does require a little bit more upfront

effort, believe me it’s worth it! Before we get involved with AutoMapper, let’s start with

implementing our DTO classes.

Figure 9-3.  We can have DTOs for different actions

Chapter 9 Data Transfer Objects

196

�Create Our DTOs
Back in API Project (make sure the webserver has stopped), add a new folder to the root

of our API project called Dtos, and add a file to it called CommandReadDto.cs as shown

in Figure 9-4.

As the name suggests, we will use this DTO when we perform any read operation, so

in effect this is the object that will be serialized and sent back to the client whenever they

perform a GET request.

Now at this point, you may ask yourself the question: Won’t the DTO be exactly the

same as our Command model? And to be honest, yes it will, but is nonetheless still a valid

use case. With that in mind, complete the code for our DTO as follows:

namespace CommandAPI.Dtos

{

 public class CommandReadDto

 {

 public int Id {get; set;}

 public string HowTo {get; set;}

 public string Platform {get; set;}

Figure 9-4.  New Dtos Folder and CommandReadDto.cs file

Chapter 9 Data Transfer Objects

197

 public string CommandLine {get; set;}

 }

}

You can see this has more than a passing resemblance to our Command model. You

will notice though that in this case, there are no Data Annotations (we will be utilizing

them again, just not for this DTO).

And that’s essentially it for our first DTO class – I told you it was simple. We now need

to move on to setting up AutoMapper.

�Setting Up AutoMapper
The first thing we need to do is install another package in our API Project, so ensure

the webserver is not running (CTRL + C if it is), and at a command prompt “in” the API

project folder (CommandAPI), enter the following:

dotnet add package AutoMapper.Extensions.Microsoft.DependencyInjection

This will install the AutoMapper package; confirm this by checking the .csproj file for

the API project, and you should see something similar to Figure 9-5.

Figure 9-5.  Reference to Automapper

Chapter 9 Data Transfer Objects

198

To use AutoMapper we move over to our Startup class and register it in our Service

Container by adding the following lines (making it available to us throughout our

application via our old friend Dependency Injection):

.

using AutoMapper;

.

.

.

services.AddControllers();

//Add the line below

services.AddAutoMapper(AppDomain.CurrentDomain.GetAssemblies());

services.AddScoped<ICommandAPIRepo, SqlCommandAPIRepo>();.

To put it in context, I’ve highlighted those new inclusions in Figure 9-6.

Figure 9-6.  AutoMapper service registered

Chapter 9 Data Transfer Objects

199

Note T he registration of Automapper can really be placed anywhere in the
ConfigureServices method; I’ve just chosen to place it here in case you’re
wondering. For more detail on how to use AutoMapper with Dependency Injection
in .NET Core, refer to the AutoMapper Docs.1

That’s our setup of AutoMapper complete – see, it wasn’t that bad; we now need to

move onto using it.

�Using AutoMapper
In order to use AutoMapper, we need somewhere to configure the mapping of our

Model to our DTO, in this case mapping Command to CommandReadDto, and we do

that via a “profile.” To start using AutoMapper profiles, create another folder in the

root of our CommandAPI project called Profiles, and in there create a file called

CommandsProfile.cs as so.

1�https://docs.automapper.org/en/stable/Dependency-injection.html#asp-net-core

Figure 9-7.  New Profiles folder and CommandsProfile.cs file

Chapter 9 Data Transfer Objects

https://docs.automapper.org/en/stable/Dependency-injection.html#asp-net-core

200

Now add the following code to the file:

using AutoMapper;

using CommandAPI.Dtos;

using CommandAPI.Models;

namespace CommandAPI.Profiles

{

 public class CommandsProfile : Profile

 {

 public CommandsProfile()

 {

 CreateMap<Command, CommandReadDto>();

 }

 }

}

The class can be explained in Figure 9-8.

	 1.	 Our class inherits from Automapper.Profile.

	 2.	 We add a simple class constructor.

Figure 9-8.  Our first AutoMapper Mapping

Chapter 9 Data Transfer Objects

201

	 3.	 We use the CreateMap method to map our source object (Command)

to our target object (CommandReadDto).

And that’s our mapping complete. It’s so straightforward in our case as the property

names of both classes are identical; AutoMapper can derive the mappings easily.

Finally, we want to update our Controller to return our DTO representation

(CommandReadDto) instead of Command Model for both our GET Actions. Before we do that

though, we need to make AutoMapper “available” to our Controller. Any ideas how we

do that?

For those of you that said Constructor Dependency Injection, well done! That’s exactly

what we’re going to do. So over in our Controller, add the following highlighted code:

.

.

using AutoMapper;

using CommandAPI.Dtos;

namespace CommandAPI.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class CommandsController : ControllerBase

 {

 private readonly ICommandAPIRepo _repository;

 private readonly IMapper _mapper;

 public CommandsController(ICommandAPIRepo repository, IMapper mapper)

 {

 _repository = repository;

 _mapper = mapper;

 }

.

.

.

To explain what we’ve done, have a look at the changes in context in Figure 9-9.

Chapter 9 Data Transfer Objects

202

	 1.	 Added our two new using directives.

	 2.	 Created a new read-only field to hold an instance of IMapper.

	 3.	 An instance of IMapper will be injected by the DI system into our

constructor.

	 4.	 We assign our injected instance to the private member _mapper

for further use.

This pattern should be very familiar to you now as we have used it multiple times

within our API; the only point of note is that you can see we can inject multiple instances

into our Constructor.

We can now update our two existing controller actions to make use of AutoMapper

and return our DTO representation to our consumers as shown by the highlighted code

in the following:

.

.

[HttpGet]

Figure 9-9.  Injecting AutoMapper into the controller

Chapter 9 Data Transfer Objects

203

public ActionResult<IEnumerable<CommandReadDto>> GetAllCommands()

{

 var commandItems = _repository.GetAllCommands();

 return Ok(_mapper.Map<IEnumerable<CommandReadDto>>(commandItems));

}

[HttpGet("{id}")]

public ActionResult<CommandReadDto> GetCommandById(int id)

{

 var commandItem = _repository.GetCommandById(id);

 if (commandItem == null){

 return NotFound();

 }

 return Ok(_mapper.Map<CommandReadDto>(commandItem));

}

.

.

The changes are shown and explained in Figure 9-10.

Figure 9-10.  Use of Automapper in our 2 GET Controller Actions

Chapter 9 Data Transfer Objects

204

	 1.	 We ensure our ActionResult return type is changed from Command

to CommandReadDto.

	 2.	 We call the Map method on our _mapper instance. It maps

our collection of Command objects to an IEnumerable of

CommaneReadDtos that we return in our OK method.

	 3.	 We ensure our ActionResult return type is changed from Command

to CommandReadDto.

	 4.	 Does the same thing as #1, except we are working with a single

Command object as the source and returning (if available) a single

CommandReadDto object in our OK method.

Save all your code and run as before.

The “problem” is that it looks exactly the same as before (well it’s not a problem;

technically it’s working). So just to demonstrate what is possible with DTOs, let’s

comment out the Platform property on our CommandReadDto, as shown here:

Figure 9-11.  CommandReadDTO Returned

Chapter 9 Data Transfer Objects

205

namespace CommandAPI.Dtos

{

 public class CommandReadDto

 {

 public int Id {get; set;}

 public string HowTo {get; set;}

 //Comment out the line below

 //public string Platform {get; set;}

 public string CommandLine {get; set;}

 }

}

Once you’ve saved your changes, restart the webserver and rerun your Postman

query.

You’ll see that our DTO representation has in fact been returned! Once you’re happy,

revert those changes so we’re returning the full object.

Figure 9-12.  CommandReadDto returned with platform removed

Chapter 9 Data Transfer Objects

206

A quick look at our application architecture and you can see that we have now

completed the groundwork for all our architectural components (although some

components are only partially complete as depicted in Figure 9-13):

We can leave DTOs there for now, but we will return to them as we build out our

remaining controller actions next.

Figure 9-13.  Architecture Check

Chapter 9 Data Transfer Objects

207
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_10

CHAPTER 10

Completing Our API
Endpoints
�Chapter Summary
In the last few chapters, we have put a lot of work into the underlying architectural fabric

of our API, but we’ve only implemented two of our endpoints (controller actions). In this

chapter we address this and move up a gear to finalize our remaining four endpoints.

�When Done, You Will
•	 Understand how data changes are persisted by Entity Framework

Core.

•	 Have fully implemented our Create (POST) resource endpoint.

•	 Have fully implemented our two Update (PUT and PATCH) resource

endpoints.

•	 Have fully implemented our Delete (DELETE) resource endpoint.

•	 Understand more about REST best practice.

�Persisting Changes in EF Core
So far, we have used an EF Core DB Context (via our Repository) to read data from our

PostgreSQL database and return it to our consumer (using DTOs). These endpoints are

considered “safe” as they cannot change the data in our database; they can only read it.

https://doi.org/10.1007/978-1-4842-6255-9_10#DOI

208

Our four remaining endpoints, (shown below) are slightly more dangerous in that

they are able to change the data in our database, or to use a slightly more dramatic term –

they are considered “unsafe.”

Verb URI Operation Description

POST /api/commands Create Create a new resource

PUT /api/commands/{Id} Update (full) Update all of a single resource (by Id)

PATCH /api/commands/{Id} Update (partial) Update part of a single resource (by Id)

DELETE /api/commands/{Id} Delete Delete a single resource (by Id)

The reason I’m calling out this fairly obvious point is because I want to shine a

little light on how changes to data occur in EF Core and in particular when using a DB

Context, as it becomes relevant in the sections that follow.

�DB Context Tracks Changes
Let’s take a simple example of adding a new Command resource to the PostgreSQL DB;

using our DB Context, we will

	 1.	 Obtain the Command object to be added (don’t worry where we get

this for now).

	 2.	 Add that Command object to the CommandItems DBSet in our DB

Context.

	 3.	 Save the changes pending on the DB Context.

	 4.	 Changes will then be reflected in the PostgreSQL database.

The point I’m making here is that just by adding (or removing/updating) objects on

our DB Context does not mean those changes will be automatically reflected down on the

PostgreSQL database. We need to further Save the pending changes for that to happen.

What you can take from this is that the DB Context tracks (multiple) changes to the

data “internally,” be they create, update, or delete operations, but will only persist those

changes to the DB when we explicitly tell it to – by Saving Changes.

Again, I wanted to call that out here, as it becomes relevant in a couple of areas as we

move into implementing our remaining endpoints.

Chapter 10 Completing Our API Endpoints

209

�The Create Endpoint (POST)
The next endpoint we want to implement is the “Create” endpoint, which gives us the

ability to add resources to our DB. A quick reminder of our high-level definition is shown

here.

Verb URI Operation Description

POST /api/commands Create Create a new resource

We’ll also introduce some other attributes that will help us understand, build, and

ultimately test our endpoint; they are shown in the following table.

Attribute Description

Inputs (x1) The “command” object to be created.

This will be added to the request body of our POST request; an example is

shown here:

{

 "howTo": "Example how to",

 "platform": "Example platform",

 "commandLine": "Example command line"

}

Process Will attempt to add a new command object to our DB

Success

Outputs

•  HTTP 201 Created Status

• N ewly Created Resource (response body)

•  URI to newly created resource (response header)

Failure Outputs •  HTTP 400 Bad Request

•  HTTP 405 Not Allowed

Safe No – Endpoint can alter our resources

Idempotent No – Repeating the same operation will incur a different result

Most of this should make sense, but there are probably three callouts for me before

we move onto coding.

Chapter 10 Completing Our API Endpoints

210

�Input Object
You’ll notice that the object we can expect to attach to the request body in order to

create a resource does not contain an “Id” attribute – why is that? Simply because the

responsibility for creating a unique id has been devolved down to our PostgreSQL

Database. When a new row is inserted to our CommandItems table, it is at that point that

a new (unique) id will be created for us. (You should remember this when we manually

added data to our DB via SQL commands in Chapter 7.)

Learning Opportunity  As our input command object is different to our
internal domain command model, what technique could we use to deal with this?

�Success Outputs
The issuing of a 201 Created Http Status code is self-explanatory, but what you may not

have expected is that we should pass back both:

•	 The newly created resource (with Id)

•	 A URI (or “route”) to where we can obtain that resource again if

needed

The second point in particular is to allow us to align with the REST architectural

principles, so we’ll follow it here in our API. Further discussion on this can be found in

this article on REST.1

�Idempotency
I’ve already mentioned “safety” in the opening to this chapter, but I’ve also included

whether this endpoint is “idempotent.” What is idempotency?

An operation is idempotent when performing the same operation again gives the same

result.

So, in the case of our create endpoint, the first time we fire off a request (assuming it’s

successful), we’ll get the newly created resource returned. If we perform the exact same

1�https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 10 Completing Our API Endpoints

https://en.wikipedia.org/wiki/Representational_state_transfer

211

request again, we’ll get a different result. Why? Because we’ll have created a whole new

resource (with a new Id) in addition to the first one. Our create endpoint is therefore not

idempotent.

Compare that with one of our existing GET requests; we can perform the same

request time and time again and get the same result – these are idempotent.

Why have I included this? Simply because I’ve seen the use of the term increase

dramatically over the short term (although the concept is not new), so I would be doing

you a disservice if I didn’t introduce it to you here.

Enough theory – lets code.

�Updating the Repository
Let’s work from “the ground up” and return to our repository. Refer to Figure 10-1 that

details the repository interface definition ICommandAPIRepo.

We can see that for the highlighted repository method, we simply require a Command
object to be passed in (and, as inferred, added to our DB Context – and ultimately
our PostgreSQL database). We don’t expect anything returned back. Moving over to
our concrete implementation, SqlCommandAPIRepo, add the following code to the
CreateCommand method (making sure to include the using System namespace):

using System
.
.

.

Figure 10-1.  CreateCommand Repository Method

Chapter 10 Completing Our API Endpoints

212

public void CreateCommand(Command cmd)

{

 if(cmd == null)

 {

 throw new ArgumentNullException(nameof(cmd));

 }

 _context.CommandItems.Add(cmd);

}

To put these in context, see Figure 10-2.

	 1.	 We check to see if the object passed in is null, and if so throw an

exception (this case will be caught in our controller when it comes

to validate the command model we have; however, we don’t know

where else our repository implementation may be used, so it’s

good practice to put code like this in any way).

	 2.	 Using our DB Context instance (_context), we reference our

CommandItems DB Set and call the Add method, passing in our

Command object.

Going back to our discussion on how data is persisted in EF Core, you’ll be aware

that just calling this method will not persist our changes down to the DB; at this point we

only have the Command object added to the DB Context/DB Set.

Figure 10-2.  Implementation of CreateCommand

Chapter 10 Completing Our API Endpoints

213

�Implement SaveChanges

Returning once again to our repository interface definition, ICommandAPIRepo, you’ll

remember a mysterious method definition (well probably not that mysterious anymore).

Well we need to implement that now in our concrete implementation, so back over

in SqlCommandAPIRepo, add the following code to the SaveChanges method:

public bool SaveChanges()

{

 return (_context.SaveChanges() >= 0);

}

In context, these changes look like this.

Figure 10-3.  The SaveChanges Interface method

Figure 10-4.  Implementation of SaveChanges

Chapter 10 Completing Our API Endpoints

214

	 1.	 Call the SaveChanges method on our DB Context; this replicates

all pending changes on the DB Context down to the PostgreSQL

DB and persists them.

	 2.	 We use this comparison operator to return true if the result of

save changes is greater than or equal to 0 (this will be a positive

integer reflecting the number of entities affected or of course 0 if

none are2).

We’ll use the SaveChanges repository operator from our Controller, and we’ll use

it for all four of our remaining “unsafe" endpoints in order to persist data (not just our

Create endpoint).

That’s our repository sorted for our Create method, what’s next?

�CommandCreateDto
Earlier in this chapter I asked what technique could we use to deal with the fact that

the representation of the command resource we expect from our POST request will be

different to our internal command model? For those of you that answered with “DTOs,”

give yourself a pat on the back – yes we’re going to use a DTO to represent the input for

our command resource and, using AutoMapper, map it back to an internal command

model we can pass over to our repository, I’ve shown a slightly simplified version of this

scenario in Figure 10-5.

2�https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.
dbcontext.savechanges

Chapter 10 Completing Our API Endpoints

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges

215

�Create the New DTO

Back over in our project, create a file called CommandCreateDto.cs in the Dtos folder

as so.

Figure 10-5.  CommandCreate DTO Example

Figure 10-6.  CommandCreateDTO.cs created

Chapter 10 Completing Our API Endpoints

216

Into that file add the following code:

using System.ComponentModel.DataAnnotations;

namespace CommandAPI.Dtos

{

 public class CommandCreateDto

 {

 [Required]

 [MaxLength(250)]

 public string HowTo { get; set; }

 [Required]

 public string Platform { get; set; }

 [Required]

 public string CommandLine { get; set; }

 }

}

This is exactly the same as our internal command model (noting we have included the

use of annotations), except that we have not included the Id property. Make sure you

remember to save the file.

�Update the AutoMapper Profile

You’ll remember we had to create a profile mapping for our first DTO, which mapped

our “source” (a command model) to a target (our CommandReadDto). Well we have to do

the exact same thing here; we just have to be careful with what our “source” is vs. what

our “target” is. So over in the CommandsProfile.cs file in the Profiles folder, add the

following mapping:

public class CommandsProfile : Profile

{

 public CommandsProfile()

 {

 //Source ➤ Target

 CreateMap<Command, CommandReadDto>();

Chapter 10 Completing Our API Endpoints

217

 CreateMap<CommandCreateDto, Command>();

 }

}

I won’t display the usual “code in context” image for explanation purposes as I feel

this is straightforward, but in essence our “source” is the CommandCreateDto (as will be

supplied in our POST request body), and the target is our internal Command model.

So with

•	 The new CommandCreateDto created

•	 An updated AutoMapper mapping profile

We can move on to implementing our controller action (our Create endpoint).

�Updating the Controller
So fair warning, although the code for our next action is not particularly large in volume,

there are a lot of concepts in this section. Thinking about the best way to present it to

you, I’d decided to include all the code in one go (rather than layering it up which I feel

would not translate well to the written page and be more confusing than helpful). Don’t

worry, we go through it all line by line by way of explanation afterward.

So over in our CommandsController class, add the following code to create our new

controller action:

[HttpPost]

public ActionResult <CommandReadDto> CreateCommand

 (CommandCreateDto commandCreateDto)

{

 var commandModel = _mapper.Map<Command>(commandCreateDto);

 _repository.CreateCommand(commandModel);

 _repository.SaveChanges();

 var commandReadDto = _mapper.Map<CommandReadDto>(commandModel);

 return CreatedAtRoute(nameof(GetCommandById),

 new {Id = commandReadDto.Id}, commandReadDto);

}

Chapter 10 Completing Our API Endpoints

218

To put those changes in context, see Figure 10-7.

Let’s go through this:

�1. HttpPost

We decorate the action with [HttpPost], which I feel is straightforward enough. As

mentioned before, this action will respond to the Class-wide route of

api/commands

with the POST verb, which in combination makes it unique to this Controller.

�2. Return DTO Type

As described in the endpoint attributes, we expect to return the newly created resource

as part of our response back to the consumer. In this instance (as with our existing two

GET actions), we return a CommandReadDto.

Figure 10-7.  CreateCommand Implementation

Chapter 10 Completing Our API Endpoints

219

�3. Input DTO Type

Our action expects CommandCreateDto as input, fair enough, but where does that

come from? As mentioned, when we come to using Postman to test this, we’ll place a

“CommandCreateDto” in the body of the request, as shown next.

Important  Don’t test this Action yet as we still have some more code changes to
make before it’ll work; I’ve just shown the Body payload in Figure 10-8 to illustrate
this point.

But that still doesn’t answer the question of how does our action “know” to get this

data from the Body of the request and pass it in as the commandCreateDto parameter.

The answer to that is Binding Sources.

A controller action can derive its inputs from a number of Binding Sources:

•	 From the Query String

•	 From the Route (we obtain the Id attribute in our URI form here)

•	 From the Request Body

•	 From Form fields

•	 From the Request Header

Figure 10-8.  POST Request in Postman

Chapter 10 Completing Our API Endpoints

220

We can explicitly tell our action where to locate this data or we can fall back on

the default behaviors provided to us. For controllers that are decorated with the

[ApiController] attribute (as ours is), the default location of model objects is the

request Body.

Therefore, the commandCreateDto parameter of our action will be populated with the

object we provide in our POST request body.

For a deeper discussion in this, I’d refer you to the Microsoft docs.3

�4. Map Our CommandCreateDto to a Command Object

In this step we make use of our AutoMapper profile mapping and, taking our input

commandCreateDto, map it to a newly created Command object.

�5. Persist Our Data

In these two steps, we take the newly created Command model from step 4 and pass it to

the CreateCommand method of our repository.

We then call the SaveChanges method on our repository to persist the changes down

to the PostgreSQL DB.

�6. Map Our Created Command Back to a CommandReadDto

We have already said that we need to pass back a CommandReadDto as part of our

endpoint specification, so we do this once again using AutoMapper, to map the newly

created Command object back to a CommandReadDto. What is of note here is that as we have

persisted the Command to the PostgreSQL DB; we now have access to the Id attribute (by

reference), which is needed going forward – see step 7.

�7. Created at Route

Then finally we return CreatedAtRoute (see definition on Microsoft Docs4) where we:

•	 Specify the “route” where our Created resource resides (more on this

below).

3�https://docs.microsoft.com/en-us/aspnet/core/mvc/models/
model-binding?view=aspnetcore-3.1

4�https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.
createdatroute

Chapter 10 Completing Our API Endpoints

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute

221

•	 The Id of the resource (used to generate the route).

•	 Content value of the body returned.

To summarize, this method will

•	 Return a 201 – Created Http status code.

•	 Pass back the created resource in the body response.

•	 Pass back the URI (or route if you prefer) in the response header.

It basically fulfills the desired behavior of our Create endpoint. If we take a look at

this method again, we need to explore one item a little further.

The first parameter of CreatedAtRoute is the routeName which in our case is

just the existing GET action that returns a single resource based on a supplied Id:

GetCommandById. In order for the call to CreatedAtRoute to work, we need to return to

the GetCommandById action and “name” it.

So, staying in our controller code, make the necessary highlighted changes to the

GetCommandById action:

[HttpGet("{id}", Name="GetCommandById")]

public ActionResult<CommandReadDto> GetCommandById(int id)

{

 var commandItem = _repository.GetCommandById(id);

 if (commandItem == null)

Figure 10-9.  CreatedAtRoute Route Name Parameter

Chapter 10 Completing Our API Endpoints

222

 {

 return NotFound();

 }

 return Ok(_mapper.Map<CommandReadDto>(commandItem));

}

I’ve highlighted what’s changed in Figure 10-10.

We have explicitly named our action so the call from CreatedAtRoute resolves

correctly.

Phew! I told you there was a lot to this action – don’t worry the remaining actions are

not that complex.

All that remains to do is perform some manual tests.

�Manually Testing the Create Endpoint
Before you do anything else, make sure you save all your code (we’ve made quite a few

changes), and perform a dotnet build just to check for errors. Assuming all is well, run

up your server and move over to Postman.

�Successful Test Case

Here we’ll supply the necessary inputs to generate a successful outcome; take a look at

my Postman setup in Figure 10-11.

Figure 10-10.  Naming our GetCommandById method

Chapter 10 Completing Our API Endpoints

223

	 1.	 Ensure POST is the selected verb.

	 2.	 Make sure the route is correct (note there is no Id passed).

	 3.	 Select “Body” for the request.

	 4.	 Set “Raw” and “JSON” for the request body data type.

	 5.	 Supply a valid JSON object that adheres to our

CommandCreateDto.

With all that set up, click Send and you should get the following response.

•	 201 Http Created Status Code.

•	 The newly created resource with Id.

Figure 10-11.  Test our CreatCommand Endpoint

Figure 10-12.  Successful 201 Result

Chapter 10 Completing Our API Endpoints

224

Selecting the Headers Tab, you should get the following.

Looks good!

Learning Opportunity  What else can you do to check that the resource has
been created?

�Unsuccessful test Case – Badly Formed JSON

Let’s issue that exact same request, but this time make some change to the JSON body

(e.g., remove all the commas) so that we have badly formed JSON. Click Send, and you

should see the following.

Figure 10-13.  URI of our newly created resource is returned in the header

Chapter 10 Completing Our API Endpoints

225

We get a Http 400 – Bad request along with some helpful guidance on what’s wrong.

We didn’t specifically code this behavior in our controller action – we get this behavior

by default as we have decorated our controller with the [ApiController] attribute – see

how useful it is!

�Unsuccessful Test Case – Contradict Our Annotations

The last unsuccessful test case I want to run is making sure we violate the data

annotations we’ve placed on our CommandCreateDto, specifically the [Required]

attribute on one of our properties. To test, reformat the JSON so it’s valid, and remove the

Platform property. Click Send again and you should get the following.

We get another 400 Bad Request Http response, with some detail about the

validation error.

Figure 10-14.  Bad request

Chapter 10 Completing Our API Endpoints

226

Learning Opportunity  Test what will happen if you remove the
[Required] attribute from the Platform property on our CommandCreateDto,
and rerun the same request.

We’ll return to testing all our endpoints further in Chapter 11, but for now let’s move

on to implementing our Update endpoints.

�The Update Endpoint #1 (PUT)
The next endpoint we want to implement is the first “Update” action which gives us the

ability to fully update a single resource in our DB using a PUT request. A quick reminder

of our high-level definition is shown in the table.

Verb URI Operation Description

PUT /api/commands/{Id} Update (Full) Update all of a single resource (by Id)

Figure 10-15.  Bad Request with validation detail

Chapter 10 Completing Our API Endpoints

227

As before, I’ve introduced some other attributes that will help us understand, build,

and test our endpoint more effectively.

Attribute Description

Inputs (x2) The Id of the resource to be updated. This will be present in the URI of our PUT

request.

The full “command” object to be updated.

This will be added to the request body of our PUT request; an example is

shown here:

{

 "howTo": "Example how to",

 "platform": "Example platform",

 "commandLine": "Example command line"

}

Process Will attempt to fully update an existing command object in our DB

Success Outputs •  HTTP 204 No Content response code

Failure Outputs •  HTTP 400 Bad Request

•  HTTP 404 Not Found

•  HTTP 405 Not Allowed

Safe No – Endpoint can alter our resources

Idempotent Yes – Repeating the same operation will not incur a different result

Again, quite straight forward, but I’d call out the following points of note.

�Input Object
This is identical to our Create endpoint – does this mean we can reuse our

CommandCreateDto? Theoretically we could, but in the interests of true decoupling, we’re

going to create a separate CommandUpdateDto, just to future-proof our solution should

these objects diverge in the future.

The other point of note is that this object does not contain the Id attribute. We do

require it for this operation (otherwise, how would we know which object to update), but

in this case, we get this value from the URI (which is another stipulation of REST), so we

don’t need to double up on it here.

Chapter 10 Completing Our API Endpoints

228

�Success Outputs
Very simple in this case, we just supply a 204 No Content http result.

�Idempotent
This method is idempotent as you can repeat it multiple times and the result will be the

same.

Les’ Personal Anecdote  The PUT request has fallen out of favor when

compared to the PATCH request these days, mainly due to the fact you have to
supply all the object attributes to be updated, even the ones that are not changing!

This is really inefficient for large objects. Say you have an object with 20 properties
and you only need to change 1, you still have to supply all 20 to the PUT request,
ensuring that you provide the correct (same) value for each of the 19 that are not
changing.

If you inadvertently provide the wrong value or omit it altogether for 1 of the 19,
you could end up in real strife! Cough, cough; I have never done that.

Not only is it problematic/inefficient in this respect; from a network perspective it’s
not optimal; you’re essentially sending potentially large amounts of redundant data
over the wire (or through the air).

The only reason I’ve included it here is for completeness and because I’m a nice
guy.

�Updating the Repository
Again, starting at the repository level, let’s take a look at the update method signature in

our ICommandRepoAPI interface.

Chapter 10 Completing Our API Endpoints

229

We accept a Command object (update the database if required), and don’t expect to

pass anything back. You’ll notice my choice of words: “update the database if required”;

the reason I’ve chosen these will become clearer below.

What I’d like to remind you about our repository interface is that it is technology-

agnostic – meaning that it is an interface specification we could use against different

persistence providers, for example, Entity Framework Core, nHibernate, Dapper, etc.

We just so happen to be using it with Entity Framework Core, and we therefore have

to provide a specific, concrete implementation for that ORM. And this is where it gets

weird.

Moving over to our SqlCommandAPIRepo implementation class, update the

UpdateCommand method as follows:

public void UpdateCommand(Command cmd)

{

 //We don't need to do anything here

}

Yes, that’s right – it contains “no implementation” – just a smart-arsed comment

from me. I’ve not gone mad, let me explain.

�Remember How Our DB Context Works

Cast your mind back to the lengthy explanation of how EF Core persists data at the start

of this chapter; not only was that just generally useful information to know, but it was

done in expectation of this explanation. This is the payoff.

Figure 10-16.  UpdateCommand Interface Method

Chapter 10 Completing Our API Endpoints

230

We will actually perform the update of our existing Command object in our Controller

action, so we don’t need to put any code in our repository implementation. It will

probably become clearer when we come to code it up, but let me explain further how

this will work:

	 1.	 The Update action will be called (with the CommandUpdateDto

object in the request Body).

	 2.	 In our controller: Based on the Id in the request URI, we’ll search

the DB Context to see if we have an existing Command object with

that Id.

	 3.	 If it doesn’t exist: We return a 404 Not Found Result and return.

	 4.	 If it does exist: We’ll “Map” the CommandUpdateDto received in

the request body to the Command object we just received from our

DB Context in Step 2. It is at this point the Command object
is updated in the DB Context. We therefore don’t need any

implementation code in our SqlCommandAPIRepo repository.

	 5.	 We call the SaveChanges method on our repository, and the

changes will be persisted to the database.

You may then ask the very valid question: If we don’t need implementation code

here, why not remove it altogether from our repository interface? The answer to that is to

once again remind you that the repository interface is technology agnostic, so while we

don’t require an implementation in this instance, if we choose to switch our persistence

provider, they may require a coded implementation.

So logically speaking it makes sense to specify an Update method signature in our

interface, even if in this instance we don’t need to implement it.

Anyway, with that we’re done with the repository “implementation” and can move

on to the DTO.

�CommandUpdateDto
As recently described, we’re going to expect a CommandUpdateDto in our request body

and map it over to the Command retrieved from our DB Context. To enable this, create a

file in the Dtos folder called CommandUpdateDto.cs, and add the following code:

Chapter 10 Completing Our API Endpoints

231

using System.ComponentModel.DataAnnotations;

namespace CommandAPI.Dtos

{

 public class CommandUpdateDto

 {

 [Required]

 [MaxLength(250)]

 public string HowTo {get; set;}

 [Required]

 public string Platform {get; set;}

 [Required]

 public string CommandLine {get; set;}

 }

}

This is exactly the same as our CommandCreateDto, but we’ll maintain a separate

instance for future-proofing purposes. Save the file, and move on to updating out

AutoMapper profile mappings.

�Update the AutoMapper Profile

We need to add a mapping with the CommandUpdateDto as the mapping source and the

Command model as the target, so update the CommandsProfile class with the following

mapping entry:

using AutoMapper;

using CommandAPI.Dtos;

using CommandAPI.Models;

namespace CommandAPI.Profiles

{

 public class CommandsProfile : Profile

 {

 public CommandsProfile()

 {

Chapter 10 Completing Our API Endpoints

232

 //Source ➤ Target

 CreateMap<Command, CommandReadDto>();

 CreateMap<CommandCreateDto, Command>();

 CreateMap<CommandUpdateDto, Command>();

 }

 }

}

I don’t believe at this stage we require any further explanation on this!

�Updating the Controller
Moving back to our controller, we need to add a new controller action to host our new

endpoint, so in the CommandsController class, add the following code to achieve this:

[HttpPut("{id}")]

public ActionResult UpdateCommand(int id, CommandUpdateDto

commandUpdateDto)

{

 var commandModelFromRepo = _repository.GetCommandById(id);

 if (commandModelFromRepo == null)

 {

 return NotFound();

 }

 _mapper.Map(commandUpdateDto, commandModelFromRepo);

 _repository.UpdateCommand(commandModelFromRepo);

 _repository.SaveChanges();

 return NoContent();

}

Let’s walk through the code.

Chapter 10 Completing Our API Endpoints

233

�1. HttpPut

We decorate the UpdateCommand method with the [HttpPut] attribute (no real

controversy there), but we also expect an Id as part of the route; this means this endpoint

will respond to the class-wide route plus the Id, so

api/commands/{id}

�2 Inputs

The UpdateCommand method expects two parameters:

	 1.	 id: this is the id passed in from the route, which equates to the

unique id of the resource we want to attempt update.

	 2.	 commandUpdateDto: this is the object passed in in the request

body.

�3. Attempt Command Resource Retrieval

We make use of the id passed in from the route and, using our existing repository

method, GetCommandById, attempt to retrieve it. Irrespective of the result, we place the

result of this operation in commandModelFromRepo.

Figure 10-17.  UpdateCommand Controller Action Implementation

Chapter 10 Completing Our API Endpoints

234

�4. Return 404 Not Found

Not much more to say here; if the “object” we attempted to retrieve from the repository is

null, then we just return with a 404 Not Found Http response.

�5. Update our Command

This is where the actual update occurs! We use a slightly different form of the Map

method on our _mapper instance to map the DTO to our Command. By reference the

Command object is updated in the DB Context. Again, this is not yet reflected down to

our PostgreSQL DB.

�6. Update Nothing

This is a controversial one! You probably think I’ve definitely gone mad now.

This line does nothing,(at the moment). But remember, we may at any point in time

swap out our Entity Framework Core implementation for another provider that may need

a call to the UpdateCommand method in our repository. This is essentially the same reason

for keeping the definition in the repository interface in the first place.

By keeping this call here (even though it’s currently redundant), if we do swap out

our repository implementation (that requires a call to UpdateCommand), we won’t need to

change our Controller code, which is kind of the point of doing all this!

Personal Perspective  This is probably the single most contentious part of

the build and the one that I do get questioned on quite a lot. If you feel more
comfortable not including step 6, that is your choice; the code will still work in this
instance.

I personally find that the embedding of knowledge and understanding comes from
your own practical approaches and experiments - so go with what you feel works
best for you. However, just remember this section if you do ever have to rework
your code in the future.

Chapter 10 Completing Our API Endpoints

235

�7. Save Changes

An obvious one, don’t think I need to go on here.

�8. Return 204 No Content

Nice and simple, we return a 204 No Content. You’ll also notice that the UpdateCommand

method does not have a return type.

OK, save your work, start your engines, and let’s move on to performing a few

manual tests.

�Manually Testing the Update (PUT) EndPoint
�Successful Test Case

Here we supply the necessary inputs to generate a successful outcome as reflected in the

Postman setup in Figure 10-18.

	 1.	 Ensure PUT is selected.

	 2.	 The route to the resource you want to update needs to be valid.

	 3.	 I’ve just updated howTo and commandLine, but I’ve also had to

supply the Platform even though this is not changing.

Figure 10-18.  Testing the Put Action Result

Chapter 10 Completing Our API Endpoints

236

Click Send and you should get a similar result to the one in Figure 10-19.

Fairly basic, just a 204 No Content Http Response. I’ll leave it to you to check if this

actually did update the resource in the DB.

�Unsuccessful Test Case - Contradict Our Annotations

In this test, case we’ll attempt to update an existing resource and not supply a

[Required] attribute; see my Postman setup in Figure 10-20.

Click send and you’ll see something like the following.

Figure 10-19.  Success – 204 No Content Returned

Figure 10-20.  Force a validation error

Chapter 10 Completing Our API Endpoints

237

This demonstrates the usefulness of data annotations. But I hear you cry: I thought

you said we needed to supply all attributes in a PUT request anyway?

Great question, the answer to that is yes you do if you want them to be updated

(or remain the same). Taking the [Required] annotation out the equation, if we could

supply a null value for Platform and don’t supply it in our PUT request – that will work.

What will happen though is that the existing value for Platform will not be persisted as

is; it will revert to the default value, and if it doesn’t have one, then null!

�Unsuccessful Test Case – Invalid Resource ID

Here, we just supply an Id for a resource that does not exist.

Figure 10-21.  Validation Error Returned

Figure 10-22.  Test with nonexistent resource

Chapter 10 Completing Our API Endpoints

238

Click Send, and you’ll get the following.

So, looks like everything is working as per our requirements; let’s move on to the

arguably more interesting PATCH update endpoint.

�The Update Endpoint #2 (PATCH)
The next endpoint we want to implement is the second “Update” endpoint (using the

PATCH verb), which gives us the ability to perform partial updates on a resource. This

addresses many of the inefficiencies of the PUT endpoint that we noted in the last

section. A quick reminder of our high-level definition is shown in the table.

Verb URI Operation Description

PATCH /api/commands/{Id} Update (partial) Update part of a single resource (by Id)

To further flesh out our definition, I’ve included some addition attributes here.

Figure 10-23.  404 Not Found Returned

Chapter 10 Completing Our API Endpoints

239

Attribute Description

Inputs (x2) The Id of the resource to be updated. This will be present in the URI of our

PATCH request.

The change-set or “patch document” to be applied to the resource

This will be added to the request body of our PATCH request; an example is

shown here:

[

 {

 “op”: “replace”,

 “path”: “/howto”,

 “value”: “Some new value”

 },

 {

 “op”: “test”,

 “path” : “commandline”,

 “value” : “dotnet new”

 }

]

Process Will attempt to perform the updates as specified in the patch document

Note: If there is more than one update, all those updates need to be successful.

If one fails, then they all fail.

Success Outputs •  HTTP 204 Not Content HTTP Status

Failure Outputs •  HTTP 400 Bad Request

•  HTTP 404 Not Found

•  HTTP 405 Not Allowed

Safe No – Endpoint can alter our resources

Idempotent No – Repeating the same operation may incur a different result

There are a few new concepts here so let’s go through them.

Chapter 10 Completing Our API Endpoints

240

�Input Object
Instead of supplying a representation of the resource we want to update, we supply a

series of changes that we want to perform against that resource. We call this a Patch

Document or Change Set.

Our Patch Document can perform the following operations:

•	 Add: Adds a new property to our object (this requires “dynamic”

objects which we won’t be using).

•	 Remove: Again, requires dynamic objects and allows us to remove a

property from our resource.

•	 Replace: Allows us to change an existing property (this is the one

we’ll be using).

•	 Copy: As the name suggests, this allows us to copy a resource

property value to another.

•	 Move: The same as combining Copy and Remove operations.

•	 Test: Allows us to test the value of a given resource property.

In addition to specifying what operation we want to perform against a property, we

need to supply

•	 A path to that resource property

•	 The new value we want to assign

Refer to the example in Figure 10-24 for clarity.

Chapter 10 Completing Our API Endpoints

241

The Patch Document is attempting to perform two operations:

	 1.	 Replace the value of the howto property with the value “Some new

value.”

	 2.	 Test to see if the commandline property contains the value “dotnet

new”

For this Patch Document to be successful, both of these operations will need to

succeed.

For more information on the PATCH specification, refer to the RFC 6902 standard.5

�Idempotent
The PATCH operation is not idempotent as running the same request multiple times

may yield different results.

�Updating the Repository
There is no requirement to perform further update on our repository.

5�https://tools.ietf.org/html/rfc6902

Figure 10-24.  Example of a simple patch document

Chapter 10 Completing Our API Endpoints

https://tools.ietf.org/html/rfc6902

242

�CommandUpdateDto
While there isn’t a requirement to make any changes to our CommandUpdateDto, we do

need to add one further mapping to our AutoMapper Profiles. I’m not going to explain

why here; we’ll just make the necessary change and circle back to it when we come to

implementing the controller action as it will be easier to explain at that point.

So, open the CommandsProfile class in the Profiles folder, and add the following

(final) mapping:

public class CommandsProfile : Profile

{

 public CommandsProfile()

 {

 //Source ➤ Target

 CreateMap<Command, CommandReadDto>();

 CreateMap<CommandCreateDto, Command>();

 CreateMap<CommandUpdateDto, Command>();

 CreateMap<Command, CommandUpdateDto>();

 }

}

You should be comfortable of what is happening here; we’ll cover off the why below.

�Install Dependencies for PATCH
Unlike the other endpoints we’ve covered, PATCH requests require some further

package dependencies to be installed in order for PATCH requests to work correctly. So

at a command prompt (and making sure you are “in” the CommandAPI project folder),

issue the following commands:

dotnet add package Microsoft.AspNetCore.JsonPatch

dotnet add package Microsoft.AspNetCore.Mvc.NewtonsoftJson

The first adds support for the PATCH request; the second is required to correctly

work with Patch Documents in our controller.

To make sure the dependencies were installed, check the .csproj file for our project.

Chapter 10 Completing Our API Endpoints

243

�Updating the Startup Class
To make use of the second package we added earlier, we need to make a minor addition

to our Startup class as shown below (make sure to include the using statement too):

.

.

.

using Newtonsoft.Json.Serialization;

.

.

services.AddControllers().AddNewtonsoftJson(s =>

{

 s.SerializerSettings.ContractResolver = new

 CamelCasePropertyNamesContractResolver();

});

.

.

To put those changes in context (for brevity I’ve not shown the new using statement

below), see Figure 10-26.

Figure 10-25.  Packages required to support Patch

Chapter 10 Completing Our API Endpoints

244

As you can see, we require the use of NewtonSoftJson package within our controller;

this allows for the correct parsing of our Patch document.

With that set up, we’re now ready to move over to our controller.

�Updating the Controller
As we did with our create action, I’m just going to get you to enter the entire code for this

action, and we’ll then step through the code line by line by way of explanation.

using Microsoft.AspNetCore.JsonPatch;

[HttpPatch("{id}")]

public ActionResult PartialCommandUpdate(int id,

 JsonPatchDocument<CommandUpdateDto> patchDoc)

{

 var commandModelFromRepo = _repository.GetCommandById(id);

 if(commandModelFromRepo == null)

 {

 return NotFound();

 }

 var commandToPatch = _mapper.Map<CommandUpdateDto>(commandModelFromRepo);

 patchDoc.ApplyTo(commandToPatch, ModelState);

Figure 10-26.  Serializer settings on our controllers

Chapter 10 Completing Our API Endpoints

245

 if(!TryValidateModel(commandToPatch))

 {

 return ValidationProblem(ModelState);

 }

 _mapper.Map(commandToPatch, commandModelFromRepo);

 _repository.UpdateCommand(commandModelFromRepo);

 _repository.SaveChanges();

 return NoContent();

}

Quite a lot to take in there, so let’s go through the code before we come on to testing it.

Figure 10-27.  Patch Controller Action

Chapter 10 Completing Our API Endpoints

246

�1. HttpPatch

Shouldn’t be any surprises here; we need to decorate with [HttpPatch] and specify that

we expect a resource Id in the route.

�2. JsonPatchDocument

We expect a JsonPatchDocument in the request body that “applies” to a

CommandUpdateDto. This feeds into the validations that are performed below. (We need

to specify the object type the JsonPatchDocument “applies to” in order to deduce if it’s

valid.)

�3. Attempt Command Resource Retrieval

This is exactly the same code that we had in our PUT action; it doesn’t require further

qualification.

�4. Create Placeholder CommandUpdateDto

We need to create a CommandUpdateDto object based on the Command object we’ve just

successfully retrieved. Why? Well as mentioned in Step 1, the JsonPatchDocument has to

“apply to” a specific object type; in this case we’ve specified a CommandUpdateDto, so we

need to create one for use.

Circle Back  This is why we needed to add our fourth and final AutoMapper
Profile mapping.

�5. Apply the Patch Document

Here we apply the Patch Document received in our request body to the newly created

CommandUpdateDto: commandToPatch.

Circle Back  Had we not included and used the Microsoft.AspNetCore.

Mvc.NewtonsoftJson package, we would not be able to correctly perform this
operation.

Chapter 10 Completing Our API Endpoints

247

�6. Validate Model Changes

Following the application of the desired changes in our Patch Document, we then

attempt to see if the model validation (via our Data Annotations) is valid. For example,

if the Patch Document requested a Replace operation on the HowTo property that was

greater than 250 characters, it would be picked up here.

�7. Map Updated Dto to Command and Return

Our CommandUpdateDto (commandToPatch) has been successfully updated at this point.

We now use AutoMapper to map it back to our Command object in our DB Context.

Note  From this point onward, the code is identical to our previous PUT action, so
to save on duplicating that explanation, please just refer to the recent explanation.

And with that – we’re done with coding this controller action; make sure you save

everything, and we’ll move on to some manual tests.

�Manually Testing the Update (PATCH) EndPoint

�Successful Test Case

The most important thing to get right here is the Patch Document; to begin with I’m

keeping it simple and updating the HowTo property of an existing resource as shown in

my Postman setup.

	 1.	 PATCH Verb is selected.

Chapter 10 Completing Our API Endpoints

248

	 2.	 URI to an existing resource.

	 3.	 Our Patch Document with a single operation.

Warning!  You’ll note that even though our Patch Document has only one
operation, we still need to enclose it in square parenthesis [].

Remembering from our discussion on JSON, square brackets [] denote an array.

Learning Opportunity  I’ll refrain from detailing our failing or unsuccessful
test cases here and leave it to you to explore these – have fun! (They’re not much
different from the ones we ran for PUT.)

�The Delete Endpoint (DELETE)
The final endpoint we want to implement is the “Delete” endpoint, which gives us the

ability to remove resources from our DB. A quick reminder of our high-level definition is

shown here.

Figure 10-28.  Test our Patch ActionResult

Chapter 10 Completing Our API Endpoints

249

Verb URI Operation Description

DELETE /api/commands/{Id} Delete Delete a single resource (by Id)

Further details of how this Endpoint should operate are listed here.

Attribute Description

Inputs (x1) The Id of the resource to be deleted. This will be present in the URI of our DELETE

request

Process Will attempt to delete an existing command object to our DB

Success Outputs •  HTTP 204 No Content HTTP result

Failure Outputs •  HTTP 404 Not Found HTTP result

Safe No – Endpoint can alter our resources

Idempotent Yes – Repeating the same operation will incur the same result

There’s not much to call out here, so let’s move on to what we need to code.

�Updating the Repository
Refer back to our repository interface as detailed in Figure 10-29.

Figure 10-29.  Delete Interface Method

Chapter 10 Completing Our API Endpoints

250

We expect the Command object to be deleted and do not expect anything to be

passed back.

Moving over to our implementation class SqlCommandAPIRepo, update the

DeleteCommand method as follows:

public void DeleteCommand(Command cmd)

{

 if(cmd == null)

 {

 throw new ArgumentNullException(nameof(cmd));

 }

 _context.CommandItems.Remove(cmd);

}

The code is pretty straightforward, so I don’t feel further explanation is needed.

Just remember that calling this method only marks the Command for deletion in the DB

Context; we still need to call SaveChanges to effect a change in the database.

�CommandDeleteDto
There is no requirement for a CommandDeleteDto.

�Updating the Controller
Thankfully the code for our delete action is very simple (compared to the last three

Endpoints we’ve done); it’s shown here:

[HttpDelete("{id}")]

public ActionResult DeleteCommand(int id)

{

 var commandModelFromRepo = _repository.GetCommandById(id);

 if(commandModelFromRepo == null)

 {

 return NotFound();

 }

Chapter 10 Completing Our API Endpoints

251

 _repository.DeleteCommand(commandModelFromRepo);

 _repository.SaveChanges();

 return NoContent();

}

Learning Opportunity  I feel at this stage there is little benefit in me adding
extra narrative on both what this code is doing and how to manually test it!

We’ve covered significantly more complex use-cases, so I think you can round off
the manual testing of this Endpoint yourself.

�Wrap Up

Celebration Checkpoint  We have fully implemented our API now!

Congratulations!

We covered a lot of code in this chapter; I did consider splitting it across multiple

chapters but thought that may have interrupted the flow of what we were tackling.

Once again, let us return to our application architecture as shown in Figure 10-30.

Chapter 10 Completing Our API Endpoints

252

You can see that we have now implemented everything – great job! Don’t celebrate

too quickly though as we are not done just yet. In the chapters that follow, I take you

through

•	 Automating Testing for our API

•	 Deploying the API to Production using a CI/CD Pipeline

•	 Securing our API from unwanted guests

Before you move on, remember to save everything and commit locally to GitHub.

Figure 10-30.  Architecture Checkpoint

Chapter 10 Completing Our API Endpoints

253
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_11

CHAPTER 11

Unit Testing Our API
�Chapter Summary
In this chapter we’ll introduce you to Unit Testing, what it is, and why you’d use it. We’ll

then create unit tests to test the core functionality of our API Controller, providing us

with an automated regression suite (don’t worry if you don’t know what that means!).

�When Done, You Will
•	 Understand what Unit Testing is and why you should use it.

•	 Understand the power of the Repository Interface once again!

•	 Understand how to use a mocking or isolation framework in unit

testing.

•	 Write Unit Tests using xUnit to test our API functionality.

�What Is Unit Testing
Probably the best way to describe what Unit Testing is is to put it in context of the other

general types of “testing” you will encounter, so I refer you to the “Testing Pyramid” in

Figure 11-1.

https://doi.org/10.1007/978-1-4842-6255-9_11#DOI

254

Unit tests are

•	 Abundant: There should be more of them than other types of test.

•	 Small: They should test one thing only, that is, a “unit” (as opposed

to full end-to-end “scenarios” or use cases).

•	 Cheap: They are both written and executed first. This means any

errors they catch should be easier to rectify when compared to those

you catch much later in the development life cycle.

•	 Quick to both write and execute

Unit tests are written by the developer (as opposed to a tester or business analyst), so

that is why we’ll be using them here to test our own code.

OK, so aside from the fact that they are quick and cheap, what other advantages do

you have in using them?

�Protection Against Regression
Because you’ll have a suite of unit tests that are built up over time, you can run them again

every time you introduce new functionality (which you should also build tests for). This

means that you can check to see if your new code had introduced errors to the existing code

base (these are called regression defects). Unit testing therefore gives you confidence that

you’ve not introduced errors or, if you have, give you an early heads up so you can rectify.

Figure 11-1.  Testing Pyramid

Chapter 11 Unit Testing Our API

255

�Executable Documentation
When we come to write some unit tests, you’ll see that the way we name them

is descriptive and speaks to what is being tested and the expected outcome.

Therefore, assuming you take this approach, your unit test suite essentially becomes

documentation for your code.

  When naming your unit test methods, they should follow a construct similar to

<method name>_<expected result>_<condition>

For example:

GetCommandItem_Returns200OK_WhenSuppliedIDIsValid

Note: There are variants on the convention, so find the one the one that works best
for you.

�Characteristics of a Good Unit Test
I’ve taken the following list of unit test characteristics from the Unit Testing Best

Practices1 guide by Microsoft; it’s well worth a read, but again we cover more than

enough here to get you going. So, the characteristics of a good unit test are

•	 Fast: Individual tests should execute quickly (required as we can

have 1000’s of them), and when we say quick, we’re talking in the

region of milliseconds.

•	 Isolated: Unit tests should not be dependent on external factors, for

example, databases, network connections, etc.

•	 Repeatable: The same test should yield the same result between runs

(assuming you don’t change anything between runs).

•	 Self-checking: Should not require human intervention to determine

whether it has passed or failed.

1�https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

Chapter 11 Unit Testing Our API

https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

256

•	 Timely: The unit test should not take a disproportionately long time

to run compared with the code being tested.

I’d also add

•	 Focused: A unit test (as the name suggests and as mentioned earlier)

should test only one thing.

We’ll use these factors as a touchstone when we come to writing our own tests.

�What to Test?
OK, so we know what they are, why we have them, and even the characteristics

of a “good” test, but the $1,00,000 question is what should we actually test? The

characteristics detailed earlier should help drive this choice, but ultimately it comes

down to the individual developer and what they are happy with.

Some developers may only write a small number of unit tests that only test really

novel code; others may write many more that test more standard, trivial functionality.

As our API is simple, we’ll be writing tests that are pretty basic, and test quite obvious

functionality. I’ve taken this approach to get you used to unit testing more than anything

else.

Note  You would generally not test functionality that is inherent in the
programming language: for example, you would not write unit tests to check basic
arithmetic operations– that would be overkill and not terribly useful. Taking this
further, unit testing code you cannot change (i.e., code you did not write) may be
somewhat pointless: discuss.

�Unit Testing Frameworks
I asked a question at the start of the book about what xUnit is. Well xUnit is simply a unit

testing framework; it’s open source and was used heavily in the creation of .NET Core, so

it seems like a pretty good choice for us.

There are alternatives of course that do pretty much the same thing; performing a

dotnet new at the command line, you’ll see the unit test projects available to us.

Chapter 11 Unit Testing Our API

https://xunit.net/

257

The others we could have used are

•	 MSTest

•	 NUnit

We’ll be sticking with xUnit though, so if you want to find out about the others, you’ll

need to do your own reading.

�Arrange, Act, and Assert
Irrespective of your choice of framework, all unit tests follow the same pattern (xUnit is

no exception).

�Arrange
This is where you perform the “setup” of your test. For example, you may set up some

objects and configure data used to drive the test.

�Act
This is where you execute the test to generate the result.

�Assert
This is where you “check” the actual result against the expected result. How that assertion

goes will depend on whether your test passes or fails.

Going back to the characteristics of a good unit test, the “focused” characteristic

comes in to play here, meaning that we should really have only one assertion per test. If

you assert multiple conditions, the unit tests become diluted and confusing – what are

you testing again?

So, enough theory – let’s practice!

Figure 11-2.  Unit Testing .NET Core Project templates

Chapter 11 Unit Testing Our API

258

�Write Our First Tests
OK, so we now want to move away from our API project and into our unit test project.

So, in your terminal, navigate into the Command.Tests folder, listing the contents of that

folder you should see.

We have

•	 bin folder

•	 obj folder

•	 CommandAPI.Tests.csproj project file

•	 UnitTest1.cs default class

You should be familiar with the first three of these, as they are the same artifacts we

had in our API project. With regard to the project file, CommandAPI.Tests.csproj, you’ll

recall we added a reference to our API project in here so we can “test” it.

The fourth and final artifact here is a default class set up for us when we created the

project; open it, and take a look.

Figure 11-3.  Anatomy of a xUnit Project

Chapter 11 Unit Testing Our API

259

This is just a standard class definition, with only two points of note:

	 1.	 A reference to xUnit

	 2.	 Our class method Test1 is decorated with the [Fact] attribute.

This tells the xUnit test runner that this method is a test.

You’ll see at this stage our Test1 method is empty, but we can still run it nonetheless;

to do so, return to your terminal (ensure you’re in the CommandAPI.Tests folder), and

type

dotnet test

This will run our test which should “pass,” although it’s empty and not really doing

anything.

Figure 11-4.  Simple xUnit Test Case

Chapter 11 Unit Testing Our API

260

OK, we know our testing setup is good to go, so let’s start writing some tests.

Les’ Personal Anecdote  When running through the code again myself

(yes I actually followed the book all the way through to make sure it made sense!),
I got a warning at this stage complaining that Microsoft.
EntityFrameworkCore.Relational was at a different version in the xUnit
project compared to the main API project.

Note that this package was not explicitly listed in the package references in our
xUnit projects .csproj file.

To rectify this I installed the Microsoft.EntityFrameworkCore.Relational
package in my xUnit project:

dotnet add package Microsoft.EntityFrameworkCore.
Relational --version 3.1.4

Figure 11-5.  Running Tests in xUnit

Chapter 11 Unit Testing Our API

261

noting that I did specify a version this time to ensure both packages across both
projects were in alignment. If you encounter this same behavior, take note of the
version that gets complained about, and act accordingly.

Even though I believe this warning was benign, I don’t like warnings lingering in
the background.

�Testing Our Model
Our first test is really at the trivial end of the spectrum to such an extent you probably

wouldn’t unit test this outside the scope of a learning exercise. However, this is a learning

exercise, and even though it is a simple test, it covers all the necessary mechanics to get a

unit test up and running.

Thinking about our model, what would we want to test? As a refresher, here’s the

model class in our API project.

Figure 11-6.  Revisiting the model

Chapter 11 Unit Testing Our API

262

How about

•	 We can change the value of each of the class attributes.

There are probably others we could think of, but let’s keep it simple to start with. To

set this up we’re going to create a new class that will contain tests only for our Command

model, so

•	 Create a new file called CommandTests.cs in the root of our

CommandAPI.Tests Project.

Add the following code to this class:

using System;

using Xunit;

using CommandAPI.Models;

namespace CommandAPI.Tests

{

 public class CommandTests

 {

 [Fact]

 public void CanChangeHowTo()

 {

 }

 }

}

Figure 11-7.  Tests for our Model

Chapter 11 Unit Testing Our API

263

 T his is such a trivial test (we’re not even testing a method); we can’t really
use the unit test naming convention mentioned earlier:

<method name>_<expected result>_<condition>

So, in this instance, we’re going with something more basic.

The following sections are of note.

	 1.	 We have a reference to our Models in the CommandAPI project.

	 2.	 Our Class is named after what we are testing (i.e., our Command

model).

	 3.	 The naming convention of our test method is such that it tells us

what the test is testing for.

OK, so now time to write our Arrange, Act, and Asset code; add the following

highlighted code to the CanChangeHowTo test method:

[Fact]

public void CanChangeHowTo()

{

Figure 11-8.  Our First Model test

Chapter 11 Unit Testing Our API

264

 //Arrange

 var testCommand = new Command

 {

 HowTo = "Do something awesome",

 Platform = "xUnit",

 CommandLine = "dotnet test"

 };

 //Act

 testCommand.HowTo = "Execute Unit Tests";

 //Assert

 Assert.Equal("Execute Unit Tests", testCommand.HowTo);

}

The sections we added are highlighted here.

Chapter 11 Unit Testing Our API

265

	 1.	 Arrange: Create a testCommand and populate with initial values.

	 2.	 Act: Perform the action we want to test, that is, change the value of

HowTo.

	 3.	 Assert: Check that the value of HowTo matches what we expect.

Steps 1 and 2 are straightforward, so it’s really step 3 and the use of the xUnit Assert

class to perform the “Equal” operation that are possibly new to you. Whether this step is

true or false determines whether the test passes or fails.

Figure 11-9.  Arrange, Act, and Assert

Chapter 11 Unit Testing Our API

266

Let’s run our very simple test to see if it passes or fails:

•	 Ensure you save your CommandTests.cs file.

•	 dotnet build: This will just check your tests are syntactically

correct.

•	 dotnet test: Will run our test suite.

The test should pass and you’ll see something like the following.

It says two tests have passed? Where is the other test? That’s right we still have our

original UnitTest1 class with an empty test method, so that’s where the second test is

being picked up. Before we continue, lets’ delete that class.

We can also “force” this test to fail. To do so, change the “expected” value in our

Assert.Equal operation to something random, for example.

Figure 11-10.  We have two passing tests?

Chapter 11 Unit Testing Our API

267

Save the file, and rerun your tests; you’ll get a failure response with some verbose

messaging.

Figure 11-11.  Forcing test Failure

Figure 11-12.  As expected, failed test

Chapter 11 Unit Testing Our API

268

Here, you can see the test has failed and we even get the reasoning for the failure.

Revert the expected string back to a passing value before we continue.

Learning Opportunity  We have two other attributes in our Command class
that we should be testing for: Platform and CommandLine (the Id attribute is
auto-managed so we shouldn’t bother with this for now).

Write two additional tests to test that we can change these values too.

�Don’t Repeat Yourself
OK, so assuming that you completed the last Learning Opportunity, you should now

have three test methods in your CommandTests class, with three passing tests. If you

didn’t complete that, I’d suggest you do it, or if you really don’t want to – refer to the code

on GitHub.2

One thing you’ll notice is that the Arrange component for each of the three tests is

identical and therefore a bit wasteful. When you have a scenario like this, that is, you

need to perform some standard setup that multiple tests use; xUnit allows for that.

The xUnit documentation describes this concept as Shared Context between tests

and specifies three approaches to achieve this:

•	 Constructor and Dispose (shared setup/clean-up code without

sharing object instances)

•	 Class Fixtures (shared object instance across tests in a single class)

•	 Collection Fixtures (shared object instances across multiple test

classes)

2�https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

Chapter 11 Unit Testing Our API

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

269

We are going to use the first approach, which will set up a new instance of the

testCommand object for each of our tests; you can alter your CommandsTests class to the

following:

using System;

using Xunit;

using CommandAPI.Models;

namespace CommandAPI.Tests

{

 public class CommandTests : IDisposable

 {

 Command testCommand;

 public CommandTests()

 {

 testCommand = new Command

 {

 HowTo = "Do something",

 Platform = "Some platform",

 CommandLine = "Some commandline"

 };

 }

 public void Dispose()

 {

 testCommand = null;

 }

 [Fact]

 public void CanChangeHowTo()

 {

 //Arrange

 //Act

 testCommand.HowTo = "Execute Unit Tests";

Chapter 11 Unit Testing Our API

270

 //Assert

 Assert.Equal("Execute Unit Tests", testCommand.HowTo);

 }

 [Fact]

 public void CanChangePlatform()

 {

 //Arrange

 //Act

 testCommand.Platform = "xUnit";

 //Assert

 Assert.Equal("xUnit", testCommand.Platform);

 }

 [Fact]

 public void CanChangeCommandLine()

 {

 //Arrange

 //Act

 testCommand.CommandLine = "dotnet test";

 //Assert

 Assert.Equal("dotnet test", testCommand.CommandLine);

 }

 }

}

For clarity of the sections, we have added Figure 11-13.

Chapter 11 Unit Testing Our API

271

	 1.	 We inherit the IDisposable interface (used for code cleanup).

	 2.	 Create a “global” instance of our Command class.

	 3.	 Create a Class Constructor where we perform the setup of our

testCommand object instance.

	 4.	 Implement a Dispose method, to clean up our code.

Figure 11-13.  Don't Repeat Yourself – refactored Model tests

Chapter 11 Unit Testing Our API

272

	 5.	 You’ll notice that the Arrange section for each test is now empty;

the class constructor will be called for every test (I’ve only shown

one test here for brevity).

For more information, refer to the xUnit documentation.3

Run your tests again and you should see three passing tests.

�Test Our Controller
OK, so testing our model was just an amuse-bouche4 for what’s about to come next: testing

our Controller. We up the ante here as it’s a decidedly more complex affair; although the

concepts you learned in the last section still hold true, we just expand upon that here.

�Revisit Unit Testing Characteristics
I think before we move on, it’s worth revisiting our Unit Testing Characteristics:

•	 Fast: Individual tests should execute quickly (required as we can

have 1000s of them), and when we say quick, we’re talking in the

region of milliseconds.

Figure 11-14.  3 Passing Tests

3�https://xunit.net/docs/shared-context
4�Bite-sized hors d’oeuvre, literally means “mouth amuser” in French. They differ from appetizers
in that they are not ordered from a menu by patrons but are served free and according to the
chef’s selection alone.

Chapter 11 Unit Testing Our API

https://xunit.net/docs/shared-context

273

•	 Isolated: Unit tests should not be dependent on external factors, for

example, databases, network connections, etc.

•	 Repeatable: The same test should yield the same result between runs

(assuming you don’t change anything between runs).

•	 Self-checking: Should not require human intervention to determine

whether it has passed or failed.

•	 Timely: The unit test should not take a disproportionately long time

to run compared with the code being tested.

•	 Focused: A unit test (as the name suggests and as mentioned earlier)

should test only one thing.

I often struggle with the Focused characteristic and frequently have to pull myself

back to testing just one thing, rather than wandering into integration test territory (and

attempting to test an end-to-end flow). But that’s not the characteristic I’m most worried

about in this instance.

When we come to Unit testing our controller, the Isolation characteristic will present

as problematic. Why? Let’s remind ourselves of our Controller constructor.

Even though we are using Dependency Injection (which is awesome), they are still

dependencies as far as our controller is concerned, so when we come to unit testing the

controller – how do we deal with this? Dependency Injection again? Stick a pin in that for

now – I just want to plant the seed.

Figure 11-15.  Reminder of the dependencies injected into the constructor

Chapter 11 Unit Testing Our API

274

As before, I think the best way to learn about this is to get coding, so let’s turn our

attention back to our very first controller action: GetAllCommands.

�GetAllCommands Unit Tests and Groundwork
�GetAllCommands Overview
Let’s remind ourselves of how GetAllCommands is supposed to be called.

Verb URI Operation Description

GET /api/commands Read Read all command resources

Additionally, I’ve provided some of the more detailed attributes of GetAllCommands

that should help drive our testing.

Attribute Description

Inputs None; we simply make a GET request to the URI in the preceding table

Process Attempt to retrieve a collection of command resources

Success Outputs • HTTP 200 OK Status

Failure Outputs N/A: If this endpoint exists, it can’t really be called “incorrectly”

Safe Yes – Endpoint cannot alter our resources

Idempotent Yes – Repeating the same operation will provide the same result

�GetAllCommands Unit Tests
What to test can be somewhat subjective, and from a test perspective, this is probably

our simplest controller action, so I’ve settled on the following test cases.

Chapter 11 Unit Testing Our API

275

Test ID Arrange and action Assert

Test 1.1 Request Resources when 0 exist Return 200 OK HTTP Response

Test 1.2 Request Resources when 1 exists Return a Single Command Object

Test 1.3 Request Resources when 1 exists Return 200 OK HTTP Response

Test 1.4 Request Resources when 1 exists Return the correct “type”

You’ll see that tests 1.2, 1.3, and 1.4 have the same Arrange and Action:

•	 Request a Resource when one exists.

So why not roll these into one test and perform the three assertions there? Well again

that would break our Focused characteristic – we should be testing for one thing only

per test.

�Groundwork for Controller Tests
As with our Command model, we want to create a separate test class in our unit test project

to hold the controller tests, so create a class called CommandsControllerTests.cs, as

shown in Figure 11-16.

Figure 11-16.  Tests for the Controller

Chapter 11 Unit Testing Our API

276

Place the following code into the CommandsControllerTests.cs file to get started:

using System;

using Xunit;

using CommandAPI.Controllers;

using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Tests

{

 public class CommandsControllerTests

 {

 [Fact]

 public void GetCommandItems_ReturnsZeroItems_WhenDBIsEmpty()

 {

 //Arrange

 //We need to create an instance of our CommandsController class

 var controller = new CommandsController(/* repository, AutoMapper */);

 }

 }

}

So straight away we want to start arranging our tests so that we have access to a

CommandsController class to work with, but how do we create one when it has two

dependencies (the repository and AutoMapper)? Dependency Injection – I hear you say!

But if you look back at the anatomy of our Unit Test project, there’s no equivalent of the

Startup class in which to Register our services for injection. We could start to add one I

guess, but that would then lead to the problem of testing against our repository.

Even if we were to use Dependency Injection here, we’d still need to provide a

concrete implementation instance; which one would we use? SqlCommanAPIRepo?

That requires a DB Context, which in turn requires our Database. Argh! Not only is that

horrifically complicated, we’re breaking the Isolation characteristic in a big way by

dragging all that stuff into our unit testing.

We could move back to MockCommandAPIRepo and implement test code in there that

wasn’t dependent on external factors, a possibility, but still a hassle – don’t worry there is

a better way!

Chapter 11 Unit Testing Our API

277

�Mocking Frameworks

Thankfully we can turn to something called “mocking,” which means we can quickly

create “fake” (or mock) copies of any required objects to use within our unit tests. It

allows us to self-contain everything we need in our unit test project and adhere to

the Isolation principle. We can certainly use mocking for our repository and possibly

AutoMapper.

In order to use mocking, we need to turn to an external framework for this; the one

I’ve chosen for us is called Moq. It’s fairly well understood and used within the C# .NET

Community, so I thought it was a good choice for us.

�Install Moq and AutoMapper

Open a command prompt, and make sure you’re “in” the CommandAPI.Tests folder,

and issue the following commands:

dotnet add package Moq

dotnet add package AutoMapper.Extensions.Microsoft.DependencyInjection

Confirm that these dependencies have been added to the CommandAPITests.csproj
file.

You’ll notice we’ve added AutoMapper in addition to Moq; we’ll require this later.

Figure 11-17.  Package References for Moq

Chapter 11 Unit Testing Our API

278

�Using Moq (Mock the Repository)

Returning to our CommandsControllerTests class, add the following code (taking note of

our new using directives):

using System;

using System.Collections.Generic;

using Moq;

using AutoMapper;

using CommandAPI.Models;

using CommandAPI.Data;

using Xunit;

using CommandAPI.Controllers;

using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Tests

{

 public class CommandsControllerTests

 {

 [Fact]

 public void GetCommandItems_Returns200OK_WhenDBIsEmpty()

 {

 //Arrange

 var mockRepo = new Mock<ICommandAPIRepo>();

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(0));

 �var controller = new CommandsController(mockRepo.Object,

/* AutoMapper*/);

 }

 private List<Command> GetCommands(int num)

 {

 var commands = new List<Command>();

 if (num > 0){

 commands.Add(new Command

Chapter 11 Unit Testing Our API

279

 {

 Id = 0,

 HowTo = "How to generate a migration",

 CommandLine = "dotnet ef migrations add <Name of Migration>",

 Platform = ".Net Core EF"

 });

 }

 return commands;

 }

 }

}

Or code is still not runnable, but I wanted to pause here and go through what we

have added as there is quite a lot going on!

  Quick reminder, all this code is on GitHub5 if you don’t want to type this
stuff in.

5�https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

Chapter 11 Unit Testing Our API

https://github.com/binarythistle/Complete-ASP-NET-3-API-Tutorial-Book

280

	 1.	 We set up a new “mock” instance of our repository; note that we

only need to pass the interface definition.

	 2.	 Using our new mock repository, we use the Setup method to

establish how it will “behave.” Here, we specify the interface

method we want to mock followed by what we want it to return (as

described next).

	 3.	 Still in our Setup, we specify that the repository GetAllCommands

method returns GetCommands(0) – see step 5.

	 4.	 We use the Object extension on our mock to pass in a mock object

instance of ICommandAPIRepo.

	 5.	 We’ve mocked a private method: GetCommands that will return

either an empty List or a List with one Command object

depending on the value of the input parameter.

Figure 11-18.  Mocking our repository

Chapter 11 Unit Testing Our API

281

You can see how easy it is to set up mock objects using this type of framework, saving

us a lot of the hassle of writing up our own mock classes. It also highlights the usefulness

of our repository interface definition once again.

OK, so we’ve created a mock of our repository that we can use to create a

CommandsController instance, but what about AutoMapper?

�Mock AutoMapper?

While you can use Moq to mock-up AutoMapper, we’re not going to do that here. Why?

Well because in this particular instance, general consensus is that it is more effective

(and useful) to use an actual instance of AutoMapper. Additionally, using this approach

we get to test the AutoMapper Profiles we’ve set up in our API Project too.

Now I want to sense check here.

This may seem completely contrary to the Isolation and Focused principles, and to

some extent it is. My response to that is one of pragmatism (you may call it a cop out!),

but the Unit Test Characteristics are just that: Characteristics. They are not unbreakable

rules.

As developers we’re often faced with choices and challenges. I may take one path,

and you may choose another – personally I think that’s fine. Coding can be as much art

as science.

What me must strive to do is solve a problem the best way we can, and sometimes

that involves compromise or, as I prefer to call it, pragmatism. In this case (in my view),

using an instance of AutoMapper (as opposed to a mocked instance of it) provides more

benefits than downsides, so that is the approach I’m going to take.

But please feel free to disagree!

So back in our CommandsControllerTest class, add the following code to provide us

with an instance of AutoMapper (taking care to note the new using directive to bring in

our Profiles):

using System;

using System.Collections.Generic;

using Moq;

using AutoMapper;

using CommandAPI.Models;

using CommandAPI.Data;

using CommandAPI.Profiles;

Chapter 11 Unit Testing Our API

282

using Xunit;

using CommandAPI.Controllers;

using Microsoft.AspNetCore.Mvc;

namespace CommandAPI.Tests

{

 public class CommandsControllerTests

 {

 [Fact]

 public void GetCommandItems_Returns200OK_WhenDBIsEmpty()

 {

 //Arrange

 var mockRepo = new Mock<ICommandAPIRepo>();

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(0));

 var realProfile = new CommandsProfile();

 var configuration = new MapperConfiguration(cfg =>

 cfg.AddProfile(realProfile));

 IMapper mapper = new Mapper(configuration);

 var controller = new CommandsController(mockRepo.Object, mapper);

 }

 .

 .

 .

 }

}

To step through the changes (for brevity I’ve not shown the using directives below),

see Figure 11-19.

Chapter 11 Unit Testing Our API

283

	 1.	 We set up a CommandsProfile instance and assign it to a

MapperConfiguration.

	 2.	 We create a concrete instance of IMapper and give it our

MapperConfiguration.

	 3.	 We pass our IMapper instance to our CommandController

constructor.

There is a lot of new content and groundwork there, but now we’re set up; the rest

of this chapter should be quite quick! Make sure you save your work, build to check for

errors, commit to GitHub, and we’ll move onto completing our first test!

�Finish Test 1.1 – Check 200 OK HTTP Response
(Empty DB)
Just to remind ourselves what we were wanting to test, see the following table.

Test ID Arrange and action Assert

Test 1.1 Request Resources when 0 exist Return 200 OK HTTP Response

Figure 11-19.  Using AutoMapper in our tests

Chapter 11 Unit Testing Our API

284

Back in the CommandsControllerTests, complete the code for our first test (make

sure you include the using directive):

using CommandAPI.Dtos;

//Arrange

.

.

var controller = new CommandsController(mockRepo.Object, mapper);

//Act

var result = controller.GetAllCommands();

//Assert

Assert.IsType<OkObjectResult>(result.Result);

To put these in context, see Figure 11-20.

	 1.	 We make a call to the GetAllCommands action on our Controller.

	 2.	 We Assert that the Result is an OkObjectResult (essentially

equating to 200 OK).

Figure 11-20.  Finalizing our Test

Chapter 11 Unit Testing Our API

285

As before, we can refactor our code to be a bit more reusable and place some of the

common setup into a class constructor, as shown here:

public class CommandsControllerTests : IDisposable

{

 Mock<ICommandAPIRepo> mockRepo;

 CommandsProfile realProfile;

 MapperConfiguration configuration;

 IMapper mapper;

 public CommandsControllerTests()

 {

 mockRepo = new Mock<ICommandAPIRepo>();

 realProfile = new CommandsProfile();

 �configuration = new MapperConfiguration(cfg => cfg.

AddProfile(realProfile));

 mapper = new Mapper(configuration);

 }

 public void Dispose()

 {

 mockRepo = null;

 mapper = null;

 configuration = null;

 realProfile = null;

 }

 [Fact]

 public void GetCommandItems_Returns200OK_WhenDBIsEmpty()

 {

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(0));

 var controller = new CommandsController(mockRepo.Object, mapper);

Chapter 11 Unit Testing Our API

286

 //Act

 var result = controller.GetAllCommands();

.

.

.

The only specific arrangement for this test case is the fact that we want the mock

repository to return “0” resources.

If you want to “test your test,” save your work, and build the project, and then

perform a dotnet test (of course inside the xUnit Project) to make sure it passes.

�Test 1.2 – Check Single Resource Returned
The second test checks to see that we get one resource returned.

Test ID Arrange and action Assert

Test 1.2 Request Resource when 1 exists Return Single Resource

Les’ Personal Anecdote  I debated on whether to include this test at all.

Depending on how you look at it, you may claim that this is not really testing our
Controller but testing our Repository.

Nonetheless, I thought I’d include it to show you how to obtain this type of
information.

In the code here, we configure our private GetCommands method to return one object.

The “assertion” code looks a bit convoluted, but that is a consequence of how we have

written our original controller action; here’s the code, and we’ll step through it here:

[Fact]

public void GetAllCommands_ReturnsOneItem_WhenDBHasOneResource()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(1));

Chapter 11 Unit Testing Our API

287

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetAllCommands();

 //Assert

 var okResult = result.Result as OkObjectResult;

 var commands = okResult.Value as List<CommandReadDto>;

 Assert.Single(commands);

}

To put in context, see Figure 11-21.

	 1.	 We arrange our mockRepo to return a single command resource.

	 2.	 In order to obtain the Value (see step 4), we need to convert

our original result to an OkObjectResult object so we can then

navigate the object hierarchy.

Figure 11-21.  Getting to the Value

Chapter 11 Unit Testing Our API

288

	 3.	 We obtain a list of CommandReadDtos (again we use the “as”

keyword to assist here).

	 4.	 We assert that we have a Single result set on our commands List.

Les’ Personal Anecdote  Personally, I hate this code and think it’s way

too complex. The reason for this complexity stems from the fact that in our
GetAllCommands controller action, we return our result set as follows:

return Ok(_mapper.Map<IEnumerable<CommandReadDto>>
(commandItems));

Had we just used this

return _mapper.Map<IEnumerable<CommandReadDto>>(commandItems);

that is, returning our result set not enclosed in the Ok() method, navigation to
our result set would be much simpler. So why did I write the controller action in
the way I did? Simply because I wanted to! I wanted to be explicit in the way our
successful results were returned.

There is an interesting discussion thread (isn’t there always!) on this exact topic on
Stack Overflow.6 For now, my rant is over and we move on.

Save the code and perform a dotnet test to make sure it passes.

�Test 1.3 – Check 200 OK HTTP Response
The next test we want to check that the HTTP Response code is correct.

Test ID Arrange and action Assert

Test 1.3 Request Resource when 1 exists Return HTTP 200 OK

6�https://stackoverflow.com/questions/51489111/how-to-unit-test-with-actionresultt

Chapter 11 Unit Testing Our API

https://stackoverflow.com/questions/51489111/how-to-unit-test-with-actionresultt

289

The code is quite straightforward, so don’t think it requires much more explanation:

[Fact]

public void GetAllCommands_Returns200OK_WhenDBHasOneResource()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(1));

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetAllCommands();

 //Assert

 Assert.IsType<OkObjectResult>(result.Result);

}

�Test 1.4 – Check the Correct Object Type Returned
The final test is arguably the most useful one: it tests for the correct return type, in this

case an ActionResult with an enumeration of CommandReadDtos.

Test ID Arrange and action Assert

Test 1.4 Request Resource when 1 exists Return the correct “type”

[Fact]

public void GetAllCommands_ReturnsCorrectType_WhenDBHasOneResource()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetAllCommands()).Returns(GetCommands(1));

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetAllCommands();

Chapter 11 Unit Testing Our API

290

 //Assert

 Assert.IsType<ActionResult<IEnumerable<CommandReadDto>>>(result);

}

Out of the four tests we’ve constructed for our first controller action, this is my

favorite. Why? It’s essentially testing our external contract. If we subsequently change

how our controller behaves (and what it passes back to our consumers), this test will fail

in regression. This is the mark of a valuable test for me!

Les’ Personal Anecdote  Now, I had an internal debate with myself

whether to include the rest of the unit test code in the book or whether just to
reference you off to GitHub, and we’d close this chapter off here.

The reason I had that debate was

	 1.	�I said no fluff/filler content - and you could argue that given the repeated
nature of unit tests that we are going into that territory.

	 2.	� Most of the code that follows doesn’t require much more explanation as we
have covered the concepts already. So, it’s just ends up as code on a page.

However, I did decide to keep the code here in the book, which means that
chapter continues on. Why? In one word: Completeness. I wanted to produce the
best product that I could, and I felt if I didn’t keep all the code here in the book, it
wouldn’t be a complete product.

I hope you agree.

�GetCommandByID Unit Tests
�GetCommandByID Overview
Again, we’ll remind ourselves how this endpoint is supposed to be called.

Verb URI Operation Description

GET /api/commands/{id} Read Read a single resource (by Id)

Chapter 11 Unit Testing Our API

291

And some further detail to help us with defining our tests.

Attribute Description

Inputs The Id of the resource to be retrieved. This will be present in the URI of our

GET request

Process Attempt to retrieve the resource with the specified identifier

Success Outputs •  200 OK HTTP Response

• R eturned resource <CommandReadDto>

Failure Outputs •  404 Not Found Response

Safe Yes – Endpoint cannot alter our resources

Idempotent Yes – Repeating the same operation will provide the same result

�GetCommandByID Unit Tests
This action is ultimately about returning a single resource based on a unique Id, so we

should test the following.

Test ID Condition Expected Result

Test 2.1 Resource ID is invalid (does not exist in DB) 404 Not Found HTTP Response

Test 2.2 Resource ID is valid (exists in the DB) 200 Ok HTTP Response

Test 2.3 Resource ID is valid (exists in the DB) Correct Resource Type Returned

�Test 2.1 – Check 404 Not Found HTTP Response
The code for this test is outlined here:

[Fact]

public void GetCommandByID_Returns404NotFound_WhenNonExistentIDProvided()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(0)).Returns(() => null);

Chapter 11 Unit Testing Our API

292

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetCommandById(1);

 //Assert

 Assert.IsType<NotFoundResult>(result.Result);

}

Here we setup the GetCommandsById method on our mock repository to return null

when an Id of “0” is passed in. This is a great demonstration of the real power of Moq.

How simple was that to set up the behavior of our repository? The answer is very simple!

We then just check for the NotFoundResult type (equating to a 404 Not Found HTTP

Response).

�Test 2.2 – Check 200 OK HTTP Response
The code for this test is outlined here:

[Fact]

public void GetCommandByID_Returns200OK__WhenValidIDProvided()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock",

 Platform = "Mock",

 CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetCommandById(1);

 //Assert

 Assert.IsType<OkObjectResult>(result.Result);

}

Chapter 11 Unit Testing Our API

293

The only novel code here is the way we set up the GetCommandByID method on

our repository to return a valid object, again very simple and quick. The rest of the code

doesn’t require further discussion.

�Test 2.3 – Check the Correct Object Type Returned
The code for this test is outlined here:

[Fact]

public void GetCommandByID_Returns200OK__WhenValidIDProvided()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock",

 Platform = "Mock",

 CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.GetCommandById(1);

 //Assert

 Assert.IsType<ActionResult<CommandReadDto>>(result);

}

This test checks to see if we returned a CommandReadDto. In terms of checking for the

validity of our externally facing contract, I like this test very much. If we changed our

Controller code to return a different type, this test would fail, highlighting a potential

problem with our contract – very useful.

Chapter 11 Unit Testing Our API

294

�CreateCommand Unit Tests
�CreateCommand Overview
Here are the characteristics of the CreateCommand endpoint.

Verb URI Operation Description

POST /api/commands Create Create a new resource

A reminder on the detailed behavior outlined here.

Attribute Description

Inputs The “command” object to be created

This will be added to the request body of our POST request; an example is

shown here:

{

 "howTo": "Example how to",

 "platform": "Example platform",

 "commandLine": "Example command line"

}

Process Will attempt to add a new command object to our DB

Success

Outputs

• HTTP 201 Created Status

• N ewly Created Resource (response body)

•  URI to newly created resource (response header)

Failure Outputs • HTTP 400 Bad Request

• HTTP 405 Not Allowed

Safe No – Endpoint can alter our resources

Idempotent No – Repeating the same operation will incur a different result

Chapter 11 Unit Testing Our API

295

�CreateCommand Unit Tests

Test ID Condition Expected Result

Test 3.1 Valid Object Submitted for Creation Correct Object Type Returned

Test 3.2 Valid Object Submitted for Creation 201 Created HTTP Response

Now these tests may look a little spartan for this controller; could we not be testing

more? I had originally conceived of the following additional tests

	 1.	 Test before and after object count of our repository (increment

by 1).

	 2.	 Test if the content of the object passed back was correct.

	 3.	 Test for the 400 Bad Request.

	 4.	 Test for the 405 Not Allowed.

So why didn’t I? Well tests 1 and 2 are not really testing our controller; they’re really

testing our repository. So as

•	 That’s not the focus of our testing here.

•	 Our Repository is mocked.

I chose not to write unit tests for those. These cases could be considered valid

integration tests that included our controller, but again that’s not what we are doing here.

(This is the trap I said I could fall into around the Focused unit test principle.)

For tests 3 and 4, the behavior demonstrated here derived from the default behaviors

we get from decorating our controller with the [ApiController] attribute. This is not

code I (or you) wrote – so I’m not going to write a unit test for code that I have no control

over.

If I subsequently decided to add my own code to handle these conditions, then I’d

probably introduce testing for them.

Chapter 11 Unit Testing Our API

296

�Test 3.1 Check If the Correct Object Type Is Returned
The code for this test is outlined here:

[Fact]

public void CreateCommand_ReturnsCorrectResourceType_

WhenValidObjectSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock",

 Platform = "Mock",

 CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.CreateCommand(new CommandCreateDto { });

 //Assert

 Assert.IsType<ActionResult<CommandReadDto>>(result);

}

�Test 3.2 Check 201 HTTP Response
The code for this test is outlined here:

[Fact]

public void CreateCommand_Returns201Created_WhenValidObjectSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock",

 Platform = "Mock",

 CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

Chapter 11 Unit Testing Our API

297

 //Act
 var result = controller.CreateCommand(new CommandCreateDto { });

 //Assert
 Assert.IsType<CreatedAtRouteResult>(result.Result);

}

�UpdateCommand Unit Tests
�UpdateCommand Overview
Here are the characteristics of the UpdateCommand.

Verb URI Operation Description

PUT /api/commands/{Id} Update (full) Update all of a single resource (by Id)

Detailed behaviors are shown here.

Attribute Description

Inputs (2) The Id of the resource to be updated. This will be present in the URI of our

PUT request

The full “command” object to be updated

This will be added to the request body of our PUT request; an example is

shown here:

{

 "howTo": "Example how to",

 "platform": "Example platform",

 "commandLine": "Example command line"

}

Process Will attempt to fully update an existing command object in our DB

Success Outputs • HTTP 204 No Content response code

Failure Outputs • HTTP 400 Bad Request

• HTTP 404 Not Found

• HTTP 405 Not Allowed

Chapter 11 Unit Testing Our API

298

Attribute Description

Safe No – Endpoint can alter our resources

Idempotent Yes – Repeating the same operation will not incur a different result

�UpdateCommand Unit Tests

Test ID Condition Expected result

Test 4.1 Valid object submitted for update 204 No Content HTTP Response

Test 4.2 Nonexistent resource ID submitted for

update

404 Not Found HTTP Response

Not too may tests here; points of note

•	 As we are not returning any resources back as part of our update,

there are no tests checking for resource type this time.

•	 I have opted to test for the 404 Not Found result as this is behavior we

actually wrote – so I want to test it.

�Test 4.1 Check 204 HTTP Response
The code for this test is outlined here:

[Fact]

public void UpdateCommand_Returns204NoContent_WhenValidObjectSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock",

 Platform = "Mock",

 CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

Chapter 11 Unit Testing Our API

299

 //Act

 var result = controller.UpdateCommand(1, new CommandUpdateDto { });

 //Assert

 Assert.IsType<NoContentResult>(result);

}

Here we ensure that the GetCommandById method will return a valid resource when

we attempt to “update.” We then check to see that we get the success 204 No Content

Response.

�Test 4.2 Check 404 HTTP Response
The code for this test is outlined here:

[Fact]

public void UpdateCommand_Returns404NotFound_

WhenNonExistentResourceIDSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(0)).Returns(() => null);

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.UpdateCommand(0, new CommandUpdateDto { });

 //Assert

 Assert.IsType<NotFoundResult>(result);

}

We setup our mock repository to return back null, which should trigger the 404 Not

Found behavior.

Chapter 11 Unit Testing Our API

300

�PartialCommandUpdate Unit Tests
�PartialCommandUpdate Overview
The behavior of the PartialCommandUpdate method is shown here.

Verb URI Operation Description

PATCH /api/commands/{Id} Update (partial) Update part of a single resource (by Id)

Detailed behavior here.

Attribute Description

Inputs (2) The Id of the resource to be updated. This will be present in the URI of our

PATCH request

The change-set or “patch document” to be applied to the resource

This will be added to the request body of our PATCH request; an example is

shown here:

[

 {

 "op": "replace",

 "path": "/howto",

 "value": "Some new value"

 },

 {

 "op": "test",

 "path" : "commandline",

 "value" : "dotnet new"

 }

]

Process Will attempt to perform the updates as specified in the patch document

Note: If there is more than one update, all those updates need to be successful.

If one fails, then they all fail

Success Outputs • HTTP 204 Not Content HTTP Status

Chapter 11 Unit Testing Our API

301

Attribute Description

Failure Outputs • HTTP 400 Bad Request

• HTTP 404 Not Found

• HTTP 405 Not Allowed

Safe No – Endpoint can alter our resources

Idempotent No – Repeating the same operation may incur a different result

�PartialCommandUpdate Unit Tests

Test ID Condition Expected Result

Test 5.1 Nonexistent resource ID submitted for update 404 Not Found HTTP Response

Even fewer tests here! As mentioned, when we implemented this endpoint, there are

addition external dependencies required to get PATCH endpoints up and running. This

cascades into unit testing too. The cost vs. benefit proposition of including the necessary

inclusions to perform one unit test (testing for a 204 No Content) did not stack up for me

and I assumed for you too as the reader! I have therefore included only one test below –

the 404 Not Found Response.

�Test 5.1 Check 404 HTTP Response
The code for this test is outlined here:

[Fact]

public void PartialCommandUpdate_Returns404NotFound_

WhenNonExistentResourceIDSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(0)).Returns(() => null);

 var controller = new CommandsController(mockRepo.Object, mapper);

Chapter 11 Unit Testing Our API

302

 //Act

 var result = controller.PartialCommandUpdate(0,

 new Microsoft.AspNetCore.JsonPatch.JsonPatchDocument<CommandUpdateDto>

{ });

 //Assert

 Assert.IsType<NotFoundResult>(result);

}

�DeleteCommand Unit Tests
�DeleteCommand Overview
An overview of our DeleteCommand is shown here.

Verb URI Operation Description

DELETE /api/commands/{Id} Delete Delete a single resource (by Id)

Further details of how this endpoint should operate are listed here.

Attribute Description

Inputs The Id of the resource to be deleted. This will be present in the URI of our

DELETE request

Process Will attempt to delete an existing command object to our DB

Success Outputs • HTTP 204 No Content HTTP result

Failure Outputs • HTTP 404 Not Found HTTP result

Safe No – End point can alter our resources

Idempotent Yes – Repeating the same operation will incur the same result

Chapter 11 Unit Testing Our API

303

�DeleteCommand Unit Tests

Test ID Condition Expected result

Test 6.1 Valid resource Id submitted for deletion 204 No Content HTTP Response

Test 6.2 Nonexistent resource Id submitted for deletion 404 Not Found HTTP Response

�Test 6.1 Check for 204 No Content HTTP Response
The code for this test is outlined here:

[Fact]

public void DeleteCommand_Returns204NoContent_

WhenValidResourceIDSubmitted()

{

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(1)).Returns(new Command { Id = 1,

 HowTo = "mock", Platform = "Mock", CommandLine = "Mock" });

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.DeleteCommand(1);

 //Assert

 Assert.IsType<NoContentResult>(result);

}

�Test 6.2 Check for 404 Not Found HTTP Response
The code for this test is outlined here:

[Fact]

public void DeleteCommand_Returns_404NotFound_

WhenNonExistentResourceIDSubmitted()

{

Chapter 11 Unit Testing Our API

304

 //Arrange

 mockRepo.Setup(repo =>

 repo.GetCommandById(0)).Returns(() => null);

 var controller = new CommandsController(mockRepo.Object, mapper);

 //Act

 var result = controller.DeleteCommand(0);

 //Assert

 Assert.IsType<NotFoundResult>(result);

}

�Wrap It Up
We covered a lot in this chapter, and to be honest we really only scraped the surface.

Hopefully though you learned enough to start to get you up to speed on unit testing.

The main takeaways are

•	 The power of Moq to help Isolate ourselves when unit testing

•	 The somewhat arbitrary nature of what to test (use the characteristics

as pragmatic guidelines)

With that we move into looking at how we’ll deploy to production using a CI/CD

pipeline on Azure DevOps!

Chapter 11 Unit Testing Our API

305
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_12

CHAPTER 12

The CI/CD Pipeline
�Chapter Summary
In this chapter we bring together what we’ve done so far: build activity, source control,

and unit testing and frame it within the context of Continuous Integration/Continuous

Delivery (CI/CD).

�When Done, You Will
•	 Understand what CI/CD is.

•	 Understand what a CI/CD Pipeline is.

•	 Setup Azure DevOps with GitHub to act as our CI/CD pipeline.

•	 Automatically Build, Test, and Package our API solution using Azure

DevOps.

•	 Prepare for Deployment to Azure.

�What Is CI/CD?
To talk about CI/CD is to talk about a pipeline of work” or, if you prefer another analogy:

a production line, where a product (in this instance working software) is taken from is

raw form (code1) and gradually transformed into working software that’s usable by the

end users.

1�You could argue (and in fact I would!) that the business requirements are the starting point of the
software “build” process. For the purposes of this book though, we’ll use code as the start point
of the journey.

https://doi.org/10.1007/978-1-4842-6255-9_12#DOI

306

Clearly, this process will include a number of steps, most (if not all) we will want to

automate.

It’s essentially about the faster realization of business value and is a central

foundational idea of agile software development. (Fret not, I’m not going to bang that

drum too much.)

�CI/CD or CI/CD?
Don’t worry, the heading is not a typo (we’ll come on to that in a minute).

CI is easy; that stands for Continuous Integration. CI is the process of taking any

code changes from one or more developers working on the same piece of software and

merging those changes back into the main code “branch” by building and testing that

code. As the name would suggest, this process is continuous, triggered usually when

developers “check-in” code changes to the code repository (as you have already been

doing with Git/GitHub).

The whole point of CI is to ensure that the main (or master) code branch remains

healthy throughout the build activity and that any new changes introduced by the

multiple developers working on the code don’t conflict and break the build.

CD can be a little bit more confusing. Why? We’ll you’ll hear people using both the

following terms in reference to CD: Continuous Delivery and Continuous Deployment.

�What’s the Difference?
Well, if you think of Continuous Delivery as an extension of Continuous Integration, it’s

the process of automating the release process. It ensures that you can deploy software

changes frequently and at the press of a button. Continuous Delivery stops just short

of automatically pushing changes into production though; that’s where Continuous

Deployment comes in.

Continuous Deployment goes further than Continuous Delivery, in that code

changes will make their way through to production without any human intervention

(assuming there are no failures in the CI/CD pipeline, e.g., failing tests).

Chapter 12 The CI/CD Pipeline

307

�So Which Is It?
Typically, when we talk about CI/CD, we talk about Continuous Integration and

Continuous Delivery, although it can be dependent on the organization. Ultimately,

the decision to deploy software into production is a business decision, so the idea of

Continuous Deployment is still overwhelming for most organizations.

In this book though, we’re going to go all out and practice full-on Continuous

Deployment!

�The Pipeline
Google “CI/CD pipeline,” and you will come up with a multitude of examples; I, however,

like this one.

You may also see it depicted as a “loop,” which kind of breaks the pipeline concept

but is nonetheless useful when it comes to understanding the continuous cycle of

DevOps activity.

Figure 12-1.  Continuous: integration, delivery, and deployment

Figure 12-2.  The DevOps Pipeline

Chapter 12 The CI/CD Pipeline

308

Coming back to the whole point of this chapter (which if you haven’t forgotten is to

detail how to use Azure DevOps), we are going to focus on the following elements of the

pipeline.

�What Is Azure DevOps?
Azure DevOps is a collection of tools that allow development teams to build and release

software. It provides the following main features:

•	 Dashboards: For example, Red–Amber–Green (RAG) status of your

pipeline, team members, etc.

Figure 12-3.  The DevOps "loop"

Figure 12-4.  Our Focus

Chapter 12 The CI/CD Pipeline

309

•	 Boards: Allows you to capture and plan your work using

methodologies like Scrum and Kanban.

•	 Repos: You can commit code (like we have done with GitHub) direct

to Azure DevOps own repository.

•	 Pipelines: The automated CI/CD pipeline and our focus for Azure

DevOps.

•	 Test Plans: End-to-end testing traceability for entire solutions.

•	 Artifacts: Package management, Artefact repo, etc.

In this chapter we are going to be focusing exclusively on the “Pipeline” feature

and leave the other aspects untouched. As interesting as they are, to cover these would

require a separate book and is outside our scope.

�Alternatives
There are various on-premise and cloud-based alternatives to Azure DevOps: Jenkins

is possibly the most “famous” of the on-premise solutions available, but you also have

things like

•	 Bamboo

•	 Team City

•	 Werker

•	 Circle CI

That list is by no means exhaustive, but for now, we’ll leave these behind and focus

on Azure DevOps.

�Technology in Context
Referring to our pipeline, in terms of our technology overlay, this is what we will be

working with to build a CI/CD pipeline.

Chapter 12 The CI/CD Pipeline

310

Indeed, Azure DevOps comes with its own “code repository” feature (as mentioned

in Figure 12-5), which means we could do away with GitHub.

So, our mix could look like the following.

Or if you wanted to take Microsoft technologies out of the picture, see Figure 12-7.

Figure 12-6.  Alternate technology mix

Figure 12-5.  The Technology mix we'll be using

Chapter 12 The CI/CD Pipeline

311

Going further, you can even break down the Build ➤ Test ➤ Release ➤ Deploy, etc.

components into specific technologies. I’m not going to do that here.

The takeaway points I wanted to make were

	 1.	 The relevant sequencing of technologies in our example.

	 2.	 Make sure you understand the importance of the code repository

(GitHub) as the start point.

	 3.	 Be aware of the almost limitless choice of technology.

OK, enough theory; let’s build our pipeline!

�Create a Build Pipeline
If you’ve not done so already, go to the Azure DevOPs site, https://dev.azure.com, and

sign up for a free account (be careful that you actually login to Azure DevOps and not

Azure). The landing screen should look something like this (minus the projects I have).

Figure 12-7.  Non-Microsoft mix

Chapter 12 The CI/CD Pipeline

https://dev.azure.com

312

Warning!  When working with both Azure and Azure DevOps, one thing I’ve
noticed is that the user interfaces can change rapidly. At the time of writing this
(May 2020), the screenshots are correct and current, but just be aware that given
the nature of these products, they can change from time to time.

For the most part, these changes will be so small as to be inconsequential, for
example, instead of “Create Project,” it becomes “New Project.” Other changes,
while more significant, should still be easy enough to navigate through.

Once you have signed in/signed up, click “New Project.”

Figure 12-8.  Azure DevOps landing page

Figure 12-9.  Create New Project

Chapter 12 The CI/CD Pipeline

313

You can call it anything you like, so let’s keep the theme going and call it Command

API Pipeline.

Figure 12-10.  Name the project and select Public Visibility

Chapter 12 The CI/CD Pipeline

314

Make sure

•	 You select the same “visibility” setting that your GitHub repo has

(recommend Public for test projects).

•	 Version Control is set to Git – this is the default.

Once you’re happy, click “Create”; this will create your project and take you into the

landing page.

As discussed briefly, Azure DevOps has many features, but we’ll just be using the

“Pipelines” for now. Select Pipelines, then

	 1.	 Create pipeline.

Figure 12-11.  Select Pipelines

Chapter 12 The CI/CD Pipeline

315

This first thing that it asks us is: “Where is your code?”

Well, where do you think?

Yeah – that’s right – in GitHub!

Figure 12-12.  Create a new Pipeline

Chapter 12 The CI/CD Pipeline

316

Be careful to select GitHub, as opposed to GitHub Enterprise Server (which as the

description states is the on-premise version of GitHub).

Important  If this is the first time you’re doing this, you’ll need to give Azure
DevOps permission to view your GitHub account.

Figure 12-13.  GitHub is our code source

Chapter 12 The CI/CD Pipeline

317

Supply your GitHub account details and sign in. Once you’ve given Azure DevOps

permission to connect to GitHub, you’ll be presented with all your repositories.

Figure 12-14.  You'll be asked to authenticate to GitHub

Chapter 12 The CI/CD Pipeline

318

Pick your repository (my example repository is shown in Figure 12-15); once you

click it, Azure DevOps will go off and analyze it to suggest some common pipeline

templates; you’ll see something like that in Figure 12-16.

Figure 12-15.  Select the relevant API Repository

Figure 12-16.  Pipeline Templates – we'll create our own

Chapter 12 The CI/CD Pipeline

319

Note  Some readers have reported an additional step appearing here (that I
cannot replicate) requesting that you approve and install Azure Pipelines. If you see
this, I’d suggest you approve and proceed.

All this step will do is preconfigure the azure-pipelines.yml file for you (more on this

next, but it’s basically the instructions for our CI/CD pipeline). We are going to create our

azure-pipelines.yml file from the ground up so it doesn’t really matter which one you

choose as we’ll be overwriting it. Anyway, select an option and continue.

Les’ Personal Anecdote  This is one of the areas of Azure DevOps that
appears to change a lot! I have at times in my career suggested using one of the
off-the-shelf configurations as shown in Figure 12-16, but they seem to change so
much that I felt a safer, more stable bet would be to create our own from the ground up.

Irrespective of which template you pick you’ll get a default azure-pipelines.yml file,

take a quick look (chances are yours will look different).

Figure 12-17.  Example Azure-pipelines.yml

Chapter 12 The CI/CD Pipeline

320

Select the entire contents, and press delete; your file should now be completely

empty.

We are now going to add the first step to our file, which is simply to build our API

Project. Before we do that, please read the warning below on formatting YAML files!

Warning!  YAML files are white case-sensitive, so you need to ensure the

indentation is absolutely spot on! Thankfully the in-browser editor will complain if
you’ve not indented correctly.

Add the following code you your azure-pipeline.yml file:

trigger:

- master

pool:

 vmImage: 'ubuntu-latest'

variables:

 buildConfiguration: 'Release'

Figure 12-18.  Empty Azure-Pipelines .yml

Chapter 12 The CI/CD Pipeline

321

steps:

- task: UseDotNet@2

- script: dotnet build --configuration $(buildConfiguration)

 displayName: 'dotnet build $(buildConfiguration)'

Your YAML file should look like this.

	 1.	 The trigger point for the pipeline (GitHub).

	 2.	 The image we will be performing the pipeline activities with.

	 3.	 Setup a variable to specify the build configuration.

	 4.	 A script task that performs a dotnet build for “Release.”

Figure 12-19.  Our Build Step

Chapter 12 The CI/CD Pipeline

322

We’re now ready to Click Save and run.

You’ll then be presented with the following.

This is asking you where you want to store the azure-pipelines.yml file; in this case

we want to add it directly to our GitHub repo (remember this selection though as it

comes back later!), so select this option and click Save and run.
An “agent” is then assigned to execute the pipeline; you’ll see various screens, such

as in the next figures.

Figure 12-20.  Manual Save and run

Figure 12-21.  Commit the Azure-pipelines.yml to our GitHub repo

Chapter 12 The CI/CD Pipeline

323

And finally, you should see the completion screen.

Figure 12-22.  Job Preparation on Azure DevOps

Figure 12-23.  In-progress Job

Chapter 12 The CI/CD Pipeline

324

�What Just Happened?
OK, to recap

•	 We connected Azure DevOps to GitHub.

•	 We selected a repository.

•	 We said that we wanted the pipeline configuration file (azure-
pipelines.yml) to be placed in our repository.

•	 We manually ran the pipeline.

•	 Pipeline ran through the azure-pipelines.yml file and executed the

steps.

•	 Our Solution was built.

Figure 12-24.  Successful completion

Chapter 12 The CI/CD Pipeline

325

�Azure-Pipelines.yml File
Let’s pop back over to our GitHub repository and refresh – you should see the following.

You’ll see that the azure-pipelines.yml file has been added to our repo (this is

important later).

�I Thought We Wanted to Automate?

One of the benefits of a CI/CD pipeline is the automation opportunities it affords, so why

did we manually execute the pipeline?

Great question!

We are asked to execute when we created the pipeline that is true, but we can also

set up “triggers,” meaning we can configure the pipeline to execute when it receives a

particular event.

In your Azure DevOps project, click “Pipelines” under the Pipelines section, then

select the pipeline.

Figure 12-25.  azure-pipelines.yml is in our repo

Chapter 12 The CI/CD Pipeline

326

Then click “Edit” on the next screen (top right).

After doing that you should be returned to the azure-pipelines.yml file (we will

return here to edit it later):

	 1.	 Click the Ellipsis.

	 2.	 Select Triggers.

Figure 12-26.  Navigating back to Azure-pipelines.yml

Figure 12-27.  Edit the pipeline

Chapter 12 The CI/CD Pipeline

327

Here, you can see the Continuous Integration (CI) settings for our pipeline.

You can see that the automation trigger is enabled by default (we have also

configured this in the azure-pipeline.yml file), so now let’s trigger a build! But how do

we do that?

Figure 12-28.  Select our Triggers

Figure 12-29.  Check if Pipeline triggers are enabled for GitHub commit

Chapter 12 The CI/CD Pipeline

328

�Triggering a Build
Triggering a build starts with a git push origin master to GitHub, so really any code

change (including something trivial like adding or editing a comment) will suffice.

With that in mind, back in VS Code, open CommandsController class in the “main”

CommandAPI project, and put a comment in our GetCommandItems method.

Save the file, and perform the usual sequence of actions (make sure you are in the

main Solution Folder – CommandAPISolution):

•	 git add .

•	 git commit -m “Added a reminder to clean up code”

•	 git push origin master

Everything should go as planned except when it comes to executing the final push

command.

Figure 12-30.  Some random change

Chapter 12 The CI/CD Pipeline

329

What does this mean?

Well remember we added the azure-pipelines.yml file to the GitHub repo? Yes? Well

that’s the cause, essentially the local repository and the remote GitHub repository are out

of sync (the central GitHub repo has some newer changes than our local repository). To

remedy this, we simply type

git pull

Or if that doesn’t work, use

git pull origin master

This pulls down the changes from the remote GitHub repository and merges them

with our local one.

Figure 12-31.  Our Local and Remote Repos are out of sync

Figure 12-32.  Pull down the azure-pipelines.yml

Chapter 12 The CI/CD Pipeline

330

Indeed, if you look the VS Code file tree, you’ll see our azure-pipelines.yml file has

appeared!

Now that we have synced our repositories, you can now attempt to push our

combined local Git repo back up to GitHub (this includes the comment we inserted into

our CommandsController class). Quickly jump over to Azure DevOps and click Pipelines

➤ Builds; you should see something like this.

Figure 12-33.  We have azure-pipelines.yml locally now

Figure 12-34.  Auto-triggered build

Chapter 12 The CI/CD Pipeline

331

A new build has been queued to start – this time triggered by a remote commit to

GitHub!

Once it starts, all being well, this should succeed.

We are getting there, but there is still some work to do on our build pipeline before

we move on to deploying – and that is ensuring that our unit tests are run – which

currently they are not.

�Revisit azure-pipelines.yml
Returning to our azure-pipelines.yml file in Azure DevOps (follow the steps earlier if

you forgot how to get here), you should see the following.

This is of course the code we added before; you’ll notice it doesn’t perform any

testing or packaging steps, yet.

Figure 12-35.  Our azure-pipelines.yml

Chapter 12 The CI/CD Pipeline

332

�Another VS Code Extension
As we are going to be doing a bit of editing of the azure-pipelines.yml file, there are two

places you can do this:

	 1.	 Directly in the browser (we’ve already done this)

	 2.	 In VS Code

The advantage that editing in the browser had was that it gave you some Intellisense-

like functionality where it suggested some code snippets, etc. However, Microsoft has

now released a VS Code extension to provide similar functionality in VS Code, so we’re

going to install and use that (it means we do all our coding in the one place).

In VS Code, click the Extensions button, and search for “Azure Pipelines”; you should

see the following.

Install it, and then open azure-pipelines.yml file that we just pulled down from

GitHub.

Figure 12-36.  Azure Pipelines Extension for VS Code

Chapter 12 The CI/CD Pipeline

333

�Running Unit Tests
Returning to the steps in our pipeline view, see Figure 12-37.

You’ll see the suggested sequencing is Build ➤ Test ➤ Release, so let’s add that task

to our azure-pipelines.yml file now.

Move back to VS Code, open azure-pipelines.yml, and append the following Task

after the build Task:

- task: DotNetCoreCLI@2

 displayName: 'dotnet test'

 inputs:

 command: test

 projects: '**/*Tests/*.csproj'

 testRunTitle: 'xUNit Test Run'

So, overall, the file should like this, again with our new task step highlighted.

Figure 12-37.  The pipeline we'll be building

Chapter 12 The CI/CD Pipeline

334

The steps are quite self-explanatory, so save the file in VS Code, and perform the

necessary Git command-line steps to commit your code and push to GitHub – this

should trigger another build of our pipeline.

Figure 12-38.  Testing step added

Chapter 12 The CI/CD Pipeline

335

And this time the unit tests should execute too.

Figure 12-39.  Pipeline triggered again

Chapter 12 The CI/CD Pipeline

336

Click the dotnet test step as shown to drill down to see what’s going on; you should

see something like the following.

Figure 12-40.  Testing step has succeeded

Chapter 12 The CI/CD Pipeline

337

Clicking the link highlighted in Figure 12-41 takes you to the test result dashboard.

Figure 12-42.  Testing Dashboard

Figure 12-41.  More detail on testing

Chapter 12 The CI/CD Pipeline

338

Very nice! Indeed, this is the type of Information Radiator that you should make

highly visible when working in a team environment, as it helps everyone understand the

health of the build and, if necessary, take action to remediate any issues.

�Breaking Our Unit Tests
Now just to labor the point of unit tests and CI/CD pipelines, let’s deliberately break one

of our tests.

Back in VS Code and back in our CommandAPI.Tests project, open our

CommandsController tests, and edit one of your tests, and change the expected return

type; I’ve chosen the test here and swapped NotFoundResult with OKResult:

Save the file, and (ensuing you’re “in” the CommandAPI.Tests project) run a build:

dotnet build

The build of the project will succeed as there is nothing here that would cause a

compile-time error. However, if we try a

dotnet test

We’ll of course get a failing result.

Figure 12-43.  Break our unit test

Chapter 12 The CI/CD Pipeline

339

Now under normal circumstances, having just caused our unit test suite to fail

locally, you would not then commit the changes and push them to GitHub! However,

that is exactly what we are going to do just to prove the point that the tests will fail in the

Azure DevOps build pipeline too.

Note  In this instance, we know that we have broken our tests locally, but there
may be circumstances where the developer may be unaware that we have done so
and commit their code; again this just highlights the value in a CI/CI build pipeline.

So, perform the three “Git” steps you should be familiar with now (ensure you do

this at the solution level), and once you’ve pushed to GitHub, move back across to Azure

DevOps, and observe what happens.

Figure 12-44.  Test has failed locally

Chapter 12 The CI/CD Pipeline

340

Then as expected, our test fails.

Figure 12-45.  In-progress Pipeline (it will error out)

Figure 12-46.  Failed!

Chapter 12 The CI/CD Pipeline

341

Again, you can drill down to see what caused the error, and if, for example, you were

displaying test results on a large LCD screen, it would be immediately apparent that

there is something wrong with the build pipeline and that remedial action needs to be

taken. Looking at the individual steps, see Figure 12-47.

And then drilling further in to the dotnet test step and going to the test results

dashboard (see Figure 12-48).

Figure 12-47.  Detail of failures

Chapter 12 The CI/CD Pipeline

342

�Testing – The Great Catch All?
Now, this shows us the power of unit testing in that it will cause the build pipeline to

fail and buggy software won’t be released or even worse deployed to production! It also

means we can take steps to remediate the failure.

So conversely, does this mean that if all tests pass, you won’t have failed code in

production? No, it doesn’t for the simple reason that your tests are only as good as,

well, your tests. The point that I’m making (maybe rather depressingly) is that even if all

your tests pass, the confidence you have in your code will only be as good as your test

coverage – ours is not bad at this stage though – so we can be quite confident in moving

to the next step.

Figure 12-48.  Dashboard represents the failure

Chapter 12 The CI/CD Pipeline

343

Before we do that though, revert the change we just made to ensure that all our unit

tests are passing and that our pipeline returns to a green state.

Warning!  Do not progress to the next section without ensuring that all your
tests are passing!

�Release/Packaging
Referring to our pipeline again, we’re now at the Release stage; this is where we need to

package our build ready to be deployed.

Figure 12-49.  Make sure you fix your pipeline before continuing

Figure 12-50.  Revisit our pipeline

Chapter 12 The CI/CD Pipeline

344

So once again, move back into VS Code, and open azure-pipelines.yml file, and

append the following steps:

- task: DotNetCoreCLI@2

 displayName: 'dotnet publish'

 inputs:

 command: publish

 publishWebProjects: false

 projects: 'src/CommandAPI/*.csproj'

 �arguments: '--configuration $(buildConfiguration) --output $(Build.

ArtifactStagingDirectory)'

- task: PublishBuildArtifacts@1

 displayName: 'publish artifacts'

So overall, your file should look like this, with the new code highlighted (again watch

those spaces – the VS Code plugin we just installed should help you with this).

Chapter 12 The CI/CD Pipeline

345

The steps are explained in more detail in the Microsoft Documents,2 but in short

•	 A dotnet publish command is issued for our CommandAPI project

only.3

•	 The output of that is zipped.

•	 The zipped artifact is published.

2�https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/
dotnet-core?view=azure-devops&tabs=yaml

3�We don’t want to publish our tests anywhere!

Figure 12-51.  Package and publish steps

Chapter 12 The CI/CD Pipeline

https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/dotnet-core?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/dotnet-core?view=azure-devops&tabs=yaml

346

Les’ Personal Anecdote  Ensure that you put in the following line:

publishWebProjects: false

When researching this, I spent about 2-3 hours trying to understand why the
packaging step was not working – it was because of this! The default is true, so if
you don’t include that, the step fails. ARGHHHH!

Save the file, and again: add, commit, and push your code. The pipeline should

succeed, and if you drill into the successful build, you’ll see our two additional task

steps.

Figure 12-52.  Steps shown in the running Job

Chapter 12 The CI/CD Pipeline

347

Celebration Checkpoint  Excellent work! You have completed the: build,
test, and release steps of our pipeline using Azure DevOps.

�Wrap It Up
A lot of ground covered here, where we

•	 Setup a CI/CD pipeline on Azure DevOps

•	 Connected Azure DevOps to GitHub (and ensured CI triggers were

enable)

•	 Added: Build, Test, and Packaging steps to our azure-pipeline.yml

file

We are now almost ready to deploy to Azure!

Chapter 12 The CI/CD Pipeline

349
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_13

CHAPTER 13

Deploying to Azure
�Chapter Summary
In this chapter we deploy our API onto Azure for use in the real world. On the way, we

create the Azure resources we need and revisit the discussion on runtime environments

and configuration.

�When Done, You Will
•	 Know a bit more about Azure.

•	 Have created the Azure resources we need to deploy our API.

•	 Update our CI/CD pipeline to deploy our release to Azure.

•	 Provide the necessary configuration to get the API working in a

Production Environment.

We have a lot to cover – so let’s get going!

�Creating Azure Resources
Azure is a huge subject area and could fill many books, many times over, so I’ll be

focusing only on the aspects we need to get our API and database up and running in a

“production-like” environment – which should be more than enough.

https://doi.org/10.1007/978-1-4842-6255-9_13#DOI

350

In simple terms, everything in Azure is a “resource,” for example, a database server,

virtual machine, web app, etc. So, we need to create a few resources to house our app.

There are different ways to create resources in Azure:

	 1.	 Create resources manually via the Azure Portal.

	 2.	 Create resources automatically via Azure Resource Manager

Templates.

	 3.	 Create resources automatically using third-party tools, for

example, Terraform.

In this chapter, we’ll be manually creating the resources we need as

•	 It’s simpler (in our case anyway, see next point).

•	 We only have a small number of resources.

•	 I think it’s the right approach to learning (our focus is still our API).

�Create Our API App
The first resource we are going to create is an API App; this unsurprisingly is where our

API code will run. To do so, log-in to Azure (or if you don’t have an account, you’ll need

to create one), and click “Create a resource”:

Figure 13-1.  Create an Azure Resource

Chapter 13 Deploying to Azure

351

 A gain, I’ll mention the point that the following screenshots were correct at the
time of writing, but given the fast pace of change in Azure, they may be subject to
change.

Fundamentally though, resource creation in Azure is not that difficult, so small UI
changes should not stump someone as smart as yourself!

In the “search box” that appears in the new resource page, start to type “API App”;

you will be presented with the API App resource type.

Select “API App,” then click “Create.”

Figure 13-2.  Search for API App

Chapter 13 Deploying to Azure

352

On the Next “page,” enter

	 1.	 A name for your API App.1

	 2.	 Select your subscription (I just have a “pay as you go”).

	 3.	 A name for your new “Resource Group” – these are just groupings

of “resources”; if you don’t have an existing resource group, you’ll

need to create one.

Figure 13-3.  Create the API App

1�This needs to be unique in Azure, so your name will be different to mine.

Chapter 13 Deploying to Azure

353

WAIT! Before you click Create, click the App Service plan/location.

Figure 13-4.  Configure your API App – make sure you configure a free plan!

Chapter 13 Deploying to Azure

354

Les’ Personal Anecdote  The API App resource describes what you are
getting; the App Service Plan and Location tells you how that API App will

be delivered to you.

For example, do you want your API App

•	 Hosted in the United States, Western Europe, Asia, etc.

•	 On shared or dedicated hardware

•	 Running on certain processor speed, etc.

By default, if you’ve not used Azure before, you’ll be placed on a Standard plan
which can incur costs! (This is a personal anecdote because I did that and was
shocked when my test API started costing me money!)

So be careful of the Service Plan you set up; I detail the free plan next.

After clicking the Service Plan, click “Create new.”

On the “New App Service Plan” widget, enter an App Service Plan name, and pick

your location, then click the Pricing Tier.

Figure 13-5.  Creating an App Service Plan

Chapter 13 Deploying to Azure

355

After, click the Pricing Tier.

Figure 13-6.  The Pricing Tier

Figure 13-7.  Select the Free option

Chapter 13 Deploying to Azure

356

	 1.	 Select the Dev/Test tab.

	 2.	 Select the “F1” Option (Shared infrastructure/60 minutes

compute).

	 3.	 Click Apply.

We have selected the cheapest tier with “Free Compute Minutes,” although please be

aware that I cannot be held responsible for any charges on your Azure Account! (After I

create and test a resource if I don’t need it – I “stop it” or delete it).

Then click OK.

Then click “Create” (ensure your new App Service Plan is selected).

Figure 13-8.  You're ready to go

Chapter 13 Deploying to Azure

357

After clicking Create, Azure will go off and create the resource ready for use.

You will get notified when the resource is successfully created; if not, click the little

“Alarm Bell” icon near the top right-hand side of the Azure portal.

Figure 13-9.  Free plan has been applied to the API APP

Figure 13-10.  Deployment will take a few minutes…

Chapter 13 Deploying to Azure

358

Here you can see the resource was successfully created; now click “Go to resource.”

This just gives us an overview of the resource we created and gives us the ability to

stop or even delete it. You can even click the location URL, and it will take you to where

the API App resides.

Figure 13-11.  Notification of Resource Creation

Figure 13-12.  API App Overview including URI

Chapter 13 Deploying to Azure

359

As we have not deployed anything, you’ll get a similar landing page as shown in

Figure 13-13 (of course for reasons already mentioned, it may look a bit different, but

that is of no consequence to us at this point).

Celebration Checkpoint  You’ve just created your first Azure resource, one
of the primary components of our production solution architecture!

�Create Our PostgreSQL Server
Now, there are a number of different ways that you can create a PostgreSQL database on

Azure, but I’m going to take a slightly unorthodox route and spin up a PostgreSQL Server

in a Container Instance in Azure (think Docker containers).

Figure 13-13.  Default public landing page

Chapter 13 Deploying to Azure

360

I’ve taken this approach primarily because the setup is so simple and the cost

implications are low. To illustrate my point, compare the estimated costs for

•	 Azure Database for PostgreSQL Servers

•	 Container Instance running a PostgreSQL Image

�Azure Database for PostgreSQL Servers

I’ve configured the most basic example of this that I could.

Figure 13-14.  Cost estimate for Postgres Server

Chapter 13 Deploying to Azure

361

�Container Instance Pricing

Now, I don’t need to tell you that “you get what you pay for” in this life, so clearly the

Azure Database for PostgreSQL option is a purpose-built resource that’s designed to

work as a database, whereas the container option I’m taking is in no way optimized for

Production performance!

Warning!  If you restart the PostgreSQL container instance that we create in
the next section, it essentially resets, and you will lose your configuration and
data relating to it – just something to bear in mind.

From a learning (and cost!) perspective, I still think this option is acceptable. If,
however, you are moving to a “real” Production environment, then you’ll really
need to look at something a little more fit for purpose.

So back in Azure, once again click “Create a Resource,” and this time search for

“Container Instances.”

Figure 13-15.  Container instance pricing

Chapter 13 Deploying to Azure

362

Select “Container Instances” from the options drop-down, and you should be

displayed the Container Instances detail screen; click “Create” to continue.

You’ll get taken to the Basics tab on the creating wizard; fill out the details as relevant

to you; however, the image name must be postgres.

Figure 13-16.  Search for Container Instances

Figure 13-17.  Overview of Container Instances

Chapter 13 Deploying to Azure

363

	 1.	 Your subscription.

	 2.	 Resource group (I’d make this the same as the one you placed the

API app into).

Figure 13-18.  Configure your Container Instance

Chapter 13 Deploying to Azure

364

	 3.	 Container name can be anything, but I’d name it something that

identified it as a PostgreSQL server.

	 4.	 Region (I’d make this the same as the one you placed the API app

into).

	 5.	 Image Source: Select Docker Hub (this is where we’ll get our

postgres image).

	 6.	 Image Type: Select Public (the postgres image we use in the next

step is publicly available on Docker Hub).

	 7.	 Image Name: As mentioned earlier, this needs to be the exact

name of the image on Docker Hub, so in this case postgres.

	 8.	 OS Type: Select Linux.

	 9.	 Size: Leave these as the defaults.

When you’re happy click “Next: Networking >.”

And supply the following details in the Networking Tab.

Figure 13-19.  Networking

Chapter 13 Deploying to Azure

365

	 1.	 Select “Public” for a public IP Address (note this can change if the

container restarts).

	 2.	 Add a DNS name label as the IP Address can change if the

container restarts.

	 3.	 Add the standard 5432 TCP port for PostgreSQL.

When you’re happy, click “Next: Advanced >.”

And enter the following details on the Advanced tab.

Figure 13-20.  Networking configuration

Figure 13-21.  Onto Advanced Settings

Chapter 13 Deploying to Azure

366

	 1.	 Set the Restart Policy to “On Failure.”

	 2.	 Create an “environment variable” for the Postgres password for

the default database; the Key you should use for this is

POSTGRES_PASSWORD

The choice of password (the value) is up to you. In my case, I used

pa55w0rd!

Warning!  As you can see our PostgreSQL password is in plain text; again
this is not a production-suitable solution. We are using it for (cheap!) testing
purposes only.

If you pop back to Chapter 7 where we set up an instance of PostgreSQL locally using

Docker Desktop, there is a bit more of a discussion on these settings – so we don’t need

to go over old ground here. Just a point of note, however, the environment variable for

the PostgreSQL DB password (POSTGRES_PASSWORD) is exactly the same as the one we

used when setting up our local Docker instance.

Click “Review and Create” (we can skip the “Tags” tab).

Figure 13-22.  Setup Environment variables

Chapter 13 Deploying to Azure

367

Figure 13-23.  Validation Passed

Chapter 13 Deploying to Azure

368

You should see “Validation Passed” at the top of the screen; when you’re happy, click

Create, and in a similar way to the API App, Azure will go off and create your resource.

You’ll get notified when both your resources are set up: by clicking All resources, you

can see everything we have created.

�Connect and Create Our DB User
As before we want to create a dedicated user to connect in and use our database, the

exercise is also a great opportunity to test that our PostgreSQL container instance is up

and running.

First, we need to get the Fully Qualified Domain Name (FDQN) of the container

instance, so in Azure find your container instance resource, and select it; this will display

a number of details, most important of which is our FDQN.

Figure 13-24.  Resources up and running

Figure 13-25.  Location of the API

Chapter 13 Deploying to Azure

369

Make a note of the FDQN, and move over to DBeaver, and create a new connection

to a PostgreSQL instance – this is exactly the same as when we connected into our local

instance, the only differences being the host and possibly the password for the postgres

user (depending on what you set in the container instance environment variables).

Remember to tick “Show all databases” on the PostgreSQL tab.

Figure 13-26.  Connect to the Azure instance

Figure 13-27.  Ensure Show all Databases is ticked

Chapter 13 Deploying to Azure

370

You can test the connection or press Finish to setup our connection to our Azure-

based instance.

Again, we’ll just repeat the user creation steps in Chapter 7:

•	 Open a New SQL Editor Window.

•	 Enter and run the following SQL (you can change the password

obviously!):

create user cmddbuser with encrypted password 'pa55w0rd!'

createdb;

And again, check that the role was created and that it has create database rights.

Along with the FDQN, set aside the user ID and password for later.

�Revisit Our Dev Environment
We’ve covered a lot of ground since Chapter 8, but it’s worth doing a bit of a review.

Figure 13-28.  Revisit configuration

Chapter 13 Deploying to Azure

371

•	 We set our environment in launchSettings.json (in the

ASPNETCORE_ENVIRONEMENT variable).

•	 Our Connection Strings can sit in appsettings.json or the

environment specific variants of that file, for example,

appsettings.Development.json. This is where our Development

connection string sits.

•	 “Secret” information, such as Database log-in credentials, can be

broken out into Secrets.json via The Secret Manager tool. Meaning,

we don’t check in sensitive data to our code repository.

Also, remember that we chose to build our full connection string in our Startup class

using

•	 Non-sensitive Connection String stored in appSettings.
Development.json).

•	 Our User ID, stored in a User Secret called UserID.

•	 Our Password, stored in a User Secret called Password.

�Setting Up Config in Azure
When you deploy a .NET Core app as an Azure API App, it sits on top of a configuration

layer that we access via the .NET Core Configuration API in exactly the same way as

we have done to date with our local Development environment. In setting up our

production environment, we will

•	 Require some simple config settings in our API App.

•	 Require no code changes in our app; there would be something very

wrong if we needed to change our code to move into production –

that should all be handled by configuration.

�Configure Our Connection String
OK, so go back to your list of Azure resources, and select your API App Service. On the

resulting screen, select Configuration in the Settings section as shown here.

Chapter 13 Deploying to Azure

372

You’ll see there are two sections here for use to play with:

	 1.	 Application Settings

	 2.	 Connection Strings

We are going to add our Production Connection string to the (surprise, surprise)

Connection Strings settings of our API App. Looking at the Development connection

string I have in appsettings.Development.json

Host=localhost;Port=5432;Database=CmdAPI;Pooling=true;

Figure 13-29.  Application settings and connection strings in the API app

Chapter 13 Deploying to Azure

373

Not that much needs to change, except the Host attribute. We simply substitute that

for the PostgreSQL Container Instance FDQN that you should have set aside from the

section earlier. So, I now have the following (yours will look different depending on your

container instance name and location of course):

Host= pgserver.australiaeast.azurecontainer.io;

Port=5432;Database=CmdAPI;Pooling=true;

To add this string to our API App Connection String settings, click + New connection

string. In the resulting form, enter

	 1.	 Connection String Name (this should be the same name as our
development connection string – I cannot stress that enough!).

	 2.	 The connection string we generated earlier (note we’ll be

configuring our User ID and Password separately below).

	 3.	 Set the type to Custom.

Warning!  You do have the option of “PostgreSQL” for the connection string
type – however, I’ve had significant issues trying to use this – so use it at your
peril!

Click OK, and you’ll see the connection string has been added to our collection.

Figure 13-30.  Add the connection string; be careful to name it correctly

Chapter 13 Deploying to Azure

374

�Configure Our DB User Credentials
We’re going to add our Production User ID and Password configuration items in a very

similar way, except this time, we’ll add these items to the Application Settings section of

our API App Configuration. To add our User ID, click + New application setting. In the

resulting form, enter

	 1.	 Name: This should be the same as our User Secret name for

User ID.

	 2.	 Value: This is the user account you set up on the PostgreSQL

Container Instance earlier.

For example, if you’ve been following the tutorial step by step these should be

•	 Name: UserID

•	 Value: cmddbuser

So, add them as an Application Setting as follows.

Figure 13-31.  Again, ensure it's named correctly

Chapter 13 Deploying to Azure

375

Again, just be careful that the User ID attribute name is exactly the same as the local

user secret name and what your app is expecting to ingest when it creates the connection

string as shown next.

Click OK, and you’ll see the new UserID application setting.

Figure 13-32.  Create User ID Application Setting

Figure 13-33.  Make sure you name it correctly

Chapter 13 Deploying to Azure

376

Learning Opportunity  Add a second Application setting for our Password.
This should follow the same process as UserID.

Warning!  Storing passwords in Application Settings possibly isn’t the best
location for them, one reason being that you can see what they are in plain text.
Even though Azure is “secured,” that is, only authorized users will have access to
it – plain text passwords are just generally not a great idea.

In a real production environment, you’d want to opt for something like Azure Key
Vault or a third-party product such a Vault.2 I feel that detailing that here would just
be taking us too far out the way of what we want to achieve today.

Figure 13-34.  UserID added to Application Settings

2�www.vaultproject.io/

Chapter 13 Deploying to Azure

https://www.vaultproject.io/
https://www.vaultproject.io/

377

�Configure Our Environment
Finally, we want to set our runtime environment to “Production”; we do this simply by

adding another Application setting as follows:

•	 Name: ASPNETCORE_ENVIRONMENT

•	 Value: Production

See Figure 13-35.

Click OK and you should now have added four production configuration settings:

	 1.	 Application settings: ASPNETCORE_ENVIRONMENT

	 2.	 Application settings: Password

	 3.	 Application settings: UserID

	 4.	 Connection string: PostgreSQLConnection

I’ve shown my setup as it appears in Azure in Figure 13-36.

Figure 13-35.  Specifying our environment

Chapter 13 Deploying to Azure

378

Again, I know I keep repeating myself, but you need to make sure the Names of these

configuration items are the same as their Development counterparts, as that is what our

application is expecting – please double-check these! The values of these items I have to

leave up to you to get correct!

Figure 13-36.  Newly created Application Settings

Chapter 13 Deploying to Azure

379

Warning!  Every time you make a configuration change, you need to save
it - see Figure 13-37.

Make sure you click Save to apply your changes (when starting out with this stuff, I
didn’t and spent a lot time trying to understand what was wrong!).

Celebration Checkpoint  You have just set up all your Azure Resources and
have configured them ready for our deployment!

�Completing Our Pipeline
At last! We create the final piece of the puzzle in our CI/CD pipeline: Deploy.

A quick recap on our CI/CD Pipeline so far

•	 We created what Azure DevOps calls a Build Pipeline that does the

following:

•	 Builds our projects

Figure 13-37.  Make sure you save!

Figure 13-38.  The pipeline

Chapter 13 Deploying to Azure

380

•	 Runs our unit tests

•	 Packages our release

What we now need to do in Azure DevOps is create a Release Pipeline that takes our

package and releases and deploys it to Azure. So basically, our full CI/CD Pipeline =

Azure DevOps Build Pipeline + Azure DevOps Release Pipeline.

�Creating Our Azure DevOps Release Pipeline
Back in Azure DevOps, click Pipelines ➤ Releases.

The click New Pipeline.

Figure 13-39.  Release Pipeline

Chapter 13 Deploying to Azure

381

On the next screen, select and Apply the Azure App Service deployment template.

In the “Stage” widget

	 1.	 Change the stage name to “Deploy API to Prod Azure”

(or whatever you like so long as it’s meaningful).

	 2.	 Click the Job/Task link in the designer.

Figure 13-40.  Create a new Release Pipeline

Figure 13-41.  Select Azure App Service deployment

Chapter 13 Deploying to Azure

382

Here, we need to

	 1.	 Select our Azure subscription (you will need to “authorize” Azure

DevOps to use Azure).

  Warning! I f you’ve got an active pop-up blocker, this can cause you some
issues here as the authentication window needs to “pop up.” Depending on your
setup, you’ll need to allow pop-ups for this site in order to cleanly authenticate
Azure DevOps to use Azure.

	 2.	 App Type (remember this is an API App)

	 3.	 App Service Name (all of your API Apps will be retrieved from

Azure – select the one you created earlier)

Figure 13-42.  Name the stage and fix up the task errors

Chapter 13 Deploying to Azure

383

Don’t forget to Save. When you do, you’ll be presented with the following.

Figure 13-43.  Fix up the errors and remember to save!

Figure 13-44.  Add a comment if you need to

Chapter 13 Deploying to Azure

384

Just click OK.

Click back on the “Pipeline” tab, then on Add (to add an artifact).

Here, you will need to provide

	 1.	 The Project (this should be preselected)

	 2.	 The Source Pipeline (this is our Build pipeline we created

previously)

	 3.	 Default version (select “Latest” from the drop-down)

Figure 13-45.  Adding an artifact for deployment

Chapter 13 Deploying to Azure

385

Click Add. Then click the lightning bolt on the newly created Artifact node.

Figure 13-46.  Configure the artifact

Chapter 13 Deploying to Azure

386

In the resulting pop-up, ensure that Continuous deployment trigger is enabled, then

click Save.

Figure 13-47.  Select triggers

Figure 13-48.  Enable the Continuous deployment trigger

Chapter 13 Deploying to Azure

387

Note I t is this setting that switches us from Continuous Delivery to Continuous
Deployment.

You’ll get asked to supply a comment when turning this on; do so if you like.

Click Releases; you’ll see that we have a new pipeline but no release; this is because

the pipeline has not yet been executed.

Figure 13-49.  Again, add a comment if you want to

Chapter 13 Deploying to Azure

388

�Pull the Trigger – Continuously Deploy
OK, the moment of truth. If we have set everything up correctly, all we need to do now to

test our entire CI/CD pipeline end to end is to perform another code commit to GitHub,

which will trigger the Build Pipeline. Then, as we’ve just configured, the Release Pipeline

will be triggered by the Build Pipeline, which will deploy our API App to Azure.

�Wait! What About EF Migrations?
Just before you do that – cast your mind back to Chapter 7 where we set up our DB

Context and performed a database migration at the command line:

dotnet ef database update

Nowhere in our CI/CD pipeline have we accounted for this step, where we tell Azure

it has to create the necessary schema in our PostgreSQL DB. There are a few ways we can

do this, but the simplest is to update the Configure method in the Startup class.

This approach means that migrations will be applied when the app is started for the

first time.

Figure 13-50.  Release Pipeline created

Chapter 13 Deploying to Azure

389

In VS Code, open the Startup class, and make the following alterations to the

Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,

CommandContext context)

{

 context.Database.Migrate();

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseMvc();

}

For clarity, the Configure method changes are highlighted in Figure 13-51.

Save your changes and Add, Commit, and Push your code as usual; this should

trigger the build pipeline.

Figure 13-51.  Migrate Database

Chapter 13 Deploying to Azure

390

When the Build Pipeline finished executing (successfully), click “Releases.”

You’ll see the Release Pipeline attempting to deploy to Azure And eventually it should

deploy (you may need to navigate away from the Release Pipeline and back again).

Figure 13-53.  Release pipeline attempting to deploy

Figure 13-54.  Deployed!

Figure 13-52.  Pipeline triggered again

Chapter 13 Deploying to Azure

391

And now the moment of truth; let’s see if our API is working; first obtain the base app

URL from Azure:

•	 Click All resources.

•	 Select you API App (App Service type).

Note: Yours will be named differently.

Now fire up Postman, and prepare to make a GET request to retrieve all our

commands (we won’t have any yet).

Remember to append: /api/commands to the base URL

Then click Send.

If the deployment and Azure configuration were successful, you’ll get an empty

payload response and an OK 200 Status.

Figure 13-55.  Get the URI for your API App

Figure 13-56.  Call the API on Azure from Postman

Chapter 13 Deploying to Azure

392

Celebration Checkpoint  Rad!3 Our API is deployed and working in our
Production Azure environment; moreover, it’s there via process of Continuous
Integration/Continuous Deployment!

�Double-Check
Just to double-check everything, let’s make a POST request to create some data.

Using the following JSON string:

{

 "howTo": "Create an EF migration",

 "platform": "Entity Framework Core Command Line",

 "commandLine": "dotnet ef migrations add"

}

Figure 13-57.  Success – but we have no data

3�Children of the 1990s will get this superlative.

Chapter 13 Deploying to Azure

393

Create a new Postman request and set

	 1.	 Request Verb to POST.

	 2.	 The request URL is correct (e.g., https://commadapi.

azurewebsites.net/api/commands).

	 3.	 Click Body.

	 4.	 Select Raw and JSON for the request body format.

	 5.	 Paste the JSON into the body payload window.

Finally, if you’re brave enough, click “Send” to make the request.

Figure 13-58.  POSTing Data to out Azure hosted API

Chapter 13 Deploying to Azure

https://commadapi.azurewebsites.net/api/commands
https://commadapi.azurewebsites.net/api/commands

394

And again, we have success!

Celebration Checkpoint  Revel in the enormity of what you have just done!
Not many people can say that have deployed an API on to the cloud via a CI/CD
pipeline.

Figure 13-59.  201 Success!

Chapter 13 Deploying to Azure

395
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9_14

CHAPTER 14

Securing Our API
�Chapter Summary
In this chapter we discuss how we can secure our API; specifically, we’ll add the “Bearer”

authentication scheme into the mix that will allow only authorized clients to access our

API resource through the use of Tokens.

�When Done, You Will
•	 Understand the Bearer authentication scheme.

•	 Use Azure Active Directory to secure our API.

•	 Create a simple client that is authorized to use the API.

•	 Deploy to Azure.

We have a lot to cover – so let’s get going!

�What We’re Building
�Our Authentication Use Case
Before delving into the technicalities of our chosen authentication scheme, I just wanted

to cover our authentication use case. For this example, we are going to “secure” our

API by using Azure Active Directory (AAD), and then create and configure a client (or

daemon) app with the necessary privileges to authenticate through and use the API. We

are not going to leverage “interactive” user-entered User Ids and passwords. This use

case is depicted in Figure 14-1.

https://doi.org/10.1007/978-1-4842-6255-9_14#DOI

396

�Overview of Bearer Authentication
There are a number of authentication schemes that we could have used,

a non-exhaustive list is provided in the table.

Scheme Description

Basic A common, relatively simple authentication scheme. Requires the supply of a user

name and password that’s then encoded as a Base64 string; this is then added to the

authorization header of a http request. Natively, this is not encrypted, so it’s not that secure,

unless you opt so make requests over https, in which case the transport is encrypted

Digest Follows on from Basic Authentication but is more secure as it applies a hash function to

any sensitive data (e.g. username and password) before sending

Bearer Token-based authentication scheme where anyone in possession of a valid “token”

can gain access to the associated secured resources, in this case our API. Considered

secure, it is widely adopted in industry and is the scheme (specified in RFC 6750); we’ll

use to secure our API

Figure 14-1.  Authentication use case

(continued)

Chapter 14 Securing Our API

https://tools.ietf.org/html/rfc6750

397

Scheme Description

NTLM Microsoft-specific authentication scheme, using Windows credentials to authenticate.

Perfectly decent, secure scheme but as it’s somewhat “proprietary” (and I’m trying to

avoid that), we’ll leave our discussion there for now

�Bearer Token vs. JWT

The use of “tokens” in Bearer authentication is a central concept. A token is issued to a

requestor (in this case a daemon client) and the client (or “bearer of the token”) then

presents it to a secure resource in order to gain access.

So, what’s JWT?

JWT (or JSON Web Tokens) is an encoding standard (specified in RFC 7519) for

tokens that contain a JSON payload. JWTs can be used across a number of applications;

however, in this instance, we’re going to use JWT as our encoded token through our use

of Bearer authentication.

In short

•	 Bearer authentication is the authentication scheme that makes use of

(bearer) “tokens.”

•	 JWT is a specific implementation of bearer tokens, in particular those

with a JSON payload.

Again, rather than dwelling on copious amounts of theory, the concepts will make

more sense as we build them below.

�Build Steps
As I’ve mentioned before, I like a bit of 50,000ft view of what we’re going to build before

we start building it as it helps contextualize what we need to do, and it also allows us

to understand the progress we’re making. Therefore, in terms of the configuration and

coding we need to perform, I’ve detailed the steps we’ll follow here.

Chapter 14 Securing Our API

https://tools.ietf.org/html/rfc7519

398

�Steps for Our API Project

�Steps for Our Daemon Client

You can see there is actually a lot to do – so let’s get on it!

Figure 14-2.  API build steps

Figure 14-3.  Client build steps

Chapter 14 Securing Our API

399

�Registering Our API in Azure AD
The first thing we need to do is register our API with Azure Active Directory (AAD), as

we’re using AAD as our Identity and Access Management directory service.

Les’ Personal Anecdote  One of my first jobs out of university was as
part of a team supporting a large (I believe at the time the second largest in the
world) deployment of Novell NetWare Directory Services (NDS), which was weird as
I had neither the background nor inclination to learn NDS.

Anyhow, this product was considered relatively leading-edge at the time as it took
the approach of storing user accounts (as well as other “organizational objects”) in
a hierarchical directory tree structure that was both distributed and replicated (in
this case) nationwide. In short it was hugely scalable and could cater for 10,000s
(we had well over 100,000) of user accounts.

At the time Microsoft only used Windows NT Domains which were arguably more
basic (they were “flat”), less scalable, distributable, and reliable than their NetWare
counterparts. Blue screen of death anyone?

Microsoft was obviously, cough, “inspired,” cough again, by NDS (and Banyan
Vines – see next section) to such an extent that they brought out a rival product,
Active Directory, which bore a remarkable resemblance to, drum roll, NDS. You
could argue this was poetic justice as Novell had been “inspired” by an earlier
product called Banyan VINES.1 Interestingly, Jim Allchin, engineering supremo at
Banyan, joined Microsoft due to creative and strategic differences with the Banyan
leadership.

The rest is history.

Banyan and Novell’s products withered and died due to a number of different
strategic missteps, as well as the fact that Microsoft had a compelling value
proposition.

1�https://en.wikipedia.org/wiki/Banyan_VINES

Chapter 14 Securing Our API

https://en.wikipedia.org/wiki/Banyan_VINES

400

So, if you use a Windows PC at work and have to “log-in,” then you’re most likely
logging into an Active Directory. Now with the emergence of Azure, you don’t even
need to host your AD on premise and can opt to use Azure Active Directory, which
is what we’ll be using for this chapter.

�Create a New AD?
Now this step is optional, but I have created a “test” AAD in addition to the AAD that gets

created when you sign up for Azure. This is really just to ring-fence what is in essence

my “production AAD” (the one that holds my login for Azure) from any development

activities I undertake.

You can create a new AAD in exactly the same way as you create any other resources

in Azure, so I won’t detail the steps here. If you do opt for this approach though

(remember it is optional), the only thing you need to be aware of is that when you want to

create objects in your “Development AAD,” you’ll need to switch to it in the Azure Portal.

�Switching Between AADs

To switch between your AADs, click the person icon at the top right hand of the Azure Portal.

Figure 14-4.  Switching Active Directory

Chapter 14 Securing Our API

401

On the resulting pop-up, you can then click Switch Directory (see circled section on

Figure 14-4); you should then get the option to select and switch between the AADs you

have (I have two as you can see in Figure 14-5).

�Register Our API
Select the AAD you’re using for this exercise; the click Azure Active Directory from your

portal landing page.

Figure 14-5.  I created a second AD for test purposes

Chapter 14 Securing Our API

402

This should then take you into the Azure Active Directory overview screen.

Figure 14-6.  Select the AD you want to work with

Chapter 14 Securing Our API

403

Select “App registrations” as shown in Figure 14-7. You can see from the next

example that I already have an existing app registered on my AAD, but we’re going to

create a new one for our CommandAPI running on our “development” environment

(i.e., the one running locally on our PC). We’ll come on to our Azure-deployed API later.

Figure 14-7.  Select App registrations

Chapter 14 Securing Our API

404

 E ven though we are running our development API on our local machine, we
can still make use of AAD as our Identity management service (assuming our
development PC has connectivity to the Internet!).

The point I’m making here is that we can use AAD no matter where our APIs
(and client for that matter) are located.

Select “New registration,” and you’ll see the following.

Figure 14-8.  Create a new registration

Chapter 14 Securing Our API

405

Enter a name for the app registration; it can be anything, but make it meaningful,

(I’ve appended “_DEV” to this registration to differentiate it from any Production

Registrations we subsequently create). Also, ensure that “Accounts in this organization

directory only” ([Your AAD Name] only – Single tenant) is selected.

We don’t need a Redirect URI, so click “Register” to complete the initial registration,

after which you’ll be taken to the overview screen.

Figure 14-9.  Configure the registration

Chapter 14 Securing Our API

406

Here, we are introduced to the first two important bits of information that we need to

be aware of:

	 1.	 Application (client) ID

	 2.	 Directory (tenant) ID

Going forward I’m going to use the terms Client ID and Tenant ID, but what are they?

�Client ID

The client ID is essentially just a unique identifier that we can refer to the Command API

in reference to our AAD.

�Tenant ID

A unique id relating to the AAD we’re using, remembering that we can have multiple (i.e.

multi-tenant) AADs at our disposal.

We’ll come back to these items later when we come to configuring things at the

application end; for now we need to move on as we’re not quite finished.

�Expose Our API
So far, we’ve merely registered our API; we now need to expose it for use, so click “Expose

an API” from our left-hand menu options on our Registrations page.

Figure 14-10.  We'll use client Id and tenant id

Chapter 14 Securing Our API

407

What we need to do here is create an “Application ID URI” (sometimes referred to as

a “Resource ID”), so click “Set” as shown in Figure 14-12.

Figure 14-11.  Exposing our API

Figure 14-12.  Set the Resource ID

Chapter 14 Securing Our API

408

Azure will provide a default suggestion for this; go with it (it’s the Client ID with

“api://” prepended).

Click Save and you’re done. Clicking back into the overview of the app registration,

you should see this reflected here too.

We’re almost finished with our API configuration in AAD but have one more bit of

configuration to complete.

�Update Our Manifest
Here, we update the appRoles section of our application manifest which specifies the

type of application role(s) that can access the API. In our case, we need to specify a

noninteractive “daemon” app that will act as our API client. More information on the

Application Manifest can be found in Microsoft Docs.2

Figure 14-13.  Auto-generated Resource ID (Application ID URI)

Figure 14-14.  Resource ID is created

2�https://docs.microsoft.com/en-au/azure/active-directory/develop/
reference-app-manifest

Chapter 14 Securing Our API

https://docs.microsoft.com/en-au/azure/active-directory/develop/reference-app-manifest
https://docs.microsoft.com/en-au/azure/active-directory/develop/reference-app-manifest

409

Anyway, back to the task at hand, we need to insert the following JSON snippet at the

appRoles section of our manifest:

.

.

.

"appRoles": [

 {

 "allowedMemberTypes": [

 "Application"

],

 "description": "Daemon apps in this role can consume the web api.",

 "displayName": "DaemonAppRole",

 "id": "6543b78e-0f43-4fe9-bf84-0ce8b74c06a3",

 "isEnabled": true,

 "lang": null,

 "origin": "Application",

 "value": "DaemonAppRole"

 }

],

.

.

.

So, click “Manifest” in the left-hand window of our App Registration config page.

Figure 14-15.  Update the manifest

Chapter 14 Securing Our API

410

And insert the json given earlier into the correct spot (essentially updating the

existing empty appRoles section).

Make sure you keep the integrity of the json, and don’t omit or introduce any

additional commas. You can always use something like https://jsoneditoronline.

org/ to check.

You can add multiple appRoles to this section; we need only one, although if you

do decide to add some additional roles, you’ll need to ensure that the “id” attribute is a

unique GUID. You can use the example GUID I’ve supplied with the JSON here, or you

can create your own (you can use the same GUID’s across different AADs – you just can’t

duplicate them in the same AAD).

When completed, don’t forget to save the file.

That’s it for our API registration in Azure; we need to move over to our API now and

make some config and code changes so it can make use of AAD for authorization.

Figure 14-16.  Ensure you update the manifest correctly

Chapter 14 Securing Our API

https://jsoneditoronline.org/
https://jsoneditoronline.org/

411

�Add Configuration Elements
We need to make our API “aware” of the AAD settings we’ve just set up so that it can use

AAD for authenticating clients. We need to configure

•	 The log-in “Instance”

•	 Our AAD Domain

•	 The Tenant ID

•	 The Client ID

•	 The Application ID URL (or Resource ID)

  Remember we’re currently working with our API in our Development
Environment, before we move on to configuring our API on Azure.

As we’ve already discussed, you can store your application config in a number
of places (e.g., appsettings.json, appsettings.Development.json, etc.); in this
section, I’m going to make use of User Secrets once again (refer to Chapter 8 for a
refresher).

The primary reason I’m taking this approach is that I’ll be pushing my code up to
a public GitHub repository and I don’t want those items visible in something like
appsettings.json.

The table details the name of the user secret variables I’m going to use for each of the

config elements.

Config element User secret variable

The log-in “instance” Instance

Our AAD Domain Domain

The Tenant ID TenantId

The Client ID ClientId

The Application UD URL (Or Resource ID) ResourceId

Chapter 14 Securing Our API

412

As a quick refresher to add the “Instance” User Secret, at a command prompt

“inside” the API Project root folder (CommandAPI), type:

dotnet user-secrets set "Instance" "https://login.microsoftonline.com/"

This will add a value for our Login Instance (you should use the same value I’ve used

here). The other User Secrets I’ll leave for you to add yourself, as the values you need

to supply will be unique to your own App Registration (refer to these values on the App

Registration overview screen for your API).

After adding all my User Secrets, the contents of my secrets.json file now looks like this.

Some points to note

•	 The value you have for Instance should be exactly the same as I’ve

used earlier.

•	 The values you have for UserID and Password may be the same as

what I’ve just shown if you’ve been following the tutorial exactly as

I’ve described (they may of course be different if you’ve chosen your

own values!).

•	 The values you have for TenantId, Domain, ClientId, and

ResourceId will be different to mine.3

Figure 14-17.  Example contents of my secrets.json file

3�The chances of the same GUID being generated for us both is quite slim.

Chapter 14 Securing Our API

413

�Update Our Project Packages
Before we start coding, we need to add a new package that will be required to support the

code we’re going to introduce, so at a command prompt “inside” the API project, type

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

This should successfully add the following package reference to the .csproj file.

�Updating our Startup Class
Over in the startup class of our API project, we need to update both our

ConfigureServices and Configure methods. First though, add the following using

directive to the top of the startup class file:

using Microsoft.AspNetCore.Authentication.JwtBearer;

�Update Configure Services
We need to set up bearer authentication in the ConfigureServices method; to do so,

add the following code (new code is highlighted):

Figure 14-18.  Add Reference to allow JWT Bearer Authentication

Chapter 14 Securing Our API

414

.

.

.

services.AddDbContext<CommandContext>(opt => opt.UseNpgsql(builder.

ConnectionString));

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)

 .AddJwtBearer(opt =>

 {

 opt.Audience = Configuration["ResourceId"];

 �opt.Authority = $"{Configuration["Instance"]}{Configuration["TenantId"]}";

 });

services.AddControllers();

.

.

.

To put the changes in context, it should look like this.

Figure 14-19.  register Authentication service in Startup

Chapter 14 Securing Our API

415

The preceding code adds authentication to our API, specifically Bearer

authentication using JWT Tokens. We then configure two options:

•	 Audience: We set this to the ResourceID of our App Registration in

Azure.

•	 Authority: Our AAD Instance that is the token issuing authority (a

combination of Instance and TenantId).

�Update Configure
All we need to do now is add authentication and authorization to our request pipeline

via the Configure method:

app.UseAuthentication();

app.UseAuthorization();

as shown in Figure 14-20.

Figure 14-20.  Update the configure method in Startup

Chapter 14 Securing Our API

416

�Authentication vs. Authorization

As we’ve added both Authentication and Authorization to our request pipeline, I just

want to quickly outline the difference between these two concepts before we move on:

•	 Authentication (The “Who”): Verifies who you are, essentially it

checks your identity is valid.

•	 Authorization (The “What”): Grants the permissions/level of access

that you have.

So in our example, our client app will be authenticated via AAD; once it has, we can

then determine what endpoints it can call on our API (authorization).

Warning!  As authentication happens first (we need to identify you before we
can authorize you to do anything), the order in which you add these components to
the Request Pipeline (via the Configure method) is critically important. So please
make sure you add them in the order specified earlier.

Refer back to Chapter 4 on our brief discussion on the Request Pipeline if you’ve
forgotten (it was a while ago!); for a more in-depth conversation, refer to the
Microsoft Docs.4

�Update Our Controller
We have added the foundations of Bearer authentication using JWT tokens to our

Startup class to enable it to be used throughout our API, but now we want to use it to

protect one of our endpoints. We can of course protect the entire API, but let’s just start

small for now. We can pick any of our API endpoints, but let’s just go with one of our

simple GET methods, specifically our ability to retrieve a single Command.

Before we update our controller action, just make sure you add the following using

directive at the top of our CommandsController class:

using Microsoft.AspNetCore.Authorization;

4�https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/

Chapter 14 Securing Our API

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/

417

The new code for our controller action is simple; we just decorate it with the

[Authorize]attribute as shown here:

[Authorize]

[HttpGet("{id}", Name = "GetCommandById")]

public ActionResult<CommandReadDto> GetCommandById(int id)

{

 var commandItem = _repository.GetCommandById(id);

 if (commandItem == null)

 {

 return NotFound();

 }

 return Ok(_mapper.Map<CommandReadDto>(commandItem));

 }

Save all the new code, build, then run the API locally. Once running, make a call to

our newly protected endpoint in Postman.

Here, you will see

	 1.	 We get a 401 Unauthorized response

	 2.	 Selecting the return headers, we see

	 3.	 That the authentication type is “Bearer” (and we have a token

error back from AAD)

To double-check we have only protected this endpoint, make a call to our other GET

action, and you’ll see we still get a list of commands back.

Figure 14-21.  Our endpoint is secured

Chapter 14 Securing Our API

418

Learning Opportunity  What happens if we run our Unit Test suite? Will
some of our tests break because we require authorization on one of our API
endpoint methods? If not, why not?

�Register Our Client App
In the next section, we’re going to write a simple .NET Core Console application that will

act as an authorized “client” of the API. As this is a “daemon app,” it needs to run without

user authentication interaction, so we need to configure it as such.

  There are a number of different authentication use cases we could explore
when it comes to consuming an API, for example, a user authenticating against
AAD (username/password combo), to grant access to the API.

The use case I’ve decided to go with in this example (a “daemon app”) resonated
with me more in terms of a real-world use case.

Figure 14-22.  This endpoint is not secured and can still be accessed

Chapter 14 Securing Our API

419

Back over in Azure, select the same AAD that you registered the API in, and select

App Registrations once again.

Then select “+ New registration,” and on the resulting screen enter a suitable name

for our client app as shown next.

Figure 14-23.  Create an App Registration for our client app

Figure 14-24.  Name the registration

Chapter 14 Securing Our API

420

Again, select the Single tenant supported account type option, and click “Register”;

this will take you to the overview screen of your new app registration.

As before it will prepopulate some of the config elements for you, for example,

Client ID, Tenant ID, etc.

Learning Opportunity  What do you notice about the Tenant ID for our client
registration when compared to the Tenant ID of API registration?

�Create a Client Secret
Next click “Certificates & secrets” in the left-hand menu.

Figure 14-25.  Client registration overview

Chapter 14 Securing Our API

421

Here we are going to configure a “Client Secret.” This is a unique ID that we will use

in combination with our other app registration attributes to identify and authenticate

our client to our API. Click “+ New client secret.”

And on the resulting screen, give it

•	 A description (can be anything but make it meaningful)

•	 An expiry (you have a choice of 3 options)

Figure 14-26.  Create a client secret

Figure 14-27.  Select New client Secret

Chapter 14 Securing Our API

422

When you’re happy, click “Add.”

Warning!  Make sure you take a copy of the client secret now; shortly
after creation it will not be displayed in full again – you’ll only see a redacted
version, and you won’t be able to retrieve it unlike our other registration attributes.

This is a by design security feature to help stop the unauthorized propagation of
the client secret (which is effectively a password).

�Configure API Permissions
Now click “API Permissions”; here we are going to (drum roll please) configure access to

our Command API.

Figure 14-28.  Name the secret and set expiry

Chapter 14 Securing Our API

423

Click “+ Add a permission.”

In the “Request API permissions” window that appears, select the “My APIs” tab.

Figure 14-29.  Setup Permissions to our API

Figure 14-30.  Add a permission

Chapter 14 Securing Our API

424

And find the Command API, and select it.

On the resulting screen, ensure that

	 1.	 Application permissions is selected.

	 2.	 You “check” the DaemonAppRole Permission.

Figure 14-31.  select "My APIs"

Figure 14-32.  Select the CommandAPI_DEV instance

Chapter 14 Securing Our API

425

When you’re happy, click “Add permission,” and your permission will be added to

the list.

You’ll notice

	 1.	 The permission has been “created” but not yet “granted.”

	 2.	 You’ll need to click the “Grant admin consent for <Name of Your

AAD Here5>” button – do so now.

Figure 14-33.  Configure permissions accordingly

Figure 14-34.  Grant consent

5�The button will be labeled differently to mine depending on the name of your AAD.

Chapter 14 Securing Our API

426

You may get a Microsoft authentication pop-up; authenticate and accept any

permissions requests you get (don’t worry if this does not appear – it looks like this may

be one of those ever-changing UI updates).

Either way, you’ll be returned to the Configure permissions window, where after a

short time, your newly created API Permission will have been granted access.

Figure 14-35.  You may be asked to accept permission request

Chapter 14 Securing Our API

427

And with that, the registration of our (yet to be created) client app is complete.

�Create Our Client App
The final part of this chapter is to create a simple client that we can use to call our

protected API, so we’re going to create new console project to do just that.

  I don’t consider this app part of our “solution” (containing our API and Test
Projects), so I’m going to create it in a totally separate working project directory
outside of CommandAPISolution folder.

Note  As we’ll only be creating 1 project, I’m not going to make use of a
“solution” structure.

You can find the code to this project here on GitHub:

https://github.com/binarythistle/Secure-Daemon-Client/

At a command prompt in a new working directory “outside” of our

CommandAPISolution folder, type

dotnet new console -n CommandAPIClient

Once the project has been created, open the project folder CommandAPIClient in

your development environment, so if you’re using VS Code, you could type

code -r CommandAPIClient

Figure 14-36.  Permissions fully granted

Chapter 14 Securing Our API

https://github.com/binarythistle/Secure-Daemon-Client/

428

This will open the project folder CommandAPIClient in VS Code.

�Our Client Configuration
As I’m making this code available on GitHub for you to pull down and use, I’m

deliberately going to store the config in an appsettings.json file as opposed to using User

Secrets, as it will be easier for you to get going with it quickly if you choose to work with

the code from the repo.6 We will, therefore, be storing sensitive config elements in here;

therefore, for production systems you would not do this!

Learning Opportunity  Following the approach we took for our API;
“convert” the Client App example here to use user secrets.

Create an appsettings.json file in the root of your project folder; once done it should

look like this if you’re using VS Code.

Figure 14-37.  Create an Appsettings.json file

6�I appreciate it’s totally counter to the point I made before in regard to our API but feel this is a
slightly different use case.

Chapter 14 Securing Our API

https://github.com/binarythistle/Secure-Daemon-Client

429

Into that file, add the following JSON; making sure to populate the correct values for

your client application registration (TenantId, ClientId, and ClientSecret), and in

the case of the ResourceId, make sure it’s the ResourceId for the API:

{

 "Instance": "https://login.microsoftonline.com/{0}",

 "TenantId": "[YOUR TENANT ID]",

 "ClientId": "[YOUR CLIENT ID]",

 "ClientSecret": "[YOUR CLIENT SECRET]",

 "BaseAddress": "https://localhost:5001/api/Commands/1",

 "ResourceId": "api://[YOUR API CLIENT ID]/.default"

}

So, for example, my file looks like this.

A couple of points to just double-check on:

•	 BaseAddress: This is just the local address of the command API

(we’ll update to our production URL later). Note that I’m deliberately

specifying the API Controller Action that requires authorization.

•	 ResourceId: This is the ResourceId of our API App Registration.

The other attributes are straightforward and can be retrieved from Azure, except the

ClientSecret which you should have made a copy of when you created it.

Figure 14-38.  Client configuration

Chapter 14 Securing Our API

430

Warning!  All the attributes given are enough to get access to our restricted
API without the need for any additional passwords, etc. So, you should not store it
like this in production; you should make use of user secrets or something similar.

Again, I’ve chose to provide it in an appsettings.json file to allow you to get up
and running quickly with the code and have left it as a learning exercise for you to
implement the user secrets approach.

�Add Our Package References
Before we start coding, we need to add some package references to our project to

support some of the features we’re going to use, so we’ll add

•	 Microsoft.Extensions.Configuration

•	 Microsoft.Extensions.Configuration.Binder

•	 Microsoft.Extensions.Configuration.Json

•	 Microsoft.Identity.Client

I prefer to do this by using the dotnet CLI , so as we’ve done previously, ensure your

“in” the correct project folder (if you’re following the tutorial exactly you should be “in”

the CommandAPIClient folder), and issue the following command to add the first of our

packages:

dotnet add package Microsoft.Extensions.Configuration

Repeat so you add all four packages; your project .csproj file should look like this

when done.

Chapter 14 Securing Our API

431

�Client Configuration Class
For ease of use, we’re going to create a custom class that will allow us to read in our

appsettings.json file and then access those config elements as class attributes. In the

client project, create a new class file in the root of the project, and call it AuthConfig.cs

as shown in Figure 14-40.

Figure 14-39.  Package References for our client

Chapter 14 Securing Our API

432

Then enter the following code:

using System;

using System.IO;

using System.Globalization;

using Microsoft.Extensions.Configuration;

namespace CommandAPIClient

{

 public class AuthConfig

 {

 public string Instance {get; set;} =

 "https://login.microsoftonline.com/{0}";

 public string TenantId {get; set;}

 public string ClientId {get; set;}

 public string Authority

 {

Figure 14-40.  AuthConfig class to read in and manage client configuration

Chapter 14 Securing Our API

433

 get

 {

 return String.Format(CultureInfo.InvariantCulture,

 Instance, TenantId);

 }

 }

 public string ClientSecret {get; set;}

 public string BaseAddress {get; set;}

 public string ResourceID {get; set;}

 public static AuthConfig ReadFromJsonFile(string path)

 {

 IConfiguration Configuration;

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile(path);

 Configuration = builder.Build();

 return Configuration.Get<AuthConfig>();

 }

 }

}

When complete your AuthConfig class should look like this.

Chapter 14 Securing Our API

434

Notable code listed here

	 1.	 We combine the Instance and our AAD Tenant to create

something called the “Authority”; this is required when we come

to attempting to connect our client later.

	 2.	 Our class has one static method that allows us to specify the name

of our JSON config file.

	 3.	 We create an instance of the .NET Core Configuration subsystem.

Figure 14-41.  Walk-through of Authconfig class

Chapter 14 Securing Our API

435

	 4.	 Using ConfigurationBuilder, we read the contents of our json

config file.

	 5.	 We pass back our read-in config bound to our AuthConfig class.

To quickly test that this all works, perform a build, and assuming we have no errors,

move over to our Program class, and edit the Main method so it looks like this:

static void Main(string[] args)

{

 AuthConfig config = AuthConfig.ReadFromJsonFile("appsettings.json");

 Console.WriteLine($"Authority: {config.Authority}");

}

Build your code again then run it; assuming all is well, you should get output similar

to this.

�Finalize Our Program Class
As mentioned previously, the first thing our client will have to do is obtain a JWT token

that it will then attach to all subsequent requests in order to get access to the resources it

needs, so let’s focus in on that.

Still in our Program class, we’re going to create a new static asynchronous method

called RunAsync; the code for our reworked Program class is shown next (noting new or

changed code is bold and highlighted):

using System;

using System.Threading.Tasks;

using Microsoft.Identity.Client;

Figure 14-42.  Run the client

Chapter 14 Securing Our API

436

namespace CommandAPIClient

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Making the call...");

 RunAsync().GetAwaiter().GetResult();

 }

 private static async Task RunAsync()

 {

 AuthConfig config = AuthConfig.ReadFromJsonFile("appsettings.json");

 IConfidentialClientApplication app;

 app = ConfidentialClientApplicationBuilder.Create(config.ClientId)

 .WithClientSecret(config.ClientSecret)

 .WithAuthority(new Uri(config.Authority))

 .Build();

 string[] ResourceIds = new string[] {config.ResourceID};

 AuthenticationResult result = null;

 try

 {

 �result = await app.AcquireTokenForClient(ResourceIds).

ExecuteAsync();

 Console.ForegroundColor = ConsoleColor.Green;

 Console.WriteLine("Token acquired \n");

 Console.WriteLine(result.AccessToken);

 Console.ResetColor();

 }

 catch (MsalClientException ex)

 {

 Console.ForegroundColor = ConsoleColor.Red;

 Console.WriteLine(ex.Message);

Chapter 14 Securing Our API

437

 Console.ResetColor();

 }

 }

 }

}

I’ve tagged the points of interest here.

Figure 14-43.  Progressing the client

Chapter 14 Securing Our API

438

	 1.	 Our RunAsync method is asynchronous and returns a result

we’re interested in, so we chain the GetAwaiter and GetResult

methods to ensure the console app does not quit before a result is

processed and returned.

	 2.	 ConfidentialClientApplication is a specific class type

for our use case; we use this in conjunction with the

ConfidentialClientApplicationBuilder to construct a “client”

with our config attributes.

	 3.	 We set up our app with the values derived from our AuthConfig

class.

	 4.	 We can have more than one ResourceId (or scope) that we want to

call; hence, we create a string array to cater for this.

	 5.	 The AuthenticationResult contains (drum roll) the result of a

token acquisition.

	 6.	 Finally, we make an asynchronous AcquireTokenForClient call

to (hopefully!) return a JWT Bearer token from AAD using our

authentication config.

Save the file, build your code, and assuming all’s well, run it too; you should see the

following.

Figure 14-44.  Successful token acquisition

Chapter 14 Securing Our API

439

Celebration Checkpoint  Good job! There was a lot of config and coding to
get us to this point, obtaining a JWT token, so the rest of this chapter is all too easy!

So well done!

We move onto the second and final part of our RunAsync method, and that is to call

our protected API endpoint with the token we just obtained in the previous step, so

directly after the catch statement in our RunAsync method, add the following code (take

note of the three additional using statements too):

using System.Net.Http;

using System.Net.Http.Headers;

using System.Linq;

.

.

.

if (!string.IsNullOrEmpty(result.AccessToken))

{

 var httpClient = new HttpClient();

 var defaultRequestHeaders = httpClient.DefaultRequestHeaders;

 if(defaultRequestHeaders.Accept ==null ||

 �!defaultRequestHeaders.Accept.Any(m => m.MediaType == "application/

json"))

 {

 httpClient.DefaultRequestHeaders.Accept.Add(new

 MediaTypeWithQualityHeaderValue("application/json"));

 }

 defaultRequestHeaders.Authorization =

 new AuthenticationHeaderValue("bearer", result.AccessToken);

Chapter 14 Securing Our API

440

 �HttpResponseMessage response = await httpClient.GetAsync(config.

BaseAddress);

 if (response.IsSuccessStatusCode)

 {

 Console.ForegroundColor = ConsoleColor.Green;

 string json = await response.Content.ReadAsStringAsync();

 Console.WriteLine(json);

 }

 else

 {

 Console.ForegroundColor = ConsoleColor.Red;

 �Console.WriteLine($"Failed to call the Web Api: {response.

StatusCode}");

 string content = await response.Content.ReadAsStringAsync();

 Console.WriteLine($"Content: {content}");

 }

 Console.ResetColor();

}

I’ve highlighted some interesting code sections here.

Chapter 14 Securing Our API

441

	 1.	 We use a HttpClient object as the primary vehicle to make the

request.

	 2.	 We ensure that we set the media type in our request headers

appropriately.

	 3.	 We set out authorization header to “bearer” as well as attaching

our token received in the last step.

	 4.	 Make an asynchronous request to our protected API address.

	 5.	 Check for success and display.

Figure 14-45.  Calling the API

Chapter 14 Securing Our API

442

Save your code, build it, and run it (also ensure the Command API is running); you

should see something like the following.

where we have the JSON for our protected API endpoint returned.

Note: If you get at error similar to the following:

System.Security.AuthenticationException, the remote certificate is invalid.

Just check that you took the steps in Chapter 2 to “trust” local SSL Certificates. If

you’re too lazy to pop back, just type the following at a command line and rerun the

client:

dotnet dev-certs https --trust

�Updating for Azure
In order for our API code to continue to work when we deploy to Azure, we’re going

to have to add the following Application Settings to our Command API on Azure

(remember we currently have these stored as user secrets in our local development

instance).

Figure 14-46.  Secure API Called

Chapter 14 Securing Our API

443

Config element Application setting name

The log-in “instance” Instance

Our AAD Domain Domain

The Tenant ID TenantId

The Client ID ClientId

The Application UD URL (Or Resource ID) ResourceId

Before we do that though, while we could reuse the existing API App Registration

(CommandAPI_DEV) that we created for our “local” Command API, I think its good

practice to set up a new “production” registration for our Command API.

Learning Opportunity  Rather than step through the exact same instructions
to create a new “production” Command API registration, I’m going to leave you to
do that now. As a suggestion, call this new app registration: CommandAPI_PROD.

Come back here when you’re done!

How did you go? Easy right? You should now have something similar to the following

in your app registrations list.

Figure 14-47.  Production App Registrations

Chapter 14 Securing Our API

444

If like me you created your App Registrations in a different Azure Directory to your

main one (i.e., where all your resources are), I’d take a note of all of the values for things

like TenantId, ClientId, and ResourceId in the Production App Registration you just

created before you switch back to your main AAD to add the new Application Settings for

our API.

So, if needed, switch back to the AAD where you created the actual API App and

Container instances.

Select your Command API service, then click “Configuration” to take you to the

Application Settings screen.

Figure 14-48.  Switching active directories

Chapter 14 Securing Our API

445

Again, we’ve already added application settings before, so I’m going to leave it to you

to add all the necessary application settings to allow our API to be correctly configured

from an authentication perspective.

Warning!  Make sure you give your application settings the exact same
name as the User Secrets you set up before, with the relevant values from the
Production API App registration (CommandAPI_PROD).

Here, you can see the new Application Settings I’ve added.

Figure 14-49.  API app settings

Chapter 14 Securing Our API

446

Note  Remember to Save the new Application Settings you’ve just added.

�Client Configurations
To ensure our client can authenticate to our Production API, we should:

	 1.	 Create a Production Client App Registration on Azure.

	 2.	 Update the necessary local settings in our Client App’s

applicationsettings.json file.

Learning Opportunity  You have learned everything you need to know in
order to complete this work, so again I’m going to leave it to you complete the two
steps mentioned.

Take your time, and remember to copy down the new values that are generated as
part of the new production client app registration.

When done, come back here.

Figure 14-50.  Additional app settings to support authentication

Chapter 14 Securing Our API

447

�Deploy Our API to Azure
Back in our Command API Solution, we just want to kick off a deploy to Azure, so if

you don’t have any pending commits, make an arbitrary change to your code (insert a

comment somewhere), and add/commit and push.

As before, our Build Pipeline should succeed as should our deployment. Using

something like Postman to call an unsecured endpoint should still work as before.

However, as expected when we attempt to call the secured endpoint (without a

token), we should get a 401 Unauthorised response.

Figure 14-51.  Unsecured endpoint continues to work

Chapter 14 Securing Our API

448

Turning to our client app (with updated configuration to access Production), making

a call-through to our secured endpoint will yield a successful result.

Figure 14-52.  Secured endpoint declines the request

Figure 14-53.  Successful call of our secure endpoint on Azure

Chapter 14 Securing Our API

449
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9

�Epilogue

Firstly, if you’ve made it all the way through, and followed all the steps, then well done!

I hope you found it a useful and entertaining exercise.

For me, although writing has always formed a large part of my career, I’ve never

written a book before, so here are some of my thoughts on that:

•	 I thought taking my blog posts and other random works and tying

them together in a book would take about two weeks. In reality it took

well over four months.

•	 I am so grateful that I’m in a position where I could write a book,

primarily because I was born into privilege, for which I am thankful

and ashamed in equal measure. And by privilege, I don’t mean that

I or my family are rich (although I guess that’s totally subjective

depending on who you’d ask) but that I was born healthy, to lovely

parents, in a country at peace, and with the very rare privilege of a

free university education.

•	 There are so many clever, creative people out there sharing

their knowledge that without them I’d not be able to complete

such a book.

https://doi.org/10.1007/978-1-4842-6255-9#DOI

451
© Les Jackson 2020
L. Jackson, The Complete ASP.NET Core 3 API Tutorial, https://doi.org/10.1007/978-1-4842-6255-9

Index

A
Active Directory (AD)

switching option, 400
test purposes, 401

Application programming interface (API)
command-line repository, 24, 25
CRUD operations, 25
JSON, 26–30
meaning, 23
payloads, 26

ASP.NET Core project
files and folders, 41, 42
Nuget, 42
program class, 43, 44
startup class

ConfigureServices, 45
dependency injection, 45
execution sequence, 44
method, 44
middleware components, 45
configure, 45
request pipeline, 46

Asynchronous operations, 69
Authentication scheme

API project/Daemon client, 398
bearer authentication, 397, 398
non-exhaustive list, 396
registering API, 399, 400
secure, 395
user ids and passwords, 395

AutoMapper package
API project folder, 197–199
architecture check, 206
CommandReadDTO, 204
constructor dependency injection, 201
context, 201
controller, 202
DTO representation, 202
GET controller actions, 203
mapping, 200
multiple instances, 202
postman query, 205
profiles folder/CommandsProfile.cs

file, 199, 200
reference, 197
service registration, 198
startup class and register, 198

Azure Active Directory (AAD)
AD (see Active Directory (AD))
API exposes

app registration, 408
auto-generated

resource ID, 408
registrations page, 406
resource ID, 407

app registrations, 403
authentication (see Authentication

scheme)
authentication vs.

authorization, 416

https://doi.org/10.1007/978-1-4842-6255-9#DOI

452

Azure updates
application settings screen, 444, 445
client configuration, 446
deployment, 447, 448
production app registrations, 443
secured endpoint, 448
switching option, 444
unsecured endpoint, 447
user secrets, 442

client app, 418–422
client app creation

appsettings.json file, 428
AuthConfig class, 432
configuration, 428–430
configuration class, 431–435
console project, 427
package references, 430, 431
progressing, 437
program class, 435–442
token acquisition, 438

client Id and tenant id, 406
CommandsController class, 416–418
configuration, 405
configuration elements, 411, 412
ConfigureServices method, 413–415
endpoint, 418
landing page, 401, 402
manifest, 408–410
configure method, 415, 416
overview screen, 402, 403
permissions

accept request, 426
access configuration, 422
CommandAPI_DEV instance, 424
configuration window, 425, 426
grant consent, 425
resulting screen, 424

window, 423
project packages, 413
registration, 404
secrets.json file, 412
startup class file, 413

Azure resources
API app code

account details, 356
app service plan, 356, 357
configuration, 353
creation, 350, 352
deployment, 357
free option, 355
notification, 358
pricing tier, 355
public landing page, 359
search box, 351
service plan, 354
URI overview, 358

connect/DB user creation
databases, 369
environment variables, 369
FDQN, 368
location, 368

dev environment, 370, 371
learning goals, 349
PostgreSQL, 359–368
resource creation, 350
setup configuration

application settings, 372
connection string, 371–373
connection strings, 372
DB user credentials, 374–376
production environment, 371
runtime environment, 377–379

trigger
continuously deployment, 388
double-check, 392–394

Azure Active Directory (AAD) (cont.)

Index

453

EF migrations, 388–392
pipeline, 390

B
Bearer authentication, 397, 398

C
C# extension, 11
CI/CD Pipeline, Azure resources

artifact configuration, 385
comment, 383, 387
continuous deployment trigger, 386
deployment, 379, 384
DevOps releases, 380
errors and remember, 383
pipeline, 388
pipeline tab, 384
release pipeline, 381
service deployment template, 381
task errors, 382
triggers selection, 386

CommandCreateDto
AutoMapper profile, 216
internal command model, 214
CommandCreateDto.cs, 215
scenario, 214, 215
source code, 216

Container instance pricing
advanced settings, 365
configuration, 362, 363
detail screen, 362
networking tab, 364, 365
PostgreSQL option, 361
resources up and running, 368
search option, 362
setup environment variables, 366

tags tab, 366
validation, 367

Continuous Integration/Continuous
Delivery (CI/CD)

azure-pipelines.yml file
source code, 331
unit tests, 333–338
VS code extension, 332

build pipeline, 342, 343
integration, delivery/

deployment, 307
learning goals, 305
meaning, 306
Microsoft documents, 345
pipeline (see Pipeline)
release/packing stage

package and publish steps, 345
pipeline, 343
running job, 346
VS Code, 344

triggering
auto-triggered build, 330
CommandAPISolution, 328
GetCommandItems

method, 328
local/remote repos, 329
pull down, 329
push command, 328
random change, 328
VS Code file tree, 330

Controller action implementation
PUT request

command resource retrieval, 233
HttpPut attribute, 233
input parameters, 233
return option, 234
save/return, 235
update command, 232–234

Index

454

Controllers, MVC pattern
APIController attribute, 67
API run, 63
CommandsController.cs, 60
directives, 65
directory structure, 61
endpoint response, 64
file and folder creation, 61
folder, 60
GitHub, 62
HttpGet attribute, 68
inherit, 65
routing setup, 66, 67
synchronous vs. asynchronous, 68, 69

Create, read, update, and delete
(CRUD) operations, 25

D
Data Access (aka DB Context), 58
Data Transfer Objects (DTOs), 1, 58, 191

architecture progress, 191, 192
AutoMapper (see AutoMapper

package)
automation framework, 195
benefits, 194
decouple interface, 193
different actions, 194, 195
Dtos tolder/CommandReadDto.cs

file, 196, 197
implementation, 195
potential consequences, 193

DBeaver vs. pgAdmin, 19, 20
DeleteCommand unit tests, 302–304
Delete endpoint (DELETE)

attributes, 249
CommandDeleteDto, 250
controller, 250

DeleteCommand method, 250
high-level definition, 248
interface method, 249
repository interface, 250

Dependency Injection (DI)
ConfigureServices method, 99, 102
constructor

action, 108
CommandsController class, 104
controller actions, 112
endpoint result, 109
endpoints, 106
GetCommandByID endpoint, 111
implementation, 110
pattern, 105
resources, 106
single command resource, 112
source code, 102, 103
statement, 107
straightforward, 107

methods, 102
service container, 101
startup class sequence, 100

Development environment
components, 170
connection string, 180
DBeaver vs. pgAdmin, 19, 20
Docker, 15–18
Git installation, 13–15
ingredients, 6–8
launchSettings.json file, 170–173
learning goals, 5
.NET Core SDK, 12, 13
PostgreSQL, 18
Postman installation, 20
software/sites, 8
trust local development

certificate, 21

INDEX

455

Visual Studio Code, 8–12
Windows/Mac/Linux, 5

Dev environment, 370, 371
Docker

containerization platform, 15
desktop vs. CE, 16
Hello World image, 17
plugin VS code, 18
post-installation check, 16, 17

E
Endpoints (controller actions)

architecture checkpoint, 252
bad request, 225
binding sources, 219
CommandCreateDto, 214–217, 220
CommandsController class, 217
CreateCommand implementation, 218
CreatedAtRoute, 220
data annotations, 225, 226
data persist, 220
delete endpoint, 248–252
EF Core DB context, 207, 208
GetCommandById method, 221, 222
HttpPost, 218
input DTO type, 219
learning goals, 207
map creation, 220
parameter, 221
POST creation, 209, 210
POST request, 219
repository, 211–214
resource, 224
return DTO type, 218
set up, 223
testing, 223
validation detail, 226

Entity Framework Core (EF Core)
appsettings.json file

connection string, 137
database, 138
DBeaver, 133
migrations, 133
role permissions, 136
source code, 136
SQL editor, 133–138
view role details, 135

code first/database first
CommandItems, 148
contexts, 145
database and table, 148
entity framework, 143
migration files, 144, 145

command-line tools, 127, 128
database

CommandContext.cs, 131, 132
compilation errors, 132
context class, 128
.csproj file, 130
package references, 130
reference packages, 129

migrations, 143
mock data

command-line snippets, 151
commands, 148
default DB, 150
entity framework, 151
returns, 151
set default database, 150
SQL INSERT commands, 149, 152
table, 149

object wrapper, 127
ORM, 126
primary benefits, 127
startup class

INDEX

456

dependency injection, 140, 141
directives, 141
features, 139
.NET Core project templates, 139
services container, 142
source code, 140

Environments
appsettings.Development.json, 177
Appsettings.json, 179
ASPNETCORE_ENVIRONMENT, 172
broad approaches, 173
code-based determination, 174
commandName, 172
configuration sources/

preference, 174, 175
database connection error, 178
distinction, 173
LaunchSettings.json File, 171–174
learning goals, 167
production/development, 168
refactor existing code, 167
setup, 173
wrong credentials, 177, 178

Environments/user secrets, 168, 169

F
Fully Qualified Domain Name

(FDQN), 368

G, H
GetAllCommands

arrange/action/assert, 274
attributes, 274
CommandReadDtos, 289
controller (groundwork)

AutoMapper/Moq, 277
command model, 275
CommandsControllerTests.cs

file, 276
mocking frameworks, 277
mock-up AutoMapper, 281–283
Moq, 278–281

HTTP Response code, 288
HTTP response (Empty DB), 283–286
return type, 289, 290
single resource returned, 286–288

GetCommandByID
attributes, 290
correct object type, 293
HTTP response, 291–293
single resource, 291

GIT version
installation, 13–15
name and email, 14

Globally unique identifier (GUID), 11

I
Integrated development environment

(IDE), 9

J, K, L
JavaScript Object

Notation (JSON)
arrays, 30
attributes, 27, 30
editor online, 28
meaning, 26
nested objects, 28
object, 27
object navigation, 29
respective values, 27

Entity Framework Core (EF Core) (cont.)

INDEX

457

M
Model and repository classes, 85

data annotations, 87–89
folder and command class, 86–88

Model–View–Controller (MVC) pattern
coding information

command-line type, 49
ConfigureServices/Configure

methods, 52
configure method, 50
framework, 51
web browser, 53
web browser and navigation, 50
webserver, 49

concepts, 59
decoupling option, 59
explanation, 56
Git/GitHub, 70
GitHub repository

file and folder, 83
instruction code, 83
landing page, 77, 78
repositories, 78–82
setup, 77

interface/contract, 59
local Git repository

.gitignore file, 74–76
solution directory, 71
track/commit, 75–77
untracked files, 72

models, 58
Postman, 53–55
source control, 69–71
VS code setup, 48

PUT request
attributes, 227
AutoMapper profile, 231
CommandUpdateDto, 230–232

controller action, 232
data annotations, 237
DB context works, 230
idempotent, 228
input object, 227
invalid resource ID, 238
nonexistent resource, 237
outputs, 228
Postman setup, 235
repository level, 228–230
SqlCommandAPIRepo

implementation, 229
testing, 235, 236
UpdateCommand interface

method, 229
update endpoint, 226
validation error, 236, 237

N
.NET Core Framework, 3

benefits, 5
.NET core version SDK, 12, 13

Nonsense User ID/Password, 164

O
Object Relational Mapper (ORM), 126

P
PartialCommandUpdate method, 300–302
PATCH verb updates

attributes, 238
command/return, 247
CommandUpdateDto, 242
concepts, 239
controller, 244–247
dependencies, 242, 243

INDEX

458

document, 246
high-level definition, 238
HttpPatch, 246
idempotent, 241
input object, 240
JsonPatchDocument, 246
patch document, 241
repository, 242
serializer settings, 244
startup class, 243
testing option, 248, 249
validation, 247

Pipeline
authenticate, 317
Azure DevOps

cloud-based alternatives, 309
features, 308
landing page, 312
non-Microsoft mix, 311
technology overlay, 309–311

azure-pipelines.yml, 319, 320
automation opportunities, 325
editing option, 326
GitHub commit, 327
GitHub repository/refresh, 325
navigation, 326
triggers, 327

build step-up, 321
completion screen, 323
creation, 315
DevOps, 307
features, 314
focus, 308
GitHub code source, 316
GitHub repo, 322
in-progress, 323
job preparation, 323

landing page, 314
loop, 308
manual save and run, 322
project, 312
public visibility selection, 313
recap, 324
repositories, 317, 318
templates, 318

PostgreSQL database
application architecture

progress, 114, 115
Azure resources

container instance, 361–368
postgres server, 360
search option, 361

current state vs. end state, 154
DB context class, 153
DBeaver

configuration settings, 121, 122
connection, 120, 121
connection issues, 126
databases, 122, 123
DB Beaver, 125
test connection, 123–125

Docker
command line arguments, 118–120
container status, 117
downloaded and running, 115, 116
postgres image, 119
PS command, 116

EF Core (see Entity Framework Core
(EF Core)

learning goals, 113
repository implementation

API working, 161
existing commands, 161, 162
concrete implementation, 155, 159
error handling, 163

PATCH verb updates (cont.)

INDEX

459

ICommandAPIRepo statement, 155
interface implementation code, 156
login and password, 164–166
mock implementation, 156, 160
SqlCommandAPIRepo, 157
startup class, 157
System.Linq, 158

Production environments
legacy systems, 168
PR, 168
setup, 169

Q
Query window, 149

R
Repository

architecture, 90
delete endpoint, 249
DI (see Dependency Injection (DI))
endpoints, 211–214
implementation

concrete class, 95
concrete classes, 94
dependency injection, 98
methods, 98
mock data code, 94
placeholder code, 96, 97
resolution, 96

interface
CRUD actions, 91
data folder, 92
ICommandAPIRepo, 93
ICommanderRepo.cs file, 92
source code, 93
specification, 90

model (see Model and repository
classes)

PUT request, 228–230
Representational State Transfer (REST),

see Application programming
interface (API)

S
Scaffold API solution, 31

API project generation, 34
ASP.NET, 41 (see ASP.NET

Core project)
components, 33
contents, 35
folder setup, 33
project associations

build creation, 40
command, 37
references, 39
solution file, 37, 38
terminal/command line, 37

project templates, 34
solution hierarchy, 32–34
terminal window, 33
unit test project, 36

Software development toolkit
(SDK), 13, 14

T
Thin and wide approach, 2
Third edition

code selection, 3
contact information, 4
defects/features, 4
introduction, 1
thin and wide approach, 2

INDEX

460

U
Unit testing

act, 257
approaches, 268–272
arrange, 257
assertion, 257
azure-pipelines.yml file

dashboard, 337
details, 337
pipeline triggers, 335
pipeline view, 333
steps, 334
testing step, 336

build pipeline, 342
characteristics, 255, 272
CI/CD pipelines, 338

CommandAPI.Tests project, 338
dashboard, 342
failing result, 338, 339
failures details, 341
in-progress pipeline, 340
output result, 340

Command.Tests folder, 258
constructor, 273
controller, 272
DeleteCommand, 302–304
dependencies, 273
developers, 256
executable documentation, 255
frameworks, 256
GetAllCommands (see

GetAllCommands)
GetCommandByID (see

GetCommandByID)
learning goals, 253
model class

API project, 261

CanChangeHowTo method, 263
CommandAPI.Tests project, 262
failure response, 267
forcing test failure, 267
passes/fails, 266
sections, 263–265

.NET Core project templates, 257
PartialCommandUpdate

method, 300–302
passing tests, 272
protection against regression, 254
pyramid, 253, 254
refactored model tests, 271
regression defects, 254
running tests, 260
standard class definition, 259
testCommand object, 269
UpdateCommand, 297–299
xUnit project, 258, 259

UpdateCommand unit test
attributes, 297, 298
HTTP response, 298, 299

User Secrets
Appsettings.json, 190
CommandAPI.csproj file, 181
configuration elements, 180
ConfigureServices

method, 186–188
connection string, 185
.CSPROJ file, 183
GUID insertion, 182, 183
learning goals, 167
precedence, 189
secrets.json file, 180, 183
sensitive connection string

attributes, 186
setup, 181–183
source code, 180

INDEX

461

startup class, 188
updated sections, 187
user ID and password, 185
Windows, 185

V
Visual Studio code

C# extension, 11
downloading, 10

GUID extension, 11
installation, 8

W, X, Y, Z
Windows Subsystem for

Linux (WSL), 16

INDEX

