
Where’s the “inversion” in Dependency Inversion Principle?
The “inversion” in the name Dependency Inversion Principle is there because
it inverts the way you typically might think about your OO design. Look at
the diagram on the previous page. Notice that the low-level components now
depend on a higher level abstraction. Likewise, the high-level component is
also tied to the same abstraction. So, the top-to-bottom dependency chart we
drew a couple of pages back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.
Let’s also walk through the thinking behind the typical design process and
see how introducing the principle can invert the way we think about the
design...

Inverting your thinking...

Okay, so you need to implement a PizzaStore. What’s the first thought that pops into
your head?

Right, you start at the top and follow things down to the concrete classes. But, as
you’ve seen, you don’t want your store to know about the concrete pizza types,
because then it’ll be dependent on all those concrete classes!

Now, let’s “invert” your thinking... instead of starting at the top, start at the Pizzas
and think about what you can abstract.

Right! You are thinking about the abstraction Pizza. So now, go back and think about
the design of the Pizza Store again.

Close. But to do that you’ll have to rely on a factory to get those concrete classes out
of your Pizza Store. Once you’ve done that, your different concrete pizza types
depend only on an abstraction and so does your store. We’ve taken a design where the
store depended on concrete classes and inverted those dependencies (along with your
thinking).

A few guidelines to help you follow the Principle...
The following guidelines can help you avoid OO designs that violate the
Dependency Inversion Principle:

No variable should hold a reference to a concrete class.

NOTE

If you use new, you’ll be holding a reference to a concrete class. Use a factory to get
around that!

No class should derive from a concrete class.

NOTE

If you derive from a concrete class, you’re depending on a concrete class. Derive
from an abstraction, like an interface or an abstract class.

No method should override an implemented method of any of its base
classes.

NOTE

If you override an implemented method, then your base class wasn’t really an

abstraction to start with. Those methods implemented in the base class are meant to
be shared by all your subclasses.

You’re exactly right! Like many of our principles, this is a guideline you
should strive for, rather than a rule you should follow all the time. Clearly,
every single Java program ever written violates these guidelines!
But, if you internalize these guidelines and have them in the back of your
mind when you design, you’ll know when you are violating the principle and
you’ll have a good reason for doing so. For instance, if you have a class that
isn’t likely to change, and you know it, then it’s not the end of the world if
you instantiate a concrete class in your code. Think about it; we instantiate
String objects all the time without thinking twice. Does that violate the
principle? Yes. Is that okay? Yes. Why? Because String is very unlikely to
change.
If, on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

Meanwhile, back at the PizzaStore...
The design for the PizzaStore is really shaping up: it’s got a flexible
framework and it does a good job of adhering to design principles.
Now, the key to Objectville Pizza’s success has always been fresh, quality
ingredients, and what you’ve discovered is that with the new framework your
franchises have been following your procedures, but a few franchises have
been substituting inferior ingredients in their pies to lower costs and increase
their margins. You know you’ve got to do something, because in the long
term this is going to hurt the Objectville brand!

Ensuring consistency in your ingredients
So how are you going to ensure each franchise is using quality ingredients?
You’re going to build a factory that produces them and ships them to your
franchises!
Now there is only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in
Chicago. So, you have one set of ingredients that needs to be shipped to New
York and a different set that needs to be shipped to Chicago. Let’s take a
closer look:

Families of ingredients...
New York uses one set of ingredients and Chicago another. Given the
popularity of Objectville Pizza, it won’t be long before you also need to
ship another set of regional ingredients to California, and what’s next?
Seattle?
For this to work, you are going to have to figure out how to handle
families of ingredients.

Building the ingredient factories
Now we’re going to build a factory to create our ingredients; the factory
will be responsible for creating each ingredient in the ingredient family.
In other words, the factory will need to create dough, sauce, cheese, and
so on... You’ll see how we are going to handle the regional differences
shortly.

Let’s start by defining an interface for the factory that is going to create
all our ingredients:

NOTE

If we’d had some common “machinery” to implement in each instance of factory, we
could have made this an abstract class instead...

Here’s what we’re going to do:
① Build a factory for each region. To do this, you’ll create a subclass of
PizzaIngredientFactory that implements each create method.
② Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can
be shared among regions where appropriate.
③ Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

Building the New York ingredient factory
Okay, here’s the implementation for the New York ingredient factory.
This factory specializes in Marinara Sauce, Reggiano Cheese, Fresh
Clams...

SHARPEN YOUR PENCIL

Write the ChicagoPizzaIngredientFactory. You can reference the classes below in your
implementation:

Reworking the pizzas...
We’ve got our factories all fired up and ready to produce quality ingredients;
now we just need to rework our Pizzas so they only use factory-produced
ingredients. We’ll start with our abstract Pizza class:

Reworking the pizzas, continued...
Now that you’ve got an abstract Pizza to work from, it’s time to create the
New York and Chicago style Pizzas — only this time around they will get
their ingredients straight from the factory. The franchisees’ days of skimping

on ingredients are over!
When we wrote the Factory Method code, we had a NYCheesePizza and a
ChicagoCheesePizza class. If you look at the two classes, the only thing that
differs is the use of regional ingredients. The pizzas are made just the same
(dough + sauce + cheese). The same goes for the other pizzas: Veggie, Clam,
and so on. They all follow the same preparation steps; they just have different
ingredients.
So, what you’ll see is that we really don’t need two classes for each pizza; the
ingredient factory is going to handle the regional differences for us. Here’s
the Cheese Pizza:

CODE UP CLOSE

The Pizza code uses the factory it has been composed with to produce the ingredients
used in the pizza. The ingredients produced depend on which factory we’re using. The
Pizza class doesn’t care; it knows how to make pizzas. Now, it’s decoupled from the
differences in regional ingredients and can be easily reused when there are factories for
the Rockies, the Pacific Northwest, and beyond.

Let’s check out the ClamPizza as well:

Revisiting our pizza stores
We’re almost there; we just need to make a quick trip to our franchise
stores to make sure they are using the correct Pizzas. We also need to
give them a reference to their local ingredient factories:

BRAIN POWER

Compare this version of the createPizza() method to the one in the Factory Method
implementation earlier in the chapter.

What have we done?
That was quite a series of code changes; what exactly did we do?
We provided a means of creating a family of ingredients for pizzas by
introducing a new type of factory called an Abstract Factory.
An Abstract Factory gives us an interface for creating a family of
products. By writing code that uses this interface, we decouple our code

from the actual factory that creates the products. That allows us to
implement a variety of factories that produce products meant for
different contexts — such as different regions, different operating
systems, or different look and feels.
Because our code is decoupled from the actual products, we can
substitute different factories to get different behaviors (like getting
marinara instead of plum tomatoes).
An Abstract Factory provides an interface for a family of products. What’s a
family? In our case, it’s all the things we need to make a pizza: dough, sauce,
cheese, meats, and veggies.
From the abstract factory, we derive one or more concrete factories that
produce the same products, but with different implementations.
We then write our code so that it uses the factory to create products. By
passing in a variety of factories, we get a variety of implementations of those
products. But our client code stays the same.

More pizza for Ethan and Joel...
Ethan and Joel can’t get enough Objectville Pizza! What they don’t
know is that now their orders are making use of the new ingredient
factories. So now when they order...

Behind the Scenes

The first part of the order process hasn’t changed at all. Let’s follow Ethan’s
order again:

① First we need a NY PizzaStore:

② Now that we have a store, we can take an order:

③ The orderPizza() method first calls the createPizza() method:
Pizza pizza = createPizza("cheese");

From here things change, because we are using an
ingredient factory

Behind the Scenes
④ When the createPizza() method is called, that’s when our
ingredient factory gets involved:

⑤ Next we need to prepare the pizza. Once the prepare() method is
called, the factory is asked to prepare ingredients:

⑥ Finally, we have the prepared pizza in hand and the orderPizza()
method bakes, cuts, and boxes the pizza.

Abstract Factory Pattern defined
We’re adding yet another factory pattern to our pattern family, one that lets
us create families of products. Let’s check out the official definition for this
pattern:

NOTE

The Abstract Factory Pattern provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

We’ve certainly seen that Abstract Factory allows a client to use an abstract
interface to create a set of related products without knowing (or caring) about
the concrete products that are actually produced. In this way, the client is
decoupled from any of the specifics of the concrete products. Let’s look at
the class diagram to see how this all holds together:

That’s a fairly complicated class diagram; let’s look at it all in terms of
our PizzaStore:

Is that a Factory Method lurking inside the Abstract Factory?
Good catch! Yes, often the methods of an Abstract Factory are implemented
as factory methods. It makes sense, right? The job of an Abstract Factory is
to define an interface for creating a set of products. Each method in that
interface is responsible for creating a concrete product, and we implement a
subclass of the Abstract Factory to supply those implementations. So, factory
methods are a natural way to implement your product methods in your
abstract factories.

PATTERNS EXPOSED

This week’s interview: Factory Method and Abstract Factory, on each other

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I’m not so sure I like being lumped in with Abstract Factory,
you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our
own interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help
clear up any confusion about who’s who for the readers. You do have similarities, and
I’ve heard that people sometimes get you confused.

Abstract Factory: It is true, there have been times I’ve been mistaken for Factory
Method, and I know you’ve had similar issues, Factory Method. We’re both really good
at decoupling applications from specific implementations; we just do it in different
ways. So I can see why people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use
objects; that’s totally different!

HeadFirst: Can you explain more about that, Factory Method?

Factory Method: Sure. Both Abstract Factory and I create objects — that’s our jobs.
But I do it through inheritance...

Abstract Factory: ...and I do it through object composition.

Factory Method: Right. So that means, to create objects using Factory Method, you
need to extend a class and provide an implementation for a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean, the whole point of the Factory
Method Pattern is that you’re using a subclass to do your creation for you. In that way,
clients only need to know the abstract type they are using, the subclass worries about the
concrete type. So, in other words, I keep clients decoupled from the concrete types.

Abstract Factory: And I do too, only I do it in a different way.

HeadFirst: Go on, Abstract Factory... you said something about object composition?

Abstract Factory: I provide an abstract type for creating a family of products.
Subclasses of this type define how those products are produced. To use the factory, you
instantiate one and pass it into some code that is written against the abstract type. So,
like Factory Method, my clients are decoupled from the actual concrete products they
use.

HeadFirst: Oh, I see, so another advantage is that you group together a set of related
products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that set of related products to, say, add
another one? Doesn’t that require changing your interface?

Abstract Factory: That’s true; my interface has to change if new products are added,
which I know people don’t like to do....

Factory Method: <snicker>

Abstract Factory: What are you snickering at, Factory Method?

Factory Method: Oh, come on, that’s a big deal! Changing your interface means you
have to go in and change the interface of every subclass! That sounds like a lot of work.

Abstract Factory: Yeah, but I need a big interface because I am used to creating entire
families of products. You’re only creating one product, so you don’t really need a big
interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use factory methods to implement
your concrete factories?

Abstract Factory: Yes, I’ll admit it, my concrete factories often implement a factory
method to create their products. In my case, they are used purely to create products...

Factory Method: ...while in my case I usually implement code in the abstract creator
that makes use of the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what you do. I’m sure people like having
a choice; after all, factories are so useful, they’ll want to use them in all kinds of
different situations. You both encapsulate object creation to keep applications loosely
coupled and less dependent on implementations, which is really great, whether you’re
using Factory Method or Abstract Factory. May I allow you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract Factory, and use me whenever you
have families of products you need to create and you want to make sure your clients
create products that belong together.

Factory Method: And I’m Factory Method; use me to decouple your client code from
the concrete classes you need to instantiate, or if you don’t know ahead of time all the
concrete classes you are going to need. To use me, just subclass me and implement my
factory method!

Factory Method and Abstract Factory compared

NOTE

The product subclasses create parallel sets of product families. Here we have a New
York ingredient family and a Chicago family.

Tools for your Design Toolbox

In this chapter, we added two more tools to your toolbox: Factory Method
and Abstract Factory. Both patterns encapsulate object creation and allow
you to decouple your code from concrete types.

BULLET POINTS

All factories encapsulate object creation.
Simple Factory, while not a bona fide design pattern, is a simple way to decouple
your clients from concrete classes.
Factory Method relies on inheritance: object creation is delegated to subclasses,
which implement the factory method to create objects.
Abstract Factory relies on object composition: object creation is implemented in
methods exposed in the factory interface.
All factory patterns promote loose coupling by reducing the dependency of your
application on concrete classes.
The intent of Factory Method is to allow a class to defer instantiation to its
subclasses.
The intent of Abstract Factory is to create families of related objects without having
to depend on their concrete classes.
The Dependency Inversion Principle guides us to avoid dependencies on concrete
types and to strive for abstractions.
Factories are a powerful technique for coding to abstractions, not concrete classes.

DESIGN PATTERNS CROSSWORD

It’s been a long chapter. Grab a slice of Pizza and relax while doing this crossword; all
of the solution words are from this chapter.

Across Down

1. In Factory Method, each franchise is a
________.

4. In Factory Method, who decides which
class to instantiate?

6. Role of PizzaStore in Factory Method
Pattern.

7. All New York style pizzas use this kind of
cheese.

8. In Abstract Factory, each ingredient factory
is a _______.

9. When you use new, you are programming
to an ___________.

11. createPizza() is a ____________ (two
words).

12. Joel likes this kind of pizza.

13. In Factory Method, the PizzaStore and the
concrete Pizzas all depend on this abstraction.

14. When a class instantiates an object from a

2. We used ___________ in Simple Factory and
Abstract Factory, and inheritance in Factory
Method.

3. Abstract Factory creates a ___________ of
products.

5. Not a REAL factory pattern, but handy
nonetheless.

10. Ethan likes this kind of pizza.

concrete class, it’s ___________ on that
object.

15. All factory patterns allow us to
__________ object creation.

SHARPEN YOUR PENCIL SOLUTION

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to
franchise! Write the Chicago and California PizzaStore implementations here:

DESIGN PUZZLE SOLUTION

We need another kind of pizza for those crazy Californians (crazy in a GOOD way, of
course). Draw another parallel set of classes that you’d need to add a new California
region to our PizzaStore.

Okay, now write the five silliest things you can think of to put on a pizza. Then, you’ll
be ready to go into business making pizza in California!

NOTE

Here are our suggestions...

__Mashed Potatoes with Roasted Garlic_____________________

__BBQ Sauce___

__Artichoke Hearts_____________________________________

__M M’s__

__Peanuts__

A very dependent PizzaStore

SHARPEN YOUR PENCIL SOLUTION

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

SHARPEN YOUR PENCIL SOLUTION

Go ahead and write the ChicagoPizzaIngredientFactory; you can reference the classes
below in your implementation:

public class ChicagoPizzaIngredientFactory

 implements PizzaIngredientFactory

{

 public Dough createDough() {

 return new ThickCrustDough();

 }

 public Sauce createSauce() {

 return new PlumTomatoSauce();

 }

 public Cheese createCheese() {

 return new MozzarellaCheese();

 }

 public Veggies[] createVeggies() {

 Veggies veggies[] = { new BlackOlives(),

 new Spinach(),

 new Eggplant() };

 return veggies;

 }

 public Pepperoni createPepperoni() {

 return new SlicedPepperoni();

 }

 public Clams createClam() {

 return new FrozenClams();

 }

}

DESIGN PATTERNS CROSSWORD SOLUTION

It’s been a long chapter. Grab a slice of Pizza and relax while doing this crossword; all
of the solution words are from this chapter. Here’s the solution.

Chapter 5. The Singleton Pattern:
One of a Kind Objects

Our next stop is the Singleton Pattern, our ticket to creating one-of-a-
kind objects for which there is only one instance. You might be happy to
know that of all patterns, the Singleton is the simplest in terms of its class
diagram; in fact, the diagram holds just a single class! But don’t get too
comfortable; despite its simplicity from a class design perspective, we are
going to encounter quite a few bumps and potholes in its implementation. So
buckle up.

Developer: What use is that?
Guru: There are many objects we only need one of: thread pools, caches,
dialog boxes, objects that handle preferences and registry settings, objects
used for logging, and objects that act as device drivers to devices like printers
and graphics cards. In fact, for many of these types of objects, if we were to
instantiate more than one we’d run into all sorts of problems like incorrect
program behavior, overuse of resources, or inconsistent results.
Developer: Okay, so maybe there are classes that should only be instantiated
once, but do I need a whole chapter for this? Can’t I just do this by
convention or by global variables? You know, like in Java, I could do it with
a static variable.
Guru: In many ways, the Singleton Pattern is a convention for ensuring one
and only one object is instantiated for a given class. If you’ve got a better
one, the world would like to hear about it; but remember, like all patterns, the
Singleton Pattern is a time-tested method for ensuring only one object gets
created. The Singleton Pattern also gives us a global point of access, just like
a global variable, but without the downsides.
Developer: What downsides?

Guru: Well, here’s one example: if you assign an object to a global variable,
then that object might be created when your application begins. Right? What
if this object is resource intensive and your application never ends up using
it? As you will see, with the Singleton Pattern, we can create our objects only
when they are needed.
Developer: This still doesn’t seem like it should be so difficult.
Guru: If you’ve got a good handle on static class variables and methods as
well as access modifiers, it’s not. But, in either case, it is interesting to see
how a Singleton works, and, as simple as it sounds, Singleton code is hard to
get right. Just ask yourself: how do I prevent more than one object from being
instantiated? It’s not so obvious, is it?

The Little Singleton
A small Socratic exercise in the style of The Little
Lisper

How would you
create a single
object?

new MyObject();

And, what if another
object wanted to
create a MyObject?
Could it call new on
MyObject again?

Yes, of course.

So as long as we
have a class, can we
always instantiate it
one or more times?

Yes. Well, only if it’s a public class.

And if not? Well, if it’s not a public class, only classes in the same package can
instantiate it. But they can still instantiate it more than once.

Hmm, interesting.

Did you know you
could do this?

No, I’d never thought of it, but I guess it makes sense because it is a
legal definition.

What does it mean? I suppose it is a class that can’t be instantiated because it has a
private constructor.

Well, is there ANY
object that could use
the private
constructor?

Hmm, I think the code in MyClass is the only code that could call
it. But that doesn’t make much sense.

Why not? Because I’d have to have an instance of the class to call it, but I
can’t have an instance because no other class can instantiate it. It’s
a chicken-and-egg problem: I can use the constructor from an
object of type MyClass, but I can never instantiate that object
because no other object can use “new MyClass()”.

Okay. It was just a
thought.

What does this
mean?

MyClass is a class with a static method. We can call the static
method like this:

MyClass.getInstance();

Why did you use
MyClass, instead of
some object name?

Well, getInstance() is a static method; in other words, it is a CLASS
method. You need to use the class name to reference a static
method.

Very interesting.
What if we put
things together.

Now can I
instantiate a
MyClass?

Wow, you sure can.

So, now can you
think of a second
way to instantiate an
object?

MyClass.getInstance();

Can you finish the
code so that only
ONE instance of
MyClass is ever
created?

Yes, I think so...

(You’ll find the code on the next page.)

Dissecting the classic Singleton Pattern implementation

WATCH IT!

If you’re just flipping through the book, don’t blindly type in this code; you’ll see it has
a few issues later in the chapter.

CODE UP CLOSE

PATTERNS EXPOSED

This week’s interview: Confessions of a Singleton

HeadFirst: Today we are pleased to bring you an interview with a Singleton object.
Why don’t you begin by telling us a bit about yourself.

Singleton: Well, I’m totally unique; there is just one of me!

HeadFirst: One?

Singleton: Yes, one. I’m based on the Singleton Pattern, which assures that at any time
there is only one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took the time to develop a full-blown
class and now all we can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s say you have an object that contains
registry settings. You don’t want multiple copies of that object and its values running
around — that would lead to chaos. By using an object like me you can assure that every
object in your application is making use of the same global resource.

HeadFirst: Tell us more...

Singleton: Oh, I’m good for all kinds of things. Being single sometimes has its
advantages you know. I’m often used to manage pools of resources, like connection or
thread pools.

HeadFirst: Still, only one of your kind? That sounds lonely.

Singleton: Because there’s only one of me, I do keep busy, but it would be nice if more
developers knew me — many developers run into bugs because they have multiple
copies of objects floating around they’re not even aware of.

HeadFirst: So, if we may ask, how do you know there is only one of you? Can’t anyone
with a new operator create a “new you”?

Singleton: Nope! I’m truly unique.

HeadFirst: Well, do developers swear an oath not to instantiate you more than once?

Singleton: Of course not. The truth be told... well, this is getting kind of personal but... I
have no public constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?

Singleton: That’s right. My constructor is declared private.

HeadFirst: How does that work? How do you EVER get instantiated?

Singleton: You see, to get a hold of a Singleton object, you don’t instantiate one, you
just ask for an instance. So my class has a static method called getInstance(). Call that,
and I’ll show up at once, ready to work. In fact, I may already be helping other objects
when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a lot under your covers to make all
this work. Thanks for revealing yourself and we hope to speak with you again soon!

The Chocolate Factory
Everyone knows that all modern chocolate factories have computer-
controlled chocolate boilers. The job of the boiler is to take in chocolate and
milk, bring them to a boil, and then pass them on to the next phase of making
chocolate bars.
Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength
Chocolate Boiler. Check out the code; you’ll notice they’ve tried to be very
careful to ensure that bad things don’t happen, like draining 500 gallons of
unboiled mixture, or filling the boiler when it’s already full, or boiling an
empty boiler!

BRAIN POWER

Choc-O-Holic has done a decent job of ensuring bad things don’t happen, don’t ya
think? Then again, you probably suspect that if two ChocolateBoiler instances get loose,
some very bad things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is created in
an application?

SHARPEN YOUR PENCIL

Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a

singleton?

Singleton Pattern defined
Now that you’ve got the classic implementation of Singleton in your
head, it’s time to sit back, enjoy a bar of chocolate, and check out the
finer points of the Singleton Pattern.
Let’s start with the concise definition of the pattern:

NOTE

The Singleton Pattern ensures a class has only one instance, and provides a global
point of access to it.

No big surprises there. But let’s break it down a bit more:
What’s really going on here? We’re taking a class and letting it manage a
single instance of itself. We’re also preventing any other class from
creating a new instance on its own. To get an instance, you’ve got to go
through the class itself.
We’re also providing a global access point to the instance: whenever you
need an instance, just query the class and it will hand you back the single
instance. As you’ve seen, we can implement this so that the Singleton is
created in a lazy manner, which is especially important for resource-
intensive objects.

Okay, let’s check out the class diagram:

Houston, Hershey, PA we have a problem...
It looks like the Chocolate Boiler has let us down; despite the fact we
improved the code using Classic Singleton, somehow the
ChocolateBoiler’s fill() method was able to start filling the boiler even
though a batch of milk and chocolate was already boiling! That’s 500
gallons of spilled milk (and chocolate)! What happened!?

Could the addition of threads have caused this? Isn’t it the case that once
we’ve set the uniqueInstance variable to the sole instance of
ChocolateBoiler, all calls to getInstance() should return the same
instance? Right?

BE THE JVM

We have two threads, each executing this code. Your job is to play the JVM and
determine whether there is a case in which two threads might get ahold of different
boiler objects. Hint: you really just need to look at the sequence of operations in the
getInstance() method and the value of uniqueInstance to see how they might

overlap. Use the code magnets to help you study how the code might interleave to
create two boiler objects.

Make sure you check your answer in BE the JVM Solution before continuing!

Dealing with multithreading
Our multithreading woes are almost trivially fixed by making
getInstance() a synchronized method:

Good point, and it’s actually a little worse than you make out: the only time
synchronization is relevant is the first time through this method. In other
words, once we’ve set the uniqueInstance variable to an instance of
Singleton, we have no further need to synchronize this method. After the first
time through, synchronization is totally unneeded overhead!

Can we improve multithreading?
For most Java applications, we obviously need to ensure that the Singleton
works in the presence of multiple threads. But, it is expensive to synchronize
the getInstance() method, so what do we do?
Well, we have a few options...

1. Do nothing if the performance of getInstance() isn’t
critical to your application.
That’s right; if calling the getInstance() method isn’t causing substantial
overhead for your application, forget about it. Synchronizing getInstance() is
straightforward and effective. Just keep in mind that synchronizing a method
can decrease performance by a factor of 100, so if a high-traffic part of your
code begins using getInstance(), you may have to reconsider.

2. Move to an eagerly created instance rather than a
lazily created one.
If your application always creates and uses an instance of the Singleton or the

overhead of creation and runtime aspects of the Singleton are not onerous,
you may want to create your Singleton eagerly, like this:

Using this approach, we rely on the JVM to create the unique instance of the
Singleton when the class is loaded. The JVM guarantees that the instance will
be created before any thread accesses the static uniqueInstance variable.

3. Use “double-checked locking” to reduce the use of
synchronization in getInstance().
With double-checked locking, we first check to see if an instance is created,
and if not, THEN we synchronize. This way, we only synchronize the first
time through, just what we want.
Let’s check out the code:

If performance is an issue in your use of the getInstance() method then this
method of implementing the Singleton can drastically reduce the overhead.

WATCH IT!

Double-checked locking doesn’t work in Java 1.4 or earlier!

Unfortunately, in Java version 1.4 and earlier, many JVMs contain implementations of
the volatile keyword that allow improper synchronization for double-checked locking. If
you must use a JVM earlier than Java 5, consider other methods of implementing your
Singleton.

Meanwhile, back at the Chocolate Factory...
While we’ve been off diagnosing the multithreading problems, the chocolate
boiler has been cleaned up and is ready to go. But first, we have to fix the
multithreading problems. We have a few solutions at hand, each with
different tradeoffs, so which solution are we going to employ?

SHARPEN YOUR PENCIL

For each solution, describe its applicability to the problem of fixing the Chocolate Boiler
code:

Synchronize the getInstance() method:

__

__

Use eager instantiation:

__

__

Double-checked locking:

__

__

Congratulations!
At this point, the Chocolate Factory is a happy customer and Choc-O-Holic
was glad to have some expertise applied to their boiler code. No matter which
multithreading solution you applied, the boiler should be in good shape with
no more mishaps. Congratulations. You’ve not only managed to escape
500lbs of hot chocolate in this chapter, but you’ve been through all the
potential problems of the Singleton.

THERE ARE NO DUMB QUESTIONS

Q: Q: For such a simple pattern consisting of only one class, Singletons sure seem to have some problems.

A: A: Well, we warned you up front! But don’t let the problems discourage you; while implementing Singletons
correctly can be tricky, after reading this chapter you are now well informed on the techniques for creating
Singletons and should use them wherever you need to control the number of instances you are creating.

Q: Q: Can’t I just create a class in which all methods and variables are defined as static? Wouldn’t that be the
same as a Singleton?

A: A: Yes, if your class is self-contained and doesn’t depend on complex initialization. However, because of the way
static initializations are handled in Java, this can get very messy, especially if multiple classes are involved. Often
this scenario can result in subtle, hard-to-find bugs involving order of initialization. Unless there is a compelling
need to implement your “singleton” this way, it is far better to stay in the object world.

Q: Q: What about class loaders? I heard there is a chance that two class loaders could each end up with their
own instance of Singleton.

A: A: Yes, that is true as each class loader defines a namespace. If you have two or more class loaders, you can load
the same class multiple times (once in each classloader). Now, if that class happens to be a Singleton, then since
we have more than one version of the class, we also have more than one instance of the Singleton. So, if you are
using multiple classloaders and Singletons, be careful. One way around this problem is to specify the classloader
yourself.

RELAX

Rumors of Singletons being eaten by the garbage collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons to be prematurely
collected if there was no global reference to them. In other words, you could create a
Singleton and if the only reference to the Singleton was in the Singleton itself, it would
be collected and destroyed by the garbage collector. This leads to confusing bugs
because after the Singleton is “collected,” the next call to getInstance() produces a
shiny new Singleton. In many applications, this can cause confusing behavior as state is
mysteriously reset to initial values or things like network connections are reset.

Since Java 1.2 this bug has been fixed and a global reference is no longer required. If
you are, for some reason, still using a pre-Java 1.2 JVM, then be aware of this issue;
otherwise, you can sleep well knowing your Singletons won’t be prematurely collected.

THERE ARE NO DUMB QUESTIONS

Q: Q: I’ve always been taught that a class should do one thing and one thing only. For a class to do two things
is considered bad OO design. Isn’t a Singleton violating this?

A: A: You would be referring to the “One Class, One Responsibility” principle, and yes, you are correct, the
Singleton is not only responsible for managing its one instance (and providing global access), it is also
responsible for whatever its main role is in your application. So, certainly you could argue it is taking on two
responsibilities. Nevertheless, it isn’t hard to see that there is utility in a class managing its own instance; it
certainly makes the overall design simpler. In addition, many developers are familiar with the Singleton pattern as
it is in wide use. That said, some developers do feel the need to abstract out the Singleton functionality.

Q: Q: I wanted to subclass my Singleton code, but I ran into problems. Is it okay to subclass a Singleton?

A: A: One problem with subclassing a Singleton is that the constructor is private. You can’t extend a class with a
private constructor. So, the first thing you’ll have to do is change your constructor so that it’s public or protected.
But then, it’s not really a Singleton anymore, because other classes can instantiate it.

If you do change your constructor, there’s another issue. The implementation of Singleton is based on a static
variable, so if you do a straightforward subclass, all of your derived classes will share the same instance variable.
This is probably not what you had in mind. So, for subclassing to work, implementing a registry of sorts is
required in the base class.

Before implementing such a scheme, you should ask yourself what you are really gaining from subclassing a
Singleton. Like most patterns, the Singleton is not necessarily meant to be a solution that can fit into a library. In
addition, the Singleton code is trivial to add to any existing class. Last, if you are using a large number of
Singletons in your application, you should take a hard look at your design. Singletons are meant to be used
sparingly.

Q: Q: I still don’t totally understand why global variables are worse than a Singleton.

A: A: In Java, global variables are basically static references to objects. There are a couple of disadvantages to using
global variables in this manner. We’ve already mentioned one: the issue of lazy versus eager instantiation. But we
need to keep in mind the intent of the pattern: to ensure only one instance of a class exists and to provide global
access. A global variable can provide the latter, but not the former. Global variables also tend to encourage
developers to pollute the namespace with lots of global references to small objects. Singletons don’t encourage
this in the same way, but can be abused nonetheless.

Tools for your Design Toolbox
You’ve now added another pattern to your toolbox. Singleton gives you
another method of creating objects — in this case, unique objects.

NOTE

As you’ve seen, despite its apparent simplicity, there are a lot of details involved in the

Singleton’s implementation. After reading this chapter, though, you are ready to go out
and use Singleton in the wild.

BULLET POINTS

The Singleton Pattern ensures you have at most one instance of a class in your
application.
The Singleton Pattern also provides a global access point to that instance.
Java’s implementation of the Singleton Pattern makes use of a private constructor, a
static method combined with a static variable.
Examine your performance and resource constraints and carefully choose an
appropriate Singleton implementation for multithreaded applications (and we should
consider all applications multithreaded!).
Beware of the double-checked locking implementation; it is not thread-safe in
versions before Java 2, version 5.
Be careful if you are using multiple class loaders; this could defeat the Singleton
implementation and result in multiple instances.
If you are using a JVM earlier than 1.2, you’ll need to create a registry of Singletons
to defeat the garbage collector.

DESIGN PATTERNS CROSSWORD

Sit back, open that case of chocolate that you were sent for solving the multithreading
problem, and have some downtime working on this little crossword puzzle; all of the
solution words are from this chapter.

Across Down

1. It was “one of a kind.”

2. Added to chocolate in the boiler.

8. An incorrect implementation caused this to
overflow.

10. Singleton provides a single instance and
__________ (three words).

12. Flawed multi-threading approach if not
using Java 5 or later.

13. Chocolate capital of the USA.

14. One advantage over global variables:
________ creation.

15. Company that produces boilers.

16. To totally defeat the new constructor, we
have to declare the constructor __________.

1. Multiple __________ can cause problems.

3. A Singleton is a class that manages an instance
of ________.

4. If you don’t need to worry about lazy
instantiation, you can create your instance
__________.

5. Prior to Java 1.2, this can eat your Singletons
(two words).

6. The Singleton was embarrassed it had no public
__________.

7. The classic implementation doesn’t handle this.

9. Singleton ensures only one of these exists.

11. The Singleton Pattern has one.

BE THE JVM SOLUTION

SHARPEN YOUR PENCIL SOLUTION

Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a
singleton?

SHARPEN YOUR PENCIL SOLUTION

For each solution, describe its applicability to the problem of fixing the Chocolate Boiler
code:

Synchronize the getInstance() method:

A straightforward technique that is guaranteed to work. We don’t seem to

have__________________

any performance concerns with the chocolate boiler, so this would be a good
choice._____________________

Use eager instantiation:

We are always going to instantiate the chocolate boiler in our code, so statically
initializing_______

the instance would cause no concerns. This solution would work as well as the
synchronized____

method, although perhaps be less obvious to a developer familar with the standard
pattern.

Double-checked locking:

Given we have no performance concerns, double-checked locking seems like overkill. In

addition, we’d have to ensure that we are running at least Java
5.___

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 6. The Command Pattern:
Encapsulating Invocation

In this chapter, we take encapsulation to a whole new level: we’re going
to encapsulate method invocation. That’s right; by encapsulating method
invocation, we can crystallize pieces of computation so that the object
invoking the computation doesn’t need to worry about how to do things, it
just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save
them away for logging or reuse them to implement undo in our code.

Home Automation or Bust, Inc.

1221 Industrial Avenue, Suite 2000

Future City, IL 62914

Greetings!

I recently received a demo and briefing from Johnny Hurricane, CEO of Weather-O-
Rama, on their new expandable weather station. I have to say, I was so impressed with the
software architecture that I’d like to ask you to design the API for our new Home
Automation Remote Control. In return for your services we’d be happy to handsomely
reward you with stock options in Home Automation or Bust, Inc.

I’m enclosing a prototype of our ground-breaking remote control for your perusal. The
remote control features seven programmable slots (each can be assigned to a different
household device) along with corresponding on/off buttons for each. The remote also has
a global undo button.

I’m also enclosing a set of Java classes on CD-R that were created by various vendors to
control home automation devices such as lights, fans, hot tubs, audio equipment, and
other similar controllable appliances.

We’d like you to create an API for programming the remote so that each slot can be
assigned to control a device or set of devices. Note that it is important that we be able to
control the current devices on the disc, and also any future devices that the vendors may
supply.

Given the work you did on the Weather-O-Rama weather station, we know you’ll do a
great job on our remote control! We look forward to seeing your design.

Sincerely,

Bill “X-10” Thompson, CEO

Free hardware! Let’s check out the Remote Control...

Taking a look at the vendor classes
Check out the vendor classes on the CD-R. These should give you some idea
of the interfaces of the objects we need to control from the remote.

It looks like we have quite a set of classes here, and not a lot of industry
effort to come up with a set of common interfaces. Not only that, it sounds
like we can expect more of these classes in the future. Designing a remote
control API is going to be interesting. Let’s get on to the design.

Cubicle Conversation
Your teammates are already discussing how to design the remote control
API...

Mary: Yes, I thought we’d see a bunch of classes with on() and off()
methods, but here we’ve got methods like dim(), setTemperature(),
setVolume(), and setInputChannel().

Sue: Not only that, it sounds like we can expect more vendor classes in the
future with just as diverse methods.
Mary: I think it’s important we view this as a separation of concerns: the
remote should know how to interpret button presses and make requests, but it
shouldn’t know a lot about home automation or how to turn on a hot tub.
Sue: Sounds like good design. But if the remote is dumb and just knows how
to make generic requests, how do we design the remote so that it can invoke
an action that, say, turns on a light or opens a garage door?
Mary: I’m not sure, but we don’t want the remote to have to know the
specifics of the vendor classes.
Sue: What do you mean?
Mary: We don’t want the remote to consist of a set of if statements, like “if
slot1 == Light, then light.on(), else if slot1 == Hottub then hottub.jetsOn()”.
We know that is a bad design.
Sue: I agree. Whenever a new vendor class comes out, we’d have to go in
and modify the code, potentially creating bugs and more work for ourselves!

Mary: Yeah? Tell us more.
Joe: The Command Pattern allows you to decouple the requester of an action
from the object that actually performs the action. So, here the requester would

be the remote control and the object that performs the action would be an
instance of one of your vendor classes.
Sue: How is that possible? How can we decouple them? After all, when I
press a button, the remote has to turn on a light.
Joe: You can do that by introducing “command objects” into your design. A
command object encapsulates a request to do something (like turn on a light)
on a specific object (say, the living room light object). So, if we store a
command object for each button, when the button is pressed we ask the
command object to do some work. The remote doesn’t have any idea what
the work is, it just has a command object that knows how to talk to the right
object to get the work done. So, you see, the remote is decoupled from the
light object!
Sue: This certainly sounds like it’s going in the right direction.
Mary: Still, I’m having a hard time wrapping my head around the pattern.
Joe: Given that the objects are so decoupled, it’s a little difficult to picture
how the pattern actually works.
Mary: Let me see if I at least have the right idea: using this pattern, we could
create an API in which these command objects can be loaded into button
slots, allowing the remote code to stay very simple. And, the command
objects encapsulate how to do a home automation task along with the object
that needs to do it.
Joe: Yes, I think so. I also think this pattern can help you with that undo
button, but I haven’t studied that part yet.
Mary: This sounds really encouraging, but I think I have a bit of work to do
to really “get” the pattern.
Sue: Me too.

Meanwhile, back at the Diner..., or, A brief introduction
to the Command Pattern
As Joe said, it is a little hard to understand the Command Pattern by just
hearing its description. But don’t fear, we have some friends ready to help:
remember our friendly diner from Chapter 1? It’s been a while since we
visited Alice, Flo, and the short-order cook, but we’ve got good reason for

returning (well, beyond the food and great conversation): the diner is going to
help us understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders and the short-order cook.
Through these interactions, you’re going to understand the objects involved
in the Command Pattern and also get a feel for how the decoupling works.
After that, we’re going to knock out that remote control API.
Checking in at the Objectville Diner...
Okay, we all know how the Diner operates:

Let’s study the interaction in a little more detail...
...and given this Diner is in Objectville, let’s think about the object and
method calls involved, too!

The Objectville Diner roles and responsibilities
An Order Slip encapsulates a request to prepare a meal.
Think of the Order Slip as an object, an object that acts as a request to
prepare a meal. Like any object, it can be passed around — from the
Waitress to the order counter, or to the next Waitress taking over her shift. It
has an interface that consists of only one method, orderUp(), that
encapsulates the actions needed to prepare the meal. It also has a reference to

the object that needs to prepare it (in our case, the Cook). It’s encapsulated in
that the Waitress doesn’t have to know what’s in the order or even who
prepares the meal; she only needs to pass the slip through the order window
and call “Order up!”

NOTE

Okay, in real life a waitress would probably care what is on the Order Slip and who
cooks it, but this is Objectville... work with us here!

The Waitress’s job is to take Order Slips and invoke the orderUp()
method on them.
The Waitress has it easy: take an order from the customer, continue
helping customers until she makes it back to the order counter, then
invoke the orderUp() method to have the meal prepared. As we’ve

already discussed, in Objectville, the Waitress really isn’t worried about
what’s on the order or who is going to prepare it; she just knows Order Slips
have an orderUp() method she can call to get the job done.
Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different Order Slips from different customers, but that
doesn’t faze her; she knows all Order Slips support the orderUp() method and
she can call orderUp() any time she needs a meal prepared.

The Short Order Cook has the knowledge required to prepare the meal.
The Short Order Cook is the object that really knows how to prepare
meals. Once the Waitress has invoked the orderUp() method; the Short Order
Cook takes over and implements all the methods that are needed to create
meals. Notice the Waitress and the Cook are totally decoupled: the Waitress
has Order Slips that encapsulate the details of the meal; she just calls a
method on each order to get it prepared. Likewise, the Cook gets his
instructions from the Order Slip; he never needs to directly communicate
with the Waitress.

Patience, we’re getting there...
Think of the Diner as a model for an OO design pattern that allows us to
separate an object making a request from the objects that receive and execute
those requests. For instance, in our remote control API, we need to separate

the code that gets invoked when we press a button from the objects of the
vendor-specific classes that carry out those requests. What if each slot of the
remote held an object like the Diner’s Order Slip object? Then, when a button
is pressed, we could just call the equivalent of the “orderUp()” method on
this object and have the lights turn on without the remote knowing the details
of how to make those things happen or what objects are making them happen.
Now, let’s switch gears a bit and map all this Diner talk to the Command
Pattern...

BRAIN POWER

Before we move on, spend some time studying the diagram two pages back along with
Diner roles and responsibilities until you think you’ve got a handle on the Objectville
Diner objects and relationships. Once you’ve done that, get ready to nail the Command
Pattern!

From the Diner to the Command Pattern
Okay, we’ve spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to reflect the Command Pattern. You’ll see that all the
players are the same; only the names have changed.

LOADING THE INVOKER

① The client creates a command object.
② The client does a setCommand() to store the command object in the invoker.
③ Later... the client asks the invoker to execute the command. Note: as you’ll see
later in the chapter, once the command is loaded into the invoker, it may be used and
discarded, or it may remain and be used many times.

WHO DOES WHAT?

Match the diner objects and methods with the corresponding names from the Command
Pattern.

Diner Command Pattern

Waitress Command

Short Order Cook execute()

orderUp() Client

Order Invoker

Customer Receiver

takeOrder() setCommand()

Our first command object
Isn’t it about time we build our first command object? Let’s go ahead and
write some code for the remote control. While we haven’t figured out how to
design the remote control API yet, building a few things from the bottom up
may help us...

Implementing the Command interface
First things first: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp();
however, we typically just use the name execute().
Here’s the Command interface:

Implementing a command to turn a light on
Now, let’s say you want to implement a command for turning a light on.
Referring to our set of vendor classes, the Light class has two methods: on()
and off(). Here’s how you can implement this as a command:

Now that you’ve got a LightOnCommand class, let’s see if we can put it to
use...

Using the command object
Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

Creating a simple test to use the Remote Control
Here’s just a bit of code to test out the simple remote control. Let’s take a
look and we’ll point out how the pieces match the Command Pattern
diagram:

SHARPEN YOUR PENCIL

Okay, it’s time for you to implement the GarageDoorOpenCommand class. First, supply
the code for the class below. You’ll need the GarageDoor class diagram.

Now that you’ve got your class, what is the output of the following code? (Hint: the
GarageDoor up() method prints out “Garage Door is Open” when it is complete.)

public class RemoteControlTest {

 public static void main(String[] args) {

 SimpleRemoteControl remote = new SimpleRemoteControl();

 Light light = new Light();

 GarageDoor garageDoor = new GarageDoor();

 LightOnCommand lightOn = new LightOnCommand(light);

 GarageDoorOpenCommand garageOpen =

 new GarageDoorOpenCommand(garageDoor);

 remote.setCommand(lightOn);

 remote.buttonWasPressed();

 remote.setCommand(garageOpen);

 remote.buttonWasPressed();

 }

}

The Command Pattern defined
You’ve done your time in the Objectville Diner, you’ve partly implemented
the remote control API, and in the process you’ve got a fairly good picture of
how the classes and objects interact in the Command Pattern. Now we’re
going to define the Command Pattern and nail down all the details.
Let’s start with its official definition:

NOTE

The Command Pattern encapsulates a request as an object, thereby letting you
parameterize other objects with different requests, queue or log requests, and support
undoable operations.

Let’s step through this. We know that a command object encapsulates a
request by binding together a set of actions on a specific receiver. To achieve
this, it packages the actions and the receiver up into an object that exposes
just one method, execute(). When called, execute() causes the actions to be
invoked on the receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they call the
execute() method, their request will be serviced.
We’ve also seen a couple examples of parameterizing an object with a
command. Back at the diner, the Waitress was parameterized with multiple

orders throughout the day. In the simple remote control, we first loaded the
button slot with a “light on” command and then later replaced it with a
“garage door open” command. Like the Waitress, your remote slot didn’t care
what command object it had, as long as it implemented the Command
interface.
What we haven’t encountered yet is using commands to implement queues
and logs and support undo operations. Don’t worry, those are pretty
straightforward extensions of the basic Command Pattern and we will get to
them soon. We can also easily support what’s known as the Meta Command
Pattern once we have the basics in place. The Meta Command Pattern allows
you to create macros of commands so that you can execute multiple
commands at once.

The Command Pattern defined: the class diagram

BRAIN POWER

How does the design of the Command Pattern support the decoupling of the invoker of a
request and the receiver of the request?

Mary: Me too. So where do we begin?
Sue: Like we did in the SimpleRemote, we need to provide a way to assign
commands to slots. In our case we have seven slots, each with an “on” and
“off” button. So we might assign commands to the remote something like
this:

onCommands[0] = onCommand;

offCommands[0] = offCommand;

and so on for each of the seven command slots.
Mary: That makes sense, except for the Light objects. How does the remote
know the living room from the kitchen light?

Sue: Ah, that’s just it, it doesn’t! The remote doesn’t know anything but how
to call execute() on the corresponding command object when a button is
pressed.
Mary: Yeah, I sorta got that, but in the implementation, how do we make
sure the right objects are turning on and off the right devices?
Sue: When we create the commands to be loaded into the remote, we create
one LightCommand that is bound to the living room light object and another
that is bound to the kitchen light object. Remember, the receiver of the
request gets bound to the command it’s encapsulated in. So, by the time the
button is pressed, no one cares which light is which; the right thing just
happens when the execute() method is called.
Mary: I think I’ve got it. Let’s implement the remote and I think this will get
clearer!
Sue: Sounds good. Let’s give it a shot...

Assigning Commands to slots
So we have a plan: we’re going to assign each slot to a command in the
remote control. This makes the remote control our invoker. When a button is
pressed the execute() method is going to be called on the corresponding
command, which results in actions being invoked on the receiver (like lights,
ceiling fans, and stereos).

Implementing the Remote Control

Implementing the Commands
Well, we’ve already gotten our feet wet implementing the LightOnCommand
for the SimpleRemoteControl. We can plug that same code in here and
everything works beautifully. Off commands are no different; in fact, the

LightOffCommand looks like this:

Let’s try something a little more challenging; how about writing on and off
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the
off() method in the StereoOffCommand. On is a little more complicated; let’s
say we want to write a StereoOnWithCDCommand...

Not too bad. Take a look at the rest of the vendor classes; by now, you can
definitely knock out the rest of the Command classes we need for those.

Putting the Remote Control through its paces
Our job with the remote is pretty much done; all we need to do is run some
tests and get some documentation together to describe the API. Home
Automation or Bust, Inc. sure is going to be impressed, don’t ya think?
We’ve managed to come up with a design that is going to allow them to
produce a remote that is easy to maintain and they’re going to have no
trouble convincing the vendors to write some simple command classes in the
future since they are so easy to write.
Let’s get to testing this code!

Now, let’s check out the execution of our remote control
test...

Good catch. We did sneak a little something in there. In the remote control,
we didn’t want to check to see if a command was loaded every time we
referenced a slot. For instance, in the onButtonWasPushed() method, we
would need code like this:

public void onButtonWasPushed(int slot) {

 if (onCommands[slot] != null) {

 onCommands[slot].execute();

 }

}

So, how do we get around that? Implement a command that does nothing!
public class NoCommand implements Command {

 public void execute() { }

}

Then, in our RemoteControl constructor, we assign every slot a NoCommand
object by default and we know we’ll always have some command to call in
each slot.

Command noCommand = new NoCommand();

for (int i = 0; i < 7; i++) {

 onCommands[i] = noCommand;

 offCommands[i] = noCommand;

}

So in the output of our test run, you are seeing only slots that have been
assigned to a command other than the default NoCommand object, which we
assigned when we created the RemoteControl.

PATTERN HONORABLE MENTION

The NoCommand object is an example of a null object. A null object is useful when you
don’t have a meaningful object to return, and yet you want to remove the responsibility
for handling null from the client. For instance, in our remote control we didn’t have a
meaningful object to assign to each slot out of the box, so we provided a NoCommand
object that acts as a surrogate and does nothing when its execute method is called.

You’ll find uses for Null Objects in conjunction with many Design Patterns and
sometimes you’ll even see Null Object listed as a Design Pattern.

Time to write that documentation...

REMOTE CONTROL API DESIGN FOR HOME AUTOMATION OR
BUST, INC.

We are pleased to present you with the following design and application programming
interface for your Home Automation Remote Control. Our primary design goal was to
keep the remote control code as simple as possible so that it doesn’t require changes as
new vendor classes are produced. To this end we have employed the Command Pattern
to logically decouple the RemoteControl class from the Vendor Classes. We believe this
will reduce the cost of producing the remote as well as drastically reduce your ongoing
maintenance costs.

The following class diagram provides an overview of our design:

Whoops! We almost forgot... luckily, once we have our basic Command
classes, undo is easy to add. Let’s step through adding undo to our
commands and to the remote control...

What are we doing?
Okay, we need to add functionality to support the undo button on the remote.
It works like this: say the Living Room Light is off and you press the on
button on the remote. Obviously the light turns on. Now if you press the undo
button then the last action will be reversed — in this case, the light will turn
off. Before we get into more complex examples, let’s get the light working
with the undo button:

① When commands support undo, they have an undo() method that
mirrors the execute() method. Whatever execute() last did, undo()
reverses. So, before we can add undo to our commands, we need to add an
undo() method to the Command interface:

That was simple enough.
Now, let’s dive into the Light command and implement the undo()

method.
② Let’s start with the LightOnCommand: if the LightOnCommand’s
execute() method was called, then the on() method was last called. We
know that undo() needs to do the opposite of this by calling the off()
method.

Piece of cake! Now for the LightOffCommand. Here the undo() method
just needs to call the Light’s on() method.

Could this be any easier? Okay, we aren’t done yet; we need to work a
little support into the Remote Control to handle tracking the last button
pressed and the undo button press.
③ To add support for the undo button we only have to make a few small
changes to the Remote Control class. Here’s how we’re going to do it:
we’ll add a new instance variable to track the last command invoked; then,
whenever the undo button is pressed, we retrieve that command and
invoke its undo() method.

Time to QA that Undo button!
Okay, let’s rework the test harness a bit to test the undo button:

And here are the test results...

Using state to implement Undo
Okay, implementing undo on the Light was instructive but a little too easy.

Typically, we need to manage a bit of state to implement undo. Let’s try
something a little more interesting, like the CeilingFan from the vendor
classes. The CeilingFan allows a number of speeds to be set along with an off
method.

Here’s the source code for the CeilingFan:

Adding Undo to the CeilingFan commands
Now let’s tackle adding undo to the various CeilingFan commands. To do so,
we need to track the last speed setting of the fan and, if the undo() method is
called, restore the fan to its previous setting. Here’s the code for the
CeilingFanHighCommand:

BRAIN POWER

We’ve got three more ceiling fan commands to write: low, medium, and off. Can you
see how these are implemented?

Get ready to test the ceiling fan
Time to load up our remote control with the ceiling fan commands. We’re
going to load slot 0’s on button with the medium setting for the fan and slot 1
with the high setting. Both corresponding off buttons will hold the ceiling fan
off command.

Here’s our test script:

Testing the ceiling fan...
Okay, let’s fire up the remote, load it with commands, and push some
buttons!

Every remote needs a Party Mode!
What’s the point of having a remote if you can’t push one button and
have the lights dimmed, the stereo and TV turned on and set to a DVD,
and the hot tub fired up?

Using a macro command
Let’s step through how we use a macro command:

① First we create the set of commands we want to go into the macro:

SHARPEN YOUR PENCIL

We will also need commands for the off buttons. Write the code to create those here:

② Next we create two arrays, one for the On commands and one for the

Off commands, and load them with the corresponding commands:

③ Then we assign MacroCommand to a button like we always do:

④ Finally, we just need to push some buttons and see if this works.

EXERCISE

The only thing our MacroCommand is missing is its undo functionality. When the undo
button is pressed after a macro command, all the commands that were invoked in the
macro must undo their previous actions. Here’s the code for MacroCommand; go ahead
and implement the undo() method:

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I always need a receiver? Why can’t the command object implement the details of the execute()
method?

A: A: In general, we strive for “dumb” command objects that just invoke an action on a receiver; however, there are
many examples of “smart” command objects that implement most, if not all, of the logic needed to carry out a
request. Certainly you can do this; just keep in mind you’ll no longer have the same level of decoupling between
the invoker and receiver, nor will you be able to parameterize your commands with receivers.

Q: Q: How can I implement a history of undo operations? In other words, I want to be able to press the undo
button multiple times?

A: A: Great question. It’s pretty easy actually; instead of keeping just a reference to the last Command executed, you
keep a stack of previous commands. Then, whenever undo is pressed, your invoker pops the first item off the
stack and calls its undo() method.

Q: Q: Could I have just implemented party mode as a Command by creating a PartyCommand and putting
the calls to execute the other Commands in the PartyCommand’s execute() method?

A: A: You could; however, you’d essentially be “hardcoding” the party mode into the PartyCommand. Why go to
the trouble? With the MacroCommand, you can decide dynamically which Commands you want to go into the
PartyCommand, so you have more flexibility using MacroCommands. In general, the MacroCommand is a more
elegant solution and requires less new code.

The Command Pattern means lots of command classes
When you use the Command Pattern, you end up with a lot of small classes
— the concrete Command implementations — that each encapsulate the
request to the corresponding receiver. In our remote control implementation,
we have two command classes for each receiver class. For instance, for the
Light receiver, we have LightOnCommand and LightOffCommand; for the
GarageDoor receiver, we have GarageDoorUpCommand and
GarageDoorDownCommand, and so on. That’s a lot of extra stuff that’s
needed to create little bits of packaged-up computation that all have the same
interface for the RemoteControl:

Do we really need all these command classes?
A command is simply a piece of packaged-up computation. It’s a way for us
to have a common interface to the behavior of many different receivers
(lights, hot tubs, stereos) each with its own set of actions.
What if you could keep the common interface for all your commands, but
take out the bits of computation from inside the concrete Command
implementations and use them directly instead? And you could get rid of all

those extra classes and simplify your code? Well, with lambda expressions
you can. Let’s see how...

Simplifying the Remote Control with lambda
expressions
While you’ve seen how straightforward the Command Pattern is, Java gives
us a nice tool to simplify things even more; namely, the lambda expression. A
lambda expression is a short hand for a method — a bit of computation —
exactly where you need it. Instead of creating a whole separate class
containing that method, instantiating an object from that class, and then
calling the method, you can just say, “here’s the method I want called” by
using a lambda expression. In our case, the method we want called is the
execute() method.

NOTE

If you aren’t yet familiar with lambda expressions (they were added in Java 8) they can
take some getting used to. You should be able to follow along over the next few pages,
but consult a Java reference to get up to speed on the syntax and semantics if you need
to.

Let’s replace the LightOnCommand and LightOffCommand objects with
lambda expressions to see how this works. Here are the steps to use lambda
expressions instead of command objects to add the light on and off
commands to the remote control:
Step 1: Create the Receiver
This step is exactly the same as before.

Light livingRoomLight = new Light("Living Room");

Step 2: Set the remote control’s commands using lambda expressions
This is where the magic happens. Now, instead of creating

LightOnCommand and LightOffCommand objects to pass to
remoteControl.setCommand(), we simply pass a lambda expression in place
of each object, with the code from their respective execute() methods:

Step 3: Push the remote control buttons
This step doesn’t change either. Except now, when we call the remote’s
onButtonWasPushed(0) method, the command that’s in slot 0 is a function
object (created by the lambda expression). When we call execute() on the
command, that method is matched up with the method defined by the lambda
expression, which is then executed.

Well, we did say “magic” didn’t we?
Just kidding... it’s actually not all that magical. We’re using lambda
expressions to stand in for Command objects, and the Command interface has
just one method: execute(). The lambda expression we use must have a
compatible signature with this method — and it does: execute() takes no
arguments (neither does our lambda expression), and returns no value
(neither does our lambda expression), so the compiler is happy.
We pass the lambda expression into the Command parameter of the
setCommand() method:

The compiler checks to see if the Command interface has one method that
matches the lambda expression, and it does: execute().
Then, when we call execute() on that command, the method in the lambda
expression is called:

Just remember: as long as the interface of the parameter we’re passing the
lambda expression to has one (and only one!) method, and that method has a
compatible signature with the lambda expression, this will work.

Simplifying even more with method references
We can simplify our code even more using method references. When the
lambda expression you’re passing calls just one method, you can pass a
method reference in place of the lambda expression. Like this:

So now, instead of passing a lambda expression that calls the
livingRoomLight’s on() method, we’re passing a reference to the method
itself.

What if we need to do more than one thing in our

lambda expression?
Sometimes, the lambda expressions you’ll use to stand in for Command
objects have to do more than one thing. Let’s take a quick look at how to
replace the stereoOnWithCDCommand and stereoOffCommand objects with
lambda expressions, and then we’ll look at the complete code for the
RemoteLoader so you can see all these ideas come together.
The stereoOffCommand just executes a simple one-line command:

stereo.off();

So we can use a method reference, stereo::off, in place of a lambda
expression for this command.
But the stereoOnWithCDCommand does three things:

stereo.on();

stereo.setCD();

stereo.setVolume(11);

In this case, then, we can’t use a method reference. Instead, we can either
write the lambda expression in line, or we can create it separately, give it a
name, and then pass it to the remoteControl’s setCommand() method using
that name. Here’s how you can create the lambda expression separately, and
give it a name:

Notice that we use Command as the type of the lambda expression. The
lambda expression will match the Command interface’s execute() method,
and the Command parameter we’re passing it to in the setCommand()
method.

Test the remote control with lambda expressions
To use lambda expressions to simplify the code for the original Remote
Control implementation (without undo), we’re going to change the code in
the RemoteLoader to replace the concrete Command objects with lambda
expressions, and change the RemoteControl constructor to use lambda
expressions instead of a NoCommand object. Once we’ve done that, we can

delete all the concrete Command classes (LightOnCommand,
LightOffCommand, HottubOnCommand, HottubOffCommand, and so on).
And that’s it. Everything else stays the same. Make sure you don’t delete the
Command interface; you still need that to match the type of the function
objects created by the lambda expressions that get stored in the remote
control, and passed to the various methods.
Here’s the new code for the RemoteLoader class:

And don’t forget, we need to modify the RemoteControl constructor to
remove the code to construct NoCommand objects, and replace those with
lambda expressions too:

Check out the results of all those lambda expression
commands...

THERE ARE NO DUMB QUESTIONS

Q: Q: Can a lambda expression have parameters or return a value? Or does it always have to be a void, no-
argument method?

A: A: Yes, a lambda expression can have parameters and return a value (take a look back at Chapter 2 to see how we
used a one-argument lambda expression in place of an ActionListener object in the Swing observer example). But
the rules are the same: the signature of the lambda expression must match the signature of the one method in the
type of the object you’re using the lambda expression to stand in for. To learn more about how to write lambda
expressions with parameters and return values (and how to deal with the types), check out the Java docs.

Q: Q: You keep saying that a lambda expression must match a method in an interface with one, and only one,
method. So if an interface has two methods, we can’t use a lambda expression?

A: A: That’s right. An interface, like our original Command interface (or ActionListener as another example), that
has just one method is known as a functional interface. Lambda expressions are designed specifically to replace
the methods in these functional interfaces, partly as a way to reduce the code that is required when you have a lot
of these small classes with functional interfaces. If your interface has two methods, it’s not a functional interface
and you won’t be able to replace it with a lambda expression. Think about it: a lambda expression is really a
replacement for a method, not an entire object. You can’t replace two methods with one lambda expression.

Q: Q: Does that mean we can’t use lambda expressions for our Remote Control implementation with undo?
There, our Command interface has two methods: execute() and undo().

A: A: That’s right. You could probably find a way to use lambdas with undo (by making two different types of
commands), but in the end your code would probably be more complex than if you’d just used Command objects
like we did when we implemented the RemoteControl with undo earlier in the chapter.

Lambda expressions are meant to be used with functional interfaces (one method only), to simplify your code. If
you find yourself trying to work around this to support a case like Command with undo, then using lambda
expressions probably isn’t the right solution.

Q: Q: Why do the names of on and off slots look so weird when we display the RemoteControl?

A: A: If you take another look at how we implemented the toString() method of RemoteControl, you’ll see we’re
using getClass() to get the class of the Command object, and then getName() to get the name of the class, and
printing that to the console as a string. This was a convenient way to get a name for each slot, but kind of a cheat.

As you can see from the output, lambda expressions don’t have nice class names. That’s because their names are
assigned internally by the Java runtime and Java has no idea what these lambda expressions mean; to Java, they’re
just function objects that happen to match a method in an interface.

To fix the RemoteControl display, we’d have to modify the setCommand() code in RemoteControl, perhaps to
allow a name parameter for each slot, and modify the toString() method to use this name. Then in RemoteLoader,
we’d pass a nice, human-readable name into setCommand() along with the commands. This would probably
mirror real life more closely (if you’re programming your own remote, you’ll likely want to set your own custom
names).

More uses of the Command Pattern: queuing requests
Commands give us a way to package a piece of computation (a receiver and a
set of actions) and pass it around as a first-class object. Now, the computation
itself may be invoked long after some client application creates the command
object. In fact, it may even be invoked by a different thread. We can take this
scenario and apply it to many useful applications such as schedulers, thread
pools, and job queues, to name a few.
Imagine a job queue: you add commands to the queue on one end, and on the
other end sits a group of threads. Threads run the following script: they
remove a command from the queue, call its execute() method, wait for the
call to finish, then discard the command object and retrieve a new one.

Note that the job queue classes are totally decoupled from the objects that are
doing the computation. One minute a thread may be computing a financial
computation, and the next it may be retrieving something from the network.
The job queue objects don’t care; they just retrieve commands and call
execute(). Likewise, as long as you put objects into the queue that implement
the Command Pattern, your execute() method will be invoked when a thread
is available.

BRAIN POWER

How might a web server make use of such a queue? What other applications can you
think of?

More uses of the Command Pattern: logging requests
The semantics of some applications require that we log all actions and be able
to recover after a crash by reinvoking those actions. The Command Pattern
can support these semantics with the addition of two methods: store() and
load(). In Java we could use object serialization to implement these methods,
but the normal caveats for using serialization for persistence apply.
How does this work? As we execute commands, we store a history of them
on disk. When a crash occurs, we reload the command objects and invoke
their execute() methods in batch and in order.
Now, this kind of logging wouldn’t make sense for a remote control;
however, there are many applications that invoke actions on large data
structures that can’t be quickly saved each time a change is made. By using
logging, we can save all the operations since the last check point, and if there
is a system failure, apply those operations to our checkpoint. Take, for
example, a spreadsheet application: we might want to implement our failure
recovery by logging the actions on the spreadsheet rather than writing a copy
of the spreadsheet to disk every time a change occurs. In more advanced
applications, these techniques can be extended to apply to sets of operations
in a transactional manner so that all of the operations complete, or none of
them do.

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter we’ve added a pattern
that allows us to encapsulate methods into Command objects: store them,
pass them around, and invoke them when you need them.

BULLET POINTS

The Command Pattern decouples an object making a request from the one that
knows how to perform it.
A Command object is at the center of this decoupling and encapsulates a receiver
with an action (or set of actions) .
An invoker makes a request of a Command object by calling its execute() method,
which invokes those actions on the receiver.
Invokers can be parameterized with Commands, even dynamically at runtime.
Commands may support undo by implementing an undo method that restores the
object to its previous state before the execute() method was last called.
Macro Commands are a simple extension of Command that allow multiple
commands to be invoked. Likewise, Macro Commands can easily support undo().
In practice, it is not uncommon for “smart” Command objects to implement the
request themselves rather than delegating to a receiver.
Commands may also be used to implement logging and transactional systems.

DESIGN PATTERNS CROSSWORD

Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from this chapter.

Across Down

3. The Waitress was one.

4. A command __________ a set of actions and a
receiver.

7. Dr. Seuss diner food.

8. Our favorite city.

9. Act as the receivers in the remote control.

13. Object that knows the actions and the
receiver.

14. Another thing Command can do.

15. Object that knows how to get things done.

17. A command encapsulates this.

1. Role of customer in the Command Pattern.

2. Our first command object controlled this.

5. Invoker and receiver are _________.

6. Company that got us word-of-mouth
business.

10. All commands provide this.

11. The Cook and this person were definitely
decoupled.

12. Carries out a request.

16. Waitress didn’t do this.

WHO DOES WHAT? SOLUTION

Match the diner objects and methods with the corresponding names from the Command

Pattern

SHARPEN YOUR PENCIL SOLUTION

Here’s the code for the GarageDoorOpenCommand class.
public class GarageDoorOpenCommand implements Command {

 GarageDoor garageDoor;

 public GarageDoorOpenCommand(GarageDoor garageDoor) {

 this.garageDoor = garageDoor;

 }

 public void execute() {

 garageDoor.up();

 }

}

Here’s the output:

EXERCISE SOLUTION

Here is the undo() method for the MacroCommand.
public class MacroCommand implements Command {

 Command[] commands;

 public MacroCommand(Command[] commands) {

 this.commands = commands;

 }

 public void execute() {

 for (int i = 0; i < commands.length; i++) {

 commands[i].execute();

 }

 }

 public void undo() {

 for (int i = commands.length - 1; i > = 0; i--) {

 commands[i].undo();

 }

 }

}

SHARPEN YOUR PENCIL SOLUTION

Here is the code to create commands for the off button.
LightOffCommand lightOff = new LightOffCommand(light);

StereoOffCommand stereoOff = new StereoOffCommand(stereo);

TVOffCommand tvOff = new TVOffCommand(tv);

HottubOffCommand hottubOff = new HottubOffCommand(hottub);

Chapter 7. The Adapter and Facade
Patterns: Being Adaptive

In this chapter we’re going to attempt such impossible feats as putting a
square peg in a round hole. Sound impossible? Not when we have Design
Patterns. Remember the Decorator Pattern? We wrapped objects to give
them new responsibilities. Now we’re going to wrap some objects with a
different purpose: to make their interfaces look like something they’re not.
Why would we do that? So we can adapt a design expecting one interface to a
class that implements a different interface. That’s not all; while we’re at it,
we’re going to look at another pattern that wraps objects to simplify their
interface.

Adapters all around us
You’ll have no trouble understanding what an OO adapter is because the

real world is full of them. How’s this for an example: Have you ever
needed to use a US-made laptop in Great Britain? Then you’ve probably
needed an AC power adapter...

You know what the adapter does: it sits in between the plug of your laptop
and the British AC outlet; its job is to adapt the British outlet so that you can
plug your laptop into it and receive power. Or look at it this way: the adapter
changes the interface of the outlet into one that your laptop expects.

NOTE

How many other real-world adapters can you think of?

Some AC adapters are simple — they only change the shape of the outlet so
that it matches your plug, and they pass the AC current straight through —
but other adapters are more complex internally and may need to step the
power up or down to match your devices’ needs.
Okay, that’s the real world; what about object-oriented adapters? Well, our
OO adapters play the same role as their real-world counterparts: they take an
interface and adapt it to one that a client is expecting.

Object-oriented adapters

Say you’ve got an existing software system that you need to work a new
vendor class library into, but the new vendor designed their interfaces
differently than the last vendor:

Okay, you don’t want to solve the problem by changing your existing code
(and you can’t change the vendor’s code). So what do you do? Well, you can
write a class that adapts the new vendor interface into the one you’re
expecting.

The adapter acts as the middleman by receiving requests from the client and
converting them into requests that make sense on the vendor classes.

NOTE

Can you think of a solution that doesn’t require YOU to write ANY additional code to
integrate the new vendor classes? How about making the vendor supply the adapter
class?

If it walks like a duck and quacks like a duck, then it
must might be a duck turkey wrapped with a duck
adapter...
It’s time to see an adapter in action. Remember our ducks from Chapter 1?
Let’s review a slightly simplified version of the Duck interfaces and classes:

Here’s a subclass of Duck, the MallardDuck.

Now it’s time to meet the newest fowl on the block:

Now, let’s say you’re short on Duck objects and you’d like to use some
Turkey objects in their place. Obviously we can’t use the turkeys outright
because they have a different interface.
So, let’s write an Adapter:

CODE UP CLOSE

Test drive the adapter
Now we just need some code to test drive our adapter:

The Adapter Pattern explained
Now that we have an idea of what an Adapter is, let’s step back and look at
all the pieces again.

Here’s how the Client uses the Adapter
① The client makes a request to the adapter by calling a method on it
using the target interface.
② The adapter translates the request into one or more calls on the
adaptee using the adaptee interface.
③ The client receives the results of the call and never knows there is
an adapter doing the translation.

NOTE

Note that the Client and Adaptee are decoupled – neither knows about the other.

SHARPEN YOUR PENCIL

Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it
DuckAdapter. Write that class:

How did you handle the fly method (after all, we know ducks fly longer than turkeys)?
Check the answers at the end of the chapter for our solution. Did you think of a better
way?

THERE ARE NO DUMB QUESTIONS

Q: Q: How much “adapting” does an adapter need to do? It seems like if I need to implement a large target
interface, I could have a LOT of work on my hands?

A: A: You certainly could. The job of implementing an adapter really is proportional to the size of the interface you
need to support as your target interface. Think about your options, however. You could rework all your client-side
calls to the interface, which would result in a lot of investigative work and code changes. Or, you can cleanly
provide one class that encapsulates all the changes in one class.

Q: Q: Does an adapter always wrap one and only one class?

A: A: The Adapter Pattern’s role is to convert one interface into another. While most examples of the adapter pattern
show an adapter wrapping one adaptee, we both know the world is often a bit more messy. So, you may well have
situations where an adapter holds two or more adaptees that are needed to implement the target interface.
This relates to another pattern called the Facade Pattern; people often confuse the two. Remind us to revisit this
point when we talk about facades later in this chapter.

Q: Q: What if I have old and new parts of my system, and the old parts expect the old vendor interface, but
we’ve already written the new parts to use the new vendor interface? It is going to get confusing using an
adapter here and the unwrapped interface there. Wouldn’t I be better off just writing my older code and
forgetting the adapter?

A: A: Not necessarily. One thing you can do is create a Two Way Adapter that supports both interfaces. To create a
Two Way Adapter, just implement both interfaces involved, so the adapter can act as an old interface or a new
interface.

Adapter Pattern defined
Enough ducks, turkeys, and AC power adapters; let’s get real and look at the
official definition of the Adapter Pattern:

NOTE

The Adapter Pattern converts the interface of a class into another interface the clients
expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces.

Now, we know this pattern allows us to use a client with an incompatible
interface by creating an Adapter that does the conversion. This acts to
decouple the client from the implemented interface, and if we expect the
interface to change over time, the adapter encapsulates that change so that the
client doesn’t have to be modified each time it needs to operate against a
different interface.
We’ve taken a look at the runtime behavior of the pattern; let’s take a look at
its class diagram as well:

The Adapter Pattern is full of good OO design principles: check out the use
of object composition to wrap the adaptee with an altered interface. This
approach has the added advantage that we can use an adapter with any
subclass of the adaptee.
Also check out how the pattern binds the client to an interface, not an
implementation; we could use several adapters, each converting a different
backend set of classes. Or, we could add new implementations after the fact,
as long as they adhere to the Target interface.

Object and class adapters
Now despite having defined the pattern, we haven’t told you the whole story
yet. There are actually two kinds of adapters: object adapters and class
adapters. This chapter has covered object adapters and the class diagram on
the previous page is a diagram of an object adapter.
So what’s a class adapter and why haven’t we told you about it? Because you
need multiple inheritance to implement it, which isn’t possible in Java. But,
that doesn’t mean you might not encounter a need for class adapters down the
road when using your favorite multiple inheritance language! Let’s look at
the class diagram for multiple inheritance.

Look familiar? That’s right — the only difference is that with class adapter
we subclass the Target and the Adaptee, while with object adapter we use
composition to pass requests to an Adaptee.

BRAIN POWER

Object adapters and class adapters use two different means of adapting the adaptee
(composition versus inheritance). How do these implementation differences affect the
flexibility of the adapter?

DUCK MAGNETS

Your job is to take the duck and turkey magnets and drag them over the part of the
diagram that describes the role played by that bird, in our earlier example. (Try not to
flip back through the pages.) Then add your own annotations to describe how it works.

Class Adapter

Object Adapter

Drag these onto the class diagram, to show which part of the diagram represents the
Duck and which represents the Turkey.

DUCK MAGNETS ANSWER

NOTE

Note: the class adapter uses multiple inheritance, so you can’t do
it in Java...

Class Adapter

Object Adapter

FIRESIDE CHATS

Tonight’s talk: The Object Adapter and Class Adapter meet face to face.

Object Adapter: Class Adapter:

Because I use composition I’ve got a leg
up. I can not only adapt an adaptee class,
but any of its subclasses.

That’s true, I do have trouble with that because I am
committed to one specific adaptee class, but I have a
huge advantage because I don’t have to reimplement
my entire adaptee. I can also override the behavior of
my adaptee if I need to because I’m just subclassing.

In my part of the world, we like to use
composition over inheritance; you may be
saving a few lines of code, but all I’m
doing is writing a little code to delegate to
the adaptee. We like to keep things
flexible.

 Flexible maybe, but efficient? No. Using a class
adapter there is just one of me, not an adapter and an
adaptee.

You’re worried about one little object?
You might be able to quickly override a
method, but any behavior I add to my
adapter code works with my adaptee class
and all its subclasses.

 Yeah, but what if a subclass of adaptee adds some new
behavior. Then what?

Hey, come on, cut me a break, I just need
to compose with the subclass to make that
work.

 Sounds messy...

You wanna see messy? Look in the
mirror!

Real-world adapters
Let’s take a look at the use of a simple Adapter in the real world (something
more serious than Ducks at least)...

Old-world Enumerators
If you’ve been around Java for a while you probably remember that the early
collection types (Vector, Stack, Hashtable, and a few others) implement a
method, elements(), which returns an Enumeration. The Enumeration
interface allows you to step through the elements of a collection without

knowing the specifics of how they are managed in the collection.

New-world Iterators
The newer Collection classes use an Iterator interface that, like Enumeration,
allows you to iterate through a set of items in a collection, but also adds the
ability to remove items.

And today...
We are often faced with legacy code that exposes the Enumeration interface,
yet we’d like for our new code to use only Iterators. It looks like we need to
build an adapter.

Adapting an Enumeration to an Iterator
First we’ll look at the two interfaces to figure out how the methods map from
one to the other. In other words, we’ll figure out what to call on the adaptee
when the client invokes a method on the target.

Designing the Adapter
Here’s what the classes should look like: we need an adapter that implements
the Target interface and that is composed with an adaptee. The hasNext() and
next() methods are going to be straightforward to map from target to adaptee:
we just pass them right through. But what do you do about remove()? Think
about it for a moment (and we’ll deal with it on the next page). For now,
here’s the class diagram:

Dealing with the remove() method
Well, we know Enumeration just doesn’t support remove. It’s a “read only”
interface. There’s no way to implement a fully functioning remove() method
on the adapter. The best we can do is throw a runtime exception. Luckily, the
designers of the Iterator interface foresaw this need and defined the remove()
method so that it supports an UnsupportedOperationException.
This is a case where the adapter isn’t perfect; clients will have to watch out
for potential exceptions, but as long as the client is careful and the adapter is
well documented this is a perfectly reasonable solution.

Writing the EnumerationIterator adapter
Here’s simple but effective code for all those legacy classes still producing
Enumerations:

EXERCISE

While Java has gone in the direction of the Iterator, there is nevertheless a lot of legacy

client code that depends on the Enumeration interface, so an Adapter that converts an
Iterator to an Enumeration is also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your code by
adapting an ArrayList. The ArrayList class supports the Iterator interface but doesn’t
support Enumerations (well, not yet anyway).

BRAIN POWER

Some AC adapters do more than just change the interface — they add other features like
surge protection, indicator lights, and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

FIRESIDE CHATS

Tonight’s talk: The Decorator Pattern and the Adapter Pattern discuss their
differences.

Decorator: Adapter:

I’m important. My job is all about responsibility — you
know that when a Decorator is involved there’s going to be
some new responsibilities or behaviors added to your
design.

 You guys want all the glory while us
adapters are down in the trenches
doing the dirty work: converting
interfaces. Our jobs may not be
glamorous, but our clients sure do
appreciate us making their lives
simpler.

That may be true, but don’t think we don’t work hard.
When we have to decorate a big interface, whoa, that can
take a lot of code.

 Try being an adapter when you’ve got
to bring several classes together to
provide the interface your client is
expecting. Now that’s tough. But we
have a saying: “an uncoupled client is
a happy client.”

Cute. Don’t think we get all the glory; sometimes I’m just
one decorator that is being wrapped by who knows how

many other decorators. When a method call gets delegated
to you, you have no idea how many other decorators have
already dealt with it and you don’t know that you’ll ever
get noticed for your efforts servicing the request.

 Hey, if adapters are doing their job,
our clients never even know we’re
there. It can be a thankless job.

 But, the great thing about us adapters
is that we allow clients to make use of
new libraries and subsets without
changing any code; they just rely on
us to do the conversion for them.
Hey, it’s a niche, but we’re good at it.

Well, us decorators do that as well, only we allow new
behavior to be added to classes without altering existing
code. I still say that adapters are just fancy decorators — I
mean, just like us, you wrap an object.

 No, no, no, not at all. We always
convert the interface of what we
wrap; you never do. I’d say a
decorator is like an adapter; it is just
that you don’t change the interface!

Uh, no. Our job in life is to extend the behaviors or
responsibilities of the objects we wrap; we aren’t a simple
pass through.

 Hey, who are you calling a simple
pass through? Come on down and
we’ll see how long you last
converting a few interfaces!

Maybe we should agree to disagree. We seem to look
somewhat similar on paper, but clearly we are miles apart
in our intent.

 Oh yeah, I’m with you there.

And now for something different...
There’s another pattern in this chapter.
You’ve seen how the Adapter Pattern converts the interface of a class into
one that a client is expecting. You also know we achieve this in Java by

wrapping the object that has an incompatible interface with an object that
implements the correct one.
We’re going to look at a pattern now that alters an interface, but for a
different reason: to simplify the interface. It’s aptly named the Facade Pattern
because this pattern hides all the complexity of one or more classes behind a
clean, well-lit facade.

WHO DOES WHAT?

Match each pattern with its intent:

Pattern Intent

Decorator Converts one interface to another

Adapter Doesn’t alter the interface, but adds responsibility

Facade Makes an interface simpler

Home Sweet Home Theater
Before we dive into the details of the Facade Pattern, let’s take a look at a
growing national obsession: building your own home theater.
You’ve done your research and you’ve assembled a killer system complete
with a DVD player, a projection video system, an automated screen, surround
sound, and even a popcorn popper.

Check out all the components you’ve put together:

You’ve spent weeks running wire, mounting the projector, making all the
connections, and fine tuning. Now it’s time to put it all in motion and enjoy a
movie...

Watching a movie (the hard way)
Pick out a DVD, relax, and get ready for movie magic. Oh, there’s just
one thing — to watch the movie, you need to perform a few tasks:

① Turn on the popcorn popper
② Start the popper popping
③ Dim the lights
④ Put the screen down
⑤ Turn the projector on
⑥ Set the projector input to DVD
⑦ Put the projector on wide-screen mode
⑧ Turn the sound amplifier on
⑨ Set the amplifier to DVD input

⑩ Set the amplifier to surround sound
⑪ Set the amplifier volume to medium (5)
⑫ Turn the DVD player on
⑬ Start the DVD player playing

Let’s check out those same tasks in terms of the classes and the method
calls needed to perform them:

But there’s more...
When the movie is over, how do you turn everything off? Wouldn’t you
have to do all of this over again, in reverse?
Wouldn’t it be as complex to listen to a CD or the radio?
If you decide to upgrade your system, you’re probably going to have to
learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming
apparent!
Let’s see how the Facade Pattern can get us out of this mess so we can enjoy
the movie...

Lights, Camera, Facade!
A Facade is just what you need: with the Facade Pattern you can take a
complex subsystem and make it easier to use by implementing a Facade class
that provides one, more reasonable interface. Don’t worry; if you need the
power of the complex subsystem, it’s still there for you to use, but if all you
need is a straightforward interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

THERE ARE NO DUMB QUESTIONS

Q: Q: If the facade encapsulates the subsystem classes, how does a client that needs lower-level functionality
gain access to them?

A: A: Facades don’t “encapsulate” the subsystem classes; they merely provide a simplified interface to their
functionality. The subsystem classes still remain available for direct use by clients that need to use more specific
interfaces. This is a nice property of the Facade Pattern: it provides a simplified interface while still exposing the
full functionality of the system to those who may need it.

Q: Q: Does the facade add any functionality or does it just pass through each request to the subsystem?

A: A: A facade is free to add its own “smarts” in addition to making use of the subsystem. For instance, while our
home theater facade doesn’t implement any new behavior, it is smart enough to know that the popcorn popper has
to be turned on before it can pop (as well as the details of how to turn on and stage a movie showing).

Q: Q: Does each subsystem have only one facade?

A: A: Not necessarily. The pattern certainly allows for any number of facades to be created for a given subsystem.

Q: Q: What is the benefit of the facade other than the fact that I now have a simpler interface?

A: A: The Facade Pattern also allows you to decouple your client implementation from any one subsystem. Let’s say
that you get a big raise and decide to upgrade your home theater to all new components that have different
interfaces. Well, if you coded your client to the facade rather than the subsystem, your client code doesn’t need to
change, just the facade (and hopefully the manufacturer is supplying that!).

Q: Q: So the way to tell the difference between the Adapter Pattern and the Facade Pattern is that the adapter
wraps one class and the facade may represent many classes?

A: A: No! Remember, the Adapter Pattern changes the interface of one or more classes into one interface that a
client is expecting. While most textbook examples show the adapter adapting one class, you may need to adapt
many classes to provide the interface a client is coded to. Likewise, a Facade may provide a simplified interface to
a single class with a very complex interface.
The difference between the two is not in terms of how many classes they “wrap,” it is in their intent. The intent of
the Adapter Pattern is to alter an interface so that it matches one a client is expecting. The intent of the Facade
Pattern is to provide a simplified interface to a subsystem.

A facade not only simplifies an interface, it decouples a client from a subsystem of
components.
Facades and adapters may wrap multiple classes, but a facade’s intent is to
simplify, while an adapter’s is to convert the interface to something different.

Constructing your home theater facade
Let’s step through the construction of the HomeTheaterFacade. The first step
is to use composition so that the facade has access to all the components of
the subsystem:

Implementing the simplified interface
Now it’s time to bring the components of the subsystem together into a
unified interface. Let’s implement the watchMovie() and endMovie()
methods:

BRAIN POWER

Think about the facades you’ve encountered in the Java API. Where would you like to
have a few new ones?

Time to watch a movie (the easy way)
It’s SHOWTIME!

Facade Pattern defined
To use the Facade Pattern, we create a class that simplifies and unifies a set
of more complex classes that belong to some subsystem. Unlike a lot of
patterns, Facade is fairly straightforward; there are no mind-bending
abstractions to get your head around. But that doesn’t make it any less
powerful: the Facade Pattern allows us to avoid tight coupling between

clients and subsystems, and, as you will see shortly, also helps us adhere to a
new object-oriented principle.
Before we introduce that new principle, let’s take a look at the official
definition of the pattern:

NOTE

The Facade Pattern provides a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem easier to use.

There isn’t a lot here that you don’t already know, but one of the most
important things to remember about a pattern is its intent. This definition tells
us loud and clear that the purpose of the facade is to make a subsystem easier
to use through a simplified interface. You can see this in the pattern’s class
diagram:

That’s it; you’ve got another pattern under your belt! Now, it’s time for that
new OO principle. Watch out, this one can challenge some assumptions!

The Principle of Least Knowledge
The Principle of Least Knowledge guides us to reduce the interactions
between objects to just a few close “friends.” The principle is usually stated
as:

DESIGN PRINCIPLE

Principle of Least Knowledge: talk only to your immediate friends.

But what does this mean in real terms? It means when you are designing a
system, for any object, be careful of the number of classes it interacts with
and also how it comes to interact with those classes.
This principle prevents us from creating designs that have a large number of
classes coupled together so that changes in one part of the system cascade to
other parts. When you build a lot of dependencies between many classes, you
are building a fragile system that will be costly to maintain and complex for
others to understand.

BRAIN POWER

How many classes is this code coupled to?
public float getTemp() {

 return station.getThermometer().getTemperature();

}

How NOT to Win Friends and Influence Objects
Okay, but how do you keep from doing this? The principle provides some
guidelines: take any object; now from any method in that object, the principle
tells us that we should only invoke methods that belong to:

The object itself
Objects passed in as a parameter to the method
Any object the method creates or instantiates

NOTE

Notice that these guidelines tell us not to call methods on objects that were returned
from calling other methods!!

Any components of the object

NOTE

Think of a “component” as any object that is referenced by an instance variable. In

other words, think of this as a HAS-A relationship.

This sounds kind of stringent doesn’t it? What’s the harm in calling the
method of an object we get back from another call? Well, if we were to do
that, then we’d be making a request of another object’s subpart (and
increasing the number of objects we directly know). In such cases, the
principle forces us to ask the object to make the request for us; that way we
don’t have to know about its component objects (and we keep our circle of
friends small). For example:

Keeping your method calls in bounds...
Here’s a Car class that demonstrates all the ways you can call methods and
still adhere to the Principle of Least Knowledge:

THERE ARE NO DUMB QUESTIONS

Q: Q: There is another principle called the Law of Demeter; how are they related?

A: A: The two are one and the same and you’ll encounter these terms being used interchangeably. We prefer to use
the Principle of Least Knowledge for a couple of reasons: (1) the name is more intuitive and (2) the use of the
word “Law” implies we always have to apply this principle. In fact, no principle is a law, all principles should be
used when and where they are helpful. All design involves tradeoffs (abstractions versus speed, space versus time,
and so on) and while principles provide guidance, all factors should be taken into account before applying them.

Q: Q: Are there any disadvantages to applying the Principle of Least Knowledge?

A: A: Yes; while the principle reduces the dependencies between objects and studies have shown this reduces
software maintenance, it is also the case that applying this principle results in more “wrapper” classes being
written to handle method calls to other components. This can result in increased complexity and development
time as well as decreased runtime performance.

SHARPEN YOUR PENCIL

Do either of these classes violate the Principle of Least Knowledge? Why or why not?

BRAIN POWER

Q: Can you think of a common use of Java that violates the Principle of Least Knowledge?
Should you care?

A: Answer: How about System.out.println()?

The Facade and the Principle of Least Knowledge

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter we’ve added a couple of
patterns that allow us to alter interfaces and reduce coupling between clients
and the systems they use.

BULLET POINTS

When you need to use an existing class and its interface is not the one you need, use
an adapter.
When you need to simplify and unify a large interface or complex set of interfaces,
use a facade.
An adapter changes an interface into one a client expects.
A facade decouples a client from a complex subsystem.
Implementing an adapter may require little work or a great deal of work depending
on the size and complexity of the target interface.
Implementing a facade requires that we compose the facade with its subsystem and
use delegation to perform the work of the facade.
There are two forms of the Adapter Pattern: object and class adapters. Class adapters
require multiple inheritance.
You can implement more than one facade for a subsystem.
An adapter wraps an object to change its interface, a decorator wraps an object to
add new behaviors and responsibilities, and a facade “wraps” a set of objects to
simplify.

DESIGN PATTERNS CROSSWORD

Yes, it’s another crossword. All of the solution words are from this chapter.

Across Down

1. True or false? Adapters can wrap only one
object.

5. An Adapter __________ an interface.

6. Movie we watched (five words).

10. If in Britain, you might need one of these
(two words).

11. Adapter with two roles (two words).

14. Facade still ________ low-level access.

15. Ducks do it better than Turkeys.

16. Disadvantage of the Principle of Least
Knowledge: too many __________.

17. A __________ simplifies an interface.

19. New American dream (two words).

2. Decorator called Adapter this (three words).

3. One advantage of Facade.

4. Principle that wasn’t as easy as it sounded (two
words).

7. A __________ adds new behavior.

8. Masquerading as a Duck.

9. Example that violates the Principle of Least
Knowledge: System.out.__________.

12. No movie is complete without this.

13. Adapter client uses the __________ interface.

18. An Adapter and a Decorator can be said to
________ an object.

SHARPEN YOUR PENCIL SOLUTION

Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it
DuckAdapter. Here’s our solution:

SHARPEN YOUR PENCIL SOLUTION

Do either of these classes violate the Principle of Least Knowledge? Why or why not?

EXERCISE SOLUTION

You’ve seen how to implement an adapter that adapts an Enumeration to an Iterator;
now write an adapter that adapts an Iterator to an Enumeration.

WHO DOES WHAT? SOLUTION

Match each pattern with its intent:

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 8. The Template Method
Pattern: Encapsulating Algorithms

We’re on an encapsulation roll; we’ve encapsulated object creation,
method invocation, complex interfaces, ducks, pizzas...what could be
next? We’re going to get down to encapsulating pieces of algorithms so that
subclasses can hook themselves right into a computation anytime they want.
We’re even going to learn about a design principle inspired by Hollywood.

It’s time for some more caffeine

Some people can’t live without their coffee; some people can’t live without
their tea. The common ingredient? Caffeine, of course!
But there’s more; tea and coffee are made in very similar ways. Let’s check it
out:

Whipping up some coffee and tea classes (in Java)
Let’s play “coding barista” and write some code for creating coffee and tea.

Here’s the coffee:

And now the Tea...

DESIGN PUZZLE

You’ve seen that the Coffee and Tea classes have a fair bit of code duplication. Take
another look at the Coffee and Tea classes and draw a class diagram showing how you’d
redesign the classes to remove redundancy:

Sir, may I abstract your Coffee, Tea?
It looks like we’ve got a pretty straightforward design exercise on our hands
with the Coffee and Tea classes. Your first cut might have looked something
like this:

BRAIN POWER

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking
some other commonality? What are other ways that Coffee and Tea are similar?

Taking the design further...
So what else do Coffee and Tea have in common? Let’s start with the recipes.

Notice that both recipes follow the same algorithm:
① Boil some water.

NOTE

These two are already abstracted into the base class.

② Use the hot water to extract the coffee or tea.

NOTE

These aren’t abstracted but are the same; they just apply to different beverages.

③ Pour the resulting beverage into a cup.
④ Add the appropriate condiments to the beverage.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

Abstracting prepareRecipe()
Let’s step through abstracting prepareRecipe() from each subclass (that is, the
Coffee and Tea classes)...

① The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods, while Tea uses steepTeaBag() and

addLemon() methods.

Let’s think through this: steeping and brewing aren’t so different; they’re
pretty analogous. So let’s make a new method name, say, brew(), and
we’ll use the same name whether we’re brewing coffee or steeping tea.
Likewise, adding sugar and milk is pretty much the same as adding a
lemon: both are adding condiments to the beverage. Let’s also make up a
new method name, addCondiments(), to handle this. So, our new
prepareRecipe() method will look like this:

void prepareRecipe() {

 boilWater();

 brew();

 pourInCup();

 addCondiments();

}

② Now we have a new prepareRecipe() method, but we need to fit it into
the code. To do this we are going to start with the CaffeineBeverage
superclass:

③ Finally, we need to deal with the Coffee and Tea classes. They now
rely on CaffeineBeverage to handle the recipe, so they just need to handle
brewing and condiments:

SHARPEN YOUR PENCIL

Draw the new class diagram now that we’ve moved the implementation of
prepareRecipe() into the CaffeineBeverage class:

What have we done?

Meet the Template Method

We’ve basically just implemented the Template Method Pattern. What’s that?
Let’s look at the structure of the CaffeineBeverage class; it contains the
actual “template method”:

The Template Method defines the steps of an algorithm and allows subclasses to
provide the implementation for one or more steps.

Let’s make some tea...

Behind the Scenes
Let’s step through making a tea and trace through how the template method
works. You’ll see that the template method controls the algorithm; at certain
points in the algorithm, it lets the subclass supply the implementation of the
steps...

① Okay, first we need a Tea object...
Tea myTea = new Tea();

② Then we call the template method:

which follows the algorithm for making caffeine beverages...
③ First we boil water:

which happens in CaffeineBeverage.
④ Next we need to brew the tea, which only the subclass knows how to
do:

brew();

⑤ Now we pour the tea in the cup; this is the same for all beverages so it
happens in CaffeineBeverage:

pourInCup();

⑥ Finally, we add the condiments, which are specific to each beverage, so
the subclass implements this:

addCondiments();

What did the Template Method get us?

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage powered by Template
Method

Coffee and Tea are running
the show; they control the
algorithm.

The CaffeineBeverage class runs the show; it has the
algorithm, and protects it.

Code is duplicated across
Coffee and Tea.

The CaffeineBeverage class maximizes reuse among the
subclasses.

Code changes to the algorithm
require opening the subclasses
and making multiple changes.

The algorithm lives in one place and code changes only
need to be made there.

Classes are organized in a
structure that requires a lot of
work to add a new caffeine
beverage.

The Template Method version provides a framework that
other caffeine beverages can be plugged into. New
caffeine beverages only need to implement a couple of
methods.

Knowledge of the algorithm
and how to implement it is
distributed over many classes.

The CaffeineBeverage class concentrates knowledge
about the algorithm and relies on subclasses to provide
complete implementations.

Template Method Pattern defined

You’ve seen how the Template Method Pattern works in our Tea and Coffee
example; now, check out the official definition and nail down all the details:

NOTE

The Template Method Pattern defines the skeleton of an algorithm in a method,
deferring some steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

This pattern is all about creating a template for an algorithm. What’s a
template? As you’ve seen it’s just a method; more specifically, it’s a method
that defines an algorithm as a set of steps. One or more of these steps is
defined to be abstract and implemented by a subclass. This ensures the
algorithm’s structure stays unchanged, while subclasses provide some part of
the implementation.
Let’s check out the class diagram:

CODE UP CLOSE

Let’s take a closer look at how the AbstractClass is defined, including the template
method and primitive operations.

CODE WAY UP CLOSE

Now we’re going to look even closer at the types of method that can go in the abstract
class:

Hooked on Template Method...
A hook is a method that is declared in the abstract class, but only given an
empty or default implementation. This gives subclasses the ability to “hook
into” the algorithm at various points, if they wish; a subclass is also free to
ignore the hook.

There are several uses of hooks; let’s take a look at one now. We’ll talk about
a few other uses later:

Using the hook
To use the hook, we override it in our subclass. Here, the hook controls
whether the CaffeineBeverage evaluates a certain part of the algorithm; that
is, whether it adds a condiment to the beverage.
How do we know whether the customer wants the condiment? Just ask!

Let’s run the Test Drive
Okay, the water’s boiling... Here’s the test code where we create a hot tea and
a hot coffee.

And let’s give it a run...

You know what? We agree with you. But you have to admit before you
thought of that, it was a pretty cool example of how a hook can be used to
conditionally control the flow of the algorithm in the abstract class. Right?
We’re sure you can think of many other more realistic scenarios where you
could use the template method and hooks in your own code.

THERE ARE NO DUMB QUESTIONS

Q: Q: When I’m creating a template method, how do I know when to use abstract methods and when to use
hooks?

A: A: Use abstract methods when your subclass MUST provide an implementation of the method or step in the
algorithm. Use hooks when that part of the algorithm is optional. With hooks, a subclass may choose to
implement that hook, but it doesn’t have to.

Q: Q: What are hooks really supposed to be used for?

A: A: There are a few uses of hooks. As we just said, a hook may provide a way for a subclass to implement an
optional part of an algorithm, or if it isn’t important to the subclass’s implementation, it can skip it. Another use is
to give the subclass a chance to react to some step in the template method that is about to happen, or just
happened. For instance, a hook method like justReOrderedList() allows the subclass to perform some activity
(such as redisplaying an onscreen representation) after an internal list is reordered. As you’ve seen, a hook can
also provide a subclass with the ability to make a decision for the abstract class.

Q: Q: Does a subclass have to implement all the abstract methods in the AbstractClass?

A: A: Yes, each concrete subclass defines the entire set of abstract methods and provides a complete implementation
of the undefined steps of the template method’s algorithm.

Q: Q: It seems like I should keep my abstract methods small in number; otherwise, it will be a big job to
implement them in the subclass.

A: A: That’s a good thing to keep in mind when you write template methods. Sometimes this can be done by not

making the steps of your algorithm too granular. But it’s obviously a trade off: the less granularity, the less
flexibility.
Remember, too, that some steps will be optional; so you can implement these as hooks rather than abstract
methods, easing the burden on the subclasses of your abstract class.

The Hollywood Principle
We’ve got another design principle for you; it’s called the Hollywood
Principle:

NOTE

The Hollywood Principle

Don’t call us, we’ll call you.

Easy to remember, right? But what has it got to do with OO design?
The Hollywood Principle gives us a way to prevent “dependency rot.”
Dependency rot happens when you have high-level components depending
on low-level components depending on high-level components depending on

sideways components depending on low-level components, and so on. When
rot sets in, no one can easily understand the way a system is designed.
With the Hollywood Principle, we allow low-level components to hook
themselves into a system, but the high-level components determine when
they are needed, and how. In other words, the high-level components give the
low-level components a “don’t call us, we’ll call you” treatment.

The Hollywood Principle and Template Method
The connection between the Hollywood Principle and the Template Method
Pattern is probably somewhat apparent: when we design with the Template
Method Pattern, we’re telling subclasses, “don’t call us, we’ll call you.”
How? Let’s take another look at our CaffeineBeverage design:

BRAIN POWER

What other patterns make use of the Hollywood Principle?

The Factory Method, Observer; any others?

THERE ARE NO DUMB QUESTIONS

Q: Q: How does the Hollywood Principle relate to the Dependency Inversion Principle that we learned a few
chapters back?

A: A: The Dependency Inversion Principle teaches us to avoid the use of concrete classes and instead work as much
as possible with abstractions. The Hollywood Principle is a technique for building frameworks or components so
that lower-level components can be hooked into the computation, but without creating dependencies between the
lower-level components and the higher-level layers. So, they both have the goal of decoupling, but the
Dependency Inversion Principle makes a much stronger and general statement about how to avoid dependencies
in design.
The Hollywood Principle gives us a technique for creating designs that allow low-level structures to interoperate
while preventing other classes from becoming too dependent on them.

Q: Q: Is a low-level component disallowed from calling a method in a higher-level component?

A: A: Not really. In fact, a low-level component will often end up calling a method defined above it in the
inheritance hierarchy purely through inheritance. But we want to avoid creating explicit circular dependencies
between the low-level component and the high-level ones.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Template
Method

Encapsulate interchangeable behaviors and use delegation to decide which
behavior to use.

Strategy Subclasses decide how to implement steps in an algorithm.

Factory
Method

Subclasses decide which concrete classes to instantiate.

Template Methods in the Wild
The Template Method Pattern is a very common pattern and you’re going to
find lots of it in the wild. You’ve got to have a keen eye, though, because
there are many implementations of the template methods that don’t quite look
like the textbook design of the pattern.
This pattern shows up so often because it’s a great design tool for creating
frameworks, where the framework controls how something gets done, but
leaves you (the person using the framework) to specify your own details
about what is actually happening at each step of the framework’s algorithm.
Let’s take a little safari through a few uses in the wild (well, okay, in the Java
API)...

Sorting with Template Method
What’s something we often need to do with arrays? Sort them!

Recognizing that, the designers of the Java Arrays class have provided us
with a handy template method for sorting. Let’s take a look at how this
method operates:

NOTE

We’ve pared down this code a little to make it easier to explain. If you’d like to see it all,
grab the Java source code and check it out...

We’ve got some ducks to sort...
Let’s say you have an array of ducks that you’d like to sort. How do you do
it? Well, the sort template method in Arrays gives us the algorithm, but you
need to tell it how to compare ducks, which you do by implementing the
compareTo() method... Make sense?

Good point. Here’s the deal: the designers of sort() wanted it to be useful
across all arrays, so they had to make sort() a static method that could be used
from anywhere. But that’s okay, it works almost the same as if it were in a
superclass. Now, here is one more detail: because sort() really isn’t defined in
our superclass, the sort() method needs to know that you’ve implemented the

compareTo() method, or else you don’t have the piece needed to complete the
sort algorithm.
To handle this, the designers made use of the Comparable interface. All you
have to do is implement this interface, which has one method (surprise):
compareTo().

What is compareTo()?
The compareTo() method compares two objects and returns whether one is
less than, greater than, or equal to the other. sort() uses this as the basis of its
comparison of objects in the array.

Comparing Ducks and Ducks
Okay, so you know that if you want to sort Ducks, you’re going to have to
implement this compareTo() method; by doing that you’ll give the Arrays
class what it needs to complete the algorithm and sort your ducks.
Here’s the duck implementation:

Let’s sort some Ducks
Here’s the test drive for sorting Ducks...

