

Head First: Design Patterns

Eric Freeman

Elisabeth Robson

Bert Bates

Kathy Sierra

Beijing • Boston • Farnham • Sebastopol • Tokyo

To the Gang of Four, whose insight and expertise in capturing and communicating
Design Patterns has changed the face of software design forever, and bettered the lives
of developers throughout the world.
But seriously, when are we going to see a second edition? After all, it’s been only ten
twenty years.

Praise for Head First Design
Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t
stop. I took it to the gym and I expect people saw me smiling a lot while I was
exercising and reading. This is très ‘cool’. It is fun, but they cover a lot of ground and
they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of
Design Patterns with the rest of the Gang of Four — Richard

Helm, Ralph Johnson and John Vlissides

“Head First Design Patterns manages to mix fun, belly-laughs, insight, technical
depth, and great practical advice in one entertaining and thought-provoking read.
Whether you are new to design patterns, or have been using them for years, you are
sure to get something from visiting Objectville.”

— Richard Helm, coauthor of Design Patterns with rest of the
Gang of Four — Erich Gamma, Ralph Johnson and John

Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”
— Ward Cunningham, inventor of the Wiki and founder of the

Hillside Group

“This book is close to perfect, because of the way it combines expertise and
readability. It speaks with authority and it reads beautifully. It’s one of the very few
software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10
books in this category, at the outside.)”

— David Gelernter, Professor of Computer Science, Yale
University, and author of Mirror Worlds and Machine Beauty

“A Nose Dive into the realm of patterns, a land where complex things become simple,
but where simple things can also become complex. I can think of no better tour guides
than Eric and Elisabeth.”

— Miko Matsumura, Industry Analyst, The Middleware
Company Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”
— Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized
that not only is the book technically accurate, it is the easiest-to-understand

introduction to design patterns that I have seen.”
— Dr. Timothy A. Budd, Associate Professor of Computer

Science at Oregon State University and author of more than a
dozen books, including C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth
have out run him. Seriously...this is one of the funniest and smartest books on software
design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development,
ESPN

More Praise for Head First Design
Patterns

“Great code design is, first and foremost, great information design. A code designer is
teaching a computer how to do something, and it is no surprise that a great teacher of
computers should turn out to be a great teacher of programmers. This book’s admirable
clarity, humor, and substantial doses of clever make it the sort of book that helps even
non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing and author of Down
and Out in the Magic Kingdom and Someone Comes to Town,

Someone Leaves Town

“There’s an old saying in the computer and videogame business — well, it can’t be
that old because the discipline is not all that old — and it goes something like this:
Design is Life. What’s particularly curious about this phrase is that even today almost
no one who works at the craft of creating electronic games can agree on what it means
to ‘design’ a game. Is the designer a software engineer? An art director? A storyteller?
An architect or a builder? A pitch person or a visionary? Can an individual indeed be
in part all of these? And most importantly, who the %$!#&* cares?
It has been said that the ‘designed by’ credit in interactive entertainment is akin to the
‘directed by’ credit in filmmaking, which in fact allows it to share DNA with perhaps
the single most controversial, overstated, and too often entirely lacking in humility
credit grab ever propagated on commercial art. Good company, eh? Yet if Design is
Life, then perhaps it is time we spent some quality cycles thinking about what it is.
Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the
code curtain for us in Head First Design Patterns. I’m not sure either of them cares all
that much about the PlayStation or X-Box, nor should they. Yet they do address the
notion of design at a significantly honest level such that anyone looking for ego
reinforcement of his or her own brilliant auteurship is best advised not to go digging
here where truth is stunningly revealed. Sophists and circus barkers need not apply.
Next-generation literati, please come equipped with a pencil.”

— Ken Goldstein, Executive Vice President & Managing
Director, Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right
reference for practical development strategies — gets my brain going without having
to slog through a bunch of tired, stale professor-speak.”

— Travis Kalanick, CEO and cofounder of Uber and Member of
the MIT TR100

“This book combines good humor, great examples, and in-depth knowledge of Design
Patterns in such a way that makes learning fun. Being in the entertainment technology
industry, I am intrigued by the Hollywood Principle and the home theater Facade
Pattern, to name a few. The understanding of Design Patterns not only helps us create
reusable and maintainable quality software, but also helps sharpen our problem-solving
skills across all problem domains. This book is a must-read for all computer
professionals and students.”

— Newton Lee, Founder and Editor-in-Chief, Association for
Computing Machinery’s (ACM) Computers in Entertainment

(acmcie.org)

Praise for other books by Eric
Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”
— Satish Kumar

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking
practices in web page markup and presentation. It correctly anticipates readers’
puzzlements and handles them just in time. The highly graphic and incremental
approach precisely mimics the best way to learn this stuff: make a small change and
see it in the browser to understand what each new item means.”

— Danny Goodman, author of Dynamic HTML: The Definitive
Guide

“The Web would be a much better place if every HTML author started off by reading
this book.”

— L. David Baron, Technical Lead, Layout & CSS, Mozilla
Corporation http://dbaron.org/

“My wife stole the book. She’s never done any web design, so she needed a book like
Head First HTML and CSS to take her from beginning to end. She now has a list of
websites she wants to build — for our son’s class, our family...If I’m lucky, I’ll get the
book back when she’s done.”

— David Kaminsky, Master Inventor, IBM

“This book takes you behind the scenes of JavaScript and leaves you with a deep
understanding of how this remarkable programming language works.”

— Chris Fuselier, Engineering Consultant

“I wish I’d had Head First JavaScript Programming when I was starting out!”
— Chris Fuselier, Engineering Consultant

“The Head First series utilizes elements of modern learning theory, including
constructivism, to bring readers up to speed quickly. The authors have proven with this
book that expert-level content can be taught quickly and efficiently. Make no mistake
here, this is a serious JavaScript book, and yet, fun reading!”

— Frank Moore, Web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some
serious programming skills? Head First JavaScript Programming is it!”

— Tim Williams, software entrepreneur

http://dbaron.org/

Other O’Reilly books by Eric Freeman and Elisabeth Robson
Head First JavaScript Programming
Head First HTML and CSS
Head First HTML5 Programming

Other related books from O’Reilly
Head First Java
Head First EJB
Head First Servlets & JSP
Learning Java
Java in a Nutshell
Java Enterprise in a Nutshell
Java Examples in a Nutshell
Java Cookbook
J2EE Design Patterns

Authors of Head First Design
Patterns

Eric is described by Head First series co-creator Kathy Sierra as “one of
those rare individuals fluent in the language, practice, and culture of multiple
domains from hipster hacker, corporate VP, engineer, think tank.”
Professionally, Eric recently ended nearly a decade as a media company
executive — having held the position of CTO of Disney Online &
Disney.com at The Walt Disney Company. Eric is now devoting his time to
WickedlySmart, a startup he co-created with Elisabeth.
By training, Eric is a computer scientist, having studied with industry
luminary David Gelernter during his Ph.D. work at Yale University. His
dissertation is credited as the seminal work in alternatives to the desktop
metaphor, and also as the first implementation of activity streams, a concept
he and Dr. Gelernter developed.
In his spare time, Eric is deeply involved with music; you’ll find Eric’s latest
project, a collaboration with ambient music pioneer Steve Roach, available
on the iPhone app store under the name Immersion Station.
Eric lives with his wife and young daughter in Austin, Texas. His daughter is

a frequent vistor to Eric’s studio, where she loves to turn the knobs of his
synths and audio effects.
Write to Eric at eric@wickedlysmart.com or visit his site at
ericfreeman.com.

Elisabeth is a software engineer, writer, and trainer. She has been passionate
about technology since her days as a student at Yale University, where she
earned a Masters of Science in Computer Science and designed a concurrent,
visual programming language and software architecture.
Elisabeth’s been involved with the Internet since the early days; she co-
created the award-winning web site, The Ada Project, one of the first web
sites designed to help women in computer science find career and mentorship
information online.
She’s currently co-founder of WickedlySmart, an online education
experience centered on web technologies, where she creates books, articles,
videos, and more. Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and online courses on a
variety of technical topics and developed her passion for creating learning
experiences to help people understand technology. Prior to her work with
O’Reilly, Elisabeth spent time spreading fairy dust at The Walt Disney
Company, where she led research and development efforts in digital media.
When not in front of her computer, you’ll find Elisabeth hiking, cycling, or

kayaking in the great outdoors, with her camera nearby, or cooking
vegetarian meals.
You can send her email at beth@wickedlysmart.com or visit her blog at
elisabethrobson.com.

Creators of the Head First series
(and co-conspirators on this book)

Kathy has been interested in learning theory since her days as a game
designer (she wrote games for Virgin, MGM, and Amblin’). She developed
much of the Head First format while teaching New Media Authoring for
UCLA Extension’s Entertainment Studies program. More recently, she’s
been a master trainer for Sun Microsystems, teaching Sun’s Java instructors
how to teach the latest Java technologies, and developing several of Sun’s
certification exams. Together with Bert Bates, she has been actively using the
Head First concepts to teach throusands of developers. Kathy is the founder
of javaranch.com, which won a 2003 and 2004 Software Development
magazine Jolt Cola Productivity Award. You might catch her teaching Java
on the Java Jam Geek Cruise (geekcruises.com).
Likes: running, skiing, skateboarding, playing with her Icelandic horses, and
weird science. Dislikes: entropy.
You can find her on javaranch, or occasionally blogging at seriouspony.com.
Write to her at kathy@wickedlysmart.com.
Bert is a long-time software developer and architect, but a decade-long stint
in artificial intelligence drove his interest in learning theory and technology-

based training. He’s been helping clients become better programmers ever
since. Recently, he’s been heading up the development team for several of
Sun’s Java Certification exams.
He spent the first decade of his software career travelling the world to help
broadcast clients like Radio New Zealand, the Weather Channel, and the Arts
& Entertainment Network (A & E). One of his all-time favorite projects was
building a full rail system simulation for Union Pacific Railroad.
Bert is a long-time, hopelessly addicted go player, and has been working on a
go program for way too long. He’s a fair guitar player and is now trying his
hand at banjo.
Look for him on javaranch, on the IGS go server, or you can write to him at
terrapin@wickedlysmart.com.

How to Use This Book: Intro

In this section, we answer the burning question: “So, why DID they put that in a design
patterns book?”

Who is this book for?
If you can answer “yes” to all of these:

① Do you know Java? (You don’t need to be a guru.)

NOTE

You’ll probably be okay if you know C# instead.

② Do you want to learn, understand, remember, and apply design
patterns, including the OO design principles upon which design patterns
are based?
③ Do you prefer stimulating dinner party conversation to dry, dull,
academic lectures?

this book is for you.

Who should probably back away from this book?
If you can answer “yes” to any one of these:

① Are you completely new to Java?
(You don’t need to be advanced, and even if you don’t know Java, but you
know C#, you’ll probably understand at least 80% of the code examples.
You also might be okay with just a C++ background.)
② Are you a kick-butt OO designer/developer looking for a reference
book?
③ Are you an architect looking for enterprise design patterns?
④ Are you afraid to try something different? Would you rather have a
root canal than mix stripes with plaid? Do you believe that a technical
book can’t be serious if Java components are anthropomorphized?

this book is not for you.

[note from marketing: this book is for anyone with a credit card.]

We know what you’re thinking.
“How can this be a serious programming book?”
“What’s with all the graphics?”
“Can I actually learn it this way?”

And we know what your brain is thinking.
Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.
Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.
So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s
real job — recording things that matter. It doesn’t bother saving the boring
things; they never make it past the “this is obviously not important” filter.
How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?
Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.
Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things. Like
tigers. Like the danger of fire. Like how you should never again snowboard
in shorts.
And there’s no simple way to tell your brain, “Hey brain, thank you very
much, but no matter how dull this book is, and how little I’m registering on
the emotional Richter scale right now, I really do want you to keep this stuff
around.”

WE THINK OF A “HEAD FIRST” READER AS A LEARNER

So what does it take to learn something? First, you have to get it, then make sure
you don’t forget it. It’s not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning
takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning
much more effective (up to 89% improvement in recall and transfer studies). It also
makes things more understandable. Put the words within or near the graphics they
relate to, rather than on the bottom or on another page, and learners will be up to twice as
likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up
to 40% better on post-learning tests if the content spoke directly to the reader, using a
first-person, conversational style rather than taking a formal tone. Tell stories instead of
lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay
more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your
neurons, nothing much happens in your head. A reader has to be motivated, engaged,
curious, and inspired to solve problems, draw conclusions, and generate new knowledge.
And for that, you need challenges, exercises, and thought-provoking questions, and
activities that involve both sides of the brain, and multiple senses.

Get — and keep — the reader’s attention. We’ve all had the “I really want to learn
this but I can’t stay awake past page one” experience. Your brain pays attention to things
that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a
new, tough, technical topic doesn’t have to be boring. Your brain will learn much more
quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is
largely dependent on its emotional content. You remember what you care about. You
remember when you feel something. No, we’re not talking heart-wrenching stories about
a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” ,
and the feeling of “I Rule!” that comes when you solve a puzzle, learn something
everybody else thinks is hard, or realize you know something that “I’m more technical
than thou” Bob from engineering doesn’t.

Metacognition: thinking about thinking
If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.
Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.
But we assume that if you’re holding this book, you really want to learn
design patterns. And you probably don’t want to spend a lot of time. And you
want to remember what you read, and be able to apply it. And for that,
you’ve got to understand it. To get the most from this book, or any book or

learning experience, take responsibility for your brain. Your brain on this
content.
The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So how DO you get your brain to think Design Patterns are as important
as a tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important
to him, but he keeps looking at the same thing over and over and over, so I
suppose it must be.”
The faster way is to do anything that increases brain activity, especially
different types of brain activity. The things on the previous page are a big part

of the solution, and they’re all things that have been proven to help your brain
work in your favor. For example, studies show that putting words within the
pictures they describe (as opposed to somewhere else in the page, like a
caption or in the body text) causes your brain to try to makes sense of how
the words and picture relate, and this causes more neurons to fire. More
neurons firing = more chances for your brain to get that this is something
worth paying attention to, and possibly recording.
A conversational style helps because people tend to pay more attention when
they perceive that they’re in a conversation, since they’re expected to follow
along and hold up their end. The amazing thing is, your brain doesn’t
necessarily care that the “conversation” is between you and a book! On the
other hand, if the writing style is formal and dry, your brain perceives it the
same way you experience being lectured to while sitting in a roomful of
passive attendees. No need to stay awake.
But pictures and conversational style are just the beginning.

Here’s what WE did
We used pictures, because your brain is tuned for visuals, not text. As far as
your brain’s concerned, a picture really is worth 1,024 words. And when text
and pictures work together, we embedded the text in the pictures because
your brain works more effectively when the text is within the thing the text
refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with
different media types, and multiple senses, to increase the chance that the
content gets coded into more than one area of your brain.
We used concepts and pictures in unexpected ways because your brain is
tuned for novelty, and we used pictures and ideas with at least some
emotional content, because your brain is tuned to pay attention to the
biochemistry of emotions. That which causes you to feel something is more
likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.
We used a personalized, conversational style, because your brain is tuned to
pay more attention when it believes you’re in a conversation than if it thinks
you’re passively listening to a presentation. Your brain does this even when
you’re reading.

We included more than 40 activities, because your brain is tuned to learn and

remember more when you do things than when you read about things. And
we made the exercises challenging-yet-do-able, because that’s what most
people prefer.
We used multiple learning styles, because you might prefer step-by-step
procedures, while someone else wants to understand the big picture first,
while someone else just wants to see a code example. But regardless of your
own learning preference, everyone benefits from seeing the same content
represented in multiple ways.

We include content for both sides of your brain, because the more of your
brain you engage, the more likely you are to learn and remember, and the
longer you can stay focused. Since working one side of the brain often means
giving the other side a chance to rest, you can be more productive at learning
for a longer period of time.

And we included stories and exercises that present more than one point of
view, because your brain is tuned to learn more deeply when it’s forced to
make evaluations and judgements.
We included challenges, with exercises, and by asking questions that don’t
always have a straight answer, because your brain is tuned to learn and
remember when it has to work at something. Think about it — you can’t get
your body in shape just by watching people at the gym. But we did our best to
make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand
example, or parsing difficult, jargon-laden, or overly terse text.
We used people. In stories, examples, pictures, etc., because, well, because
you’re a person. And your brain pays more attention to people than it does to
things.
We used an 80/20 approach. We assume that if you’re going for a PhD in
software design, this won’t be your only book. So we don’t talk about

everything. Just the stuff you’ll actually need.

Here’s what YOU can do to bend your brain into
submission
So, we did our part. The rest is up to you. These tips are a starting point;
listen to your brain and figure out what works for you and what doesn’t. Try
new things.

Cut this out and stick it on your refrigerator.

① Slow down. The more you understand, the less you have to
memorize.
Don’t just read. Stop and think. When the book asks you a question, don’t
just skip to the answer. Imagine that someone really is asking the question.
The more deeply you force your brain to think, the better chance you have
of learning and remembering.
② Do the exercises. Write your own notes.
We put them in, but if we did them for you, that would be like having
someone else do your workouts for you. And don’t just look at the

exercises. Use a pencil. There’s plenty of evidence that physical activity
while learning can increase the learning.
③ Read the “There Are No Dumb Questions”
That means all of them. They’re not optional side-bars — they’re part of
the core content! Don’t skip them.
④ Make this the last thing you read before bed. Or at least the last
challenging thing.
Part of the learning (especially the transfer to long-term memory) happens
after you put the book down. Your brain needs time on its own, to do
more processing. If you put in something new during that processing-time,
some of what you just learned will be lost.
⑤ Drink water. Lots of it.
Your brain works best in a nice bath of fluid. Dehydration (which can
happen before you ever feel thirsty) decreases cognitive function.
⑥ Talk about it. Out loud.
Speaking activates a different part of the brain. If you’re trying to
understand something, or increase your chance of remembering it later,
say it out loud. Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover ideas you hadn’t
known were there when you were reading about it.
⑦ Listen to your brain.
Pay attention to whether your brain is getting overloaded. If you find
yourself starting to skim the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you won’t learn faster by
trying to shove more in, and you might even hurt the process.
⑧ Feel something!
Your brain needs to know that this matters. Get involved with the stories.
Make up your own captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.
⑨ Design something!
Apply this to something new you’re designing, or refactor an older
project. Just do something to get some experience beyond the exercises
and activities in this book. All you need is a pencil and a problem to
solve... a problem that might benefit from one or more design patterns.

Read Me
This is a learning experience, not a reference book. We deliberately stripped

out everything that might get in the way of learning whatever it is we’re
working on at that point in the book. And the first time through, you need to
begin at the beginning, because the book makes assumptions about what
you’ve already seen and learned.

We use simple UML-like diagrams.
Although there’s a good chance you’ve run across UML, it’s not covered in
the book, and it’s not a prerequisite for the book. If you’ve never seen UML
before, don’t worry, we’ll give you a few pointers along the way. So in other
words, you won’t have to worry about Design Patterns and UML at the same
time. Our diagrams are “UML-like” — while we try to be true to UML there
are times we bend the rules a bit, usually for our own selfish artistic reasons.
We don’t cover every single Design Pattern ever created.
There are a lot of Design Patterns. The original foundational patterns (known
as the GoF patterns), enterprise Java patterns, JSP patterns, architectural
patterns, game design patterns and a lot more. But our goal was to make sure
the book weighed less than the person reading it, so we don’t cover them all
here. Our focus is on the core patterns that matter from the original GoF
patterns, and making sure that you really, truly, deeply understand how and
when to use them. You will find a brief look at some of the other patterns (the
ones you’re far less likely to use) in the appendix. In any case, once you’re
done with Head First Design Patterns, you’ll be able to pick up any pattern
catalog and get up to speed quickly.
The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content
of the book. Some of them are to help with memory, some for understanding,
and some to help you apply what you’ve learned. Don’t skip the exercises.

The crossword puzzles are the only things you don’t have to do, but they’re
good for giving your brain a chance to think about the words from a different
context.
We use the word “composition” in the general OO sense, which is more
flexible than the strict UML use of “composition.”
When we say “one object is composed with another object” we mean that
they are related by a HAS-A relationship. Our use reflects the traditional use
of the term and is the one used in the GoF text (you’ll learn what that is
later). More recently, UML has refined this term into several types of
composition. If you are an UML expert, you’ll still be able to read the book
and you should be able to easily map the use of composition to more refined
terms as you read.
The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get
it. And we want you to finish the book remembering what you’ve learned.
Most reference books don’t have retention and recall as a goal, but this book
is about learning, so you’ll see some of the same concepts come up more
than once.
The code examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of code
looking for the two lines they need to understand. Most examples in this book
are shown within the smallest possible context, so that the part you’re trying
to learn is clear and simple. Don’t expect all of the code to be robust, or even
complete — the examples are written specifically for learning, and aren’t
always fully-functional.
In some cases, we haven’t included all of the import statements needed, but
we assume that if you’re a Java programmer, you know that ArrayList is in
java.util, for example. If the imports were not part of the normal core JSE
API, we mention it. We’ve also placed all the source code on the Web so you
can download it. You’ll find it at http://wickedlysmart.com/head-first-
design-patterns/

Also, for the sake of focusing on the learning side of the code, we did not put
our classes into packages (in other words, they’re all in the Java default
package). We don’t recommend this in the real world, and when you
download the code examples from this book, you’ll find that all classes are in

packages.
The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your
answers are right. In some of the Brain Power exercises you will find hints to
point you in the right direction.

Tech Reviewers

Philippe Maquet

In memory of Philippe Maquet
1960 - 2004
Your amazing technical expertise, relentless enthusiasm, and deep concern for the
learner will inspire us always.
We will never forget you.

Acknowledgments
At O’Reilly:
Our biggest thanks to Mike Loukides at O’Reilly, for starting it all and
helping to shape the Head First concept into a series. And a big thanks to the
driving force behind Head First, Tim O’Reilly. Thanks to the clever Head
First “series mom” Kyle Hart, “In Design King” Ron Bilodeau, rock-and-
roll star Ellie Volkhausen for her inspired cover design, Melanie
Yarbrough for shepherding production, Colleen Gorman and Rachel
Monaghan for their hardcore copyedits, and Bob Pfahler for a much
improved index. Finally, thanks to Mike Hendrickson and Meghan
Blanchette for championing this book and building the team.
Our intrepid reviewers:
We are extremely grateful for our technical review director Johannes
deJong. You are our hero, Johannes. And we deeply appreciate the
contributions of the co-manager of the Javaranch review team, the late
Philippe Maquet. You have single-handedly brightened the lives of
thousands of developers, and the impact you’ve had on their (and our) lives is

forever. Jef Cumps is scarily good at finding problems in our draft chapters,
and once again made a huge difference for the book. Thanks Jef! Valentin
Cretazz (AOP guy), who has been with us from the very first Head First
book, proved (as always) just how much we really need his technical
expertise and insight. You rock Valentin (but lose the tie).
Two newcomers to the HF review team, Barney Marispini and Ike Van
Atta did a kick butt job on the book — you guys gave us some really crucial
feedback. Thanks for joining the team.
We also got some excellent technical help from Javaranch moderators/gurus
Mark Spritzler, Jason Menard, Dirk Schreckmann, Thomas Paul, and
Margarita Isaeva. And as always, thanks especially to the javaranch.com
Trail Boss, Paul Wheaton.
Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns
Cover” contest. The winner, Si Brewster, submitted the winning essay that
persuaded us to pick the woman you see on our cover. Other finalists include
Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas,
Sateesh Kommineni, and Jeff Fisher.
For the 2014 update to the book, we are so grateful to the following technical
reviewers: George Hoffer, Ted Hill, Todd Bartoszkiewicz, Sylvain Tenier,
Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse,
Glenn Ray, Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams,
Matt McCullough, and Mary Ann Belarmino.

Even more people[1]

From Eric and Elisabeth
Writing a Head First book is a wild ride with two amazing tour guides:
Kathy Sierra and Bert Bates. With Kathy and Bert you throw out all book
writing convention and enter a world full of storytelling, learning theory,
cognitive science, and pop culture, where the reader always rules. Thanks to
both of you for letting us enter your amazing world; we hope we’ve done
Head First justice. Seriously, this has been amazing. Thanks for all your
careful guidance, for pushing us to go forward, and most of all, for trusting us
(with your baby). You’re both certainly “wickedly smart” and you’re also the
hippest 29-year-olds we know. So... what’s next?
A big thank you to Mike Loukides, Mike Hendrickson, and Meghan

Blanchette. Mike L. was with us every step of the way. Mike, your insightful
feedback helped shape the book and your encouragement kept us moving
ahead. Mike H., thanks for your persistence over five years in trying to get us
to write a patterns book; we finally did it and we’re glad we waited for Head
First. And Meg, thanks for diving into the update with us; we couldn’t have
done it without you.
A very special thanks to Erich Gamma, who went far beyond the call of
duty in reviewing this book (he even took a draft with him on vacation).
Erich, your interest in this book inspired us and your thorough technical
review improved it immeasurably. Thanks as well to the entire Gang of Four
for their support & interest, and for making a special appearance in
Objectville. We are also indebted to Ward Cunningham and the patterns
community who created the Portland Pattern Repository — an indespensible
resource for us in writing this book.
It takes a village to write a technical book: Bill Pugh and Ken Arnold gave
us expert advice on Singleton. Joshua Marinacci provided rockin’ Swing
tips and advice. John Brewer’s “Why a Duck?” paper inspired SimUDuck
(and we’re glad he likes ducks too). Dan Friedman inspired the Little
Singleton example. Daniel Steinberg acted as our “technical liason” and our
emotional support network. Thanks to Apple’s James Dempsey for allowing
us to use his MVC song. And thank you to Richard Warburton who made
sure our Java 8 code updates were up to snuff for this updated edition of the
book.
Last, a personal thank you to the Javaranch review team for their top-notch
reviews and warm support. There’s more of you in this book than you know.
From Kathy and Bert
We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we
can’t. Because of these two, we discovered (to our horror) that we aren’t the
only ones who can do a Head First book. ;) However, if readers want to
believe that it’s really Kathy and Bert who did the cool things in the book,
well, who are we to set them straight?

[1] The large number of acknowledgments is because we’re testing the theory that everyone
mentioned in a book acknowledgment will buy at least one copy, probably more, what with
relatives and everything. If you’d like to be in the acknowledgment of our next book, and

you have a large family, write to us.

Chapter 1. Intro to Design Patterns:
Welcome to Design Patterns

Someone has already solved your problems. In this chapter, you’ll learn
why (and how) you can exploit the wisdom and lessons learned by other
developers who’ve been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design
patterns, look at some key OO design principles, and walk through an
example of how one pattern works. The best way to use patterns is to load
your brain with them and then recognize places in your designs and existing
applications where you can apply them. Instead of code reuse, with patterns
you get experience reuse.

It started with a simple SimUDuck app
Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of duck
species swimming and making quacking sounds. The initial designers of the
system used standard OO techniques and created one Duck superclass from
which all other duck types inherit.

In the last year, the company has been under increasing pressure from
competitors. After a week long off-site brainstorming session over golf, the
company executives think it’s time for a big innovation. They need
something really impressive to show at the upcoming shareholders meeting
in Maui next week.

But now we need the ducks to FLY
The executives decided that flying ducks is just what the simulator needs to
blow away the other duck sim competitors. And of course Joe’s manager told
them it’ll be no problem for Joe to just whip something up in a week. “After
all,” said Joe’s boss, “he’s an OO programmer... how hard can it be?”

But something went horribly wrong...

What happened?
Joe failed to notice that not all subclasses of Duck should fly. When Joe
added new behavior to the Duck superclass, he was also adding behavior that
was not appropriate for some Duck subclasses. He now has flying inanimate
objects in the SimUDuck program.
A localized update to the code caused a nonlocal side effect (flying rubber
ducks)!

What Joe thought was a great use of inheritance for the purpose of reuse hasn’t
turned out so well when it comes to maintenance.

Joe thinks about inheritance...

SHARPEN YOUR PENCIL

Which of the following are disadvantages of using inheritance to provide Duck
behavior? (Choose all that apply.)

A. Code is duplicated across subclasses.

B. Runtime behavior changes are difficult.

C. We can’t make ducks dance.

D. Hard to gain knowledge of all duck behaviors.

E. Ducks can’t fly and quack at the same time.

F. Changes can unintentionally affect other ducks.

How about an interface?
Joe realized that inheritance probably wasn’t the answer, because he just got
a memo that says that the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe knows the spec will
keep changing and he’ll be forced to look at and possibly override fly() and
quack() for every new Duck subclass that’s ever added to the program...
forever.
So, he needs a cleaner way to have only some (but not all) of the duck types
fly or quack.

What do YOU think about this design?

What would you do if you were Joe?
We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable solves part of the problem
(no inappropriately flying rubber ducks), it completely destroys code reuse
for those behaviors, so it just creates a different maintenance nightmare. And
of course there might be more than one kind of flying behavior even among
the ducks that do fly...
At this point you might be waiting for a Design Pattern to come riding in on a
white horse and save the day. But what fun would that be? No, we’re going to
figure out a solution the old-fashioned way — by applying good OO software
design principles.

The one constant in software development
Okay, what’s the one thing you can always count on in software
development?
No matter where you work, what you’re building, or what language you are
programming in, what’s the one true constant that will be with you always?

(use a mirror to see the answer)
No matter how well you design an application, over time an application must
grow and change or it will die.

SHARPEN YOUR PENCIL

Lots of things can drive change. List some reasons you’ve had to change code in your
applications (we put in a couple of our own to get you started).

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing its data
from another supplier that uses a different data format. Argh!

__

__

__

__

__

Zeroing in on the problem...
So we know using inheritance hasn’t worked out very well, since the duck
behavior keeps changing across the subclasses, and it’s not appropriate for all
subclasses to have those behaviors. The Flyable and Quackable interface
sounded promising at first — only ducks that really do fly will be Flyable,
etc. — except Java interfaces have no implementation code, so no code reuse.
And that means that whenever you need to modify a behavior, you’re forced
to track down and change it in all the different subclasses where that behavior
is defined, probably introducing new bugs along the way!
Luckily, there’s a design principle for just this situation.

DESIGN PRINCIPLE

Identify the aspects of your application that vary and separate them from what stays the
same.

The first of many design principles. We’ll spend more time on these throughout the
book.

Take what varies and “encapsulate” it so it won’t affect the rest of your code.
The result? Fewer unintended consequences from code changes and more
flexibility in your systems!

In other words, if you’ve got some aspect of your code that is changing, say
with every new requirement, then you know you’ve got a behavior that needs
to be pulled out and separated from all the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts that vary and
encapsulate them, so that later you can alter or extend the parts that vary
without affecting those that don’t.
As simple as this concept is, it forms the basis for almost every design
pattern. All patterns provide a way to let some part of a system vary
independently of all other parts.
Okay, time to pull the duck behavior out of the Duck classes!

Separating what changes from what stays the same
Where do we start? As far as we can tell, other than the problems with fly()
and quack(), the Duck class is working well and there are no other parts of it
that appear to vary or change frequently. So, other than a few slight changes,
we’re going to pretty much leave the Duck class alone.
Now, to separate the “parts that change from those that stay the same,” we are
going to create two sets of classes (totally apart from Duck), one for fly and
one for quack. Each set of classes will hold all the implementations of the
respective behavior. For instance, we might have one class that implements
quacking, another that implements squeaking, and another that implements
silence.
We know that fly() and quack() are the parts of the Duck class that vary
across ducks.
To separate these behaviors from the Duck class, we’ll pull both methods
out of the Duck class and create a new set of classes to represent each
behavior.

Designing the Duck Behaviors
So how are we going to design the set of classes that implement the fly
and quack behaviors?
We’d like to keep things flexible; after all, it was the inflexibility in the duck
behaviors that got us into trouble in the first place. And we know that we
want to assign behaviors to the instances of Duck. For example, we might
want to instantiate a new MallardDuck instance and initialize it with a
specific type of flying behavior. And while we’re there, why not make sure
that we can change the behavior of a duck dynamically? In other words, we
should include behavior setter methods in the Duck classes so that we can
change the MallardDuck’s flying behavior at runtime.
Given these goals, let’s look at our second design principle:

DESIGN PRINCIPLE

Program to an interface, not an implementation.

From now on, the Duck behaviors will live in a separate class — a class that
implements a particular behavior interface.

That way, the Duck classes won’t need to know any of the implementation details
for their own behaviors.

We’ll use an interface to represent each behavior — for instance,
FlyBehavior and QuackBehavior — and each implementation of a behavior
will implement one of those interfaces.
So this time it won’t be the Duck classes that will implement the flying and
quacking interfaces. Instead, we’ll make a set of classes whose entire reason
for living is to represent a behavior (for example, “squeaking”), and it’s the
behavior class, rather than the Duck class, that will implement the behavior
interface.
This is in contrast to the way we were doing things before, where a behavior
came either from a concrete implementation in the superclass Duck, or by
providing a specialized implementation in the subclass itself. In both cases
we were relying on an implementation. We were locked into using that
specific implementation and there was no room for changing the behavior
(other than writing more code).
With our new design, the Duck subclasses will use a behavior represented by
an interface (FlyBehavior and QuackBehavior), so that the actual
implementation of the behavior (in other words, the specific concrete
behavior coded in the class that implements the FlyBehavior or
QuackBehavior) won’t be locked into the Duck subclass.

“Program to an interface” really means “Program to a supertype.”
The word interface is overloaded here. There’s the concept of interface, but
there’s also the Java construct interface. You can program to an interface,
without having to actually use a Java interface. The point is to exploit
polymorphism by programming to a supertype so that the actual runtime
object isn’t locked into the code. And we could rephrase “program to a
supertype” as “the declared type of the variables should be a supertype,
usually an abstract class or interface, so that the objects assigned to those
variables can be of any concrete implementation of the supertype, which
means the class declaring them doesn’t have to know about the actual object
types!”

This is probably old news to you, but just to make sure we’re all saying the
same thing, here’s a simple example of using a polymorphic type — imagine
an abstract class Animal, with two concrete implementations, Dog and Cat.
Programming to an implementation would be:

Dog d = new Dog();

d.bark();

NOTE

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us
to code to a concrete implementation.

But programming to an interface/supertype would be:
Animal animal = new Dog();

animal.makeSound();

NOTE

We know it’s a Dog, but we can now use the animal reference polymorphically.

Even better, rather than hardcoding the instantiation of the subtype (like new
Dog()) into the code, assign the concrete implementation object at
runtime:

a = getAnimal();

a.makeSound();

NOTE

We don’t know WHAT the actual animal subtype is... all we care about is that it knows
how to respond to makeSound().

Implementing the Duck Behaviors
Here we have the two interfaces, FlyBehavior and QuackBehavior, along
with the corresponding classes that implement each concrete behavior:

NOTE

With this design, other types of objects can reuse our fly and quack behaviors
because these behaviors are no longer hidden away in our Duck classes!

And we can add new behaviors without modifying any of our existing behavior
classes or touching any of the Duck classes that use flying behaviors.

So we get the benefit of REUSE without all the baggage that comes along with
inheritance.

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I always have to implement my application first, see where things are changing, and then go back
and separate & encapsulate those things?

A: A: Not always; often when you are designing an application, you anticipate those areas that are going to vary and
then go ahead and build the flexibility to deal with it into your code. You’ll find that the principles and patterns
can be applied at any stage of the development lifecycle.

Q: Q: Should we make Duck an interface too?

A: A: Not in this case. As you’ll see once we’ve got everything hooked together, we do benefit by having Duck not
be an interface, and having specific ducks, like MallardDuck, inherit common properties and methods. Now that
we’ve removed what varies from the Duck inheritance, we get the benefits of this structure without the problems.

Q: Q: It feels a little weird to have a class that’s just a behavior. Aren’t classes supposed to represent things?

Aren’t classes supposed to have both state AND behavior?

A: A: In an OO system, yes, classes represent things that generally have both state (instance variables) and methods.
And in this case, the thing happens to be a behavior. But even a behavior can still have state and methods; a flying
behavior might have instance variables representing the attributes for the flying (wing beats per minute, max
altitude, and speed, etc.) behavior.

SHARPEN YOUR PENCIL

① Using our new design, what would you do if you needed to add rocket-powered
flying to the SimUDuck app?
② Can you think of a class that might want to use the Quack behavior that isn’t a
duck?

Answers:
1) Create a FlyRocketPowered class that implements the FlyBehavior
interface.
2) One example, a duck call (a device that makes duck sounds).

Integrating the Duck Behavior
The key is that a Duck will now delegate its flying and quacking
behavior, instead of using quacking and flying methods defined in the
Duck class (or subclass).
Here’s how:

① First we’ll add two instance variables to the Duck class called
flyBehavior and quackBehavior that are declared as the interface type (not
a concrete class implementation type). Each duck object will set these
variables polymorphically to reference the specific behavior type it would
like at runtime (FlyWithWings, Squeak, etc.).
We’ll also remove the fly() and quack() methods from the Duck class (and
any subclasses) because we’ve moved this behavior out into the
FlyBehavior and QuackBehavior classes.
We’ll replace fly() and quack() in the Duck class with two similar
methods, called performFly() and performQuack(); you’ll see how they
work next.

② Now we implement performQuack():

Pretty simple, huh? To perform the quack, a Duck just allows the object
that is referenced by quackBehavior to quack for it.
In this part of the code we don’t care what kind of object it is, all we care
about is that it knows how to quack()!

More integration...
③ Okay, time to worry about how the flyBehavior and quackBehavior
instance variables are set. Let’s take a look at the MallardDuck class:

So MallardDuck’s quack is a real live duck quack, not a squeak and not a
mute quack. So what happens here? When a MallardDuck is instantiated,
its constructor initializes the MallardDuck’s inherited quackBehavior
instance variable to a new instance of type Quack (a QuackBehavior
concrete implementation class).
And the same is true for the duck’s flying behavior — the MallardDuck’s
constructor initializes the flyBehavior instance variable with an instance of
type FlyWithWings (a FlyBehavior concrete implementation class).

Good catch, that’s exactly what we’re doing... for now.
Later in the book we’ll have more patterns in our toolbox that can help us fix
it.
Still, notice that while we are setting the behaviors to concrete classes (by
instantiating a behavior class like Quack or FlyWithWings and assigning it to
our behavior reference variable), we could easily change that at runtime.
So, we still have a lot of flexibility here, but we’re doing a poor job of
initializing the instance variables in a flexible way. But think about it: since
the quackBehavior instance variable is an interface type, we could (through
the magic of polymorphism) dynamically assign a different QuackBehavior

implementation class at runtime.
Take a moment and think about how you would implement a duck so that its
behavior could change at runtime. (You’ll see the code that does this a few
pages from now.)

Testing the Duck code
① Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

② Type and compile the FlyBehavior interface (FlyBehavior.java)
and the two behavior implementation classes (FlyWithWings.java and
FlyNoWay.java).

③ Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation classes
(Quack.java, MuteQuack.java, and Squeak.java).

public interface QuackBehavior {

 public void quack();

}

public class Quack implements QuackBehavior {

 public void quack() {

 System.out.println("Quack");

 }

}

public class MuteQuack implements QuackBehavior {

 public void quack() {

 System.out.println("<< Silence >>");

 }

}

public class Squeak implements QuackBehavior {

 public void quack() {

 System.out.println("Squeak");

 }

}

④ Type and compile the test class (MiniDuckSimulator.java).

⑤ Run the code!

Setting behavior dynamically
What a shame to have all this dynamic talent built into our ducks and not be
using it! Imagine you want to set the duck’s behavior type through a setter
method on the duck subclass, rather than by instantiating it in the duck’s
constructor.

① Add two new methods to the Duck class:

We can call these methods anytime we want to change the behavior of a
duck on the fly.

NOTE

Editor note: gratuitous pun - fix

② Make a new Duck type (ModelDuck.java).

③ Make a new FlyBehavior type (FlyRocketPowered.java).

④ Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

To change a duck’s behavior at runtime, just call the duck’s setter method for
that behavior.

The Big Picture on encapsulated behaviors
Okay, now that we’ve done the deep dive on the duck simulator design,
it’s time to come back up for air and take a look at the big picture.
Below is the entire reworked class structure. We have everything you’d
expect: ducks extending Duck, fly behaviors implementing FlyBehavior, and
quack behaviors implementing QuackBehavior.
Notice also that we’ve started to describe things a little differently. Instead of
thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the

algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of
classes that implement the ways to compute state sales tax by different states.
Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A, and
IMPLEMENTS) on each arrow in the class diagram.

HAS-A can be better than IS-A
The HAS-A relationship is an interesting one: each duck has a FlyBehavior
and a QuackBehavior to which it delegates flying and quacking.
When you put two classes together like this you’re using composition.
Instead of inheriting their behavior, the ducks get their behavior by being
composed with the right behavior object.
This is an important technique; in fact, we’ve been using our third design
principle:

DESIGN PRINCIPLE

Favor composition over inheritance.

As you’ve seen, creating systems using composition gives you a lot more
flexibility. Not only does it let you encapsulate a family of algorithms into
their own set of classes, but it also lets you change behavior at runtime as
long as the object you’re composing with implements the correct behavior
interface.
Composition is used in many design patterns and you’ll see a lot more about
its advantages and disadvantages throughout the book.

BRAIN POWER

A duck call is a device that hunters use to mimic the calls (quacks) of ducks. How would
you implement your own duck call that does not inherit from the Duck class?

MASTER AND STUDENT...

Master: Grasshopper, tell me what you have learned of the Object-Oriented ways.

Student: Master, I have learned that the promise of the object-oriented way is reuse.

Master: Grasshopper, continue...

Student: Master, through inheritance all good things may be reused and so we come to
drastically cut development time like we swiftly cut bamboo in the woods.

Master: Grasshopper, is more time spent on code before or after development is
complete?

Student: The answer is after, Master. We always spend more time maintaining and
changing software than on initial development.

Master: So Grasshopper, should effort go into reuse above maintainability and
extensibility?

Student: Master, I believe that there is truth in this.

Master: I can see that you still have much to learn. I would like for you to go and
meditate on inheritance further. As you’ve seen, inheritance has its problems, and there
are other ways of achieving reuse.

Speaking of Design Patterns...

CONGRATULATIONS ON YOUR FIRST PATTERN!

You just applied your first design pattern — the STRATEGY Pattern. That’s right, you
used the Strategy Pattern to rework the SimUDuck app. Thanks to this pattern, the
simulator is ready for any changes those execs might cook up on their next business trip
to Maui.

Now that we’ve made you take the long road to apply it, here’s the formal definition of
this pattern:

NOTE

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable. Strategy
lets the algorithm vary independently from clients that use it.

Use THIS definition when you need to impress friends and influence key
executives.

DESIGN PUZZLE

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Your task:

① Arrange the classes.
② Identify one abstract class, one interface, and eight classes.
③ Draw arrows between classes.

1. Draw this kind of arrow for inheritance (“extends”).
2. Draw this kind of arrow for interface (“implements”).

3. Draw this kind of arrow for “HAS-A”.

④ Put the method setWeapon() into the right class.

Overheard at the local diner...

What’s the difference between these two orders? Not a thing! They’re both
the same order, except Alice is using twice the number of words and trying
the patience of a grumpy short-order cook.
What’s Flo got that Alice doesn’t? A shared vocabulary with the short-order
cook. Not only does that make it easier to communicate with the cook, but it
gives the cook less to remember because he’s got all the diner patterns in his
head.
Design Patterns give you a shared vocabulary with other developers. Once
you’ve got the vocabulary you can more easily communicate with other
developers and inspire those who don’t know patterns to start learning them.
It also elevates your thinking about architectures by letting you think at the
pattern level, not the nitty-gritty object level.

Overheard in the next cubicle...

BRAIN POWER

Can you think of other shared vocabularies that are used beyond OO design and diner
talk? (Hint: how about auto mechanics, carpenters, gourmet chefs, air traffic control.)
What qualities are communicated along with the lingo?

Can you think of aspects of OO design that get communicated along with pattern names?
What qualities get communicated along with the name “Strategy Pattern”?

The power of a shared pattern vocabulary
When you communicate using patterns you are doing more than just
sharing LINGO.
Shared pattern vocabularies are POWERFUL. When you communicate
with another developer or your team using patterns, you are communicating
not just a pattern name but a whole set of qualities, characteristics, and
constraints that the pattern represents.

NOTE

“We’re using the Strategy Pattern to implement the various behaviors of our ducks.”
This tells you the duck behavior has been encapsulated into its own set of classes that
can be easily expanded and changed, even at runtime if needed.

Patterns allow you to say more with less. When you use a pattern in a
description, other developers quickly know precisely the design you have in
mind.
Talking at the pattern level allows you to stay “in the design” longer.
Talking about software systems using patterns allows you to keep the
discussion at the design level, without having to dive down to the nitty-gritty
details of implementing objects and classes.

NOTE

How many design meetings have you been in that quickly degrade into implementation
details?

Shared vocabularies can turbo-charge your development team. A team
well versed in design patterns can move more quickly with less room for
misunderstanding.

NOTE

As your team begins to share design ideas and experience in terms of patterns, you will
build a community of patterns users.

Shared vocabularies encourage more junior developers to get up to
speed. Junior developers look up to experienced developers. When senior
developers make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern users at your
organization.

NOTE

Think about starting a patterns study group at your organization. Maybe you can even
get paid while you’re learning...

How do I use Design Patterns?
We’ve all used off-the-shelf libraries and frameworks. We take them, write
some code against their APIs, compile them into our programs, and benefit
from a lot of code someone else has written. Think about the Java APIs and
all the functionality they give you: network, GUI, IO, etc. Libraries and
frameworks go a long way towards a development model where we can just
pick and choose components and plug them right in. But... they don’t help us
structure our own applications in ways that are easier to understand, more
maintainable and flexible. That’s where Design Patterns come in.
Design patterns don’t go directly into your code, they first go into your
BRAIN. Once you’ve loaded your brain with a good working knowledge of
patterns, you can then start to apply them to your new designs, and rework
your old code when you find it’s degrading into an inflexible mess of jungle
spaghetti code.

THERE ARE NO DUMB QUESTIONS

Q: Q: If design patterns are so great, why can’t someone build a library of them so I don’t have to?

A: A: Design patterns are higher level than libraries. Design patterns tell us how to structure classes and objects to
solve certain problems and it is our job to adapt those designs to fit our particular application.

Q: Q: Aren’t libraries and frameworks also design patterns?

A: A: Frameworks and libraries are not design patterns; they provide specific implementations that we link into our
code. Sometimes, however, libraries and frameworks make use of design patterns in their implementations. That’s
great, because once you understand design patterns, you’ll more quickly understand APIs that are structured
around design patterns.

Q: Q: So, there are no libraries of design patterns?

A: A: No, but you will learn later about pattern catalogs with lists of patterns that you can apply to your applications.

Developer: Okay, hmm, but isn’t this all just good object-oriented design; I
mean as long as I follow encapsulation and I know about abstraction,
inheritance, and polymorphism, do I really need to think about Design
Patterns? Isn’t it pretty straightforward? Isn’t this why I took all those OO
courses? I think Design Patterns are useful for people who don’t know good

OO design.
Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to
be good at building flexible, reusable, and maintainable systems.
Developer: No?
Guru: No. As it turns out, constructing OO systems that have these
properties is not always obvious and has been discovered only through hard
work.
Developer: I think I’m starting to get it. These, sometimes non-obvious,
ways of constructing object-oriented systems have been collected...
Guru: ...yes, into a set of patterns called Design Patterns.
Developer: So, by knowing patterns, I can skip the hard work and jump
straight to designs that always work?
Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns,
you’ll be way ahead.
Developer: What do I do if I can’t find a pattern?

Guru: There are some object-oriented principles that underlie the patterns,
and knowing these will help you to cope when you can’t find a pattern that
matches your problem.
Developer: Principles? You mean beyond abstraction, encapsulation, and...
Guru: Yes, one of the secrets to creating maintainable OO systems is
thinking about how they might change in the future, and these principles
address those issues.

Tools for your Design Toolbox
You’ve nearly made it through the first chapter! You’ve already put a few
tools in your OO toolbox; let’s make a list of them before we move on to
Chapter 2.

BULLET POINTS

Knowing the OO basics does not make you a good OO designer.
Good OO designs are reusable, extensible, and maintainable.
Patterns show you how to build systems with good OO design qualities.
Patterns are proven object-oriented experience.
Patterns don’t give you code, they give you general solutions to design problems.
You apply them to your specific application.

Patterns aren’t invented, they are discovered.
Most patterns and principles address issues of change in software.
Most patterns allow some part of a system to vary independently of all other parts.
We often try to take what varies in a system and encapsulate it.
Patterns provide a shared language that can maximize the value of your
communication with other developers.

DESIGN PATTERNS CROSSWORD

Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words are from this chapter.

Across Down

2. ________ what varies.

4. Design patterns __________.

1. Patterns _______ in many applications.

3. Favor this over inheritance.

6. Java IO, Networking, Sound.

9. Rubber ducks make a __________.

13. Bartender thought they were called.

15. Program to this, not an implementation.

17. Patterns go into your _________.

18. Learn from the other guy’s ___________.

19. Development constant.

20. Patterns give us a shared ____________.

5. Dan was thrilled with this pattern.

7. Most patterns follow from OO _________.

8. Not your own __________.

10. High level libraries.

11. Joe’s favorite drink.

12. Pattern that fixed the simulator.

13. Duck that can’t quack.

14. Grilled cheese with bacon.

15. Duck demo was located here.

DESIGN PUZZLE SOLUTION

Character is the abstract class for all the other characters (King, Queen, Knight, and
Troll), while WeaponBehavior is an interface that all weapon behaviors implement. So
all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which is defined in
the Character superclass. During a fight the useWeapon() method is called on the current
weapon set for a given character to inflict great bodily damage on another character.

SHARPEN YOUR PENCIL SOLUTION

Which of the following are disadvantages of using subclassing to provide specific Duck
behavior? (Choose all that apply.) Here’s our solution.

A. Code is duplicated across subclasses.

B. Runtime behavior changes are difficult.

C. We can’t make duck’s dance.

D. Hard to gain knowledge of all duck behaviors.

E. Ducks can’t fly and quack at the same time.

F. Changes can unintentionally affect other ducks.

SHARPEN YOUR PENCIL SOLUTION

What are some factors that drive change in your applications? You might have a very
different list, but here’s a few of ours. Look familiar? Here’s our solution.

NOTE

My customers or users decide they want something else, or they
want new functionality.

My company decided it is going with another database vendor and
it is also purchasing its data from another supplier that uses a
different data format. Argh!

Well, technology changes and we’ve got to update our code to
make use of protocols.

We’ve learned enough building our system that we’d like to go
back and do things a little better.

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 2. The Observer Pattern:
Keeping your Objects in the know

Don’t miss out when something interesting happens! We’ve got a pattern
that keeps your objects in the know when something they might care about
happens. Objects can even decide at runtime whether they want to be kept
informed. The Observer Pattern is one of the most heavily used patterns in
the JDK, and it’s incredibly useful. Before we’re done, we’ll also look at one-
to-many relationships and loose coupling (yeah, that’s right, we said
coupling). With Observer, you’ll be the life of the Patterns Party.
Congratulations!
Your team has just won the contract to build Weather-O-Rama, Inc.’s
next-generation, Internet-based Weather Monitoring Station.

Statement of Work

Congratulations on being selected to build our next-generation, Internet-based Weather
Monitoring Station!

The weather station will be based on our patent pending WeatherData object, which
tracks current weather conditions (temperature, humidity, and barometric pressure). We’d
like you to create an application that initially provides three display elements: current
conditions, weather statistics, and a simple forecast, all updated in real time as the
WeatherData object acquires the most recent measurements.

Further, this is an expandable weather station. Weather-ORama wants to release an API
so that other developers can write their own weather displays and plug them right in.
We’d like for you to supply that API!

Weather-O-Rama thinks we have a great business model: once the customers are hooked,
we intend to charge them for each display they use. Now for the best part: we are going to
pay you in stock options.

We look forward to seeing your design and alpha application.

Sincerely,

Johnny Hurricane, CEO

P.S. We are overnighting the WeatherData source files to you.

The Weather Monitoring application overview
The three players in the system are the weather station (the physical device
that acquires the actual weather data), the WeatherData object (that tracks the
data coming from the Weather Station and updates the displays), and the
display that shows users the current weather conditions.

The WeatherData object knows how to talk to the physical Weather Station,
to get updated data. The WeatherData object then updates its displays for the
three different display elements: Current Conditions (shows temperature,
humidity, and pressure), Weather Statistics, and a simple forecast.
Our job, if we choose to accept it, is to create an app that uses the
WeatherData object to update three displays for current conditions,
weather stats, and a forecast.

Unpacking the WeatherData class
As promised, the next morning the WeatherData source files arrive.
When we peek inside the code, things look pretty straightforward:

Our job is to implement measurementsChanged() so that it updates the
three displays for current conditions, weather stats, and forecast.

What do we know so far?

The spec from Weather-O-Rama wasn’t all that clear, but we have to figure
out what we need to do. So, what do we know so far?

The WeatherData class has getter methods for three measurement values: temperature,
humidity, and barometric pressure.

getTemperature()

getHumidity()

getPressure()

The measurementsChanged() method is called any time new weather measurement
data is available. (We don’t know or care how this method is called; we just know that
it is.)

measurementsChanged()

We need to implement three display elements that use the weather data: a current
conditions display, a statistics display, and a forecast display. These displays must be
updated each time WeatherData has new measurements.

The system must be expandable — other developers can create new custom display
elements and users can add or remove as many display elements as they want to the
application. Currently, we know about only the initial three display types (current
conditions, statistics, and forecast).

Taking a first, misguided SWAG at the Weather Station
Here’s a first implementation possibility — we’ll take the hint from the
Weather-O-Rama developers and add our code to the
measurementsChanged() method:

SHARPEN YOUR PENCIL

Based on our first implementation, which of the following apply? (Choose all that
apply.)

A. We are coding to concrete implementations, not interfaces.

B. For every new display element we need to alter code.

C. We have no way to add (or remove) display elements at run time.

D. The display elements don’t implement a common interface.

E. We haven’t encapsulated the part that changes.

F. We are violating encapsulation of the WeatherData class.

Definition of SWAG: Scientific Wild A** Guess

What’s wrong with our implementation?
Think back to all those Chapter 1 concepts and principles...

We’ll take a look at Observer, then come back and figure out how to apply it
to the Weather Monitoring app.

Meet the Observer Pattern
You know how newspaper or magazine subscriptions work:

① A newspaper publisher goes into business and begins publishing

newspapers.
② You subscribe to a particular publisher, and every time there’s a new
edition it gets delivered to you. As long as you remain a subscriber, you
get new newspapers.
③ You unsubscribe when you don’t want papers anymore, and they stop
being delivered.
④ While the publisher remains in business, people, hotels, airlines, and
other businesses constantly subscribe and unsubscribe to the newspaper.

Publishers + Subscribers = Observer Pattern
If you understand newspaper subscriptions, you pretty much understand
the Observer Pattern, only we call the publisher the SUBJECT and the
subscribers the OBSERVERS.
Let’s take a closer look:

A day in the life of the Observer Pattern

A Duck object comes along and tells the Subject that it wants to become an
observer.

Duck really wants in on the action; those ints Subject is sending out whenever its
state changes look pretty interesting...

The Duck object is now an official observer.

Duck is psyched... he’s on the list and is waiting with great anticipation for the next
notification so he can get an int.

The Subject gets a new data value!

Now Duck and all the rest of the observers get a notification that the Subject has
changed.

The Mouse object asks to be removed as an observer.

The Mouse object has been getting ints for ages and is tired of it, so it decides it’s

time to stop being an observer.

Mouse is outta here!

The Subject acknowledges the Mouse’s request and removes it from the set of
observers.

The Subject has another new int.

All the observers get another notification, except for the Mouse who is no longer
included. Don’t tell anyone, but the Mouse secretly misses those ints... maybe it’ll
ask to be an observer again some day.

Five-minute drama: a subject for observation

In today’s skit, two post-bubble software developers encounter a real live
head hunter...

Two weeks later...

Jill’s loving life, and no longer an observer. She’s also enjoying the nice fat
signing bonus that she got because the company didn’t have to pay a
headhunter.

But what has become of our dear Lori? We hear she’s beating the headhunter
at his own game. She’s not only still an observer, she’s got her own call list
now, and she is notifying her own observers. Lori’s a subject and an observer
all in one.

The Observer Pattern defined
When you’re trying to picture the Observer Pattern, a newspaper subscription
service with its publisher and subscribers is a good way to visualize the
pattern.
In the real world, however, you’ll typically see the Observer Pattern defined
like this:

NOTE

The Observer Pattern defines a one-to-many dependency between objects so that when
one object changes state, all of its dependents are notified and updated automatically.

Let’s relate this definition to how we’ve been talking about the pattern:

The Observer Pattern defines a one-to-many relationship between a set of objects.
When the state of one object changes, all of its dependents are notified.

The subject and observers define the one-to-many relationship. The observers
are dependent on the subject such that when the subject’s state changes, the
observers get notified. Depending on the style of notification, the observer
may also be updated with new values.
As you’ll discover, there are a few different ways to implement the Observer
Pattern, but most revolve around a class design that includes Subject and
Observer interfaces.
Let’s take a look...

The Observer Pattern defined: the class diagram

THERE ARE NO DUMB QUESTIONS

Q: Q: What does this have to do with one-to-many relationships?

A: A: With the Observer Pattern, the Subject is the object that contains the state and controls it. So, there is ONE
subject with state. The observers, on the other hand, use the state, even if they don’t own it. There are many
observers and they rely on the Subject to tell them when its state changes. So there is a relationship between the
ONE Subject to the MANY Observers.

Q: Q: How does dependence come into this?

A: A: Because the subject is the sole owner of that data, the observers are dependent on the subject to update them
when the data changes. This leads to a cleaner OO design than allowing many objects to control the same data.

The power of Loose Coupling
When two objects are loosely coupled, they can interact, but have very
little knowledge of each other.
The Observer Pattern provides an object design where subjects and
observers are loosely coupled.

Why?
The only thing the subject knows about an observer is that it implements
a certain interface (the Observer interface). It doesn’t need to know the
concrete class of the observer, what it does, or anything else about it.
We can add new observers at any time. Because the only thing the subject
depends on is a list of objects that implement the Observer interface, we can
add new observers whenever we want. In fact, we can replace any observer at
runtime with another observer and the subject will keep purring along.
Likewise, we can remove observers at any time.
We never need to modify the subject to add new types of observers. Let’s
say we have a new concrete class come along that needs to be an observer.
We don’t need to make any changes to the subject to accommodate the new
class type; all we have to do is implement the Observer interface in the new
class and register as an observer. The subject doesn’t care; it will deliver
notifications to any object that implements the Observer interface.
We can reuse subjects or observers independently of each other. If we
have another use for a subject or an observer, we can easily reuse them
because the two aren’t tightly coupled.
Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either,
as long as the objects still meet their obligations to implement the subject or
observer interfaces.

NOTE

How many different kinds of change can you identify here?

DESIGN PRINCIPLE

Strive for loosely coupled designs between objects that interact.

Loosely coupled designs allow us to build flexible OO systems that can
handle change because they minimize the interdependency between
objects.

SHARPEN YOUR PENCIL

Before moving on, try sketching out the classes you’ll need to implement the Weather
Station, including the WeatherData class and its display elements. Make sure your
diagram shows how all the pieces fit together and also how another developer might
implement her own display element.

If you need a little help, read the next page; your teammates are already talking about
how to design the Weather Station.

Cubicle conversation
Back to the Weather Station project. Your teammates have already started
thinking through the problem...

Mary: Well, it helps to know we’re using the Observer Pattern.
Sue: Right... but how do we apply it?
Mary: Hmm. Let’s look at the definition again:
The Observer Pattern defines a one-to-many dependency between objects so

that when one object changes state, all its dependents are notified and
updated automatically.
Mary: That actually makes some sense when you think about it. Our
WeatherData class is the “one” and our “many” is the various display
elements that use the weather measurements.
Sue: That’s right. The WeatherData class certainly has state... that’s the
temperature, humidity, and barometric pressure, and those definitely change.
Mary: Yup, and when those measurements change, we have to notify all the
display elements so they can do whatever it is they are going to do with the
measurements.
Sue: Cool, I now think I see how the Observer Pattern can be applied to our
Weather Station problem.
Mary: There are still a few things to consider that I’m not sure I understand
yet.
Sue: Like what?
Mary: For one thing, how do we get the weather measurements to the
display elements?
Sue: Well, looking back at the picture of the Observer Pattern, if we make the
WeatherData object the subject, and the display elements the observers, then
the displays will register themselves with the WeatherData object in order to
get the information they want, right?
Mary: Yes... and once the Weather Station knows about a display element,
then it can just call a method to tell it about the measurements.
Sue: We gotta remember that every display element can be different... so I
think that’s where having a common interface comes in. Even though every
component has a different type, they should all implement the same interface
so that the WeatherData object will know how to send them the
measurements.
Mary: I see what you mean. So every display will have, say, an update()
method that WeatherData will call.
Sue: And update() is defined in a common interface that all the elements
implement...

Designing the Weather Station
How does this diagram compare with yours?

Implementing the Weather Station
We’re going to start our implementation using the class diagram and
following Mary and Sue’s lead (from a few pages back). You’ll see later in
this chapter that Java provides some built-in support for the Observer Pattern,
however, we’re going to get our hands dirty and roll our own for now. While
in some cases you can make use of Java’s built-in support, in a lot of cases
it’s more flexible to build your own (and it’s not all that hard). So, let’s get
started with the interfaces:

BRAIN POWER

Mary and Sue thought that passing the measurements directly to the observers was the
most straightforward method of updating state. Do you think this is wise? Hint: is this an
area of the application that might change in the future? If it did change, would the
change be well encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the
observers?

Don’t worry; we’ll come back to this design decision after we finish the initial
implementation.

Implementing the Subject interface in WeatherData
REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Remember our first attempt at implementing the WeatherData class at the
beginning of the chapter? You might want to refresh your memory. Now it’s
time to go back and do things with the Observer Pattern in mind...

http://wickedlysmart.com/head-first-design-patterns/

Now, let’s build those display elements
Now that we’ve got our WeatherData class straightened out, it’s time to build
the Display Elements. Weather-O-Rama ordered three: the current conditions
display, the statistics display, and the forecast display. Let’s take a look at the
current conditions display; once you have a good feel for this display
element, check out the statistics and forecast displays in the code directory.
You’ll see they are very similar.

THERE ARE NO DUMB QUESTIONS

Q: Q: Is update() the best place to call display?

A: A: In this simple example it made sense to call display() when the values changed. However, you are right; there
are much better ways to design the way the data gets displayed. We are going to see this when we get to the
Model-View-Controller pattern.

Q: Q: Why did you store a reference to the Subject? It doesn’t look like you use it again after the constructor.

A: A: True, but in the future we may want to un-register ourselves as an observer and it would be handy to already
have a reference to the subject.

Power up the Weather Station

① First, let’s create a test harness.
The Weather Station is ready to go. All we need is some code to glue
everything together. Here’s our first attempt. We’ll come back later in the
book and make sure all the components are easily pluggable via a
configuration file. For now here’s how it all works:

② Run the code and let the Observer Pattern do its magic.

SHARPEN YOUR PENCIL

Johnny Hurricane, Weather-O-Rama’s CEO, just called and they can’t possibly ship
without a Heat Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the
apparent temperature (how hot it actually feels). To compute the heat index, you take the

temperature, T, and the relative humidity, RH, and use this formula:
heatindex =

 16.923 + 1.85212 * 10-1 * T + 5.37941 * RH - 1.00254 * 10-1 *

 T * RH + 9.41695 * 10-3 * T2 + 7.28898 * 10-3 * RH2 + 3.45372 *

 10-4 * T2 * RH - 8.14971 * 10-4 * T * RH2 + 1.02102 * 10-5 * T2 *

 RH2 - 3.8646 * 10-5 * T3 + 2.91583 * 10-5 * RH3 + 1.42721 * 10-6

 * T3 * RH + 1.97483 * 10-7 * T * RH3 - 2.18429 * 10-8 * T3 * RH2

 + 8.43296 * 10-10 * T2 * RH3 - 4.81975 * 10-11 * T3 * RH3

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own
HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

NOTE

You can get heatindex.txt from wickedlysmart.com.

How does it work? You’d have to refer to Head First Meteorology, or try asking
someone at the National Weather Service (or try a web search).

When you finish, your output should look like this:

FIRESIDE CHATS

Tonight’s talk: A Subject and Observer spar over the right way to get state
information to the Observer.

Subject: Observer:

I’m glad we’re finally getting a
chance to chat in person.

 Really? I thought you didn’t care much about us Observers.

Well, I do my job, don’t I? I
always tell you what’s going on...
Just because I don’t really know
who you are doesn’t mean I don’t
care. And besides, I do know the
most important thing about you
— you implement the Observer
interface.

 Yeah, but that’s just a small part of who I am. Anyway, I know
a lot more about you...

Oh yeah, like what?

 Well, you’re always passing your state around to us Observers
so we can see what’s going on inside you. Which gets a little
annoying at times...

Well, excuuuse me. I have to
send my state with my
notifications so all you lazy
Observers will know what
happened!

 Okay, wait just a minute here; first, we’re not lazy, we just
have other stuff to do in between your oh-so-important
notifications, Mr. Subject, and second, why don’t you let us
come to you for the state we want rather than pushing it out to
just everyone?

Well... I guess that might work.
I’d have to open myself up even
more, though, to let all you
Observers come in and get the
state that you need. That might be
kind of dangerous. I can’t let you
come in and just snoop around
looking at everything I’ve got.

 Why don’t you just write some public getter methods that will
let us pull out the state we need?

Yes, I could let you pull my
state. But won’t that be less

convenient for you? If you have
to come to me every time you
want something, you might have
to make multiple method calls to
get all the state you want. That’s
why I like push better... then you
have everything you need in one
notification.

 Don’t be so pushy! There are so many different kinds of us
Observers, there’s no way you can anticipate everything we
need. Just let us come to you to get the state we need. That
way, if some of us only need a little bit of state, we aren’t
forced to get it all. It also makes things easier to modify later.
Say, for example, you expand yourself and add some more
state. If you use pull, you don’t have to go around and change
the update calls on every observer; you just need to change
yourself to allow more getter methods to access our additional
state.

Well, I can see the advantages to
doing it both ways. I have noticed
that there is a built-in Java
Observer Pattern that allows you
to use either push or pull.

 Oh really? I think we’re going to look at that next....

Great... maybe I’ll get to see a
good example of pull and change
my mind.

 What, us agree on something? I guess there’s always hope.

Using Java’s built-in Observer Pattern
So far we’ve rolled our own code for the Observer Pattern, but Java has built-
in support in several of its APIs. The most general is the Observer interface
and the Observable class in the java.util package. These are quite similar to
our Subject and Observer interfaces, but give you a lot of functionality out of
the box. You can also implement either a push or pull style of update to your
observers, as you will see.
To get a high-level feel for java.util.Observer and java.util.Observable, check
out this reworked OO design for the WeatherStation:

How Java’s built-in Observer Pattern works
The built-in Observer Pattern works a bit differently than the implementation

that we used on the Weather Station. The most obvious difference is that
WeatherData (our subject) now extends the Observable class and inherits the
add, delete, and notify Observer methods (among a few others). Here’s how
we use Java’s version:
For an Object to become an observer...
As usual, implement the Observer interface (this time the java.util.Observer
interface) and call addObserver() on any Observable object. Likewise, to
remove yourself as an observer, just call deleteObserver().
For the Observable to send notifications...
First of all you need to be Observable by extending the java.util.Observable
superclass. From there it is a two-step process:

① You first must call the setChanged() method to signify that the state
has changed in your object.
② Then, call one of two notifyObservers() methods:

For an Observer to receive notifications...
It implements the update method, as before, but the signature of the method is
a bit different:
If you want to “push” data to the observers, you can pass the data as a data
object to the notifyObservers(arg) method. If not, then the Observer has to

“pull” the data it wants from the Observable object passed to it. How? Let’s
rework the Weather Station and you’ll see.

The setChanged() method is used to signify that the state has changed and
that notifyObservers(), when it is called, should update its observers. If
notifyObservers() is called without first calling setChanged(), the observers
will NOT be notified. Let’s take a look behind the scenes of Observable to
see how this works:

BEHIND THE SCENES

Why is this necessary? The setChanged() method is meant to give you more
flexibility in how you update observers by allowing you to optimize the
notifications. For example, in our Weather Station, imagine if our
measurements were so sensitive that the temperature readings were
constantly fluctuating by a few tenths of a degree. That might cause the
WeatherData object to send out notifications constantly. Instead, we might
want to send out notifications only if the temperature changes more than half
a degree and we could call setChanged() only after that happened.
You might not use this functionality very often, but it’s there if you need it.
In either case, you need to call setChanged() for notifications to work. If this
functionality is something that is useful to you, you may also want to use the
clearChanged() method, which sets the changed state back to false, and the
hasChanged() method, which tells you the current state of the changed flag.

Reworking the Weather Station with the built-in
support
First, let’s rework WeatherData to use java.util.Observable

Now, let’s rework the CurrentConditionsDisplay

CODE MAGNETS

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!

Running the new code
Just to be sure, let’s run the new code...

Hmm, do you notice anything different? Look again...
You’ll see all the same calculations, but mysteriously, the order of the text
output is different. Why might this happen? Think for a minute before
reading on...
Never depend on order of evaluation of the Observer notifications
The java.util.Observable has implemented its notifyObservers() method such
that the Observers are notified in a different order than our own
implementation. Who’s right? Neither; we just chose to implement things in
different ways.
What would be incorrect, however, is if we wrote our code to depend on a
specific notification order. Why? Because if you need to change
Observable/Observer implementations, the order of notification could change
and your application would produce incorrect results. Now that’s definitely
not what we’d consider loosely coupled.

The dark side of java.util.Observable
Yes, good catch. As you’ve noticed, Observable is a class, not an interface,
and worse, it doesn’t even implement an interface. Unfortunately, the
java.util.Observable implementation has a number of problems that limit its
usefulness and reuse. That’s not to say it doesn’t provide some utility, but
there are some large potholes to watch out for.
Observable is a class
You already know from our principles this is a bad idea, but what harm does
it really cause?
First, because Observable is a class, you have to subclass it. That means you
can’t add on the Observable behavior to an existing class that already extends
another superclass. This limits its reuse potential (and isn’t that why we are

using patterns in the first place?).
Second, because there isn’t an Observable interface, you can’t even create
your own implementation that plays well with Java’s built-in Observer API.
Nor do you have the option of swapping out the java.util implementation for
another (say, a new, multithreaded implementation).
Observable protects crucial methods
If you look at the Observable API, the setChanged() method is protected. So
what? Well, this means you can’t call setChanged() unless you’ve subclassed
Observable. This means you can’t even create an instance of the Observable
class and compose it with your own objects, you have to subclass. The design
violates a second design principle here...favor composition over inheritance.
What to do?
Observable may serve your needs if you can extend java.util.Observable. On
the other hand, you may need to roll your own implementation as we did at
the beginning of the chapter. In either case, you know the Observer Pattern
well and you’re in a good position to work with any API that makes use of
the pattern.

Other places you’ll find the Observer Pattern in the
JDK
The java.util implementation of Observer/Observable is not the only place
you’ll find the Observer Pattern in the JDK; both JavaBeans and Swing also
provide their own implementations of the pattern. At this point you
understand enough about Observer to explore these APIs on your own;
however, let’s do a quick, simple Swing example just for the fun of it.

NOTE

If you’re curious about the Observer Pattern in JavaBeans, check out the
PropertyChangeListener interface.

A little background...
Let’s take a look at a simple part of the Swing API, the JButton. If you look
under the hood at JButton’s superclass, AbstractButton, you’ll see that it has
a lot of add/ remove listener methods. These methods allow you to add and

remove observers, or, as they are called in Swing, listeners, to listen for
various types of events that occur on the Swing component. For instance, an
ActionListener lets you “listen in” on any types of actions that might occur
on a button, like a button press. You’ll find various types of listeners all over
the Swing API.
A little life-changing application
Okay, our application is pretty simple. You’ve got a button that says “Should
I do it?” and when you click on that button the listeners (observers) get to
answer the question in any way they want. We’re implementing two such
listeners, called the AngelListener and the DevilListener. Here’s how the
application behaves:

And the code...
This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JFrame and set up our listeners. We’re
going to use inner classes for the listeners, which is a common technique in
Swing programming. If you aren’t up on inner classes or Swing, you might
want to review the “Getting GUI” chapter of Head First Java.

NOTE

Lambda expressions were added in Java 8. If you aren’t familiar with them, don’t worry
about it; you can continue using inner classes for your Swing observers.

Yes, you’re still using the Observer Pattern. By using a lambda expression
rather than an inner class, you’re just skipping the step of creating an
ActionListener object. With a lambda expression, you create a function object
instead, and this function object is the observer. When you pass that function
object to addActionListener(), Java ensures its signature matches
actionPerformed(), the one method in the ActionListener interface.
Later, when the button is clicked, the button object notifies its observers —
including the function objects created by the lambda expressions — that it’s
been clicked, and calls each listener’s actionPerformed() method.
Let’s take a look at how you’d use lambda expressions as observers to
simplify our previous code:

The updated code, using lambda expressions

Tools for your Design Toolbox
Welcome to the end of Chapter 2. You’ve added a few new things to your
OO toolbox...

BULLET POINTS

The Observer Pattern defines a one-to-many relationship between objects.
Subjects, or as we also know them, Observables, update Observers using a common
interface.
Observers are loosely coupled in that the Observable knows nothing about them,
other than that they implement the Observer interface.
You can push or pull data from the Observable when using the pattern (pull is
considered more “correct”).
Don’t depend on a specific order of notification for your Observers.
Java has several implementations of the Observer Pattern, including the general
purpose java.util.Observable.
Watch out for issues with the java.util.Observable implementation.
Don’t be afraid to create your own Observable implementation if needed.
Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.
You’ll also find the pattern in many other places, including JavaBeans and RMI.

DESIGN PRINCIPLE CHALLENGE

For each design principle, describe how the Observer Pattern makes use of the principle.

DESIGN PRINCIPLE

Identify the aspects of your
application that vary and
separate them from what
stays the same.

__

__

__

__

__

__

DESIGN PRINCIPLE

Program to an interface,
not an implementation.

__

__

__

__

__

__

DESIGN PRINCIPLE

Favor composition over
inheritance.

This is a hard one, hint: think about how observers and subjects
work together.

__

__

__

__

DESIGN PATTERNS CROSSWORD

Time to give your right brain something to do again! This time all of the solution words
are from Chapter 2.

Across Down

1. Observable is a ___________, not an interface.

3. Devil and Angel are _________ to the button.

4. Implement this method to get notified.

5. Jill got one of her own.

6. CurrentConditionsDisplay implements this
interface.

8. How to get yourself off the Observer list.

12. You forgot this if you’re not getting notified
when you think you should be.

15. One Subject likes to talk to _______ observers.

18. Don’t count on this for notification.

19. Temperature, humidity and __________.

2. Ron was both an Observer and a
_________.

3. You want to keep your coupling
_________.

7. He says you should go for it.

9. _________ can manage your observers for
you.

10. Java framework with lots of Observers.

11. Weather-O-Rama’s CEO named after this
kind of storm.

13. Observers like to be ___________ when
something new happens.

14. The WeatherData class __________ the

20. Observers are __________ on the Subject.

21. Program to an _________ not an
implementation.

22. A Subject is similar to a __________.

Subject interface.

16. He didn’t want any more ints, so he
removed himself.

17. CEO almost forgot the ________ index
display

19. Subject initially wanted to _________ all
the data to Observer.

SHARPEN YOUR PENCIL SOLUTION

Based on our first implementation, which of the following apply? (Choose all that
apply.)

A. We are coding to concrete implementations, not interfaces.

B. For every new display element we need to alter code.

C. We have no way to add display elements at run time.

D. The display elements don’t implement a common interface.

E. We haven’t encapsulated what changes.

F. We are violating encapsulation of the WeatherData class.

DESIGN PRINCIPLE CHALLENGE SOLUTION

DESIGN PRINCIPLE

Identify the aspects of your
application that vary and separate
them from what stays the same.

__The thing that varies in the Observer Pattern_______

__is the state of the Subject and the number and_____

__types of Observers. With this pattern, you can______

__vary the objects that are dependent on the state____

__of the Subject, without having to change that_______

__Subject. That’s called planning ahead!____________

DESIGN PRINCIPLE

Program to an interface, not an
implementation.

__Both the Subject and Observer use interfaces.______

__The Subject keeps track of objects
implementing____

__the Observer interface, while the
observers_________

__register with, and get notified by, the Subject_______

__interface. As we’ve seen, this keeps things nice
and______

__loosely coupled.___________________________

DESIGN PRINCIPLE

Favor composition over inheritance.

__The Observer Pattern uses composition to
compose__

__any number of Observers with their
Subjects.________

__These relationships aren’t set up by some kind
of_____

__inheritance hierarchy. No, they are set up at_____

__runtime by
composition!___________________________

CODE MAGNETS SOLUTION

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need! Here’s our
solution.

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 3. The Decorator Pattern:
Decorating Objects

Just call this chapter “Design Eye for the Inheritance Guy.” We’ll re-
examine the typical overuse of inheritance and you’ll learn how to decorate
your classes at runtime using a form of object composition. Why? Once you
know the techniques of decorating, you’ll be able to give your (or someone
else’s) objects new responsibilities without making any code changes to the
underlying classes.

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the fastest growing coffee
shop around. If you’ve seen one on your local corner, look across the
street; you’ll see another one.
Because they’ve grown so quickly, they’re scrambling to update their
ordering systems to match their beverage offerings.
When they first went into business they designed their classes like this...

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.
Here’s their first attempt...

BRAIN POWER

It’s pretty obvious that Starbuzz has created a maintenance nightmare for themselves.
What happens when the price of milk goes up? What do they do when they add a new
caramel topping?

Thinking beyond the maintenance problem, which of the design principles that we’ve
covered so far are they violating?

Hint: they’re violating two of them in a big way!

Well, let’s give it a try. Let’s start with the Beverage base class and add
instance variables to represent whether or not each beverage has milk, soy,
mocha, and whip...

Now let’s add in the subclasses, one for each beverage on the menu:

SHARPEN YOUR PENCIL

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage {

 public double cost() {

 }

}

public class DarkRoast extends Beverage {

 public DarkRoast() {

 description = "Most Excellent Dark Roast";

 }

 public double cost() {

 }

}

SHARPEN YOUR PENCIL

What requirements or other factors might change that will impact this design?

MASTER AND STUDENT...

Master: Grasshopper, it has been some time since our last meeting. Have you been deep
in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, I have learned that it doesn’t
always lead to the most flexible or maintainable designs.

Master: Ah yes, you have made some progress. So, tell me, my student, how then will
you achieve reuse if not through inheritance?

Student: Master, I have learned there are ways of “inheriting” behavior at runtime
through composition and delegation.

Master: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically at
compile time. In addition, all subclasses must inherit the same behavior. If however, I
can extend an object’s behavior through composition, then I can do this dynamically at
runtime.

Master: Very good, Grasshopper, you are beginning to see the power of composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects through
this technique, including responsibilities that were not even thought of by the designer of
the superclass. And, I don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining your
code?

Student: Well, that is what I was getting at. By dynamically composing objects, I can
add new functionality by writing new code rather than altering existing code. Because
I’m not changing existing code, the chances of introducing bugs or causing unintended
side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. I would like for you to go and
meditate further on this topic... Remember, code should be closed (to change) like the
lotus flower in the evening, yet open (to extension) like the lotus flower in the morning.

The Open-Closed Principle
Grasshopper is on to one of the most important design principles:

DESIGN PRINCIPLE

Classes should be open for extension, but closed for modification.

Come on in; we’re open. Feel free to extend our classes with any new
behavior you like. If your needs or requirements change (and we know they
will), just go ahead and make your own extensions.

Sorry, we’re closed. That’s right, we spent a lot of time getting this code

correct and bug free, so we can’t let you alter the existing code. It must
remain closed to modification. If you don’t like it, you can speak to the
manager.
Our goal is to allow classes to be easily extended to incorporate new
behavior without modifying existing code. What do we get if we
accomplish this? Designs that are resilient to change and flexible enough
to take on new functionality to meet changing requirements.

THERE ARE NO DUMB QUESTIONS

Q: Q: Open for extension and closed for modification? That sounds very contradictory. How can a design be
both?

A: A: That’s a very good question. It certainly sounds contradictory at first. After all, the less modifiable something
is, the harder it is to extend, right?
As it turns out, though, there are some clever OO techniques for allowing systems to be extended, even if we can’t
change the underlying code. Think about the Observer Pattern (in Chapter 2)... by adding new Observers, we can
extend the Subject at any time, without adding code to the Subject. You’ll see quite a few more ways of extending
behavior with other OO design techniques.

Q: Q: Okay, I understand Observable, but how do I generally design something to be extensible, yet closed for
modification?

A: A: Many of the patterns give us time-tested designs that protect your code from being modified by supplying a
means of extension. In this chapter you’ll see a good example of using the Decorator Pattern to follow the Open-
Closed principle.

Q: Q: How can I make every part of my design follow the Open-Closed Principle?

A: A: Usually, you can’t. Making OO design flexible and open to extension without the modification of existing
code takes time and effort. In general, we don’t have the luxury of tying down every part of our designs (and it
would probably be wasteful). Following the Open-Closed Principle usually introduces new levels of abstraction,
which adds complexity to our code. You want to concentrate on those areas that are most likely to change in your
designs and apply the principles there.

Q: Q: How do I know which areas of change are more important?

A: A: That is partly a matter of experience in designing OO systems and also a matter of knowing the domain you
are working in. Looking at other examples will help you learn to identify areas of change in your own designs.

While it may seem like a contradiction, there are techniques for allowing code to
be extended without direct modification.
Be careful when choosing the areas of code that need to be extended; applying the
Open-Closed Principle EVERYWHERE is wasteful and unnecessary, and can
lead to complex, hard-to-understand code.

Meet the Decorator Pattern
Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions and rigid designs, or we add functionality to the base class that

isn’t appropriate for some of the subclasses.
So, here’s what we’ll do instead: we’ll start with a beverage and “decorate” it
with the condiments at runtime. For example, if the customer wants a Dark
Roast with Mocha and Whip, then we’ll:

① Take a DarkRoast object
② Decorate it with a Mocha object
③ Decorate it with a Whip object
④ Call the cost() method and rely on delegation to add on the
condiment costs

Okay, but how do you “decorate” an object, and how does delegation come
into this? A hint: think of decorator objects as “wrappers.” Let’s see how this
works...

Constructing a drink order with Decorators
① We start with our DarkRoast object.

② The customer wants Mocha, so we create a Mocha object and wrap
it around the DarkRoast.

③ The customer also wants Whip, so we create a Whip decorator and
wrap Mocha with it.

NOTE

So, a DarkRoast wrapped in Mocha and Whip is still a Beverage and we can do
anything with it we can do with a DarkRoast, including call its cost() method.

④ Now it’s time to compute the cost for the customer. We do this by

calling cost() on the outermost decorator, Whip, and Whip is going to
delegate computing the cost to the objects it decorates. Once it gets a
cost, it will add on the cost of the Whip.

Okay, here’s what we know so far...
Decorators have the same supertype as the objects they decorate.
You can use one or more decorators to wrap an object.
Given that the decorator has the same supertype as the object it decorates,
we can pass around a decorated object in place of the original (wrapped)
object.
The decorator adds its own behavior either before and/or after delegating
to the object it decorates to do the rest of the job.

NOTE

Key point!

Objects can be decorated at any time, so we can decorate objects
dynamically at runtime with as many decorators as we like.

Now let’s see how this all really works by looking at the Decorator
Pattern definition and writing some code.

The Decorator Pattern defined
Let’s first take a look at the Decorator Pattern description:

NOTE

The Decorator Pattern attaches additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

BRAIN POWER

Before going further, think about how you’d implement the cost() method of the coffees
and the condiments. Also think about how you’d implement the getDescription() method
of the condiments.

Cubicle Conversation
Some confusion over Inheritance versus Composition

Sue: What do you mean?
Mary: Look at the class diagram. The CondimentDecorator is extending the
Beverage class. That’s inheritance, right?
Sue: True. I think the point is that it’s vital that the decorators have the same
type as the objects they are going to decorate. So here we’re using inheritance
to achieve the type matching, but we aren’t using inheritance to get behavior.
Mary: Okay, I can see how decorators need the same “interface” as the
components they wrap because they need to stand in place of the component.
But where does the behavior come in?
Sue: When we compose a decorator with a component, we are adding new
behavior. We are acquiring new behavior not by inheriting it from a
superclass, but by composing objects together.
Mary: Okay, so we’re subclassing the abstract class Beverage in order to
have the correct type, not to inherit its behavior. The behavior comes in
through the composition of decorators with the base components as well as

other decorators.
Sue: That’s right.
Mary: Ooooh, I see. And because we are using object composition, we get a
whole lot more flexibility about how to mix and match condiments and
beverages. Very smooth.
Sue: Yes, if we rely on inheritance, then our behavior can only be determined
statically at compile time. In other words, we get only whatever behavior the
superclass gives us or that we override. With composition, we can mix and
match decorators any way we like... at runtime.
Mary: And as I understand it, we can implement new decorators at any time
to add new behavior. If we relied on inheritance, we’d have to go in and
change existing code any time we wanted new behavior.
Sue: Exactly.
Mary: I just have one more question. If all we need to inherit is the type of
the component, how come we didn’t use an interface instead of an abstract
class for the Beverage class?
Sue: Well, remember, when we got this code, Starbuzz already had an
abstract Beverage class. Traditionally the Decorator Pattern does specify an
abstract component, but in Java, obviously, we could use an interface. But we
always try to avoid altering existing code, so don’t “fix” it if the abstract class
will work just fine.

New barista training
Make a picture for what happens when the order is for a “double mocha soy
latte with whip” beverage. Use the menu to get the correct prices, and draw
your picture using the same format we used earlier (from a few pages back):

SHARPEN YOUR PENCIL

Draw your picture here.

Writing the Starbuzz code
It’s time to whip this design into some real code.
Let’s start with the Beverage class, which doesn’t need to change from
Starbuzz’s original design. Let’s take a look:

Beverage is simple enough. Let’s implement the abstract class for the
Condiments (Decorator) as well:

Coding beverages
Now that we’ve got our base classes out of the way, let’s implement some
beverages. We’ll start with Espresso. Remember, we need to set a
description for the specific beverage and also implement the cost()
method.

Coding condiments
If you look back at the Decorator Pattern class diagram, you’ll see we’ve
now written our abstract component (Beverage), we have our concrete
components (HouseBlend), and we have our abstract decorator
(CondimentDecorator). Now it’s time to implement the concrete

decorators. Here’s Mocha:

On the next page we’ll actually instantiate the beverage and wrap it with all
its condiments (decorators), but first...

EXERCISE

Write and compile the code for the other Soy and Whip condiments. You’ll need them to
finish and test the application.

Serving some coffees
Congratulations. It’s time to sit back, order a few coffees, and marvel at the
flexible design you created with the Decorator Pattern.
Here’s some test code*to make orders:

* We’re going to see a much better way of creating decorated objects when we cover
the Factory and Builder Design Patterns. Please note that the Builder Pattern is covered
in the Appendix.

Now, let’s get those orders in:

THERE ARE NO DUMB QUESTIONS

Q: Q: I’m a little worried about code that might test for a specific concrete component — say, HouseBlend —
and do something, like issue a discount. Once I’ve wrapped the HouseBlend with decorators, this isn’t
going to work anymore.

A: A: That is exactly right. If you have code that relies on the concrete component’s type, decorators will break that

code. As long as you only write code against the abstract component type, the use of decorators will remain
transparent to your code. However, once you start writing code against concrete components, you’ll want to
rethink your application design and your use of decorators.

Q: Q: Wouldn’t it be easy for some client of a beverage to end up with a decorator that isn’t the outermost
decorator? Like if I had a DarkRoast with Mocha, Soy, and Whip, it would be easy to write code that
somehow ended up with a reference to Soy instead of Whip, which means it would not include Whip in the
order.

A: A: You could certainly argue that you have to manage more objects with the Decorator Pattern and so there is an
increased chance that coding errors will introduce the kinds of problems you suggest. However, decorators are
typically created by using other patterns like Factory and Builder. Once we’ve covered these patterns, you’ll see
that the creation of the concrete component with its decorator is “well encapsulated” and doesn’t lead to these
kinds of problems.

Q: Q: Can decorators know about the other decorations in the chain? Say I wanted my getDescription()
method to print “Whip, Double Mocha” instead of “Mocha, Whip, Mocha.” That would require that my
outermost decorator know all the decorators it is wrapping.

A: A: Decorators are meant to add behavior to the object they wrap. When you need to peek at multiple layers into
the decorator chain, you are starting to push the decorator beyond its true intent. Nevertheless, such things are
possible. Imagine a CondimentPrettyPrint decorator that parses the final decription and can print “Mocha, Whip,
Mocha” as “Whip, Double Mocha.” Note that getDescription() could return an ArrayList of descriptions to make
this easier.

SHARPEN YOUR PENCIL

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage
class: setSize() and getSize(). They’d also like for the condiments to be charged
according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for tall,
grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?
public abstract class Beverage {

 public enum Size { TALL, GRANDE, VENTI };

 Size size = Size.TALL;

 String description = "Unknown Beverage";

 public String getDescription() {

 return description;

 }

 public void setSize(Size size) {

 this.size = size;

 }

 public Size getSize() {

 return this.size;

 }

 public abstract double cost();

}

Real World Decorators: Java I/O
The large number of classes in the java.io package is... overwhelming. Don’t

feel alone if you said “whoa” the first (and second and third) time you looked
at this API. But now that you know the Decorator Pattern, the I/O classes
should make more sense since the java.io package is largely based on
Decorator. Here’s a typical set of objects that use decorators to add
functionality to reading data from a file:

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

Decorating the java.io classes

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.
You’ll see that the output streams have the same design. And you’ve
probably already found that the Reader/Writer streams (for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to figure out what’s going on).
Java I/O also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes that
can be overwhelming to a developer trying to use the Decorator-based API.
But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Writing your own Java I/O Decorator
Okay, you know the Decorator Pattern, you’ve seen the I/O class diagram.
You should be ready to write your own input decorator.
How about this: write a decorator that converts all uppercase characters to
lowercase in the input stream. In other words, if we read in “I know the
Decorator Pattern therefore I RULE!” then your decorator converts this to “i
know the decorator pattern therefore i rule!”

REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Test out your new Java I/O Decorator
Write some quick code to test the I/O decorator:

http://wickedlysmart.com/head-first-design-patterns/

Give it a spin

PATTERNS EXPOSED

This week’s interview: Confessions of a Decorator

Head First: Welcome, Decorator Pattern. We’ve heard that you’ve been a bit down on
yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but you
know, I’ve got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to designs, that
much is for sure, but I also have a dark side. You see, I can sometimes add a lot of small

classes to a design and this occasionally results in a design that’s less than
straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for people to
understand at first. But if they just saw the classes as a set of wrappers around an
InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and improving this is
just a matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see, people
sometimes take a piece of client code that relies on specific types and introduce
decorators without thinking through everything. Now, one great thing about me is that
you can usually insert decorators transparently and the client never has to know it’s
dealing with a decorator. But like I said, some code is dependent on specific types and
when you start introducing decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful when
inserting decorators. I don’t think this is a reason to be too down on yourself.

Decorator: I know, I try not to be. I also have the problem that introducing decorators
can increase the complexity of the code needed to instantiate the component. Once
you’ve got decorators, you’ve got to not only instantiate the component, but also wrap it
with who knows how many decorators.

HeadFirst: I’ll be interviewing the Factory and Builder patterns next week — I hear
they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs and
staying true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox
You’ve got another chapter under your belt and a new principle and pattern in
the toolbox.

BULLET POINTS

Inheritance is one form of extension, but not necessarily the best way to achieve
flexibility in our designs.
In our designs we should allow behavior to be extended without the need to modify
existing code.
Composition and delegation can often be used to add new behaviors at runtime.
The Decorator Pattern provides an alternative to subclassing for extending behavior.
The Decorator Pattern involves a set of decorator classes that are used to wrap
concrete components.
Decorator classes mirror the type of the components they decorate. (In fact, they are
the same type as the components they decorate, either through inheritance or
interface implementation.)
Decorators change the behavior of their components by adding new functionality
before and/or after (or even in place of) method calls to the component.
You can wrap a component with any number of decorators.
Decorators are typically transparent to the client of the component; that is, unless the
client is relying on the component’s concrete type.
Decorators can result in many small objects in our design, and overuse can be
complex.

SHARPEN YOUR PENCIL SOLUTION

Write the cost() methods for the following classes (pseudo-Java is okay). Here’s our
solution:

public class Beverage {

// declare instance variables for milkCost,

// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha

// and whip.

public double cost() {

 float condimentCost = 0.0;

 if (hasMilk()) {

 condimentCost += milkCost;

 }

 if (hasSoy()) {

 condimentCost += soyCost;

 }

 if (hasMocha()) {

 condimentCost += mochaCost;

 }

 if (hasWhip()) {

 condimentCost += whipCost;

 }

 return condimentCost;

 }

}

public class DarkRoast extends Beverage {

 public DarkRoast() {

 description = "Most Excellent Dark Roast";

 }

 public double cost() {

 return 1.99 + super.cost();

 }

}

SHARPEN YOUR PENCIL SOLUTION

New barista training

“double mocha soy latte with whip”

SHARPEN YOUR PENCIL SOLUTION

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz
saw this as an intrinsic part of the coffee class, so they’ve added two methods to the
Beverage class: setSize() and getSize(). They’d also like for the condiments to be
charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for
tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements? Here’s

our solution.

Chapter 4. The Factory Pattern:
Baking with OO Goodness

Get ready to bake some loosely coupled OO designs. There is more to
making objects than just using the new operator. You’ll learn that
instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out
how Factory Patterns can help save you from embarrassing dependencies.

When you see “new,” think “concrete.”
Yes, when you use new you are certainly instantiating a concrete class, so
that’s definitely an implementation, not an interface. And it’s a good
question; you’ve learned that tying your code to a concrete class can make it
more fragile and less flexible.

When you have a whole set of related concrete classes, often you’re forced to
write code like this:

Here we’ve got several concrete classes being instantiated, and the decision
of which to instantiate is made at runtime depending on some set of
conditions.
When you see code like this, you know that when it comes time for changes
or extensions, you’ll have to reopen this code and examine what needs to be
added (or deleted). Often this kind of code ends up in several parts of the
application making maintenance and updates more difficult and error-prone.

What’s wrong with “new”?

Technically there’s nothing wrong with new. After all, it’s a fundamental part
of Java. The real culprit is our old friend CHANGE and how change impacts
our use of new.
By coding to an interface, you know you can insulate yourself from a lot of
changes that might happen to a system down the road. Why? If your code is
written to an interface, then it will work with any new classes implementing
that interface through polymorphism. However, when you have code that
makes use of lots of concrete classes, you’re looking for trouble because that
code may have to be changed as new concrete classes are added. So, in other
words, your code will not be “closed for modification.” To extend it with new
concrete types, you’ll have to reopen it.

NOTE

Remember that designs should be “open for extension but closed for modification” - see
Chapter 3 for a review.

So what can you do? It’s times like these that you can fall back on OO
Design Principles to look for clues. Remember, our first principle deals with
change and guides us to identify the aspects that vary and separate them from
what stays the same.

BRAIN POWER

How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in
Objectville you might end up writing some code like this:

But you need more than one type of pizza...
So then you’d add some code that determines the appropriate type of pizza
and then goes about making the pizza:

But the pressure is on to add more pizza types
You realize that all of your competitors have added a couple of trendy pizzas

to their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to
keep up with the competition, so you’ll add these items to your menu. And
you haven’t been selling many Greek Pizzas lately, so you decide to take that
off the menu:

Clearly, dealing with which concrete class is instantiated is really messing up
our orderPizza() method and preventing it from being closed for
modification. But now that we know what is varying and what isn’t, it’s
probably time to encapsulate it.

Encapsulating object creation
So now we know we’d be better off moving the object creation out of the
orderPizza() method. But how? Well, what we’re going to do is take the
creation code and move it out into another object that is only going to be
concerned with creating pizzas.

We’ve got a name for this new object: we call it a Factory.
Factories handle the details of object creation. Once we have a
SimplePizzaFactory, our orderPizza() method just becomes a client of that
object. Any time it needs a pizza it asks the pizza factory to make one. Gone
are the days when the orderPizza() method needs to know about Greek versus
Clam pizzas. Now the orderPizza() method just cares that it gets a pizza that
implements the Pizza interface so that it can call prepare(), bake(), cut(), and
box().
We’ve still got a few details to fill in here; for instance, what does the
orderPizza() method replace its creation code with? Let’s implement a simple
factory for the pizza store and find out...

Building a simple pizza factory
We’ll start with the factory itself. What we’re going to do is define a class
that encapsulates the object creation for all pizzas. Here it is...

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of this? It looks like we are just pushing the problem off to another object.

A: A: One thing to remember is that the SimplePizzaFactory may have many clients. We’ve only seen the
orderPizza() method; however, there may be a PizzaShopMenu class that uses the factory to get pizzas for their
current description and price. We might also have a HomeDelivery class that handles pizzas in a different way
than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have only one place to make modifications when the
implementation changes.

Don’t forget, we are also just about to remove the concrete instantiations from our client code.

Q: Q: I’ve seen a similar design where a factory like this is defined as a static method. What is the difference?

A: A: Defining a simple factory as a static method is a common technique and is often called a static factory. Why
use a static method? Because you don’t need to instantiate an object to make use of the create method. But
remember it also has the disadvantage that you can’t subclass and change the behavior of the create method.

Reworking the PizzaStore class

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

BRAIN POWER

Q: We know that object composition allows us to change behavior dynamically at runtime (among other things)
because we can swap in and out implementations. How might we be able to use that in the PizzaStore? What
factory implementations might we be able to swap in and out?

A: We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s not
forget New Haven, too)

The Simple Factory defined

Pattern Honorable Mention
The Simple Factory isn’t actually a Design Pattern; it’s more of a
programming idiom. But it is commonly used, so we’ll give it a Head First
Pattern Honorable Mention. Some developers do mistake this idiom for the
“Factory Pattern,” so the next time there is an awkward silence between you
and another developer, you’ve got a nice topic to break the ice.
Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t
check out how it’s put together. Let’s take a look at the class diagram of our
new Pizza Store:

Think of Simple Factory as a warm up. Next, we’ll explore two heavy-duty
patterns that are both factories. But don’t worry, there’s more pizza to come!

NOTE

*Just another reminder: in design patterns, the phrase “implement an interface” does
NOT always mean “write a class that implements a Java interface, by using the
‘implements’ keyword in the class declaration.” In the general use of the phrase, a
concrete class implementing a method from a supertype (which could be a class OR
interface) is still considered to be “implementing the interface” of that supertype.

Franchising the pizza store
Your Objectville PizzaStore has done so well that you’ve trounced the
competition and now everyone wants a PizzaStore in their own
neighborhood. As the franchiser, you want to ensure the quality of the
franchise operations and so you want them to use your time-tested code.
But what about regional differences? Each franchise might want to offer
different styles of pizzas (New York, Chicago, and California, to name a
few), depending on where the franchise store is located and the tastes of the
local pizza connoisseurs.

We’ve seen one approach...
If we take out SimplePizzaFactory and create three different factories —
NYPizzaFactory, ChicagoPizzaFactory and CaliforniaPizzaFactory — then
we can just compose the PizzaStore with the appropriate factory and a

franchise is good to go. That’s one approach.
Let’s see what that would look like...

But you’d like a little more quality control...
So you test-marketed the SimpleFactory idea, and what you found was that
the franchises were using your factory to create pizzas, but starting to employ
their own home-grown procedures for the rest of the process: they’d bake
things a little differently, they’d forget to cut the pizza and they’d use third-
party boxes.
Rethinking the problem a bit, you see that what you’d really like to do is
create a framework that ties the store and the pizza creation together, yet still
allows things to remain flexible.
In our early code, before the SimplePizzaFactory, we had the pizza-making
code tied to the PizzaStore, but it wasn’t flexible. So, how can we have our
pizza and eat it too?

A framework for the pizza store
There is a way to localize all the pizza-making activities to the PizzaStore
class, and yet give the franchises freedom to have their own regional style.
What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore subclass
for each regional style.
First, let’s look at the changes to the PizzaStore:

Now we’ve got a store waiting for subclasses; we’re going to have a subclass
for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

Allowing the subclasses to decide
Remember, the PizzaStore already has a well-honed order system in the
orderPizza() method and you want to ensure that it’s consistent across all
franchises.
What varies among the regional PizzaStores is the style of pizzas they make
— New York Pizza has thin crust, Chicago Pizza has thick, and so on — and
we are going to push all these variations into the createPizza() method and

make it responsible for creating the right kind of pizza. The way we do this is
by letting each subclass of PizzaStore define what the createPizza() method
looks like. So, we will have a number of concrete subclasses of PizzaStore,
each with its own pizza variations, all fitting within the PizzaStore framework
and still making use of the well-tuned orderPizza() method.

Well, think about it from the point of view of the PizzaStore’s orderPizza()
method: it is defined in the abstract PizzaStore, but concrete types are only
created in the subclasses.

Now, to take this a little further, the orderPizza() method does a lot of things
with a Pizza object (like prepare, bake, cut, box), but because Pizza is
abstract, orderPizza() has no idea what real concrete classes are involved. In
other words, it’s decoupled!

When orderPizza() calls createPizza(), one of your subclasses will be called
into action to create a pizza. Which kind of pizza will be made? Well, that’s
decided by the choice of pizza store you order from, NYStylePizzaStore or
ChicagoStylePizzaStore.

So, is there a real-time decision that subclasses make? No, but from the
perspective of orderPizza(), if you chose a NYStylePizzaStore, that subclass
gets to determine which pizza is made. So the subclasses aren’t really
“deciding” — it was you who decided by choosing which store you wanted
— but they do determine which kind of pizza gets made.

Let’s make a PizzaStore
Being a franchise has its benefits. You get all the PizzaStore functionality for
free. All the regional stores need to do is subclass PizzaStore and supply a
createPizza() method that implements their style of Pizza. We’ll take care of
the big three pizza styles for the franchisees.
Here’s the New York regional style:

NOTE

* Note that the orderPizza() method in the superclass has no clue which Pizza we are
creating; it just knows it can prepare, bake, cut, and box it!

Once we’ve got our PizzaStore subclasses built, it will be time to see about
ordering up a pizza or two. But before we do that, why don’t you take a crack
at building the Chicago Style and California Style pizza stores on the next
page.

SHARPEN YOUR PENCIL

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to
franchise! Write the Chicago and California PizzaStore implementations here:

Declaring a factory method
With just a couple of transformations to the PizzaStore we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

CODE UP CLOSE

A factory method handles object creation and encapsulates it in a subclass. This
decouples the client code in the superclass from the object creation code in the subclass.

Let’s see how it works: ordering pizzas with the pizza
factory method

So how do they order?
① First, Joel and Ethan need an instance of a PizzaStore. Joel needs to
instantiate a ChicagoPizzaStore and Ethan needs a NYPizzaStore.
② With a PizzaStore in hand, both Ethan and Joel call the orderPizza()
method and pass in the type of pizza they want (cheese, veggie, and so
on).
③ To create the pizzas, the createPizza() method is called, which is
defined in the two subclasses NYPizzaStore and ChicagoPizzaStore. As
we defined them, the NYPizzaStore instantiates a NY style pizza, and the
ChicagoPizzaStore instantiates a Chicago style pizza. In either case, the
Pizza is returned to the orderPizza() method.
④ The orderPizza() method has no idea what kind of pizza was created,
but it knows it is a pizza and it prepares, bakes, cuts, and boxes it for
Ethan and Joel.

Let’s check out how these pizzas are really made to
order...

Behind the Scenes

We’re just missing one thing: PIZZA!

Our PizzaStore isn’t going to be very popular without
some pizzas, so let’s implement them

NOTE

REMEMBER: we don’t provide import and package statements in the code listings. Get
the complete source code from the wickedlysmart website. You’ll find the URL on page
xxxiii in the Intro.

Now we just need some concrete subclasses... how about
defining New York and Chicago style cheese pizzas?

You’ve waited long enough. Time for some pizzas!

It’s finally time to meet the Factory Method Pattern
All factory patterns encapsulate object creation. The Factory Method Pattern
encapsulates object creation by letting subclasses decide what objects to
create. Let’s check out these class diagrams to see who the players are in this

pattern:

The Creator classes

The Product classes

Another perspective: parallel class hierarchies
We’ve seen that the factory method provides a framework by supplying an
orderPizza() method that is combined with a factory method. Another way to
look at this pattern as a framework is in the way it encapsulates product
knowledge into each creator.

Let’s look at the two parallel class hierarchies and see how they relate:

NOTE

The factory method is the key to encapsulating this knowledge.

DESIGN PUZZLE

We need another kind of pizza for those crazy Californians (crazy in a good way, of
course). Draw another parallel set of classes that you’d need to add a new California
region to our PizzaStore.

Okay, now write the five most bizarre things you can think of to put on a pizza. Then,
you’ll be ready to go into business making pizza in California!

Factory Method Pattern defined
It’s time to roll out the official definition of the Factory Method Pattern:

NOTE

The Factory Method Pattern defines an interface for creating an object, but lets
subclasses decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to
encapsulate the instantiations of concrete types. Looking at the class diagram
below, you can see that the abstract Creator gives you an interface with a
method for creating objects, also known as the “factory method.” Any other
methods implemented in the abstract Creator are written to operate on
products produced by the factory method. Only subclasses actually
implement the factory method and create products.
As in the official definition, you’ll often hear developers say that the Factory
Method lets subclasses decide which class to instantiate. They say “decide”
not because the pattern allows subclasses themselves to decide at runtime, but
because the creator class is written without knowledge of the actual products
that will be created, which is decided purely by the choice of the subclass that
is used.

NOTE

You could ask them what “decides” means, but we bet you now understand this better
than they do!

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of the Factory Method Pattern when you only have one ConcreteCreator?

A: A: The Factory Method Pattern is useful if you’ve only got one concrete creator because you are decoupling the
implementation of the product from its use. If you add additional products or change a product’s implementation,
it will not affect your Creator (because the Creator is not tightly coupled to any ConcreteProduct).

Q: Q: Would it be correct to say that our NY and Chicago stores are implemented using Simple Factory?
They look just like it.

A: A: They’re similar, but used in different ways. Even though the implementation of each concrete store looks a lot
like the SimplePizzaFactory, remember that the concrete stores are extending a class that has defined
createPizza() as an abstract method. It is up to each store to define the behavior of the createPizza() method. In
Simple Factory, the factory is another object that is composed with the PizzaStore.

Q: Q: Are the factory method and the Creator always abstract?

A: A: No, you can define a default factory method to produce some concrete product. Then you always have a means
of creating products even if there are no subclasses of the Creator.

Q: Q: Each store can make four different kinds of pizzas based on the type passed in. Do all concrete creators
make multiple products, or do they sometimes just make one?

A: A: We implemented what is known as the parameterized factory method. It can make more than one object based
on a parameter passed in, as you noticed. Often, however, a factory just produces one object and is not
parameterized. Both are valid forms of the pattern.

Q: Q: Your parameterized types don’t seem “type-safe.” I’m just passing in a String! What if I asked for a
“CalmPizza”?

A: A: You are certainly correct and that would cause, what we call in the business, a “runtime error.” There are
several other more sophisticated techniques that can be used to make parameters more “type safe,” or, in other
words, to ensure errors in parameters can be caught at compile time. For instance, you can create objects that
represent the parameter types, use static constants, or use enums.

Q: Q: I’m still a bit confused about the difference between Simple Factory and Factory Method. They look
very similar, except that in Factory Method, the class that returns the pizza is a subclass. Can you explain?

A: A: You’re right that the subclasses do look a lot like Simple Factory; however, think of Simple Factory as a one-
shot deal, while with Factory Method you are creating a framework that lets the subclasses decide which
implementation will be used. For example, the orderPizza() method in the Factory Method provides a general
framework for creating pizzas that relies on a factory method to actually create the concrete classes that go into
making a pizza. By subclassing the PizzaStore class, you decide what concrete products go into making the pizza
that orderPizza() returns. Compare that with SimpleFactory, which gives you a way to encapsulate object
creation, but doesn’t give you the flexibility of the Factory Method because there is no way to vary the products
you’re creating.

MASTER AND STUDENT...

Master: Grasshopper, tell me how your training is going.

Student: Master, I have taken my study of “encapsulate what varies” further.

Master: Go on...

Student: I have learned that one can encapsulate the code that creates objects. When
you have code that instantiates concrete classes, this is an area of frequent change. I’ve

learned a technique called “factories” that allows you to encapsulate this behavior of
instantiation.

Master: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one object or method, I
avoid duplication in my code and provide one place to perform maintenance. That also
means clients depend only upon interfaces rather than the concrete classes required to
instantiate objects. As I have learned in my studies, this allows me to program to an
interface, not an implementation, and that makes my code more flexible and extensible
in the future.

Master: Yes Grasshopper, your OO instincts are growing. Do you have any questions
for your master today?

Student: Master, I know that by encapsulating object creation I am coding to
abstractions and decoupling my client code from actual implementations. But my factory
code must still use concrete classes to instantiate real objects. Am I not pulling the wool
over my own eyes?

Master: Grasshopper, object creation is a reality of life; we must create objects or we
will never create a single Java program. But, with knowledge of this reality, we can
design our code so that we have corralled this creation code like the sheep whose wool
you would pull over your eyes. Once corralled, we can protect and care for the creation
code. If we let our creation code run wild, then we will never collect its “wool.”

Student: Master, I see the truth in this.

Master: As I knew you would. Now, please go and meditate on object dependencies.

A very dependent PizzaStore

SHARPEN YOUR PENCIL

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

Looking at object dependencies
When you directly instantiate an object, you are depending on its concrete
class. Take a look at our very dependent PizzaStore one page back. It creates
all the pizza objects right in the PizzaStore class instead of delegating to a
factory.
If we draw a diagram representing that version of the PizzaStore and all the
objects it depends on, here’s what it looks like:

The Dependency Inversion Principle
It should be pretty clear that reducing dependencies to concrete classes in our
code is a “good thing.” In fact, we’ve got an OO design principle that
formalizes this notion; it even has a big, formal name: Dependency Inversion
Principle.

NOTE

Yet another phrase you can use to impress the execs in the room! Your raise will more
than offset the cost of this book, and you’ll gain the admiration of your fellow
developers.

Here’s the general principle:

DESIGN PRINCIPLE

Depend upon abstractions. Do not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an interface, not an
implementation,” right? It is similar; however, the Dependency Inversion
Principle makes an even stronger statement about abstraction. It suggests that
our high-level components should not depend on our low-level components;
rather, they should both depend on abstractions.

NOTE

A “high-level” component is a class with behavior defined in terms of other, “low-level”
components.

For example, PizzaStore is a high-level component because its behavior is defined in
terms of pizzas - it creates all the different pizza objects, and prepares, bakes, cuts, and
boxes them, while the pizzas it uses are low-level components.

But what the heck does that mean?
Well, let’s start by looking again at the pizza store diagram on the previous
page. PizzaStore is our “high-level component” and the pizza
implementations are our “low-level components,” and clearly the PizzaStore
is dependent on the concrete pizza classes.
Now, this principle tells us we should instead write our code so that we are
depending on abstractions, not concrete classes. That goes for both our high-
level modules and our low-level modules.
But how do we do this? Let’s think about how we’d apply this principle to
our Very Dependent PizzaStore implementation...

Applying the Principle
Now, the main problem with the Very Dependent PizzaStore is that it
depends on every type of pizza because it actually instantiates concrete types
in its orderPizza() method.
While we’ve created an abstraction, Pizza, we’re nevertheless creating
concrete Pizzas in this code, so we don’t get a lot of leverage out of this
abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.
So, after we’ve applied the Factory Method, our diagram looks like this:

After applying the Factory Method, you’ll notice that our high-level
component, the PizzaStore, and our low-level components, the pizzas, both
depend on Pizza, the abstraction. Factory Method is not the only technique
for adhering to the Dependency Inversion Principle, but it is one of the more
powerful ones.

Where’s the “inversion” in Dependency Inversion Principle?
The “inversion” in the name Dependency Inversion Principle is there because
it inverts the way you typically might think about your OO design. Look at
the diagram on the previous page. Notice that the low-level components now
depend on a higher level abstraction. Likewise, the high-level component is
also tied to the same abstraction. So, the top-to-bottom dependency chart we
drew a couple of pages back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.
Let’s also walk through the thinking behind the typical design process and
see how introducing the principle can invert the way we think about the
design...

Inverting your thinking...

