OREILLY"

Head First
Design Pattern

A Brain-Friendly Guide

| g Learn why everything
Avoid those r@ '. your friends know about
embarrassing | . | Factory pattern is
coupling mistakes |) & -~ probably e

Wrong

Load the patterns
that matter straight
%, into your brain

e of
Discover the secrets
of the Patterns Guru i

See why Jim's

Find out how L = | lovelife improved
Starbuzz Coffee doubled L= o when he cut down
their stock price with S A his inheritance
the Decorator pattern -

Eric Freeman & Elisabeth Robson
with Kathy Sierra & Bert Bates

Head First: Design Patterns

Eric Freeman
Elisabeth Robson
Bert Bates

Kathy Sierra

Beijing ¢ Boston ¢ Farnham ¢ Sebastopol ¢ Tokyo

To the Gang of Four, whose insight and expertise in capturing and communicating
Design Patterns has changed the face of software design forever, and bettered the lives
of developers throughout the world.

But seriously, when are we going to see a second edition? After all, it’s been only ten
twenty years.

Praise for Head First Design
Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t
stop. I took it to the gym and I expect people saw me smiling a lot while I was
exercising and reading. This is tres ‘cool’. It is fun, but they cover a lot of ground and
they are right to the point. I’'m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of
Design Patterns with the rest of the Gang of Four — Richard
Helm, Ralph Johnson and John Vlissides

“Head First Design Patterns manages to mix fun, belly-laughs, insight, technical
depth, and great practical advice in one entertaining and thought-provoking read.
Whether you are new to design patterns, or have been using them for years, you are
sure to get something from visiting Objectville.”

— Richard Helm, coauthor of Design Patterns with rest of the
Gang of Four — Erich Gamma, Ralph Johnson and John
Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”
— Ward Cunningham, inventor of the Wiki and founder of the
Hillside Group

“This book is close to perfect, because of the way it combines expertise and
readability. It speaks with authority and it reads beautifully. It’s one of the very few
software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10
books in this category, at the outside.)”

— David Gelernter, Professor of Computer Science, Yale
University, and author of Mirror Worlds and Machine Beauty

“A Nose Dive into the realm of patterns, a land where complex things become simple,
but where simple things can also become complex. I can think of no better tour guides
than Eric and Elisabeth.”

— Miko Matsumura, Industry Analyst, The Middleware
Company Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”
— Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized
that not only is the book technically accurate, it is the easiest-to-understand

introduction to design patterns that I have seen.”

— Dr. Timothy A. Budd, Associate Professor of Computer
Science at Oregon State University and author of more than a
dozen books, including C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth
have out run him. Seriously...this is one of the funniest and smartest books on software
design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development,
ESPN

More Praise for Head First Design
Patterns

“Great code design is, first and foremost, great information design. A code designer is
teaching a computer how to do something, and it is no surprise that a great teacher of
computers should turn out to be a great teacher of programmers. This book’s admirable
clarity, humor, and substantial doses of clever make it the sort of book that helps even
non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing and author of Down
and Out in the Magic Kingdom and Someone Comes to Town,
Someone Leaves Town

“There’s an old saying in the computer and videogame business — well, it can’t be
that old because the discipline is not all that old — and it goes something like this:
Design is Life. What’s particularly curious about this phrase is that even today almost
no one who works at the craft of creating electronic games can agree on what it means
to ‘design’ a game. Is the designer a software engineer? An art director? A storyteller?
An architect or a builder? A pitch person or a visionary? Can an individual indeed be
in part all of these? And most importantly, who the %$!#&* cares?

It has been said that the ‘designed by’ credit in interactive entertainment is akin to the
‘directed by’ credit in filmmaking, which in fact allows it to share DNA with perhaps
the single most controversial, overstated, and too often entirely lacking in humility
credit grab ever propagated on commercial art. Good company, eh? Yet if Design is
Life, then perhaps it is time we spent some quality cycles thinking about what it is.
Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the
code curtain for us in Head First Design Patterns. I’m not sure either of them cares all
that much about the PlayStation or X-Box, nor should they. Yet they do address the
notion of design at a significantly honest level such that anyone looking for ego
reinforcement of his or her own brilliant auteurship is best advised not to go digging
here where truth is stunningly revealed. Sophists and circus barkers need not apply.
Next-generation literati, please come equipped with a pencil.”

— Ken Goldstein, Executive Vice President & Managing
Director, Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right
reference for practical development strategies — gets my brain going without having
to slog through a bunch of tired, stale professor-speak.”

— Travis Kalanick, CEO and cofounder of Uber and Member of
the MIT TR100

“This book combines good humor, great examples, and in-depth knowledge of Design
Patterns in such a way that makes learning fun. Being in the entertainment technology
industry, I am intrigued by the Hollywood Principle and the home theater Facade
Pattern, to name a few. The understanding of Design Patterns not only helps us create
reusable and maintainable quality software, but also helps sharpen our problem-solving
skills across all problem domains. This book is a must-read for all computer
professionals and students.”

— Newton Lee, Founder and Editor-in-Chief, Association for

Computing Machinery’s (ACM) Computers in Entertainment
(acmcie.org)

Praise for other books by Eric
Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”
— Satish Kumar

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking
practices in web page markup and presentation. It correctly anticipates readers’
puzzlements and handles them just in time. The highly graphic and incremental
approach precisely mimics the best way to learn this stuff: make a small change and
see it in the browser to understand what each new item means.”

— Danny Goodman, author of Dynamic HTML: The Definitive
Guide
“The Web would be a much better place if every HTML author started off by reading
this book.”
— L. David Baron, Technical Lead, Layout & CSS, Mozilla
Corporation http://dbaron.org/

“My wife stole the book. She’s never done any web design, so she needed a book like
Head First HTML and CSS to take her from beginning to end. She now has a list of
websites she wants to build — for our son’s class, our family...If I’'m lucky, I’ll get the
book back when she’s done.”

— David Kaminsky, Master Inventor, IBM
“This book takes you behind the scenes of JavaScript and leaves you with a deep
understanding of how this remarkable programming language works.”
— Chris Fuselier, Engineering Consultant

“I wish I’d had Head First JavaScript Programming when I was starting out!”

— Chris Fuselier, Engineering Consultant
“The Head First series utilizes elements of modern learning theory, including
constructivism, to bring readers up to speed quickly. The authors have proven with this

book that expert-level content can be taught quickly and efficiently. Make no mistake
here, this is a serious JavaScript book, and yet, fun reading!”

— Frank Moore, Web designer and developer
“Looking for a book that will keep you interested (and laughing) but teach you some
serious programming skills? Head First JavaScript Programming is it!”

— Tim Williams, software entrepreneur

http://dbaron.org/

Other O’Relilly books by Eric Freeman and Elisabeth Robson

Head First JavaScript Programming
Head First HTML and CSS
Head First HTML5 Programming

Other related books from O’Reilly

Head First Java

Head First EJB

Head First Servlets & JSP
Learning Java

Java in a Nutshell

Java Enterprise in a Nutshell
Java Examples in a Nutshell
Java Cookbook

J2EE Design Patterns

Authors of Head First Design
Patterns

E'r'lﬂ F'rctl“a“

Eric is described by Head First series co-creator Kathy Sierra as “one of
those rare individuals fluent in the language, practice, and culture of multiple
domains from hipster hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a media company
executive — having held the position of CTO of Disney Online &
Disney.com at The Walt Disney Company. Eric is now devoting his time to
WickedlySmart, a startup he co-created with Elisabeth.

By training, Eric is a computer scientist, having studied with industry
luminary David Gelernter during his Ph.D. work at Yale University. His
dissertation is credited as the seminal work in alternatives to the desktop
metaphor, and also as the first implementation of activity streams, a concept
he and Dr. Gelernter developed.

In his spare time, Eric is deeply involved with music; you’ll find Eric’s latest
project, a collaboration with ambient music pioneer Steve Roach, available
on the iPhone app store under the name Immersion Station.

Eric lives with his wife and young daughter in Austin, Texas. His daughter is

a frequent vistor to Eric’s studio, where she loves to turn the knobs of his
synths and audio effects.

Write to Eric at eric@wickedlysmart.com or visit his site at
ericfreeman.com.

{r—— Elisabeth R obson

Elisabeth is a software engineer, writer, and trainer. She has been passionate
about technology since her days as a student at Yale University, where she
earned a Masters of Science in Computer Science and designed a concurrent,
visual programming language and software architecture.

Elisabeth’s been involved with the Internet since the early days; she co-
created the award-winning web site, The Ada Project, one of the first web
sites designed to help women in computer science find career and mentorship
information online.

She’s currently co-founder of WickedlySmart, an online education
experience centered on web technologies, where she creates books, articles,
videos, and more. Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and online courses on a
variety of technical topics and developed her passion for creating learning
experiences to help people understand technology. Prior to her work with
O’Reilly, Elisabeth spent time spreading fairy dust at The Walt Disney
Company, where she led research and development efforts in digital media.

When not in front of her computer, you’ll find Elisabeth hiking, cycling, or

kayaking in the great outdoors, with her camera nearby, or cooking
vegetarian meals.

You can send her email at beth@wickedlysmart.com or visit her blog at
elisabethrobson.com.

Creators of the Head First series
(and co-conspirators on this book)

Kathy Sievvd

Kathy has been interested in learning theory since her days as a game
designer (she wrote games for Virgin, MGM, and Amblin’). She developed
much of the Head First format while teaching New Media Authoring for
UCLA Extension’s Entertainment Studies program. More recently, she’s
been a master trainer for Sun Microsystems, teaching Sun’s Java instructors
how to teach the latest Java technologies, and developing several of Sun’s
certification exams. Together with Bert Bates, she has been actively using the
Head First concepts to teach throusands of developers. Kathy is the founder
of javaranch.com, which won a 2003 and 2004 Software Development
magazine Jolt Cola Productivity Award. You might catch her teaching Java
on the Java Jam Geek Cruise (geekcruises.com).

Likes: running, skiing, skateboarding, playing with her Icelandic horses, and
weird science. Dislikes: entropy.

You can find her on javaranch, or occasionally blogging at seriouspony.com.
Write to her at kathy@wickedlysmart.com.

Bert is a long-time software developer and architect, but a decade-long stint
in artificial intelligence drove his interest in learning theory and technology-

based training. He’s been helping clients become better programmers ever
since. Recently, he’s been heading up the development team for several of
Sun’s Java Certification exams.

He spent the first decade of his software career travelling the world to help
broadcast clients like Radio New Zealand, the Weather Channel, and the Arts
& Entertainment Network (A & E). One of his all-time favorite projects was
building a full rail system simulation for Union Pacific Railroad.

Bert is a long-time, hopelessly addicted go player, and has been working on a
go program for way too long. He’s a fair guitar player and is now trying his
hand at banjo.

Look for him on javaranch, on the IGS go server, or you can write to him at
terrapin@wickedlysmart.com.

How to Use This Book: Intro

I can't believe they
put that in a design
patterns book!

In this section, we answer the burning question: “So, why DID they put that in a design
patterns book?”

Who is this book for?

If you can answer “yes” to all of these:

@ Do you know Java? (You don’t need to be a guru.)

NOTE
You’ll probably be okay if you know C# instead.

@ Do you want to learn, understand, remember, and apply design
patterns, including the OO design principles upon which design patterns
are based?

@ Do you prefer stimulating dinner party conversation to dry, dull,
academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any one of these:

(D Are you completely new to Java?

(You don’t need to be advanced, and even if you don’t know Java, but you
know C#, you’ll probably understand at least 80% of the code examples.
You also might be okay with just a C++ background.)

@ Are you a kick-butt OO designer/developer looking for a reference
book?

@ Are you an architect looking for enterprise design patterns?

@ Are you afraid to try something different? Would you rather have a
root canal than mix stripes with plaid? Do you believe that a technical
book can’t be serious if Java components are anthropomorphized?

this book is not for you.

[note from marketing: this book is for anyone with a credit card.]

We know what you’re thinking.
“How can this be a serious programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”

And we know what your brain is thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s
real job — recording things that matter. It doesn’t bother saving the boring
things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

'r/:.‘n.'_.b- i
THIS e Chinks

(

s f.""'P’"““‘f.;jlihfi.

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’'re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things. Like
tigers. Like the danger of fire. Like how you should never again snowboard
in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you very
much, but no matter how dull this book is, and how little I’m registering on
the emotional Richter scale right now, I really do want you to keep this stuff
around.”

Great. Only
654 more dull,

dry, boring pages.

WE THINK OF A “HEAD FIRST” READER AS A LEARNER

So what does it take to learn something? First, you have to get it, then make sure
you don’t forget it. It’s not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning
takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning
much more effective (up to 89% improvement in recall and transfer studies). It also
makes things more understandable. Put the words within or near the graphics they
relate to, rather than on the bottom or on another page, and learners will be up to twice as
likely to solve problems related to the content.

needs to ¢4 F '—r'kl'l.-’lll Ttl‘ﬂcl';r'
J [i

method on The cervite

Erver

doCalcl)

Ji‘g T —
return value

Use a conversational and personalized style. In recent studies, students performed up
to 40% better on post-learning tests if the content spoke directly to the reader, using a
first-person, conversational style rather than taking a formal tone. Tell stories instead of
lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay
more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your
neurons, nothing much happens in your head. A reader has to be motivated, engaged,
curious, and inspired to solve problems, draw conclusions, and generate new knowledge.
And for that, you need challenges, exercises, and thought-provoking questions, and
activities that involve both sides of the brain, and multiple senses.

It really sucks to be
an abstract method.

You don't have a
body.

A

Get — and keep — the reader’s attention. We’ve all had the “I really want to learn
this but I can’t stay awake past page one” experience. Your brain pays attention to things
that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a
new, tough, technical topic doesn’t have to be boring. Your brain will learn much more
quickly if it’s not.

Does it make sense to
say Tub I5-A Bathroom?
Bathroom I5-A Tub? Oris it
a HAS-A relationship?

Touch their emotions. We now know that your ability to remember something is
largely dependent on its emotional content. You remember what you care about. You
remember when you feel something. No, we’re not talking heart-wrenching stories about
a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” ,
and the feeling of “I Rule!” that comes when you solve a puzzle, learn something
everybody else thinks is hard, or realize you know something that “I’m more technical
than thou” Bob from engineering doesn’t.

J‘f

. J

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn
design patterns. And you probably don’t want to spend a lot of time. And you
want to remember what you read, and be able to apply it. And for that,
you’ve got to understand it. To get the most from this book, or any book or

learning experience, take responsibility for your brain. Your brain on this
content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

I wonder how I
can trick my brain
into remembering
this stuff...

So how DO you get your brain to think Design Patterns are as important
as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important
to him, but he keeps looking at the same thing over and over and over, so |
suppose it must be.”

The faster way is to do anything that increases brain activity, especially
different types of brain activity. The things on the previous page are a big part

of the solution, and they’re all things that have been proven to help your brain
work in your favor. For example, studies show that putting words within the
pictures they describe (as opposed to somewhere else in the page, like a
caption or in the body text) causes your brain to try to makes sense of how
the words and picture relate, and this causes more neurons to fire. More
neurons firing = more chances for your brain to get that this is something
worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when
they perceive that they’re in a conversation, since they’re expected to follow
along and hold up their end. The amazing thing is, your brain doesn’t
necessarily care that the “conversation” is between you and a book! On the
other hand, if the writing style is formal and dry, your brain perceives it the
same way you experience being lectured to while sitting in a roomful of
passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

Here’s what WE did

We used pictures, because your brain is tuned for visuals, not text. As far as
your brain’s concerned, a picture really is worth 1,024 words. And when text
and pictures work together, we embedded the text in the pictures because
your brain works more effectively when the text is within the thing the text
refers to, as opposed to in a caption or buried in the text somewhere.

ONE TO .'"f"lf‘:".ll\r‘f(RELATIONSHIP

Object that g

holds state

15 Ub "-.__.'h 3 . __ﬂ
I8 :
- __a_':l

Quckﬂﬂ‘?é L)

=l

]

O $

/ o

Jfﬂmm? E_

Automatic deaf::fnat..[:.mt,m \

We used redundancy, saying the same thing in different ways and with
different media types, and multiple senses, to increase the chance that the
content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is
tuned for novelty, and we used pictures and ideas with at least some
emotional content, because your brain is tuned to pay attention to the
biochemistry of emotions. That which causes you to feel something is more
likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to
pay more attention when it believes you’re in a conversation than if it thinks
you’re passively listening to a presentation. Your brain does this even when

you’re reading.

F
The Patterns Guru

We included more than 40 activities, because your brain is tuned to learn and

remember more when you do things than when you read about things. And
we made the exercises challenging-yet-do-able, because that’s what most
people prefer.

We used multiple learning styles, because you might prefer step-by-step
procedures, while someone else wants to understand the big picture first,
while someone else just wants to see a code example. But regardless of your
own learning preference, everyone benefits from seeing the same content
represented in multiple ways.

BULLET FEIHTQ

We include content for both sides of your brain, because the more of your
brain you engage, the more likely you are to learn and remember, and the
longer you can stay focused. Since working one side of the brain often means
giving the other side a chance to rest, you can be more productive at learning
for a longer period of time.

Puzz]es

And we included stories and exercises that present more than one point of
view, because your brain is tuned to learn more deeply when it’s forced to
make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t
always have a straight answer, because your brain is tuned to learn and
remember when it has to work at something. Think about it — you can’t get
your body in shape just by watching people at the gym. But we did our best to
make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand
example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because
you’re a person. And your brain pays more attention to people than it does to
things.

We used an 80/20 approach. We assume that if you’re going for a PhD in
software design, this won’t be your only book. So we don’t talk about

everything. Just the stuff you’ll actually need.

Here’s what YOU can do to bend your brain into
submission

So, we did our part. The rest is up to you. These tips are a starting point;
listen to your brain and figure out what works for you and what doesn’t. Try

new things.
g
7 —;\
T;-:j
| &=)

:i'-'——g

U, »

Cut this out and stick it on your refrigerator.

@ Slow down. The more you understand, the less you have to
memorize.

Don’t just read. Stop and think. When the book asks you a question, don’t
just skip to the answer. Imagine that someone really is asking the question.
The more deeply you force your brain to think, the better chance you have
of learning and remembering.

@ Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having
someone else do your workouts for you. And don’t just look at the

exercises. Use a pencil. There’s plenty of evidence that physical activity
while learning can increase the learning.

3 Read the “There Are No Dumb Questions”

That means all of them. They’re not optional side-bars — they’re part of
the core content! Don’t skip them.

(@ Make this the last thing you read before bed. Or at least the last
challenging thing.

Part of the learning (especially the transfer to long-term memory) happens
dafter you put the book down. Your brain needs time on its own, to do
more processing. If you put in something new during that processing-time,
some of what you just learned will be lost.

® Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can
happen before you ever feel thirsty) decreases cognitive function.

® Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to
understand something, or increase your chance of remembering it later,
say it out loud. Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover ideas you hadn’t
known were there when you were reading about it.

@ Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find
yourself starting to skim the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you won’t learn faster by
trying to shove more in, and you might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get involved with the stories.
Make up your own captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

(@ Design something!

Apply this to something new you’re designing, or refactor an older
project. Just do something to get some experience beyond the exercises
and activities in this book. All you need is a pencil and a problem to
solve... a problem that might benefit from one or more design patterns.

Read Me

This is a learning experience, not a reference book. We deliberately stripped

out everything that might get in the way of learning whatever it is we’re
working on at that point in the book. And the first time through, you need to
begin at the beginning, because the book makes assumptions about what
you’ve already seen and learned.

|
: simPlE
We use @ i _F'L.IL"'-'I‘I"-"
mod}ﬁ\td o

Director

getMovies
getOscars()
getKevinBaconDegrees)

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in
the book, and it’s not a prerequisite for the book. If you’ve never seen UML
before, don’t worry, we’ll give you a few pointers along the way. So in other
words, you won’t have to worry about Design Patterns and UML at the same
time. Our diagrams are “UML-like” — while we try to be true to UML there
are times we bend the rules a bit, usually for our own selfish artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a lot of Design Patterns. The original foundational patterns (known
as the GoF patterns), enterprise Java patterns, JSP patterns, architectural
patterns, game design patterns and a lot more. But our goal was to make sure
the book weighed less than the person reading it, so we don’t cover them all
here. Our focus is on the core patterns that matter from the original GoF
patterns, and making sure that you really, truly, deeply understand how and
when to use them. You will find a brief look at some of the other patterns (the
ones you're far less likely to use) in the appendix. In any case, once you’re
done with Head First Design Patterns, you’ll be able to pick up any pattern
catalog and get up to speed quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content
of the book. Some of them are to help with memory, some for understanding,
and some to help you apply what you’ve learned. Don’t skip the exercises.

The crossword puzzles are the only things you don’t have to do, but they’re
good for giving your brain a chance to think about the words from a different
context.

We use the word “composition” in the general OO sense, which is more
flexible than the strict UML use of “composition.”

When we say “one object is composed with another object” we mean that
they are related by a HAS-A relationship. Our use reflects the traditional use
of the term and is the one used in the GoF text (you’ll learn what that is
later). More recently, UML has refined this term into several types of
composition. If you are an UML expert, you’ll still be able to read the book
and you should be able to easily map the use of composition to more refined
terms as you read.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get
it. And we want you to finish the book remembering what you’ve learned.
Most reference books don’t have retention and recall as a goal, but this book
is about learning, so you’ll see some of the same concepts come up more
than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code
looking for the two lines they need to understand. Most examples in this book
are shown within the smallest possible context, so that the part you’re trying
to learn is clear and simple. Don’t expect all of the code to be robust, or even
complete — the examples are written specifically for learning, and aren’t
always fully-functional.

In some cases, we haven’t included all of the import statements needed, but
we assume that if you’re a Java programmer, you know that ArrayList is in
java.util, for example. If the imports were not part of the normal core JSE
API, we mention it. We’ve also placed all the source code on the Web so you

can download it. You’ll find it at http://wickedlysmart.com/head-first-
design-patterns/

Also, for the sake of focusing on the learning side of the code, we did not put
our classes into packages (in other words, they’re all in the Java default
package). We don’t recommend this in the real world, and when you
download the code examples from this book, you’ll find that all classes are in

packages.
The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your
answers are right. In some of the Brain Power exercises you will find hints to
point you in the right direction.

Tech Reviewers

Valentin Crettas

JE‘F Cur\n?s

Barney Marispini

Fearless leader of
the HFDP Extreme

Review Team.

Jason Menard

Divk Sehretkmann

Philippe Maquet

In memory of Philippe Maquet

1960 - 2004

Your amazing technical expertise, relentless enthusiasm, and deep concern for the
learner will inspire us always.

We will never forget you.

Acknowledgments
At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all and
helping to shape the Head First concept into a series. And a big thanks to the
driving force behind Head First, Tim O’Reilly. Thanks to the clever Head
First “series mom” Kyle Hart, “In Design King” Ron Bilodeau, rock-and-
roll star Ellie Volkhausen for her inspired cover design, Melanie
Yarbrough for shepherding production, Colleen Gorman and Rachel
Monaghan for their hardcore copyedits, and Bob Pfahler for a much
improved index. Finally, thanks to Mike Hendrickson and Meghan
Blanchette for championing this book and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director Johannes
deJong. You are our hero, Johannes. And we deeply appreciate the
contributions of the co-manager of the Javaranch review team, the late
Philippe Maquet. You have single-handedly brightened the lives of
thousands of developers, and the impact you’ve had on their (and our) lives is

forever. Jef Cumps is scarily good at finding problems in our draft chapters,
and once again made a huge difference for the book. Thanks Jef! Valentin
Cretazz (AOP guy), who has been with us from the very first Head First
book, proved (as always) just how much we really need his technical
expertise and insight. You rock Valentin (but lose the tie).

Two newcomers to the HF review team, Barney Marispini and Ike Van
Atta did a kick butt job on the book — you guys gave us some really crucial
feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus
Mark Spritzler, Jason Menard, Dirk Schreckmann, Thomas Paul, and
Margarita Isaeva. And as always, thanks especially to the javaranch.com
Trail Boss, Paul Wheaton.

Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns
Cover” contest. The winner, Si Brewster, submitted the winning essay that
persuaded us to pick the woman you see on our cover. Other finalists include
Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas,
Sateesh Kommineni, and Jeff Fisher.

For the 2014 update to the book, we are so grateful to the following technical
reviewers: George Hoffer, Ted Hill, Todd Bartoszkiewicz, Sylvain Tenier,
Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse,
Glenn Ray, Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams,
Matt McCullough, and Mary Ann Belarmino.

Even more peoplel!
From Eric and Elisabeth

Writing a Head First book is a wild ride with two amazing tour guides:
Kathy Sierra and Bert Bates. With Kathy and Bert you throw out all book
writing convention and enter a world full of storytelling, learning theory,
cognitive science, and pop culture, where the reader always rules. Thanks to
both of you for letting us enter your amazing world; we hope we’ve done
Head First justice. Seriously, this has been amazing. Thanks for all your
careful guidance, for pushing us to go forward, and most of all, for trusting us
(with your baby). You’re both certainly “wickedly smart” and you’re also the
hippest 29-year-olds we know. So... what’s next?

A big thank you to Mike Loukides, Mike Hendrickson, and Meghan

Blanchette. Mike L. was with us every step of the way. Mike, your insightful
feedback helped shape the book and your encouragement kept us moving
ahead. Mike H., thanks for your persistence over five years in trying to get us
to write a patterns book; we finally did it and we’re glad we waited for Head
First. And Meg, thanks for diving into the update with us; we couldn’t have
done it without you.

A very special thanks to Erich Gamma, who went far beyond the call of
duty in reviewing this book (he even took a draft with him on vacation).
Erich, your interest in this book inspired us and your thorough technical
review improved it immeasurably. Thanks as well to the entire Gang of Four
for their support & interest, and for making a special appearance in
Objectville. We are also indebted to Ward Cunningham and the patterns
community who created the Portland Pattern Repository — an indespensible
resource for us in writing this book.

It takes a village to write a technical book: Bill Pugh and Ken Arnold gave
us expert advice on Singleton. Joshua Marinacci provided rockin’ Swing
tips and advice. John Brewer’s “Why a Duck?” paper inspired SimUDuck
(and we’re glad he likes ducks too). Dan Friedman inspired the Little
Singleton example. Daniel Steinberg acted as our “technical liason” and our
emotional support network. Thanks to Apple’s James Dempsey for allowing
us to use his MVC song. And thank you to Richard Warburton who made
sure our Java 8 code updates were up to snuff for this updated edition of the
book.

Last, a personal thank you to the Javaranch review team for their top-notch
reviews and warm support. There’s more of you in this book than you know.

From Kathy and Bert

We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we
can’t. Because of these two, we discovered (to our horror) that we aren’t the
only ones who can do a Head First book. ;) However, if readers want to
believe that it’s really Kathy and Bert who did the cool things in the book,
well, who are we to set them straight?

(1] The large number of acknowledgments is because we’re testing the theory that everyone
mentioned in a book acknowledgment will buy at least one copy, probably more, what with
relatives and everything. If you’d like to be in the acknowledgment of our next book, and

you have a large family, write to us.

Chapter 1. Intro to Design Patterns:
Welcome to Design Patterns

Now that we're living in
Objectville, we've just got to get
into Design Patterns... everyone

is doing them. Soon we'll be the hit
of Jim and Betty's Wednesday night
patterns group!

Someone has already solved your problems. In this chapter, you’ll learn
why (and how) you can exploit the wisdom and lessons learned by other
developers who’ve been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design
patterns, look at some key OO design principles, and walk through an
example of how one pattern works. The best way to use patterns is to load
your brain with them and then recognize places in your designs and existing
applications where you can apply them. Instead of code reuse, with patterns
you get experience reuse.

It started with a simple SimUDuck app

Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of duck
species swimming and making quacking sounds. The initial designers of the
system used standard OO techniques and created one Duck superclass from
which all other duck types inherit.

—

p

Duck

All dueks ﬂluaf.k and swim. The

: gy quack()
subertlass takes tave of the :
im‘P|Cmcr'jC.a+lon tode. swim) The display() method is
o display() el

Cath dutk sEIFe

TN

/f OTHER duck-like methods.

ble
s '('55?0“51}) I-

MallardDuck

RedheadDuck

Cor _]m?iwcntm(? —> | display() {

ks own d\":'?lla\f T
pehavior xor

how Tt IMooks like a mallard }

display() {
I looks like a redhead }

\ooks on Line streen

abskratt, sinte all duek
subtypes look diffevent.

v Y

] L othe

1s of ot tlass-
]'I?:\(Jr"-{'. from the DUL'K
n

In the last year, the company has been under increasing pressure from
competitors. After a week long off-site brainstorming session over golf, the
company executives think it’s time for a big innovation. They need
something really impressive to show at the upcoming shareholders meeting

in Maui next week.

But now we need the ducks to FLY

The executives decided that flying ducks is just what the simulator needs to
blow away the other duck sim competitors. And of course Joe’s manager told
them it’ll be no problem for Joe to just whip something up in a week. “After
all,” said Joe’s boss, “he’s an OO programmer... how hard can it be?”

T just need toadd a
fly() method in the Duck class
and then all the ducks will inherit

it. Now's my time to really show my
true OO genius.

— Joe

N /%ﬂ@

Duck
quack()
swim()
disol ded
PPN = e
\ 9% 00 *
gl I/ OTHER duck-ike methods.
W
MallardDuck RedheadDuck Oiher Dutk TYRE
display() { display() {

I/ looks like a mallard } I looks like a redhead }

But something went horribly wrong...

Joe, I'm at the shareholder’s
meeting. They just gave a demo and
there were rubber duckies flying around
the screen. Was this your idea of a joke?
You might want to spend some time on
Monster.com...

What happened?

Joe failed to notice that not all subclasses of Duck should fly. When Joe
added new behavior to the Duck superclass, he was also adding behavior that
was not appropriate for some Duck subclasses. He now has flying inanimate

objects in the SimUDuck program.

A localized update to the code caused a nonlocal side effect (flying rubber

ducks)!

Duck

quack()

swim()

display()

fiy()

i OTHER duck-like methods..

'w\fﬁ\“&m‘:‘h .
et

MallardDuck

RedheadDuck

RubberDuck

display() {
I looks like a mallard

}

display() {
Il looks like a redhead

}

quack() {

Il overridden to Squeak
}
display() {

I looks like a rubberduck

}

OK, so there's a
slight flaw in my design.
I don't see why they can't
just call it a “feature.”
It's kind of cute...

What Joe thought was a great use of inheritance for the purpose of reuse hasn’t
turned out so well when it comes to maintenance.

Joe thinks about inheritance...

I could always just

in rubber duck, the way
I am with the quack()
methed...

override the fly() method

RubberDuck

Q

fiy() {
}

quack() |/ squeak}
display(} { // rubber duck }

Il override to do nothing

' in the
Hﬂ'l: s anoJc'hET &1355 [‘l:
hievarthy; notite tha{:, like
RubberDuck, it doesn't £y,
but it also doesn t qluaf.k-

-7

But then what happens when
we add wooden decoy ducks
to the program? They aren't
supposed to fly or quack...

=

="

DecoyDuck

quack() {

Il override to do nothing
}
display() { // decoy duck}

fiy() {
I/ override to do nothing
}

SHARPEN YOUR PENCIL

Which of the following are disadvantages of using inheritance to provide Duck
behavior? (Choose all that apply.)

a

A.

Code is duplicated across subclasses.

Runtime behavior changes are difficult.

We can’t make ducks dance.

Hard to gain knowledge of all duck behaviors.

Ducks can’t fly and quack at the same time.

U o0 d|d

Changes can unintentionally affect other ducks.

How about an interface?

Joe realized that inheritance probably wasn’t the answer, because he just got
a memo that says that the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe knows the spec will
keep changing and he’ll be forced to look at and possibly override fly() and
quack() for every new Duck subclass that’s ever added to the program...
forever.

So, he needs a cleaner way to have only some (but not all) of the duck types
fly or quack.

Duck

swim()

display()
I OTHER duck-like methods...

Quackable

| MallardDuck | [RedheadDuck RubberDuck | DecoyDuck

display() display() display() display()
fiy() fiy() quack()
guack() quack()

T

I could take the fly() out of the Duck
superclass, and make a Flyable() interface
with a fly() method. That way, only the ducks
that are supposed to fly will implement that
interface and have a fly() method... and I might
as well make a Quackable, too, since not all
ducks can quack.

What do YOU think about this design?

That is, like, the dumbest idea
you've come up with. Can you say,
“duplicate code™? If you thought having
to override a few methods was bad, how
are you gonna feel when you need to make
a little change to the flying behavior... in all
48 of the flying Duck subclasses?!

What would you do if you were Joe?

We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable solves part of the problem
(no inappropriately flying rubber ducks), it completely destroys code reuse
for those behaviors, so it just creates a different maintenance nightmare. And
of course there might be more than one kind of flying behavior even among
the ducks that do fly...

At this point you might be waiting for a Design Pattern to come riding in on a
white horse and save the day. But what fun would that be? No, we’re going to
figure out a solution the old-fashioned way — by applying good OO software
design principles.

Wouldn't it be dreamy
if there were a way to build software
so that when we need to change it, we
could do so with the least possible
impact on the existing code? We could
spend less time reworking code and
more making the program do cooler
things...

The one constant in software development

Okay, what’s the one thing you can always count on in software
development?

No matter where you work, what you’re building, or what language you are
programming in, what’s the one true constant that will be with you always?

JOVAHD

(use a mirror to see the answer)

No matter how well you design an application, over time an application must
grow and change or it will die.

SHARPEN YOUR PENCIL

Lots of things can drive change. List some reasons you’ve had to change code in your
applications (we put in a couple of our own to get you started).

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing its data
from another supplier that uses a different data format. Argh!

Zeroing in on the problem...

So we know using inheritance hasn’t worked out very well, since the duck
behavior keeps changing across the subclasses, and it’s not appropriate for all
subclasses to have those behaviors. The Flyable and Quackable interface
sounded promising at first — only ducks that really do fly will be Flyable,
etc. — except Java interfaces have no implementation code, so no code reuse.
And that means that whenever you need to modify a behavior, you’re forced
to track down and change it in all the different subclasses where that behavior
is defined, probably introducing new bugs along the way!

Luckily, there’s a design principle for just this situation.

DESIGN PRINCIPLE

Identify the aspects of your application that vary and separate them from what stays the
same.

The first of many design principles. We’ll spend more time on these throughout the
book.

Take what varies and “encapsulate” it so it won’t affect the rest of your code.
The result? Fewer unintended consequences from code changes and more
flexibility in your systems!

In other words, if you’ve got some aspect of your code that is changing, say
with every new requirement, then you know you’ve got a behavior that needs
to be pulled out and separated from all the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts that vary and
encapsulate them, so that later you can alter or extend the parts that vary
without affecting those that don’t.

As simple as this concept is, it forms the basis for almost every design
pattern. All patterns provide a way to let some part of a system vary
independently of all other parts.

Okay, time to pull the duck behavior out of the Duck classes!

Separating what changes from what stays the same

Where do we start? As far as we can tell, other than the problems with fly()
and quack(), the Duck class is working well and there are no other parts of it
that appear to vary or change frequently. So, other than a few slight changes,
we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same,” we are
going to create two sets of classes (totally apart from Duck), one for fly and
one for quack. Each set of classes will hold all the implementations of the
respective behavior. For instance, we might have one class that implements
quacking, another that implements squeaking, and another that implements
silence.

We know that fly() and quack() are the parts of the Duck class that vary
across ducks.

To separate these behaviors from the Duck class, we’ll pull both methods
out of the Duck class and create a new set of classes to represent each
behavior.

§ ek elass s S't,'||l. {}m

e of all dutks, but we | B
L the £ly and quack R
o implementations are
Boir.{i +o lve heve.

su?cr-:‘,'.Ass
ave pulling ou :
behaviors and Tfl.-‘l:'.t,lhlf:

t i\raw -I;:'.\ii'-r.el and n\-..a.:'rmlg.f eath
another tlass shrutTure.

43,:* Pheir own set of tlasses.

\ e

OPUII out what varies

Dlrck c".au‘;’

.
F’i’-"ng Bahu‘%n

Duck Behaviors

Designing the Duck Behaviors

So how are we going to design the set of classes that implement the fly
and quack behaviors?

We’d like to keep things flexible; after all, it was the inflexibility in the duck
behaviors that got us into trouble in the first place. And we know that we
want to assign behaviors to the instances of Duck. For example, we might
want to instantiate a new MallardDuck instance and initialize it with a
specific type of flying behavior. And while we’re there, why not make sure
that we can change the behavior of a duck dynamically? In other words, we
should include behavior setter methods in the Duck classes so that we can
change the MallardDuck’s flying behavior at runtime.

Given these goals, let’s look at our second design principle:

DESIGN PRINCIPLE

Program to an interface, not an implementation.

From now on, the Duck behaviors will live in a separate class — a class that
implements a particular behavior interface.

That way, the Duck classes won’t need to know any of the implementation details
for their own behaviors.

We’ll use an interface to represent each behavior — for instance,
FlyBehavior and QuackBehavior — and each implementation of a behavior
will implement one of those interfaces.

So this time it won’t be the Duck classes that will implement the flying and
quacking interfaces. Instead, we’ll make a set of classes whose entire reason
for living is to represent a behavior (for example, “squeaking”), and it’s the
behavior class, rather than the Duck class, that will implement the behavior
interface.

This is in contrast to the way we were doing things before, where a behavior
came either from a concrete implementation in the superclass Duck, or by
providing a specialized implementation in the subclass itself. In both cases
we were relying on an implementation. We were locked into using that
specific implementation and there was no room for changing the behavior
(other than writing more code).

With our new design, the Duck subclasses will use a behavior represented by
an interface (FlyBehavior and QuackBehavior), so that the actual
implementation of the behavior (in other words, the specific concrete
behavior coded in the class that implements the FlyBehavior or
QuackBehavior) won’t be locked into the Duck subclass.

<<interface>>
FlyBehavior

i)

NOTW
FlyWithWings FlyNoWay
fly() { fiy() {
fl implements duck flying If do nothing - can't fly!
} }

I don't see why you
have to use an interface for
FlyBehavior. You can do the
same thing with an abstract
superclass. Isn't the whole point
to use polymorphism?

“Program to an interface” really means “Program to a supertype.”

The word interface is overloaded here. There’s the concept of interface, but
there’s also the Java construct interface. You can program to an interface,
without having to actually use a Java interface. The point is to exploit
polymorphism by programming to a supertype so that the actual runtime
object isn’t locked into the code. And we could rephrase “program to a
supertype” as “the declared type of the variables should be a supertype,
usually an abstract class or interface, so that the objects assigned to those
variables can be of any concrete implementation of the supertype, which
means the class declaring them doesn’t have to know about the actual object
types!”

This is probably old news to you, but just to make sure we’re all saying the
same thing, here’s a simple example of using a polymorphic type — imagine
an abstract class Animal, with two concrete implementations, Dog and Cat.

Programming to an implementation would be:
Dog d = new Dog();

d.bark();
NOTE

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us
to code to a concrete implementation.

But programming to an interface/supertype would be:

Animal animal = new Dog();
animal.makeSound();

NOTE

We know it’s a Dog, but we can now use the animal reference polymorphically.

Even better, rather than hardcoding the instantiation of the subtype (like new
Dog()) into the code, assign the concrete implementation object at
runtime:

a = getAnimal();
a.makeSound();
NOTE

We don’t know WHAT the actual animal subtype is... all we care about is that it knows
how to respond to makeSound().

fqbﬁfhacﬁ

be g, gbxtrsu&rf}‘ﬂ (touly

interfs ce) raet ¢f3s OR

N

Animal

makeSound])

Contrete
hm?\tmﬂﬁjc'abwsi
Dog Cat
makeSound() { makeSound() {
bark(); meow();
} }
bark() { // bark sound } meow() { // meow sound }

Implementing the Duck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior, along
with the corresponding classes that implement each concrete behavior:

Same thing here for the quack
behavior; we have an intertace

FlyBe‘hauior is an interface Bl J'usf ilides 3 q_uaf.kf)

that all ﬁ\l’ih?’ classes L:J?Cl:::c method that needs to be

All new <F1\f'm5 tlasses X
f fo implement the Qly& method. implemented.
<<jnterface>> <<interface>>
FlyBehavior QuackBehavior
fi() quacky)
S 2N .
S P G
FlyWithWings h FlyNoWay Quack - Sql;eak I MuteQuack
ﬂl‘q { _ fiy) { quack() { quack() { quack() {
e o AT T Iimplements duck quacking |~/ rubber duckie squeak I do nothing - can't quack!
} } }))
Quaek T
Ahd h F, /R S {:hr_ﬁ{‘
ere’s 44 . reall Quatks that squeak.
Hcre‘s for all dyey he '"‘P!Cmenfaf Y quack Quatks that make
€ im /| s ﬂ:g +y wllon d at all.
ﬁ)ﬂ}, i P C"'cnfaf Lan't £ no soun
ﬁ"ldf haﬁ oF 4 ducke iop, Y-
= “’f”gs.
NOTE

With this design, other types of objects can reuse our fly and quack behaviors
because these behaviors are no longer hidden away in our Duck classes!

And we can add new behaviors without modifying any of our existing behavior
classes or touching any of the Duck classes that use flying behaviors.

So we get the benefit of REUSE without all the baggage that comes along with
inheritance.

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I always have to implement my application first, see where things are changing, and then go back
and separate & encapsulate those things?

A: A: Not always; often when you are designing an application, you anticipate those areas that are going to vary and
then go ahead and build the flexibility to deal with it into your code. You’ll find that the principles and patterns
can be applied at any stage of the development lifecycle.

=

Q: Should we make Duck an interface too?

A: A: Not in this case. As you’ll see once we’ve got everything hooked together, we do benefit by having Duck not
be an interface, and having specific ducks, like MallardDuck, inherit common properties and methods. Now that
we’ve removed what varies from the Duck inheritance, we get the benefits of this structure without the problems.

Q: Q: It feels a little weird to have a class that’s just a behavior. Aren’t classes supposed to represent things?

Aren’t classes supposed to have both state AND behavior?

A: A:Inan OO system, yes, classes represent things that generally have both state (instance variables) and methods.
And in this case, the thing happens to be a behavior. But even a behavior can still have state and methods; a flying
behavior might have instance variables representing the attributes for the flying (wing beats per minute, max
altitude, and speed, etc.) behavior.

SHARPEN YOUR PENCIL

(D Using our new design, what would you do if you needed to add rocket-powered
flying to the SimUDuck app?

@ Can you think of a class that might want to use the Quack behavior that isn’t a
duck?

. J

Answers:

1) Create a FlyRocketPowered class that implements the FlyBehavior
interface.

2) One example, a duck call (a device that makes duck sounds).

Integrating the Duck Behavior

The key is that a Duck will now delegate its flying and quacking
behavior, instead of using quacking and flying methods defined in the
Duck class (or subclass).

Here’s how:

@ First we’ll add two instance variables to the Duck class called
flyBehavior and quackBehavior that are declared as the interface type (not
a concrete class implementation type). Each duck object will set these
variables polymorphically to reference the specific behavior type it would
like at runtime (FlyWithWings, Squeak, etc.).

We’ll also remove the fly() and quack() methods from the Duck class (and
any subclasses) because we’ve moved this behavior out into the
FlyBehavior and QuackBehavior classes.

We’ll replace fly() and quack() in the Duck class with two similar
methods, called performFly() and performQuack(); you’ll see how they
work next.

Instante vaviables hold a vebevente

The behavior variables are to a S?E:‘,i»(:if. behavior at runtime.

detlared as the behavior

INTERFACE type.
S~

These methods veylace

£0 and D‘“ik_{i/]
-

Duck

FlyBehavior flyBehavior -~
QuackBehavior quackBehavior |

performQuack()

swim()

display()

performFly()

If OTHER duck-like methods...

Duck Behaviors

@ Now we implement performQuack():

mething that
a vefevente 10 50 {:rgaci.

public class Duck { Eath Dutk has

QuackBehavior quackBehavior;

// more

public void performQuack() {

cuackBehavior.quack() ;

}

.ﬁ-/ o ?Ilﬂmtﬂj@ the

\-{(—/dc

QuatkBehavior I

handling the qluaﬁk
Leel6, the Duck ob EL“oh o
Selesates st behavir o the)

ﬁcvcnﬂcd by qluat.ch‘r-.aumr

P\a‘thf_r Jt'han

Pretty simple, huh? To perform the quack, a Duck just allows the object
that is referenced by quackBehavior to quack for it.

In this part of the code we don’t care what kind of object it is, all we care
about is that it knows how to quack()!

More integration...

@ Okay, time to worry about how the flyBehavior and quackBehavior
instance variables are set. Let’s take a look at the MallardDuck class:

public class MallardDuck extends Duck {

public MallardDuck ()

quackBehavior

flyBehavior
}
R emember, Ma”ardDuﬁk inhevits the

quatkBehavior and flyBehavior instance
vaviables from tlass Duek.

{ g
= new Quack() ;
new FlyWithWings () ;

e

public wvoid display() {

A ."'—"Hlul.a-'rdDuCk uses the Guatk

¢lass +o handle ks Gkuaa‘.kj so when
?Erfpo'rmti]uaﬂku is talled, the ;
':rcs?omlltlt]it\?l for the quatk is d.;:lega{:c'd
{o the Quack o'njct% and we get a veal
Gluaﬂk.

And it uses F'I\fl'ﬂfit'h'.-‘u'inp}s as its
F'.TBc'hav]or {:\F'?c

System.out.println("I'm a real Mallard duck");

So MallardDuck’s quack is a real live duck quack, not a squeak and not a
mute quack. So what happens here? When a MallardDuck is instantiated,
its constructor initializes the MallardDuck’s inherited quackBehavior
instance variable to a new instance of type Quack (a QuackBehavior
concrete implementation class).
And the same is true for the duck’s flying behavior — the MallardDuck’s
constructor initializes the flyBehavior instance variable with an instance of
type FlyWithWings (a FlyBehavior concrete implementation class).

Wait a second, didn't you
say we should NOT program to an
implementation? But what are we doing in that
constructor? We're making a new instance of a
concrete Quack implementation class!

Good catch, that’s exactly what we’re doing... for now.

Later in the book we’ll have more patterns in our toolbox that can help us fix
it.
Still, notice that while we are setting the behaviors to concrete classes (by

instantiating a behavior class like Quack or FlyWithWings and assigning it to
our behavior reference variable), we could easily change that at runtime.

So, we still have a lot of flexibility here, but we’re doing a poor job of

initializing the instance variables in a flexible way. But think about it: since
the quackBehavior instance variable is an interface type, we could (through
the magic of polymorphism) dynamically assign a different QuackBehavior

implementation class at runtime.

Take a moment and think about how you would implement a duck so that its
behavior could change at runtime. (You’ll see the code that does this a few
pages from now.)

Testing the Duck code

(D Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

public abstract class Duck { |
Detlare two vekevente

FlyBehavior flyBehavior; 6__#__# sariables for the I”f“a“’"f:
QuackBehavior qguackBehavior; Levbace JL\?'?-:S All dut
e Subﬂaﬂ{ifhxthcéamt
| Paﬂkage}lhh:rﬁztthQ

public abstract wvoid displav()

public void performFly () {
flyBehavior.fly() ;%—.—_ Delesate to the behavior ¢lass
}

public void performQuack () /
quackBehavior.quack() ;
}

public void swim() {
System.out.println("All ducks fleocat, even decoys!");
}
}

@ Type and compile the FlyBehavior interface (FlyBehavior.java)
and the two behavior implementation classes (FlyWithWings.java and
FlyNoWay.java).

public interface FlyBehavior { |
public void fly(); The 'm‘l;c'r'wcaf.c that all E.\flnr_:!j
} behavior tlasses Im'll-"|:m¢r-‘|:-

public class FlyWithWings implements FlyBehavior
public void fly() ({ Flying behavior .w?-lc:ghk,atm
System.out.println("I'm flying!!"); ;a,duﬂﬁ-uﬁk,DG H$~

public class FlyNoWay implements FlyBehavior {

public void £ly() { E'}’iﬁﬁ behavior implementation
System.out.println("I can't £ly"); tor ducks that do NOT fly (like
} rubber dutks and dcﬂg\’- dutks)

@ Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation classes
(Quack.java, MuteQuack.java, and Squeak.java).

public interface QuackBehavior {
public void quack();
}

public class Quack implements QuackBehavior {
public void quack() {
System.out.println("Quack");
}

}

public class MuteQuack implements QuackBehavior {
public void quack() {
System.out.println("<< Silence >>");
}

}

public class Squeak implements QuackBehavior {
public void quack() {
System.out.println("Squeak");
}

}
@ Type and compile the test class (MiniDuckSimulator.java).

public class MiniDuckSimulator {
public static wveoid main(String[] args) {

Duck mallard = new MallardDuck(); MallardDutk's inherited

his talls the] L
mallard.performQuack() ; @ ;r&mfz}ua&kﬂ ekhod, whith {;hcn”dt'lf.;f:f-{; 2
i 5 Qu
mallard.performFly () ; the obie et's QuatkBehavior [n.c.,.t.a ﬂﬂm:c}_
} the dutk’s inhevited q.uackﬁchavmr e J
| Then we do the same Lhing with MallardDuek s

inhevited ?cr{:armF'ler method.

® Run the code!

File Edit

Window Help Yadayadayada

%java MiniDuckSimulator

Quack

I'm flying!!

Setting behavior dynamically

What a shame to have all this dynamic talent built into our ducks and not be
using it! Imagine you want to set the duck’s behavior type through a setter
method on the duck subclass, rather than by instantiating it in the duck’s
constructor.

(1 Add two new methods to the Duck class:

public wvoid setFlyBehavior (FlyBehavior fb) {
flyBehavior = fb;

} Duck

FlyBehavior fiyBehavior;

QuackBehavior quackBehavior;

public wvoid setQuackBehavior (QuackBehavior gb) {
quackBehavior = gb; swim()

} display(}

performCluack()

performFly()

setFlyBehavior()
setQuackBehavior()
I OTHER duck-like methods...

We can call these methods anytime we want to change the behavior of a
duck on the fly.

NOTE

Editor note: gratuitous pun - fix

(2 Make a new Duck type (ModelDuck.java).

)) d.-.
public class ModelDuck extends Duck { d.e'l d “nS 'HE.: t_ahrwhdt
o
public ModelDuck () { Our me! 1o by
&—— yithout 3 W37
flyBehavior = new FlyNoWay () ; wirthou

quackBehavior = new Quack() ;

utk be

public woid display () {
System.out.println("I'm a model duck") ;
}
}

(3 Make a new FlyBehavior type (FlyRocketPowered.java).

That's ::!L’.H‘]i, we're f,rea{:'mg} a

f votket—powered ;hﬂlhlﬁ behavior.

public class FlyRocketPowered implements FlyBehavior {
public void £fly() {
System.out.println("I'm flying with a rocket!");

}
@ Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

public class MiniDuckSimulator {
public static woid main(String[] args) {
Duck mallard = new MallardDuck() ;
mallard,performQuack() ;
mallard.performFly () ;
a x ecbormPy0)

The first eall T EHB:“‘” or dbject

_ delegates £)'s Lonstrueto
Duck model = new ModelDuck () ; cck in the ModelD stante:

Jhith is 3 FI\FNoW'a\II n

model .performFly () ; 6

model . setFlyBehavior (new FlyRocketPowered()) h:ﬂ;is i.nwkﬁ the madef’s nherited
behavier setter method, and...voil3/

model . performFly () ; The mod}! suddg..,ﬂy has votket—
| Poweved flying eapability/

If it wafkcd, the model duck dynamiceal| N

changcd its -Ff'?‘inﬁ b:havior_f 'r’::au tan't d:

TP'rIAT if the imple . : e
{‘.ht Duck ﬁ]ass. I "“5"{3‘[';!0?« fwcs inside

0O \Run it!

File Edit Window Help Yabadabadoo

%java MiniDuckSimulator

Quack

I'm flying!!

I can't fly

I'm flying with a rocket!

To change a duck’s behavior at runtime, just call the duck’s setter method for
that behavior.

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the duck simulator design,
it’s time to come back up for air and take a look at the big picture.

Below is the entire reworked class structure. We have everything you’d
expect: ducks extending Duck, fly behaviors implementing FlyBehavior, and
quack behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead of
thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the

algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of
classes that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A, and
IMPLEMENTS) on each arrow in the class diagram.

Client makes use of an .
entapsulated Lamily of algorithms

_Poy both £1T|h3 and q\uaﬂking- / ﬂ,s

Encapsulated fly behavior

<<interface>>
FlyBahavior

Think of each
set of behaviors
as a ?amil‘f Oi:

| FlyWithWings FiyMoWay - h

| ksl Tthms-
M fiyl} { 3130“ {

¥ implements duck fiying _/

Client Duck
| FiyBehavior fiyBehavior
| QuackBehavior quackBehavior

swm()

| dispiayt)

. perfarmCunck(}
| perormEly)

| eygetavor] Encapsulated quack behavior
| setQuackBehavior) [ccndaom>> |
1 OTHER duck-Eke methods Q:;:r;::::w /

i do nothing = can't fiy!
}

)

quack(]

T

- i = k - e '| - k - = - T . ___ T E—

MallardDuc | RedheadDuc! | RubberDuck | neco_ynur.h MuteQuack
displayi) { quack(]{
i s mothing - an't quack!

Squeak
quack) {
I rubber duckie squeak

display() {
' kooks fike a rubberduck }

digpiag() { display(} {
I lpaks e a makard | 1 looks Bee a redhead |

quack) |
| implements duck quacking

N hoaks ke a decoy duck |

R e
A)
. a\%i‘d ver

o

HAS-A can be better than IS-A

The HAS-A relationship is an interesting one: each duck has a FlyBehavior
and a QuackBehavior to which it delegates flying and quacking.

When you put two classes together like this you’re using compeosition.
Instead of inheriting their behavior, the ducks get their behavior by being
composed with the right behavior object.

This is an important technique; in fact, we’ve been using our third design
principle:

DESIGN PRINCIPLE

Favor composition over inheritance.

As you’ve seen, creating systems using composition gives you a lot more
flexibility. Not only does it let you encapsulate a family of algorithms into
their own set of classes, but it also lets you change behavior at runtime as
long as the object you’re composing with implements the correct behavior
interface.

Composition is used in many design patterns and you’ll see a lot more about
its advantages and disadvantages throughout the book.

BRAIN POWER

A duck call is a device that hunters use to mimic the calls (quacks) of ducks. How would
you implement your own duck call that does not inherit from the Duck class?

MASTER AND STUDENT...
Master: Grasshopper, tell me what you have learned of the Object-Oriented ways.
Student: Master, I have learned that the promise of the object-oriented way is reuse.
Master: Grasshopper, continue...

Student: Master, through inheritance all good things may be reused and so we come to
drastically cut development time like we swiftly cut bamboo in the woods.

Master: Grasshopper, is more time spent on code before or after development is
complete?

Student: The answer is after, Master. We always spend more time maintaining and
changing software than on initial development.

Master: So Grasshopper, should effort go into reuse above maintainability and
extensibility?

Student: Master, I believe that there is truth in this.

Master: I can see that you still have much to learn. I would like for you to go and
meditate on inheritance further. As you’ve seen, inheritance has its problems, and there
are other ways of achieving reuse.

Speaking of Design Patterns...

CONGRATULATIONS ON YOUR FIRST PATTERN!

1+

You just applied your first design pattern — the STRATEGY Pattern. That’s right, you
used the Strategy Pattern to rework the SimUDuck app. Thanks to this pattern, the
simulator is ready for any changes those execs might cook up on their next business trip
to Maui.

Now that we’ve made you take the long road to apply it, here’s the formal definition of
this pattern:

NOTE

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable. Strategy
lets the algorithm vary independently from clients that use it.

Use THIS definition when you need to impress friends and influence key
executives.

DESIGN PUZZLE

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)
Your task:

(D Arrange the classes.
@ Identify one abstract class, one interface, and eight classes.
 Draw arrows between classes.

1. Draw this kind of arrow for inheritance (“extends”). —&
2. Draw this kind of arrow for interface (“implements”). ««-«««--- (g

3. Draw this kind of arrow for “HAS-A”. —>
@ Put the method setWeapon() into the right class.

BowAndArrowBehavior

useWeapon() { / implements

an arrow with a bow

Character
WeaponBehavior weapon;
fight{); KnifeBehavior
use‘fteq:gnﬂ { I implements
—— cutting with <<interface>>
1] WeaponBehavior
King use Weapon);

Troll

AxeBehavior

fight() { .. }

fight{) { ... }
Knight

useWeapon() {f implements
chapping with an axe

SwordBehavior

fight(){... }

useWeapon() { llimplements
swinging a sword }

setWeapon (WeaponBehavior w)
this.weapon = w;

}

Overheard at the local diner...

Alice

I need a cream cheese with jelly on white
bread, a chocolate soda with vanilla ice cream, a
grilled cheese sandwich with bacon, a tuna fish
salad on toast, a banana split with ice cream & sliced
bananas, and a coffee with a cream and two sugars, ...
oh, and put a hamburger on the grilll

Flo

Give me a C.J. White,
a black & white, a Jack

Benny, a radio, a house boat, a
coffee regular, and burn onel

_—-l-[-u-—-"'h"'———-—__. 3 .

Rl LT UL T

i 'T'” -

What’s the difference between these two orders? Not a thing! They’re both
the same order, except Alice is using twice the number of words and trying
the patience of a grumpy short-order cook.

What’s Flo got that Alice doesn’t? A shared vocabulary with the short-order
cook. Not only does that make it easier to communicate with the cook, but it

gives the cook less to remember because he’s got all the diner patterns in his
head.

Design Patterns give you a shared vocabulary with other developers. Once
you’ve got the vocabulary you can more easily communicate with other
developers and inspire those who don’t know patterns to start learning them.
It also elevates your thinking about architectures by letting you think at the
pattern level, not the nitty-gritty object level.

Overheard in the next cubicle...

So I created this broadcast class. It keeps
track of all the objects listening to it, and

anytime a new piece of data comes along it sends
a message to each listener. What's cool is that the
listeners can join the broadcast at any time or
they can even remove themselves. It is really
dynamic and loosely coupled!

Exactly. If you communicate
in patterns, then other developers

know immediately and precisely the
design you're describing. Just don't
get Pattern Fever... you'll know you

have it when you start using patterns
for Hello World...

Rick, why didn't you
Jjust say you are using
the Observer Pattern?

BRAIN POWER

Can you think of other shared vocabularies that are used beyond OO design and diner
talk? (Hint: how about auto mechanics, carpenters, gourmet chefs, air traffic control.)
What qualities are communicated along with the lingo?

Can you think of aspects of OO design that get communicated along with pattern names?
What qualities get communicated along with the name “Strategy Pattern”?

The power of a shared pattern vocabulary

When you communicate using patterns you are doing more than just
sharing LINGO.

Shared pattern vocabularies are POWERFUL. When you communicate
with another developer or your team using patterns, you are communicating
not just a pattern name but a whole set of qualities, characteristics, and
constraints that the pattern represents.

NOTE

“We’re using the Strategy Pattern to implement the various behaviors of our ducks.”
This tells you the duck behavior has been encapsulated into its own set of classes that
can be easily expanded and changed, even at runtime if needed.

Patterns allow you to say more with less. When you use a pattern in a
description, other developers quickly know precisely the design you have in
mind.

Talking at the pattern level allows you to stay “in the design” longer.
Talking about software systems using patterns allows you to keep the
discussion at the design level, without having to dive down to the nitty-gritty
details of implementing objects and classes.

NOTE

How many design meetings have you been in that quickly degrade into implementation
details?

Shared vocabularies can turbo-charge your development team. A team
well versed in design patterns can move more quickly with less room for
misunderstanding.

NOTE

As your team begins to share design ideas and experience in terms of patterns, you will
build a community of patterns users.

Shared vocabularies encourage more junior developers to get up to
speed. Junior developers look up to experienced developers. When senior
developers make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern users at your
organization.

NOTE

Think about starting a patterns study group at your organization. Maybe you can even
get paid while you’re learning...

How do I use Design Patterns?

We’ve all used off-the-shelf libraries and frameworks. We take them, write
some code against their APIs, compile them into our programs, and benefit
from a lot of code someone else has written. Think about the Java APIs and
all the functionality they give you: network, GUI, 10O, etc. Libraries and
frameworks go a long way towards a development model where we can just
pick and choose components and plug them right in. But... they don’t help us
structure our own applications in ways that are easier to understand, more
maintainable and flexible. That’s where Design Patterns come in.

Design patterns don’t go directly into your code, they first go into your
BRAIN. Once you’ve loaded your brain with a good working knowledge of
patterns, you can then start to apply them to your new designs, and rework
your old code when you find it’s degrading into an inflexible mess of jungle
spaghetti code.

A Bunch of Patterns

| Object that e ..
holds state

J—— desi gn ?a{;"c@rhs_

‘ de, now new
@/ - and im?‘foVCd w‘I

THERE ARE NO DUMB QUESTIONS

: Q: If design patterns are so great, why can’t someone build a library of them so I don’t have to?

A: Design patterns are higher level than libraries. Design patterns tell us how to structure classes and objects to
solve certain problems and it is our job to adapt those designs to fit our particular application.

Q: Aren’t libraries and frameworks also design patterns?

A: Frameworks and libraries are not design patterns; they provide specific implementations that we link into our
code. Sometimes, however, libraries and frameworks make use of design patterns in their implementations. That’s
great, because once you understand design patterns, you’ll more quickly understand APIs that are structured
around design patterns.

Q: Q: So, there are no libraries of design patterns?

A: No, but you will learn later about pattern catalogs with lists of patterns that you can apply to your applications.

R

A:

Patterns are nothing
more than using OO
design principles...

Skeptical Peveloper

A common misconception,
Grasshopper, but it's more
subtle than that, You have
much to learn.,,

Friendly Patterns Guru

Developer: Okay, hmm, but isn’t this all just good object-oriented design; I
mean as long as I follow encapsulation and I know about abstraction,
inheritance, and polymorphism, do I really need to think about Design
Patterns? Isn’t it pretty straightforward? Isn’t this why I took all those OO
courses? I think Design Patterns are useful for people who don’t know good

OO design.

Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to
be good at building flexible, reusable, and maintainable systems.

Developer: No?

Guru: No. As it turns out, constructing OO systems that have these
properties is not always obvious and has been discovered only through hard
work.

Developer: I think I’m starting to get it. These, sometimes non-obvious,
ways of constructing object-oriented systems have been collected...

Guru: ...yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump
straight to designs that always work?

Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns,
you’ll be way ahead.

Developer: What do I do if I can’t find a pattern?

Remember, knowing concepts
like abstraction, inheritance, and
polymorphism does not make you a good
object-oriented designer. A design
guru thinks about how to create flexible
designs that are maintainable and can
cope with change.

Guru: There are some object-oriented principles that underlie the patterns,
and knowing these will help you to cope when you can’t find a pattern that
matches your problem.

Developer: Principles? You mean beyond abstraction, encapsulation, and...

Guru: Yes, one of the secrets to creating maintainable OO systems is
thinking about how they might change in the future, and these principles
address those issues.

Tools for your Design Toolbox

You’ve nearly made it through the first chapter! You’ve already put a few
tools in your OO toolbox; let’s make a list of them before we move on to
Chapter 2.

Thraughau{: the
book, think about
how patterns vely
on 00 basits and
?rihﬂi?itﬁ-

vary nac i

BULLET POINTS

Knowing the OO basics does not make you a good OO designer.

Good OO designs are reusable, extensible, and maintainable.

Patterns show you how to build systems with good OO design qualities.

Patterns are proven object-oriented experience.

Patterns don’t give you code, they give you general solutions to design problems.
You apply them to your specific application.

Patterns aren’t invented, they are discovered.

Most patterns and principles address issues of change in software.

Most patterns allow some part of a system to vary independently of all other parts.
We often try to take what varies in a system and encapsulate it.

Patterns provide a shared language that can maximize the value of your
communication with other developers.

DESIGN PATTERNS CROSSWORD
Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words are from this chapter.

1
2 3
4 5
& 7]
9
10 1 12
13
14
15
16 17
18 19
20
Across Down
2. what varies. 1. Patterns in many applications.

4. Design patterns . 3. Favor this over inheritance.

6. Java 10, Networking, Sound.

9. Rubber ducks make a

13. Bartender thought they were called.

15. Program to this, not an implementation.
17. Patterns go into your

18. Learn from the other guy’s

19. Development constant.

20. Patterns give us a shared

5. Dan was thrilled with this pattern.

7. Most patterns follow from OO

8. Not your own

10. High level libraries.

11. Joe’s favorite drink.

.| 12. Pattern that fixed the simulator.

13. Duck that can’t quack.

14. Grilled cheese with bacon.

15. Duck demo was located here.

DESIGN PUZZLE SOLUTION

Character is the abstract class for all the other characters (King, Queen, Knight, and
Troll), while WeaponBehavior is an interface that all weapon behaviors implement. So
all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which is defined in

the Character superclass. During a fight the useWeapon() method is called on the current

weapon set for a given character to inflict great bodily damage on another character.

abstract

Ry

| Character
WeaponBehavior weapon;
fight():
setWeapon(WeaponBehavior w) {
this.weapon = w;

A Character HAS-A

}
ﬂ Q W:aPor.BchaV'lo'r
King | Knight
fight(){...3 ‘ﬁght[]{ -1
— Queen Troll
‘ fight() (...} fight(){ ..} <<interface>>
WeaponBehavior
useWeapony);
Swordﬁahavior [BowAndArrowBehavior
useWeapon() { /| implements .| useWeapon() { l implements
[winging a sword) KnifeBehavior ks AxeBehavior
useWeapon() { I/ implements useWeapon() { Il implements
\(b t,k, t,oud cutting with a knife } chopping with an axe }
ANY 09)® ;
N Le tha J-L\ng wca?ongghaunor‘u‘u 0;
m?\gmu‘ 3 apext i
herkate: S0 3 Tk cea b2e

SHARPEN YOUR PENCIL SOLUTION

Which of the following are disadvantages of using subclassing to provide specific Duck
behavior? (Choose all that apply.) Here’s our solution.

4 | A. Code is duplicated across subclasses.

¥ | B. Runtime behavior changes are difficult.

(d | C. | We can’t make duck’s dance.
w” | D. | Hard to gain knowledge of all duck behaviors.
(d | E. | Ducks can’t fly and quack at the same time.

& | F. | Changes can unintentionally affect other ducks.

SHARPEN YOUR PENCIL SOLUTION

What are some factors that drive change in your applications? You might have a very
different list, but here’s a few of ours. Look familiar? Here’s our solution.

NOTE

My customers or users decide they want something else, or they
want new functionality.

My company decided it is going with another database vendor and
it is also purchasing its data from another supplier that uses a
different data format. Argh!

Well, technology changes and we’ve got to update our code to
make use of protocols.

We’ve learned enough building our system that we’d like to go
back and do things a little better.

DESIGN PATTERNS CROSSWORD SOLUTION

ClA|PISIUILIA|TIE

N

L

EIS|II|/6/NIERIPIATITIEIRIN'S

E
NIT|EIRLFELALECLE

-
5
I

K
BRATN
E

HlAIN|6|E

¢

iEE Fe E LS. LSLELS

16
M
A

N
8
5

1

O 2 v N

N

VlolclaslulLlalrly

Chapter 2. The Observer Pattern:
Keeping your Objects in the know

Hey Jerry, I'm notifying
everyone that the Patterns Group
meeting moved to Saturday night.
We're going to be talking about the
Observer Pattern. That pattern is the
best! It's the BEST, Jerry!

Don’t miss out when something interesting happens! We’ve got a pattern
that keeps your objects in the know when something they might care about
happens. Objects can even decide at runtime whether they want to be kept
informed. The Observer Pattern is one of the most heavily used patterns in
the JDK, and it’s incredibly useful. Before we’re done, we’ll also look at one-
to-many relationships and loose coupling (yeah, that’s right, we said
coupling). With Observer, you’ll be the life of the Patterns Party.

Congratulations!

Your team has just won the contract to build Weather-O-Rama, Inc.’s
next-generation, Internet-based Weather Monitoring Station.

Y
Statement of Work

Congratulations on being selected to build our next-generation, Internet-based Weather
Monitoring Station!

The weather station will be based on our patent pending WeatherData object, which
tracks current weather conditions (temperature, humidity, and barometric pressure). We’d
like you to create an application that initially provides three display elements: current
conditions, weather statistics, and a simple forecast, all updated in real time as the
WeatherData object acquires the most recent measurements.

Further, this is an expandable weather station. Weather-ORama wants to release an API
so that other developers can write their own weather displays and plug them right in.
We’d like for you to supply that API!

Weather-O-Rama thinks we have a great business model: once the customers are hooked,
we intend to charge them for each display they use. Now for the best part: we are going to
pay you in stock options.

We look forward to seeing your design and alpha application.

Sincerely,

e

Johnny Hurricane, CEO

P.S. We are overnighting the WeatherData source files to you.

The Weather Monitoring application overview

The three players in the system are the weather station (the physical device
that acquires the actual weather data), the WeatherData object (that tracks the
data coming from the Weather Station and updates the displays), and the
display that shows users the current weather conditions.

of three dic it
The wsevr tan also EI

: £ st
ckats and a koretd

Humidity displays

sensor device

Oi

Temperature
sensor device

pulls data

Conditions

Temp: 72°

WeatherData
object

Weather Station
Display device

Pressure
sensor device

Weather-O-Rama provides What we implement

The WeatherData object knows how to talk to the physical Weather Station,
to get updated data. The WeatherData object then updates its displays for the
three different display elements: Current Conditions (shows temperature,
humidity, and pressure), Weather Statistics, and a simple forecast.

Our job, if we choose to accept it, is to create an app that uses the
WeatherData object to update three displays for current conditions,
weather stats, and a forecast.

Unpacking the WeatherData class

As promised, the next morning the WeatherData source files arrive.
When we peek inside the code, things look pretty straightforward:

t
Fuen the most, veten
These three mc'thod!- 'ff-';a': tgm?c"rab"rb

WeatherData " ca{.‘h.ﬂ mga;u:::ts{rm pressure, .,-.-_s?cr.h‘ftl‘f-
getTemperature() hum'idi‘t‘]'a an hles ave set; the
getHumidity() We dont tare HOW these val:ii {: 554.“ .,,?da-l;cd
getPressure() WeatherData © ect kn?{;h;n.
measurementsChanged|) info From the Weather
I/ other methods

[*

* This method gets called
* whenever the weather measurements
* have been updated

| opevs o; the .
FE::&S:::T;E\!{B ahjctt 1;5?:: ; : y
tlue a‘na& what we net O n .

// Your code goes here

WeatherData.java

Remember, this Current Conditions
is just ONE of three different

diSFlﬂjf séireens. _L

Display device

Our job is to implement measurementsChanged() so that it updates the
three displays for current conditions, weather stats, and forecast.

What do we know so far?

The spec from Weather-O-Rama wasn’t all that clear, but we have to figure
out what we need to do. So, what do we know so far?

V1| The WeatherData class has getter methods for three measurement values: temperature,

humidity, and barometric pressure.
getTemperature()

getHumidity()
getPressure()

V1| The measurementsChanged() method is called any time new weather measurement
data is available. (We don’t know or care how this method is called; we just know that
it is.)

measurementsChanged()

/| We need to implement three display elements that use the weather data: a current
conditions display, a statistics display, and a forecast display. These displays must be
updated each time WeatherData has new measurements. %

1| The system must be expandable — other developers can create new custom display
elements and users can add or remove as many display elements as they want to the
application. Currently, we know about only the initial three display types (current
conditions, statistics, and forecast). @

Taking a first, misguided SWAG at the Weather Station

Here’s a first implementation possibility — we’ll take the hint from the
Weather-O-Rama developers and add our code to the
measurementsChanged() method:

public class WeatherData {
// instance variable declarations

public void measurementsChanged() {
Grab the most vetent measurements
float temp = getTemperature(); by ¢alling the WeatherData's getter
float humidity = getHumidity() ; methods (alveady implemented).

float pressure = getPressure();

currentConditionsDisplay.update (temp, humidity, pressure); Now u?dafc
statisticsDisplay.update(temp, humidity, pressure); the dis?'iays...
forecastDisplay.update(temp, humidity, pressure);

}
/Q Call each display element to

// other WeatherData methods here update its display, passing it
} 'U'l: maS‘E 'rcCthC mcasurcm:h{s-

SHARPEN YOUR PENCIL

Based on our first implementation, which of the following apply? (Choose all that
apply.)

A. We are coding to concrete implementations, not interfaces.

B. | For every new display element we need to alter code.

C. | We have no way to add (or remove) display elements at run time.

D. | The display elements don’t implement a common interface.

E. | We haven’t encapsulated the part that changes.

U 0|0 |0 0d |0

F. | We are violating encapsulation of the WeatherData class.

\

Definition of SWAG: Scientific Wild A** Guess

What’s wrong with our implementation?
Think back to all those Chapter 1 concepts and principles...

public void measurementsChanged() {

float temp = getTemperature() ;
float humidity = getHumidity () ;

float pressure = getPressure();

urrentConditionsDisplay.update(temp, humidity, pressure);

statisticsDisplay.updateitemp, humidity, pressure);
orecastDisp,

, humidity, pressure);
K_________.--‘_;\-___.-/

At least we seem to be using a
Lommon in{zrfae,c to talk 1o the
disﬂa}r elements... J{,hc\}r all have an
update() method that takes the
temp, hum]di{\f; and pressure values.

le,l toding $o tontrete
im?l.crnchJca{,lns we have no way

Lo add or vemove other display
elements without making changes 4o
the program.

Umm, I know I'm
new here, but given that we
are in the Observer Pattern

chapter, maybe we should
start using it?

Area of Chahgg. We
need to encapsulate this.

/

We’ll take a look at Observer, then come back and figure out how to apply it

to the Weather Monitoring app.

Meet the Observer Pattern

You know how newspaper or magazine subscriptions work:

(D A newspaper publisher goes into business and begins publishing

newspapers.

@ You subscribe to a particular publisher, and every time there’s a new
edition it gets delivered to you. As long as you remain a subscriber, you
get new newspapers.

® You unsubscribe when you don’t want papers anymore, and they stop
being delivered.

(@ While the publisher remains in business, people, hotels, airlines, and
other businesses constantly subscribe and unsubscribe to the newspaper.

Miss what's going on in
Objectville? No way, of
course we subscribel

Publishers + Subscribers = Observer Pattern

If you understand newspaper subscriptions, you pretty much understand
the Observer Pattern, only we call the publisher the SUBJECT and the
subscribers the OBSERVERS.

Let’s take a closer look:

The obsevvers have subseribed to
(vegistered with) the Subje:.{
}o veteive updates when the
S-u'DJcL‘.Jcs data thanges.

n the Subjct‘t &hangts,

e notitied:

When data

the observers ar

doiett manddes

Su\:‘jtﬁjﬁ

\5‘ . *,
% ject 00

New data values are
tommunitated to the
observers in some form

when they ¢hange.

his obi tg,{, isn T an
O N Tloscwgm o i doesn't

the
4 doB noJC,I-E:!r_d when
UCk Su‘u Jcr:r.s data thanges-

&
Hoyse 003
| Observer Objects

A day in the life of the Observer Pattern

A Duck object comes along and tells the Subject that it wants to become an
observer.

Duck really wants in on the action; those ints Subject is sending out whenever its
state changes look pretty interesting...

The Duck object is now an official observer.

Duck is psyched... he’s on the list and is waiting with great anticipation for the next
notification so he can get an int.

The Subject gets a new data value!

Now Duck and all the rest of the observers get a notification that the Subject has
changed.

The Mouse object asks to be removed as an observer.

The Mouse object has been getting ints for ages and is tired of it, so it decides it’s

time to stop being an observer.

Mouse is outta here!

The Subject acknowledges the Mouse’s request and removes it from the set of
observers.

The Subject has another new int.

All the observers get another notification, except for the Mouse who is no longer
included. Don’t tell anyone, but the Mouse secretly misses those ints... maybe it’ll
ask to be an observer again some day.

Five-minute drama: a subject for observation

In today’s skit, two post-bubble software developers encounter a real live
head hunter...

Uh, yeah, you and
everybody else, baby.
I'm putting you on my list of
Java developers. Don't call

; |
me, L'l call youl 0o ﬁ

This is Lori. I'm looking
for a Java development
position. T've got five years
of experience and...

© Vv

Headhunter/Subject

Software
Developer #1

T'll add you to the list—
you'll know along with
everyone else.

Hi, I'm Jill. T've
written a lot of EJB
systems. I'm interested in

any job you've got with Java
development,

h
8 ‘

Developer #2 el

Mearwhile, for Lori and Jill life goes
on; if a Java job comes along, they'll get
notified. After all, they are observers.

Hey observers, there's
a Java opening down at
JavaBeans-R-Us. Jump on
itl Don't blow it!

Bwahaha, money in
the barnk, babyl

Subject

Jill lands her own jobl

You can take me
of f your call list. I
found my own jobl

Observer

Two weeks later...

Tharks, T'll send my
resume right over.

This guy is a real jerk.
Who needs him. I'm
laaking for my own job.

Observer

Arghhhlll Mark my
words Jill, you'll never
work in this town again if T
have anything to de with it.
You're of f my call list!l

Q
[}
% =
O,
s
&\

e Subject

Jill’s loving life, and no longer an observer. She’s also enjoying the nice fat
signing bonus that she got because the company didn’t have to pay a
headhunter.

But what has become of our dear Lori? We hear she’s beating the headhunter
at his own game. She’s not only still an observer, she’s got her own call list
now, and she is notifying her own observers. Lori’s a subject and an observer
all in one.

The Observer Pattern defined

When you’re trying to picture the Observer Pattern, a newspaper subscription
service with its publisher and subscribers is a good way to visualize the
pattern.

In the real world, however, you’ll typically see the Observer Pattern defined
like this:

NOTE

The Observer Pattern defines a one-to-many dependency between objects so that when
one object changes state, all of its dependents are notified and updated automatically.

Let’s relate this definition to how we’ve been talking about the pattern:

ONE-TO-MANY RELATIONSHIP

Object that ———

holds state
£ o=
y

,.FF"

....... IJI %mfp
"'I.-l--.,‘ Duck o
%Oddf |

Automatic update/notification .

-

The Observer Pattern defines a one-to-many relationship between a set of objects.
When the state of one object changes, all of its dependents are notified.

The subject and observers define the one-to-many relationship. The observers
are dependent on the subject such that when the subject’s state changes, the
observers get notified. Depending on the style of notification, the observer
may also be updated with new values.

As you’ll discover, there are a few different ways to implement the Observer
Pattern, but most revolve around a class design that includes Subject and
Observer interfaces.

Let’s take a look...

The Observer Pattern defined: the class diagram

All potential observers need
to implement the Observer
interface. This interface

% Ob:)cf:b" Eath sub\jctjc Jus{: has one method, ;,Fdaﬁc{)
@ _"’w o tan have many that gets called when the
W Ji e Sw ste Yo e . h wsc‘Nﬁ obsevvers. Sub\jeﬂ‘t’s state changgs.
exY s 0
se s ‘“{c"d Jso 2 i L
W an!
o"of- c\’" (Al 0‘05 c‘r“ e(s.
Q—rﬂ"“" [\ k") «;ﬁi‘{acsr» observars > <<inleraces>
ubjec Observer
registerObserver() update()
removeOhserver()
notifyObservers() ‘A
e :
Concre{eSuhjecl Ll ConcreteObserver
//3 registerObserver() {...} update()
removeObserver() [...} 1! other Observer specific
Pl ¢ o'nt'rt'tf- subjct{balwz\fs notifyObservers() {...} methods
\el
\mplements the Subje
Tm?ﬁ'Eau In 2 ddition to getState()
w ; setState()
Lhe vegister #0d vemens K

biett
methods, the tontrete suby
ir:?\c:c:\Jc,S a noﬁQ\fObscwcrsE
method that is used to update e Lontrets et e

all the turrent observers e St

Contrete obsevvers ean be

any class that implements the
Obsevver intevfate. Eath observer
vegistevs with a conerete subject
to veteive u?dafu.

The tontvete Sub")r_a{: may also

THERE ARE NO DUMB QUESTIONS

Q: Q: What does this have to do with one-to-many relationships?

A: A: With the Observer Pattern, the Subject is the object that contains the state and controls it. So, there is ONE
subject with state. The observers, on the other hand, use the state, even if they don’t own it. There are many

observers and they rely on the Subject to tell them when its state changes. So there is a relationship between the
ONE Subject to the MANY Observers.

R

Q: How does dependence come into this?

A: A: Because the subject is the sole owner of that data, the observers are dependent on the subject to update them
when the data changes. This leads to a cleaner OO design than allowing many objects to control the same data.

\

The power of Loose Coupling

When two objects are loosely coupled, they can interact, but have very
little knowledge of each other.

The Observer Pattern provides an object design where subjects and
observers are loosely coupled.

Why?

The only thing the subject knows about an observer is that it implements
a certain interface (the Observer interface). It doesn’t need to know the
concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time. Because the only thing the subject
depends on is a list of objects that implement the Observer interface, we can
add new observers whenever we want. In fact, we can replace any observer at
runtime with another observer and the subject will keep purring along.
Likewise, we can remove observers at any time.

We never need to modify the subject to add new types of observers. Let’s
say we have a new concrete class come along that needs to be an observer.
We don’t need to make any changes to the subject to accommodate the new
class type; all we have to do is implement the Observer interface in the new
class and register as an observer. The subject doesn’t care; it will deliver
notifications to any object that implements the Observer interface.

We can reuse subjects or observers independently of each other. If we
have another use for a subject or an observer, we can easily reuse them
because the two aren’t tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either,
as long as the objects still meet their obligations to implement the subject or
observer interfaces.

NOTE

How many different kinds of change can you identify here?

DESIGN PRINCIPLE

Strive for loosely coupled designs between objects that interact.

Loosely coupled designs allow us to build flexible OO systems that can
handle change because they minimize the interdependency between
objects.

SHARPEN YOUR PENCIL

Before moving on, try sketching out the classes you’ll need to implement the Weather
Station, including the WeatherData class and its display elements. Make sure your
diagram shows how all the pieces fit together and also how another developer might
implement her own display element.

If you need a little help, read the next page; your teammates are already talking about
how to design the Weather Station.

Cubicle conversation

Back to the Weather Station project. Your teammates have already started
thinking through the problem...

So, how are we going
to build this thing?

T
%

'
i

Mary: Well, it helps to know we’re using the Observer Pattern.
Sue: Right... but how do we apply it?
Mary: Hmm. Let’s look at the definition again:

The Observer Pattern defines a one-to-many dependency between objects so

that when one object changes state, all its dependents are notified and
updated automatically.

Mary: That actually makes some sense when you think about it. Our
WeatherData class is the “one” and our “many” is the various display
elements that use the weather measurements.

Sue: That’s right. The WeatherData class certainly has state... that’s the
temperature, humidity, and barometric pressure, and those definitely change.

Mary: Yup, and when those measurements change, we have to notify all the
display elements so they can do whatever it is they are going to do with the
measurements.

Sue: Cool, I now think I see how the Observer Pattern can be applied to our
Weather Station problem.

Mary: There are still a few things to consider that I’m not sure I understand
yet.

Sue: Like what?

Mary: For one thing, how do we get the weather measurements to the
display elements?

Sue: Well, looking back at the picture of the Observer Pattern, if we make the
WeatherData object the subject, and the display elements the observers, then
the displays will register themselves with the WeatherData object in order to
get the information they want, right?

Mary: Yes... and once the Weather Station knows about a display element,
then it can just call a method to tell it about the measurements.

Sue: We gotta remember that every display element can be different... so I
think that’s where having a common interface comes in. Even though every
component has a different type, they should all implement the same interface
so that the WeatherData object will know how to send them the
measurements.

Mary: I see what you mean. So every display will have, say, an update()
method that WeatherData will call.

Sue: And update() is defined in a common interface that all the elements
implement...

Designing the Weather Station

How does this diagram compare with yours?

Heve's our Sub;)cf.f 'ml{:lcv-{"acc.
TNS shou]d h}ok -Cann'har.

N\

<<interface>>

All our weather com?oncnb
implement. the Observer

inkerface. This gives the
Subiett a tommon }nicrfa(.c to

£alk to when it comes time to
update the observers.

—

Subject
registerObserver()
removeObserverf)
notifyObservers()

iy

S,
é@r{

WeatherData

registerQObserver()
removeQbserver()
notifyObservers()

gefTemperature()
getHumidity()
getPressure()
measurementsChanged)

Wcathchaba now

im?ltm:h{;‘n the Su‘o\}c&’c

in‘Ef.rga te.

observers _ S
i Observer

update()
display() { // display cuent
measurements }

StatisticsDisplay

update) !

This distay element
shows the Current
measurements from Lhe

WeatherD3at s object.

update()

display() { /f display the aver-
age, min and max measure-
ments }

This one keeps track
of the min/ avg/ max
l\nCQSurcmgh-L; a‘nd
dis?laYS them.

Let’s also eveate an interface
for all display elements

to implement. The display
elements just need 4o
im?l:mthf a d:s?]a\f‘o method.

)

<<interface>>
DisplayElement

dlsplay()

ThirdF‘artyI:lisplay

update()

display() { ! display
something else based on
measurements }

N

Developers tan
implement. the
Observer and

. DisplayElement
ForecastDisplay | inkevfates to
updatef) eveate their own
display() { / display the | display element.

forecast }

This display shows the weather
fovetast based on the bavometer.

These three display elements should have a pointer to
WeathevData labeled “SU’DJC-:{'.” to0, but boy weuld
this diagram start to lock like spaghetti it they did.

Implementing the Weather Station

We’re going to start our implementation using the class diagram and
following Mary and Sue’s lead (from a few pages back). You’ll see later in
this chapter that Java provides some built-in support for the Observer Pattern,
however, we’re going to get our hands dirty and roll our own for now. While
in some cases you can make use of Java’s built-in support, in a lot of cases
it’s more flexible to build your own (and it’s not all that hard). So, let’s get
started with the interfaces:

ic i] Both of fhese methods take an

pubiic interface Sihoeet | Dbserver as an a-rgumznf; that is, the
public void reglstexCbserver (Cbservex o) ; } Observer to be vegistered or removed.
public woid remowveObserver (Cbserver o) ;

public void notifyObservers(); This method is called to ho‘El":‘f all obsevvers

} when the Subjeet’s state has thanged.
public interface Observer {
public woid update(float temp, float humidity, fleoat pressure) ;
} A T U The Observer intertate
These ave the state values the Observers get from is implemented by all
the Subject when a weather measurement changes cbservers, so they all

have to im?lzmcr\{: the
wpdate() method. Heve

public interface DisplayElement { ﬁ i &Howthg Ma'rj‘ and

public void display(); The DisplayElement interface Sue's lead and passing
} just intludes one methed, display(), the measurements to the
that we will call when the display observers.

element needs 4o be displayed.

BRAIN POWER

Mary and Sue thought that passing the measurements directly to the observers was the
most straightforward method of updating state. Do you think this is wise? Hint: is this an
area of the application that might change in the future? If it did change, would the
change be well encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the
observers?

Don’t worry; we’ll come back to this design decision after we finish the initial
implementation.

Implementing the Subject interface in WeatherData

REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Remember our first attempt at implementing the WeatherData class at the
beginning of the chapter? You might want to refresh your memory. Now it’s
time to go back and do things with the Observer Pattern in mind...

http://wickedlysmart.com/head-first-design-patterns/

WeatherData now implements

public class WeatherData implements Subject { & —
the Eubjtf.{'. in{;crwc.af,c.

private ArrayList<Observer> cbservers;
private float temperature;
private float humidity; We've added an .‘bﬁ'”a\f!"‘mt to
private float pressure; hold the Dhservers, and we
eveate it in the tonstruttor.
public WeatherData() {
observers = new ArrayList<Observer>() ;

} +
When an cbserver vegisters, we

public void registerObserver (Observer o) { £ \')“5{‘ add it to the end of the list

observers.add (o) ;

} Likewise, when an observer wants to un—

& vegister, we just take it off the list.

public void removeCbserver (Observer o) {
int i = observers.index0f (o) ;

e Heve's the fun part; this is where
chaowers . ranave L) ; we Lell all the observers about
: the state. Because they are

} /—— all Obsevvers, we know they all

public void notifyObservers() { L"‘?!c't“:"{ J:Edai:& R
for (Observer cbserver : observers) { oW RO NETEEY '
cbserver.update (temperature, humidity, pressure) ;

Here we implement the Subjc:.{: intevface.

}
} notiky the
o :?daicd mEaH
Weather Station

Dlosevvers when we
gmch'b" yam
3.:{:

public void measurementsChanged() { Ihe

notifyObservers() ;
}

public void setMeasurements(float temperature, float humidity, float pressure) |
this. temperature = temperature;
this.humidity = humidity; Okay, whil . .
this.pressure = pressure; Y while we vanted to ship a nice little

: weather station with eath book, +he ublisher
measurementsChanged () ; F__/ wouldn'+ 80 for it. So, vather than rradinﬁ
attual weather data off 3 devite, we're goin
L T P I Y to use this method 4o test our dis?laY elements.
} Ov, for fun, you tould write tode to grab
measurements o“: {:H: Web.

}

Now, let’s build those display elements

Now that we’ve got our WeatherData class straightened out, it’s time to build
the Display Elements. Weather-O-Rama ordered three: the current conditions
display, the statistics display, and the forecast display. Let’s take a look at the
current conditions display; once you have a good feel for this display
element, check out the statistics and forecast displays in the code directory.
You’ll see they are very similar.

o . It also implements DisplayElement,
This display implements Observer because our AP is going 1@ o

so it tan get thanges from the vequi i
: quive all display elements 4o
WeatherData ijfc'{'-' d implement this inter-face.

p;

public class CurrentConditionsDisplay implements Observer, DisplayElement {
private float temperature;
private float humidity;

private Subject weatherData; The C,ons‘l‘,‘r‘uﬂ‘l:ﬂ-\’ i PaSSCd the

K~ T~ weatherData a'o"jccﬁ (the Subjcc.{::‘
and we use it to vegister the

public CurrentConditionsDisplay (Subject weatherData) {
display as an observer.

this.weatherData = weatherData;
weatherData.registerObserver (this) ;

public wvoid update(float temperature, float humidity, float pressure) {
this. temperature = temperature;

this.humidity = humidity; & When update() is r_allcd..d_v{:
display () ; save JChC +‘CMP &'nd- humidr ‘Jl'
. and call displayO-

public void display() {
System.out.println("Current conditions: " + temperature
+ "F degrees and " + humidity + "% humidity");
} The disr,gla‘,rf} method
} k j“5£ ?rin{s out the m.os.{,
rcc:njc. *‘.EM? ahd humldl‘t‘f-

THERE ARE NO DUMB QUESTIONS

Q: Q: Is update() the best place to call display?

A: A: In this simple example it made sense to call display() when the values changed. However, you are right; there
are much better ways to design the way the data gets displayed. We are going to see this when we get to the
Model-View-Controller pattern.

Q: Q: Why did you store a reference to the Subject? It doesn’t look like you use it again after the constructor.

A: A: True, but in the future we may want to un-register ourselves as an observer and it would be handy to already
have a reference to the subject.

Power up the Weather Station

(D First, let’s create a test harness.

The Weather Station is ready to go. All we need is some code to glue
everything together. Here’s our first attempt. We’ll come back later in the
book and make sure all the components are easily pluggable via a
configuration file. For now here’s how it all works:

public class WeatherStation { F’It’st treate the
WeatherData object.

public static void main(String[] args) {

WeatherData weatherData = new WeatherData() ;

| i sk CurrentConditionsDisplay currentDisplay =
o
warTJC to new CurrentConditionsDisplay (weatherData) ;

downtoad the % StatisticsDisplay statistiesDisplay = new StatisticsDisplay(weatherData) ;
CUdCJ \fo“ tan
:,ornmf.n{', OU{‘.

Lhese two lines K Create the three

ForecastDisplay forecastDisplay = new ForecastDisplay (weatherData) ;

and vvn ik weatherData.setMeasurements (80, &5, 30.4f) ; dis?h}fs and
weatherData.setMeasurements (82, 70, 29,2f); pass them the
weatherData.setMeasurements (78, 90, 29.2f) ; é) Wca{:herDai:a ob‘jct.{:,
} Cimulate new weather
1 mgasurcmch‘IJS-
@ Run the code and let the Observer Pattern do its magic.

File Edit Window Help StormyWeather

%java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for ccoler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

%

SHARPEN YOUR PENCIL

Johnny Hurricane, Weather-O-Rama’s CEQO, just called and they can’t possibly ship
without a Heat Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the
apparent temperature (how hot it actually feels). To compute the heat index, you take the

temperature, T, and the relative humidity, RH, and use this formula:
heatindex =

16.923 + 1.85212 * 10"1 * T + 5.37941 * RH - 1.00254 * 10-1 *
T * RH + 9.41695 * 1073 * T2 + 7.28898 * 10°3 * RHZ + 3.45372 *
10°% * T2 * RH - 8.14971 * 10°% * T * RHZ + 1.02102 * 1075 * T2 *
RHZ - 3.8646 * 103 * T3 + 2.91583 * 10°2 * RH3 + 1.42721 * 1076
* 73 * RH + 1.97483 * 10°7 * T * RHS - 2.18429 * 1078 * T3 * RH2
+ 8.43296 * 10°10 * 12 » py3 . 4.81975 * 10°11 * T3 » gy3

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own
HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

NOTE

You can get heatindex.txt from wickedlysmart.com.

How does it work? You’d have to refer to Head First Meteorology, or try asking
someone at the National Weather Service (or try a web search).

When you finish, your output should look like this:

File Edit Window Help

OverdaRainbow

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
tecsaukal /—\3 Forec§st: Il'nproving weather on the way!
thchdin Heat index 1? ?2‘95535 -
this output. Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = B81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Heat index is 86.90124

Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = B80.0/82.0/78.0

Forecast: More of the same

Heat index is B83.64967

%

FIRESIDE CHATS

Tonight’s talk: A Subject and Observer spar over the right way to get state
information to the Observer.

Subject: Observer:

I’m glad we’re finally getting a
chance to chat in person.

Well, I do my job, don’t I? I
always tell you what’s going on...
Just because I don’t really know
who you are doesn’t mean I don’t
care. And besides, I do know the
most important thing about you
— you implement the Observer
interface.

Oh yeah, like what?

Well, excuuuse me. I have to
send my state with my
notifications so all you lazy
Observers will know what
happened!

Well... I guess that might work.
I’d have to open myself up even
more, though, to let all you
Observers come in and get the
state that you need. That might be
kind of dangerous. I can’t let you
come in and just snoop around
looking at everything I’ve got.

Yes, I could let you pull my
state. But won’t that be less

Really? I thought you didn’t care much about us Observers.

Yeah, but that’s just a small part of who I am. Anyway, I know
a lot more about you...

Well, you’re always passing your state around to us Observers
so we can see what’s going on inside you. Which gets a little
annoying at times...

Okay, wait just a minute here; first, we’re not lazy, we just
have other stuff to do in between your oh-so-important
notifications, Mr. Subject, and second, why don’t you let us
come to you for the state we want rather than pushing it out to
just everyone?

Why don’t you just write some public getter methods that will
let us pull out the state we need?

\

convenient for you? If you have
to come to me every time you
want something, you might have
to make multiple method calls to
get all the state you want. That’s
why I like push better... then you
have everything you need in one
notification.

Well, I can see the advantages to
doing it both ways. I have noticed
that there is a built-in Java
Observer Pattern that allows you
to use either push or pull.

Great... maybe I'll get to see a
good example of pull and change
my mind.

Don’t be so pushy! There are so many different kinds of us
Observers, there’s no way you can anticipate everything we
need. Just let us come to you to get the state we need. That
way, if some of us only need a little bit of state, we aren’t
forced to get it all. It also makes things easier to modify later.
Say, for example, you expand yourself and add some more
state. If you use pull, you don’t have to go around and change
the update calls on every observer; you just need to change
yourself to allow more getter methods to access our additional
state.

Oh really? I think we’re going to look at that next....

What, us agree on something? I guess there’s always hope.

Using Java’s built-in Observer Pattern

So far we’ve rolled our own code for the Observer Pattern, but Java has built-
in support in several of its APIs. The most general is the Observer interface
and the Observable class in the java.util package. These are quite similar to
our Subject and Observer interfaces, but give you a lot of functionality out of
the box. You can also implement either a push or pull style of update to your
observers, as you will see.

To get a high-level feel for java.util.Observer and java.util.Observable, check
out this reworked OO design for the WeatherStation:

With Java's built-in support,
all you have to do is extend

Observable and tell it when to
notify the Observers. The APT
does the rest for you.

The Obsevvable tlass keeps
track of all your observers
and no{:ifics them go\r you.

This should look Lamiliar- In
£aet, it's exactly the same as

Observable is a
CLASS, not an
ihﬁcr«catc, so
WeatherData
extends
Observable.

This dOC‘-“"J{" \ook
Lamiliav! Hold

JC\{’_‘.'n{‘.; we'l 5"1(' t

Lhis in @ st

our previous ¢lass diagram! We left out the
\ 2 Disyla\.{aemcr\{:
interfate, but all
Observable h“bse”““s > ‘gg;:i‘v‘:”: .H-.c dis?lay_s shill
addObserver() update() |m\9|cmcr\{ it too.
deleteObserver() ~
notifyObservers() N i % /
setChanged() bl

StatisticsDisplay h ForecasiDisplay |

GeneralDisplay I

update() update() update()

WeatherData h display() display() display()
getTemperature() ‘[
getHumidity()

0
getPressure() Theve will be a -("cw C'nanﬁes to make to H‘\C u?d&{.c

Dbsevvers, but basically it's
n Observer interface,
the Sub\')cf.{-,,

method in the tontvete
Lhe same idea... we have a tommo

Hc'rc’s our Subjﬂc{:, W'hif.h we Lan wrt]n - u?dm() mc-U-.od ‘{’,}\BES f.allcd bY

now also ¢all the Obsevvable. We
don't need the rcgis{xr(), removel),
and no{if\fﬂbservcrso methods
anymore; we inherit that behavior
from the supertlass

How Java’s built-in Observer Pattern works

The built-in Observer Pattern works a bit differently than the implementation

that we used on the Weather Station. The most obvious difference is that
WeatherData (our subject) now extends the Observable class and inherits the
add, delete, and notify Observer methods (among a few others). Here’s how
we use Java’s version:

For an Object to become an observer...

As usual, implement the Observer interface (this time the java.util.Observer
interface) and call addObserver() on any Observable object. Likewise, to
remove yourself as an observer, just call deleteObserver().

For the Observable to send notifications...

First of all you need to be Observable by extending the java.util.Observable
superclass. From there it is a two-step process:

@ You first must call the setChanged() method to signify that the state
has changed in your object.
(@ Then, call one of two notifyObservers() methods:

This version Lakes an .

arbitrary data objett

that gets passed to

eath Observer when it
either notifyObservers() OF notifyObservers(Object arg) is notified.

update (Chservable o, Object arg)

A /_ﬁ
The E;lt:l\jtf.‘l,, that sent

This will be the data ohjcﬂﬁ that was
IDaS.SEd +,C' thl;f‘?leSf.rU.C'rsf;l_. o !"'l.l” "F
a data ahjm‘:l‘, wasn £ LPEI'.-'JF'{d.

the notitication is passed
in as this a'rl_'a_,'.-rntn"v.

For an Observer to receive notifications...

It implements the update method, as before, but the signature of the method is
a bit different:

If you want to “push” data to the observers, you can pass the data as a data
object to the notifyObservers(arg) method. If not, then the Observer has to

“pull” the data it wants from the Observable object passed to it. How? Let’s
rework the Weather Station and you’ll see.

Wait, before we get to
that, why do we need this
setChanged() method? We
didn't need that before.

The setChanged() method is used to signify that the state has changed and
that notifyObservers(), when it is called, should update its observers. If
notifyObservers() is called without first calling setChanged(), the observers
will NOT be notified. Let’s take a look behind the scenes of Observable to
see how this works:

BEHIND THE SCENES

setChanged() { The setChanae d() method sets

changed = true v a thanged ?lag to True:
}

no‘i;t-l;‘]’ﬂ'lb“ evvers) ';m.l‘f

T oy e e gl Sperer §
for every observer on the list { the thanged F1ag 1 :
/ call update (this, arg)
) - And atter it notifies
Psevdotode for the Ehanges £ e the observers, it sr_';_q th_c
b‘nscwablc tlass } } thanged f—lag back to talse.

notifyObservers() {
notifyObservers(null)

}

Why is this necessary? The setChanged() method is meant to give you more
flexibility in how you update observers by allowing you to optimize the
notifications. For example, in our Weather Station, imagine if our
measurements were so sensitive that the temperature readings were
constantly fluctuating by a few tenths of a degree. That might cause the
WeatherData object to send out notifications constantly. Instead, we might
want to send out notifications only if the temperature changes more than half
a degree and we could call setChanged() only after that happened.

You might not use this functionality very often, but it’s there if you need it.
In either case, you need to call setChanged() for notifications to work. If this
functionality is something that is useful to you, you may also want to use the
clearChanged() method, which sets the changed state back to false, and the
hasChanged() method, which tells you the current state of the changed flag.

Reworking the Weather Station with the built-in
support

First, let’s rework WeatherData to use java.util.Observable

Make sure we are importing 9 e We don't need to keep track of our
the right Dbservable. W observers anymore, or manage their
subtlassing Observable. vegistration and vemoval (the supevtlass
will handle that), so we've vemoved the
rcﬁis{:cr{)bscwcr[}, removeDbsevver() and
import jawva.util.Cbservable; notif yObservers() methods.

public class WeatherData extends Observable { l
private flost bedpersture: e Our tonstruttor no longer

private float humidity; needs to treate a data
private float pressure; / shrueture to hold Obsevvers.

public WeatherData() { } ¥* Notice we aven't sending a data ob:,et.{
with the mbfyﬂbsewersf) eall. That

ublic void measurementsChanged
Ll = . O means we've using the PULL model.

setChanged () ;
notifyObservers () ; ¥

public void setMeasurements (float temperature, fleoat/humidity, float pressure) {
this. temperature = temperature;
this.humidity = humidity;

this.pressure = pressure; We now first eall schhahgcdD to
measurementsChanged () ; indicate the state has thanged
} before ﬁ&”im} no{i‘FTOESETU:TSU.

public float getTemperature() {
return temperature;
1

public float getHumidity() {
return humidity;

1 ’\
{ \ e These methods arent new, but betause

Publiztii:a:reg:::z:?sura” e we are going to use “oull” we thought
} we'd vemind Yyou they are here. The
} Dbsevvers will use them to get at the
WeatherData objc-:{'s state.

Now, let’s rework the CurrentConditionsDisplay

in, make sure we are importing

haa
o the right Dbsevver/Observable.

/ e We now are implementing the Observer interface from Java.u’cil.

import java.util.Observable;

import java.util.Obserwver;

public class CurrentConditionsDisplay implements Observer, DisplayElement {
Cbsexrvable cobservable;

private float temperature;
private float humidity; Our eonstruttor now £3.sz an
!//-‘ Obsevvable and we use this 1o
add the turvent tonditions
public CurrentConditionsDisplay (Observable cbservable) { ob\}etx{: as an Observer.

this.observable = cbservable;
cbservable.addCbserver (this) ;

. , - Q) We've thanged the
public void update (Observable obs, Object arg) { f\—/ u?dafch macfhod
if (obs instanceof WeatherData) { to take both an

WeatherData weatherData = (WeatherData)obs; Observable and the
this. temperature = weatherData.getTemperature() ; OF{iﬂhﬂ! data argument.
this.humidity = weatherData.getHumidity() ;

display() ;
}
} e In u?da{:c{'l we mc'lrs{
make sure ‘El'tt obscruab|g
public void display() { is of ‘[’,\I.ch WeatherData

and then we use its
+ "F degrees and " + humidity + "% humidity") ; '3"&_” methods to
obtain the temperature
! and humidity
measurements. After
that we eall d|s?|a~l,l"f).

System.out.println("Current conditions: " + temperature

CODE MAGNETS

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!

public ForecastDisplay[Observable
observable) {

display() ;

observable.addﬁbserver(this)'

'if (observable instanceof WeatherData) { '

public class ForecastDisplay implements
DisplayElement {

Observer,

public void display() {
// display code here

currentPressure;
weatherData.getPressure();

lastPressure =

currentPressure =

Private float currentPressure =

. 29,92F;
Private float 1astPressure;

Wea

therData weatherData =

IWeatherDataJobservable;

e observable,

public wvoid update[ﬂbservabl
Object arg) {

import java.util.Observable;

import java.util.Observer;

Running the new code

Just to be sure, let’s run the new code...

File Edit Window Help TryTihisAtHome

¥java WeatherStation

Forecast: Improving weather on the way!

Avg/Max/Min temperature = 80.0/80.0/80.0

Current conditions: 80.0F degrees and 65.0% humidity
Forecast: Watch out for cooler, rainy weather
Avg/Max/Min temperature = 81.0/82.0/80.0

Current conditions: B82.0F degrees and 70.0% humidity
Forecast: More of the same

Avg/Max/Min temperature = 80.0/82.0/78.0

Current conditions: 78.0F degrees and 90.0% humidity
%

Hmm, do you notice anything different? Look again...

You’ll see all the same calculations, but mysteriously, the order of the text
output is different. Why might this happen? Think for a minute before
reading on...

Never depend on order of evaluation of the Observer notifications

The java.util.Observable has implemented its notifyObservers() method such
that the Observers are notified in a different order than our own
implementation. Who’s right? Neither; we just chose to implement things in
different ways.

What would be incorrect, however, is if we wrote our code to depend on a
specific notification order. Why? Because if you need to change
Observable/Observer implementations, the order of notification could change
and your application would produce incorrect results. Now that’s definitely
not what we’d consider loosely coupled.

Doesn't java.util.Observable
violate our OO design principle
of programming to interfaces,
not implementations?

The dark side of java.util.Observable

Yes, good catch. As you’ve noticed, Observable is a class, not an interface,
and worse, it doesn’t even implement an interface. Unfortunately, the
java.util.Observable implementation has a number of problems that limit its
usefulness and reuse. That’s not to say it doesn’t provide some utility, but
there are some large potholes to watch out for.

Observable is a class

You already know from our principles this is a bad idea, but what harm does
it really cause?

First, because Observable is a class, you have to subclass it. That means you
can’t add on the Observable behavior to an existing class that already extends
another superclass. This limits its reuse potential (and isn’t that why we are

using patterns in the first place?).

Second, because there isn’t an Observable interface, you can’t even create
your own implementation that plays well with Java’s built-in Observer API.
Nor do you have the option of swapping out the java.util implementation for
another (say, a new, multithreaded implementation).

Observable protects crucial methods

If you look at the Observable API, the setChanged() method is protected. So
what? Well, this means you can’t call setChanged() unless you’ve subclassed
Observable. This means you can’t even create an instance of the Observable
class and compose it with your own objects, you have to subclass. The design
violates a second design principle here...favor composition over inheritance.

What to do?

Observable may serve your needs if you can extend java.util.Observable. On
the other hand, you may need to roll your own implementation as we did at
the beginning of the chapter. In either case, you know the Observer Pattern
well and you’re in a good position to work with any API that makes use of
the pattern.

Other places you’ll find the Observer Pattern in the
JDK

The java.util implementation of Observer/Observable is not the only place
you’ll find the Observer Pattern in the JDK; both JavaBeans and Swing also
provide their own implementations of the pattern. At this point you
understand enough about Observer to explore these APIs on your own;
however, let’s do a quick, simple Swing example just for the fun of it.

NOTE

If you’re curious about the Observer Pattern in JavaBeans, check out the
PropertyChangeListener interface.

A little background...

Let’s take a look at a simple part of the Swing API, the JButton. If you look
under the hood at JButton’s superclass, AbstractButton, you’ll see that it has
a lot of add/ remove listener methods. These methods allow you to add and

remove observers, or, as they are called in Swing, listeners, to listen for
various types of events that occur on the Swing component. For instance, an
ActionListener lets you “listen in” on any types of actions that might occur
on a button, like a button press. You’ll find various types of listeners all over
the Swing API.

A little life-changing application

Okay, our application is pretty simple. You’ve got a button that says “Should
I do it?” and when you click on that button the listeners (observers) get to
answer the question in any way they want. We’re implementing two such
listeners, called the AngelListener and the DevilListener. Here’s how the
application behaves:

e & Y&

Hcrc’s ouyr ﬁancy 'm%cv-{:af.c.
Should | do it?
And heve's the ou{:?u{ when
we Chﬁk on jc}\c 'Ou'{',‘{'pn.
Devil e %$java SwingObserverExample
evil answ
Come on, do it!
RG] Don't do it, you might regret it!
%
And the Code..‘

This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JFrame and set up our listeners. We’re
going to use inner classes for the listeners, which is a common technique in
Swing programming. If you aren’t up on inner classes or Swing, you might
want to review the “Getting GUI” chapter of Head First Java.

a.??'li eation that

public class SwingObserverExample { Sim?]lc Cwiiny
ame and

just preates 3 Kr

JF £ o oo
'rame frame R bukbon in k.

public static woid main(String[] args) {
SwingObserverExample example = new SwingCbserverExample() ;
example.go() ;
}
public void go() {
frame = new JFrame() ;
Makes the devil and

JButton button = new JButton("Should I do it?"); angel o'o‘jcf.{s liskenevs
button.addActionlListener (new AngellListener()) ; (observers) G‘F the button.

button.addActionlListener (new Devillistener()) ;
// Set frame properties here &——— (Code to set up the Lrame goes here.

(’* Here are the elass de—FiniJCions For

class Angellistener implements ActionListener { the observers, defined as inner
public void actionPerformed (ActionEvent event) { tlasses (but fhc‘f don't have to be).
System.ocut.println("Don't do it, you might regret it!");

class Devillistener implements ActicnListener {
public wvoid actionPerformed (ActionEvent event) {

System.out.println("Come on, do it!"); (—\

Rather than update(), the attionPevformed()
} method gets called when the state in the
mecc.{, (in Lhis tase the button) thanges.

T've been using lambda
expressions in place of simple
action listeners in my Swing
code. Am I still using the

Observer Pattern?

NOTE

Lambda expressions were added in Java 8. If you aren’t familiar with them, don’t worry
about it; you can continue using inner classes for your Swing observers.

Yes, you're still using the Observer Pattern. By using a lambda expression
rather than an inner class, you’re just skipping the step of creating an
ActionListener object. With a lambda expression, you create a function object
instead, and this function object is the observer. When you pass that function
object to addActionListener(), Java ensures its signature matches
actionPerformed(), the one method in the ActionListener interface.

Later, when the button is clicked, the button object notifies its observers —
including the function objects created by the lambda expressions — that it’s
been clicked, and calls each listener’s actionPerformed() method.

Let’s take a look at how you’d use lambda expressions as observers to
simplify our previous code:

The updated code, using lambda expressions

public class SwingObserwverExample {
JFrame frame;
public statie wveid main(String([] args) {
SwingChserverExample example = new SwingCbserverExample() ;
example.go () ;
;ubl:'.c void go() { Weve veplaced the Angellistencr and
frame = new JFrame() ; DevilListener °bjlﬁ‘£5 with lambda
expressions that implement the same
JButton button = new JButton("Should I do it?"); funetionality that we had before.
button.addActionListener (event ->
System.out.println("Den't do it, you might regret it!"));
button.addActionListener (event -> |\
System.out.println("Come on, do it!™)); When you elick the button, the

‘F___,/ 'Fum'.‘tian objcf,‘l;s treated h‘}‘ the

// Set frame properties here lambda expressions ave notified and

} the method they implement is vun.

} Y We've removed the two ActionListener ¢lasses

(DevilListener and AngelListener) completely. Using lambda expressions makes this

tode a lot move tontise.

Folr move on lambda cﬁPk’Ess]m\sJ theek au{ the Java dots, and Ch&?'[:c'r b,

Tools for your Design Toolbox

Welcome to the end of Chapter 2. You’ve added a few new things to your
OO toolbox...

hcw Fa’H:,crn l"‘or mmmumta{:mg state to a
s:‘[‘, O"F ob etts in a loosel E.ou?lcd manner. We
haven £ sccn the last of the Observer Pattern—
JU-S‘E. Wﬂl‘t wntil we {',&lk abou{, MVCI

BULLET POINTS

= The Observer Pattern defines a one-to-many relationship between objects.

= Subjects, or as we also know them, Observables, update Observers using a common
interface.

m Observers are loosely coupled in that the Observable knows nothing about them,
other than that they implement the Observer interface.

= You can push or pull data from the Observable when using the pattern (pull is
considered more “correct”).

= Don’t depend on a specific order of notification for your Observers.

Java has several implementations of the Observer Pattern, including the general

purpose java.util.Observable.

Watch out for issues with the java.util.Observable implementation.

Don’t be afraid to create your own Observable implementation if needed.

Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.

You’ll also find the pattern in many other places, including JavaBeans and RMI.

DESIGN PRINCIPLE CHALLENGE

For each design principle, describe how the Observer Pattern makes use of the principle.

DESIGN PRINCIPLE

Identify the aspects of your
application that vary and

separate them from what

stays the same.

DESIGN PRINCIPLE

Program to an interface,

not an implementation.

This is a hard one, hint: think about how observers and subjects
DESIGN PRINCIPLE work together.

Favor composition over

inheritance.

DESIGN PATTERNS CROSSWORD

Time to give your right brain something to do again! This time all of the solution words

are from Chapter 2.

.'

E.
u
ol
I

HEEEEEEEEEEE @
ANEEENaEEN

Across

Down

1. Observable is a not an interface.
3. Devil and Angel are

4. Implement this method to get notified.

to the button.

5. Jill got one of her own.

6. CurrentConditionsDisplay implements this
interface.

8. How to get yourself off the Observer list.

12. You forgot this if you’re not getting notified
when you think you should be.

15. One Subject likes to talk to

18. Don’t count on this for notification.

19. Temperature, humidity and

observers.

2. Ron was both an Observer and a

3. You want to keep your coupling

7. He says you should go for it.

9. can manage your observers for
you.

10. Java framework with lots of Observers.

11. Weather-O-Rama’s CEO named after this
kind of storm.

13. Observers like to be when
something new happens.
14. The WeatherData class the

20. Observers are

on the Subject. Subject interface.

21. Program to an not an 16. He didn’t want any more ints, so he
implementation. removed himself.
22. A Subject is similar to a . 17. CEO almost forgot the index
display
19. Subject initially wanted to all

the data to Observer.

SHARPEN YOUR PENCIL SOLUTION

Based on our first implementation, which of the following apply? (Choose all that

apply.)

M| A. | We are coding to concrete implementations, not interfaces.

o

L | &

L &

B.

C.

For every new display element we need to alter code.

We have no way to add display elements at run time.

The display elements don’t implement a common interface.
We haven’t encapsulated what changes.

We are violating encapsulation of the WeatherData class.

DESIGN PRINCIPLE CHALLENGE SOLUTION

The thing that varies in the Observer Pattern

DESIGN PRINCIPLE

is the state of the Subject and the number and

Identify the aspects of your
application that vary and separate types of Observers. With this pattern, you can

them from what stays the same.

vary the objects that are dependent on the state

of the Subject, without having to change that
Subject. That’s called planning ahead!

Both the Subject and Observer use interfaces.

DESIGN PRINCIPLE

Program to an interface, not an
implementation.

The Subject keeps track of objects
implementing

the Observer interface, while the
observers

register with, and get notified by, the Subject

DESIGN PRINCIPLE

Favor composition over inheritance.

interface. As we’ve seen, this keeps things nice
and

loosely coupled.

The Observer Pattern uses composition to
compose

any number of Observers with their
Subjects.

These relationships aren’t set up by some kind
of

inheritance hierarchy. No, they are set up at

runtime by
composition!

solution.

CODE MAGNETS SOLUTION

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need! Here’s our

import java.util.ﬂbservabla;
import java.util.Observer:

class ForecastDisplay implements

public
pisplayElement {

Ohsaerver,

Private float currentPressure

: = 29 92f;
Private float lastPressure;

public Furacastﬂisplay{Obsurvable

chservable) {

WeatherData weatherData =
{Heatharﬂata}cbservahle;

ohservahln.addﬂbsarver{this}-

cbservable,

public veid updatetﬂbservabla
Ob-ject arg) 1

if (observable instanceof WeatherData) { ._

. curmnt?lfesﬂuxﬂ H

lastPressure = r
currentPressure = ﬂeatherbata.gatPrassure[),

display():

pPublic void display() {
// display code here

DESIGN PATTERNS CROSSWORD SOLUTION

— nponon o
~ anon nnnnnnon

s
e e M0 v IE 0B s ERIVIERIEEEY
i 00N w

v
|
L3
0]
o
A
N

Chapter 3. The Decorator Pattern:
Decorating Objects

I used to think real men
subclassed everything. That was
until I learned the power of
extension at runtime, rather than
at compile time. Now look at me!

|

Just call this chapter “Design Eye for the Inheritance Guy.” We’ll re-
examine the typical overuse of inheritance and you’ll learn how to decorate
your classes at runtime using a form of object composition. Why? Once you
know the techniques of decorating, you’ll be able to give your (or someone
else’s) objects new responsibilities without making any code changes to the
underlying classes.

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the fastest growing coffee

shop around. If you’ve seen one on your local corner, look across the
street; you’ll see another one.

Because they’ve grown so quickly, they’re scrambling to update their
ordering systems to match their beverage offerings.

When they first went into business they designed their classes like this...

tlass,
Beverage The destription instance variable

Beverage s an Jbstratt
wbtlassed by 3l beverages
offeved in the tobkee shop.
15 Sf{' in 'Eaf,-'h iulof]a-ss ﬂ'ﬁd lno|ds a

description N estription of the beverage, like

The tost() methed is o “Most E:w::”rn{. Dark Roast”.
. cbalassses getDescription{)
&bSJE.Vaﬁtl 5‘::‘. f_"'___:r’, cost() The prDrstrlv{'wn () methed
need to dekine I_{'.-l""ﬂ"f rE,'JCl-l'l’ﬂ" the dCSI’.‘\’hF‘LIOh
own 'W?|f-""'¢""u':'°“' | Other useful methods...
HouseBlend DarkRoast Decaf Espresso
cost() costi) cost{) cost() I

S T 4

Eath subelass implements tost() £o veturn the cost of the beverage.

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
castf)

I Other useful methods...

Ny oa sV e irgy 42yl

Lo Esp WithSteamedMilk
Hnussalemt:;t:amdmlk ’ Daﬂ(Roa:tm\tullit::medM DecafWithSteamedMilk andMocha
HouseBle andMocha cost()
- costg) o cost) . —
: spressoWithSteamedMilk
cost() ' DecafinCtoamaam andCaramel
cost) D‘"‘R“::ﬁggg;““mk andCaramel costf)| EspressoWithWhipandMocha
Hou cost() DecafWithVerm
- HouseBlel cost() DarkRoastWith - costl)
HouseBlendWit [Decaf| =l
andé cost[] DarkRoastWil ﬁ_
- - o | costi) DecafWithSoy
— DecafWithSteamedMilk
HouseBlendwith DarkRoastWithSteamedMilk cast()
useblen cost) andSoy | A% EspressoWiths
HouseBlendWithWhip = d DecafWithSteamedMilk - -
P -
B | DarkRoastWithSteamed{— - .l DecafWithSoyandMocha

costf)

EspressoWithSteamedMilk
andWhip

EspressoWithWhipandSoy

DecafWithWhipandSoy

DarkRoastWithWhipandSoy

costf)

cosll} cost)

the
h tost method t.om?u{',c?
E::{‘. oE the coﬁfcc a‘or\g with the
other Condimcn{',s in the order-

Whoal
Can you say
"class explosion"?

BRAIN POWER

It’s pretty obvious that Starbuzz has created a maintenance nightmare for themselves.
What happens when the price of milk goes up? What do they do when they add a new
caramel topping?

Thinking beyond the maintenance problem, which of the design principles that we’ve
covered so far are they violating?

Hint: they’re violating two of them in a big way!

This is

stupid; why do we need all
these classes? Can't we just use
instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let’s give it a try. Let’s start with the Beverage base class and add
instance variables to represent whether or not each beverage has milk, soy,
mocha, and whip...

Beverage

description
milk

soy
mocha
whip

getDescription()
cost()

1 Other useful methods..

Now let’s add in the subclasses,

Ncw baoican \ra;ucs —Folr
eath tondiment.

Now we'll im?lemth'{‘; tost() in Bcvcrage (instead o‘c
keeping it abstract), so that it can caleulate the
tosts assotiated with the tondiments for a particular
beverage instance. Subtlasses will still override

hEISN!iIk(} ﬁaS{O, but {:hcy will also invoke the super version so
i Ehat they tan caleulate the total cost of the basic
setSoy() beverage plus the costs of the added tondiments.
hasMochal() ‘

setMocha() d set the boolean

has%lp(} joes iﬂt i:c Londimcnl:,s-

setWhip() values for

one for each beverage on the menu:

Beverage

The sw ¢lass f,osk[) w'l“ t,alr.uda-i:c {'nc

description
miilk.

S0y
mocha
whip

i ile

th tondiments, wh
i:fsovefﬁ:“a:f t.asf;[) in {hF subtlasses —____|
will extend that i:unf.ﬁonai!{,\lll 4:': | s
intlude tosts for that specific beverad
Lype.
‘;aa'n tost() methed needs o E.o:?u-bc

fhe tost of the beveraoe and_ cn‘h
dd n the tmdimch{s ‘J\.{ t.a\hng ‘%) e

iu?ﬂﬁ]ass implementation of tost()-

getDescription()
> cost()

hasMilk()
setMilk()
hasSay()
setSoy()
hasMocha)
setMochal)
hasWhip()
setWhip()

1l Other useful methods.,

OSS

HouseBlend

DarkRoast

Decaf Espresso

cost()

cost()

cost()

SHARPEN YOUR PENCIL

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage { public class DarkRoast extends Beverage {
public double cost() {
public DarkRoast() {
description = "Most Excellent Dark Roast";

}
public double cost() {

See, five classes
total. This is definitely
the way to go.

I'm not so sure; I can see some
potential problems with this appreach

by thinking about how the design might
need to change in the future.

SHARPEN YOUR PENCIL

What requirements or other factors might change that will impact this design?

Price thanges Lor tondiments will forte us o alter existing tode

New tondiments will foree us to add new methods and alter the cost method in the superelass.

P\g we saW in .
We may have new beverages. For some of these beverages (iced tea?), the condiments Chapter l, J_d“'g F
may not be appropriate, yet the Tea subclass will still inherit methods like hasWhip(). 3 very bad ided.

What if a tustomer wants a double motha?

\(ow uew

MASTER AND STUDENT...

Master: Grasshopper, it has been some time since our last meeting. Have you been deep
in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, I have learned that it doesn’t
always lead to the most flexible or maintainable designs.

Master: Ah yes, you have made some progress. So, tell me, my student, how then will
you achieve reuse if not through inheritance?

Student: Master, I have learned there are ways of “inheriting” behavior at runtime
through composition and delegation.

Master: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically at
compile time. In addition, all subclasses must inherit the same behavior. If however, I
can extend an object’s behavior through composition, then I can do this dynamically at
runtime.

Master: Very good, Grasshopper, you are beginning to see the power of composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects through
this technique, including responsibilities that were not even thought of by the designer of
the superclass. And, I don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining your
code?

Student: Well, that is what I was getting at. By dynamically composing objects, I can
add new functionality by writing new code rather than altering existing code. Because
I’m not changing existing code, the chances of introducing bugs or causing unintended
side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. I would like for you to go and
meditate further on this topic... Remember, code should be closed (to change) like the
lotus flower in the evening, yet open (to extension) like the lotus flower in the morning.

The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

DESIGN PRINCIPLE

Classes should be open for extension, but closed for modification.

Come on in; we’re open. Feel free to extend our classes with any new
behavior you like. If your needs or requirements change (and we know they
will), just go ahead and make your own extensions.

BUSINESS HouRs.

o I N

Tus -
o I

Wed

Sorry, we’re closed. That’s right, we spent a lot of time getting this code

correct and bug free, so we can’t let you alter the existing code. It must
remain closed to modification. If you don’t like it, you can speak to the
manager.

Our goal is to allow classes to be easily extended to incorporate new
behavior without modifying existing code. What do we get if we
accomplish this? Designs that are resilient to change and flexible enough
to take on new functionality to meet changing requirements.

s \

THERE ARE NO DUMB QUESTIONS

Q: Q: Open for extension and closed for modification? That sounds very contradictory. How can a design be
both?

A: A: That’s a very good question. It certainly sounds contradictory at first. After all, the less modifiable something
is, the harder it is to extend, right?
As it turns out, though, there are some clever OO techniques for allowing systems to be extended, even if we can’t
change the underlying code. Think about the Observer Pattern (in Chapter 2)... by adding new Observers, we can
extend the Subject at any time, without adding code to the Subject. You’ll see quite a few more ways of extending
behavior with other OO design techniques.

Q: Q: Okay, I understand Observable, but how do I generally design something to be extensible, yet closed for
modification?

A: A: Many of the patterns give us time-tested designs that protect your code from being modified by supplying a
means of extension. In this chapter you’ll see a good example of using the Decorator Pattern to follow the Open-
Closed principle.

Q: Q: How can I make every part of my design follow the Open-Closed Principle?

A: A: Usually, you can’t. Making OO design flexible and open to extension without the modification of existing
code takes time and effort. In general, we don’t have the luxury of tying down every part of our designs (and it
would probably be wasteful). Following the Open-Closed Principle usually introduces new levels of abstraction,
which adds complexity to our code. You want to concentrate on those areas that are most likely to change in your
designs and apply the principles there.

Q: Q: How do I know which areas of change are more important?

A: A: That is partly a matter of experience in designing OO systems and also a matter of knowing the domain you
are working in. Looking at other examples will help you learn to identify areas of change in your own designs.

While it may seem like a contradiction, there are techniques for allowing code to
be extended without direct modification.

Be careful when choosing the areas of code that need to be extended; applying the
Open-Closed Principle EVERYWHERE is wasteful and unnecessary, and can
lead to complex, hard-to-understand code.

Meet the Decorator Pattern

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions and rigid designs, or we add functionality to the base class that

isn’t appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate” it
with the condiments at runtime. For example, if the customer wants a Dark
Roast with Mocha and Whip, then we’ll:

(D Take a DarkRoast object

(@ Decorate it with a Mocha object

3 Decorate it with a Whip object

@ cCall the cost() method and rely on delegation to add on the
condiment costs

Okay, but how do you “decorate” an object, and how does delegation come
into this? A hint: think of decorator objects as “wrappers.” Let’s see how this
works...

Okay, enough of the
"Object Oriented Design Club." We
have real problems here! Remember

us? Starbuzz Coffee? Do you think you
could use some of those design principles to
actually help us?

Constructing a drink order with Decorators
(D We start with our DarkRoast object.

(@ The customer wants Mocha, so we create a Mocha object and wrap
it around the DarkRoast.

b i 5 detorabor: IS
The Motha ob :f’ o;;:,_.,{ it is d:cnra’c:r?u

Lype wivrors L
L/—\ 'L:?Ehis sase, 3 Deverade 10V

A ik is the same {’T?ﬁ'}

W med

as @ tost() mtjc.hﬂf:ra&:‘:rt

) hism WE b

and Lhroudh ?"Hmﬂr?d :h Motha 35

any B Motha is 3
r too (hetauvse

%Hﬂaﬁc Bgur,ragc}-

@ The customer also wants Whip, so we create a Whip decorator and
wrap Mocha with it.

Wlni? is @ detorator, so it also
mivyors Da'rkRoaS‘Es 4:ij¢ and
intludes a tost() method.

NOTE

So, a DarkRoast wrapped in Mocha and Whip is still a Beverage and we can do
anything with it we can do with a DarkRoast, including call its cost() method.

@ Now it’s time to compute the cost for the customer. We do this by

calling cost() on the outermost decorator, Whip, and Whip is going to
delegate computing the cost to the objects it decorates. Once it gets a
cost, it will add on the cost of the Whip.

(You'll see how i
e few ?3‘3‘5'}

© Whip calls tost() on Motha- [
© Fivst, we eall costO on the Mocha ealls cost() on
owkmost detorator, Whip. DarkRoast.

O DavkRoast veturns
its tost, ﬁq tents.

O Whip adds its total, 10 eents,
to the vesult From Motha, and ko ks cost, 20 sl
veturns the Final -.r.‘:s,ml"c—i"J 1.29. £ Lk it - Da'rkRoa;s :

and veturns the new total, 51.19.

Okay, here’s what we know so far...

m Decorators have the same supertype as the objects they decorate.

= You can use one or more decorators to wrap an object.

= Given that the decorator has the same supertype as the object it decorates,
we can pass around a decorated object in place of the original (wrapped)
object.

_lThe decorator adds its own behavior either before and/or after delegating
to the object it decorates to do the rest of the job.

NOTE

Key point!

m Objects can be decorated at any time, so we can decorate objects
dynamically at runtime with as many decorators as we like.

Now let’s see how this all really works by looking at the Decorator
Pattern definition and writing some code.

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

NOTE

The Decorator Pattern attaches additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Eath tomponent ¢an be used on its
own, or w'ra??cd }J)’ a dcﬁo\ra‘bcr.

Component
methodA()
methodB()
The Cont\rtchom?onzh‘f; 1 other methods
is the ob_jcf.{ we've going ——
to d\jrnamit‘.aﬂj add new

behavior to. [t extends \
com?o‘hcn{:'

component

Eath detorator HAS-A
(w\ra?s) a tomponent, whith
means the detorator has an
instante variable that holds a
veference to a component.

ConcreteComponent Decorator
methodA() methodA()
methodB() methodB() . i
Il other methods /I other methods Dctwa{prs 1m?1f_m€\'\‘t‘t ct
same nkerkate or abs ri}‘
¢lass as the tomponent. TheY
ave going to decordte
ConcreteDecoratorA ConcreteDecoratorB
Component wrappedObj Component wrappedObj
Object newState
The ContreteDeeorator hﬁi an " ::::Z:;g Decovators an extend the
. : he thing | methodA .
instante vaviable for ¢ i {;}\2 vovBohavir] mthgdag skate of the c_om?oncr\f
detovates (the C)C-""?o""‘ oo s i 0
Detovator wraps/:

Detorators tan add new methods; however, new
behavior is {‘,YFI&&HY added 'DY doin5 :‘,omPu{‘.afwn
befove or after an existing method in the tomponent.

Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

Peveraoe atks as our
abs’craajc COM?Oncn{: tlass.

component

Beverage
description

getDescription()
costf)
I other useful methods

DarkRoast CondimentDecorator

getDescription()

HouseBlend
cast()

cost()

Va 1
Espresso Decaf
cosl) cost()
Milk Mocha Soy I Whip
The -{:ou\r c,onf,‘r\:‘{‘_t Beverage beverage Bewverage beverage Beverage beverage IBeverage beverage
tomponents, one Fev cost() cost() cost) coslf)
m? 44 ‘[‘.‘f?ﬁ getDescription() getDescription() getDescription() getDescription()

And heve ave our tondiment detorators; notite
'Ehcz)nccd to implement not only cost() but also
getDeseription). We'll see why in 3 moment...

BRAIN POWER

Before going further, think about how you’d implement the cost() method of the coffees
and the condiments. Also think about how you’d implement the getDescription() method

of the condiments.

Cubicle Conversation

Some confusion over Inheritance versus Composition

Okay, I'm a little confused..I
thought we weren't going to use
inheritance in this pattern, but rather
we were going to rely on composition
instead.

H‘

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the
Beverage class. That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same
type as the objects they are going to decorate. So here we’re using inheritance
to achieve the type matching, but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the
components they wrap because they need to stand in place of the component.
But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new
behavior. We are acquiring new behavior not by inheriting it from a
superclass, but by composing objects together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to
have the correct type, not to inherit its behavior. The behavior comes in
through the composition of decorators with the base components as well as

other decorators.
Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a
whole lot more flexibility about how to mix and match condiments and
beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined
statically at compile time. In other words, we get only whatever behavior the
superclass gives us or that we override. With composition, we can mix and
match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time
to add new behavior. If we relied on inheritance, we’d have to go in and
change existing code any time we wanted new behavior.

Sue: Exactly.

Mary: I just have one more question. If all we need to inherit is the type of
the component, how come we didn’t use an interface instead of an abstract
class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already had an
abstract Beverage class. Traditionally the Decorator Pattern does specify an
abstract component, but in Java, obviously, we could use an interface. But we
always try to avoid altering existing code, so don’t “fix” it if the abstract class
will work just fine.

New barista training

Make a picture for what happens when the order is for a “double mocha soy
latte with whip” beverage. Use the menu to get the correct prices, and draw
your picture using the same format we used earlier (from a few pages back):

9 Whip ealls eost() on Motha.

Motha talls tost() on £
- This ?'tt'l'.wc Was :\’: .
3 “dark voast ™
w\\i?" \peverage:

o Fivst, we eall tost() on the
ouber most detorator, Whip.

(4] DavkRoast returns
its tost, 99 tents.

© Whip adds its total, 0 eents, i
fo the vesult from Motha, and e Motha adds its eost, 20
veturns the Final vesult—fl .29. tents, to the vesult from
DarkRoast, and vetwens

$he new total, fl.lﬁ'.

Okay, I need for you to
make me a double mocha,
soy latte with whip.

Starbuzz Coffee
Coffems

Housge Blend .80
Dark Roast o=
S ens 1.05
EEPIEE,BQ 1.99
Condiments
Steamed Milk |1q
i .20
iy A5
L .10

SHARPEN YOUR PENCIL

Draw your picture here.

Writing the Starbuzz code
It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to change from
Starbuzz’s original design. Let’s take a look:

g is an alb'-:'{fat't

: o mCJLh':"d‘S
String description = "Unknown Bewverage"; tlass with the Eﬂ and m;{,{]-

getDestription

public abstract class Beverage { Preverady

public String getDescription() { L
Iat{:.DtSf.'rlP‘t'!ﬂh is a,readja

'|rn?t.cmcn£Itd For us, but we
: need to imF|t¥nEn‘E; .E.os-tlf.:'
in the subtlasses.

return description;

public abstract double cost() ;
}

Beverage is simple enough. Let’s implement the abstract class for the
Condiments (Decorator) as well:

be
th a EJ;\J{TH B¢,

Bevevage tlass

'F'W‘S{:,i we need {,o
'm{',t'rt.\'-aﬂ%tﬂ'b!lc Wi
o We evkend the

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription() ;
}

We've also going to vequire

that the condiment

detovators all \‘t'lrn?!cmcn{: the
5:{Des¢ri?{,ionf:' method. Plﬁaih,

we'll see why in 3 sec..

Coding beverages

Now that we’ve got our base classes out of the way, let’s implement some
beverages. We’ll start with Espresso. Remember, we need to set a
description for the specific beverage and also implement the cost()
method.

Lend the Beverdde

Fivst we €% . 3
¢lass, sinte his is 3 beverady

public class Espresso extends Baverage {

public Espresso() { L - I dcsc.rl?{.'m"’ we set
description = "Espresse"; & — Lhis in the tonsbruttor for the tlass

} R emember, the desr,\-'l?{jon instante
vaviable is inhevited from Beverage.

public deouble cost() {

return 1.99;

S0 We dﬂhr'l:
| d to tompute the tost of an_E*f;:j“aﬂ? we just
] Finaly, we neel 2 1 ding in condimerts, g
ncti t:::;:na{:h: price DE an Espressot 1111
nek

public class HouseBlend extends Beverage {

public HouseBlend() {
description = "House Blend Coffee";

public double cost() {

return .89;

} L Okay, here's another Beverage. All we
} do is set the appropriate destription,
“House Blend C cc,“J and then retuwrn

the torveet tost: @95

You tan treate the other two Beverage elassses
(DarkRoast and Decaf) in exactly the same way.

Coding condiments

If you look back at the Decorator Pattern class diagram, you’ll see we’ve
now written our abstract component (Beverage), we have our concrete
components (HouseBlend), and we have our abstract decorator
(CondimentDecorator). Now it’s time to implement the concrete

decorators. Here’s Mocha:

- ADetard

Motha is a detovator, so we oot Condi™ |

extend CondimentDetorator. Rem ds 'E}uz‘fa%c' IR to instantiate Motha with a
eve 9o

J’ ‘C vekevente 1o a Beverane using;
() An instante uar‘-a’bl: to heold the

public class Mocha extends CondimentDecorator { beveraog we sre Weapping
Beverage beverage; () A - s sk B 'msJL&hff: "
vidble to the odbiett we ave :: Ez 5
public Mocha (Beverage beverage) { \1:\': Sl 50-1,\%"310 pass the beverdy
eve,

bor's
this.beverage = beverage; we're wWrapping o the detord
} tonsbruttor:

public String getDescription() {

return beverage.getDescription() + ", Mocha';

} We want our deseription to not only
include the beverage — say “Davk
pu.bl.'l.c double cost() { RGQZS{'.” - bl.l'& a|SCI 'tG im:ll-\.dﬂ Eat’.h

ikem dtﬂara{:ing, the bcv:ragc (for
instance, “Davk Roast, Mocha”). So

return beverage.cost() + .20;

} 7 we fivst delegate to the object we are
} detorating {o get its deseription, then
age
Now we need to compute the “’*"i:i:‘{f iy append *, Motha” 4o that deseription.
w ¢

. t
Fiest, we dzr?;;{ -+ ean ﬁom?u{-‘: the

with Motha.
o of Motha to the ves It

biett we've detorating,
t-:ajst] then, we add JC.'hc te

On the next page we’ll actually instantiate the beverage and wrap it with all
its condiments (decorators), but first...

EXERCISE

Write and compile the code for the other Soy and Whip condiments. You’ll need them to
finish and test the application.

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees, and marvel at the
flexible design you created with the Decorator Pattern.

Here’s some test code*to make orders:

public class StarbuzzCoffee {

Ovder up an espresso, no ﬁahd’wmcfr,sr
£ > and ?r'anc. ks dcs&h?ﬂoh and tost

public static void main(String args([]) {
Beverage beverage = new Espressol();
System.out.println(beverage.getDescription()

+ " §$" + beverage.cost()); |
Make 3 DavkRoast Jbject

Beverage beverage2 = new DarkRoast(); « Weap & with a Motha.
beverageZ = new Mocha (beverage2); & __ —
beverage2 = new Mocha (beverage2) ; &— Wra? it in a setond Motha.
beverage?2 = new Whip (beverage2); < —— W\'aF it ina Whip.
System.out.println (beverageZ.getDescription ()

+ " §" + beverageZ.cost()):

Beverage beverage3 = new HouseBlend(); ‘f.—-—-\ Fiha"*fa give us 3 Hauschhd
beverage3 = new Soy(beverage3) ; with Soy, Motha, and Whip.

beverage3 = new Mocha (beverage3) ;

beverage3 = new Whip (beverage3) ;

System.out.println(beverage3.getDescription()
+ " 5" + beverage3.cost());

* We’re going to see a much better way of creating decorated objects when we cover
the Factory and Builder Design Patterns. Please note that the Builder Pattern is covered
in the Appendix.

Now, let’s get those orders in:
File Edit Window Help CloudsinhyCoffee
% java StarbuzzCoffee

Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34
%

THERE ARE NO DUMB QUESTIONS

Q: Q:I’m a little worried about code that might test for a specific concrete component — say, HouseBlend —
and do something, like issue a discount. Once I’ve wrapped the HouseBlend with decorators, this isn’t
going to work anymore.

A: A: That is exactly right. If you have code that relies on the concrete component’s type, decorators will break that

code. As long as you only write code against the abstract component type, the use of decorators will remain
transparent to your code. However, once you start writing code against concrete components, you’ll want to
rethink your application design and your use of decorators.

Q: Q: Wouldn’t it be easy for some client of a beverage to end up with a decorator that isn’t the outermost
decorator? Like if I had a DarkRoast with Mocha, Soy, and Whip, it would be easy to write code that
somehow ended up with a reference to Soy instead of Whip, which means it would not include Whip in the
order.

A: A: You could certainly argue that you have to manage more objects with the Decorator Pattern and so there is an
increased chance that coding errors will introduce the kinds of problems you suggest. However, decorators are
typically created by using other patterns like Factory and Builder. Once we’ve covered these patterns, you’ll see
that the creation of the concrete component with its decorator is “well encapsulated” and doesn’t lead to these
kinds of problems.

Q: Q: Can decorators know about the other decorations in the chain? Say I wanted my getDescription()
method to print “Whip, Double Mocha” instead of “Mocha, Whip, Mocha.” That would require that my
outermost decorator know all the decorators it is wrapping.

A: A: Decorators are meant to add behavior to the object they wrap. When you need to peek at multiple layers into
the decorator chain, you are starting to push the decorator beyond its true intent. Nevertheless, such things are
possible. Imagine a CondimentPrettyPrint decorator that parses the final decription and can print “Mocha, Whip,
Mocha” as “Whip, Double Mocha.” Note that getDescription() could return an ArrayList of descriptions to make
this easier.

SHARPEN YOUR PENCIL

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage
class: setSize() and getSize(). They’d also like for the condiments to be charged
according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for tall,
grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?

public abstract class Beverage {
public enum Size { TALL, GRANDE, VENTI };
Size size = Size.TALL;

description = "Unknown Beverage";
public String getDescription() {
return description;

void setSize(Size size) {
this.size = size;

Size getSize() {
return this.size;

abstract double cost();

Real World Decorators: Java I/0

The large number of classes in the java.io package is... overwhelming. Don’t

feel alone if you said “whoa” the first (and second and third) time you looked
at this API. But now that you know the Decorator Pattern, the I/O classes
should make more sense since the java.io package is largely based on
Decorator. Here’s a typical set of objects that use decorators to add
functionality to reading data from a file:

A text file for veading.

e

| —
——
—
s —
—
—

nent
}Skream Line Lomponer
F‘ICH‘??LI Ny dctoﬁra'htd- Thc 1
Hﬁa{;s being ,,-r-'Tl“' < senerd

Java \/0 \orary] .!%'v'l.c]m?"'%’gheam

b, meludind
LineNumber|nputStream is tw?ﬂw ecln WShream Le
also a r:ohf.rciz detorator. BufferedinputStream is Sﬁmﬁ:ﬁﬂm UES et ahd: pase
It adds the ability to a tontrete decorator: Byte All ok these e ead bytes
L‘.ouh‘i: _Hm |ihc hun-i:lcrs as B{J;gﬁrtd“?u{gh—cam adds aﬂ'ﬁc\’s- ;\r":‘"‘ w‘n"lf-\" ‘l:ﬁ Ly
it veads data. buffering behavior 1o tompone?

Filclh?ujcgtrcam: it bubfevs
in?u{: to improve ?c\r;o'rmanf.c-

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

Decorating the java.io classes

teve
(—_\ Fi'ljccr|h?u{:g{'rtam

| InputStream) is an abstract

\ f decorator-

| FilelnputStream hi StringBufferinputStream h | ByteArmrayinputStream i FilterinputStream

/\/—_,_/—

/ | PushbackinputStream H Buﬂeredlnputﬁre/f% H LineNumberinputStream h

These [nputStreams act as the contrete r\] / /7

¢omponents that ill ith e detorators
d:f:j:.:;r:. T‘:\cr\:ca:e awE:j ::rc we And Linally, heve ave all our tontrete detor
didn't show, like Objcﬂltllr.?u‘lbgltrtam-

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.

You’ll see that the output streams have the same design. And you’ve
probably already found that the Reader/Writer streams (for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to figure out what’s going on).

Java I/0 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes that
can be overwhelming to a developer trying to use the Decorator-based API.
But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Writing your own Java I/O Decorator

Okay, you know the Decorator Pattern, you’ve seen the I/O class diagram.
You should be ready to write your own input decorator.

How about this: write a decorator that converts all uppercase characters to
lowercase in the input stream. In other words, if we read in “I know the
Decorator Pattern therefore | RULE!” then your decorator converts this to “i
know the decorator pattern therefore i rule!”

; L First, extend the Filtcrh'fuiS{ream, the
Dot forget to ¥ sbstvact decorator for all nputStreams.

je A0 {not dhown)-

public class LowerCaselInputStream extends FilterInputStream {

public LowerCaseInputStream(InputStream in) {

super (in) ;

public int read() throws IOException {
int ¢ = in.read();

return (¢ == -1 ? ¢ : Character.tolLowerCase((char)c));

public int read(byte[] b, int offset, int len) throws IOException {

int result = in.read(b, offset, len);
for (int i = offset; i < offset+result; i++) { \ o i {pim?lcmcn{ bwo
b[i] = (byte)Character.toLowerCase((char)b[i]) ; vead methods. The‘f take a
bjf{.c (or an array of b\szsJ
and convert each byte (that
vepresents a tharatter) to
} lowerease if it's an upperease
! tharatter.

}

return result;

No problem. I
just have to extend the
FilterInputStream class and
override the read() methods.

REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Test out your new Java I/O Decorator

Write some quick code to test the I/O decorator:

http://wickedlysmart.com/head-first-design-patterns/

public class InputTest {
public static void main (String[] args) throws IOException {

int e;
Set up the FilelnputStream
and d.:f_o'ra'{'.t A -F]\'SJ(, with a
try { Buﬂl:credin?ufsb’fa’" and then our _
RRENF SRR Yo brand new L.owcr'casdh?u{:s{'rtam %H‘.ﬂ‘-
new LowerCaselInputStream(
new BufferedInputStream(
new FileInputStream("test.txt")))
while({c = in.read()) >= 0) { kﬂ/
System.out.print ((char)c) ; I know the Decorator Pattern therefore I RULE!

in.close() ;

} catch (IOException e) { test.ixt file
e.printStackTrace () ;
1 4 o
i Just use the stream to vead You neet Gile
thavatters until the end of make this THE

File and print as we 90.

Give it a spin

File Edit Window Help DecaratorsRule

% java InputTest
i know the decorator pattern therefore i rule!
%

PATTERNS EXPOSED
This week’s interview: Confessions of a Decorator

Head First: Welcome, Decorator Pattern. We’ve heard that you’ve been a bit down on
yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but you
know, I’ve got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to designs, that
much is for sure, but I also have a dark side. You see, I can sometimes add a lot of small

classes to a design and this occasionally results in a design that’s less than
straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for people to
understand at first. But if they just saw the classes as a set of wrappers around an
InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and improving this is
just a matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see, people
sometimes take a piece of client code that relies on specific types and introduce
decorators without thinking through everything. Now, one great thing about me is that
you can usually insert decorators transparently and the client never has to know it’s
dealing with a decorator. But like I said, some code is dependent on specific types and
when you start introducing decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful when
inserting decorators. I don’t think this is a reason to be too down on yourself.

Decorator: I know, I try not to be. I also have the problem that introducing decorators
can increase the complexity of the code needed to instantiate the component. Once
you’ve got decorators, you’ve got to not only instantiate the component, but also wrap it
with who knows how many decorators.

HeadFirst: I'll be interviewing the Factory and Builder patterns next week — I hear
they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs and
staying true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox

You’ve got another chapter under your belt and a new principle and pattern in
the toolbox.

'
We now have the Open—

Closed Principle o guide
us. We've going to strive
to design our system so
that the tlosed f&r{s
are isolated from our

\ new extensions.

i ina designs
i 's our I.:u-s{-, ?aJLJcc'rn rmr !.rrj*; n9 .
ihijch:;;uz; the E"ftn-—-{:'laﬁcd ?r'm:.u?\:. Ov wa;s 4
veally the wek? s Lheve another ?akﬂrn we ve

wsed that Lollows this ?r'mt.'u?\t as well?

BULLET POINTS

= [nheritance is one form of extension, but not necessarily the best way to achieve
flexibility in our designs.

= |n our designs we should allow behavior to be extended without the need to modify
existing code.

= Composition and delegation can often be used to add new behaviors at runtime.

» The Decorator Pattern provides an alternative to subclassing for extending behavior.

» The Decorator Pattern involves a set of decorator classes that are used to wrap
concrete components.

» Decorator classes mirror the type of the components they decorate. (In fact, they are
the same type as the components they decorate, either through inheritance or
interface implementation.)

» Decorators change the behavior of their components by adding new functionality
before and/or after (or even in place of) method calls to the component.

= You can wrap a component with any number of decorators.

= Decorators are typically transparent to the client of the component; that is, unless the
client is relying on the component’s concrete type.

» Decorators can result in many small objects in our design, and overuse can be
complex.

SHARPEN YOUR PENCIL SOLUTION

Write the cost() methods for the following classes (pseudo-Java is okay). Here’s our
solution:

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha
// and whip.

public double cost() {
float condimentCost = 0.0;
if (hasMilk()) {

condimentCost += milkCost;

}
if (hasSoy()) {
condimentCost += soyCost;

}
if (hasMocha()) {
condimentCost += mochaCost;

}

if (haswhip()) {
condimentCost += whipCost;

}

return condimentCost;

public class DarkRoast extends Beverage {
public DarkRoast() {
description = "Most Excellent Dark Roast";
}

public double cost() {
return 1.99 + super.cost();
}

SHARPEN YOUR PENCIL SOLUTION

New barista training

“double mocha soy latte with whip”

© whip calls tost) on Motha
© Motha ¢alls cost() on another Motha.
P, el sei) an 2 © Next, Motha cals costO) on Soy
et decesion (00 © Last topping! Soy calls
tost() on HouseBlend.

(6] HouseBlend's tost() method
veturns 89 tents and pops
off the stack.

(7] So\f’s tost() method adds 1%
and veturns the vesult, and
pops og'c the stack.

© The setond Motha's tost() method
adds .20 and veturns the vesult,
and pops off the staek.

= F-"‘il(l;[J jth-c :5;:1 *’%“"“Z‘b’ V:*‘"PJS © The first Motha's tost() method adds
COE. ,I wh:; ?‘ sfissﬂr and we have 20 and rc{_‘wrns +he rgsuH‘,, and pops
a tinal tost ot §1.57. off he stack.

SHARPEN YOUR PENCIL SOLUTION

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz
saw this as an intrinsic part of the coffee class, so they’ve added two methods to the
Beverage class: setSize() and getSize(). They’d also like for the condiments to be
charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for
tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements? Here’s

our solution.
public abstract class CondimentDecorator extends Beverage {

public Beverage beverage; 6\ instante
everade
: We moved the B) etorator

public abstract String getDescription() ; va.,-'.ahﬁ: ik Con 3\1“;“;‘?{51“[] 8
ddﬂd a melho I. el
public Size getSize() { and 8 that simply veturns

the detorators _
return beverage.getSize(): Lhe size crE the peverant

public class Soy extends CondimentDecorator {
public Soy (Beverage beverage) {
this .beverage = beverage;

public String getDescription() {

return beverage.getDescription() + ", Soy";

Here we 55{: the size (whith
propagates all the way to the
tontvete beverage) and then

public double cost() {
double cost = beverage.cost():

if (beverage.getSize() == Size.TALL) ({ add -Ehf a?'f‘\"o?i"ia{it COS'E-
cost += .10;

} else if (beverage.getSize() == Size.GRANDE) {
cost += .15;

} else if (beverage.getSize() == Size.VENTI) {

cost += .20;

}

raturn cost;

Chapter 4. The Factory Pattern:
Baking with OO Goodness

Get ready to bake some loosely coupled OO designs. There is more to
making objects than just using the new operator. You’ll learn that
instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out
how Factory Patterns can help save you from embarrassing dependencies.

Okay, it's been three chapters and
you still haven't answered my question
about new. We aren't supposed to
program to an implementation, but every
time I use new, that's exactly what I'm
doing, right?

When you see “new,” think “concrete.”

Yes, when you use new you are certainly instantiating a concrete class, so
that’s definitely an implementation, not an interface. And it’s a good
question; you’ve learned that tying your code to a concrete class can make it

more fragile and less flexible.
Duck duck = new MallardDuck () ;

J \

gﬂ want 4o use ihicrﬁaﬁﬂ But we have
ktc? tode -Ffemblc. instante o; a Lonlr

o treate an |
ete tlass!

When you have a whole set of related concrete classes, often you’re forced to
write code like this:

Duck duck;
if (pienic) { /—\l
event
duck = new MallardDuck() ; We have 3 bunth of duH::Ic
} else if (hunting) { dutk elasses, ahé we iD;nHDM
duck = new DecoyDuck () ; know until r"'nﬂmi-“{; "
} else if (inBathTub) ({ we need Lo instantid

duck = new RubberDuck() ;
1

Here we’ve got several concrete classes being instantiated, and the decision

of which to instantiate is made at runtime depending on some set of
conditions.

When you see code like this, you know that when it comes time for changes
or extensions, you’ll have to reopen this code and examine what needs to be
added (or deleted). Often this kind of code ends up in several parts of the

application making maintenance and updates more difficult and error-prone.

But you have to create an
object at some point and Java
only gives us one way to create an
object, right? So what gives?

What’s wrong with “new”?

Technically there’s nothing wrong with new. After all, it’s a fundamental part
of Java. The real culprit is our old friend CHANGE and how change impacts
our use of new.

By coding to an interface, you know you can insulate yourself from a lot of
changes that might happen to a system down the road. Why? If your code is
written to an interface, then it will work with any new classes implementing
that interface through polymorphism. However, when you have code that
makes use of lots of concrete classes, you’re looking for trouble because that
code may have to be changed as new concrete classes are added. So, in other
words, your code will not be “closed for modification.” To extend it with new
concrete types, you’ll have to reopen it.

NOTE

Remember that designs should be “open for extension but closed for modification” - see
Chapter 3 for a review.

So what can you do? It’s times like these that you can fall back on OO
Design Principles to look for clues. Remember, our first principle deals with
change and guides us to identify the aspects that vary and separate them from
what stays the same.

BRAIN POWER

How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in

Objectville you might end up writing some code like this:
Pizza orderPizza() {

Pizza pizza = new Pizzal();

pizza.prepare() ; ,_/ For -ch:rr.ibifi'['.}‘a we veally want

T mm— this 4o be 3n abstraet elass o

pizza.cut(};

interface, but we tan t diveet]
instantiate eifher of {:hos;ct v

pizza.box();

return pizza;

}

But you need more than one type of pizza...

So then you’d add some code that determines the appropriate type of pizza
and then goes about making the pizza:

Pizza orderPizza(String type) { We've now passing in

Pizza pizza; R\u/ the 'E‘f?ﬂ ot pizza to

orderPizza.

if (type.ecuals("cheese")) {

pizza
} else if
pizza

} else if

= new CheesePizzal() ;
(type.equals ("greek") {
= new GreekPizza(); Based on the {:‘;‘Pc of Pizza, we

instantiate Lthe torrect ontrete lass

(type.equals ("pepperoni") { and assign it to the pizzg instance

pizza = new PeppercniPizza(); variable. Note that eath pizzg h
_ ere
} has to !rnP|Crncn{: the F‘ilz_a. ih{:Ck-Fadc.
pizza.prepare() ; Onte we have 3 Pizza, we prepave it
pizza.bake() ; [Y‘;"" know, voll the dough, put on the

pizza.cut() ;

saute and add the toppings £ ctheese),
then we bake it, vt it and box r{:r

pizza.box () ;

return pizza;

Eath Pizza subtype (CheesePiz2a,
VeggiePizza, ete.) knows how to
prepare itself.

But the pressure is on to add more pizza types

You realize that all of your competitors have added a couple of trendy pizzas

to their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to
keep up with the competition, so you’ll add these items to your menu. And

you haven’t been selling many Greek Pizzas lately, so you decide to take that
off the menu:
Pizza orderPizza (String type) {

Tris gode ¥ Pizza pizza;
o g
) -0 3kh0
rnadl";‘t’c,ho? :,‘nan'ﬁts .
?-1113 = 'EQE\'.‘“%‘;' W if (type.equals("cheese")) {
L. zzd O Y
ﬁ}?\. ¥i‘ﬁu’££ pizza = new CheesePizzal() ;
wave ¥ aky _ o
tode 3 } ’ - . This is what vawies.
K—) pizra——newGreekPizza () ; hs the ?.‘ul'na ;
. on L anE'E
} else if (type.equals("pepperoni") { SEMC?- wll
) over time, Y9
pizza = new PepperoniPizzal() ; have to modity

this tode over and
} else if (type.equals("clam") {
over.
pizza = new ClamPizza() ;
} else if (type.equals("veggie™) {

pizza = new VeggiePizza() ;

This is what we E‘A?CE‘{Z) |
stay the same. For the most
pizza.bake() ; bavt, preparing, tooking, ah.d
packaging a pizza has remained
Lhe same For years and years
pizza.box () ; So, we don't cm?ct{, this r.:_adc
1o thange, J’us{ the pizzas it
o?tvaﬂs on.

pizza.prepare() ;
pizza.cut() ;

return pizza;

}

Clearly, dealing with which concrete class is instantiated is really messing up
our orderPizza() method and preventing it from being closed for
modification. But now that we know what is varying and what isn’t, it’s
probably time to encapsulate it.

Encapsulating object creation

So now we know we’d be better off moving the object creation out of the
orderPizza() method. But how? Well, what we’re going to do is take the

creation code and move it out into another object that is only going to be
concerned with creating pizzas.

if (type.equalsa{"cheesa")) {

pizza = new CheesePizzal();

} else if (type.equals("pepperoni”) {
pizza = new PepperoniPizzal();

} else if (type.equals("clam"} {
pizza = new ClamPizzal();

} else if (type.equals("veggie"] {
pizza = new VeggiePizzal);

Pizza orderPizza (String type) {
Pizza pizza; l/
Lt

Il £he obie

e cha{,ion to
ordePizzal) Mebhod

pizza.prepare() ; Then we place that ;,Otlic ;r\. Z;;;?c::; =

pizza.bake() ; {.'nai': :‘E;"T’:ﬁ ;‘:\f:i-ln:r objgf,l; needs
v .

pizza.cut() ; What', -_ : ;Uj weaked, this @ bhe ch:L{'. to

pizza.box() ; B 2 90 here? Lome To-

return pizza; \

3

S x
afFe”

Wlepizz
We’ve got a name for this new object: we call it a Factory.

Factories handle the details of object creation. Once we have a
SimplePizzaFactory, our orderPizza() method just becomes a client of that
object. Any time it needs a pizza it asks the pizza factory to make one. Gone
are the days when the orderPizza() method needs to know about Greek versus
Clam pizzas. Now the orderPizza() method just cares that it gets a pizza that
implements the Pizza interface so that it can call prepare(), bake(), cut(), and
box().

We’ve still got a few details to fill in here; for instance, what does the
orderPizza() method replace its creation code with? Let’s implement a simple
factory for the pizza store and find out...

Building a simple pizza factory
We’ll start with the factory itself. What we’re going to do is define a class
that encapsulates the object creation for all pizzas. Here it is...

Reve's our new class) the SI‘"“."I'C'D"ZLAFEF&?? E :
I' n life: crgaijng pizzas an ks elients. ke e d:gmﬁ a

l /‘ chatc?'\zlﬁ(},]:::l bhe
the ﬁaf-lw'j\f' Al wse

public class SimplePizzaFactory {

has oneé Jﬁb

public Pizza createPizza (String type) {
Pizza pizza = null;

if (type.equals("cheese"}) {
pizza = new CheesePizzal) ;

} else if (type.equals("pepperoni™)) {
pizza = new PepperoniPizzal() ;

} else if (type.equals("clam")) {
pizza = new ClamPizzal() ;

feve's the tode we
plucked out of the
orderPizzal) method:

} elsa if (type.equals("veggie")) {
pizza = new VeggiePizzal() ;
}

return pizza;

This code is still pavametevized by the type of the

1§\ “on L‘} bt as
pizza, ')usi, like our D'rlt_:)ma] orderPizzal) method wa

N

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of this? It looks like we are just pushing the problem off to another object.

A: A: One thing to remember is that the SimplePizzaFactory may have many clients. We’ve only seen the
orderPizza() method; however, there may be a PizzaShopMenu class that uses the factory to get pizzas for their
current description and price. We might also have a HomeDelivery class that handles pizzas in a different way
than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have only one place to make modifications when the
implementation changes.

Don’t forget, we are also just about to remove the concrete instantiations from our client code.
Q: Q:I’veseen a similar design where a factory like this is defined as a static method. What is the difference?
A: A: Defining a simple factory as a static method is a common technique and is often called a static factory. Why

use a static method? Because you don’t need to instantiate an object to make use of the create method. But
remember it also has the disadvantage that you can’t subclass and change the behavior of the create method.

Reworking the PizzaStore class

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

Now we give PizzaStore a veferente
to a SimplePizzaFactory.

public class PizzaStore {
SimplePizzaFactory factory; n
Plllz.agfalr: 5{{5 “El"lt ":ﬂﬂ
public PizzaStore(SimplePizzaFactory factory) { to it in the tonstruttor.

this.factory = factory;

{:or‘l\f Passed

public Pizza orderPizza(String type) {
Pizza pizza;

pizza i facmw.matEPizza(tm} - ﬁ'nd {ht a'rdt\’PizzaU mcﬂ‘:od uses ‘l:'hc
M fattory to create its pizzas by simply
pizza.prepare(); passing on the type of the order.

pizza.bake() ;

pizza.cut();
Nokite that we've veplaced the new
operator with a treate method

on the £a¢{o~r‘f a'ujcth. Ne more

return pizza; tontvete inskantiations !hc-rc_r

pizza.box() ;

// other methods here

BRAIN POWER

Q: We know that object composition allows us to change behavior dynamically at runtime (among other things)
because we can swap in and out implementations. How might we be able to use that in the PizzaStore? What
factory implementations might we be able to swap in and out?

A: We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s not
forget New Haven, too)

The Simple Factory defined

Pattern Honorable Mention

The Simple Factory isn’t actually a Design Pattern; it’s more of a
programming idiom. But it is commonly used, so we’ll give it a Head First
Pattern Honorable Mention. Some developers do mistake this idiom for the
“Factory Pattern,” so the next time there is an awkward silence between you
and another developer, you’ve got a nice topic to break the ice.

Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t

check out how it’s put together. Let’s take a look at the class diagram of our
new Pizza Store:

This is the fac{:ory where we treate

pizzas; it should be the onl part This is the \,‘.?duf,{-j of
of our application that rekers to the battory pzz!
tontvete Pizza tlasses.
[We've defined P'-lzla
PizzaStore » SimplePizzaFactory i_’ Pizza as an abs{r:itgufﬁ
| m 14
orderPizza() createPizzal) ' ﬁ:}re[} ::,{:{cf:cnia{""“s that
idden-
cut() tan be ovevvid
This is the client ok the The treate mcthod:- y box()
faetory: P-‘zz,aSJm‘:h ofLen detlared statically-
oes Lhroudh ThE /n V\
o resaFattory b 8¢t)
,,:sganf,cs O‘[f‘ ?"7-7‘3' CheesePizza PepperoniPizza

VeggiePizza ClamPizza

These are our contrete
produets. Each

frodut'{: needs {o implement the Pizza
“lh'{:c\f-caCc* fwhich in this tase means
extend the abstract Pizz3 elass”) and
ie cohi:c{c- As long as that’s the case

'C Lan be treated by the farto , J
handed back +o 'Eh:yﬁlicn{:v T

Think of Simple Factory as a warm up. Next, we’ll explore two heavy-duty
patterns that are both factories. But don’t worry, there’s more pizza to come!

NOTE

*Just another reminder: in design patterns, the phrase “implement an interface” does
NOT always mean “write a class that implements a Java interface, by using the
‘implements’ keyword in the class declaration.” In the general use of the phrase, a
concrete class implementing a method from a supertype (which could be a class OR
interface) is still considered to be “implementing the interface” of that supertype.

Franchising the pizza store

Your Objectville PizzaStore has done so well that you’ve trounced the
competition and now everyone wants a PizzaStore in their own
neighborhood. As the franchiser, you want to ensure the quality of the
franchise operations and so you want them to use your time-tested code.

But what about regional differences? Each franchise might want to offer
different styles of pizzas (New York, Chicago, and California, to name a
few), depending on where the franchise store is located and the tastes of the
local pizza connoisseurs.

‘ou want all the Franthise pizza s%p‘rc:s
to leverane your PizzaStore tode, so the
pizzas are prepared in the same way.

One franthise wants a
I;at‘lrﬁr'}' that makes NY style
Plz.‘?_asi f,'htr. r.‘,rui*.:,. {Av\?'
saute and jus{'_ a little cheese.

’O'szOS'tdq’ P ,Ahof_,'ht\r’ f‘ra.m‘,'n'usf .
wants 3 I»'acmry that
makes Chicago style
pizzas; their tustomers
like pizzas with thick
r.r-.-s1:;, vith saute, and

tons of theese.

We’ve seen one approach...

If we take out SimplePizzaFactory and create three different factories —
NYPizzaFactory, ChicagoPizzaFactory and CaliforniaPizzaFactory — then
we can just compose the PizzaStore with the appropriate factory and a

franchise is good to go. That’s one approach.

Let’s see what that would look like...

Here we treate a ;al‘.{pr‘f

L
L/_-\ for making NY s{‘f'.t pizzas.

NYPizzaFactory nyFactory = new NYPizzaFactory() ;

PizzaStore nyStore = new PizzaStore(nyFactory); ‘f_‘—'—--«._‘ Then we eveate 3 PizzaStore and pass

nyStore.orderPizza ("Veggie") ; (_\ S Ny Fat{o"?'
-and when we make Pizzas, we

get Ny S‘E.\If'|c pizzas.

ChicagoPizzaFactory chicagoeFactory = new ChicagoPizzaFactory():
PizzaStore chicagoStore = new PizzaStore(chicagoFactory) ;

chicagoStore.orderPizza ("Veggie") ;

1 Likewise -[:nk- the Ch itage ?'lzza stores: we
eveate a factory for Chicage pizzas and

treate a store that is f_omlrloscd with a
C'mcago -paf.{'nry When we make pizzas, we
Q}Ef‘. the Chu‘.agc R'Lv'!c ones.

But you’d like a little more quality control...

So you test-marketed the SimpleFactory idea, and what you found was that
the franchises were using your factory to create pizzas, but starting to employ
their own home-grown procedures for the rest of the process: they’d bake
things a little differently, they’d forget to cut the pizza and they’d use third-
party boxes.

Rethinking the problem a bit, you see that what you’d really like to do is
create a framework that ties the store and the pizza creation together, yet still
allows things to remain flexible.

In our early code, before the SimplePizzaFactory, we had the pizza-making
code tied to the PizzaStore, but it wasn’t flexible. So, how can we have our
pizza and eat it too?

I've been making pizza
for years so I thought T'd add
my own "improvements"” to the
PizzaStore procedures...

: i
Hrﬂf what You want in 2 9 o!
Franthise You do NOT want to

knmow what he ?ufs on his pizzas. \

.

A framework for the pizza store

There is a way to localize all the pizza-making activities to the PizzaStore
class, and yet give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore subclass
for each regional style.

First, let’s look at the changes to the PizzaStore:

PizzaStore is now abstratt (see why below).

{

public abstract class PizzaStore |

public Pizza orderPizza (String type) {

[_\ Now eveatePizza is back 1o being a
tall o a methed in the PizzaStore
Pizea o AN ERSSRCIRER] vather than on -Fatjcprj’ o'nj:r.{-

Pizza pizza;

pizza.prepare() ;
pizza.bake();

pizza.cut() ;

pizza.box () ; S All {his looks just the same.
return pizza;

£ D

hn’ F)
Now we've moved our J:éﬁ{,or'?-'
abstract Pizza createPizza (String type): Bb“}cﬂ{ AR method

Q Our “F&{‘.‘{Dr}t methad”

| . I5 now
abstract in PizzaStore

Now we’ve got a store waiting for subclasses; we’re going to have a subclass
for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

Allowing the subclasses to decide

Remember, the PizzaStore already has a well-honed order system in the
orderPizza() method and you want to ensure that it’s consistent across all
franchises.

What varies among the regional PizzaStores is the style of pizzas they make
— New York Pizza has thin crust, Chicago Pizza has thick, and so on — and
we are going to push all these variations into the createPizza() method and

make it responsible for creating the right kind of pizza. The way we do this is
by letting each subclass of PizzaStore define what the createPizza() method
looks like. So, we will have a number of concrete subclasses of PizzaStore,
each with its own pizza variations, all fitting within the PizzaStore framework
and still making use of the well-tuned orderPizza() method.

PizzaStore i

createPizzal)
orderPizza)

/

e

Eath subtlass provides an implementation
of the eveatePizzal) method, overriding
the abstract eveatePizza() method in
PizzaStore, while all subtlasses make use
of the orderPizzal) method defined

n P't?_zag‘b)rc- We tould make the
orderPizza() method final if we veally
wanted 4o enforte this.

€N

NYStylePizzaStore i

I a franchise wants NY style
izzas -{:or its tustomers, it

createPizzal) I

createPizzal)

ChicagoStylePizzaStore l Similarly, bT using the

Chicago subtlass, we aet an

uses the NY subtlass, which has

its own CTCQ{'.CP‘IZ.Z-&O method, Rc,,.gmbgr‘. {,v{,‘;{-,cPizz.a() is

eveating NY style pizzas. e repee
& implement. the method.

public Pizza createPizza(type) {

if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza()

} else if (type.eguals ("pepperoni") {
pizza = new NYStylePepperoniPizzal();

} else if (type.equals("clam") {
pizza = new NYStyleClamPizza() ;

} else if (type.eguals("veggie") {
pizza = new NYStyleVeggiePizza():

}

abstrack in PizzaStore, so all

implementation of treatePizzal)
with Chitago ingredients.

)

public Pizza createPizza(type) {

if (type.equals("cheasa")) {
pizza = new ChicagoStyleCheesePizzal() ;
} else if (type.equals("pepperoni") {
pizza = new ChicagoStylePepperoniPizzal();
} else if (type.equals("clam") {
pizza = new ChicagoStyleClamPizzal() ;
} else if (type.equals("veggie") {
pizza = new ChicagoStyleVeggiePizzal() ;
}

I don't get it. The PizzaStore
subclasses are just subclasses. How
are they deciding anything? I don't

see any logical decision-making code in
MY StylePizzaStore....

Well, think about it from the point of view of the PizzaStore’s orderPizza()
method: it is defined in the abstract PizzaStore, but concrete types are only
created in the subclasses.

nrdcr?iz.z.a(:‘ s defined n the abs{rat{:

the
[, not the subtlasses. gﬂ’.
Plﬁi{ﬁ:s no idea whith subtlass is aﬁﬁuaii'}'

runnihg ﬂxc tcdc and makin?, Jc'm: ?tz:'_as.

PizzaStore

creataPizzall
orderPizza()

Now, to take this a little further, the orderPizza() method does a lot of things
with a Pizza object (like prepare, bake, cut, box), but because Pizza is
abstract, orderPizza() has no idea what real concrete classes are involved. In
other words, it’s decoupled!

s pizza = createPizzal),
crealePizza) P?F-E'-PFEPEF_EE};
orderPizzal) sevirerscnssiieaiiesiiiranies pizza.bake():
pizza.cutf);
pizza.box();
(L2530 to actually get 3

zzal) ealls eveatePi ‘
o But whith kind of ?11.?:3
) method cant detide;

dogs detide?

biect w“{\ % SEJFE
1zzd oD)eLL i+ doesn
jl?_"h: nrdtrPiz.z-a{

khn‘w‘ hﬂw- S{:‘ WHG

When orderPizza() calls createPizza(), one of your subclasses will be called
into action to create a pizza. Which kind of pizza will be made? Well, that’s
decided by the choice of pizza store you order from, NY StylePizzaStore or

ChicagoStylePizzaStore.

NYStylePizzaStore ChicagoStylePizzaStore

createPizza() createPizzal)

So, is there a real-time decision that subclasses make? No, but from the
perspective of orderPizza(), if you chose a NY StylePizzaStore, that subclass
gets to determine which pizza is made. So the subclasses aren’t really
“deciding” — it was you who decided by choosing which store you wanted
— but they do determine which kind of pizza gets made.

Let’s make a PizzaStore

Being a franchise has its benefits. You get all the PizzaStore functionality for
free. All the regional stores need to do is subclass PizzaStore and supply a
createPizza() method that implements their style of Pizza. We’ll take care of
the big three pizza styles for the franchisees.

Here’s the New York regional style:

Pizza() veturns 3 Pizza, and

;\:th];g[a s is fully vesponsible for th NYPizzaStore extends
the swbClds : iat Fizzaltove, T |
s Peiza i inskantiates-) 50 1T inhevits the
whith tonerete P orderPizzal) mek
ethod '\(amonn
others) <
public class NYPizzaStore extends PizzaStore {
Pizza createPizza (String item) We've 50{'. to 'I"*PI-CMC""JC

a.‘.r:a{:cp'luaUJ sinte it is

if (item.equals("cheese")) { .
abstract in PizzaStore.

return new NYStyleCheesePizzal();
} else if (item.egquals("veggie™)}) {
return new NYStyleVeggiePizzal();
} else if (item.equals("clam")) { N
Here's where we treate owr
return new NYStyleClamPizzal() ; tontrete tlasses. For eath type of
} else if (item.equals("pepperoni™)) { Pizza we eveate the NY 5-|:\f|f_-'_
return new NYStylePepperoniPizzal() ;

} else return null;

NOTE

* Note that the orderPizza() method in the superclass has no clue which Pizza we are
creating; it just knows it can prepare, bake, cut, and box it!

Once we’ve got our PizzaStore subclasses built, it will be time to see about
ordering up a pizza or two. But before we do that, why don’t you take a crack
at building the Chicago Style and California Style pizza stores on the next

page.

SHARPEN YOUR PENCIL

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to
franchise! Write the Chicago and California PizzaStore implementations here:

Declaring a factory method

With just a couple of transformations to the PizzaStore we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

The subtlasses o

public abstract class PizzaStore { Pizz.aS{gorc handle a'i_njci.‘tc
'mSJ(,GnJc'IEJC'I.on 5;0'-' us W:i
crca&:?iuﬁf} method.

public Pizza orderPizza(String type) {
Pizza pizza; | NYStylePizzaStore h

_ _ crealePlzzal)
pizza = createPizza (type) ;

pizza.prepare() ;
pizza.bake() ;
pizza.cut();
pizza.box() ;

ChicagoStylePizzaStore |

createPizzal) I

return pizza;
}
[—\.!‘:’1“ the rcs?nnsibih{,\f for

protected abstract Pizza createPizza(String type); ins{-,an{‘.lating Pizzas has
been moved inko a methed
that aets as a Fattory.

// other methods here

CODE UP CLOSE

A factory method handles object creation and encapsulates it in a subclass. This
decouples the client code in the superclass from the object creation code in the subclass.

A factory method m3Y

be pavameter zed (or

nOU ‘tﬂ S{:HCL{ gmon

seveval vaviations 0% 3
utt.
abstract Product factoryMethod(String type) prod
A% ™% |
is ag;::;:{:':ff::d A £a£{or'[;mt£hod veturns A factory method 'Lgchai;gs E{?.:::'h!ht
. T . i
subtlasses gy ¢ a Product that is Jf,\jr?u.:ally (the tode in the supertlass, -
on o handle COE?uh{;cd used within methods g:rd:‘r?lﬂ-a“] From k.now?;; il
ereation, Ject defined in the superelass. of contvete Produtt is actually J

Let’s see how it works: ordering pizzas with the pizza
factory method

I like NY Style pizza... you
know, thin, crispy crust with
a little cheese and really

good sauce.

I like Chicago style deep dish
pizza with thick crust and
tons of cheese.

Ethan needs 1o order
his piz2a from NY
Fizza store.

Joel needs to order his
pizza from a Ch'lﬁal:ja
pizza store. Same pizza
c:l'r'd.lt'l"n--.gl methed, but
diffevent kind of pizzal

So how do they order?

(D First, Joel and Ethan need an instance of a PizzaStore. Joel needs to
instantiate a ChicagoPizzaStore and Ethan needs a NYPizzaStore.

(@ With a PizzaStore in hand, both Ethan and Joel call the orderPizza()
method and pass in the type of pizza they want (cheese, veggie, and so
on).

® To create the pizzas, the createPizza() method is called, which is
defined in the two subclasses NYPizzaStore and ChicagoPizzaStore. As
we defined them, the NYPizzaStore instantiates a NY style pizza, and the
ChicagoPizzaStore instantiates a Chicago style pizza. In either case, the
Pizza is returned to the orderPizza() method.

@ The orderPizza() method has no idea what kind of pizza was created,
but it knows it is a pizza and it prepares, bakes, cuts, and boxes it for
Ethan and Joel.

Let’s check out how these pizzas are really made to
order...

Behind the Scenes

o Let’s follow Ethan’s order: first we need a NY PizzaStore:

PizzaStore nyPizzaStore = new NYPizzaStore() ;

_ C\"ca{xs a ihS{Anc,c o..[?
NYPizzaStove. :

e Now that we have a store, we can take an order: &

nyPizzaStore.orderPizza ("cheese") ; /
- The ovderPiz2a0

mebhod is talled on
the h\'fPizzaBS'bo*c instante Ucht) method
defined inside PizzaStove runs/-

e The orderPizza() method then calls the createPizza()
method:

q
1]
a
v}
L
3
L]
5]
o]
el
o
a
]
o
a
19
L;.

Pizza pizza = createPizza ("cheese");

\

Remember, treatePizzal), the {-\ac{m—y
method, is 'Lw-?|cmcn{:ed in the subtlass. [n

this ease it veturns a NY Cheese Pizza. __>

e Finally, we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

pizza.prepare() ;

) All of these mc-thodslarc.
Sy defined in the spetikic pizzd
~— veturned Lrom the L‘ac{orzl p
() mekhod gets m:JchadNt\{r;a{:ch{z‘j?. dekine
Pizzal) melho 25) _
—E:zkﬂzd;:-u:&, without know'w.\g | n
exactly what tontrete ¢lass it is-

pizza.box () ;

We’re just missing one thing: PIZZA!

Our PizzaStore isn’t going to be very popular without
some pizzas, so let’s implement them

Each Pizza has a name, a {\f e of dough,
public abstract class Pizza { a type of saute, and 3 set ot toppings.
String name;
String dough; <5Hff/”fﬁ#
String sauce;

ArrayList<String> toppings = new ArrayList<String>(); |
The abstratt elass ?rowdcs

void prepare() { some basit defaults for
System.out.println("Preparing " + name) ; bak'mg, cu{:{'mg and bo-ﬁir.g.
System.out.println("Tossing dough...");
System.out.println("Adding sauce...");

System.out.println("Adding toppings: ") ;
for (String topping : toppings) {

System.out.println(" " + topping):
| \ Preparation follows a
| number ok steps in 3

particular sequence.
void bake() {
System.out.println("Bake for 25 minutes at 350");

void cut() {
System.out.println("Cutting the pizza into diagonal slices");

void box() {
System.out.println("Place pizza in official PizzaStore box");
}

public String getName () {
return name;

NOTE

REMEMBER: we don’t provide import and package statements in the code listings. Get
the complete source code from the wickedlysmart website. You’ll find the URL on page
xxxiii in the Intro.

Now we just need some concrete subclasses... how about
defining New York and Chicago style cheese pizzas?

The N‘{ Pizza has its own
J‘ mavinara style saute and thin erust.

public class NYStyleCheesePizza extends Pizza {

public NYStyleCheesePizza() {
name = "NY Style Sauce and Cheese Pizza";
dough = "Thin Crust Dough";

sauce = "Marinara Sauce";

toppings.add("Grated Reggiano Cheese"); \
fﬂ[hd one {QPP'.,]&

veqgiane theese!

The Chicagoe Pizza uses plum
Lomatoes as a saute alony
[f with extra—thick tyust.

public class ChicagoStyleCheesePizza extends Pizza {
public ChicagoStyleCheesePizza() |
name = "Chicago Style Deep Dish Cheese Fizza";
dough = "Extra Thick Crust Dough";

sauce = "Plum Tomato Sauce";

toppings.add{"Shredded Mozzarella Cheese"); ‘L T,hc Chi"‘aﬂ‘-" Sfyfc dcep
dish pizz3 has lots of

mozzavella theese!

void cut() |

System.out.println("Cutting the pizza into square slices"):

| "
The Chicago style pizza also overvides the eut()
method so that the pieces ave cut into squares.

You’ve waited long enough. Time for some pizzas!

e ueajcc wo
skoves:

First
public class PizzaTestDrive {

/ et
public static woid main(String[] args) { Eff

PizzaStore nyStore = new NYPizzaStore() ; Then use one one s{m-g
)

PizzaStore chicagoStore = new ChicagoPizzaStore() ; 3/////’_ h;makcﬁ{hahscrdeh

Pizza pizza = nyStore.orderPizza ("cheese") ;

System.out.println("Ethan ordered a " + pizza.getName() + "\n");

pizza = chicagoStore.orderPizza ("cheese") ;

System.out.println("Joel ordered a " + pizza.getName() + "\n");

Pnd the other Lor Joel's.

File Edit Window Help YouWantMootzOnThatPizza?

%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza
Tossing dough...
Adding sauce...
Adding toppings:

Grated Reggiano cheese
Bake for 25 mimutes at 350 Y m?a:—d’
Cutting the pizza into diagonal slices the toppings added, an d
Place pizza in official PizzaStore box {hc?ﬂZESBﬂ“d’&w£ah
Ethan ordered a NY Style Sauce and Cheese Pizza bored. Owr 5“?"‘".'"355 il

had 4o know the details,

Preparing Chicago Style Deep Dish Cheese Pizza $he subtlass handled all that
Tossing dough.. . just by instantiating the

Adding sauce...
Adding toppings:
Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box
Joel ordered a Chicago Style Deep Dish Cheese Pizza

vight pizz3.

It’s finally time to meet the Factory Method Pattern

All factory patterns encapsulate object creation. The Factory Method Pattern
encapsulates object creation by letting subclasses decide what objects to
create. Let’s check out these class diagrams to see who the players are in this

pattern:

The Creator classes

This is ouy ab?{:rac{: /\ .
//\ 0FLen the ereator tontains tode

ereator ¢)ass. [t defines that depends on an abstract Produl‘.ﬁa
an abstraet Fac{;gry | B0 ' whith is produted by 3 subtlass. The
method that the I treator never rta”'*f knows whith

createPizza()

© g
ubCIaSSES IhP'Cmgnt {O S CO!\CY'CJCC ?'rodul‘.t was P‘roduf,cd.
Oroer-izzal

Produte Products,

Sinte eath Franc'nisc 5:-{35 its
own subtlass of PizzaStore,

NYPizzaStore | ChicagoPizzaStore s Pree 4o treate its own
/ﬂ createPizzal) | createPizza() sh"h of pizza];7 imPlcmcn{-;mg
The ¢, eveatePizzal).

- atepP;
Is Ol 'Fan‘:'éo Q&O "‘C'éh \ ﬂ
a od
P P‘Odu.ﬁcs Pro d{:&:ﬂ)c’d !‘f C\asscsé\\a‘l’- ?‘:;?:;C
- ?roduf- avt !
tontrete Lredtor

The Product classes

ﬂ Factories produte ?roduc{:s,

; and in the PizzaStore, our
P ?rodu&. is a Pizza.

These are the tontrete
produtts — all the pizzas that

are produted by our stores. NYStyleCheesePizza i ChicagostyleCheesePinah
\)) NYStylePepperoniPizza | ChicagoStylePepperoniPizza |
| NYStyleClamPiza ﬁ | cmaagam;«mmamm?h
NYStyleVeggiePizza ‘1‘4 ChicagoStylevegglePizza I

Another perspective: parallel class hierarchies

We’ve seen that the factory method provides a framework by supplying an
orderPizza() method that is combined with a factory method. Another way to
look at this pattern as a framework is in the way it encapsulates product
knowledge into each creator.

Let’s look at the two parallel class hierarchies and see how they relate:
Notice how these

¢lass hievarehies are
parallel: both have
abstracet tlasses that
are extended by
The Product classes concrete classes, which - The Creator classes
know about sf‘cﬁiﬁic
im?ltmth{:&{:ions ‘por

NY and Chicage.

Pirza i PizzaStore i

createPizzaf)
orderPizza()

NYStyleCheesePizza ChicagoSterChaesePizzah NYPizzaStore h ChicagoPizzaStore h
NYStylePepperoniPizza ChicagoStylePepperoniPizza createPizzal) createPizzal)
T [NYStyleClamPizza - ChicagoStyleClamPizza ; —'
t NYStyleVeggiePizza i ChicagoStyleVeggiePizza (7\
wt
; e %wr. 3"1}%@
N et 2% NXE ke
¢ g T Tl
2P

NOTE

The factory method is the key to encapsulating this knowledge.

DESIGN PUZZLE

We need another kind of pizza for those crazy Californians (crazy in a good way, of
course). Draw another parallel set of classes that you’d need to add a new California

region to our PizzaStore.

PizzaStore

createPizzal)
arderPizza()

NYPizzaStore ChicagoPizzaStore h
createPizzal) createPizza() '
NYStyleCheesePizza | ChicagoStyleCheesePizza |
NYStylePepperoniPizza l ChicagoStylePepperoniPizza |

| .
NYStyleClamPizza ChicagoStyleClamPizza h
NYStyleVeggiePizza ChicagoStyleVeggiePizza |

Okay, now write the five most bizarre things you can think of to put on a pizza. Then,
you’ll be ready to go into business making pizza in California!

N

Factory Method Pattern defined
It’s time to roll out the official definition of the Factory Method Pattern:

NOTE

The Factory Method Pattern defines an interface for creating an object, but lets
subclasses decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to
encapsulate the instantiations of concrete types. Looking at the class diagram
below, you can see that the abstract Creator gives you an interface with a
method for creating objects, also known as the “factory method.” Any other
methods implemented in the abstract Creator are written to operate on
products produced by the factory method. Only subclasses actually
implement the factory method and create products.

As in the official definition, you’ll often hear developers say that the Factory
Method lets subclasses decide which class to instantiate. They say “decide”
not because the pattern allows subclasses themselves to decide at runtime, but
because the creator class is written without knowledge of the actual products
that will be created, which is decided purely by the choice of the subclass that
is used.

NOTE

You could ask them what “decides” means, but we bet you now understand this better
than they do!

: that tontains
The Creator 18 2 935 00 Care

ns

[Latio
the m?\tn:\tn‘ta : du&ﬁj
[mc*‘h‘hods o mamzulatc pro : ;

i 1 A hod-
extept for the xattory ™
A 7 Product Creator
factoryMethod| The abstract «Caf.{:o'ryﬂ-ﬁ ethod()
eni i’“?ll"m“{ an0 IFfﬁ""m{}u b s what all Creator subtlasses
P‘]II ?"de\t s{::‘:gatc i t}\a‘h ‘UHC pel WUSJC .Im?lcmcnt.

same
t?;sscs bhat use the ?\‘oduf.JtZS

can veker o the inbertate

not the t.ontre.{: tlass: [\
The ContveteCreator
imf’||Cmcn{'5 the

ConcreteProduct pl———— ConcreteCreator

factoryMethod() ﬁadcoryx‘tflethod(), whith is
the method that actually
r‘-_ /I produces ?roducts.

The ContveteCreator is vesponsible for
ereating one or move Lontrete products. [+
is the only ¢lass that has the knowledge of
how to ereate these products.

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of the Factory Method Pattern when you only have one ConcreteCreator?

A: A: The Factory Method Pattern is useful if you’ve only got one concrete creator because you are decoupling the
implementation of the product from its use. If you add additional products or change a product’s implementation,
it will not affect your Creator (because the Creator is not tightly coupled to any ConcreteProduct).

Q: Q: Would it be correct to say that our NY and Chicago stores are implemented using Simple Factory?
They look just like it.

A: A: They’re similar, but used in different ways. Even though the implementation of each concrete store looks a lot
like the SimplePizzaFactory, remember that the concrete stores are extending a class that has defined
createPizza() as an abstract method. It is up to each store to define the behavior of the createPizza() method. In
Simple Factory, the factory is another object that is composed with the PizzaStore.

Q: Q: Are the factory method and the Creator always abstract?

A: A: No, you can define a default factory method to produce some concrete product. Then you always have a means
of creating products even if there are no subclasses of the Creator.

Q: Q: Each store can make four different kinds of pizzas based on the type passed in. Do all concrete creators
make multiple products, or do they sometimes just make one?

A: A: We implemented what is known as the parameterized factory method. It can make more than one object based
on a parameter passed in, as you noticed. Often, however, a factory just produces one object and is not
parameterized. Both are valid forms of the pattern.

Q: Q: Your parameterized types don’t seem “type-safe.” I’'m just passing in a String! What if I asked for a
“CalmPizza”?

A: A: You are certainly correct and that would cause, what we call in the business, a “runtime error.” There are
several other more sophisticated techniques that can be used to make parameters more “type safe,” or, in other
words, to ensure errors in parameters can be caught at compile time. For instance, you can create objects that
represent the parameter types, use static constants, or use enums.

Q: Q: I’m still a bit confused about the difference between Simple Factory and Factory Method. They look
very similar, except that in Factory Method, the class that returns the pizza is a subclass. Can you explain?

A: A: You’re right that the subclasses do look a lot like Simple Factory; however, think of Simple Factory as a one-
shot deal, while with Factory Method you are creating a framework that lets the subclasses decide which
implementation will be used. For example, the orderPizza() method in the Factory Method provides a general
framework for creating pizzas that relies on a factory method to actually create the concrete classes that go into
making a pizza. By subclassing the PizzaStore class, you decide what concrete products go into making the pizza
that orderPizza() returns. Compare that with SimpleFactory, which gives you a way to encapsulate object
creation, but doesn’t give you the flexibility of the Factory Method because there is no way to vary the products
you’re creating.

MASTER AND STUDENT...
Master: Grasshopper, tell me how your training is going.
Student: Master, I have taken my study of “encapsulate what varies” further.
Master: Go on...

Student: I have learned that one can encapsulate the code that creates objects. When
you have code that instantiates concrete classes, this is an area of frequent change. I’ve

learned a technique called “factories” that allows you to encapsulate this behavior of
instantiation.

Master: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one object or method, I
avoid duplication in my code and provide one place to perform maintenance. That also
means clients depend only upon interfaces rather than the concrete classes required to
instantiate objects. As I have learned in my studies, this allows me to program to an
interface, not an implementation, and that makes my code more flexible and extensible
in the future.

Master: Yes Grasshopper, your OO instincts are growing. Do you have any questions
for your master today?

Student: Master, I know that by encapsulating object creation I am coding to
abstractions and decoupling my client code from actual implementations. But my factory
code must still use concrete classes to instantiate real objects. Am I not pulling the wool
over my own eyes?

Master: Grasshopper, object creation is a reality of life; we must create objects or we
will never create a single Java program. But, with knowledge of this reality, we can
design our code so that we have corralled this creation code like the sheep whose wool
you would pull over your eyes. Once corralled, we can protect and care for the creation
code. If we let our creation code run wild, then we will never collect its “wool.”

Student: Master, I see the truth in this.

Master: As I knew you would. Now, please go and meditate on object dependencies.

A very dependent PizzaStore

SHARPEN YOUR PENCIL

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

Pizza pizza = null;

pizza = new
pizza = new
pizza = new
plizza = new
}
pizza = new
pPizza = new
pizza = new
pizza = new
}
} else {
return null;
}
pizza.preparel() ;
pizza.bake() ;
pizza.cut() ;

pizza.box() ;
return pizza;

?Eu tan write your

} else if (type.
} else if (type.

} else if (type.

} else if (type.
} else if (type.

} else if (type.

public class DependentPizzaStore {
public Pizza createPizza(String style, String type) {

if (style.equals ("NY")}) {
if (type.equals("cheese")) {

NY¥StyleCheesePizzal() ;
equals {("veggie")) {
NYStyleVeggiePizzal() ;
equals("clam")) {
NY¥StyleClamPizza () ;
equals ("pepperoni")) {
NYStylePepperoniPizzal) ;

Handles all the

L Y e pesas

} else if (style.equals("Chicago")) {
if (type.equals("cheese")) {

) |
ChicagoStyleCheesePizzal() ; HAnM£53J{h:

equals ("veggie™)) { Chma5ostyk pizzas
ChicagoStyleVeggiePizzal() ; éf;fﬁ

equals ("clam")) {
ChicagoStyleClamPizzal() ;

equals ("pepperoni”)) {
ChicagoStylePepperoniPizzal() ;

System.out.println("Error: invalid type of pizza");

answevrs heve: number

.

' 1a oo
umbper with Cahﬁornm

J

Looking at object dependencies

When you directly instantiate an object, you are depending on its concrete
class. Take a look at our very dependent PizzaStore one page back. It creates
all the pizza objects right in the PizzaStore class instead of delegating to a

factory.

If we draw a diagram representing that version of the PizzaStore and all the

objects it depends on, here’s what it looks like:

This vevsion of the
PizzaStove depends on all
those pizza a'njcc{:s, betause
it's f.rca{:'mtj them diirtt{’]'jr-

IH: the imFI'emch{a

tio Betause any thanges to the tontrete
classes ﬁhahﬁta then h\.,,OF 'i‘i'-hts.:) '|m?|emch‘|:alions ot pizzas aﬁ—‘cc{s the
L Ty i i PizzaStore, we say that the PizzaStore

- O “depends on” the pizza implementations.
L

E.ver‘?‘ new kind of pizza j

we add eveates another
dependenty for PizzaStore.

The Dependency Inversion Principle

It should be pretty clear that reducing dependencies to concrete classes in our
code is a “good thing.” In fact, we’ve got an OO design principle that
formalizes this notion; it even has a big, formal name: Dependency Inversion
Principle.

NOTE

Yet another phrase you can use to impress the execs in the room! Your raise will more
than offset the cost of this book, and you’ll gain the admiration of your fellow
developers.

Here’s the general principle:

DESIGN PRINCIPLE

Depend upon abstractions. Do not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an interface, not an
implementation,” right? It is similar; however, the Dependency Inversion
Principle makes an even stronger statement about abstraction. It suggests that
our high-level components should not depend on our low-level components;
rather, they should both depend on abstractions.

NOTE

A “high-level” component is a class with behavior defined in terms of other, “low-level”
components.

For example, PizzaStore is a high-level component because its behavior is defined in
terms of pizzas - it creates all the different pizza objects, and prepares, bakes, cuts, and
boxes them, while the pizzas it uses are low-level components.

But what the heck does that mean?

Well, let’s start by looking again at the pizza store diagram on the previous
page. PizzaStore is our “high-level component” and the pizza
implementations are our “low-level components,” and clearly the PizzaStore
is dependent on the concrete pizza classes.

Now, this principle tells us we should instead write our code so that we are
depending on abstractions, not concrete classes. That goes for both our high-
level modules and our low-level modules.

But how do we do this? Let’s think about how we’d apply this principle to
our Very Dependent PizzaStore implementation...

Applying the Principle

Now, the main problem with the Very Dependent PizzaStore is that it
depends on every type of pizza because it actually instantiates concrete types
in its orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating
concrete Pizzas in this code, so we don’t get a lot of leverage out of this
abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.

So, after we’ve applied the Factory Method, our diagram looks like this:

E—-"’E:ﬂg{ort s dt?c“ds O'n!*f

on Pizza, the Jbskract tlass.

“irzaS

i
QO

Piz2a is an abstract

¢lass.. -an absf\"&ﬂ{ioh.

' d
e The tontrete pizza ¢lasses depend on

_ tion +o0, betause
[\ i e atiiri;c ':{}iz.zﬂ in&rﬁaﬂc

they implem " n{,cr-';att"

(ﬂrcrn:mb:rj we ve us'mﬁ i |
in the 5¢ncra\ cense) in the Pizza

abstract class.

After applying the Factory Method, you’ll notice that our high-level
component, the PizzaStore, and our low-level components, the pizzas, both
depend on Pizza, the abstraction. Factory Method is not the only technique
for adhering to the Dependency Inversion Principle, but it is one of the more
powerful ones.

Okay, I get the
dependency part, but why
is it called dependency
inversion?

' [t

Where’s the “inversion” in Dependency Inversion Principle?

The “inversion” in the name Dependency Inversion Principle is there because
it inverts the way you typically might think about your OO design. Look at
the diagram on the previous page. Notice that the low-level components now
depend on a higher level abstraction. Likewise, the high-level component is
also tied to the same abstraction. So, the top-to-bottom dependency chart we
drew a couple of pages back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.

Let’s also walk through the thinking behind the typical design process and
see how introducing the principle can invert the way we think about the
design...

Inverting your thinking...

