Remember, we need to implement the C.om?arabh
inberbate since we avent veally subtlassing

public class Duck implements Comparable {
String name; _
Z—\ Our Dutks have 3 name and a wcngh{'.

int weight;

public Duck(String name, int weight) ({
this.name = name;

this.weight = weight;

We've keepin it simple; all Ducks do is
public String toString() { = ?r_m{: Bk i Wt wciﬁ'h'l:_f

return name + " weighs " + weight;

p Okay, heve's what sort needs.-

public int compareTo(Object cbject) {

Wb tompaveTol) takes another Duek to tompare THIS Dutk to.
Duck otherDuck = (Duck)object; <—

if (this.weight < otherDuck.weight) {

return -1; Heve's wheve we s?tr,iF*f how Dutks
} else if (this.weight == otherDuck.weight) { tompare. I; TH'S Dut‘.k wei&hs less
+han otherDutk then we veturn
i i - —I; i they are equal, we veturn O;
} else { // this.weight > otherDuck.weight and i THS Duck weighs move, ve

return 1; ek |

return 0;

Let’s sort some Ducks

Here’s the test drive for sorting Ducks...



public class DuckSortTestDrive

public static void main(String[] args) {

Duck[] ducks = {
new Duck ("Daffy", 8), . We need an arcay 9‘@
new Duck ("Dewey", 2), ks, Lhese \ook goott:
new Duck ("Howard", 7)., Dm" !
new Duck ("Louie"™, 2),
new Duck ("Donald", 10},
new Duck ("Huey", 2)

}:

Notice that we
eall fﬁ[wa'?*s’ statie System.out.println("Before sorting:"); e&_
method sort, and display (ducks) ;
pass it our Dusks.

b o]

Let's print them {o see
Lheir names and wcigh-{-,s.

Arrays.sort (ducks) ; H:‘S Su‘r{: {;imelf

System.out.println("\nAfter sorting:"):

display (ducks) ; Let's ?r'm{; +them taga'm) to see

their names and wtigh{s.

public static woid display (Duck[] ducks) {
for (Duck d : ducks) {
System.out.println(d) ;

}

Let the sorting commence!



Eile Edit Window Help Donaldheeds loGo0nADiet
%java DuckSortTestDrive
Before sorting:

Daffy weighs 8

Dewey weighs 2 The unsorted Dutks
Howard weighs 7

Louie weighs 2

Donald weighs 10

Huey weighs 2

After sorting:
Dewey weighs 2 The sorted Dutks
Louie weighs 2

Huey weighs 2
Howard weighs 7
Daffy weighs 8
Donald weighs 10
%

The making of the sorting duck machine

Behind the Scenes

@ First, we need an array of Ducks:
Duck[] ducks = {new Duck("Daffy", 8), ... };

@ Then we call the sort() template method in the Array class and pass it
our ducks:



for (int i=low; i<high; i++){
. compareTo()

. swapl()

)

The sort() method tontrols
the algorithm; no tlass tan
thanoe Lhis. sovrt() r_ou.l]{-;
on 3 Comparable tlass 1o
Arraxs. sort Ghae lF'rou'idt ‘U"lc 'Im?|l:mth‘]-_'.3"1'ﬁon

of tompareTol).

The sort() method (and its helper mergeSort()) control the sort procedure.
@ To sort an array, you need to compare two items one by one until the
entire list is in sorted order.

When it comes to comparing two ducks, the sort method relies on the
Duck’s compareTo() method to know how to do this. The compareTo()
method is called on the first duck and passed the duck to be compared to:

Duck

ducks [0] . compareTo (ducks[1]) ;
H compareTof)
7\ T toString()

First Duck Dutk to tompare it to

Ne inhc\r]{,&ntc;
unlike a ‘t‘;‘?llf—al
template method.

Arrays

sort()
swap()

@ 1f the Ducks are not in sorted order, they’re swapped with the concrete
swap() method in Arrays:

swap()

® The sort() method continues comparing and swapping Ducks until the
array is in the correct order!

THERE ARE NO DUMB QUESTIONS



Q: Q: Is this really the Template Method Pattern, or are you trying too hard?

A: A: The pattern calls for implementing an algorithm and letting subclasses supply the implementation of the steps
— and the Arrays sort is clearly not doing that! But, as we know, patterns in the wild aren’t always just like the
textbook patterns. They have to be modified to fit the context and implementation constraints.

The designers of the Arrays sort() method had a few constraints. In general, you can’t subclass a Java array and
they wanted the sort to be used on all arrays (and each array is a different class). So they defined a static method
and deferred the comparison part of the algorithm to the items being sorted.

So, while it’s not a textbook template method, this implementation is still in the spirit of the Template Method
Pattern. Also, by eliminating the requirement that you have to subclass Arrays to use this algorithm, they’ve made
sorting in some ways more flexible and useful.

Q: Q: This implementation of sorting actually seems more like the Strategy Pattern than the Template Method
Pattern. Why do we consider it Template Method?

A: A: You’re probably thinking that because the Strategy Pattern uses object composition. You’re right in a way —
we’re using the Arrays object to sort our array, so that’s similar to Strategy. But remember, in Strategy, the class
that you compose with implements the entire algorithm. The algorithm that Arrays implements for sort is
incomplete; it needs a class to fill in the missing compareTo() method. So, in that way, it’s more like Template
Method.

R

Q: Are there other examples of template methods in the Java API?

A: A: Yes, you’ll find them in a few places. For example, java.io has a read() method in InputStream that subclasses
must implement and is used by the template method read(byte b[], int off, int len).

BRAIN POWER

We know that we should favor composition over inheritance, right? Well, the
implementers of the sort() template method decided not to use inheritance and instead to
implement sort() as a static method that is composed with a Comparable at runtime.
How is this better? How is it worse? How would you approach this problem? Do Java
arrays make this particularly tricky?

BRAIN2 POWER

Think of another pattern that is a specialization of the template method. In this
specialization, primitive operations are used to create and return objects. What pattern is
this?

Swingin’ with Frames

Up next on our Template Method safari... keep your eye out for swinging
JFrames!



If you haven’t encountered JFrame, it’s the most basic Swing container and
inherits a paint() method. By default, paint() does nothing because it’s a
hook! By overriding paint(), you can insert yourself into JFrame’s algorithm
for displaying its area of the screen and have your own graphic output
incorporated into the JFrame. Here’s an embarrassingly simple example of
using a JFrame to override the paint() hook method:

We've exkending JFrame, which contains 3

m:;hod wpdate() that tontrols the algorithm

for updating the streen. We tan hook inte that
algorithm by overriding the ?a'm{:f) hook methed.
public class MyFrame extends JFrame { 3

(/’_,__,4—-—’—’___\ Don't look behind the
public MyFrame (String title) ({

c.uch.ﬂih'l Juﬂ: Some

super (title) ;
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

ini'tia]iz.aficm here...

this.=setSize (300,300) ;
this.setVisible (true) ;

ﬂ—\“—‘\ JFvame's update algorithm calls paint(). By

public void paint(Graphics graphics) { default, ?3“"{—{} does nothing L '1{;',5 a{hoﬂ
super _paint (graphics} - W\:?VE a\rt'f'f'.\d-ll'la ?alht{}, a“d 4 i'ﬁﬂ_ 4

String msg = "I rule!!"; JFvame to draw a message in the window.

graphics.drawString (msg, 100, 100);

public static void main (String[] args) {
MyFrame myFrame = new MyFrame ("Head First Design Patterns") ;



® O © Head First Design Patterns

H:'rcjs ’t,'ht messafe that 5:{5 J
sinked in the frame because we ve
hooked into the ?aintﬂ' method.

Applets

Our final stop on the safari: the applet.

You probably know an applet is a small program that runs in a web page.
Any applet must subclass Applet, and this class provides several hooks. Let’s
take a look at a few of them:



The init hook allows the applet teo do "-uha{‘,cflzr
RIRCTC eN5 WP sl et SmRcek | / it wants to imitialize the applet the Fiest time.

String message;

e v A0 (et s s ot metbed n e At
P SRR TOERRs RIS tlass that lets upper—level components know
repaint(}; the aﬁ*k{: reeds to be redvawn.

public wvoid start() { < ~ The start hook allows the ap?lc-E to do
message = "Now I'm starting up..."; Somtthihg when the aPP!t{: is jus{: about
FaR R to be displayed on the web page.

other page, the
é:.:-"_ = |.[: the user goes to an
public wvoid step() { s{:o? hook is used, and the a??‘c‘lz tan do

message = "Oh, now I'm being stopped..."; whatever it needs ko do to stop its attions.
repaint () ;

oublic void destroy() { L f‘lnd _{:hc dcsr:ro'f hook is used when the a??kt
is going to be destroyed, say, when the browser
Pane is tlosed. We could try to display
something here, but what would be the point?

// applet is going away. ..

public void paint(Graphics g) {
g.drawString (message, 5, 15);
}

] !K‘ well, 1aok\:‘ hcrf._J Our old friend the
?a'lnif} method! ‘FL??IC{: also makes
use o this method as a hook.
Concrete applets make extensive use of hooks to supply their own behaviors.

Because these methods are implemented as hooks, the applet isn’t required to
implement them.

FIRESIDE CHATS
Tonight’s talk: Template Method and Strategy compare methods.

Template Method: Strategy:

Hey Strategy, what are you doing in my o)
chapter? I figured I’d get stuck with someone
boring like Factory Method.

Nope, it’s me, although be careful — you and
Factory Method are related, aren’t you?

I was just kidding! But seriously, what are you




doing here? We haven’t heard from you in eight
chapters!

You might want to remind the reader what
you’re all about, since it’s been so long.

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but let
my subclasses do some of the work. That way, I
can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

I remember that. But I have more control over
my algorithm and I don’t duplicate code. In
fact, if every part of my algorithm is the same
except for, say, one line, then my classes are
much more efficient than yours. All my
duplicated code gets put into the superclass, so
all the subclasses can share it.

I’d heard you were on the final draft of your
chapter and I thought I’d swing by to see how it
was going. We have a lot in common, so [
thought I might be able to help...

I don’t know, since Chapter 1, people have been
stopping me in the street saying, “Aren’t you that
pattern...?” So I think they know who I am. But
for your sake: I define a family of algorithms and
make them interchangeable. Since each
algorithm is encapsulated, the client can use
different algorithms easily.

I’'m not sure I’d put it quite like that... and
anyway, I’m not stuck using inheritance for
algorithm implementations. I offer clients a
choice of algorithm implementation through
object composition.

You might be a little more efficient (just a little)
and require fewer objects. And you might also be
a little less complicated in comparison to my
delegation model, but I’m more flexible because
I use object composition. With me, clients can
change their algorithms at runtime simply by
using a different strategy object. Come on, they
didn’t choose me for Chapter 1 for nothing!




Yeah, well, I'm real happy for ya, but don’t
forget I’m the most used pattern around. Why?
Because I provide a fundamental method for
code reuse that allows subclasses to specify
behavior. I’m sure you can see that this is
perfect for creating frameworks.

Yeah, I guess... but, what about dependency?
You’re way more dependent than me.

How’s that? My superclass is abstract.

But you have to depend on methods implemented
in your subclasses, which are part of your
algorithm. I don’t depend on anyone; I can do the
entire algorithm myself!

Like I said, Strategy, I’'m real happy for you.
Thanks for stopping by, but I’ve got to get the
rest of this chapter done.

Okay, okay, don’t get touchy. I'’ll let you work,
but let me know if you need my special

techniques anyway; I’m always glad to help.

Got it. Don’t call us, we’ll call you...

DESIGN PATTERNS CROSSWORD

It’s that time again....




H B
H EEEEEEEE
dEEENENE ANdEEEN

Across Down

1. Strategy uses rather than | 2. algorithm steps are implemented by

inheritance. hook methods.

4. Type of sort used in Arrays. 3. Factory Method is a of Template
Method.

5. The JFrame hook method that we
overrode to print “I Rule”.

6. The Template Method Pattern uses
to defer implementation to
other classes.

8. Coffee and

9. “Don’t call us, we’ll call you” is known
as the Principle.

12. A template method defines the steps
of an

7. The steps in the algorithm that must be supplied by
the subclasses are usually declared .

8. Huey, Louie, and Dewey all weigh
pounds.

9. A method in the abstract superclass that does
nothing or provides default behavior is called a
method.

10. Big-headed pattern.

11. Our favorite coffee shop in Objectville.




13. In this chapter, we give you more 15. The Arrays class implements its template method
asa method.

14. The template method is usually
defined in an class.

16. Class that likes web pages.

.

Tools for your Design Toolbox

We’ve added Template Method to your toolbox. With Template Method you
can reuse code like a pro while keeping control of your algorithms.



E«-ﬁ?mw
Favor Lompasition SVEY hevitante
F\'nﬁran ko in’c,ﬂrzau.s. noJL
hﬁ?k!nﬂh‘ba'tm.
Chvive For Joosely covpled desiy®
\petwieen 3 bthitin’tﬂat-b
Classes dhovld be oFEr for extension
uk tlosed Lo modificatio™
Deverd o attions De not Dur ncwe*:»'h T t..ﬂi_lh cmind
depend on Lontrete tlasses: g o tha ‘fauar s asses
»w how S0
0l Lalk i £rsends. are ¥ RN - ]
N EE Fhem La\\j ¢ swob sses
Dot gall usi well eall Yo when Lheyve needed Jus{
" ' \ike they do in Holywe?
00 Patterns
=T i \ ’h"‘i o
L :;:. :.I.J-‘J-'.-..:': = - e ?a 'Eﬂ'll‘h 1Eb f.‘,as,s:s
= - " Im?hmth"jhﬁ an

5"‘ rt'wlﬂ“-
ook L
FProd _Dekime A
L Aabaene | 3
;_5&?5 {0 subtlasses.




BULLET POINTS

» A “template method” defines the steps of an algorithm, deferring to subclasses for
the implementation of those steps.

» The Template Method Pattern gives us an important technique for code reuse.

» The template method’s abstract class may define concrete methods, abstract
methods, and hooks.

»  Abstract methods are implemented by subclasses.

» Hooks are methods that do nothing or default behavior in the abstract class, but may
be overridden in the subclass.

» To prevent subclasses from changing the algorithm in the template method, declare
the template method as final.

» The Hollywood Principle guides us to put decision making in high-level modules
that can decide how and when to call low-level modules.

» You’ll see lots of uses of the Template Method Pattern in real-world code, but don’t
expect it all (like any pattern) to be designed “by the book.”

» The Strategy and Template Method Patterns both encapsulate algorithms, one by
inheritance and one by composition.

» The Factory Method is a specialization of Template Method.

SHARPEN YOUR PENCIL SOLUTION

Draw the new class diagram now that we’ve moved prepareRecipe() into the
CaffeineBeverage class:

CaffeineBeverage
prepareRecipe()
boilWater()
pourinCup()
brew()
addCondiments()

Coffee Tea

brew()
addCondiments()

brew()
addCondiments()




WHO DOES WHAT? SOLUTION

Match each pattern with its description:

Pattern Description

Enmpﬁulaie ?me-rf:-hangable
behaviors and use delegation to
decide which behavior to use.

Template Method

Subclasses decide how to

Strategy implement steps in an algorithm.

Subelasses decide which
concrete classes to create.

fhﬂ@'ry J"'r'i@t!']’@d _— g

DESIGN PATTERNS CROSSWORD SOLUTION

It’s that time again...




L=
—

wn

E
E
C
E
B
B
B
E
N <C




Chapter 9. The Iterator and
Composite Patterns: Well-Managed
Collections

You bet I keep
my collections well
encapsulated!

There are lots of ways to stuff objects into a collection. Put them into an
Array, a Stack, a List, a Hashmap, take your pick. Each has its own
advantages and tradeoffs. But at some point your client is going to want to
iterate over those objects, and when he does, are you going to show him your
implementation? We certainly hope not! That just wouldn’t be professional.
Well, you don’t have to risk your career; you’re going to see how you can
allow your clients to iterate through your objects without ever getting a peek
at how you store your objects. You’re also going to learn how to create some
super collections of objects that can leap over some impressive data
structures in a single bound. And if that’s not enough, you’re also going to
learn a thing or two about object responsibility.



Breaking News: Objectville Diner and Objectville
Pancake House Merge

That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But,
there seems to be a slight problem...

... but we can't agree on how to implement
our menus. That joker over there used an
ArrayList to hold his menu items, and T

used an Array. Meither one of us is willing to
change our implementations... we just have

too much code written that depends on
them.

They want to use my Pancake House
menu as the breakfast menu and

the Diner's menu as the lunch menu.
We've agreed on an implementation
for the menu items...

|

Check out the Menu Items

At least Lou and Mel agree on the implementation of the Menultems. Let’s
check out the items on each menu, and also take a look at the
implementation.




K&B's Pancake Breakfast 2.99
Pancakes yjgp scrambled €9gs, and toast

ﬁ

Abowl of the SO0Up of th

loks of lunth side of potato sajag Regular Pancaye Breakfast 2.99
D"""'r menu has lo - Hot Dog Pancakes with frfedeggs, Sausage
ke hile the Pantake Ahot dog, With saurkeg,
ikems, w Lk Last vtems. s topped with cheese Bfuebmypanmkes_ _ 349
t'.onSi!'-{.S | ‘tt"‘ has 3 name, Steamed Veggies and B ;z;f;ﬁ;,g;d;::;h fresh b.-‘uebemes,
Every menu d a price. Amediey of steamed ye
L n
deseviption, 3 Waffles 259

Waﬁ‘?es, with vour choice of, blueberrjos
Of strawberries




public class Menultem {
String name;
String description;
boclean wvegetarian;
double price;

public Menultem(String name,
String description,

boolean vegetarian, (_‘\
deulle peoieel A Merultem consists of 5 4
me,

st a deseri

: jfzg::_: md;fa{'c if the item is vcgiffa:-r:mm
" Vice. You pass all £he i )

Construttor 4o initialize fh:if?;ir:r{;m{h o

this.name = name;
this.description = description;
this.vegetarian = wvegetarian;
this.price = price;

}

public String getName () {
return name;

}

eLess
public String getDescription() { These 5:{-,{:,& methods h.:j:i‘w e
return description; the fields of the menu item

}

public double getPrice() {
return price;

}

public boolean isVegetarian() {
return vegetarian;

}

Lou and Mel’s Menu implementations

Now let’s take a look at what Lou and Mel are arguing about. They both have
lots of time and code invested in the way they store their menu items in a
menu, and lots of other code that depends on it.



I used an ArrayList
so I can easily expand
my menu,




Heve's Lou's imﬂcmcnbation of
L‘ +he Pantake House menu.

public class PancakeHouseMenu {

Lou's using an Arvaylist
ArraylList<Menultem> menultems; (.’——/— $o whore: it s Fhiis.

publiec PancakeHouseMenu() {
menultems = new ArrayList<Menultem>() ;

addItem ("K&B's Pancake Breakfast",
"Pancakes with scrambled eggs, and toast",

: Eath meny item is added to the
21-;:; ; ﬁvra‘fl..isf heve, in the tonsbruttor.

addItem("Regular Pancake Breakfast", Eath Merultem has a namci:atrs )
"Pancakes with fried eggs, sausage", descri?{'.ioh: whether or no .l
2,99 vegetarian ikem, and the price.
2.99);

addItem("Blueberry Pancakes",

"Pancakes made with fresh blueberries",
true,
3.49) ;

addItem("Waffles",
"Waffles, with your choice of blueberries or strawberries",

true,
3.59);
}
To add a menu item, Lou crcatc}s. 3 ng,\{
3 P araum
public void addItem(String name, String description, Merultem ObjﬂﬁJDJ passing CQCL_ JCE’ y
boolean vegetarian, double price) and then adds it to the frvaylist
{
Menultem menultem = new Menultem(name, description, vegetarian, price);
menultems.add (menultem) ;
} M.—-— The 3¢£Menu|&msf) methed veturns the
* H s_
public ArrayList<Menultem> getMenultems() { list of menu item
return menultems; that
} Low has a bunth of other menu tode tha

depends on the ﬁrra\fLis‘L ir«?lcmcn{:ahon. He

// other menu methods here doesn't want {0 have to vewrite all that -‘-odt!



Haah! An ArrayList... T used a
REAL Array so I can control the
maximum size of my menu,




{ ingr meEnk
‘s m?lgm:n{;abon of the Din

And heve's Mel
public class DinerMenu {

static final int MAX ITEMS = 6; L -
int numberOfItems = E; so he tan tontrol the wa siet
MenuItem[] menultems;

public DinerMenu{) { Like Lou, Mel treates his menu items in the
menultems = new Menultem[MAX ITEMS]; / tonstruttor, using the addltem() helper methed.

addItem("Vegetarian BLT",

"({Fakin') Bacon with lettuce & tomato on whole wheat", true, 2.99);
addItem("BLT",

"Bacon with lettuce & tomato on whole wheat", false, 2.99);
addItem("Soup of the day",

"Soup of the day, with a side of potato salad", false, 3.29);
addItem("Hotdog",

"A hot dog, with saurkraut, relish, cnions, topped with cheese",

false, 3.05);
// a couple of other Diner Menu items added here addH:tmO Lakes all the ?avamctcrs

| L/_\ netessary 4o treate a Mcnu[{cm{:n:“:

\
ame i iabes one. |4 also chetks
public veid addItem(String n , String description, instantiate o o
boolean vegetarian, double price) sure we haven (3 zEe

Mel +akes a d.ﬁ:mn{; a??roath; he's using an ,Arva\,r
l H’\: mERU.

f /
Menultem menultem = new Menultem(name, description, wvegetarian, price);
if (numberOfItems >= MAX ITEMS) {
System.err.println("Sorry, menu is full! Can’t add item to menu");
} else {

i i — P —— : Mel s?ecifitla”}‘ wants 4o kcep his menu
nm*“" grotemfrtemma L : ErOfItams Lo undcrl a tevtain size f?resumably so he
g gk doesn't have to remember too many recipes).

}
mgeh’ﬁ‘cnui{:emsf} returns the array of menu items.

public Menultem[] getMenultems() {
return menultems;

}

Like Lou, Mel has a buneh of tode that depends on the implementation

// other menu methods here &— of his menu bc'lng an ff't'r\r&y He's oo bus'}f u‘,c.-oking-J o vewrite all of this.

What’s the problem with having two different menu
representations?

To see why having two different menu representations complicates things,
let’s try implementing a client that uses the two menus. Imagine you have
been hired by the new company formed by the merger of the Diner and the
Pancake House to create a Java-enabled waitress (this is Objectville, after
all). The spec for the Java-enabled waitress specifies that she can print a
custom menu for customers on demand, and even tell you if a menu item is
vegetarian without having to ask the cook — now that’s an innovation!



Let’s check out the spec, and then step through what it might take to
implement her...

The Java-Enabled Waitress Specification



li Java-Enabled Wa
[
|

: B " 3 E"
jtress: code-name alic

H! print.!tlenu ()

u
- prints every item on the men
|

i| printBreakfastM&nu 0]

- prints just preakfast items
|

'. p:intLunchMEnu 9]

i - prints just lunch items
|

)

f— The spet for
Lhe Waitress

' print\"agetarianl&anu 0
|

i items
' - prints all vegetarian menu

! isItemvaqetarian{name) N— -
i ame of an 1 i

' _ given the n . -

| gf the items is vegetarian, otherwise,

| i

returns false

Let’s start by stepping through how we’d implement the printMenu() method:
(D To print all the items on each menu, you’ll need to call the

getMenultems() method on the PancakeHouseMenu and the DinerMenu to
retrieve their respective menu items. Note that each returns a different
type:



The method looks
the same; but the

€/ ealls ave vetuirning
: } dypes
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ; d‘wr'"ht \ﬁ”

ArrayList<Menultem> breakfastItems = pancakeHouseMenu.getMenultems () ;

DinerMenu dinerMenu = new DinerMenu() ;

MenuItem[] lunchItems = dinerMenu.getMenuItems () ; T.he 'mplementation is Aol
thmugh-‘ breakfast items are
in an Hrrayédis{, and luneh
items ave in an fﬂr'rray-

(@ Now, to print out the items from the PancakeHouseMenu, we’ll loop
through the items on the breakfastltems ArrayList. And to print out the
Diner items we’ll loop through the Array.

Now, we have to
C’_’/‘_ 'IrnEllﬂmCﬂ"!L two

for (int i = 0; i < breakfastItems.size(); i++) {

diffevent loops JCD
Menultem menultem = breakfastItems.get(i) ; step {hrwah the E.wloh
. t ¢
System.out.print (menultem.getName() + " "); um?]tmintaboﬁs o
LemS...
System.out.println(menultem.getPrice() + " ") ; meEn
System.out.println(menultem.getDescription()) ; K - ONE 100? for the
} ,ﬂ*.'rra‘f'L_.is{:...
for (int i = 0; i < lunchItems.length; i++) { 4<,_._h...;md another for
" iy the Array.
Menultem menultem = lunchItems[i];
System.out.print (menultem.getName() + " ") ;
System.out.println(menultem.getPrice() + " ") ;

System.out.println(menultem.getDescription()) ;

@ Implementing every other method in the Waitress is going to be a
variation of this theme. We’re always going to need to get both menus and
use two loops to iterate through their items. If another restaurant with a
different implementation is acquired then we’ll have three loops.

SHARPEN YOUR PENCIL

Based on our implementation of printMenu(), which of the following apply?

(d] A. We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

(J| B.  The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a




standard.

(| C. | If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

[ D. | The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

(J|E.  We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

(d|F. | The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as it
should be.

\ J

What now?

Mel and Lou are putting us in a difficult position. They don’t want to change
their implementations because it would mean rewriting a lot of code that is in
each respective menu class. But if one of them doesn’t give in, then we’re
going to have the job of implementing a Waitress that is going to be hard to
maintain and extend.

It would really be nice if we could find a way to allow them to implement the
same interface for their menus (they’re already close, except for the return
type of the getMenultems() method). That way we can minimize the concrete
references in the Waitress code and also hopefully get rid of the multiple
loops required to iterate over both menus.

Sound good? Well, how are we going to do that?




Wait, aren't you making
this a lot more complicated
than it needs to be? If we use
for each to loop, then the way
we loop is exactly the same for
both menus.

Yes, using for each would allow us to hide the complexity of the different
kinds of iteration. But that doesn’t solve the real problem here: that we’ve
got two different implementations of the menus, and the Waitress has to
know how each kind of menu is implemented. That’s not really the
Waitress’s job. We want her to focus on being a waitress, and not have to
think about the type of the menus at all.

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ;
Even i we use for /7
eath loops 1o iterate
rf thirouah the enus) /
Lhe Waitress still has
to know abaut, the MenuTtem[] lunchItems = dinerMenu.getMenultems () ;

Arraylist<Menultem> breakfastItems = pancakeHouseMenu.getMenultems() ;

DinerMenu dinerMenu = new DinerMenu() ;

{w?c of eath menu
for (Menultem menultem : breakfastItems) {
System.out.print (menultem.getName()) ;
___? System.out.println("\t\t" + menultem.getPrice())

System.out.println("\t" + menultem.getDescription()) ;

for (Menultem menultem : lunchItems) {
System.out.print (menultem.getMName ()) ;
System.out.println("\t\t" + menultem.getPrice());
System.out.println("\t" + menultem.getDescription())

}

Our goal is to decouple the Waitress from the concrete implementations of



the menus completely. So hang in there, and you’ll see there’s a better way to
do this.

Can we encapsulate the iteration?

If we’ve learned one thing in this book, it’s encapsulate what varies. It’s
obvious what is changing here: the iteration caused by different collections of
objects being returned from the menus. But can we encapsulate this? Let’s
work through the idea...

@ To iterate through the breakfast items we use the size() and get()
methods on the ArrayList:

for (int 1 = 0; i < breakfastItems.size(); i++) {

MenuItem menultem = breakfastItems.get (i) ;

} L' o

\get{ﬂ get(2) get(3) ,:i—_,\ get() helps vs step

get(0) ¢ G Ehrough cath item
\‘\A Arraylist ¥

.

i A

(0000 i
'. g

| | Hemze® | Haamie® | Songrer | Memsre” | of Menultems
-..«.\ 1 2 3 2

=) e } __._f

(@ And to iterate through the lunch items we use the Array length field
and the array subscript notation on the Menultem Array.
Array
junchitems(0] ,.f'/..-. \‘x
for (int i = 0; i < lunchItems.length; i++) { ——— ™ [ ! '

S5 lunch
MenulItem menultem = lunchItems([i]; - ““—E—ﬁfm

We use the arvay

wbstripts 4o step 7T~

Lhrough itews. s
An Areay of __ 7"

Mthull‘l.,cms.

@ Now what if we create an object, let’s call it an Iterator, that




encapsulates the way we iterate through a collection of objects? Let’s try
this on the ArrayList

We ask the breakfastMeny

for an itevator of iks
F MChur‘Ime
Iterator iterator = breakfastMenu.createlterator() ;

fnd while there ave move items left..
while (iterator.hasNext()) { =
Menultem menultem = iterator.next();
¥ next() T
/ W'C 3:‘{’, ":h! hﬂ‘l‘.‘t l{',fm
Hﬁ
O get(2)
f Tterd® \\get[‘l} N g“{‘?
Arravl.:s’r
The tlient just ealls hasNext() get{0) \‘_‘:\\—* =
and next(); bc‘hmd the stenes the / \
itevator :‘,aHs Sc{“,f} on the f’t'r'ra\ftd

09 0 0 )

Qj_«"‘ | ot | ez | Aome® | |
1 2 3 4

———

@ Let’s try that on the Array too:
Iterator iterator =

lunchMenu.createlterator() ;

while (iterator.hasNext()) {

Menultem menultem = iterator.next():;

} /J
Wow, this tode mm Array
is f,“i-éf.‘H jic ;d_——_h
same as the junchitems[0] / \
breakfastMenu ///——> 14 <
tode. 'u"ch'teﬂ'ls[‘” |II By |
—~ @ o= \{e
u | |
Came situation here: the tlient ust ealls -Pfe.fﬁp nchffemsm} { | Aoz /
hasNext() and next(); behind {:h¢ stenes, ne, i |,
the iterator indexes into the Avray. ! t@msﬁ |.|l e |
| |
[ 4 |
I\\H_Mwy

Meet the Iterator Pattern

Well, it looks like our plan of encapsulating iteration just might actually



work; and as you’ve probably already guessed, it is a Design Pattern called
the Iterator Pattern.

The first thing you need to know about the Iterator Pattern is that it relies on
an interface called Iterator. Here’s one possible Iterator interface:

The hasNext() method

tells us Wk there ave
move elements in the

<<inferface>> 335\133{,5 to i‘i:c‘ra‘tt
lterator Jﬁ'n?ﬂu ‘jh-
hasNext()

next()
S The next() method

returns the next
object in the
agaregate.

Now, once we have this interface, we can implement Iterators for any kind of
collection of objects: arrays, lists, hashmaps, ...pick your favorite collection
of objects. Let’s say we wanted to implement the Iterator for the Array used
in the DinerMenu. It would look like this:

<<interface>>
lterator

hasNext()
nexty)

m Dihtv‘Mthu1”Ccra‘Eor is an

Diﬂerl'l-'le;utteramr imﬂ:m:n{ﬂf‘.on GQ H:c\*a‘l',o'f
+hat knows how to iterate
over an a'r'ra*f o-p Mcnﬂftms-

hashext)
next()




When we say
COLLECTION we just mean a group
of objects. They might be stored in
very different data structures like lists,
arrays, or hashmaps, but they're still
collections. We also sometimes call
these AGGREGATES.

Let’s go ahead and implement this Iterator and hook it into the DinerMenu to
see how this works...

Adding an Iterator to DinerMenu

To add an Iterator to the DinerMenu we first need to define the Iterator
Interface:

Heve ave our $wo metheds:

The hasNext() methed veburns 3 boolean
f 'md.:lt.a{jntj whether or not there are

public interface Iterator ({ v e enks to kevate over..

boolean hasNext () ;
Cbject next() ‘L\" ~-and the next() method

| veturns £he next element.

And now we need to implement a concrete Iterator that works for the Diner
menu:



We mp lement the

[\ [bevator interfate.

public class DinerMenuIterator implements Iterator { ainkaims the
L

vhon
MenuItem[] items; ?:ireni position ot the
Mfe—————= N
int position = 0; ‘Levation over the arvay
public DinerMenuIterator (Menultem[] items) {
this.items = items; [\_} The tonstruttor takes the
1 a‘rra}f n-F menu items we
are going to itevate over.
public MenuItem next() { é\
Menultem menultem = items[position]; The next() methed veturns the

next item in the array and
intrements the position.

position = position + 1;

return menultem;

public boolean hasNext() {

if (peosition >= items.length || items[position] == null) {
return false:;
} else { 'j
return true; :
el Betause the diner thef went ahead and
} £ ;taiiﬁil:f(i”mitho? thetks to see allotated a max sized array, we need to
} array and et i & C":E"Jc's of the theek not onh’ if we ave at the end of
} movc?{;o i‘tci‘&{wih o {;hcrc are the arra\]r, but also i{: the next item is wnull,
¢ through. whith indicates there are no more items.

Reworking the Diner Menu with Iterator

Okay, we’ve got the iterator. Time to work it into the DinerMenu; all we need
to do is add one method to create a DinerMenulterator and return it to the
client:



public class DinerMenu {
static final int MAX ITEMS = &;
int numberOfItems = 0;

MenuItem[] menultems;
// constructor here

// addItem here

/—\ Wcr\'z ho{, ﬂ_ﬂih?] {:a nt:d Ehc ?]t{ﬂf;’:nuHr:msf} l

method arymore and in faet, we don't wﬂ i :
beeause it exposes our internal implementation!

—}-

public Iterator createlterator() {

return new DinerMenulterator (menultems) ; . . )
Here's the treatelterator() methed.

It eveates a DinevMenulterator
from the menultems array and
// other menu methods here veturns it fo the elient.

We've veturning the [tevator inkerfate. The elient
doesn't need o know how the menultems are maintained
in the DinerMenu, nov does it need to know how the
DinerMenulterator is implemented. |t Jus{: needs to use
the itevators o step through the items in the menu.

EXERCISE

Go ahead and implement the PancakeHouselterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

Fixing up the Waitress code

Now we need to integrate the iterator code into the Waitress. We should be
able to get rid of some of the redundancy in the process. Integration is pretty
straightforward: first we create a printMenu() method that takes an Iterator;
then we use the createlterator() method on each menu to retrieve the Iterator
and pass it to the new method.



Ncw El'nd J{f

'.m-i;roucd with
[tevator.

public class Waitress {
PancakeHouseMenu pancakeHouseMenu; In +he r_ond;'ru!-{nk the Waitress
DinerMenu dinerMenu; ('xtakgs +he two menus.

public Waitress (PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) ({
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

} The ?r'.M:Mtnu“
method vow ereates
] £ Tor
public void printMenu() [ fwo iteators, on
Iterator pancakelterator = pancakeHouseMenu.createIterator(); eath menw:
Iterator dinerlterator = dinerMenu.createlterator(); e
System.out.println ("MENU\n----\nBREAKFAST") ;

And then ealls the
_— overloaded Pr]n{ﬂ]cnuf]

e with each iterator.

printMenu (pancakelterator) ;
System.out.println ("\nLUNCH") ;
printMenu (dinerIterator) ;

Test if theve ave
private void printdenu(Iterator iterator) { any more items. T'i'-_-:J;:; r1o?;i ed
while (iterator.hasNext()) { z—"'___ Qet the print/Venu

=3 ; ext item. method uses
Menultem menultem iterator.next() ; = H‘: &CVW 4:0

step through
the menu i‘!;ﬁms
and ?'rin{‘, +hem.

System.ocut.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ") ;
System.ocut.println(menultem.getDescription())

Use the item to

// other methods here Note that we've down 5&' ey PERCe)

oo and deseription
} to one loop and prink Hhe.

Testing our code

It’s time to put everything to a test. Let’s write some test drive code and see
how the Waitress works...



i treate the new menus.
public class MenuTestDrive { First we

public static wveoid main(String args([]) { (
PancakeHouseMenu pancakeHouseMenu = new PancakeHcuseMenu () ;

DinerMenu dinerMenu = new DinerMenu() ;

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu); & Then we eveate a
Waitress and pass

her the menus.
waitress.printMenu() ;

} Then we ?rin*{: them.

Here’s the test run...

File Edit Window Help GreenEggs&Ham

java DinerMenuTestDrive

MENU Fivst we itevate

SR {hrou&h the

BREAKFAST ?ahf-akt ménl.

K&B’' s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast

Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage And then
Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries the lunth
Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries meny, all

with the

same
LUNCH
\(_ iteration

Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

tode.

Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 —- Spaghetti with Marinara Sauce, and a slice of sourdough bread

What have we done so far?

For starters, we’ve made our Objectville cooks very happy. They settled their
differences and kept their own implementations. Once we gave them a
PancakeHouseMenulterator and a DinerMenulterator, all they had to do was
add a createlterator() method and they were finished.

We’ve also helped ourselves in the process. The Waitress will be much easier
to maintain and extend down the road. Let’s go through exactly what we did
and think about the consequences:



Hard to Maintain Waitress
Implementation

The Menus are not well
encapsulated; we can see the
Diner is using an ArrayList and
the Pancake House an Array.

We need two loops to iterate
through the Menultems.

The Waitress is bound to
concrete classes (Menultem[]
and ArrayList).

The Waitress is bound to two
different concrete Menu classes,
despite their interfaces being
almost identical.

Woohoo! No

code changes other
than adding the

createlterator() method.

Veggie burger

>

New, Hip Waitress Powered by Iterator

The Menu implementations are now encapsulated. The
Waitress has no idea how the Menus hold their
collection of menu items.

All we need is a loop that polymorphically handles any
collection of items as long as it implements Iterator.

The Waitress now uses an interface (Iterator).

The Menu interfaces are now exactly the same and, uh
oh, we still don’t have a common interface, which
means the Waitress is still bound to two concrete Menu
classes. We’d better fix that.

What we have so far...

Before we clean things up, let’s get a bird’s-eye view of our current design.



Lwio menus \m?lcmc"‘{
These :z-l: ot of methods, but

y
same € {;‘nc same

‘U\t\f a'rchJ‘t iM?]Cmcnﬁng

the The [tevator allows the Waitress {o be decoupled
from the actual implementation of the tonevete
tlasses. She doesn't need to know if a Menu is
Fix this im?lcmth{;td with an Pc'rra\rz, an ﬁqrra\fLis’t, or with

We've now using a
tommon [terator

¥ oo to :
ih&rﬁa“-l::c Efa?tr:?s feom any Posk—it? notes. All she taves is that she ¢an get an mzcbfa:ce
and Free the te Menus. [terator 4o do her iterating and we've

dependentics on tontyre

.

iMPICrn:n{;cd +wo

/ \S ‘/ tontrete ¢lasses.

\> menultems

createlterator()

< DinerMenu r—
|
)

/

PancakeHouseMenu h-(— Waitress h—p <<interface>> I
menultems I printhenu() I fraewtor
hashext()
createlterator() I next()

Din erl;denulteratar

Y

PancakeHouseMenulterator i

hiashext() hashext()
next() nexty)

£
Mens avd DinerMens
Note that the iterator gives us a way to Ptk o reatelteratn)
sfc'f’ “’:hrough the elements of an ag9reqa Le LmC£:T:;_ ‘{;\1!‘{ e gs?ohs-'uc Lor treating

without Fon:ing, the aggregate to tlutter its
own interface with a bunth of methods 4o
support traversal of its elements. [t also allows
the implementation of the itevator to live
outside of the a9gregate; in other words,
entapsulated the interation

we've

their res?c.:{,'wc meny

he iterator for |
'IJCCmSF im\?km\'.n{:&hhahs.

Making some improvements...

Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are
exactly the same and yet we haven’t defined a common interface for them.
So, we’re going to do that and clean up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface — we
did that so you could see how to build an iterator from scratch. Now that
we’ve done that, we’re going to switch to using the Java Iterator interface,
because we’ll get a lot of leverage by implementing that instead of our home-
grown Iterator interface. What kind of leverage? You’ll soon see.

First, let’s check out the java.util.Iterator interface:



e~ This looks juch like our previous definition.

<<inferface>>
Iterator
hasNext()
o) Except we have an additional method £hat
removey) < allows us to remove the last item veturned

by the next() method from the aggregate.

This is going to be a piece of cake: we just need to change the interface that
both PancakeHouseMenulterator and DinerMenulterator extend, right?
Almost... actually, it’s even easier than that. Not only does java.util have its
own Iterator interface, but ArrayList has an iterator() method that returns an
iterator. In other words, we never needed to implement our own iterator for
ArrayList. However, we’ll still need our implementation for the DinerMenu
because it relies on an Array, which doesn’t support the iterator() method (or
any other way to create an array iterator).

s \

THERE ARE NO DUMB QUESTIONS

Q: Q: What if I don’t want to provide the ability to remove something from the underlying collection of
objects?

A: A: The remove() method is considered optional. You don’t have to provide remove functionality. But, you should
provide the method because it’s part of the Iterator interface. If you’re not going to allow remove() in your iterator
you’ll want to throw the runtime exception java.lang.UnsupportedOperationException. The Iterator API
documentation specifies that this exception may be thrown from remove() and any client that is a good citizen
will check for this exception when calling the remove() method.

Q: Q: How does remove() behave under multiple threads that may be using different iterators over the same
collection of objects?

A: A: The behavior of the remove() is unspecified if the collection changes while you are iterating over it. So you
should be careful in designing your own multithreaded code when accessing a collection concurrently.

N J

Cleaning things up with java.util.Iterator

Let’s start with the PancakeHouseMenu. Changing it over to java.util.Iterator
is going to be easy. We just delete the PancakeHouseMenulterator class, add
an import java.util.Iterator to the top of PancakeHouseMenu and change one

line of the PancakeHouseMenu:

public Iterator<Menultem> createlterator () {

return menultems.iterator () ; ﬂ/!!_h\‘ Instead of fi*'ca"c'lhg our own iterator
now, we jus{‘, tall the it:ra-[-_o»,—(}
method on the menultems Arrayt_m{.



And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow the DinerMenu to work with
java.util.Iterator.

import java.util.Iterator; éj__—__‘_—_—\ F-IVSIC we Im?nﬂ': jau‘;'“{il-f{ﬂ’a‘tﬂl’, the
interface we're g0ing to i’"Flf’“Chf-

public class DinerMenulterator implements Iterator {

MenuItem[] list;

int position = 0;

public DinerMenulterator (Menultem[] list) {
thisg.list = list;
}
None of our turrent
public Menultem next() { ‘"‘?15“":'"@{_’.'0“ changes.-

//implementation here
}

public boolean hasNext() { --:bu{ we do hc?,d to IMF?Ech‘{ r:m?“fct:‘- .
//implementation here Here, betause the ﬂ“‘EF 15 using 3 F'I"Edﬂs’u
} \( Avray, we L']us*':, shikt all the elements up one
when vemovel) is talled.

public void remove() {
if (position <= 0) {
throw new IllegalStateException
("You can't remove an item until you'wve done at least cne next()"):

}
if (list[position-1] '= null) {
for (int i = position-1; i < (list.length-1); i++) {
ligt[i] = list[i+l];
}
list[list.length-1] = null;
}

We are almost there...

We just need to give the Menus a common interface and rework the Waitress
a little. The Menu interface is quite simple: we might want to add a few more
methods to it eventually, like addItem(), but for now we will let the chefs
control their menus by keeping that method out of the public interface:

public interface Menu { JA T This is a simple interface that

Just lets clients get an iterator

public Iterator<Menultem> createlterator(); Yor the items in the menu.

}

Now we need to add an implements Menu to both the PancakeHouseMenu



and the DinerMenu class definitions and update the Waitress:

K N Now the Wait

import java.util.Iterator; tress uses the Java.uf.'l.]-ll'tcratar as well.

public class Waitress {

. £
Menu pancakeHouseMenu; We ”Cﬂld uﬂ \"cF|acc the
Menu dinerMenu; /_\ jonﬂretc Menu elasses with
the Meru |'r.£r;r~{:ac¢.

public Waitress(Menu pancakeHouseMenu, Menu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

1

public wvoid printMenu({) {
Iterator<Menultem> pancakelterator = pancakeHouseMenu.createlterator() ;
Iterator<Menultem> dinerIterator = dinerMenu.createlterator () ;
System.out.println ("MENU\n----\nBREAKFAST") ;
printMenu (pancakelterator) ;
System.out.println ("\nLUNCH") ;
printMenu (dinerIterator) ;

}

Nothing thanges

private wveoid printMenu(Iterator iterator) { heve.
while (iterator.hasNext()) {
MenuItem menultem = (Menultem)iterator.next()
System.out.print (menultem.getName() + ", ");

System.out.print (menultem.getPrice() + " -- ") ;
System.out.println(menultem.getDescription()) ;

}

// other methods here

What does this get us?

The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. Waitress can refer to each menu object using the interface rather than
the concrete class. So, we’re reducing the dependency between the Waitress
and the concrete classes by “programming to an interface, not an
implementation.”

NOTE

This solves the problem of the Waitress depending on the concrete Menus.

The new Menu interface has one method, createlterator(), that is implemented
by PancakeHouseMenu and DinerMenu. Each menu class assumes the



responsibility of creating a concrete Iterator that is appropriate for its internal
implementation of the menu items.

Menultems.

NOTE

This solves the problem of the Waitress depending on the implementation of the

Heve's our new Menu interface.
[t spetifies the new method,

Now, Waitress
only needs to
be tonterned
with Menus and

We've deeoupled
im?llc\'ﬁcn{—'ajdoh
we tan wse an
over any list

Waikvess from the

the menus, so nov

£ how {'hg ltS‘t
[tevators. o Lo know abow
treate[tevator(). L .
2 kems is !"'?"""“Jf’cd
<<jnterface>> ' Waitress ] <<interface>>
Menu : Iterator
printhenul)
createlteratori) hashNext()
nextf()
remove()
Fipaiatious ey bl | PancakeHouseMc.ﬂuItetatcr DinerMenulterator h
menultems menultems
hasMext() hasNext()
createlterator) createlterator() next) next()
remove() remove()
C Pam‘.akeHouscMgnu and DinerMenu now

implement the Menu interface, which

means ‘Ehcy need to imple £ th
eveatelterator() mc{:h:d-m“ o

\

We've now using the
PsrrayLis{: itevator
supplied by java.util. We
don't need this anymove.

Eath tontvete Menu is vesponsible
for ¢reating the appropriate
tontrete [terator elass.

Iterator Pattern defined

DinerMenu veturns

an DinerMenulterator
p'rom its
ereatelterator)
method betause
that's the kind of
itevator \rcO\uirtd

1o iterate over its
PM’&'}‘ of menu items.

You’ve already seen how to implement the Iterator Pattern with your very
own iterator. You’ve also seen how Java supports iterators in some of its

collection oriented classes (the ArrayList). Now it’s time to check out the
official definition of the pattern:




NOTE

The Iterator Pattern provides a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

This makes a lot of sense: the pattern gives you a way to step through the
elements of an aggregate without having to know how things are represented
under the covers. You’ve seen that with the two implementations of Menus.
But the effect of using iterators in your design is just as important: once you
have a uniform way of accessing the elements of all your aggregate objects,
you can write polymorphic code that works with any of these aggregates —
just like the printMenu() method, which doesn’t care if the menu items are
held in an Array or ArrayList (or anything else that can create an Iterator), as
long as it can get hold of an Iterator.

The Iterator Pattern allows traversal of the elements of an aggregate without
exposing the underlying implementation.

It also places the task of traversal on the iterator object, not on the aggregate,
which simplifies the aggregate interface and implementation, and places the
responsibility where it should be.

The other important impact on your design is that the Iterator Pattern takes
the responsibility of traversing elements and gives that responsibility to the
iterator object, not the aggregate object. This not only keeps the aggregate
interface and implementation simpler, it removes the responsibility for
iteration from the aggregate and keeps the aggregate focused on the things it
should be focused on (managing a collection of objects), not on iteration.

Let’s check out the class diagram to put all the pieces in context...



The [tevator intevfate
provides %he interkace
that all iterators
must im lement, and

d scf m:{hods

for traversing over

Having 3 tommon interface for Your
aggrcgatcs is handy for your elient;

it decouples your client +rom the
'Lm?lemcn{:a{'mn of your tolleetion of objcz‘.{s.

(J7 <<interface>> Client | <<interface>> . p— ds o£ 3 eolleetion.
- : forator Here we're using the
createlieralor) hasNexif) \'}ava.ufﬂ.[ fcra"oor- | $
A ::;{rer’,l You don't want to
- use Java's [terator
> ih{cr{"atc, You tan
; always treate your own.
Consrstsl gurepste > Concretelterator
createlterator() hasMext()
next()
K E&t‘.h remove()
K{ Congrg{gﬁ[ﬁgrgaatc |
is \”CSFonsib!g for
The ContveteAggregate instantiating a I'I

has a tollettion of
objcdjcs and 'lm?|crneh+.s
the method that
vetuens an [tevator for
its tolleetion.

Contretelterator that
tan i{gra{:c over its
collection of objcr.-ts.

The Contretelterator is
responsible for managing
the turrent position of
‘hht i{‘,C\"aJ‘:ion.

BRAIN POWER

The class diagram for the Iterator Pattern looks very similar to another pattern you’ve
studied; can you think of what it is? Hint: a subclass decides which object to create.

THERE ARE NO DUMB QUESTIONS

Q: Q:I’ve seen other books show the Iterator class diagram with the methods first(), next(), isDone() and
currentItem(). Why are these methods different?

A: A: Those are the “classic” method names that have been used. These names have changed over time and we now
have next(), hasNext() and even remove() in java.util.Iterator.
Let’s look at the classic methods. The next() and currentltem() have been merged into one method in java.util.
The isDone() method has obviously become hasNext(); but we have no method corresponding to first(). That’s
because in Java we tend to just get a new iterator whenever we need to start the traversal over. Nevertheless, you
can see there is very little difference in these interfaces. In fact, there is a whole range of behaviors you can give
your iterators. The remove() method is an example of an extension in java.util.Iterator.

Q: Q:TI’ve heard about “internal” iterators and “external” iterators. What are they? Which kind did we
implement in the example?

A: A: We implemented an external iterator, which means that the client controls the iteration by calling next() to get
the next element. An internal iterator is controlled by the iterator itself. In that case, because it’s the iterator that’s
stepping through the elements, you have to tell the iterator what to do with those elements as it goes through
them. That means you need a way to pass an operation to an iterator. Internal iterators are less flexible than
external iterators because the client doesn’t have control of the iteration. However, some might argue that they are
easier to use because you just hand them an operation and tell them to iterate, and they do all the work for you.




Q: Q: Could I implement an Iterator that can go backwards as well as forwards?

A: A: Definitely. In that case, you’d probably want to add two methods, one to get to the previous element, and one
to tell you when you’re at the beginning of the collection of elements. Java’s Collection Framework provides
another type of iterator interface called ListIterator. This iterator adds previous() and a few other methods to the
standard Iterator interface. It is supported by any Collection that implements the List interface.

Q: Q: Who defines the ordering of the iteration in a collection like Hashtable, which are inherently
unordered?

A: A: Iterators imply no ordering. The underlying collections may be unordered as in a hashtable or in a bag; they
may even contain duplicates. So ordering is related to both the properties of the underlying collection and to the
implementation. In general, you should make no assumptions about ordering unless the Collection documentation
indicates otherwise.

=

Q: You said we can write “polymorphic code” using an iterator; can you explain that more?

A: A: When we write methods that take Iterators as parameters, we are using polymorphic iteration. That means we
are creating code that can iterate over any collection as long as it supports Iterator. We don’t care about how the
collection is implemented, we can still write code to iterate over it.

Q: Q: If I’'m using Java, won’t I always want to use the java.util.Iterator interface so I can use my own iterator
implementations with classes that are already using the Java iterators?

A: A: Probably. If you have a common Iterator interface, it will certainly make it easier for you to mix and match
your own aggregates with Java aggregates like ArrayList and Vector. But remember, if you need to add
functionality to your Iterator interface for your aggregates, you can always extend the Iterator interface.

Q: I’ve seen an Enumeration interface in Java; does that implement the Iterator Pattern?

=

A: A: We talked about this in the Adapter Pattern chapter (Chapter 7). Remember? The java.util. Enumeration is an
older implementation of Iterator that has since been replaced by java.util. Iterator. Enumeration has two methods,
hasMoreElements(), corresponding to hasNext(), and nextElement(), corresponding to next(). However, you’ll
probably want to use Iterator over Enumeration as more Java classes support it. If you need to convert from one to
another, review Chapter 7 again where you implemented the adapter for Enumeration and Iterator.

Single Responsibility

What if we allowed our aggregates to implement their internal collections and
related operations AND the iteration methods? Well, we already know that
would expand the number of methods in the aggregate, but so what? Why is
that so bad?

Well, to see why, you first need to recognize that when we allow a class to
not only take care of its own business (managing some kind of aggregate) but
also take on more responsibilities (like iteration) then we’ve given the class
two reasons to change. Two? Yup, two: it can change if the collection
changes in some way, and it can change if the way we iterate changes. So
once again our friend CHANGE is at the center of another design principle:

DESIGN PRINCIPLE

A class should have only one reason to change.



Every responsibility of a class is an area of potential change. More than one
responsibility means more than one area of change.
This principle guides us to keep each class to a single responsibility.

We know we want to avoid change in a class like the plague — modifying
code provides all sorts of opportunities for problems to creep in. Having two
ways to change increases the probability the class will change in the future,
and when it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each responsibility to one
class, and only one class.

That’s right, it’s as easy as that, and then again it’s not: separating
responsibility in design is one of the most difficult things to do. Our brains
are just too good at seeing a set of behaviors and grouping them together
even when there are actually two or more responsibilities. The only way to
succeed is to be diligent in examining your designs and to watch out for
signals that a class is changing in more than one way as your system grows.

A

Cohesion is a term you’ll hear used as a measure of how closely a class or a module
supports a single purpose or responsibility.

We say that a module or class has high cohesion when it is designed around a set of
related functions, and we say it has low cohesion when it is designed around a set of
unrelated functions.

Cohesion is a more general concept than the Single Responsibility Principle, but the two
are closely related. Classes that adhere to the principle tend to have high cohesion and
are more maintainable than classes that take on multiple responsibilities and have low
cohesion.




BRAIN POWER

Examine these classes and determine which ones have multiple responsibilities.

Person

Game

login()
signup()
move()
fired)
rest()

DeckOfCards

hasMext()
next()
remave()
addCard()
removeCard()
shuffle()

sethame()

sethddress()
setPhoneNumber()
save)
load()

Phone

diall)
hangUp(}
talk()
sendData()
flash()

GumballMachine

getCount()
getState()
getLocation()

ShoppingCart

add()
remaove()
checkOut()
saveForlLater()

HARD HAT AREA. WATCH OUT FOR FALLING ASSUMPTIONS

Game

login{)

signup()
move()

fire()

rest()
getHighScore()
gethame()

BRAIN2 POWER

Determine if these classes have low or high cohesion.

GameSession

login()
signup()

PlayerActions

move{)
fire()
rest()

Player

getHighScore()
getName()




Good thing you're
learning about the Iterator
pattern because I just heard that
Objectville Mergers and Acquisitions
has done another deal... we're merging
with Objectville Café and adopting their
dinner menu.

Wow, and we thought things
were already complicated.
Now what are we going to do?

Come on, think positively.
I'm sure we can find a way to
work them into the Iterator
Pattern.

L

Taking a look at the Café Menu



Here’s the café menu. It doesn’t look like too much trouble to integrate the
CafeMenu class into our framework... let’s check it out.

A
our new Merw
',m?'mmtht ¥ n

Cagtmcn\l dc'ﬁhq: -F'I'\‘-Cd'

G A ) . :
(—\ inJcc\-J;ac\'_J but this 15 easily The LB£E is s{nring, Lheir menu Itc-Ts n a 0
public class CafeMenu { £~ Does that support [tevator? We'll see shortly.

HashMap<String, Menultem> menultems = new HashMap<String, MenuItem>() ;

a RashMap.

Like the other Menus, the menu items

public CafeMenu() { e l ! .
addItem("Veggie Burger and Air Fries", F ave initialized in the bonstrethoe

"Veggie burger on a whole wheat bun, lettuce, tomato, and fries",
true, 3.99);
addItem("Soup of the day",
"A cup of the soup of the day, with a side salad",
false, 3.69);
addItem("Burrito",
"% large burrito, with whole pinto beans, salsa, guacamole",
true, 4.29);
} Heve's where we veate a ncwlﬁ-‘k.h'l-'ff'"
Zrﬁ and add it to the menultems hashtable
public void addItem{String name, String description,
boolean vegetarian, double price)
{
Menultem menultem = new Menultem(name, description, wvegetarian, price);
menultems.put(menultem.getName ()}, menultem) ;

} 'E—Th: kcy 3 The value is +he menult

em obiest.
e OJtdt

the item "
public Map<String, Menultem> getItems() {

return menultems; r\__
) - We've not 50i“5 to need +his anymore.

SHARPEN YOUR PENCIL

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1.
2.
3.

\ J

Reworking the Café Menu code

Integrating the CafeMenu into our framework is easy. Why? Because
HashMabp is one of those Java collections that supports Iterator. But it’s not
quite the same as ArrayList...



CafeMenu implements the Menu inkerFace, so the
£ Waibress ¢an use it ")us{: like the other two Menus.
public class CafeMenu implements Menu {

1
public CafeMenu() W Weve using HashMap beeause it 2
// constructor code here tommon data structure for Mm?’ value.

}

public woid addItem(String name, String description,
boolean vegetarian, double price)
{
Menultem menultem = new Menultem(name, description, wvegetarian, price);
menultems.put (menultem.getName () , menultem) ;
}
22— Just like before, we tan get vid of gtH{:cms()
Ml U R S rstu:n—mnu—l—t;mr- so we don't expose the implementation of
' menulLems o the Waitress.
1.

And heve's where we implement the
eveateltevator) method. Notice that
we've not getting an [terator for the

} ' R“\———/ whole HashMayp, jus{: Lor the values.

public Iterator<Menultem> createlterator() {
return menultems.values() .iterator();

CODE UP CLOSE

HashMap is a little more complex than the ArrayList because it supports both keys and
values, but we can still get an Iterator for the values (which are the Menultems).

public Iterator<Menultem> createlterator() {

return menultems.values() .iterator () ;

1 )

Fivst we get the values ot the Luekily that eolleetion
Hashkable, whith s just a collection of itevator() mc'.’:ho:i, wiia:i.utzi:ﬁj: :
all the objct{; in the hashtable. °bj‘5‘:t of f}'?tjava.u{:i!.l'{era{:or.

N J

Adding the Café Menu to the Waitress

That was easy; how about modifying the Waitress to support our new Menu?
Now that the Waitress expects Iterators, that should be easy too.




public class Waitress { The cafe menu is passed inko the Waitress
n 'Ehc E.n-nS‘JC.'ruH:n'r w'IJc'h {:'ﬂ: o'Ehcr mEnuS,

Menu pancakeHouseMenu; bach it 3 vebange vastable
th it i dn InSTdn I A
Menu dinerMenu; é/f and we s

Menu cafeMenu;

public Waitress (Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;
this.cafeMenu = cafeMenu;

public wvoid printMenu() {
Iterator<Menultem> pancakelterator = pancakeHouseMenu.createlterator();
Iterator<Menultem> dinerlterator = dinerMenu.createlterator();
Iterator<Menultem> cafelterator = cafeMenu.createlterator() ;
T We've using the cafe's
System.out.println ("MENU\n----\nBREAKFAST") ; menu Lor our dinner
mER. ﬁl" we have Joo deo
to print it is ereate the

. . iterator, and pass it to
printMenu (dinerIterator) ; ?r'lntﬂ-’?crmf]. Thalls .IJC;

System.out.println{"\nDINNER") ;
printMenu(cafelterator) ;

printMenu (pancakelterator) ;
System.out.println {"\nLUNCH") ;

private wveid printMenu(Iterator iterator) {
while (iterator.hasMNext()) {
Menultem menultem = iterator.next(); — Noth'mlj Changcs heve.
System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ") ;

System.out.println({menultem.getDescription()) ;

Breakfast, lunch AND dinner

Let’s update our test drive to make sure this all works.



public class MenuTestDrive {
public static void main(String args([]) {
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ; Create a CafeMenu...

DinerMenu dinerMenu = new DinerMenul() ; C-’_,—/
CafeMe cafeMe = new CafeMen < :
e B g . and pass it to the waitress.

Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu, cafeMenu) ; Q————)

} waitress.printMenu() i € Now when we print we should see all £hree menus.

Here’s the test run; check out the new dinner menu
from the Cafe!

% java DinerMenuTestDrive Fivst we iterate

MENU 'H\'rwgh the

St ( pantake menu.
BREAKFAST

K&B's Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast

Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries Aol Hien

Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries Phe di

( menu-
LUNCH

Vegetarian BLT, 2.99 -- (Fakin') Bacon with lettuce & tomatc on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat

Scup of the day, 3.29 -- Soup of the day, with a side of potato salad

Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onicns, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

oL\ And finally

DINNER the new cafe
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad mens, all with

Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole [, cjme

Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun, iteration tode.

lettuce, tomato, and fries
%

What did we do?



Arraylist

0000

@ [ We wanted to give ’chzo /;-r
; Waitress an easy way | Momre® | Hemeen | Hongrs™
8 i ) iterate over menu items... Our menu kems had bnfo I_f m: 3 4_|
diffevent |ementations
and two d"g t‘r‘n{:

ini'.cr-catcs Lor iterating:

... and we didn't want her to \_}7

know about how the menu
items are implemented.

i

We decoupled the Waitress....

qura\(l-ﬁst has 3

So we aave the Waitress an built—in ikevator .
|ECraJc:.?ra for each kind of ¥ g Al’!’ayl.lsf
group of objecﬁs she needed

{o iterate over... ... one for

\

© 000

| Hengpret | Manre®™ | Hengpre® | Meppre®™ |
1

- - fevay
/ Tterat® doesn't have Arra‘l
§ a built—in >
.. and one for Avray. [terator so
’ ke we built our

own.

L-—-— next()

T

f Tterat$
é_ Now she doesn't have +o worry about which

implementation we used; she always uses the same
intevface — [terator — 4o iterate over menu items.
She's been detoupled from the implementation.

... and we made the Waitress more extensible



By giving her an [tevator We easily added another

im?\Cmcn{:aJciOh of menu
we have decoupled her . iy
from the implementation items, il
(—» o-pozh e ?_& ?rov'\dcd an H:,c\r 4 "
€ meénu ITems, SO W H‘c Wait“ss khew ol

tan easily add new Menus HashMap o ¢

Q fi y if we want.
y

7 e N .
S

-
Which is bette, £, Drexa®

v her
Cdah.sc now shc ¢ !

Making an [tevator

Same ¢o o COn e the £ the Hasl
3:7 ;:wd;o% ‘:E.er:'z:: o’;cr v:f:es \:a; ac::;ay
i ] JB z d h i
{J;: ,bc:ifcr F:;;S becau: e \:I::s ?Ecr:ﬂr 0
ImPleme, io ; -
aren't cxfaos:d, n details You get an [tevator.
But there’s more!
J&va 5iv¢; You a lot O‘F "C.OHCC‘{‘,ion”
tlasses that allow you 4o store
;—hd vetrieve groups of ob\jce:[:s‘
or example, Veetor and ; ;
LinkedL ist. ’ _ \ l-ll‘lkedl-IS‘['
\ =4
Most have dikferent V'Eﬂfor ()/b d\
ih‘b&\r-F&f.tS- Monypre®  Moprse®™  Hengre®  Mepgre™
Buk almost all of WQ |~Q" v IQ“" |

1 2 3 4

khem support 3
wa\{ {'p Olb{a.m an

|£evator.

and wore!

And if {:hcy don't support
[tevator, that's okay, because now
You know how to build Your own.

Iterators and Collections

We’ve been using a couple of classes that are part of the Java Collections
Framework. This “framework” is just a set of classes and interfaces,
including ArrayList, which we’ve been using, and many others like Vector,



LinkedList, Stack, and PriorityQueue. Each of these classes implements the
java.util.Collection interface, which contains a bunch of useful methods for
manipulating groups of objects.

Let’s take a quick look at the interface:

<< > ) .
éﬁ?ﬂ;ﬁ As you tan st fheve's all kmg;; ’
acl) of a00d stufk here You can
addAll) lements feom Jour
and remove € .

clear() sollection without even knowing
ﬂiﬁiﬂ how it's implemented
aquals(]
EZS;;ZT} Hcrc!s our old wC'richd, the
fterator() itevrator() method. With this
remove() rn:{:'nad, Tnu Lan 5'!‘['. an |Jccra-l:or
removeAll) for any ¢tlass that implements
- the Colleetion in{:c\"-cattt-
size()
tofrray|)

Other hand'}! methods intlude
size(), o 3ch the number of
elements, and {oﬁﬂ-a}eﬂ to turn
Your eolleetion into an array.

WATCH IT!
Hashtable is one of a few classes that indirectly supports Iterator.

As you saw when we implemented the CafeMenu, you could get an Iterator from it, but
only by first retrieving its Collection called values. If you think about it, this makes
sense: the HashMap holds two sets of objects: keys and values. If we want to iterate over




its values, we first need to retrieve them from the HashMap, and then obtain the iterator.

The nice thing about Collections
and Tterator is that each Collection
object knows how to create its own
Iterator. Calling iterator() on an Arraylist
returns a concrete Iterator made for
ArraylLists, but you never reed to see or
worry about the concrete class it uses;
you just use the Iterator interface.

CODE MAGNETS

The Chefs have decided that they want to be able to alternate their lunch menu items; in
other words, they will offer some items on Monday, Wednesday, Friday, and Sunday,
and other items on Tuesday, Thursday, and Saturday. Someone already wrote the code
for a new “Alternating” DinerMenu Iterator so that it alternates the menu items, but she
scrambled it up and put it on the fridge in the Diner as a joke. Can you put it back
together? Some of the curly braces fell on the floor and they were too small to pick up,
so feel free to add as many of those as you need.




Menultem menultem = items[position];

POBition = position + 2;

return menultem;

import java.util.Iterator;
import java.util.Calendar;

public Object next() {

public hltarnatingDinerHenuItarator{thuItam[] items)

this.items = items;

position = Calendar.DAY OF WEEK % 2:

implements Iterator<MenuItem> f| public void remove () {

D | public class AlternatingDinerMenulterator '

public boolean hasNext () {

Menultem[] items;

int position;

throw new UnsupportedOperationException (

"Alternating Diner Menu Iterator does not support remove()");

if (position >= items.length || items[position] == null) {
return false;

} else {

return true;

.

Is the Waitress ready for prime time?

The Waitress has come a long way, but you’ve gotta admit those three calls
to printMenu() are looking kind of ugly.

Let’s be real — every time we add a new menu we are going to have to open
up the Waitress implementation and add more code. Can you say “violating



the Open Closed Principle”?

Three ereateltevator() ¢alls.

public void printMenu () {
Iterator<Menultem> pancakelterator = pancakeHouseMenu.createlterator();
Iterator<Menultem> dinerIterator = dinerMenu.createlterator();
Iterator<Menultem> cafelterator = cafeMenu.createlterator():

System.ocut.println ("MENU\n----\nBREAKFAST") ;
printMenu (pancakeIterator) ;

™ Three talls to

System.out.println("\nLUNCH") ;
é;/_-/ printMenw.

printMenu (dinerIterator) ;

System.out.println (" \nDINNER") ;
printMenu(cafelterator) ;

Eu'clr\f Lime we add or vemove 3 menu we re ﬂoihﬁ

£o have to open this eode up for changes.

It’s not the Waitress’ fault. We have done a great job of decoupling the menu
implementation and extracting the iteration into an iterator. But we still are
handling the menus with separate, independent objects — we need a way to
manage them together.



BRAIN POWER

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you
think of a way to combine the menus so that only one call needs to be made? Or perhaps
so that one Iterator is passed to the Waitress to iterate over all the menus?

This isn't so bad. All
we need to do is package the
menus up info an ArraylList and then
get its iterator to iterate through
each Menu, The code in the Waitress is
going to be simple and it will handle any
number of menus,

Sounds like the chef is on to something. Let’s give it a try:



public class Waitress { N |
£ st TaKe an
ArrayList<Menu> menus; ¢/’Fr_ﬁ‘h‘ Ow‘ﬁ_J
Fﬁrra‘]ﬁ_ﬂm{: O'[: menas.

public Waitress (Arraylist<Menu> menus) {
this.menus = menus;

And we itevate through the
menus, Pasﬂhg eath menu's
itevator to the overloaded
Frhdﬁﬁtnuﬂ methed.

public woid printMenu() {
Iterator<Menu> menulterator = menus.iterator();
while (menulterator.hasMNext()) {
Menu menu = menulterator.next() ;
printMenu (menu.createlteratox()) ;

void printMenu (Iterator<Menu> iterator) {
while (iterator.hasNext()) ({ ‘érﬁmﬁ“ NoLOdt
Menultem menultem = iterator.next(); “ﬁnﬁﬂﬁmra
System,out.print (menultem,getName() + ", ");
System.out.print (menultem.getPrice() + " -= "});
System.ocut.println (menultem.getDescription()) ;

}

This looks pretty good, although we’ve lost the names of the menus, but we
could add the names to each menu.

Just when we thought it was safe...
Now they want to add a dessert submenu.

Okay, now what? Now we have to support not only multiple menus, but
menus within menus.

It would be nice if we could just make the dessert menu an element of the
DinerMenu collection, but that won’t work as it is now implemented.

What we want (something like this):



I just heard the Diner is
going to be creating a dessert
menu that is going to be an insert
into their regular menu.

. s 9
\)
e VN

A b



=3

Heve's our ,Ar'ra}'LisJ:
that holds the menus
of eath restaurant.

|Q’°%3Hm§ | Onerpens | Sofemens |
1 2 3

anea enu =

P ke M Gaﬂf_e Mgnu

y = \ Piner Meny )

f = ﬁlr a I " = I'-.

MQ | Q EQ '”“"f‘ I lf./ \\'I /r Y i| Q Q R_::

e o __/ || Mo I'| Oﬁ
- O \ o e HashMap
II| _dcm ot lf}l. I_l Ve % | F.,____‘J

AecayList  VessertMenv [+ @) | T e
/:O\f\ i
N QR 4\
III 3 'll‘ Eor o
| Q :| We need ﬁor Diner Menu 4o hold a submeny,
Fr / but we tan't actually assign a menu to a
I:. 3_%0“" l'.l / Mthuf":Cm &r'ra‘}( bccausc ‘{‘.ht ‘E‘.Y?ES are
:. | o .j diffevent, so this isn't going to work.
. :4_'“;1‘"/’/
L1

- o“‘
Eut"-“‘sw
wor™

We can’t assign a dessert menu to a Menultem array.

Time for a change!

What do we need?

The time has come to make an executive decision to rework the chef’s
implementation into something that is general enough to work over all the
menus (and now submenus). That’s right, we’re going to tell the chefs that
the time has come for us to reimplement their menus.

The reality is that we’ve reached a level of complexity such that if we don’t



rework the design now, we’re never going to have a design that can
accommodate further acquisitions or submenus.

So, what is it we really need out of our new design?

| We need some kind of a tree-shaped structure that will accommodate menus,
submenus, and menu items.

' We need to make sure we maintain a way to traverse the items in each menu that is at
least as convenient as what we are doing now with iterators.

'] We may need to traverse the items in a more flexible manner. For instance, we might
need to iterate over only the Diner’s dessert menu, or we might need to iterate over the
Diner’s entire menu, including the dessert submenu.

There comes a time when we
must refactor our code in order
for it to grow. To not do so would
leave us with rigid, inflexible code
that has no hope of ever sprouting
new life.

NOTE

Because we need to represent menus, nested submenus and menu items, we can
naturally fit them in a tree-like structure.




Al Mgn\ﬁ

M/ \
E a&gam’mod 3{1

%
ke Ho‘f’ Menus.- .. and submenus... Cafe l'mp

2o N AN
00 0009 Q @9

Henpre®  Mamrren  Henpret Henzrer® MenTre®  Hemgpert W
$s:er‘ﬂ

and menu |'l'.CmS

K 4fO ,ﬁo Gf_/
T IS LA e re™ //
We ch,.H nccd Jcp be a'b'lc

Lo draverse all the items e 3lso need 45 be o1, to

e L
in the tre in verse more ﬂemhy Fo-r

nie ovey one menu

9
0000

Hanyre? el

St

BRAIN POWER

How would you handle this new wrinkle to our design requirements? Think about it
before turning the page.

The Composite Pattern defined

That’s right; we’re going to introduce another pattern to solve this problem.
We didn’t give up on Iterator — it will still be part of our solution —
however, the problem of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and solve it with the




Composite Pattern.

We’re not going to beat around the bush on this pattern; we’re going to go
ahead and roll out the official definition now:

NOTE

Here’s a tree structure.

Elements with

thild CICTAEHJCS
ave talled odes 2

/T#\;
@ o ©

Ledt

N\
E'Icmcn{s w'l*l;hau{‘. thildven
are talled leaves.

NOTE

The Composite Pattern allows you to compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

Let’s think about this in terms of our menus: this pattern gives us a way to
create a tree structure that can handle a nested group of menus and menu
items in the same structure. By putting menus and items in the same structure
we create a part-whole hierarchy; that is, a tree of objects that is made of
parts (menus and menu items) but that can be treated as a whole, like one big
tiber menu.

Once we have our iiber menu, we can use this pattern to treat “individual
objects and compositions uniformly.” What does that mean? It means if we



have a tree structure of menus, submenus, and perhaps subsubmenus along
with menu items, then any menu is a “composition” because it can contain
both other menus and menu items. The individual objects are just the menu
items — they don’t hold other objects. As you’ll see, using a design that
follows the Composite Pattern is going to allow us to write some simple code
that can apply the same operation (like printing!) over the entire menu

structure.
We Lan rc\?rtsm{; q

ouv J'.h",th'hl &r‘-d

M:nu|ttm5 n 3
free s*;ruf.{'ﬁ""ﬂ-

Mexi

@ o 9

Me ml"#b

T 7

Menus avre nodes and
Menultems ave leaves-

NOTE

We can create arbitrarily complex trees.



NOTE
Operations can be applied to the whole.




?rinjco
N

Mcnus
Al Mz““"
CSubmenu
o Oy, (‘)
°&e Ho“" AN .) Cire N\e"’

Henre™ Heppre™ Henpre™ Henpre® 41',_. e 4"-”&111 o O Hengre® Hen e Henprer®

eﬁ'—S‘Eﬂ W

P W

?
Me H',CW‘S

?rin{',o

NOTE
Or the parts.

The Composite Pattern allows us to build structures of objects in the form of trees
that contain both compositions of objects and individual objects as nodes.

Using a composite structure, we can apply the same operations over both
composites and individual objects. In other words, in most cases we can ignore
the differences between compositions of objects and individual objects.



fines an
The Component detines o
tevbace for all objects in the The Component may implement

The Client uses the on: both the composite a default behavior for 34 dO

interfate to tompositi
Component nter i . he leak nodes. vemove(), getChild() ;
manipulate the objeets in and the le oberations. e
the Lo:n?osﬂ:ion- \/ \/
Client > Component
operation()
add{Compaonent)
remove(Component)
Note that. the lesf s, O
inhevits methods like agd()
rea.-novcf) and getChild0),
which don’t necessarily make a"\
::{‘{:’ o—{: Sense F,_-,.- a JCB‘F node.
€re aoi
this ESR:_nB Teitone back to Leaf Composite
operation() add{Component)
remove(Component) é ) _ \so
A leaf has o getChild(int) The C,ot""?"s"'{"C 2 5k -
childven. operation() ) ks the Le
impleme \ons
rc‘la{Cd °E:ra . of
that so™
A leaf defines the behavior for N:’c:c way not. wake
the elements in the ccm?osi{:ior\. . tsc on Comfos! A
H: dOCS 'thlS b\',‘ imflcmﬂh{inﬁ 'thﬁ T}IC COM?OSi‘{}C’S \_okc s ’{O Sc“l‘n t’ha{, Lase an
operations the Composite supports. define behavior of the s:*u?hon '“"‘5\“*‘ be
tomponents having thildven and genevated

+o store ¢hild COM?OhCh*{',S.

THERE ARE NO DUMB QUESTIONS

Q: Q: Component, Composite, Trees? I’m confused.

A: A: A composite contains components. Components come in two flavors: composites and leaf elements. Sound
recursive? It is. A composite holds a set of children; those children may be other composites or leaf elements.
When you organize data in this way you end up with a tree structure (actually an upside-down tree structure) with
a composite at the root and branches of composites growing up to leaf nodes.

Q: How does this relate to iterators?

A: A: Remember, we’re taking a new approach. We’re going to re-implement the menus with a new solution: the
Composite Pattern. So don’t look for some magical transformation from an iterator to a composite. That said, the
two work very nicely together. You’ll soon see that we can use iterators in a couple of ways in the composite

implementation.

R

\

Designing Menus with Composite

So, how do we apply the Composite Pattern to our menus? To start with, we
need to create a component interface; this acts as the common interface for




both menus and menu items and allows us to treat them uniformly. In other
words, we can call the same method on menus or menu items.

Now, it may not make sense to call some of the methods on a menu item or a
menu, but we can deal with that, and we will in just a moment. But for now,
let’s take a look at a sketch of how the menus are going to fit into a
Composite Pattern structure:

MenuComponent represents the interface

. aging ko 1€ the for both Menultem and Menu. We've used an
The Waitress 'S 5'1n£c"£3f'° ko attess abstract ¢lass heve because we want to provide
MenuComponen | Menulbems default implementations for these methods.

both Menss 3

&

Waitress }—) MenuComponent
I getiame() ﬁ

getDescription() We have some of the same
getPrice() methods \{ou}n remember

isViegetarian() Prom our prrevious versions

print() of Menultem and Meny,
a;i:{UT::r:eC:rr;pU:*;::em) and we've added ?‘r'm‘{‘.”:
f u 0 and
Heve are the methods for _—> getChild(int) addo,.]\'csox N ; wuibe
m&hi?ula“:ihg the com?ohcn{',& SEJCC\'H dl). We e
The tomponents are Fhese soon; when ve
Menultem and Menu. i'“?lcmc“£ our new Menu
and MCHUI'{}C"‘ tlasses.
Menultem Menu
’E‘:‘Eh Menultem and getilame() menuCompenents
nus ; . o
overvide print(). getDescrpton) getiame()
.getPrloeD. getDescription()
|s\_fegetar|an{] print)
print{) add(MenuCompanent)
remove(MenuCeomponent)
7 getChild(int)

Menu[tem vervides 2 ds that
° h «des the methods
Sense, and uses the dcéu.r{f{::c,ds that make Menu also overvides

| o ; make sense, like @ wa +o add and rlemovc

in MenuComponent for those Eh:{:e;f:’ilom i:i i{f,cr-s (or o{hcj menus!) Fr:’m its

make sense (fike add0) — it doesn’t mak mcmcom?o“m{:s- e i
*ense 1o add a component 4o 4 Mcnuffc mctNamc() and 3:{,Dcscr'.?’tion0 methods 1o
o only . cOMFOMh{:S {:O : Mgnu)c.nh. ?cjcurh 'U'lc name and dcsf,r'n?{',ion op {‘,'he menu.

Implementing the Menu Component

Okay, we’re going to start with the MenuComponent abstract class;
remember, the role of the menu component is to provide an interface for the
leaf nodes and the composite nodes. Now you might be asking, “Isn’t the
MenuComponent playing two roles?” It might well be and we’ll come back



to that point. However, for now we’re going to provide a default
implementation of the methods so that if the Menultem (the leaf) or the Menu
(the composite) doesn’t want to implement some of the methods (like
getChild() for a leaf node) they can fall back on some basic behavior:

NOTE

All components must implement the MenuComponent interface; however, because
leaves and nodes have different roles we can’t always define a default
implementation for each method that makes sense. Sometimes the best you can do
is throw a runtime exception.

NOTE

Because some of these methods only make sense for Menultems, and some only make
sense for Menus, the default implementation is UnsupportedOperationException. That
way, if Menultem or Menu doesn’t support an operation, they don’t have to do anything;
they can just inherit the default implementation.




M:huCﬂm?onchJL vovides default
im?km:n{;a{jons Eov every method.

5

public abstract class MenuComponent {

public void add (MenuComponent menuComponent) {
throw new UnsupportedOperationException() ;

}

public void remove (MenuComponent menuComponent) {
throw new UnsuppeortedOperationException() ;

}

public MenuComponent getChild(int i) {
throw new UnsupportedOperationException();

}

public String getName () {

throw new UnsupportedOperationException() ;
1
public String getDescription() {

throw new UnsupportedOperationException() ;
1
public double getPrice() {

throw new UnsupportedOperationException() ;
}
public boolean isVegetarian() {

threw new UnsuppeortedOperationException() ;
1

public void print() f{
throw new UnsuppertedOperationException() ;
1

Implementing the Menu Item

f\ We've grouped together the

“tomposite” methods — that is,
methods o add, remove and
SC‘!: MCnuCam?oncn{.s-

Heve are the “operation’ methods;
Fhese ave used by the Merultems.
|4 furns out we tan also use a
ﬂou?l: of them n Meru +o0, as
\!ouln see in a towple of pages when
we show the Menu code.

print() is an “operation” method
that both owr Merus and

Menultems will implement, but we
provide a default operation here.

Okay, let’s give the Menultem class a shot. Remember, this is the leaf class
in the Composite diagram and it implements the behavior of the elements of

the composite.



I'm glad we're going in this
direction. I'm thinking this
is going to give me the flexibility
I need to implement that crépe
menu I've always wanted.




public class Menultem extends MenuComponent {

String name;
String description; {k/ Fi'rch we need to Ei{,cﬁd
boolean vegetarian; £he MeruComponer
double price; 'm‘u»@acc
a5 Mpmaleniiprolog ! Thc EonS{h’uc{Lo'r JI"‘S{-’ JICEIir(l!S J.:hc

String description, (—"“ e i
boolean vegetarian, name, destription, ett. and
double price) keeps a vefevence to them all.

{ This is pretty muth like our
this_name = name; old menu item implementation.
this.description = description;
this.vegetarian = vegetarian;
this.price = price;

}

public String getName() {
return name;

3 Heve's our getter methods

- jus{'; like our previous

public String getDescription() { b
im?|cmcn+,atmn-

return description;

}

public double getPrice() {
return price;

}

This is different from the previous implementation.

publie boulesn Isvegetarianl) 4 Heve we've o\lz\’t’id'\hﬁ the ?\"t'n't{} method in the

return vegetarian;

} MenuComponent. ¢lass. For Menultem this method
?r'mts the f.om?'scjt.: menk Ch‘l:'r\lff ndme,; diES-ﬁ‘”'?IC-‘O"‘a
public wvoid print() { prite and whedther or not it's veagie.
System.out.print(" " + getName());
if (isVegetarian()) { /
System.ocut.print("(v)");
}
System.out.println(", " + getPrice()):
System.out.println(" == " 4+ getDescription()):

Implementing the Composite Menu

Now that we have the Menultem, we just need the composite class, which
we’re calling Menu. Remember, the composite class can hold Menultems or
other Menus. There’s a couple of methods from MenuComponent this class
doesn’t implement: getPrice() and isVegetarian(), because those don’t make a
lot of sense for a Menu.



Menu is also a Mcnqu?ohcn{:, s e B ober DF S
s D, of type MenuComponent. We Il use an
\// intevnal f!lwa\fL-lch Lo hold these.
public class Menu extends MenuComponent ({
ArrayList<MenuComponent> menuComponents = new ArrayList<MenuComponent> ()
String name;

String description; m This is diffevent than our old
implementation: we've going Lo aive each
public Menu(String name, String description) { Menw 3 name and a chcri‘?{ionﬂIBcl:oﬂ
" 4

this.name = name; s ;
J we just velied on havi i
this.description = description; Forjca.'.h m'cm"“ aving diffevent elasses

}
public void add(MenuComponent menuComponent) {
menuComponents . add (menuComponent) ; Binees i you add Menultems or
: " other Menus to @ Menw. Betause
both Menultems and Menus are
public void remove (MenuComponent menuComponent) { Mcnu(‘,m?oncn{:a we jus’c need one
menuComponents . remove (menuComponent) ; wekhod 4o dé bk,

} You tan also remove 3 MeruComponent

ent.
public MenuComponent getChild(int i) { or get 3 MenuCompon

returnmenuComponents.get (1) ;
}
Here ave the getter methods for getting the name
public String getName() { and destription.
return name;

Netice, we aven't overriding getPrice() or
isVegetarian() because those methods don't make
sense for a Menu (although you tould arque that
isVegetarian() might make sense). [£ someone tries
to tall those methods on 3 Menu, they'll get an
Mnsuy?or&d@?cr&tionEiu?‘tian.

}

public String getDescription() ({
return description;
}

public void print() ({
System.out.print ("\n" + getMName()) ;
System.out.println(", " + tDescription = ;
¥ P ( ge P (1) T ?r'm{'. the Menu, we ?rm{: ‘{;‘Ht

System.out.println("=——-—m—mmmmmm—————— - b e
) - L Mem’i name and dcstrthm.



Wait a sec, T don't
understand the implementation of print().
T thought T was supposed to be able to apply the
same operations to a composite that I could to a leaf. If
I apply print() to a composite with this implementation,

all I get is a simple menu name and description. I don't
get a printout of the COMPOSITE.

Excellent catch. Because menu is a composite and contains both Menultems
and other Menus, its print() method should print everything it contains. If it
didn’t we’d have to iterate through the entire composite and print each item
ourselves. That kind of defeats the purpose of having a composite structure.

As you’re going to see, implementing print() correctly is easy because we can
rely on each component to be able to print itself. It’s all wonderfully
recursive and groovy. Check it out:

Fixing the print() method



public class Menu extends MenuComponent {

ArrayList<MenuComponent> menuComponents =
String name;
String description;

//{ constructer code here

// other methods here

public wvoid print() {

Systam.cut.print[”\n" + getName () ) ;

System.out.println(", " + getDescription()) :
System.out.println("------=—=—--————--

new ArrayList<MenuComponent>() ;

Al we need {o deo '|5Jc¢har31 :‘chc r'mjc,;i]::{a:iit
mak v vint ot only Tne m? " :
E:is ?'-’Iznu. Ekd: all of this Menus c.om?oncnts

obher Menus and Menultems.

Look'l We 5:{. to use an [tevator. We

use it 4o iterate through all the Menu's
[ cam?ohcn{;s.-. H’nos: tould be ofh:r

Menus, or -{;hq' tould be Menultems.

Iterator<MenuComponent> iterator = menuComponents.iterator();

while (iterator.hasNext()) {
MenuComponent menuComponent =

Sinte both Menus and Menultems
iterator.next() : / im?|¢m:n+. ?r]n{',o, we Juf{', eall

menuComponent.print () ;

print() and the vest is up to them.

will start another iteration, and so on.

NOTE

NOTE: If, during this iteration, we encounter another Menu object, its print() method

Getting ready for a test drive...

It’s about time we took this code for a test drive, but we need to update the
Waitress code before we do — after all she’s the main client of this code:

public class Waitress {
MenuComponent allMenus;

public Waitress (MenuComponent allMenus)

this.allMenus = allMenus;

i

public veoid printMenu() {
allMenus.print () ;

}

/O

Yup! The Waitvess tode veally is this simple.
Now we J',usjc, hand her the {‘p?u-.'ltv:'l 1m£;w
tcm?oncnf, the one +hat tontains al ¢

{ other menus. We've called that allMenus.

Al she has to do to 'Flrthf, the entive menu
hievarchy — all the menus, and all £he menu
items — 15 call Plrin{” on the {o? level menu.

We're gonna have one happy Waitress.

Okay, one last thing before we write our test drive. Let’s get an idea of what
the menu composite is going to look like at runtime:



The top—Ilevel

menu holds
all menus and |‘{',crns.
Composit :
omPosite - /
Al et
Col'hPOSi{'.C / L\‘
@ S
8 holds items... v
% e o Ojper ﬂ\"-"\' Com?os'.JtC Cafe N‘d\}

or items and
‘/l\ o{:hc'r menus. //\\ 1A /\\‘

Sser«“q’

N a,l;f 7 ‘// N ey K7
Leaf O o O O Leaf

s Moy ret® Heppret Hon pre™

A
< Leaf

Now for the test drive...

Okay, now we just need a test drive. Unlike our previous version, we’re
going to handle all the menu creation in the test drive. We could ask each
chef to give us his new menu, but let’s get it all tested first. Here’s the code:



public class MenuTestDrive {
public static void main(String args[]) { Let’s fivst eveate
MenuComponent pancakeHouseMenu = all the menu ab_;}ﬂ-ﬁ'
new Menu ("PANCAKE HOUSE MENU", "Breakfast"):;
MenuComponent dinerMenu =
new Menu ("DINEER MENU", "Lunch") ;

MenuComponent cafeMenu = We also need 3 JCﬂ?lr
new Menu("CAFE MENU", "Dinner"); icvc\ e t’hal: we'll
MenuComponent dessertMenu = name aﬂl"v"lcnus.

new Menu ("DESSERT MENU", "Dessert of course!");
MenuComponent allMenus = new Menu ("ALL MENUS", "All menus combined") ;

allMenus .add (pancakeHouseMenu) ; Fomn We're using the Composite add() method to add
allMenus .addl:dineruenu} : taf-h LTl T {ﬂ ‘{'.ht "50?-—!:\1'8! mehnly &”M:hhs.

allMenus.add (cafeMenu) ;

Now we need to add all

&—— the menu ikems. Here's one
example; for the vest, look at

the tomplete sourte tode.

// add menu items here

dinerMenu.add (new Menultem (

"Pasta™ .

"Spaghetti with Marinara Sauce, and a slice of socurdough bread",
true,

3.89)); ﬁnd WE:‘\"C alse addihs a menk JCA? d

rMen / meni. Al dinevMenu tares abau;l; is that
cine M RS TIRRRRESNHNG 5 everything i holds, whether it's 3 menu

item or 3 menw, is 3 MCT‘“C""‘?"““t
dessertMenu. add (new Msnultem |
ﬂhppla Pial! =
"Apple pie with a flakey crust, topped with wvanilla icecream”,
true,

1.59)); Add some apple pie to the

dessevt menu...

// add more menu items here

£ “\ Onte we've tonstrutted our

entive menu hierarchy, we hand

waitress.printMenu() ; the whole 'Ehi"‘ﬂl to the Waitress,
} ; \ and as YWJU\: seen, it's as easy as

; apple pie for her to print it out.

Waitress waitress = new Waitress(allMenus) ;

Getting ready for a test drive...

NOTE

NOTE: this output is based on the complete source.




Heve's all our menus... we ?rin{:cd all
this jus{'. by talling print() on the
":n? level menw.
K&B’' s Pancake Breakfast(v), 2.99
-- Pancakes with scrambled eggs, and toast
Reqular Pancake Breakfast, 2.99
-- Pancakes with fried eggs, sausage
Blueberry Pancakes(v), 3.49

-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles{v), 3.59

-- Waffles, with your choice of blueberries or strawberries

DINER MENU, Lunch

Vegetarian BLT(v), 2.99

-- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.05

-- A het dog, with saurkraut, relish, onions, teopped with cheese
Steamed Veggies and Brown Rice(v), 3.99

-- Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course! The new
£— dessert menu
Bpple Pie(v), 1.59

[ ?rin‘l:td
-- Apple pie with a flakey crust, topped with vanilla icecream when we ave
Cheesecake(v), 1.99

-- Creamy New York cheesecake, with a chocolate graham crust ?ﬁ"h“ﬁa"{hs
Sorbet(v), 1.89 Diner menu

-- A scoop of raspberry and a scoop of lime Lamwmmﬁi

CAFE MENU, Dinner

Veggie Burger and Air Fries(v), 3.99

-- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Soup of the day, 3.69

-- A cup of the soup of the day, with a side salad
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole




What's the story?
First vou tell us One Class, Ore
Responsibility, and now you are giving us a
pattern with two respensibilities in one class.
The Composite Pattern manages a hierarchy

AND it performs operations related to Menus.

There is some truth to that observation. We could say that the Composite
Pattern takes the Single Responsibility design principle and trades it for
transparency. What’s transparency? Well, by allowing the Component
interface to contain the child management operations and the leaf operations,
a client can treat both composites and leaf nodes uniformly; so whether an
element is a composite or leaf node becomes transparent to the client.

Now given we have both types of operations in the Component class, we lose
a bit of safety because a client might try to do something inappropriate or
meaningless on an element (like try to add a menu to a menu item). This is a
design decision; we could take the design in the other direction and separate
out the responsibilities into interfaces. This would make our design safe, in
the sense that any inappropriate calls on elements would be caught at compile
time or runtime, but we’d lose transparency and our code would have to use
conditionals and the instanceof operator.



So, to return to your question, this is a classic case of tradeoff. We are guided
by design principles, but we always need to observe the effect they have on
our designs. Sometimes we purposely do things in a way that seems to violate
the principle. In some cases, however, this is a matter of perspective; for
instance, it might seem incorrect to have child management operations in the
leaf nodes (like add(), remove() and getChild()), but then again you can
always shift your perspective and see a leaf as a node with zero children.

Flashback to Iterator

We promised you a few pages back that we’d show you how to use Iterator
with a Composite. You know that we are already using Iterator in our internal
implementation of the print() method, but we can also allow the Waitress to
iterate over an entire composite if she needs to — for instance, if she wants to
go through the entire menu and pull out vegetarian items.

To implement a Composite iterator, let’s add a createlterator() method in
every component. We’ll start with the abstract MenuComponent class:

MenuComponent
= We've added a eveatelterator() method
getDescription() to the MchuCom?ancnf This means
getPrice) that eath Menu and Menultem will
isVegetarian() need to im?]:mcwf: this method. [t also
prnt() means that calling eveate[terator() on
e a tomposite should apply to all children
remove(Component) £ 4 +
getChild(int) ¢ Lomposite.
createlterator)

Now we need to implement this method in the Menu and Menultem classes:



public class Menu extends MenuComponent { ;
Iterator®enuComponent> iterator = null; Here weve using a new iterator called
// other code here doesn't change / f-":"'“P”S"JGC|.{E\'&’-Eﬂ'r- It knows how +o
iterate over any tomposite. We pass it
public Iterator<MenuComponent> createIterator() { {hﬁﬁ““T"tﬂﬂmﬁﬁ%EEiﬁmﬁﬁﬂ.
if (iterator == null) {
iterator = new Compositelterator (menuComponents.iteratoxr());

}

return iterator;

}
public class Menultem extends MenuComponent { .' .
// other code here doesn’'t change Now for the Menultem...

Whoa! What's this Nulllterator?

public Iterator<MenuComponent> createlterator () é/ 'f"ou’” see in two Pages

return new Nulllterator():

The Composite Iterator

The Compositelterator is a SERIOUS iterator. It’s got the job of iterating
over the Menultems in the component, and of making sure all the child
Menus (and child child Menus, and so on) are included.

Here’s the code. Watch out. This isn’t a lot of code, but it can be a little mind
bending. As you go through it just repeat to yourself “recursion is my friend,
recursion is my friend.”

WATCH OUT: RECURSION ZONE AHEAD



Like all iterators, we've
implementing the jaua-u-l;il.
import java.util.*; b wibpetars.

public class Compositelterator implements Iterator {
Stack<Iterator<MenuComponent>> stack = new Stack<Iterator<MenuComponent>>() ;

The iterator of Lhe top—level tompasite

we've going 4o itevate over is passed in.
We throw that in a stack data structure.

public Compositelterator(Iterator iterator) { Z’f
stack.push(iterator) ;
}

public Cbject next() { L Ok‘?f :;j"’" :h‘ client wants to get the next element
B (hasMaEE we tirst make sure there is one b‘f talling hasNext()..
Iterator<MenuComponent> iterator = stack.peek() ;
MenuComponent component = iterator.next() ; _ rﬁ
there is a next element, we

stack.push (component.createIterator()) ; Se{: che b ent, itera £ the
stack and get its next element.
return component; (\

1
' i:tirn null; We then throw that f.omfoncnf's iterator on the stack. £
} the component is a Menw, it vill itevate over all its items.
} JP the Cmfo’nﬂh‘t is 3 Menultem, we 5\!{’. the Nulllterator,
and no iteration happens. Then we veturn the component.

public boolean hasNext() {

if (stack.empty()) {

return false; "'1¢_"—“ To see if there is a next element, we :‘.h:c.'k te
see if the stack is cm?-b,r; if so, there isnt.

} else {
Iterator<MenuComponent> iterator = stack.peek() ;
: i
if (!iterator hasNext()) { Bl we ae{: e i O-F.F
Stick-P:P (z}q; £0) ; the top of the stack and see if it
} el:: ?m B o= has a next element. IF it doesn't
return true; k\ we pop it off the stack and eall
} Otherwise theve is a next hasNext() vecursively.
} element and we return true ,
} ’ We've not supporting remove, so we dont
} implement it and leave it up to the

default behavior in java-u{i]-{‘ﬁcra{:or-



That is serious code... I'm trying
to understand why iterating over a

composite like this is more difficult than
the iteration code we wrote for print() in
the MenuComponent class?

When we wrote the print() method in the MenuComponent class we used an
iterator to step through each item in the component, and if that item was a
Menu (rather than a Menultem), then we recursively called the print() method
to handle it. In other words, the MenuComponent handled the iteration itself,
internally.

With this code we are implementing an external iterator so there is a lot more
to keep track of. For starters, an external iterator must maintain its position in
the iteration so that an outside client can drive the iteration by calling
hasNext() and next(). But in this case, our code also needs to maintain that
position over a composite, recursive structure. That’s why we use stacks to
maintain our position as we move up and down the composite hierarchy.



BRAIN POWER

Draw a diagram of the Menus and Menultems. Then pretend you are the
Compositelterator, and your job is to handle calls to hasNext() and next(). Trace the way
the Compositelterator traverses the structure as this code is executed:

public void testCompositeIterator(MenuComponent component) {
CompositeIterator iterator = new CompositeIterator(component.iterator);

while(iterator.hasNext()) {
MenuComponent component = iterator.next();
}

The Null Iterator

Okay, now what is this Null Iterator all about? Think about it this way: a
Menultem has nothing to iterate over, right? So how do we handle the
implementation of its createlterator() method? Well, we have two choices:

NOTE
NOTE: Another example of the Null Object “Design Pattern.”

Choice one:

Return null
We could return null from createlterator(), but then we’d need conditional
code in the client to see if null was returned or not.

Choice two:

Return an iterator that always returns false when hasNext() is called

This seems like a better plan. We can still return an iterator, but the client
doesn’t have to worry about whether or not null is ever returned. In effect,
we’re creating an iterator that is a “no op.”

The second choice certainly seems better. Let’s call it Nulllterator and
implement it.



This is the laziest [+evator
youj-'c ever seen. AL every s{eF
import java.util.Iterator; of the way it punts.

public class Nulllterator implements <MenuComponent> |

public Cbhject next() {
return null: é_‘—‘\\ When next() is ealled, we veturn null.
}

é/f—"_“\ Mest im?f:-r{'.ar-ﬂ'f when hasNext()

public boolean hasNext() { is talled we alwa\r's vebuen false.
return false;

].

public void remove() { the Nulll£evator wouldn £ think of

i i : fnd
} throw new UnsupportedOperationException(); = watinﬁ oo o dm.,’{; S
implement. this; we tould leave it off

} and let the dc£3u|{: java-u{:ﬂ-H:,t'ra{:nr

vemove handle it

Give me the vegetarian menu

Now we’ve got a way to iterate over every item of the Menu. Let’s take that
and give our Waitress a method that can tell us exactly which items are

vegetarian.



public class Waitress {
MenuComponent allMenus;

public Waitress (MenuComponent allMenus) {
this.allMenus = allMenus;

public void printMenu() { The printVegetarianMenu() method
takes '{Zh: QHMCnuJS f.orn?csi{c and

allMenus.print() ; 5:4:5 its itevator. That will be our
} Cqm?osrtdﬂra{:or-

public void printVegetarianMenu() {
Iterator<MenuComponent> iterator = allMenus.createIterator();

[terate through every
System.out.println ("\nVEGETARIAN MENU\n----") ; element of the tompasite.
while (iterator.hasNext()) {

MenuComponent menuComponent = iterator.next () ;

try { cn 1
e i -Larlah(.f
if (menuComponent.isVegetarian()) { Call eath element’s isVee

[c'/— method and il brue, we tall its
?v"m{',{} mﬂ{‘.‘had-

menuComponent.print () ;

H
} cateh (UnsupportedOperationException e} (]}

r\ 'Plr'in‘{:f.:‘ i5 oh|}’ ealled
on Menu[‘tcms, nEvEey

tomposites. Can You

WC -IMF‘I!'CMEh":fd '|5V!5C{Jlrian[’) o ‘Ehﬁ SEe wh?'?

Menus +o always throw an exception. [£
)r.heli{: happens we cateh the exception,
but continue with our iteration.

The magic of Iterator & Composite together...

Whooo! It’s been quite a development effort to get our code to this point.
Now we’ve got a general menu structure that should last the growing Diner

empire for some time. Now it’s time to sit back and order up some veggie
food:



File Edit Window Help HaveUhuggedYurlteratorToday?

% java MenuTestDrive

VEGETARIAN MENU The chd:arian Menu tonsists of the
- é""—/ vcgc{:arian items from every menu.
K&B’'s Pancake Breakfast(v), 2.99
-- Pancakes with scrambled eggs, and toast
Blueberry Pancakes (v), 3.49
-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59
-- Waffles, with your choice of blueberries or strawberries
Vegetarian BLT(v), 2.99
-- (Fakin’) Bacon with lettuce & tomato on whole wheat
Steamed Veggies and Brown Rice(v), 3.89
-- Steamed vegetables over brown rice
Pasta(v), 3.89
-- Spaghetti with Marinara Sauce, and a slice of sourdough bread
Apple Pie(v), 1.59

-- Apple pie with a flakey crust, topped with wvanilla ice cream
Cheesecake(v), 1.99

—-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

-- A scoop of raspberry and a scoop of lime

Veggie Burger and Air Fries(w), 3.99

-- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole



I noticed in your
printVegetarianMenu() method
that you used the try/catch to handle

the logic of the Menus not supporting the
isVegetarian() method. T've always heard
that isn't good programming form.

Let’s take a look at what you’re talking about:

We eall is"ul'rf,ﬁc_{aﬂan'[:‘{
T on all MCHUCﬂm?ﬂhth S

but Merus throw an
use they

dont 5"*??‘:’*{ the
o?t'ra{'lﬂh

if (menuComponent.isVegetarian()) { . o hetd
:':&Lt?luﬂn et
menuComponent.print() ;
}

} catch (UnsupportedOperationException) {}

I£ the menu tomponent doesn't

support the operation, we just throw
away the cﬁch{ion and ignore it

In general we agree; try/catch is meant for error handling, not program logic.
What are our other options? We could have checked the runtime type of the
menu component with instanceof to make sure it’s a Menultem before
making the call to isVegetarian(). But in the process we’d lose transparency
because we wouldn’t be treating Menus and Menultems uniformly.

We could also change isVegetarian() in the Menus so that it returns false.
This provides a simple solution and we keep our transparency.



In our solution we are going for clarity: we really want to communicate that
this is an unsupported operation on the Menu (which is different than saying
isVegetarian() is false). It also allows for someone to come along and actually
implement a reasonable isVegetarian() method for Menu and have it work
with the existing code.

That’s our story and we’re stickin’ to it.

PATTERNS EXPOSED
This week’s interview: The Composite Pattern, on implementation issues

HeadFirst: We’re here tonight speaking with the Composite Pattern. Why don’t you tell
us a little about yourself, Composite?

Composite: Sure... I’m the pattern to use when you have collections of objects with
whole-part relationships and you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here... what do you mean by whole-part
relationships?

Composite: Imagine a graphical user interface; there you’ll often find a top level
component like a Frame or a Panel, containing other components, like menus, text
panes, scrollbars and buttons. So your GUI consists of several parts, but when you
display it, you generally think of it as a whole. You tell the top level component to
display, and count on that component to display all its parts. We call the components
that contain other components, composite objects, and components that don’t contain
other components, leaf objects.

HeadFirst: Is that what you mean by treating the objects uniformly? Having common
methods you can call on composites and leaves?

Composite: Right. I can tell a composite object to display or a leaf object to display and
it will do the right thing. The composite object will display by telling all its components
to display.

HeadFirst: That implies that every object has the same interface. What if you have
objects in your composite that do different things?

Composite: In order for the composite to work transparently to the client, you must
implement the same interface for all objects in the composite; otherwise, the client has to
worry about which interface each object is implementing, which kind of defeats the
purpose. Obviously that means that at times you’ll have objects for which some of the
method calls don’t make sense.

HeadFirst: So how do you handle that?

Composite: Well, there are a couple of ways to handle it; sometimes you can just do
nothing, or return null or false — whatever makes sense in your application. Other times




you’ll want to be more proactive and throw an exception. Of course, then the client has
to be willing to do a little work and make sure that the method call didn’t do something
unexpected.

HeadFirst: But if the client doesn’t know which kind of object they’re dealing with,
how would they ever know which calls to make without checking the type?

Composite: If you’re a little creative you can structure your methods so that the default
implementations do something that does make sense. For instance, if the client is calling
getChild(), on the composite this makes sense. And it makes sense on a leaf too, if you
think of the leaf as an object with no children.

HeadFirst: Ah... smart. But, I’ve heard some clients are so worried about this issue, that
they require separate interfaces for different objects so they aren’t allowed to make
nonsensical method calls. Is that still the Composite Pattern?

Composite: Yes. It’s a much safer version of the Composite Pattern, but it requires the
client to check the type of every object before making a call so the object can be cast
correctly.

HeadFirst: Tell us a little more about how these composite and leaf objects are
structured.

Composite: Usually it’s a tree structure, some kind of hierarchy. The root is the top-
level composite, and all its children are either composites or leaf nodes.

HeadFirst: Do children ever point back up to their parents?

Composite: Yes, a component can have a pointer to a parent to make traversal of the
structure easier. And, if you have a reference to a child, and you need to delete it, you’ll
need to get the parent to remove the child. Having the parent reference makes that easier
too.

HeadFirst: There’s really quite a lot to consider in your implementation. Are there other
issues we should think about when implementing the Composite Pattern?

Composite: Actually there are... one is the ordering of children. What if you have a
composite that needs to keep its children in a particular order? Then you’ll need a more
sophisticated management scheme for adding and removing children, and you’ll have to
be careful about how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.
Composite: And did you think about caching?
HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the composite structure is complex or
expensive to traverse, it’s helpful to implement caching of the composite nodes. For
instance, if you are constantly traversing a composite and all its children to compute
some result, you could implement a cache that stores the result temporarily to save




traversals.

HeadFirst: Well, there’s a lot more to the Composite Patterns than I ever would have
guessed. Before we wrap this up, one more question: what do you consider your greatest
strength?

Composite: I think I'd definitely have to say simplifying life for my clients. My clients
don’t have to worry about whether they’re dealing with a composite object or a leaf
object, so they don’t have to write if statements everywhere to make sure they’re calling
the right methods on the right objects. Often, they can make one method call and execute
an operation over an entire structure.

HeadFirst: That does sound like an important benefit. There’s no doubt you’re a useful
pattern to have around for collecting and managing objects. And, with that, we’re out of
time... Thanks so much for joining us and come back soon for another Patterns Exposed.

DESIGN PATTERNS CROSSWORD

Wrap your brain around this composite crossword.

[
(o8]

— |
L

[
(=2

(= !
el E=

]
L=

MEEEEEEEE

[ury
(=1

Across Down

5. Third company acquired. 1. A class should have only one reason to do




6. This class indirectly supports Iterator. this.

12. HashMap and ArrayList both implement this 2. We encapsulated this.

interface. 3. The Iterator Pattern decouples the client

13. A separate object that can traverse a collection. from the aggregate’s

15. We deleted PancakeHouseMenulterator because 4. Merged with the Diner (two words).

this class already provides an Iterator. 7. User interface packages often use this
16. Has 1o children pattern for their components.

8. Collection and Iterator are in this

17. Name of principle that states only one package.

responsibility per class (two words).
19. Compositelterator used a lot of this. I?'agg;st&i;r;cfdfﬁly created using this
10. A composite holds this.

11. We Java-enabled her.

14. This menu caused us to change our
entire implementation.

18. A component can be a composite or this.

WHO DOES WHAT?
Match each pattern with its description:
Pattern Description
Strategy | Clients treat collections of objects and individual objects uniformly

Adapter | Provides a way to traverse a collection of objects without exposing the collection’s

implementation
Iterator Simplifies the interface of a group of classes
Facade Changes the interface of one or more classes

Composite | Allows a group of objects to be notified when some state changes

Observer | Encapsulates interchangeable behaviors and uses delegation to decide which one to
use

\ J

Tools for your Design Toolbox

Two new patterns for your toolbox — two great ways to deal with collections
of objects.







BULLET POINTS

» An Iterator allows access to an aggregate’s elements without exposing its internal
structure.

= An Iterator takes the job of iterating over an aggregate and encapsulates it in another
object.

= When using an Iterator, we relieve the aggregate of the responsibility of supporting
operations for traversing its data.

= An Iterator provides a common interface for traversing the items of an aggregate,
allowing you to use polymorphism when writing code that makes use of the items of
the aggregate.

m We should strive to assign only one responsibility to each class.

» The Composite Pattern provides a structure to hold both individual objects and
composites.

» The Composite Pattern allows clients to treat composites and individual objects
uniformly.

= A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.

» There are many design tradeoffs in implementing Composite. You need to balance
transparency and safety with your needs.

SHARPEN YOUR PENCIL SOLUTION
Based on our implementation of printMenu(), which of the following apply?

o« | A.| We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

(d | B. | The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a
standard.

9" | C. | If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

@~ | D. | The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

@ | E. | We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

(d |F. | The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as
it should be.




SHARPEN YOUR PENCIL SOLUTION

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1. implement the Menu
interface

2. getrid of
getltemns()

3. add createlterator() and return an Iterator that can step through the Hashtable
values

CODE MAGNETS SOLUTION

The unscrambled “Alternating” DinerMenu Iterator.




import jawva.util.Iterator;
import java.util.Calendar;

public class AlternatingDinerMenuIterator

limplaments Iterator<Menultem> i :i

MenuItem[] items;

int position;

public AlternatingDinerHenuIterator(MenuItem{] items)

this.items = items;

position = Calendar.DAY OF WEEK % 2;

public boolean hasNext() {

if (position >= items.length || items [position] == null) {

return false;
} else {

return true;

pPublic MenuItem next() { .

Menultem menultem = items [position];

position = position + 2

return menultem;

Notite that this [tevator

/ 'nm?hmcn{,a{]on does not
support vemavel).

"Alternating Diner Menu Iterator does not support remove () ") :

public void remove () |

throw new UnsupportedOperationException (

n Y

WHO DOES WHAT? SOLUTION

Match each pattern with its description:




Pattern Description

Strategy Clients treat collections
of objects and individual
objects uniformly

Adapter Provides a way to traverse
a collection of objects
Without exposing the
collection’s implementation

Hearftt@r i 3
Simplifies the interface of

a group of classes

Changes the interface of

Facade
one or nore classes

Allows a group of objects to
be notified when some state

(Composite
b chan ges

Encapsulates ?nferchangea[ﬂe
behaviors and uses delegation to

Obsepver
decide which one to use

DESIGN PATTERNS CROSSWORD SOLUTION

Wrap your brain around this composite crossword. Here’s our solution.




B
EENEE e
i
=
llllmnllall
E
&
SEEEEEEEE
B
COECEEEE

Eﬂﬂﬂﬂﬂlﬂl

| w w| Z

= <[ HHalwlnl o

“ <!
ﬂlmllﬂﬂlﬂlﬂl

] <[

H o<|F

E
E
= w2z <
ol «

E
|
|
]
- = O]

T
M
A lP
i)
N

W w
=)




Chapter 10. The State Pattern: The
State of Things

I thought things in
Objectville were going to be so easy, but
now every time I turn around there's
another change request coming in. I'm at
the breaking point! Oh, maybe I should
have been going to Betty's Wednesday
night patterns group all along. I'm in such
a state!

A little-known fact: the Strategy and State Patterns were twins separated
at birth. As you know, the Strategy Pattern went on to create a wildly
successful business around interchangeable algorithms. State, however, took
the perhaps more noble path of helping objects to control their behavior by
changing their internal state. He’s often overheard telling his object clients,
“Just repeat after me: I’m good enough, I’m smart enough, and doggonit...”

Jawva Breakers



Java toasters are so ’90s. Today people are building Java into real devices,
like gumball machines. That’s right, gumball machines have gone high tech;
the major manufacturers have found that by putting CPUs into their
machines, they can increase sales, monitor inventory over the network and
measure customer satisfaction more accurately.

NOTE

At least that’s their story — we think they just got bored with the circa 1800’s technology
and needed to find a way to make their jobs more exciting.

But these manufacturers are gumball machine experts, not software
developers, and they’ve asked for your help:




k. We've hepi ¢an implement Lhis-in Java ror us! Y
::radding m.::t? Ehﬁdr in the fubure, so Im need Lo keep the
Mfgbt) Gumbal], Tne. design as Llexible and maintainable as possi

Wheére thié Gumball Machine

i€ Never Half Empty  — Mighty Gumball Engineers

@ - Heve's the way we Lhink the oumball mathine tontroller needs to

le!

Cubicle Conversation



Let's take a look at this
diagram and see what the
Mighty Gumball guys want ...

Judy: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Judy: ... and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state
diagrams. Can you remind me what they’re all about?

Judy: Sure, Frank. Look at the circles; those are states. “No Quarter” is
probably the starting state for the gumball machine because it’s just sitting
there waiting for you to put your quarter in. All states are just different
configurations of the machine that behave in a certain way and need some
action to take them to another state.

Joe: Right. See, to go to another state, you need to do something like put a
quarter in the machine. See the arrow from “No Quarter” to “Has Quarter”?

Frank: Yes...

Joe: That just means that if the gumball machine is in the “No Quarter” state
and you put a quarter in, it will change to the “Has Quarter” state. That’s the
state transition.

Frank: Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank



and change to the “Gumball Sold” state, or eject the quarter and change back
to the “No Quarter” state.

Judy: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I
think we also have four actions: “inserts quarter,” “ejects quarter,” “turns
crank” and “dispense.” But... when we dispense, we test for zero or more
gumballs in the “Gumball Sold” state, and then either go to the “Out of
Gumballs” state or the “No Quarter” state. So we actually have five
transitions from one state to another.

b AN 13

Judy: That test for zero or more gumballs also implies we’ve got to keep
track of the number of gumballs too. Any time the machine gives you a
gumball, it might be the last one, and if it is, we need to transition to the “Out
of Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject
the quarter when the gumball machine is in the “No Quarter” state, or insert
two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: For every possible action we’ll just have to check to see which state
we’re in and act appropriately. We can do this! Let’s start mapping the state
diagram to code...

State machines 101

How are we going to get from that state diagram to actual code? Here’s a
quick introduction to implementing state machines:

@ First, gather up your states:

leve are the states - Lour in total.

(2 Next, create an instance variable to hold the current state, and define
values for each of the states:



Let's just all “Out of Gumballs”

sCold Out” for short

final static
final static
final static
final static

Y

int SOLD OUT = 0; Heve's each state vepresented
int NO QUARTER = 1; as 3 unique integer-
int HAS QUARTER = 2;

int SOLD = 3;

..and heve's an instante variable that holds the

int state = SOLD_OUT; é“’\ turrent state. We'll g0 ahead and set it +o “Sold

[:'u'{:” sinte the mathine will be unFiHrd when it's
Fivst taken out of its box and turned on.

3 Now we gather up all the actions that can happen in the system:

These attions are ,
the umball mathine's

| ke . '
inserts quavLer turns Erank ‘J ';h{cr£a¢: — the t‘nmﬁi

ejects quarter you tan do with it.
dispense
/) Disp:nsc is move of an internal
Looking at the diagram, invoking any o action the machine invokes on itself.

these attions causes

a state tra nsition.

@ Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine what
behavior is appropriate in each state. For instance, for the insert quarter
action, we might write a method like this:



public wvoid insertQuarter() { Each 'Fossi'tﬂt

state is thecked

if (state == HAS_QUARTER) { d_/ w;:ﬂa C-o;dl{,lonal
5 mEnT. -

System.out.println("You can't insert another quarter");

i he @ o?riajf,c
} else if (state == NO QUARTER) | .and C‘a&hbbu{;s the ?z';ut stw
) behavier for eath vo

state = HAS QUARTER;
System.out.println("¥You inserted a quarter") ;

Jbut an also transition to other states,
B e (moate mw SN B \':,us‘{‘. as depicted in the diagram.

System.out.println("You can't insert a quarter, the machine is sold ocut"):;
} else if (state == 8S0LD) {

System.out.println("Please wait, we're already giving you a gumball");

Here we're talking
about a common technique:
modeling state within an ob ject
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

With that quick review, let’s go implement the Gumball Machine!



Writing the code

It’s time to implement the Gumball Machine. We know we’re going to have
an instance variable that holds the current state. From there, we just need to
handle all the actions, behaviors and state transitions that can happen. For
actions, we need to implement inserting a quarter, removing a quarter,
turning the crank, and dispensing a gumball; we also have the empty Gumball
Machine condition to implement.

Heve ave the Cour states; they wakth the

‘taJE [ Ma‘nlc‘f (iumbahl’s S{,&jcc diaoyam-
5 £5 'n [}
publie class GumballMachine { / Here's the instante waviable that is going

to keep tratk of the turvent state we ve
in. We ?s{;ar{: in the S(}LD_GHT state.

final static int SOLD OUT = 0;
final static int NO QUARTER = 1
final static int HAS_QUARTER = 2;

We have a second instante vaviable that
final statie int SOLD = 3;

keeps track of the number of gumballs
in the machine.
int state = SOLD OUT;

int count = 0; The tonstructor takes an initial inventory
. ) ) of 3Um|!)a_“5. If the ir.ugn{-pw s’k zevo,
public GumballMachine (int count) { the machine enters state NO QUARTER,
this.count = count; Imeaning it is w.ai{:infj «Fov someone to
if (count > 0) ({ insert 3 quarter, otherwise it stays in
state = NO QUARTER; the SOLD—P‘OHT i
} Now we start irnﬂ:mtn{'m?]
} { : the attions 33 methods...

When 3 aluarbcr is insevted, -
public void insertQuarter() { g i quarter is alveady

if (state == HAS_QUARTER) { inserted we tell the

System.out.println("You can't insert another gquarter"); Customer...

} else if (state == NO QUARTER) { otherwise we actept the
state = HAS QUARTER; ‘:L_)’- q\lu,acher and transition to
System.out.println("You inserted a gquarter"); the H’PLS__QH,QRTER state.

} else if (state == SOLD_OUT) ({

System.out.println("You can't insert a quarter, the machine is sold out");

} else if (state == SOLD) {
System.out.println("Please wait, we're already giving you a gumball"});
! R\\-—- r.p {-_hc 4:u5{,amcr -uS{: Bouﬁh{ a {51 d IF Jchc mal'.hllhc is SOld
} /I e .
aumball he needs o wait until the oul, we rc‘)cd: the quarter.

transaction is Eom?chCc before
inserting another quarter.



public void ejectQuarter() | Now, if the tustomer tries o vemove the quarter..

if (state == HAS QUARTER) { &~ I£ theve is 3 quarter, we
System.out.println("Quarter returned") ; veburn it and 90 bazk to the
atate = NO_Q‘UJLRTER; e

} else if (state == NO QUARTER) { d//’__—\ ND—'&HHRTER o
System.out.println("You haven't inserted a quarter"); Otherwise, if theve isn't

: mlme if (akate:ms=30L0) &———— one we tan't give it back.
System.out . println("Sorry, you already turned the ecrank");

} else if (state == SOLD OUT) {

System.out.println("You can't eject, you haven't inserted a gquarter yet");

}

} L ‘fou tan't cjcrﬂ: ik the mathine is sold I the tustomer J“S{'-
out, it doesn't actept ﬂ\ua\-i;crs_f +urned the erank, we
tan't give a vefund; he
The tustomer tries to Lurn the trank... alre:.ad.\,r has +he 5umb3]”
public veid turnCrank() {

if (state == SOLD) { L Someone’s trying to theat the mathine.
System.out . println("Turning twice doesn't get you another gumball!™");

} else if (state == NO_QUARTER) {

System.out.println("You turned but there's no gquarter") ; We need a

} else if (state == SOLD OUT) { quarter fist
System.out.println("You turned, but there are no gumballs") ; :

} else if (state == HAS QUARTER) { We tantdtll\fﬂ"
System.out.println("You turned..."); ﬁumlﬂausi there
state = SOLD; are nont:

y b e Suttess! They get a qumball. Change

} the state to SOLD and call the
Called to dispense a qumball mathine's dispense() method.
public void dispense() { g noibhy

if (state == SOLD) { g e b
System.out.println("A gumball comes rolling out the slot"); SoLD s e’|5
count = count - 1; e @ Qum a
if (count == 0) {

System.out.println ("Oocps, out of gumballs!") ; Here's where wc”hahdk ‘U'ﬂ.! ¢
state = SOLD OUT: “ouk of gum'oa‘;ﬂsh f.andl{:lcm--lt
¥ alse [ - Lhis was the last one, we SE
state = NO QUARTER: \ the mathine's state +o SOLD
} - OUT: otherwise, we've batk to

} else if (state == NO_QUARTER) ({ not, having 3 ﬁua\rﬁf-
System.out.println("You need to pay first");

i @l8a IE istate e BORDOULY 4 ; € None of these should ever
System.out . println("No gumball dispensed") ; — "IJPPCP-; but if {:iﬁt\/ o4

} else if (state == HAS QUARTER) { /

. !
we -3w: €m dn ervor, ho{:

System.out.println("No gumball dispensed") ;
a qumball.

}
}

// other methods here like toString() and refill()

In-house testing

That feels like a nice solid design using a well-thought-out methodology,
doesn’t it? Let’s do a little in-house testing before we hand it off to Mighty
Gumball to be loaded into their actual gumball machines. Here’s our test



harness:

Tix T3 Vindos T it o

fjava GusballMachineTestDrive
Mighty Gumball, Inc.
Java-anabled Standing Gumball Model #2004
Inventory: 5 gumballs

__—? Machine is waiting for quarter
—
~ Load it vp with Five /

qblls otal

public class GumballMachineTestDrive { You insarted a quarter

You turned...
A gumball comes relling out the slot

public static void main(String[] args) { .
GusballMachine gumballMachine = new GumballMachina{S);

/ 2 Mighty Gumball, Inc.
e Java-enabled Standing Gumball Model £2004
System.out.println (qusbaliMaching) ; &—— Print eut the sate of the mithine ~———— /':‘7 Inventory: 4 gumballs
e /
/
o

Machine is waiting for quarter

gusballMachine . ingertQuarter () ; % Theew 3 surter in

guaballMachine . tuenCrank () ;

— You inserted a gquarter
Quarter returned

You turned but there's no quarter

& Turn the trark; we should get our gumbiall

—

System.out.println(gusballMachine); &£ —— L ot the state of the mathing, 3gain

Highty Gumball, Inc.
Java-enabled Standing Gumball del #2004

gueballMachine  insertuarter () : —
qusbalMachine.ejectQuartar(} ; —
gueballMaching . turnCrank () ;

— Throw & quarter in

Ade for ik bask

System.out,println{gusballMaching) ; G Pk cub the state of the mathine, doam

Turn the trank; we thouldr't get our qumball. .

Inventory: 4 gumballs
Machine is waiting for quarter

¥ou insarted a quarter

You turned...

A gqumball comes rolling out the slot
You inserted a quarter

You turned...

gusballMachine.insartQuarter(); &— [ hrew 3quarker in A gumball comes relling cut the slot
guesballMachine . turnCrank () £ Tirn the trank; we sheuld gt owr qumball You haven't inserted a quarter
gusballMachine. insertQuarter () ; &—— Throw 3 quarter in
gusballMachine . euenCrank () @ & Turn the rank; we sheuld aek our gumbal #2004
gusbal Machine. ejectQuarter() ; &—— fuk For @ quarter batk we didn't put in

_ Print ouk the shiate of the mathine, dgiin

System.out . printin{qusballMachine) ; £——

gumballMaching . insertguarter () :
gumbal1Machine . insortiuarter () :
gusballMachine . turnCrank () ;
gueballMachine , ingertQuarter () ;
guaballMachine . turnCrank () ;
gumballHachine . insertguarter () ;
gquaballdachine . turnCrank ()

T Throw TWD quarters in

For the stress

System.out.println{gusballMachine) ; &—— Frint that mackine state ene mon

——— Turn the rank; we thould get o guombal] /

i

A gumball comes rolling out the slot

You inserted a quarter

You turned...

A gumball comas rolling out the slot

Cops, out of gumballs!

You can't insert a quarter, the machine is sold out
¥You turned, but there are no gumballs

Mighty Gumball, Inc

Java-anabled Standing Gumball Model #2004
Inventory: 0 gumballs

HMachine is sold out

You knew it was coming... a change request!

Mighty Gumball, Inc., has loaded your code into their newest machine
and their quality assurance experts are putting it through its paces. So
far, everything’s looking great from their perspective.

In fact, things have gone so smoothly they’d like to take things to the

next level.




We think that by turning
"gumball buying” into a game we
can significantly increase our
sales. We're going to put one of
these stickers on every machine.
We're so glad we've got Java
in the machines because this is
going to be easy, right?

ﬁ

CEO, Mighty

when the f,r&'\"-k |
e !L-J'f'htli: the

&um'naﬂ: fnt-

JawDreaker o ﬁustomcrlug,llf-:‘-‘

t':iumd“"}?? ) bwe o E'\-
aumlba%li_‘h_ﬂ‘ msl[,cﬂd ok ont-

DESIGN PUZZLE

Draw a state diagram for a Gumball Machine that handles the 1 in 10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Check
your answer with ours (at the end of the chapter) to make sure we agree before you go
further...




i

Mighty Gumball, Ine.

Where the Gumball Machine
is Never Half Empty

>

WUse Mighty Qumball’s stationery to draw your state diagram.

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought-out
methodology doesn’t mean it’s going to be easy to extend. In fact, when you
go back and look at your code and think about what you’ll have to do to
modify it, well...



final static int SOLD OUT = 0; Fivst, you'd have to add a new WINNER state

final statiec int HNO_QUARTER

1

final static

/ heve. That isnt oo bad...
int HAS QUARTER = 2;
final statiec int SOLD = 3;

public
//

public
1/

public
//

public
//

wvoid insertQuarter() {
insert quarter code here

void ejectQuarter () {

. evevy sinale method to handle
eject quarter code here & N ]’C 9

/ state; that's a lot of tode to rnodi-';l}r-

<

void turnCrank() {

turn crank code here

£urnCrank() will get especially messy, because you'd

have +o add tode +o thetk to see whether \Ifouj\-‘c
void dispense() { 50{ a WINNER and then switeh to either the
dispense code here WINNER state or the SOLD state.

SHARPEN YOUR PENCIL

Which of the following describe the state of our implementation? (Choose all that
apply.)

/A

This code certainly isn’t adhering to the Open Closed Principle.

This code would make a FORTRAN programmer proud.

This design isn’t even very object-oriented.

J
| C.
1

State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

[
o3,

. | We haven’t encapsulated anything that varies here.

[
1

Further additions are likely to cause bugs in working code.

hen, Youd have to add a new tonditional
T\ ki the WINNER




Okay, this isn't good. I think
our first version was great, but it isn't
going to hold up over time as Mighty Gumball
keeps asking for new behavior. The rate of bugs
is just going to make us look bad, not to mention
the CEO will drive us crazy.

Frank: You’re right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Judy: We really should try to localize the behavior for each state so that if we
make changes to one state, we don’t run the risk of messing up the other
code.

Frank: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Judy: Exactly.

Frank: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Judy: Right. And maybe the Gumball Machine can just delegate to the state
object that represents the current state.

Frank: Ah, you’re good: favor composition... more principles at work.

Judy: Cute. Well, I’'m not 100% sure how this is going to work, but I think



we’re on to something.
Frank: I wonder if this will make it easier to add new states?

Judy: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Frank: I like the sound of that. Let’s start hashing out this new design!

The new design

It looks like we’ve got a new plan: instead of maintaining our existing code,
we’re going to rework it to encapsulate state objects in their own classes and
then delegate to the current state when an action occurs.

We’re following our design principles here, so we should end up with a
design that is easier to maintain down the road. Here’s how we’re going to do
it:

@ First, we’re going to define a State interface that contains a method
for every action in the Gumball Machine.

(@ Then we’re going to implement a State class for every state of the
machine. These classes will be responsible for the behavior of the
machine when it is in the corresponding state.

@ Finally, we’re going to get rid of all of our conditional code and
instead delegate to the State class to do the work for us.

Not only are we following design principles, as you’ll see, we’re actually
implementing the State Pattern. But we’ll get to all the official State Pattern
stuff after we rework our code...



MNow we're going
to put all the behavior of a
state into one class. That way,

we're localizing the behavior and
making things a lot easier fo
change and understand.

Defining the State interfaces and classes

First let’s create an interface for State, which all our states implement:



i ™ dircc{:l\,(
Here's the inkerface for all states. The methods ap
{::r:fllon: {'18‘{: tould happen to the ﬁumba" Mathine (these
ave the same methods as in the previous tode).

Y

<<interface>>
State
insertQuarter{)
ejectQuarter()
turnCrank()
dispense()
To Eiﬁu\rc out what
5{3‘[’,55 we nc!d; we ]ook
at our previous tode.- SoldState [ SoldOutState | NoQuarterState HasQuarterState
insertQuarter() insertQuarter() insertQuarter() insertQuarter()
ejectQuarier() ejectQuarter() ejectQuarter() ejectQuarter(}
turnCrank() tumnCrank() turnCrank() turnCrank()
dispense() dispense() dispense() dispense()

N

. and we map each state
diveetly to a ¢lass.

public class GumballMachine {

final statie int SOLD OUT = 0;
final static int NO _QUARTER = 1;

final static int HAS QUARTER = 2; Don't foraet, we need 3 new Swinnev state

Loo that implements the state interface. We'll
tome back to this abter we rcim\)lemcn‘{: the
Liest version of the Gumball Mathine.

final static int SOLD = 3;

int state = SOLD OUT;

int count

| WinnerState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Then take each state in our design and encapsulate it in a class that
implements the State interface.

-

SHARPEN YOUR PENCIL

To implement our states, we first need to specify the behavior of the classes when each
action is called. Annotate the diagram below with the behavior of each action in each
class; we’ve already filled in a few for you.




Go to HasQuarterState

Tell the tustomer, “There avre no qumballs.”

Tc” '!:hc Cus{:omcr, l"",/r:n.l ha»rcn"t inscr{'.ed a q‘u&\r‘tcr.” \-\S

Goto SoldState —— —— 00000 o

Tell the customer, “Please wait, we're already giving you 3 gumball.”

Ty

Dispense one aumball. Cheek number of qumballs; if > O,
90 to NoQuarterState; otherwise, 90 to SoldOutState. —7

T ———y

| NoQuarterState h

insertQuarter()
ejectQuarter()

turnCrank()
dispense()

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()

SoldState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldOutState h

insertQuarter()
ejectQuarter()
turnCrank()

dispensef)

I WinnerState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Go ahead and £ill this out even though we've implementing it L::D
J

Implementing our State classes

Time to implement a state: we know what behaviors we want; we just need to
get it down in code. We’re going to closely follow the state machine code we
wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:



Late intevface. We get passed a referente to
the 6umb&" Mathine 'E.h'rouah +he

ﬂ tonstruttor. We've just going to
stash this in an instante U&'ria.D]C-

public class NoQuarterState implements State {
GumballMachine gumballMachine;

Fivst we need to implement the S

£ someone inserts a quarter,
We 'F*rin{‘,. a message sa\jﬁhg the
quarter was aceepted and then

é/— thange £he mathine's state to
the HasQuarterState.

public NoQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;
}

public wvoid insertQuarter() {
System.out.println("You inserted a gquarter");
gumballMachine.setState (gumballMachine.getHasQuarterState()) ; ‘;/ou‘” see how these

} D WU’l"k ir.jus{-, a sel...
public void ejectQuarter() {
: : 't get mone
System.out.println("You haven't inserted a quarter"); - \r}ou tant get monty
} back if you never gave
it to us!

public wvoid turnCrank() {
System.out.println("You turned, but there's no guarter"™);
} ll And You ean't get a qumball
it you don't pay us.
public wvoid dispense() {

’ e "
System.out.println("You need to pay first"); We ean't be d'SFC“S'hﬁ

} 5umba| Is without paymen t

What we're doing is
implementing the behaviors that
are appropriate for the state
we're in. In some cases, this behavior
includes moving the Gumball
Machine to a new state.

Reworking the Gumball Machine

Before we finish the State classes, we’re going to rework the Gumball
Machine — that way you can see how it all fits together. We’ll start with the
state-related instance variables and switch the code from using integers to



using state objects:

public class GumballMachine {

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;

i Lhe
umballMathine, we update
lzoj:if u:‘c the new ¢lasses raJ_cher_E:an
the static integers. The code is 9y

i have
similar, c-at.t.C?Jc +hat in one tlass we

integers and n the other ohje.&,s...

final static int HAS QUARTER = 2;
final static int SOLD = 3;

int state = SOLD_OUT;

int count = 0;

Old tode public class GumballMachine {

State soldOutState;
State noQuarterState;

State hasQuarterState;
State soldState;

Ncw tode

State state = soldOutState;

int count = 0;

All the State objects ave created
and assigned in the tonstructor. This now holds 3

S{-}a‘t: o’bjf.f.{.: 'I'IG'E
an integer

Now, let’s look at the complete GumballMachine class...



public class GumballMachine { Heve ave all he S{',Btﬁs 353'1.:1...

p—

ﬁ The tount instante vaviable holds the tount

k"‘/—/ of gy.mb&tts - ihi":ia”‘;l' the mathine is cm?-{‘,\f,
L/f'—____\ Our tonstruetor takes the initial

stoves it
public GumballMachine (int numberGumballs) { mmb{.r o-p 5um'ual.]stnd
soldOutState = new SoldOutState (this) ; in an instante variable.
noQuarterState = new NoQuarterState (this) ; ST~ |t also eveates the State
hasQuarterState = new HasQuarterState(this) ; oba F oi: each.
soldState = new SoldState(this) ; instantes, on

State seoldOutState;
State neoQuarterState;
State hasQuarterState;
State soldState;

..and the State instance vaviable.

State state;
int count = 0;

this.count = numberGumballs;
if (numberGumballs > 0) {
state = noQuarterState;
} else {
state = soldOutState; Now for the actions These are

| é_—__i UER‘[’ Eﬁg\ff to lm?‘emcn{: ho;;;a{wc
} / just deleaate to the turvent state.

/ ﬂg‘-ﬁ_ﬂ that we don't need an

action method for dispense() in
GQumballMachine beeause it's Jus{ an
internal action; a user can't ask the
mathine Lo dispense dircr:.ﬂ]r- But we
do ¢all dis?cnscf] on the State abjcdf’.
Lrom the turnCrank() method.

|¥ theve are more than O qumballs we
E—"" b tieutaterts the NeuarberShate
othevrwise, we start in the SoldOutState.

public void insertQuarter() {
state.insertQuarter() ;

}
public void ejectQuarter() {
state.ejectQuarter() ;

' o
public veoid turnCrank () {

state. turnCrank () ;
state.dispense() ;
}

This methed allows other a'r{jccfcs (like
& our State objc:‘.{.s} +o transition the
mathine 4o a diffevent state.

void setState(State state) |
this.state = state;

}

void releaseBall() {
System.out.println("A gumball comes rolling ocut the slot...");
if (count '= 0) {

count = count - 1;
}
}

K/ The mathine supports a releaseBall()
helper method that veleases the ball and

deerements the tount instance variable.

// More methods here including getters for each State...

This intludes methods like getNoQuarterState() for getting each
state object, and getCount() for getting the aumball count.

Implementing more states

Now that you’re starting to get a feel for how the Gumball Machine and the
states fit together, let’s implement the HasQuarterState and the SoldState
classes...



-+ chantiated
When the state ::'UJL\-:
. fevente
139 v oave :
public class HasQuarterState implements State { 2: ?':a.uMBU"“‘e' This is used ;
L 1
GumballMachine gumballMachine; Lo branst ion the mathint
difkevent s
public HasQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;
} ;
Pn map O?I ;?J“
: is
ag;ban or
public wvoid insertQuarter() { L/—’_\ Late.

System.out.println("You can't insert another quarter") ;

public void ejectQuarter() { &f,_—. R,zJ(,uE fhcdcusfpm:rs
i " Wy . "‘\uﬂ'l’ v an
System.ocut.println("Quarter returned"); Leamsition s Lne
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; NoQuaerSJta’Cﬂ-
}

public void turnCrank () { When +he trank is

System.out.println("You turned..."); é__-‘_‘-' turned we {ranm{mm
: ; the mathine to the
gumballMachine. setState (gumballMachine.getSoldState()) ; ColdState ke b\f
}

.:al.lms its st{'.‘-;‘tabc()
method and passing it

public void dispense() { +he SoldState O'E_Cfi
System.out.println("No gumball dispensed") ; zh:ci\ﬂi?t; 1"“):
} ﬁd;,SoldSﬁ"ct )
} 5 getter method
hnojc,hﬂr {L'hgrc 15 ont O‘F ‘t,hCSC
napyve viate 3 E,C%.JCN’ methods j;m‘
ackion o TS eath state).
skate.

Now, let’s check out the SoldState class...



\teve ave 3
public class SoldState implements State { “@?V"Wrﬁkih
; s

//constructor and instance variables here atkions ¥O¥

public void ejectQuarter() {

System.out.println("Sorry, you already turned the crank");

state-
public void insertQuarter() {
System.out.println("Please wait, we're already giving you a gumball") ;
}

public veoid turnCrank()

System.out.println("Turning twice doesn't get you another gumball!"™) ;
}

And heve's where the
veal work btgihi--- We've in the SoldState, whith means the

public void dispense() { / tustomer paid. So, we [rest nEcS to ask
o release a gumball.
gumballMachine.releaseBall () ; the machine to v 9
if (gumballMachine.getCount() > 0) {

gumballMachine. setState (gumballMachine.getNoQuarterState()) ;
} else {

System.out.println("Oops, out of gumballs!");
gumballMachine. setState (gumballMachine.getSoldOutState()) ;

} Then we ask +he mathine what the 3\:&-\3&“
tount is, and either fransition to the
No@uarﬁcrg{:a{c or the SoldOutState.

BRAIN POWER

Look back at the GumballMachine implementation. If the crank is turned and not

successful (say the customer didn’t insert a quarter first), we call dispense anyway, even
though it’s unnecessary. How might you fix this?

SHARPEN YOUR PENCIL

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Check your answer before moving on...

public class SoldOutState implements {
GumballMachine gumballMachine;

public SoldOutState(GumballMachine gumballMachine) {




public void insertQuarter() {

public void ejectQuarter() {

public void turnCrank() {

public void dispense() {

Let’s take a look at what we’ve done so far...

For starters, you now have a Gumball Machine implementation that is
structurally quite different from your first version, and yet functionally it is
exactly the same. By structurally changing the implemention, you’ve:

Localized the behavior of each state into its own class.

Removed all the troublesome if statements that would have been difficult
to maintain.

Closed each state for modification, and yet left the Gumball Machine open
to extension by adding new state classes (and we’ll do this in a second).
Created a code base and class structure that maps much more closely to
the Mighty Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:




The ﬁwnba\.'l Mathine now holds an

- ctance of €ath Chate tlass: r_\ Gumba" Macm"e n

current state

The eurvent state of the

mathine is a!wa'fs oné
these tlass instantes.




hen an attion is ealled, it is ‘
Il::"l'rd:rgn}ai.ct:l jtam‘l:hc tuevent state. ¢umball Machine States

k—ﬁ turnCrank()

current state

turnCrank(}

Y
v

o ™

G""'fbanmof-“"@

In this tase the turnCrank()
method is bcinﬁ talled when the
mathine is in the HasQuarter
state, so as a result the machine
transitions to the Sold state.

The wathint enters

da
Cold skate an
iiha\\ % d'ls\_?tnscd... 1

dispense()

More qumoll

6\ «-and then the

mathine will
either g0 to

the SoldOut

or NoQuarter
state d:?cndinﬁ
aon ‘Ent numhcr o-F
qumballs remaining
in the machine.

SOFd ou{"

4

SHARPEN YOUR PENCIL



Behind the Scenes: Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate
the diagram with actions and output of the machine. For this exercise you can assume
there are plenty of gumballs in the machine.

@ ®
Qomball Machine Stafes domball Machine Staes
@ ®@
mgiigec Ut
Sold 2o
Sgj0e’ Q
@ Sumball Machine States gomball Machine States
@ @
e - o e

Sold

®

SajdCrs

£
EA




The State Pattern defined

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a
look at what it’s all about:

NOTE

The State Pattern allows an object to alter its behavior when its internal state changes.
The object will appear to change its class.

The first part of this description makes a lot of sense, right? Because the
pattern encapsulates state into separate classes and delegates to the object
representing the current state, we know that behavior changes along with the
internal state. The Gumball Machine provides a good example: when the
gumball machine is in the NoQuarterState and you insert a quarter, you get
different behavior (the machine accepts the quarter) than if you insert a
quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object
to “appear to change its class”? Think about it from the perspective of a
client: if an object you’re using can completely change its behavior, then it
appears to you that the object is actually instantiated from another class. In
reality, however, you know that we are using composition to give the
appearance of a class change by simply referencing different state objects.

Okay, now it’s time to check out the State Pattern class diagram:



¢an have 3 number of internal
states. |n our c%arv-?lc, the

The State intevface defines 3 tommon
N that interface for all tonevete states; the
states al| implement the same interface,

so {:hcy are ihﬁc"‘dhahﬂtabk.
QumballMachine is the Context.
&} Context B e i
B handle)

ConcreteStateB | é)

/7 slate: handle() ' ConcreteStateA |

handle() I handle()

any tontrele
Whenever {he request() s

S are possibe.
_madc on the Context it ’\ _j
is delegated 1o the state

ContreteStates handle vequests from the
to handle.

Context. Eath ContreteState provides if(,s
own im?'tmtn{‘,&‘bor\ for a rcquchc, [n {?hns
way) when the Context thanges skate, its

behavior will ¢hange as well.

Wait a sec, from what
I remember of the Strategy
Pattern, this class diagram is
EXACTLY the same.

You’ve got a good eye! Yes, the class diagrams are essentially the same, but



the two patterns differ in their intent.

With the State Pattern, we have a set of behaviors encapsulated in state
objects; at any time the context is delegating to one of those states. Over
time, the current state changes across the set of state objects to reflect the
internal state of the context, so the context’s behavior changes over time as
well. The client usually knows very little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that the context
is composed with. Now, while the pattern provides the flexibility to change
the strategy object at runtime, often there is a strategy object that is most
appropriate for a context object. For instance, in Chapter 1, some of our
ducks were configured to fly with typical flying behavior (like mallard
ducks), while others were configured with a fly behavior that kept them
grounded (like rubber ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class, then
you’re stuck with that behavior even if you need to change it. With Strategy
you can change the behavior by composing with a different object.

Think of the State Pattern as an alternative to putting lots of conditionals in
your context; by encapsulating the behaviors within state objects, you can
simply change the state object in context to change its behavior.

-

THERE ARE NO DUMB QUESTIONS

Q: Q: In the GumballMachine, the states decide what the next state should be. Do the ConcreteStates always
decide what state to go to next?

A: A: No, not always. The alternative is to let the Context decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed they are appropriate for putting in the Context;
however, when the transitions are more dynamic, they are typically placed in the state classes themselves (for
instance, in the GumballMachine the choice of the transition to NoQuarter or SoldOut depended on the runtime
count of gumballs).

The disadvantage of having state transitions in the state classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a decision as to which classes are closed for modification —
the Context or the state classes — as the system evolves.

Q: Q: Do clients ever interact directly with the states?

A: A: No. The states are used by the Context to represent its internal state and behavior, so all requests to the states
come from the Context. Clients don’t directly change the state of the Context. It is the Context’s job to oversee its
state, and you don’t usually want a client changing the state of a Context without that Context’s knowledge.




Q: Q: If I have lots of instances of the Context in my application, is it possible to share the state objects across
them?

A: A: Yes, absolutely, and in fact this is a very common scenario. The only requirement is that your state objects do
not keep their own internal context; otherwise, you’d need a unique instance per context.

To share your states, you’ll typically assign each state to a static instance variable. If your state needs to make use
of methods or instance variables in your Context, you’ll also have to give it a reference to the Context in each
handler() method.

Q: Q: It seems like using the State Pattern always increases the number of classes in our designs. Look how
many more classes our GumballMachine had than the original design!

A: A: You’re right, by encapsulating state behavior into separate state classes, you’ll always end up with more
classes in your design. That’s often the price you pay for flexibility. Unless your code is some “one off”
implementation you’re going to throw away (yeah, right), consider building it with the additional classes and
you’ll probably thank yourself down the road. Note that often what is important is the number of classes that you
expose to your clients, and there are ways to hide these extra classes from your clients (say, by declaring them
package visible).

Also, consider the alternative: if you have an application that has a lot of state and you decide not to use separate
objects, you’ll instead end up with very large, monolithic conditional statements. This makes your code hard to
maintain and understand. By using objects, you make states explicit and reduce the effort needed to understand
and maintain your code.

Q: Q: The State Pattern class diagram shows that State is an abstract class. But didn’t you use an interface in
the implementation of the gumball machine’s state?

A: A: Yes. Given we had no common functionality to put into an abstract class, we went with an interface. In your
own implementation, you might want to consider an abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the concrete state implementations.

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet. We’ve got a game to implement, but now
that we’ve got the State Pattern implemented, it should be a breeze. First, we

need to add a state to the GumballMachine class:
public class GumballMachine {

State soldOutState;

State noQuartersState; All You need to add heve 15
RS SRR O RO the new WinnerState and

State soldsState; /_\ itialize it in the tonshruttor.
State winnerState;

State state = soldOutState; Dﬂ#{J&W%EtTOuahohaut
int count = 0; bo add a c_.l.:-[;t.g-r method for
// methods here WinnerState too.



Now let’s implement the WinnerState class; it’s remarkably similar to the
SoldState class:

public class WinnerState implements State {
; hate
// instance wvariables and constructor Juﬂ;hkcgdd&ta
// insertQuarter error message

// ejectQuarter error message
Heve we velease two gumballs and then

either 9o {o the NoQuarterState or

// turnCrank error message

public woid dispense() { {thddOu{S{ﬁft
gumballMachine. releaseBall() ;
if (gumballMachine.getCount() == 0) {
gumballMachine.setState (gumballMachine.getSoldOutState()) ;
} else { e .1
T £— |§ we have a setond qumball we release it.

System.out.println ("YOU'RE A WINNER! You got two gumballs for your quarter");
if (gumballMachine.getCount() > 0) {

gumballMachine. setState (gumballMachine.getNoQuarterState()) ;
} else {

System.out.println("Oops, out of gumballs!"™);

gumballMachine.setState (qumballMachine.getSoldOutState()) ;

|£ we were able
4o velease two
gumballs, we let
+he user know
he was a winnev.

Finishing the game

We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add
both to the HasQuarterState since that is where the customer turns the crank:



public class HasQuarterState impl nts State { [—\ rwsjc' i
\’ahdom mnrnbt\r
theraJ(.O\" {D
. { 10%
genevate the
thante r:r!.: winning--

Random randomWinner = new Random(System.currentTimeMillis()):
GumballMachine gumballMachine;

public HasQuarterState (GumballMachine gumballMachine) ({
this.gumballMachine = gumballMachine;

public woid insertQuarter() ({

System.ocut.println("You can't insert another guarter™) ;

public wvoid ejectQuarter() {
System.out.println("Quarter returned") ;
gumballMachine.setState (gumballMachine.getNoQuarterState()) ;

} ..then we determine
/ ]-F this tustomer won.

public woid turnCrank() {

System.cut.println("You turned..."):;

int winner = randomWinner.nextInt(10) ;

if ((winner == 0) && (gumballMachine.getCount{) > 1)) {

gumballMachine. setState (qumballMachine.getWinnerState()) ;
} else {

gumballMachine. setState (qumballMachine.getScldState()) ;

, £ fhcy won, and theve's enough qumballs
left For them +o 9et two, we go to the
WinnerState; otherwise, we g0 to the

public void dispense() { SoldState f‘_'}us{: like we alwa‘?ls did).

System.out.println("No gumball dispensed") ;

¥

Wow, that was pretty simple to implement! We just added a new state to the
GumballMachine and then implemented it. All we had to do from there was
to implement our chance game and transition to the correct state. It looks like
our new code strategy is paying off...

Demo for the CEO of Mighty Gumball, Inc.

The CEO of Mighty Gumball has dropped by for a demo of your new
gumball game code. Let’s hope those states are all in order! We’ll keep the
demo short and sweet (the short attention span of CEOs is well documented),
but hopefully long enough so that we’ll win at least once.



This cede veally hasn't thanged at all;

\[ we "}us{', shovrtened it a bit.

publie eclass GumballMachineTestDrive { flis aga'nn, start it 2 3umba|l

{- mathine with 2 ﬂumbﬂni

public static void main(String[] args) {
GumballMachine gumballMachine = new GumballMachine(5) ;

System.out.println(gumballMachine) ;

gumballMachine. insertQuarter () ;
gumballMachine. turnCrank () ;

We want o get a winning state,
q___‘—_ 50 We Just kcc? Pumping in those

quarters and turning the erank. We
System.out.println(gumballMachine) ; print out the state of the qumball
mathine every so often...

gumballMachine.insertQuarter () ;
gumballMachine. turnCrank () ;
gumballMachine. insertQuarter () ;
gumballMachine. turnCrank () ;

System.out.println (gumballMachine) ;

/—Q

The whole cngint:r’unq] feam is wai{:iha

outside the ton evente rann; to ;cﬂ
n—bas

-I'E the new Ctate Pa{i,ﬁ\’ ase

d,:g’uah s 5‘9‘-'“3 to work.




File Edit Window Help Vihenisagumballajawbreaker?

%java GumballMachineTestDrive

Mighty Gumball, Inc.

o Java-enabled Standing Gumball Model #2004
a Inventory: 5 gumballs

Yes! That rocks!

A Machine is waiting for guarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot...

A gumball comes rolling out the slot...

YOU'RE A WINNER! You got two gumballs for your quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs

Machine is waiting for quarter

You inserted a quarter
Gee, did we 'j.CJC (TS vou turned. ..
or what? [ our WIECl 3 qumball comes rolling out the slot. ..
5 the CEDJ WE WON You inserted a gquarter
£ ok, but {w'.gcl_ You turned...
he A gumball comes rolling out the sleot...
&A A gumball comes rolling out the slot...
YOU'RE A WINNER! You got two gumballs for your gquarter
Oops, out of gumballs!

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

%

Q:

A:

THERE ARE NO DUMB QUESTIONS

Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The
downside is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a
winner, and the state in which you’re not. So you are sacrificing clarity in your State class to reduce code
duplication. Another thing to consider is the principle you learned in the previous chapter: One class, One
responsibility. By putting the WinnerState responsibility into the SoldState, you’ve just given the SoldState TWO
responsibilities. What happens when the promotion ends? Or the stakes of the contest change? So, it’s a tradeoff
and comes down to a design decision.




Bravol Great job,
gang. Our sales are already
going through the roof with the new
game. You know, we also make soda

machines, and I was thinking we could put
one of those slot machine arms on the

side and make that a game too. We've got
four-year-olds gambling with the
gumball machines; why stop there?

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold
version:

= We’ve got a lot of duplicate code in the Sold and Winning states and we
might want to clean those up. How would we do it? We could make State
into an abstract class and build in some default behavior for the methods;
after all, error messages like, “You already inserted a quarter,” aren’t
going to be seen by the customer. So all “error response” behavior could
be generic and inherited from the abstract State class.

NOTE

Dammit Jim, I’m a gumball machine, not a computer!

m The dispense() method always gets called, even if the crank is turned
when there is no quarter. While the machine operates correctly and
doesn’t dispense unless it’s in the right state, we could easily fix this by
having turnCrank() return a boolean, or by introducing exceptions. Which



do you think is a better solution?

= All of the intelligence for the state transitions is in the State classes. What
problems might this cause? Would we want to move that logic into the
Gumball Machine? What would be the advantages and disadvantages of
that?

= Will you be instantiating a lot of GumballMachine objects? If so, you may
want to move the state instances into static instance variables and share
them. What changes would this require to the GumballMachine and the
States?

FIRESIDE CHATS

Tonight’s talk: A Strategy and State Pattern Reunion.

Strategy: State:

Hey bro. Did you hear I was in
Chapter 1?

Yeah, word is definitely getting around.

I was just over giving the Template
Method guys a hand — they needed
me to help them finish off their
chapter. So, anyway, what is my noble
brother up to?

Same as always — helping classes to exhibit different
behaviors in different states.

I don’t know, you always sound like
you’ve just copied what I do and
you’re using different words to
describe it. Think about it: I allow
objects to incorporate different
behaviors or algorithms through
composition and delegation. You’re
just copying me.

I admit that what we do is definitely related, but my intent
is totally different than yours. And, the way I teach my
clients to use composition and delegation is totally
different.

Oh yeah? How so? I don’t get it.

Well, if you spent a little more time thinking about




Yeah, that was some fine work... and
I’m sure you can see how that’s more
powerful than inheriting your
behavior, right?

Sorry, you’re going to have to explain
that.

Hey, come on, I can change behavior
at runtime too; that’s what
composition is all about!

Well, T admit, I don’t encourage my
objects to have a well-defined set of
transitions between states. In fact, I
typically like to control what strategy
my objects are using.

Yeah, yeah, keep living your pipe
dreams, brother. You act like you’re a
big pattern like me, but check it out:
I’m in Chapter 1; they stuck you way
out in Chapter 10. I mean, how many
people are actually going to read this
far?

something other than yourself, you might. Anyway, think
about how you work: you have a class you’re instantiating
and you usually give it a strategy object that implements
some behavior. Like, in Chapter 1 you were handing out
quack behaviors, right? Real ducks got a real quack;
rubber ducks got a quack that squeaked.

Yes, of course. Now, think about how I work; it’s totally
different.

Okay, when my Context objects get created, I may tell
them the state to start in, but then they change their own
state over time.

Sure you can, but the way I work is built around discrete
states; my Context objects change state over time
according to some well-defined state transitions. In other
words, changing behavior is built in to my scheme — it’s
how I work!

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the world
has uses for both of us.




Are you kidding? This is a Head First book and Head First
readers rock. Of course they’re going to get to Chapter 10!

That’s my brother, always the
dreamer.

.

We almost forgot!

| [ ininal spet .. we
) ition we forgot o put in the origind ByAF
Th:;t: :;c t:a::bllrh‘l:he 3umEal'. mathing 'ﬂ'ht,'rl\ rl'{,: 5 OU'E? OE:{ E: d\‘:j'lls
ﬁcc‘:-:’s ‘{'.'hﬂ\fhtw diag;am - :l,:a:s \fi.;‘ im;ku;:ﬁ’c "::th::-c u:c hani
Vight wth a ood job on 'nf.r_c ot the gum
: ?E““;bfg {1“"-3 ;.oub{: 30-« Lﬁh add this in 3 yiTTY.
Where the Gumball Machine

js Mawer Half Empty

— The Mighb{ Qumball Engineers

vefill

SHARPEN YOUR PENCIL

We need you to write the refill() method for the Gumball machine. It has one argument

— the number of gumballs you’re adding to the machine — and should update the
gumball machine count and reset the machine’s state.




You've done some amazing work!
T've got some more ideas that
are going to change the gumball
industry and I need you to implement
them. Shhhhh! T'll let you in on these
ideas in the next chapter,

WHO DOES WHAT?
Match each pattern with its description:
Pattern Description

State Encapsulate interchangeable behaviors and use delegation to decide which
behavior to use.

Strategy Subclasses decide how to implement steps in an algorithm.
Template Encapsulate state-based behavior and delegate behavior to the current state.
Method

Tools for your Design Toolbox

It’s the end of another chapter; you’ve got enough patterns here to breeze
through any job interview!



Heve's our new
pattern. £ you've
managing state in
3 tlass, the State
Pattern gives you
a tethnique for
ghca?sula{:ing that



BULLET POINTS

m The State Pattern allows an object to have many different behaviors that are based on
its internal state.

» Unlike a procedural state machine, the State Pattern represents state as a full-blown
class.

» The Context gets its behavior by delegating to the current state object it is composed
with.

= By encapsulating each state into a class, we localize any changes that will need to be
made.

» The State and Strategy Patterns have the same class diagram, but they differ in
intent.

» Strategy Pattern typically configures Context classes with a behavior or algorithm.

» State Pattern allows a Context to change its behavior as the state of the Context
changes.

m State transitions can be controlled by the State classes or by the Context classes.

» Using the State Pattern will typically result in a greater number of classes in your
design.

m State classes may be shared among Context instances.

DESIGN PUZZLE SOLUTION

Draw a state diagram for a Gumball Machine that handles the 1-in-10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Here’s
our solution.




o

Mighty Gumball. Ine.

Where the Gumball Maching
is Never Half Empty |

SHARPEN YOUR PENCIL SOLUTION

Which of the following describe the state of our implementation? (Choose all that
apply.) Here’s our solution.

& | A. | This code certainly isn’t adhering to the Open Closed Principle.

B. | This code would make a FORTRAN programmer proud.

L
& | C. | This design isn’t even very object-oriented.
e

D. | State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

i
5|

. | We haven’t encapsulated anything that varies here.

&
i

. | Further additions are likely to cause bugs in working code.




SHARPEN YOUR PENCIL SOLUTION

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Here’s our solution.

public class SoldOoutState implements State {
GumballMachine gumballMachine;

public SoldOoutState(GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;
}

public void insertQuarter() {
System.out.println("You can't insert a quarter, the machine is sold
out");

}

public void ejectQuarter() {
System.out.println("You can't eject, you haven't inserted a quarter
yet");
}

public void turnCrank() {
System.out.println("You turned, but there are no gumballs");
}

public void dispense() {
System.out.println("No gumball dispensed");
}

public String toString() {
return "sold out";
}

NOTE

In the Sold Out state, we really can’t do anything until someone
refills the Gumball Machine.

SHARPEN YOUR PENCIL SOLUTION

To implement the states, we first need to define what the behavior will be when the
corresponding action is called. Annotate the diagram below with the behavior of each
action in each class; here’s our solution.




\

Go to HasQuarterState.

Tell the customer, “you haven't inserted a quarter.”

L

Tell the tustomer, “‘rou turned, but there's no quarter.”

— =
Tell the customer, “you need to pay fivst.” I,

Tell the tustomer, "‘you tan 't insert another qua'r{',er-"
Give back quarter, g0 to No Quarter state
Qo 4o SoldState

Tell the tustomer, “no gnmba” dis?cr.sgd.”

Tell the customer, “please wait, we've a!vcady 9iving You a guu-baIL"
Tell £he customer, “s-ow\,r, You alveady turned the evank.”

Tell the tustomer, “Yurning twice doesn't get you another gumball.” .

Dispense one aumball. Cheek number of qumballs; if > 0, 90
e )

to NoQuarter state, otherwise, go to Sold Out state.

Tell the ecustomer, “the machine is sold out.”

Tell the tustomer, "‘you haven't insevted a ﬂu&rﬁcr"rc:\

Tell the tustomer, “There are no gumballs.”

Tell the tustomer, “no ﬁurnb&” dis?cnscd-"

e —

__?

Tell the eustomer, “please wait, we've already giving you a qumball.”

e

Tell the customer, “sorr\!, you already turned the evank.”

Tell the tustomer, “turning twice doesn't 9et you another qumball.”

Dispense two gumballs. Chetk mumber of qumballs; if > 0,

90 to NoQuarter state, otherwise, go to SoldOutState. —

NoQuarterState

inserfQuarter()
gjectQuartar])
turnCrank)
dispense()

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank)
dispense()

SoldState

insertQuarter()
ejectQuarter(]
turnCranki)
dispense()

SoldQutState

insertQuartar()
ejectQuarter()
turnCranki)

dispense()

WinnerState

insertQuarter()
gjeciQuarter()
turnCrank(}

dispense()

-

BEHIND THE SCENES: SELF-GUIDED TOUR SOLUTION



delegates 4o
Current 9&3{.:2

insertQuarter()  gyball Machine States

mathine action .

Here the mathine e
gives out a gum'oa” {

b\f dal|in5 the internal @
dispense() action... Soigot

® .
elegates oomball Machine Safes
turnCranki ®
/—-ﬂ\‘w‘#
turnCrank(] " curentsle
@%
et
mathine attion @
So\d

g

transitions to 3
HasQuarter state
transitions to
Sold state
e
A
¢umball Machine Stafes
NoQuar'®
Hasme'E
Iul
..and then transitions Soldont

to NoQuarter

Match each pattern with its description:

WHO DOES WHAT? SOLUTION




Pattern Description

Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use.

Subclasses decide how

Strategy to fmplement steps in an
algorithm.

, Encﬂpﬁulc’tte- n"r&tﬂrbﬂ»‘.‘f&d

[emplate Methed behayior and delegate

l)e-hav’i";rr 1o ﬂ?e current state.

SHARPEN YOUR PENCIL SOLUTION

To refill the Gumball Machine, we add a refill() method to the State interface, which

each State must implement. In every state except the SoldOutState, the method does

nothing. In SoldOutState, refill() transitions to NoQuarterState. We also add a refill()

method to GumballMachine that adds to the count of gumballs, and then calls the current

state’s refill() method.

s i N We add this method to
gumballMachine . setState (quubal IMachine getNoQuarterState()) ; 4 ‘clinici,

}

; e And add this method to
void refill(int count) { ! o the GumballMachine.

this.count += count;
System.out.println("The qumball machine was just refilled; it's new count is: " + this.count);
state.refill() ;




Chapter 11. The Proxy Pattern:
Controlling Object Access

With you as my proxy,

I'll be able to triple the
amount of lunch money I can
extract from friends!

Ever play good cop, bad cop? You’re the good cop and you provide all your
services in a nice and friendly manner, but you don’t want everyone asking
you for services, so you have the bad cop control access to you. That’s what
proxies do: control and manage access. As you’re going to see, there are lots
of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied
objects; they’ve also been known to patiently stand in the place for some
pretty lazy objects.



Hey team, I'd really like to
get some better monitoring for
my gumball machines. Can you find a
way to get me a report of inventory
and machine state?

Remember the CEQ of
.l"-")!ighll',}-' ﬁumbr'!l!, ,Ihf,?
Sounds easy enough. If you remember, we’ve already got methods in the

gumball machine code for getting the count of gumballs (getCount()), and
getting the current state of the machine (getState()).

All we need to do is create a report that can be printed out and sent back to
the CEO. Hmmm, we should probably add a location field to each gumball
machine as well; that way the CEO can keep the machines straight.

Let’s just jump in and code this. We’ll impress the CEO with a very fast
turnaround.

Coding the Monitor

Let’s start by adding support to the GumballMachine class so that it can
handle locations:



public class GumballMachine { A |D¢atiar. 2 Jus{: 2 Sbyin
// other instance wvariables 4

String location;

public GumballMachine (String location, int count) {

// other constructor code here r\‘%—_# 0 oL
this.location = location; construttor and stored in Hn:

} instance variable.

public String getLocation() {
return location;
: Leb's also add a aetter mcthad.ho
e‘\rab the lotation when we need it

// other methods here
1

Now let’s create another class, GumballMonitor, that retrieves the machine’s

location, inventory of gumballs, and current machine state and prints them in
a nice little report:
public class GumballMonitor {
GumballMachine machine; ™\ The monitor takes the mathine in
its tonstruttor and assigns -
public GumballMonitor (GumballMachine machine) { the mathine instance variable.
this.machine = machine;

public wvoid report() {
System.out.println ("Gumball Machine: " + machine.getLocation());

System.ocut.println("Current inventory: " + machine.getCount() + " gumballs"}:
System.out.println("Current state: " + machine.getState()):

Our e port

lotation, Sethin JHS{: prints a veport with

ih”l!h'tﬂl"?‘ and the machine's state.

Testing the Monitor

We implemented that in no time. The CEO is going to be thrilled and amazed
by our development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to
monitor:



public class GumballMachineTestDrive {

public statie wvoid main(String[] args) { Pass in a lotation and initial # of

int count = 0; [\ qumballs on the tommand line.

if (args.length < 2) {
System.out.println{"GumballMachine <name> <inventory>") :

System.exit (1) ; Don't Forgcf to give

} {,ht cans{:rur_{g.— a
lotation and count..
count = Integer.parselnt(args([l]);

GumballMachine gumballMachine = new GumballMachine (args[0], count);

GumballMonitor monitor = new GumballMonitor (gumballMachine) ;
.and instantiate 3 monitor and pass it 3
mathine ko provide a report on

// rest of test code here

File Edit_Window Halp FlyingFish
$java GumballMachineTestDrive Seattle 112
Gumball Machine: Seattle

When we need 3 report on Current Inventory: 112 gumballs

the machine, we 2all the Current State: waiting for cuarter
rc?o'r{:fj mcﬂwd-

monitor.report() ;

)

And heve's the ou‘t?uif._r

The monitor output looks

great, but I guess I wasn't clear, I need
to monitor gumball machines REMOTELY!
In fact, we already have the networks in
place for monitering. Come on guys, you're
supposed to be the Internet generation!




Don't worry guys, T've
been brushing up on my design
patterns. All we need is a remote
proxy and we'll be ready to go.

Well, that will teach us to
gather some requirements
before we jump in and code. T
hope we don't have to start over...

= ;
Frank Jirn Joe

Frank: A remote what?

Joe: Remote proxy. Think about it: we’ve already got the monitor code
written, right? We give the GumballMonitor a reference to a machine and it
gives us a report. The problem is that the monitor runs in the same JVM as
the gumball machine and the CEO wants to sit at his desk and remotely
monitor the machines! So what if we left our GumballMonitor class as is, but
handed it a proxy to a remote object?

Frank: I’'m not sure I get it.
Jim: Me neither.

Joe: Let’s start at the beginning... a proxy is a stand in for a real object. In
this case, the proxy acts just like it is a Gumball Machine object, but behind
the scenes it is communicating over the network to talk to the real, remote
GumballMachine.

Jim: So you’re saying we keep our code as it is, and we give the monitor a
reference to a proxy version of the GumballMachine...

Frank: And this proxy pretends it’s the real object, but it’s really just
communicating over the net to the real object.

Joe: Yeah, that’s pretty much the story.



Frank: It sounds like something that is easier said than done.

Joe: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the
gumball machine can act as a service and accept requests over the network;
we also need to give our monitor a way to get a reference to a proxy object,
but we’ve got some great tools already built into Java to help us. Let’s talk a
little more about remote proxies first...

The role of the ‘remote proxy’

A remote proxy acts as a local representative to a remote object. What’s a
“remote object”? It’s an object that lives in the heap of a different Java
Virtual Machine (or more generally, a remote object that is running in a
different address space). What’s a “local representative”? It’s an object that
you can call local methods on and have them forwarded on to the remote
object.

(T | . " ! I
C.Eolq deskte? The pro®y ?vc,tt\"-ds o r‘?-tmcﬂ:t 6,4»-53“ Madh)hg

s
( be the vemote SBIECT with a Jym
e

L } d- m
| T himey, & 3
’-—-"-—[ Local Heap Remote Heap

EE D

1
Heve the '5-""‘531'

e
M oniter 18 the t'.l\.f_:rln.
clb")ta‘ti it Fhinks LS
= |
alking to the Rta.l l
.m'na'u'. mathing, but l r GJD\ - ,
Eescrt j“fll it 1 . The [-"\P-":I"E';nm; |t's he
fo the provy f:mh | ; k:al o M:’rd
b try -
Lhen Lalks o ThE | i e
:lra'u aum'na'll. mathine L 5 o aﬂ-ua}\f
] o T o
e nETWOY f_c_dc o \1' 5
- "(,a".'rl'llnn\_ to a pro¥y-

Your client object acts like it’s making remote method calls. But what it’s really
doing is calling methods on a heap-local ‘proxy’ object that handles all the low-
level details of network communication.



This is a pretty slick idea.
We're going to write some code that
takes a method invocation, somehow transfers it
over the network, and invokes the same method
on a remote object. Then I presume when the call is
complete, the result gets sent back over the network
to our client. But it seems to me this code is going
to be very tricky to write.

Hold on now, we aren’t going
to write that code ourselves; it's
pretty much built into Java's remote
invocation functionality. All we have to
do is retrofit our code so that it takes
advantage of RMI,

BRAIN POWER

Before going further, think about how you’d design a system to enable remote method
invocation. How would you make it easy on the developer so that she has to write as
little code as possible? How would you make the remote invocation look seamless?

BRAIN POWER

Should making remote calls be totally transparent? Is that a good idea? What might be a
problem with that approach?

Adding a remote proxy to the Gumball Machine
monitoring code

On paper this looks good, but how do we create a proxy that knows how to
invoke a method on an object that lives in another JVM?



Hmmm. Well, you can’t get a reference to something on another heap, right?
In other words, you can’t say:

Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the
code running the statement. So how do we approach this? Well, that’s where
Java’s Remote Method Invocation comes in... RMI gives us a way to find
objects in a remote JVM and allows us to invoke their methods.

You may have encountered RMI in Head First Java; if not, take a slight
detour and get up to speed on RMI before adding the proxy support to the
Gumball Machine code.

So, here’s what we’re going to do:

@ First, we’re going to take the RMI Detour and check RMI out.
Even if you are familiar with RMI, you might want to follow along
and check out the scenery.

- . '
O
An RMI Detour

)

If you're new to RMI,

take the detour that runs
over the next few pages;
otherwise, you might want to
just quickly thumb through
the detour as a review,

(2 Then we’re going to take our GumballMachine and make it a
remote service that provides a set of methods calls that can be invoked
remotely.

@ Then, we going to create a proxy that can talk to a remote
GumballMachine, again using RMI, and put the monitoring system
back together so that the CEO can monitor any number of remote
machines.

Remote methods 101



r

An BRMI Detour

Let’s say we want to design a system that allows us to call a local object that
forwards each request to a remote object. How would we design it? We’d
need a couple of helper objects that actually do the communicating for us.
The helpers make it possible for the client to act as though it’s calling a
method on a local object (which in fact, it is). The client calls a method on the
client helper, as if the client helper were the actual service. The client helper
then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote
service, because the client helper is pretending to be the service object.
Pretending to be the thing with the method the client wants to call.

But the client helper isn’t really the remote service. Although the client
helper acts like it (because it has the same method that the service is
advertising), the client helper doesn’t have any of the actual method logic the
client is expecting. Instead, the client helper contacts the server, transfers
information about the method call (e.g., name of the method, arguments,
etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client
helper (through a Socket connection), unpacks the information about the call,
and then invokes the real method on the real service object. So, to the service
object, the call is local. It’s coming from the service helper, not a remote
client.

The service helper gets the return value from the service, packs it up, and
ships it back (over a Socket’s output stream) to the client helper. The client
helper unpacks the information and returns the value to the client object.

NOTE

This should look familiar...



Client helper T¥€

o be the sexvices

+'s 'Jl..s{ a pro¥y
Real Thing:

,Q Client heap

Client dbject thinks
t's talking to the
Real Sevvice

Erinks the client
helper s the thing
Enat can actually do

Lhe veal work-

Cx';‘-’nf oo¥

This is 909
1o be our
pro®y-

How the method call happens

{,ﬂ\ds

I

o Lhe =

Server heap

Ceviitt ooyet ,:}S ke
Service helper gets the The Real Serviee \ ;\n 4
request T H the ¢lient '- ok i I the me i
helper, unpatks it, and )kl 80°
talls the method on the tha ok
Real Service. ved W

(D Client object calls doBigThing() on the client helper object.

Q Client heap

Server heap

@ Client helper packages up information about the call (arguments,
method name, etc.) and ships it over the network to the service helper.



Q Client heap

"client wants to call a method”

Sewegapil"

® Service helper unpacks the information from the client helper, finds out
which method to call (and on which object) and invokes the real method

on the real service object.

g Client heap

doBigThing) =<

-

: ¢
Tient ne?”

ient g\

“client wants to call a method”

ool SEO&

=

Server heap

doBi Thing(;‘\ ;

mEmpers Lhis 1s the
E‘:f 6:35 with the Rﬁhb
mglchod. lonje- The one :
Plice 0O Fhat does the veal work!

ice O

(@ The method is invoked on the service object, which returns some result

to the service helper.

An BMI Detour



Q Client heap Server heap

(® Service helper packages up information returned from the call and

ships it back over the network to the client helper.
=
Server'l'l%apl

Q Client heap
packaged up result

® Client helper unpackages the returned values and returns them to the
client object. To the client object, this was all transparent.

Q Client heap

result




Java RMI, the Big Picture

Okay, you’ve got the gist of how remote methods work; now you just need to
understand how to use RMI to enable remote method invocation.

What RMI does for you is build the client and service helper objects, right
down to creating a client helper object with the same methods as the remote
service. The nice thing about RMI is that you don’t have to write any of the
networking or I/O code yourself. With your client, you call remote methods
(i.e., the ones the Real Service has) just like normal method calls on objects
running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make it all work,
including a lookup service that the client can use to find and access the
remote objects.

There is one difference between RMI calls and local (normal) method calls.
Remember that even though to the client it looks like the method call is local,
the client helper sends the method call across the network. So there is
networking and I/0O. And what do we know about networking and I/0O
methods?

They’re risky! They can fail! And so, they throw exceptions all over the
place. As a result, the client does have to acknowledge the risk. We’ll see
how in a few pages.

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the service
helper is a ‘skeleton’.



This is gong

{o att as our
-y
@ Client heap g?‘r T

Newer Versions
of Java don't
require an explieit
skeleton objtﬁﬂ,
bui‘: somethina on
the server sif.‘ﬁ‘_'

is still handling
skeleton bchavfor.

Now let’s go through all the steps needed to make an object into a service
that can accept remote calls and also the steps needed to allow a client to
make remote calls.

You might want to make sure your seat belt is fastened; there are a lot of
steps and a few bumps and curves — but nothing to be too worried about.

Making the Remote service

An RMI Detour

This is an overview of the five steps for making the remote service. In other
words, the steps needed to take an ordinary object and supercharge it so it can
be called by a remote client. We’ll be doing this later to our
GumballMachine. For now, let’s get the steps down and then we’ll explain
each one in detail.

Step one:

Make a Remote Interface

The remote interface defines the methods that a client can call remotely.
It’s what the client will use as the class type for your service. Both the
Stub and actual service will implement this!



MyService.java

Step two:

Make a Remote Implementation
This is the class that does the Real Work. It has the real implementation of

the remote methods defined in the remote interface. It’s the object that the
client wants to call methods on (e.g., our GumballMachine!).

e lass

The Real Servite: the ¢
& with £he methods that do
the veal wovk. |'t ".m?‘!l:mt:n

the vemote in'L‘,:'rJ;at.c.

bk Fioram
T b e

MyServicelmpl.java

Step three:

Start the RMI registry (rmiregistry)
The rmiregistry is like the white pages of a phone book. It’s where the

client goes to get the proxy (the client stub/helper object).

File Edit Window Help Drink

Run this in & sepavate

$rmiregistry {:Hm.mal window.

‘Sc___.-)

Step four:

Start the remote service
You have to get the service object up and running. Your service
implementation class instantiates an instance of the service and registers it

with the RMI registry. Registering it makes the service available for
clients.



101101
1d 110 1

File Edit Window Help BeMerry

@11 a
@01 10
01 01

$¥java MyServiceImpl

stl.Ib 101101

10110 1
o110
o1 1o
o1 oL

The Stub and Skeleton are  Skeleton

5chtra{:cd d}"namida“ 1Cm"
behind the stenes. J a

Step one: make a Remote interface

(D Extend java.rmi.Remote

Remote is a ‘marker’ interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice that
we say ‘extends’ here. One interface is allowed to extend another
interface.

This tells us that the

. il
‘t’f—-’ 'm{crEatt is going {i;i | se
public interface MyRemote extends Remote { phiucs g

@ Declare that all methods throw a RemoteException

The remote interface is the one the client uses as the type for the service.
In other words, the client invokes methods on something that implements
the remote interface. That something is the stub, of course, and since the
stub is doing networking and I/O, all kinds of Bad Things can happen. The
client has to acknowledge the risks by handling or declaring the remote
exceptions. If the methods in an interface declare exceptions, any code
calling methods on a reference of that type (the interface type) must
handle or declare the exceptions.

e is in javarmi

import java.rmi.*; &— Remote inkerkac

p EV:‘-T remote method eall is

public interface MyRemote extends Remote { Considered ‘risky’. Detlaring

RemoteExeept
ublic Stri Hell th RemoteE ti ; Flion on ever
P ic ring sayHello() Trows oteException st Bt iy

} to pay attention and
acknow|ed5c that ‘thinﬁs
might not work.



@ Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you’ll be fine. If you are passing around your own types, just be sure that
you make your classes implement Serializable.

NOTE

Check out Head First Java if you need to refresh your memory on Serializable.

public String sayHello() throws RemoteException;

R.__ T.-HI.S red | [
ETurn value |5 fonnd be shi

sevver back to the ¢
haw alreli .':'lnd

| .
PPed over the wire from the

L

; u-_-TL, 50 it must be Serializable. That's
veturn .
urn values get packaged up and sent

Step two: make a Remote implementation

An RMI Detour

(D Implement the Remote interface
Your service has to implement the remote interface — the one with the
methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

public String sayHello() { (—*‘\

return "Server says, 'Hey'"; 1 ; ;
r The L'.GMFI!EEI’ will make Sulre {hafr Y"u"ve
} implemented all

Iht L C{Hod': ‘Fl’am -I:h |
. : : - e lhtchcélf.c
| | . .
,f}' more code in class '},‘o; "’-'F".E"neh'l',. ||r. JL.,hIS tase, ‘&'hf'rc's an!‘:{ one

(@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some
functionality related to ‘being remote’. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that class
(your superclass) do the work for you.



public MyRemoteImpl () throws RemoteException { }

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

private statiec final long serialVersionUID = 1L; <— Hniatasthmotgng-ed imPlemente
ple :

.chld“mbu't 50 we need the
sevialVersionld|D field.

(@ Write a no-arg constructor that declares a RemoteException
Your new superclass, UnicastRemoteObject, has one little problem — its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation, just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that
your constructor also throws an exception.

Vo don £ have to 1,>ch an.\#-chm‘;? ;‘n

{ : ;

the r.‘,ahijrx uttovr. ‘T‘ou just neé »
detlave that your supert

v Hhrows an extey

w.ajl {.0

. 1om.
cﬁohﬁtruﬁm

@ Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stub
in the registry, since that’s what the client really needs. Register your
service using the static rebind() method of the java.rmi.Naming class.

(that tlients tan use

L

. sevvite a name 3 - +
Give Your skry) and vegister 1T

= ko look it up n The veyy f bind the
MyRemote service = new MyRemoteImpl () ; ik M| veaistry. When jjou © !
wikh the RM| vegistry the service o the
chn LAk ¥ d Fanll L
Naming.rebind ("RemoteHello", service); cevvice objeet, RMI "’W]:?" ];h: i sty
} catch(Excepticn ex) {...} /\’:___// skub and puts the stuo in

Step three: run rmiregistry

(@ Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access to your classes. The
simplest way is to start it from your classes directory.



File Edit Window Help Huh?

$rmiregistry

Step four: start the service

(D Bring up another terminal and start your service

This might be from a main() method in your remote implementation class,
or from a separate launcher class. In this simple example, we put the
starter code in the implementation class, in a main method that instantiates
the object and registers it with RMI registry.

File Edit Window Help Huh?

$java MyRemoteImpl

WATCH IT!

Before Java 5, we had to generate static stubs and skeletons using rmic. Now, we
don’t have to do this anymore and in fact, we shouldn’t do it anymore, because
static stubs and skeletons are deprecated.

Instead, stubs and skeletons are generated dynamically. This happens automatically
when we subclass the UnicastRemoteObject (like we’re doing for the MyRemoteImpl
class).

THERE ARE NO DUMB QUESTIONS

Q: Q: Why are you showing stubs and skeletons in the diagrams for the RMI code? I thought we got rid of
those way back.

A: A: You’re right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote service
using reflection, and stubs are generated dynamically using Dynamic Proxy (which you’ll learn more about a bit
later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an invocation handler)
that is automatically generated to handle all the details of getting the local method calls by the client to the remote
object. But we like to show both the stub and skeleton, because conceptually it helps you to understand that there
is something under the covers that’s making that communication between the client stub and the remote service
happen.




L J

Complete code for the server side

An RMI Detour

The Remote interface:

[ R_:mﬂ'te
R:mn{,eﬁm?{:wn and _
- inkerfate ave in java-rm patkage.

import java.rmi.*;

o Your inberface MUST extend j,ava-rmlﬂcmo’cc.

public interface MyRemote extends Remote {

Al of Your remote methods must

public String sayHello() throws RemoteException;
detlave a Remo-EeExﬁe:F{ion_

}

The Remote service (the implementation):

Hn'tcanRcwo{CObjch 5 in

5 i s g . . kaoe.
import java.rmi.*; — the Java ymiserver Patkage S{J{Cmo,td)b}cgt ellics
ea vemote Olﬂjcc't'

import java.rmi.server.*; E.ﬁtﬁndm% Unita

(’ easiest way to mak

public class MyRemoteImpl extends UnicastRemcteCbject implements MyRemote {
private static final long serialVersionUID = 1L; 'R

You MUST implement

You have to implement all the Your remote interfaeqll
L

intevface methods, of tourse. But
return "Server says, 'Hey'": nofite that you do NOT have 4o

} detlare the Rcmo{cExﬁeP{:ion.

public String sayHello() {

public MyRemoteImpl() throws RemoteException { } [, supevelass constructor (for _

R UnicastRemoteObject) detlaves an cxf.c?foqn,
50 \KOH must write 2 eonstruttor, bccau:se it
means that your eonsbruttor is talling visky

public static void main (String[] args) |
tode (its super tonstruetor).

try {
MyRemote service = new MyRemoteImpl() ; v\
Naming.rebind ("RemoteHello", service);

} catch (Exception ex) { \’ ﬂ?t:ai{;:i;ﬂ:o?ﬁ:bfijtﬁhfh bind’ it 4o the
uSin € stati

ex.printStackTrace() ; hame You veister 3 undcrﬁish{{?;ini::bihﬁ(l THF
} } use o look it up in the RM| vegistry. PR

}

How does the client get the stub object?
The client has to get the stub object (our proxy), since that’s the thing the



client will call methods on. And that’s where the RMI registry comes in. The
client does a ‘lookup’, like going to the white pages of a phone book, and
essentially says, “Here’s a name, and I’d like the stub that goes with that

name.”
Let’s take a look at the code we need to look-up and retrieve a stub object.

CODE UP CLOSE

NOTE

Here’s how it works.
Th! ﬁ|i:h'ﬂ: ar\'«'ﬂ‘}fS uses the remote
interface as the type of the sevvice.
;n faet, the client never needs to T
:now{:'tht attual elass name of Your f,'hi::}_ ’E:Sf be the Ndme
EmoTE servilte. |mku?{) is a static method oo :dscrvjr:: was

\L of the Naming ¢lass. ‘Zhnd‘”‘

MyRemote service =
(MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello");

M~
You have to cast it to the The host name or [P
]MI:,:\‘-{"af.t, sinte the !ooku"r‘i addvress wheve the
method returns ":‘\I,‘PC GchC{ sevite is running,

An RMI Detour



@ Client

How it works...

(D Client does a lookup on the RMI registry
Naming.lookup("rmi://127.0.0.1/RemoteHello");

(@ RMI registry returns the stub object

(as the return value of the lookup method) and RMI deserializes the stub
automatically.

) Client invokes a method on the stub, as if the stub IS the real
service

Complete client code



The Naw: o i 3
K.— ! he J‘v;];n-.mg tlass (kor doing the mi'rcg,'us{-r}r
lookup) is in 4 3 i
import java.rmi.*; P/ is in the java.rmi Package.

public class MyRemoteClient {
public static void main (String[] args) {
new MyRemoteClient() .go():

Loy 3% JL\’?:
publiec wvoid go() { L of the .rtciust‘l"f .

| tr'
|L comes out Sk foroet the 3%

try { ( Gy

MyRemote service = (MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello™) ;

You need the |P T

L, so do

String s = service.sayHello(); addvress of hostname and Lhe nome wsed to
bind/vebind the sevvice:
System.out.-pEintin (@) It looks just like a veaulay Id
} catch(Exception ex) { method eall/ (Ex"—f-F‘tai{; muj{
ex.printStackTrace() ; azkmwfcdﬁc the RCMD&EMC?{IOH |

WATCH IT!
The things programmers do wrong with RMI are:

1. Forget to start rmiregistry before starting remote service (when the service is
registered using Naming.rebind(), the rmiregistry must be running!)

2. Forget to make arguments and return types serializable (you won’t know until
runtime; this is not something the compiler will detect.)

Back to our GumballMachine remote proxy

Okay, now that you have the RMI basics down, you’ve got the tools you need
to implement the gumball machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:



CEO's desktop

I.I__.__‘_[ Client heap
E==D

This s 0w i
Monitor tode: It
uses 3 ?“D*\f

Lalk to rcmo‘l‘;t
Byl mar.‘n'mﬂ‘-"'

au I‘l'\b

The stub is 3 pro®y
to the yemote
6um|na'l||1“t’|af;h'm\!.

Remote Gumball Mach,
e %4 lathine

B,

Server heap

The |
ﬁumbanmaﬂhlnt is
our vemote servits;
it's 5o'm5 {o expose
a remote in{crﬁau
for the tlient to

The skeleton accepts the
remote talls and makes

everything work on the
servite side.

wse-

Getting the GumballMachine ready to be a remote

service

The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1. Create a remote interface for the GumballMachine. This will provide a
set of methods that can be called remotely.

2. Make sure all the return types in the interface are serializable.

3. Implement the interface in a concrete class.

We’ll start with the remote interface:



Dor\rf ;o\"ﬁ:*; to 'Lrn?or{, jaua.rmi_#
This is the vemote ih{crﬁa,f,g_

import java.rmi.*;

public interface GumballMachineRemote extends Remote {
public int getCount() throws RemoteException;
public String getLocation() throws RemoteException;
public State getState() throws RemoteException;

F\

All veturn types need Heve ave the methods weve 5a'ln3 {o support
4o be ?rim'ﬂ:ive or Eath one throws Rem oteException
Cevializable...

We have one return type that isn’t Serializable: the State class. Let’s fix it
up...

import java.io.*; <= Sevializable is in the javaio package.

public interface State extends Serializable { o
Then we jus{, extend the Serializable

ubli id i t t : .
P e yorddasartomeetendl ) L 'm.h-,—.Fagg (whith has no metheds in it).
publia: moid sjeciuantar i) ; And now State in all the subtlasses tan
public void turnCrank() ; be transferved over the network.

public void dispense() ;
}

Actually, we’re not done with Serializable yet; we have one problem with
State. As you may remember, each State object maintains a reference to a
gumball machine so that it can call the gumball machine’s methods and
change its state. We don’t want the entire gumball machine serialized and
transferred with the State object. There is an easy way to fix this:

In eath '|m?|cmehjc£l{:ian of State, we add
evialVevsiond|D and the Hransient

public class MNoQuarterState implements State { I tte so'rd {_ﬂ {:hc éumbaHMachinc inskante
private static final long serialVersionUID = 2L; uaji:blc- The transient kwwﬂrd tells the
Ezansient|cumballMachine guuballMachine; o VM nok 4o sevialize this Field. No-tE
// all other methods here fhat this tan be si?hﬂ*f dangerous it You
try to access this Field onte the dbjects

been sevialized and bransfevved.

We’ve already implemented our GumballMachine, but we need to make sure



it can act as a service and handle requests coming from over the network. To
do that, we have to make sure the GumballMachine is doing everything it
needs to implement the GumballMachineRemote interface.

As you’ve already seen in the RMI detour, this is quite simple; all we need to
do is add a couple of things...

z " - dhe
First, we need to import the GumballMathine is

o) ?ac’kaﬁ'cs. Bo'mli {G subc.l.ass J(',hc
\ﬁ Hn\t&?ﬁﬁtmoh:gh}cc"&j
import java.rmi.*; this gives it the ahil]{\f to GumballMachine also needs 4o
import java.rmi.server.*; A o v SRR ( implement the remote interface..

public class GumballMachine
extends UnicastRemoteObject implements GumballMachineRemote
{
private static final long serialVersionUID = 2L;
// other instance variables here

public GumballMachine(String location, int numberGumballs) throws RemoteException {
// code here
}

public int getCount() { |
~and the ¢
return count; ¢ tonstruttor needs

} Il‘,o J;:Hrav,l' da r:mo{:e Cxtt?tlam

betause the supertlass does.

public State getState() {
return state;

That's it/ Nothing
} thanges heve at all/

/7

public String getLocation() {
return location;

}
// other methods here
}

Registering with the RMI registry...

That completes the gumball machine service. Now we just need to fire it up
so it can receive requests. First, we need to make sure we register it with the
RMI registry so that clients can locate it.

We’re going to add a little code to the test drive that will take care of this for
us:



public class GumballMachineTestDrive {

public static void main(String[] args) {
GumballMachineRemote gumballMachine = null;
int count;

if (args.length < 2) {
System.out.println("GumballMachine <name> <inventory>") ;
System.exit (1) ;

} First we need 1o add 2 try/eateh block
/ around the gumball instantiation because our
— tonstruttor tan now throw exteptions.
count = Integer.parselnt({args[1]);

gumballMachine = new GumballMachine (args[0], count) ;
Naming.rebind("//" + args[0] + "/qumballmachine", gumballMachine) ;
} catch (Exception e) {

e.printStackTrace() ;
} &’ We also add the tall 4o Namingvebind,

} whith publishes the QumballMathine stub
} under the name 5umloa”m3f,hinc.

Let’s go ahead and get this running...

w syl i 'hJC‘f
_ ; - the oLhicial” Mig
This 5:'['.5 the RMI gﬁ:;;; :%c}‘-mﬁj you shoul

RSatet e coskibute your own mackine name
( " 3 here, o Yoealhost -

File Edit Window Help Huh?

% rmiregistry

File Edit Window Help Huh?

% java GumballMachineTestDrive seattle.mightygumball.com 100

This aets the GumballMathine up and running
Run this setond. —j N and 3:3‘:5{:1-5 it with the RMI vegistry-

Now for the GumballMonitor client...

Remember the GumballMonitor? We wanted to reuse it without having to
rewrite it to work over a network. Well, we’re pretty much going to do that,
but we do need to make a few changes.



We need 4o import the RMI package because we
e using the RemoteExteption tlass below...

: : Now we've going to rc|\|,‘ on the vemote
1 1 GumballMonit
gl i ° ELESE | inﬁcrgaf,c vather than the tontrete

GumballMachineRemote machine; 6/? GouwbalMachine: o

public GumballMonitor (GumballMachineRemote machine) {

this .machine = machine;

public void report() {
try {
System.out.println("Gumball Machine: " + machine.getLocation());
System.out.println("Current inventory: " + machine.getCount() + " gumballs") ;

System.out.println("Current state: " + machine.getState());
} catch (RemoteException e) {
e.printStackTrace() ; R We also need to eateh any vemote exceptions
} that might happen as we try 1o invoke methods
} that ave ultimately happening over the mebwork.

Joe was right;
this is working out
quite nicely!

Writing the Monitor test drive

Now we’ve got all the pieces we need. We just need to write some code so
the CEO can monitor a bunch of gumball machines:



Heve's the monitor Lest drive. The
CED is going to run this!

import java.rmi.¥; Here's al the ‘Ilot,a#—uo‘l'\-’-
weve 9oin9 ko wipkie
d
public class GumballMonitorTestDrive { We eveate an arvay
of lotations, one tor
eath mathine
public static void main (String[] args) {

String[] location = {"rmi://santafe.mightygumball.com/gumballmachine",
"rmi://boulder.mightygumball . com/gumballmachine",
"rmi://seattle. mightygumball . com/gumbal lmachine"};

GumballMonitor[] monitor = new GumballMonitor[location.length]:;

We also treate an

for (int i=0; i < location.length; i++) { avvay of monitors.

try {
GumballMachineRemote machine =
{GumballMachineRemotae) Naming.lookup(location[i]);
monitor[i] = new GumballMonitor (machine) ;
System.out.println(monitor[i]) ;
} catch (Exception e) {

e.printStackTrace() ; Now we need to get a proxy
} to eath remote mathine.

for (int i=0; i < monitor.length; i++) {

monitor[i] .report() ;

Then we iterate through eath
mathine and print out its veport:

CODE UP CLOSE




This veturns a proxy to the remote Remember, Naming-lookup() is 3
_ﬁuml‘)ﬁ” Machine (or throws an exteption static method in the RMI package
i one can't be lotated). that takes a lotation and servite

i in the
try { name and locks lJc up in .
GumballMachineRemote mc@ f emivegisbry 3t that lotation

{GumballMachineRemote) Naming.lookup (location[i]) ;

monitor[i] = new GumballMonitor (machine) ;

‘ te

} catch (Exception e) { Z’Ont.: i 55{ 3 prowy b Jdg :bzﬁmniw
i mathing, We trt.ajcc a -ijm W il

} and pass it the mathine To mon

k J

Another demo for the CEO of Mighty Gumball...

Okay, it’s time to put all this work together and give another demo. First let’s
make sure a few gumball machines are running the new code:

On eath mathine, 'ruE Vmircﬁisf:.ry ;:n e ﬁumbaHMaghincJ 3'.1;']h5 i
the batkground or from a separate

a lotation and an initial -5wnbat| tount.
Lerminal window... /
(y File Edit Window Help Huh?
% rmiregistry &

% java GumballMachineTestDrive santafe.mightygumball.com 100

File Edit Window Help Huh?
% rmiregistry &
% java GumballMachineTestDrive boulder.mightygumball.com 100

Fila Edit Window Help Huh?

% rmiregistry &
% java GumballMachineTestDrive seattle.mightygumball.com 250

Pa?ular mac'nincf' _j\

And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it



File Edit Window Help GumballsAndBeyond

% java GumballMonitorTestDrive

Gumball Machine: santafe.mightygumball.com

Current inventory: 99 gumballs 6__—_\
Current state: waiting for quarter TR gt g, Lo o

over cath vemote
: : machine and ealls
Machine: boulder.mightygumball.com ks 5:’:1_ otationl),
inventory: 44 gumballs getCount() and
56{'3{3{260 methods.

state: waiting for turn of crank

Machine: seattle.mightygumball.com
inventory: 187 gumballs

state: waiting for quarter o L
This is amazing; it's going to

revolutionize my business and

blow away the competition!

By invoking methods on the proxy, we make a remote call across the wire, and get
back a String, an integer, and a State object. Because we are using a proxy, the
GumballMonitor doesn’t know, or care, that calls are remote (other than having
to worry about remote exceptions).



This worked great! But

I want to make sure I
understand exactly what's
going on...

BEHIND THE SCENES

D The CEO runs the monitor, which first grabs the proxies to the remote gumball
machines and then calls getState() on each one (along with getCount() and
getLocation()).

CEO's deskop

k_’ ' R.Z:O{‘ Qumball Machine
‘ ’_[ TYPe i Gumball\fachineRemote AN

O ,,,
Skeleto® O“\;\-€

Q”"bnl'.l‘mc'

@ getState() is called on the proxy, which forwards the call to the remote service.
The skeleton receives the request and then forwards it to the gumball machine.




getState()

(@ GumballMachine returns the state to the skeleton, which serializes it and transfers

it back over the wire to the proxy. The proxy deserializes it and returns it as an object
to the monitor.

oy
ﬂa‘rg" -

o]

SHelets® G

Likewise, the QumballMathine
: ' Il 3
gy “.m.“{-pv hasn 11: LhanE:S O:ﬁ J;r implements another interface and
C""f'c?{i fv.t.:o;lr:s- Tfiho uses: Lhe may J%']""'"f"'" a remote :'ﬂcc?fion in its
gmlaHMadfm:Rcma{:c intevkace vather co:ﬁrtt?: I::'JE n{;hck i i i
71
than a tontvete '.thmcn{'.a-tmn. Lode hasn t thanged.
NOTE

We also have a small bit of code to register and locate stubs using
the RMI registry. But no matter what, if we were writing

something to work over the Internet, we’d need some kind of
locator service.

The Proxy Pattern defined

We’ve already put a lot of pages behind us in this chapter; as you can see,
explaining the Remote Proxy is quite involved. Despite that, you’ll see that
the definition and class diagram for the Proxy Pattern is actually fairly



straightforward. Note that Remote Proxy is one implementation of the
general Proxy Pattern; there are actually quite a few variations of the pattern,
and we’ll talk about them later. For now, let’s get the details of the general
pattern down.

Here’s the Proxy Pattern definition:

Use the Proxy Pattern to create a representative object that controls access to
another object, which may be remote, expensive to create, or in need of securing.

NOTE

The Proxy Pattern provides a surrogate or placeholder for another object to control
access to it.

Well, we’ve seen how the Proxy Pattern provides a surrogate or placeholder
for another object. We’ve also described the proxy as a “representative” for
another object.

But what about a proxy controlling access? That sounds a little strange. No
worries. In the case of the gumball machine, just think of the proxy
controlling access to the remote object. The proxy needed to control access
because our client, the monitor, didn’t know how to talk to a remote object.
So in some sense the remote proxy controlled access so that it could handle
the network details for us. As we just discussed, there are many variations of
the Proxy Pattern, and the variations typically revolve around the way the
proxy “controls access.” We’re going to talk more about this later, but for
now here are a few ways proxies control access:

= As we know, a remote proxy controls access to a remote object.
m A virtual proxy controls access to a resource that is expensive to create.
= A protection proxy controls access to a resource based on access rights.

Now that you’ve got the gist of the general pattern, check out the class
diagram...



Both the Prony and t’hzht
Rcaigubjcai 1m?l!mth

. This
<<interfage>> Sub")cf,{ m‘]:,g\f'»caf.b
s:ﬁl;}ect EHGWS a'ﬂ"f f,hcn‘t ‘k@ {','f:a%r

requesty) Lhe pro*y fs{, like the

P\talgubjtf»
b

ReaISu.hjer.:t LR pm;(y
request{) request() é\

keeps 3
The RcaISubjggf is [\_/ The P'r"ﬂ‘f-‘ﬂ{:o the

rcj;er ente

N

E:;i“‘io{ic obJ-J;C‘E The Proxy often instantiates gulojﬂ,{—,, so 1t cih
of the Naros ) or handles the creation of forviard reaues s
work; the RealSubject. 4o the Sub‘}cc{

{:hc Pra:v!.‘;{ ﬁﬂhfrois
attess to it.

Let’s step through the diagram...

when necessary

First we have a Subject, which provides an interface for the RealSubject and
the Proxy. By implementing the same interface, the Proxy can be substituted
for the RealSubject anywhere it occurs.

The RealSubject is the object that does the real work. It’s the object that the
Proxy represents and controls access to.

The Proxy holds a reference to the RealSubject. In some cases, the Proxy
may be responsible for creating and destroying the RealSubject. Clients
interact with the RealSubject through the Proxy. Because the Proxy and
RealSubject implement the same interface (Subject), the Proxy can be
substituted anywhere the subject can be used. The Proxy also controls access
to the RealSubject; this control may be needed if the Subject is running on a
remote machine, if the Subject is expensive to create in some way or if access
to the subject needs to be protected in some way.

Now that you understand the general pattern, let’s look at some other ways of



using proxy beyond the Remote Proxy...

Get ready for Virtual Proxy

Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken
a look at one specific example: the Remote Proxy. Now we’re going to take a
look at a different type of proxy, the Virtual Proxy. As you’ll discover, the
Proxy Pattern can manifest itself in many forms, yet all the forms follow
roughly the general proxy design. Why so many forms? Because the Proxy
Pattern can be applied to a lot of different use cases. Let’s check out the
Virtual Proxy and compare it to Remote Proxy:

Remote Proxy

With Remote Proxy, the proxy acts as a local representative for an object that
lives in a different JVM. A method call on the proxy results in the call being
transferred over the wire, invoked remotely, and the result being returned
back to the proxy and then to the Client.

requ®

L0

We know this diag,lr'arn

pretty well by now..

Virtual Proxy

Virtual Proxy acts as a representative for an object that may be expensive to
create. The Virtual Proxy often defers the creation of the object until it is
needed; the Virtual Proxy also acts as a surrogate for the object before and
while it is being created. After that, the proxy delegates requests directly to
the RealSubject.



i n . L
e +o treate Gh‘jctx,.

E’-"El “ewpensiv

The proxy treates
the Rcamubj:r,{_

v uer‘:'fd-‘]' when it's needed.
T
@ —
Proxy _
Cliex® T Reg|oiod

The proxy may handle the request, or if
the Rcalgubjcté has been treated, deleaate
the ealls 4o the Rcalﬁubjcfi-

Displaying CD covers

Let’s say you want to write an application that displays your favorite compact
disc covers. You might create a menu of the CD titles and then retrieve the
images from an online service like Amazon.com. If you’re using Swing, you
might create an Icon and ask it to load the image from the network. The only
problem is, depending on the network load and the bandwidth of your
connection, retrieving a CD cover might take a little time, so your application
should display something while you are waiting for the image to load. We
also don’t want to hang up the entire application while it’s waiting on the
image. Once the image is loaded, the message should go away and you
should see the image.

An easy way to achieve this is through a virtual proxy. The virtual proxy can
stand in place of the icon, manage the background loading, and before the
image is fully retrieved from the network, display “Loading CD cover, please
wait...”. Once the image is loaded, the proxy delegates the display to the Icon.



Choose the album cover of LI CD Cover Viewer
Your ]iking heve.

Buddha Bar

Selected Ambient Works, Vol. 2
Northern Exposure

Ima

MCMXC A.D.
Karma
Ambient: Music for Airports

8Ha €D Cover Viewer
Favorite CDs

While the CD eover

is Joad_'hfj; the proxy
| | / disPJays a message.

e8a €O Cover Viewsr.
Fawarite CDs

et

jed, the ¥
the m ane:

W
Ly lod
displaYy®

Designing the CD cover Virtual Proxy

Before writing the code for the CD Cover Viewer, let’s look at the class
diagram. You’ll see this looks just like our Remote Proxy class diagram, but
here the proxy is used to hide an object that is expensive to create (because
we need to retrieve the data for the Icon over the network) as opposed to an
object that actually lives somewhere else on the network.



This is the Swing
lcon interface used =~ >
to dis?ta\f '|m&3:s na

user in‘ECY\C&CC-

<<interface>>
Icon

geticonWiathy)
getlconHeighty)
paintfcon()

Imagelcon

subject

getlconWidth()
/ geticonHeight()
paintlcon()

This is j&vax.swinﬁ-fmagcf:‘.on,
a tlass that disyfays an Jrnagc-

ImageProxy h

getlconWidgth()
getlconHeight()
paintlcon()

How ImageProxy is going to work

This is our proxy, which fivst
displays a message and then when
the image is loaded, delegates to
imagclcon to d’ls?|a}f the image.

(D ImageProxy first creates an Imagelcon and starts loading it from a

network URL.

(2 While the bytes of the image are being retrieved, ImageProxy
displays “Loading CD cover, please wait...”.
(@ When the image is fully loaded, ImageProxy delegates all method
calls to the image icon, including paintIcon(), getWidth() and

getHeight().

(@ If the user requests a new image, we’ll create a new proxy and

start the Pprocess over.

Writing the Image Proxy



The ImaoeProy
im?‘:wth{'ﬁ the leon

nterfate.
class ImageProxy implements Icon { nter

volatile Imagelcon imagelcon;
final URL imageURL;

Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url)
public int getIconWidth() {
if (imagelcon !'= null) {
return imageIceon.getIconWidth() ;
} else {
return 800;

{ imageURL = url; }

N

}

=<inlarface=>
feon

geticonWiathy)
geticonHeighty)
patnticon()

The imageleon is the REAL. iton ‘E:na{ we
eventually want to display when it's loaded.

We pass the URL of the image into
+he tonstruttor. This is the image we
need to display onte it's loaded!

} B We veburn a default width and height

public int getIconHeight() {

if (imageIcon != null) {
return imagelceon.getIconHeight() ;
} else {

return 600;

}

until fhcimagckonis1aadcdjthCn we
Z turn it over 1o the imagelton.

: & imagelton is used by fwo different

synchronized veoid setImagelcon(Imagelcon
this. imagelIcon = imagelcon;

imagelIcon) {
}

public veid paintlIcon(final Component c,
if (imageIcon != null) {
imagelcon.paintlcon(c, g, x, ¥):
} else {
g.drawString ("Loading CD cover, please wait..
if ('retrieving) {
retrieving = true;

Graphics g,

int x,

Lhreads so along with making the variable
volatile (4o protect veads), we use a
synchronized setter (to protect writes).

int y) {

", =+300, y+190);

retrievalThread = new Thread(new Runnable()} {

public wvoid run() {
try {

setImagelcon(new Imagelcon(imageURL,

c.repaint() ;
} catch (Exception e) ({
e.printStackTrace() ;
1
}
)3 s

retrievalThread.start() ;

"CD Cover")};

Heve's where things get interesting,
This tode paints the iton on the
seveen (by delegating to the
imala_cff.crn\g- However, if we don't have
a fully ereated [mageleon, then we
eveate one. Let's lock at this tloser
on the next page..

CODE UP CLOSE




This mekthod is talled when it's time to paint the iton on the streen.

public void paintIcon(final Component c, Graphics g, int x, int y) {

if (imagelIcon != null) { ;
I we've got an iton alveady, we go

& ahead and tell it 4o paint itself.

imageIcon.paintIcon(c, g, %, ¥);/
} else {

g.drawString ("Loading CD cover, please wait...", x+300, y+190);
if (!retrieving) { h(;# 'thcrwise i
isplay the
retrieving = true; Ioadi"fj“ message.
retrievalThread = new Thread(new Runnable() {
public woid run() {
try {
setImagelcon (new Imagelcon(imageURL, "CD Cover")) ;
o.repaint() ;
} catch (Exception e) {

e.printStackTrace() ;

v
) cad the R«E'P'll-“ i agwwst the

) , e | 16 synl :
1) ; Were's wheve Y= © l’v"“l'."a?;;rj sndil the imade

retrievalThread.start() ;

CODE WAY UP CLOSE




If we aren't alveady trying o vedrieve the image...

were wondering, only one thread calls paint, so we

g then it's time to start vetrieving it (in tase you
should be okay heve in Lerms of thread sapc{'}f].

if ('retrieving) |

retrieving = true; We dor't want to hang up ‘f;'nc
‘/_ entire user intevkate, so weve
going 4o use another thread to
retrievalThread = new Thread(new Runnable() {

vetrieve the image.
public woid run{) {

try {
setImagelcon(new Imagelcon (imageURL, "CD Cover")) ;
c.repaint () ; \_, In our thread we
} catch (Exception e) { instantiate the
e.printStackTrace() .:é_> feon Dbe"'{'-- [ts
eonstruttor will not

return until {'-I'IIC
i“"aﬁf is loaded.

When we have the image,
) we tell Swing that we
N need to be vepainted.

retrieval Thread.start() ;

NOTE

So, the next time the display is painted after the Imagelcon is instantiated, the paintlcon
method will paint the image, not the loading message.

DESIGN PUZZLE

The ImageProxy class appears to have two states that are controlled by conditional

statements. Can you think of another pattern that might clean up this code? How would
you redesign ImageProxy?




class ImageProxy implements Icon {

// instance wvariables & constructor here

public int getIconWidth() {

if (imageIcon != null) {
return imageIcon.getIconWidth() ; Two states
} else {

return 800;

public int getIconHeight() {

if (imageIcon !'= null) {

return imagelcon.getIconHeight() ; Two states
} else {

return 600;

public woid paintIcon(final Component c, Graphics g, int x, int y) {

if (imagelIcon != null) {

imageIcon.paintIcon{c, g, %, ¥); Two states
} else {

g.drawString ("Loading CD cover, please wait...", x+300, y+190); Lf/)

// more code here

Testing the CD Cover Viewer

-

READY BAKE CODE

Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes we’ve been
baking up a new ImageProxyTestDrive that sets up the window, creates a frame, installs
the menus and creates our proxy. We don’t go through all that code in gory detail here,
but you can always grab the source code and have a look, or check it out at the end of
the chapter where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:




public class ImageProxyTestDrive {
ImageComponent imageComponent;
public static wvoid main (String[] args) throws Exception f{
ImageProxyTestDrive testDrive = new ImageProxyTestDrive() ;

}

public ImageProxyTestDrive() throws Exception { Heve we ereate an image pr d
™ oxy an

set it to an initial URL. Whenever
g f You thoose a selection from the CD

menw, You'll get a new image proxy.
Icon icon = new ImageProxy (initialURL) ;

imageComponent = new ImageComponent(icon) ; ‘:__“\ Newk we wrap owe proxy in 3

frame.getContentPane () .add (imageComponent}) ; Com\i‘oncn{: so it tan be added to
} ’S the frame. The tomponent will
} Finally we add the proxy to the take cave of the proxy's width,

frame so it ¢an be displayed. height and similar details.

Now let’s run the test drive:

File Edit Window Help JustSomeOTheCDsThatGotUsThroughThisBook

% java ImageProxyTestDrive

Running fmageP\-ow}tTcs{:Dr]ue
should si\rc You a window like this. ane ——

.

Things to try...

(D Use the menu to load different CD covers; watch the proxy display
“loading” until the image has arrived.

@ Resize the window as the “loading” message is displayed. Notice that
the proxy is handling the loading without hanging up the Swing window.
@ Add your own favorite CDs to the ImageProxyTestDrive.

What did we do?

BEHIND THE SCENES
(D We created an ImageProxy for the display. The paintIcon() method is called and



ImageProxy fires off a thread to retrieve the image and create the Imagelcon.

eates 3
l mach'f a*\f'!::;c'ahjc,—! BIJCC {‘he

Phread to il
: ks _
paintTcon() |mageleom wh't‘.h ’ Some image
velrieving the wmade server on
gt . the Internet
- get image
ants —
&,
v I rnocfg MageTco®
L
displays loading
message
image retrieved
f"nﬂge]:c,ot\
.

@ At some point the image is returned and the Imagelcon fully instantiated.
@ After the Imagelcon is created, the next time paintIcon() is called, the proxy
delegates to the Imagelcon.

intI
paintIcon() paintLcon()

&

<
I ma.‘?;q’? rmﬂgg]:;ﬂ“

displays the real image

THERE ARE NO DUMB QUESTIONS

Q: Q: The Remote Proxy and Virtual Proxy seem so different to me; are they really ONE pattern?

A: A: You’ll find a lot of variants of the Proxy Pattern in the real world; what they all have in common is that they
intercept a method invocation that the client is making on the subject. This level of indirection allows us to do
many things, including dispatching requests to a remote subject, providing a representative for an expensive




=

=

object as it is created, or, as you’ll see, providing some level of protection that can determine which clients should
be calling which methods. That’s just the beginning; the general Proxy Pattern can be applied in many different
ways, and we’ll cover some of the other ways at the end of the chapter.

Q: ImageProxy seems just like a Decorator to me. I mean, we are basically wrapping one object with
another and then delegating the calls to the ImageIcon. What am I missing?

A: Sometimes Proxy and Decorator look very similar, but their purposes are different: a decorator adds behavior
to a class, while a proxy controls access to it. You might ask, “Isn’t the loading message adding behavior?” In
some ways it is; however, more importantly, the ImageProxy is controlling access to an Imagelcon. How does it
control access? Well, think about it this way: the proxy is decoupling the client from the Imagelcon. If they were
coupled the client would have to wait until each image is retrieved before it could paint its entire interface. The
proxy controls access to the Imagelcon so that before it is fully created, the proxy provides another on screen
representation. Once the Imagelcon is created the proxy allows access.

Q: How do I make clients use the Proxy rather than the Real Subject?

A: Good question. One common technique is to provide a factory that instantiates and returns the subject.
Because this happens in a factory method we can then wrap the subject with a proxy before returning it. The client
never knows or cares that it’s using a proxy instead of the real thing.

Q: I noticed in the ImageProxy example, you always create a new Imagelcon to get the image, even if the
image has already been retrieved. Could you implement something similar to the ImageProxy that caches
past retrievals?

A: You are talking about a specialized form of a Virtual Proxy called a Caching Proxy. A caching proxy
maintains a cache of previously created objects and when a request is made it returns cached object, if possible.
We’re going to look at this and at several other variants of the Proxy Pattern at the end of the chapter.

Q: I see how Decorator and Proxy relate, but what about Adapter? An adapter seems very similar as well.

A: Both Proxy and Adapter sit in front of other objects and forward requests to them. Remember that Adapter
changes the interface of the objects it adapts, while the Proxy implements the same interface.

There is one additional similarity that relates to the Protection Proxy. A Protection Proxy may allow or disallow a
client access to particular methods in an object based on the role of the client. In this way a Protection Proxy may
only provide a partial interface to a client, which is quite similar to some Adapters. We are going to take a look at
Protection Proxy in a few pages.

FIRESIDE CHATS

Tonight’s talk: Proxy and Decorator get intentional.

Proxy:

Decorator:

Hello, Decorator. I presume you’re here because
people sometimes get us confused?

Well, I think the reason people get us confused
is that you go around pretending to be an
entirely different pattern, when in fact, you’re
just a Decorator in disguise. I really don’t think
you should be copying all my ideas.

Me copying your ideas? Please. I control access
to objects. You just decorate them. My job is so
much more important than yours it’s just not
even funny.




Fine, so maybe you’re not entirely frivolous...
but I still don’t get why you think I’m copying
all your ideas. I’'m all about representing my
subjects, not decorating them.

I don’t think you get it, Decorator. I stand in for
my Subjects; I don’t just add behavior. Clients
use me as a surrogate of a Real Subject, because
I can protect them from unwanted access, or
keep their GUIs from hanging up while they’re
waiting for big objects to load, or hide the fact
that their Subjects are running on remote
machines. I’d say that’s a very different intent
from yours!

Okay, let’s review that statement. You wrap an
object. While sometimes we informally say a
proxy wraps its Subject, that’s not really an
accurate term.

Think about a remote proxy... what object am I
wrapping? The object I’m representing and
controlling access to lives on another machine!
Let’s see you do that.

Sure, okay, take a virtual proxy... think about the
CD viewer example. When the client first uses

“Just” decorate? You think decorating is some
frivolous, unimportant pattern? Let me tell you
buddy, I add behavior. That’s the most

important thing about objects — what they do!

You can call it “representation” but if it looks
like a duck and walks like a duck... I mean, just
look at your Virtual Proxy; it’s just another way
of adding behavior to do something while some
big expensive object is loading, and your
Remote Proxy is a way of talking to remote
objects so your clients don’t have to bother with
that themselves. It’s all about behavior, just like
I said.

Call it what you want. I implement the same
interface as the objects I wrap; so do you.

Oh yeah? Why not?

Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.




me as a proxy the subject doesn’t even exist! So
what am I wrapping there?

Uh huh, and the next thing you’ll be saying is
that you actually get to create objects.

I never knew decorators were so dumb! Of
course I sometimes create objects. How do you
think a virtual proxy gets its subject?! Okay, you
just pointed out a big difference between us: we
both know decorators only add window
dressing; they never get to instantiate anything.

Oh yeah? Instantiate this!

Hey, after this conversation I’m convinced
you’re just a dumb proxy!

Dumb proxy? I’d like to see you recursively
wrap an object with 10 decorators and keep your
head straight at the same time.

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if
you’re wrapping something 10 times, you better
go back reexamine your design.

Just like a proxy, acting all real when in fact you
just stand in for the objects doing the real work.
You know, I actually feel sorry for you.

. J

Using the Java API’s Proxy to create a protection proxy

Java’s got its own proxy support right in the java.lang.reflect package. With
this package, Java lets you create a proxy class on the fly that implements one
or more interfaces and forwards method invocations to a class that you
specify. Because the actual proxy class is created at runtime, we refer to this
Java technology as a dynamic proxy.




We’re going to use Java’s dynamic proxy to create our next proxy
implementation (a protection proxy), but before we do that, let’s quickly look
at a class diagram that shows how dynamic proxies are put together. Like
most things in the real world, it differs slightly from the classic definition of
the pattern:

<<interface>> <<interface>>

Subject InvocationHandler

aquash invoke()
ﬂ Zx .
l';? — ThE P\‘O*‘f nOW Cthms"CS
' y of o tlasses

RealSubject Proxy H InvocationHandler

request() request() invoke()

The P’rox\f is genevated

fb:c\]::ii::g ]EFchcn{:s You supply the 1nuotaﬁonH3hdlﬂ’: which gets passed
W JC

[ n the oni-\f.
" | method calls that ave invoked on H
rertee j}r‘i-.c [cnvoia-i;ionHandkr tontrols attess to the

methods of the Rtaﬁub‘}ed:

Because Java creates the Proxy class for you, you need a way to tell the
Proxy class what to do. You can’t put that code into the Proxy class like we
did before, because you’re not implementing one directly. So, if you can’t put
this code in the Proxy class, where do you put it? In an InvocationHandler.
The job of the InvocationHandler is to respond to any method calls on the
proxy. Think of the InvocationHandler as the object the Proxy asks to do all
the real work after it’s received the method calls.

Okays, let’s step through how to use the dynamic proxy...

Matchmaking in Objectville

~ Not
Ho-l |

Every town needs a matchmaking service, right? You’ve risen to the task and



implemented a dating service for Objectville. You’ve also tried to be
innovative by including a “Hot or Not” feature in the service where
participants can rate each other — you figure this keeps your customers
engaged and looking through possible matches; it also makes things a lot

more fun.

Your service revolves around a PersonBean that allows you to set and get
information about a person:

Th
5&, o

Now let’s check out the implementation...

The PersonBean implementation

6 15 {hcnn{tfgatn
L Ihe mplemen

we ll
1o

; sl
1hjﬁ£a € \:l

public interface PersonBean {

String getMame () ;
String getGender() ;
String getInterests() ;

int getHotOrNotRating() ;

void setName (String name) ;
void setGender (String gender) ;

void setInterests(String interests);

<7

NotRating() takes

volid setHotOrNotRating(int rating):

/

We can also set the same
information Jt,hh:rugh the
vespettive method £alls.

& o the



( The PcrsohB:anim?I implements the PersonBean interface.

public class PersonBeanImpl implements PersonBean {

String name;

String gender;
String interests;
int rating;

int ratingCount = 0;

public String getMame() {
return name;

}

public String getGender() {
return gender;
}

public String getInterests() {
return interests;
}

public int getHotOrNotRating() {

i6 (vebingoount = OF vebaimiiinE

return (rating/ratingCount) ;

public void setName (String name) {
this.name = name;

}

public void setGender (String gender) {
this.gender = gender;
}

& Tmeihﬂﬂhdc

variables.

All the getter methods; they eath vetuwn
fhe appropriate instance variable..

extept for
5E£HafﬂrNo£RJﬁnﬁ)thMh
tomputes the average of
the ratings by dividing the
vatings by the rajcim}Coun{:-

And here's all the setter
methods, which set the
torresponding inskante vaviable.

public void setInterests(String interests) {

this.interests = interests;

}

public void setHotOrNotRating(int rating) {

this.rating += rating;
ratingCount++;

F’ma“y, the setHot
rnd_;hc»d indnm:n;i:;:’f;fmgu
ra-{:mngn{; and adds

the Funning {odg). the ra{ihs +o



I wasn't very successful finding dates.
Then I noticed someone had changed my
interests, I also noticed that a lot of
people are bumping up their HotOrNot
scores by giving themselves high ratings.
You shouldn't be able to change someone
else's interests or give yourself a rating!

n
\

Elircnl,-'

While we suspect other factors may be keeping Elroy from getting dates, he
is right: you shouldn’t be able to vote for yourself or to change another
customer’s data. The way our PersonBean is defined, any client can call any
of the methods.

This is a perfect example of where we might be able to use a Protection
Proxy. What’s a Protection Proxy? It’s a proxy that controls access to an
object based on access rights. For instance, if we had an employee object, a
Protection Proxy might allow the employee to call certain methods on the
object, a manager to call additional methods (like setSalary()), and a human
resources employee to call any method on the object.

In our dating service we want to make sure that a customer can set his own



information while preventing others from altering it. We also want to allow
just the opposite with the HotOrNot ratings: we want the other customers to
be able to set the rating, but not that particular customer. We also have a
number of getter methods in the PersonBean, and because none of these
return private information, any customer should be able to call them.

Five-minute drama: protecting subjects

The Internet bubble seems a distant memory; those were the days when all
you needed to do to find a better, higher-paying job was to walk across the
street. Even agents for software developers were in vogue...



