
Let’s sort some Ducks
Here’s the test drive for sorting Ducks...

Let the sorting commence!

The making of the sorting duck machine

Behind the Scenes
① First, we need an array of Ducks:

Duck[] ducks = {new Duck("Daffy", 8), ... };

② Then we call the sort() template method in the Array class and pass it
our ducks:

The sort() method (and its helper mergeSort()) control the sort procedure.
③ To sort an array, you need to compare two items one by one until the
entire list is in sorted order.
When it comes to comparing two ducks, the sort method relies on the
Duck’s compareTo() method to know how to do this. The compareTo()
method is called on the first duck and passed the duck to be compared to:

④ If the Ducks are not in sorted order, they’re swapped with the concrete
swap() method in Arrays:

swap()

⑤ The sort() method continues comparing and swapping Ducks until the
array is in the correct order!

THERE ARE NO DUMB QUESTIONS

Q: Q: Is this really the Template Method Pattern, or are you trying too hard?

A: A: The pattern calls for implementing an algorithm and letting subclasses supply the implementation of the steps
— and the Arrays sort is clearly not doing that! But, as we know, patterns in the wild aren’t always just like the
textbook patterns. They have to be modified to fit the context and implementation constraints.
The designers of the Arrays sort() method had a few constraints. In general, you can’t subclass a Java array and
they wanted the sort to be used on all arrays (and each array is a different class). So they defined a static method
and deferred the comparison part of the algorithm to the items being sorted.
So, while it’s not a textbook template method, this implementation is still in the spirit of the Template Method
Pattern. Also, by eliminating the requirement that you have to subclass Arrays to use this algorithm, they’ve made
sorting in some ways more flexible and useful.

Q: Q: This implementation of sorting actually seems more like the Strategy Pattern than the Template Method
Pattern. Why do we consider it Template Method?

A: A: You’re probably thinking that because the Strategy Pattern uses object composition. You’re right in a way —
we’re using the Arrays object to sort our array, so that’s similar to Strategy. But remember, in Strategy, the class
that you compose with implements the entire algorithm. The algorithm that Arrays implements for sort is
incomplete; it needs a class to fill in the missing compareTo() method. So, in that way, it’s more like Template
Method.

Q: Q: Are there other examples of template methods in the Java API?

A: A: Yes, you’ll find them in a few places. For example, java.io has a read() method in InputStream that subclasses
must implement and is used by the template method read(byte b[], int off, int len).

BRAIN POWER

We know that we should favor composition over inheritance, right? Well, the
implementers of the sort() template method decided not to use inheritance and instead to
implement sort() as a static method that is composed with a Comparable at runtime.
How is this better? How is it worse? How would you approach this problem? Do Java
arrays make this particularly tricky?

BRAIN2 POWER

Think of another pattern that is a specialization of the template method. In this
specialization, primitive operations are used to create and return objects. What pattern is
this?

Swingin’ with Frames
Up next on our Template Method safari... keep your eye out for swinging
JFrames!

If you haven’t encountered JFrame, it’s the most basic Swing container and
inherits a paint() method. By default, paint() does nothing because it’s a
hook! By overriding paint(), you can insert yourself into JFrame’s algorithm
for displaying its area of the screen and have your own graphic output
incorporated into the JFrame. Here’s an embarrassingly simple example of
using a JFrame to override the paint() hook method:

Applets
Our final stop on the safari: the applet.

You probably know an applet is a small program that runs in a web page.
Any applet must subclass Applet, and this class provides several hooks. Let’s
take a look at a few of them:

Concrete applets make extensive use of hooks to supply their own behaviors.
Because these methods are implemented as hooks, the applet isn’t required to
implement them.

FIRESIDE CHATS

Tonight’s talk: Template Method and Strategy compare methods.

Template Method: Strategy:

Hey Strategy, what are you doing in my
chapter? I figured I’d get stuck with someone
boring like Factory Method.

 Nope, it’s me, although be careful — you and
Factory Method are related, aren’t you?

I was just kidding! But seriously, what are you

doing here? We haven’t heard from you in eight
chapters!

 I’d heard you were on the final draft of your
chapter and I thought I’d swing by to see how it
was going. We have a lot in common, so I
thought I might be able to help...

You might want to remind the reader what
you’re all about, since it’s been so long.

 I don’t know, since Chapter 1, people have been
stopping me in the street saying, “Aren’t you that
pattern...?” So I think they know who I am. But
for your sake: I define a family of algorithms and
make them interchangeable. Since each
algorithm is encapsulated, the client can use
different algorithms easily.

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but let
my subclasses do some of the work. That way, I
can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

 I’m not sure I’d put it quite like that... and
anyway, I’m not stuck using inheritance for
algorithm implementations. I offer clients a
choice of algorithm implementation through
object composition.

I remember that. But I have more control over
my algorithm and I don’t duplicate code. In
fact, if every part of my algorithm is the same
except for, say, one line, then my classes are
much more efficient than yours. All my
duplicated code gets put into the superclass, so
all the subclasses can share it.

 You might be a little more efficient (just a little)
and require fewer objects. And you might also be
a little less complicated in comparison to my
delegation model, but I’m more flexible because
I use object composition. With me, clients can
change their algorithms at runtime simply by
using a different strategy object. Come on, they
didn’t choose me for Chapter 1 for nothing!

Yeah, well, I’m real happy for ya, but don’t
forget I’m the most used pattern around. Why?
Because I provide a fundamental method for
code reuse that allows subclasses to specify
behavior. I’m sure you can see that this is
perfect for creating frameworks.

 Yeah, I guess... but, what about dependency?
You’re way more dependent than me.

How’s that? My superclass is abstract.

 But you have to depend on methods implemented
in your subclasses, which are part of your
algorithm. I don’t depend on anyone; I can do the
entire algorithm myself!

Like I said, Strategy, I’m real happy for you.
Thanks for stopping by, but I’ve got to get the
rest of this chapter done.

 Okay, okay, don’t get touchy. I’ll let you work,
but let me know if you need my special
techniques anyway; I’m always glad to help.

Got it. Don’t call us, we’ll call you...

DESIGN PATTERNS CROSSWORD

It’s that time again....

Across Down

1. Strategy uses __________ rather than
inheritance.

4. Type of sort used in Arrays.

5. The JFrame hook method that we
overrode to print “I Rule”.

6. The Template Method Pattern uses
__________ to defer implementation to
other classes.

8. Coffee and ________.

9. “Don’t call us, we’ll call you” is known
as the __________ Principle.

12. A template method defines the steps
of an ____________.

2. _____________ algorithm steps are implemented by
hook methods.

3. Factory Method is a __________ of Template
Method.

7. The steps in the algorithm that must be supplied by
the subclasses are usually declared ____________.

8. Huey, Louie, and Dewey all weigh ___________
pounds.

9. A method in the abstract superclass that does
nothing or provides default behavior is called a
____________ method.

10. Big-headed pattern.

11. Our favorite coffee shop in Objectville.

13. In this chapter, we give you more
________.

14. The template method is usually
defined in an __________ class.

16. Class that likes web pages.

15. The Arrays class implements its template method
as a __________ method.

Tools for your Design Toolbox
We’ve added Template Method to your toolbox. With Template Method you
can reuse code like a pro while keeping control of your algorithms.

BULLET POINTS

A “template method” defines the steps of an algorithm, deferring to subclasses for
the implementation of those steps.
The Template Method Pattern gives us an important technique for code reuse.
The template method’s abstract class may define concrete methods, abstract
methods, and hooks.
Abstract methods are implemented by subclasses.
Hooks are methods that do nothing or default behavior in the abstract class, but may
be overridden in the subclass.
To prevent subclasses from changing the algorithm in the template method, declare
the template method as final.
The Hollywood Principle guides us to put decision making in high-level modules
that can decide how and when to call low-level modules.
You’ll see lots of uses of the Template Method Pattern in real-world code, but don’t
expect it all (like any pattern) to be designed “by the book.”
The Strategy and Template Method Patterns both encapsulate algorithms, one by
inheritance and one by composition.
The Factory Method is a specialization of Template Method.

SHARPEN YOUR PENCIL SOLUTION

Draw the new class diagram now that we’ve moved prepareRecipe() into the
CaffeineBeverage class:

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

DESIGN PATTERNS CROSSWORD SOLUTION

It’s that time again...

Chapter 9. The Iterator and
Composite Patterns: Well-Managed
Collections

There are lots of ways to stuff objects into a collection. Put them into an
Array, a Stack, a List, a Hashmap, take your pick. Each has its own
advantages and tradeoffs. But at some point your client is going to want to
iterate over those objects, and when he does, are you going to show him your
implementation? We certainly hope not! That just wouldn’t be professional.
Well, you don’t have to risk your career; you’re going to see how you can
allow your clients to iterate through your objects without ever getting a peek
at how you store your objects. You’re also going to learn how to create some
super collections of objects that can leap over some impressive data
structures in a single bound. And if that’s not enough, you’re also going to
learn a thing or two about object responsibility.

Breaking News: Objectville Diner and Objectville
Pancake House Merge
That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But,
there seems to be a slight problem...

Check out the Menu Items
At least Lou and Mel agree on the implementation of the MenuItems. Let’s
check out the items on each menu, and also take a look at the
implementation.

Lou and Mel’s Menu implementations
Now let’s take a look at what Lou and Mel are arguing about. They both have
lots of time and code invested in the way they store their menu items in a
menu, and lots of other code that depends on it.

What’s the problem with having two different menu
representations?
To see why having two different menu representations complicates things,
let’s try implementing a client that uses the two menus. Imagine you have
been hired by the new company formed by the merger of the Diner and the
Pancake House to create a Java-enabled waitress (this is Objectville, after
all). The spec for the Java-enabled waitress specifies that she can print a
custom menu for customers on demand, and even tell you if a menu item is
vegetarian without having to ask the cook — now that’s an innovation!

Let’s check out the spec, and then step through what it might take to
implement her...

The Java-Enabled Waitress Specification

Let’s start by stepping through how we’d implement the printMenu() method:
① To print all the items on each menu, you’ll need to call the
getMenuItems() method on the PancakeHouseMenu and the DinerMenu to
retrieve their respective menu items. Note that each returns a different
type:

② Now, to print out the items from the PancakeHouseMenu, we’ll loop
through the items on the breakfastItems ArrayList. And to print out the
Diner items we’ll loop through the Array.

③ Implementing every other method in the Waitress is going to be a
variation of this theme. We’re always going to need to get both menus and
use two loops to iterate through their items. If another restaurant with a
different implementation is acquired then we’ll have three loops.

SHARPEN YOUR PENCIL

Based on our implementation of printMenu(), which of the following apply?

A. We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

B. The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a

standard.

C. If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

D. The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

E. We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

F. The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as it
should be.

What now?
Mel and Lou are putting us in a difficult position. They don’t want to change
their implementations because it would mean rewriting a lot of code that is in
each respective menu class. But if one of them doesn’t give in, then we’re
going to have the job of implementing a Waitress that is going to be hard to
maintain and extend.
It would really be nice if we could find a way to allow them to implement the
same interface for their menus (they’re already close, except for the return
type of the getMenuItems() method). That way we can minimize the concrete
references in the Waitress code and also hopefully get rid of the multiple
loops required to iterate over both menus.
Sound good? Well, how are we going to do that?

Yes, using for each would allow us to hide the complexity of the different
kinds of iteration. But that doesn’t solve the real problem here: that we’ve
got two different implementations of the menus, and the Waitress has to
know how each kind of menu is implemented. That’s not really the
Waitress’s job. We want her to focus on being a waitress, and not have to
think about the type of the menus at all.

Our goal is to decouple the Waitress from the concrete implementations of

the menus completely. So hang in there, and you’ll see there’s a better way to
do this.

Can we encapsulate the iteration?
If we’ve learned one thing in this book, it’s encapsulate what varies. It’s
obvious what is changing here: the iteration caused by different collections of
objects being returned from the menus. But can we encapsulate this? Let’s
work through the idea...

① To iterate through the breakfast items we use the size() and get()
methods on the ArrayList:

② And to iterate through the lunch items we use the Array length field
and the array subscript notation on the MenuItem Array.

③ Now what if we create an object, let’s call it an Iterator, that

encapsulates the way we iterate through a collection of objects? Let’s try
this on the ArrayList

④ Let’s try that on the Array too:

Meet the Iterator Pattern
Well, it looks like our plan of encapsulating iteration just might actually

work; and as you’ve probably already guessed, it is a Design Pattern called
the Iterator Pattern.
The first thing you need to know about the Iterator Pattern is that it relies on
an interface called Iterator. Here’s one possible Iterator interface:

Now, once we have this interface, we can implement Iterators for any kind of
collection of objects: arrays, lists, hashmaps, ...pick your favorite collection
of objects. Let’s say we wanted to implement the Iterator for the Array used
in the DinerMenu. It would look like this:

Let’s go ahead and implement this Iterator and hook it into the DinerMenu to
see how this works...

Adding an Iterator to DinerMenu
To add an Iterator to the DinerMenu we first need to define the Iterator
Interface:

And now we need to implement a concrete Iterator that works for the Diner
menu:

Reworking the Diner Menu with Iterator
Okay, we’ve got the iterator. Time to work it into the DinerMenu; all we need
to do is add one method to create a DinerMenuIterator and return it to the
client:

EXERCISE

Go ahead and implement the PancakeHouseIterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

Fixing up the Waitress code
Now we need to integrate the iterator code into the Waitress. We should be
able to get rid of some of the redundancy in the process. Integration is pretty
straightforward: first we create a printMenu() method that takes an Iterator;
then we use the createIterator() method on each menu to retrieve the Iterator
and pass it to the new method.

Testing our code
It’s time to put everything to a test. Let’s write some test drive code and see
how the Waitress works...

Here’s the test run...

What have we done so far?
For starters, we’ve made our Objectville cooks very happy. They settled their
differences and kept their own implementations. Once we gave them a
PancakeHouseMenuIterator and a DinerMenuIterator, all they had to do was
add a createIterator() method and they were finished.
We’ve also helped ourselves in the process. The Waitress will be much easier
to maintain and extend down the road. Let’s go through exactly what we did
and think about the consequences:

Hard to Maintain Waitress
Implementation

New, Hip Waitress Powered by Iterator

The Menus are not well
encapsulated; we can see the
Diner is using an ArrayList and
the Pancake House an Array.

The Menu implementations are now encapsulated. The
Waitress has no idea how the Menus hold their
collection of menu items.

We need two loops to iterate
through the MenuItems.

All we need is a loop that polymorphically handles any
collection of items as long as it implements Iterator.

The Waitress is bound to
concrete classes (MenuItem[]
and ArrayList).

The Waitress now uses an interface (Iterator).

The Waitress is bound to two
different concrete Menu classes,
despite their interfaces being
almost identical.

The Menu interfaces are now exactly the same and, uh
oh, we still don’t have a common interface, which
means the Waitress is still bound to two concrete Menu
classes. We’d better fix that.

What we have so far...
Before we clean things up, let’s get a bird’s-eye view of our current design.

Making some improvements...
Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are
exactly the same and yet we haven’t defined a common interface for them.
So, we’re going to do that and clean up the Waitress a little more.
You may be wondering why we’re not using the Java Iterator interface — we
did that so you could see how to build an iterator from scratch. Now that
we’ve done that, we’re going to switch to using the Java Iterator interface,
because we’ll get a lot of leverage by implementing that instead of our home-
grown Iterator interface. What kind of leverage? You’ll soon see.
First, let’s check out the java.util.Iterator interface:

This is going to be a piece of cake: we just need to change the interface that
both PancakeHouseMenuIterator and DinerMenuIterator extend, right?
Almost... actually, it’s even easier than that. Not only does java.util have its
own Iterator interface, but ArrayList has an iterator() method that returns an
iterator. In other words, we never needed to implement our own iterator for
ArrayList. However, we’ll still need our implementation for the DinerMenu
because it relies on an Array, which doesn’t support the iterator() method (or
any other way to create an array iterator).

THERE ARE NO DUMB QUESTIONS

Q: Q: What if I don’t want to provide the ability to remove something from the underlying collection of
objects?

A: A: The remove() method is considered optional. You don’t have to provide remove functionality. But, you should
provide the method because it’s part of the Iterator interface. If you’re not going to allow remove() in your iterator
you’ll want to throw the runtime exception java.lang.UnsupportedOperationException. The Iterator API
documentation specifies that this exception may be thrown from remove() and any client that is a good citizen
will check for this exception when calling the remove() method.

Q: Q: How does remove() behave under multiple threads that may be using different iterators over the same
collection of objects?

A: A: The behavior of the remove() is unspecified if the collection changes while you are iterating over it. So you
should be careful in designing your own multithreaded code when accessing a collection concurrently.

Cleaning things up with java.util.Iterator
Let’s start with the PancakeHouseMenu. Changing it over to java.util.Iterator
is going to be easy. We just delete the PancakeHouseMenuIterator class, add
an import java.util.Iterator to the top of PancakeHouseMenu and change one
line of the PancakeHouseMenu:

And that’s it, PancakeHouseMenu is done.
Now we need to make the changes to allow the DinerMenu to work with
java.util.Iterator.

We are almost there...
We just need to give the Menus a common interface and rework the Waitress
a little. The Menu interface is quite simple: we might want to add a few more
methods to it eventually, like addItem(), but for now we will let the chefs
control their menus by keeping that method out of the public interface:

Now we need to add an implements Menu to both the PancakeHouseMenu

and the DinerMenu class definitions and update the Waitress:

What does this get us?
The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. Waitress can refer to each menu object using the interface rather than
the concrete class. So, we’re reducing the dependency between the Waitress
and the concrete classes by “programming to an interface, not an
implementation.”

NOTE

This solves the problem of the Waitress depending on the concrete Menus.

The new Menu interface has one method, createIterator(), that is implemented
by PancakeHouseMenu and DinerMenu. Each menu class assumes the

responsibility of creating a concrete Iterator that is appropriate for its internal
implementation of the menu items.

NOTE

This solves the problem of the Waitress depending on the implementation of the
MenuItems.

Iterator Pattern defined
You’ve already seen how to implement the Iterator Pattern with your very
own iterator. You’ve also seen how Java supports iterators in some of its
collection oriented classes (the ArrayList). Now it’s time to check out the
official definition of the pattern:

NOTE

The Iterator Pattern provides a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

This makes a lot of sense: the pattern gives you a way to step through the
elements of an aggregate without having to know how things are represented
under the covers. You’ve seen that with the two implementations of Menus.
But the effect of using iterators in your design is just as important: once you
have a uniform way of accessing the elements of all your aggregate objects,
you can write polymorphic code that works with any of these aggregates —
just like the printMenu() method, which doesn’t care if the menu items are
held in an Array or ArrayList (or anything else that can create an Iterator), as
long as it can get hold of an Iterator.

The Iterator Pattern allows traversal of the elements of an aggregate without
exposing the underlying implementation.
It also places the task of traversal on the iterator object, not on the aggregate,
which simplifies the aggregate interface and implementation, and places the
responsibility where it should be.

The other important impact on your design is that the Iterator Pattern takes
the responsibility of traversing elements and gives that responsibility to the
iterator object, not the aggregate object. This not only keeps the aggregate
interface and implementation simpler, it removes the responsibility for
iteration from the aggregate and keeps the aggregate focused on the things it
should be focused on (managing a collection of objects), not on iteration.
Let’s check out the class diagram to put all the pieces in context...

BRAIN POWER

The class diagram for the Iterator Pattern looks very similar to another pattern you’ve
studied; can you think of what it is? Hint: a subclass decides which object to create.

THERE ARE NO DUMB QUESTIONS

Q: Q: I’ve seen other books show the Iterator class diagram with the methods first(), next(), isDone() and
currentItem(). Why are these methods different?

A: A: Those are the “classic” method names that have been used. These names have changed over time and we now
have next(), hasNext() and even remove() in java.util.Iterator.
Let’s look at the classic methods. The next() and currentItem() have been merged into one method in java.util.
The isDone() method has obviously become hasNext(); but we have no method corresponding to first(). That’s
because in Java we tend to just get a new iterator whenever we need to start the traversal over. Nevertheless, you
can see there is very little difference in these interfaces. In fact, there is a whole range of behaviors you can give
your iterators. The remove() method is an example of an extension in java.util.Iterator.

Q: Q: I’ve heard about “internal” iterators and “external” iterators. What are they? Which kind did we
implement in the example?

A: A: We implemented an external iterator, which means that the client controls the iteration by calling next() to get
the next element. An internal iterator is controlled by the iterator itself. In that case, because it’s the iterator that’s
stepping through the elements, you have to tell the iterator what to do with those elements as it goes through
them. That means you need a way to pass an operation to an iterator. Internal iterators are less flexible than
external iterators because the client doesn’t have control of the iteration. However, some might argue that they are
easier to use because you just hand them an operation and tell them to iterate, and they do all the work for you.

Q: Q: Could I implement an Iterator that can go backwards as well as forwards?

A: A: Definitely. In that case, you’d probably want to add two methods, one to get to the previous element, and one
to tell you when you’re at the beginning of the collection of elements. Java’s Collection Framework provides
another type of iterator interface called ListIterator. This iterator adds previous() and a few other methods to the
standard Iterator interface. It is supported by any Collection that implements the List interface.

Q: Q: Who defines the ordering of the iteration in a collection like Hashtable, which are inherently
unordered?

A: A: Iterators imply no ordering. The underlying collections may be unordered as in a hashtable or in a bag; they
may even contain duplicates. So ordering is related to both the properties of the underlying collection and to the
implementation. In general, you should make no assumptions about ordering unless the Collection documentation
indicates otherwise.

Q: Q: You said we can write “polymorphic code” using an iterator; can you explain that more?

A: A: When we write methods that take Iterators as parameters, we are using polymorphic iteration. That means we
are creating code that can iterate over any collection as long as it supports Iterator. We don’t care about how the
collection is implemented, we can still write code to iterate over it.

Q: Q: If I’m using Java, won’t I always want to use the java.util.Iterator interface so I can use my own iterator
implementations with classes that are already using the Java iterators?

A: A: Probably. If you have a common Iterator interface, it will certainly make it easier for you to mix and match
your own aggregates with Java aggregates like ArrayList and Vector. But remember, if you need to add
functionality to your Iterator interface for your aggregates, you can always extend the Iterator interface.

Q: Q: I’ve seen an Enumeration interface in Java; does that implement the Iterator Pattern?

A: A: We talked about this in the Adapter Pattern chapter (Chapter 7). Remember? The java.util.Enumeration is an
older implementation of Iterator that has since been replaced by java.util. Iterator. Enumeration has two methods,
hasMoreElements(), corresponding to hasNext(), and nextElement(), corresponding to next(). However, you’ll
probably want to use Iterator over Enumeration as more Java classes support it. If you need to convert from one to
another, review Chapter 7 again where you implemented the adapter for Enumeration and Iterator.

Single Responsibility
What if we allowed our aggregates to implement their internal collections and
related operations AND the iteration methods? Well, we already know that
would expand the number of methods in the aggregate, but so what? Why is
that so bad?
Well, to see why, you first need to recognize that when we allow a class to
not only take care of its own business (managing some kind of aggregate) but
also take on more responsibilities (like iteration) then we’ve given the class
two reasons to change. Two? Yup, two: it can change if the collection
changes in some way, and it can change if the way we iterate changes. So
once again our friend CHANGE is at the center of another design principle:

DESIGN PRINCIPLE

A class should have only one reason to change.

Every responsibility of a class is an area of potential change. More than one
responsibility means more than one area of change.
This principle guides us to keep each class to a single responsibility.

We know we want to avoid change in a class like the plague — modifying
code provides all sorts of opportunities for problems to creep in. Having two
ways to change increases the probability the class will change in the future,
and when it does, it’s going to affect two aspects of your design.
The solution? The principle guides us to assign each responsibility to one
class, and only one class.
That’s right, it’s as easy as that, and then again it’s not: separating
responsibility in design is one of the most difficult things to do. Our brains
are just too good at seeing a set of behaviors and grouping them together
even when there are actually two or more responsibilities. The only way to
succeed is to be diligent in examining your designs and to watch out for
signals that a class is changing in more than one way as your system grows.

Cohesion is a term you’ll hear used as a measure of how closely a class or a module
supports a single purpose or responsibility.

We say that a module or class has high cohesion when it is designed around a set of
related functions, and we say it has low cohesion when it is designed around a set of
unrelated functions.

Cohesion is a more general concept than the Single Responsibility Principle, but the two
are closely related. Classes that adhere to the principle tend to have high cohesion and
are more maintainable than classes that take on multiple responsibilities and have low
cohesion.

BRAIN POWER

Examine these classes and determine which ones have multiple responsibilities.

HARD HAT AREA. WATCH OUT FOR FALLING ASSUMPTIONS

BRAIN2 POWER

Determine if these classes have low or high cohesion.

Taking a look at the Café Menu

Here’s the café menu. It doesn’t look like too much trouble to integrate the
CafeMenu class into our framework... let’s check it out.

SHARPEN YOUR PENCIL

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1. ___
2. ___
3. ___

Reworking the Café Menu code
Integrating the CafeMenu into our framework is easy. Why? Because
HashMap is one of those Java collections that supports Iterator. But it’s not
quite the same as ArrayList...

CODE UP CLOSE

HashMap is a little more complex than the ArrayList because it supports both keys and
values, but we can still get an Iterator for the values (which are the MenuItems).

Adding the Café Menu to the Waitress
That was easy; how about modifying the Waitress to support our new Menu?
Now that the Waitress expects Iterators, that should be easy too.

Breakfast, lunch AND dinner
Let’s update our test drive to make sure this all works.

Here’s the test run; check out the new dinner menu
from the Café!

What did we do?

We decoupled the Waitress....

... and we made the Waitress more extensible

But there’s more!

Iterators and Collections
We’ve been using a couple of classes that are part of the Java Collections
Framework. This “framework” is just a set of classes and interfaces,
including ArrayList, which we’ve been using, and many others like Vector,

LinkedList, Stack, and PriorityQueue. Each of these classes implements the
java.util.Collection interface, which contains a bunch of useful methods for
manipulating groups of objects.

Let’s take a quick look at the interface:

WATCH IT!

Hashtable is one of a few classes that indirectly supports Iterator.

As you saw when we implemented the CafeMenu, you could get an Iterator from it, but
only by first retrieving its Collection called values. If you think about it, this makes
sense: the HashMap holds two sets of objects: keys and values. If we want to iterate over

its values, we first need to retrieve them from the HashMap, and then obtain the iterator.

CODE MAGNETS

The Chefs have decided that they want to be able to alternate their lunch menu items; in
other words, they will offer some items on Monday, Wednesday, Friday, and Sunday,
and other items on Tuesday, Thursday, and Saturday. Someone already wrote the code
for a new “Alternating” DinerMenu Iterator so that it alternates the menu items, but she
scrambled it up and put it on the fridge in the Diner as a joke. Can you put it back
together? Some of the curly braces fell on the floor and they were too small to pick up,
so feel free to add as many of those as you need.

Is the Waitress ready for prime time?
The Waitress has come a long way, but you’ve gotta admit those three calls
to printMenu() are looking kind of ugly.
Let’s be real — every time we add a new menu we are going to have to open
up the Waitress implementation and add more code. Can you say “violating

the Open Closed Principle”?

It’s not the Waitress’ fault. We have done a great job of decoupling the menu
implementation and extracting the iteration into an iterator. But we still are
handling the menus with separate, independent objects — we need a way to
manage them together.

BRAIN POWER

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you
think of a way to combine the menus so that only one call needs to be made? Or perhaps
so that one Iterator is passed to the Waitress to iterate over all the menus?

Sounds like the chef is on to something. Let’s give it a try:

This looks pretty good, although we’ve lost the names of the menus, but we
could add the names to each menu.

Just when we thought it was safe...
Now they want to add a dessert submenu.
Okay, now what? Now we have to support not only multiple menus, but
menus within menus.
It would be nice if we could just make the dessert menu an element of the
DinerMenu collection, but that won’t work as it is now implemented.
What we want (something like this):

We can’t assign a dessert menu to a MenuItem array.
Time for a change!

What do we need?
The time has come to make an executive decision to rework the chef’s
implementation into something that is general enough to work over all the
menus (and now submenus). That’s right, we’re going to tell the chefs that
the time has come for us to reimplement their menus.
The reality is that we’ve reached a level of complexity such that if we don’t

rework the design now, we’re never going to have a design that can
accommodate further acquisitions or submenus.
So, what is it we really need out of our new design?

We need some kind of a tree-shaped structure that will accommodate menus,
submenus, and menu items.

We need to make sure we maintain a way to traverse the items in each menu that is at
least as convenient as what we are doing now with iterators.

We may need to traverse the items in a more flexible manner. For instance, we might
need to iterate over only the Diner’s dessert menu, or we might need to iterate over the
Diner’s entire menu, including the dessert submenu.

NOTE

Because we need to represent menus, nested submenus and menu items, we can
naturally fit them in a tree-like structure.

BRAIN POWER

How would you handle this new wrinkle to our design requirements? Think about it
before turning the page.

The Composite Pattern defined
That’s right; we’re going to introduce another pattern to solve this problem.
We didn’t give up on Iterator — it will still be part of our solution —
however, the problem of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and solve it with the

Composite Pattern.
We’re not going to beat around the bush on this pattern; we’re going to go
ahead and roll out the official definition now:

NOTE

Here’s a tree structure.

NOTE

The Composite Pattern allows you to compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

Let’s think about this in terms of our menus: this pattern gives us a way to
create a tree structure that can handle a nested group of menus and menu
items in the same structure. By putting menus and items in the same structure
we create a part-whole hierarchy; that is, a tree of objects that is made of
parts (menus and menu items) but that can be treated as a whole, like one big
über menu.
Once we have our über menu, we can use this pattern to treat “individual
objects and compositions uniformly.” What does that mean? It means if we

have a tree structure of menus, submenus, and perhaps subsubmenus along
with menu items, then any menu is a “composition” because it can contain
both other menus and menu items. The individual objects are just the menu
items — they don’t hold other objects. As you’ll see, using a design that
follows the Composite Pattern is going to allow us to write some simple code
that can apply the same operation (like printing!) over the entire menu
structure.

NOTE

We can create arbitrarily complex trees.

NOTE

Operations can be applied to the whole.

NOTE

Or the parts.

The Composite Pattern allows us to build structures of objects in the form of trees
that contain both compositions of objects and individual objects as nodes.
Using a composite structure, we can apply the same operations over both
composites and individual objects. In other words, in most cases we can ignore
the differences between compositions of objects and individual objects.

THERE ARE NO DUMB QUESTIONS

Q: Q: Component, Composite, Trees? I’m confused.

A: A: A composite contains components. Components come in two flavors: composites and leaf elements. Sound
recursive? It is. A composite holds a set of children; those children may be other composites or leaf elements.
When you organize data in this way you end up with a tree structure (actually an upside-down tree structure) with
a composite at the root and branches of composites growing up to leaf nodes.

Q: Q: How does this relate to iterators?

A: A: Remember, we’re taking a new approach. We’re going to re-implement the menus with a new solution: the
Composite Pattern. So don’t look for some magical transformation from an iterator to a composite. That said, the
two work very nicely together. You’ll soon see that we can use iterators in a couple of ways in the composite
implementation.

Designing Menus with Composite
So, how do we apply the Composite Pattern to our menus? To start with, we
need to create a component interface; this acts as the common interface for

both menus and menu items and allows us to treat them uniformly. In other
words, we can call the same method on menus or menu items.
Now, it may not make sense to call some of the methods on a menu item or a
menu, but we can deal with that, and we will in just a moment. But for now,
let’s take a look at a sketch of how the menus are going to fit into a
Composite Pattern structure:

Implementing the Menu Component
Okay, we’re going to start with the MenuComponent abstract class;
remember, the role of the menu component is to provide an interface for the
leaf nodes and the composite nodes. Now you might be asking, “Isn’t the
MenuComponent playing two roles?” It might well be and we’ll come back

to that point. However, for now we’re going to provide a default
implementation of the methods so that if the MenuItem (the leaf) or the Menu
(the composite) doesn’t want to implement some of the methods (like
getChild() for a leaf node) they can fall back on some basic behavior:

NOTE

All components must implement the MenuComponent interface; however, because
leaves and nodes have different roles we can’t always define a default
implementation for each method that makes sense. Sometimes the best you can do
is throw a runtime exception.

NOTE

Because some of these methods only make sense for MenuItems, and some only make
sense for Menus, the default implementation is UnsupportedOperationException. That
way, if MenuItem or Menu doesn’t support an operation, they don’t have to do anything;
they can just inherit the default implementation.

Implementing the Menu Item
Okay, let’s give the MenuItem class a shot. Remember, this is the leaf class
in the Composite diagram and it implements the behavior of the elements of
the composite.

Implementing the Composite Menu
Now that we have the MenuItem, we just need the composite class, which
we’re calling Menu. Remember, the composite class can hold MenuItems or
other Menus. There’s a couple of methods from MenuComponent this class
doesn’t implement: getPrice() and isVegetarian(), because those don’t make a
lot of sense for a Menu.

Excellent catch. Because menu is a composite and contains both MenuItems
and other Menus, its print() method should print everything it contains. If it
didn’t we’d have to iterate through the entire composite and print each item
ourselves. That kind of defeats the purpose of having a composite structure.
As you’re going to see, implementing print() correctly is easy because we can
rely on each component to be able to print itself. It’s all wonderfully
recursive and groovy. Check it out:

Fixing the print() method

NOTE

NOTE: If, during this iteration, we encounter another Menu object, its print() method
will start another iteration, and so on.

Getting ready for a test drive...
It’s about time we took this code for a test drive, but we need to update the
Waitress code before we do — after all she’s the main client of this code:

Okay, one last thing before we write our test drive. Let’s get an idea of what
the menu composite is going to look like at runtime:

Now for the test drive...
Okay, now we just need a test drive. Unlike our previous version, we’re
going to handle all the menu creation in the test drive. We could ask each
chef to give us his new menu, but let’s get it all tested first. Here’s the code:

Getting ready for a test drive...

NOTE

NOTE: this output is based on the complete source.

There is some truth to that observation. We could say that the Composite
Pattern takes the Single Responsibility design principle and trades it for
transparency. What’s transparency? Well, by allowing the Component
interface to contain the child management operations and the leaf operations,
a client can treat both composites and leaf nodes uniformly; so whether an
element is a composite or leaf node becomes transparent to the client.
Now given we have both types of operations in the Component class, we lose
a bit of safety because a client might try to do something inappropriate or
meaningless on an element (like try to add a menu to a menu item). This is a
design decision; we could take the design in the other direction and separate
out the responsibilities into interfaces. This would make our design safe, in
the sense that any inappropriate calls on elements would be caught at compile
time or runtime, but we’d lose transparency and our code would have to use
conditionals and the instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We are guided
by design principles, but we always need to observe the effect they have on
our designs. Sometimes we purposely do things in a way that seems to violate
the principle. In some cases, however, this is a matter of perspective; for
instance, it might seem incorrect to have child management operations in the
leaf nodes (like add(), remove() and getChild()), but then again you can
always shift your perspective and see a leaf as a node with zero children.

Flashback to Iterator
We promised you a few pages back that we’d show you how to use Iterator
with a Composite. You know that we are already using Iterator in our internal
implementation of the print() method, but we can also allow the Waitress to
iterate over an entire composite if she needs to — for instance, if she wants to
go through the entire menu and pull out vegetarian items.
To implement a Composite iterator, let’s add a createIterator() method in
every component. We’ll start with the abstract MenuComponent class:

Now we need to implement this method in the Menu and MenuItem classes:

The Composite Iterator
The CompositeIterator is a SERIOUS iterator. It’s got the job of iterating
over the MenuItems in the component, and of making sure all the child
Menus (and child child Menus, and so on) are included.
Here’s the code. Watch out. This isn’t a lot of code, but it can be a little mind
bending. As you go through it just repeat to yourself “recursion is my friend,
recursion is my friend.”

WATCH OUT: RECURSION ZONE AHEAD

When we wrote the print() method in the MenuComponent class we used an
iterator to step through each item in the component, and if that item was a
Menu (rather than a MenuItem), then we recursively called the print() method
to handle it. In other words, the MenuComponent handled the iteration itself,
internally.
With this code we are implementing an external iterator so there is a lot more
to keep track of. For starters, an external iterator must maintain its position in
the iteration so that an outside client can drive the iteration by calling
hasNext() and next(). But in this case, our code also needs to maintain that
position over a composite, recursive structure. That’s why we use stacks to
maintain our position as we move up and down the composite hierarchy.

BRAIN POWER

Draw a diagram of the Menus and MenuItems. Then pretend you are the
CompositeIterator, and your job is to handle calls to hasNext() and next(). Trace the way
the CompositeIterator traverses the structure as this code is executed:

public void testCompositeIterator(MenuComponent component) {

 CompositeIterator iterator = new CompositeIterator(component.iterator);

 while(iterator.hasNext()) {

 MenuComponent component = iterator.next();

 }

}

The Null Iterator
Okay, now what is this Null Iterator all about? Think about it this way: a
MenuItem has nothing to iterate over, right? So how do we handle the
implementation of its createIterator() method? Well, we have two choices:

NOTE

NOTE: Another example of the Null Object “Design Pattern.”

Choice one:
Return null
We could return null from createIterator(), but then we’d need conditional
code in the client to see if null was returned or not.

Choice two:
Return an iterator that always returns false when hasNext() is called
This seems like a better plan. We can still return an iterator, but the client
doesn’t have to worry about whether or not null is ever returned. In effect,
we’re creating an iterator that is a “no op.”

The second choice certainly seems better. Let’s call it NullIterator and
implement it.

Give me the vegetarian menu
Now we’ve got a way to iterate over every item of the Menu. Let’s take that
and give our Waitress a method that can tell us exactly which items are
vegetarian.

The magic of Iterator & Composite together...
Whooo! It’s been quite a development effort to get our code to this point.
Now we’ve got a general menu structure that should last the growing Diner
empire for some time. Now it’s time to sit back and order up some veggie
food:

Let’s take a look at what you’re talking about:

In general we agree; try/catch is meant for error handling, not program logic.
What are our other options? We could have checked the runtime type of the
menu component with instanceof to make sure it’s a MenuItem before
making the call to isVegetarian(). But in the process we’d lose transparency
because we wouldn’t be treating Menus and MenuItems uniformly.
We could also change isVegetarian() in the Menus so that it returns false.
This provides a simple solution and we keep our transparency.

In our solution we are going for clarity: we really want to communicate that
this is an unsupported operation on the Menu (which is different than saying
isVegetarian() is false). It also allows for someone to come along and actually
implement a reasonable isVegetarian() method for Menu and have it work
with the existing code.
That’s our story and we’re stickin’ to it.

PATTERNS EXPOSED

This week’s interview: The Composite Pattern, on implementation issues

HeadFirst: We’re here tonight speaking with the Composite Pattern. Why don’t you tell
us a little about yourself, Composite?

Composite: Sure... I’m the pattern to use when you have collections of objects with
whole-part relationships and you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here... what do you mean by whole-part
relationships?

Composite: Imagine a graphical user interface; there you’ll often find a top level
component like a Frame or a Panel, containing other components, like menus, text
panes, scrollbars and buttons. So your GUI consists of several parts, but when you
display it, you generally think of it as a whole. You tell the top level component to
display, and count on that component to display all its parts. We call the components
that contain other components, composite objects, and components that don’t contain
other components, leaf objects.

HeadFirst: Is that what you mean by treating the objects uniformly? Having common
methods you can call on composites and leaves?

Composite: Right. I can tell a composite object to display or a leaf object to display and
it will do the right thing. The composite object will display by telling all its components
to display.

HeadFirst: That implies that every object has the same interface. What if you have
objects in your composite that do different things?

Composite: In order for the composite to work transparently to the client, you must
implement the same interface for all objects in the composite; otherwise, the client has to
worry about which interface each object is implementing, which kind of defeats the
purpose. Obviously that means that at times you’ll have objects for which some of the
method calls don’t make sense.

HeadFirst: So how do you handle that?

Composite: Well, there are a couple of ways to handle it; sometimes you can just do
nothing, or return null or false — whatever makes sense in your application. Other times

you’ll want to be more proactive and throw an exception. Of course, then the client has
to be willing to do a little work and make sure that the method call didn’t do something
unexpected.

HeadFirst: But if the client doesn’t know which kind of object they’re dealing with,
how would they ever know which calls to make without checking the type?

Composite: If you’re a little creative you can structure your methods so that the default
implementations do something that does make sense. For instance, if the client is calling
getChild(), on the composite this makes sense. And it makes sense on a leaf too, if you
think of the leaf as an object with no children.

HeadFirst: Ah... smart. But, I’ve heard some clients are so worried about this issue, that
they require separate interfaces for different objects so they aren’t allowed to make
nonsensical method calls. Is that still the Composite Pattern?

Composite: Yes. It’s a much safer version of the Composite Pattern, but it requires the
client to check the type of every object before making a call so the object can be cast
correctly.

HeadFirst: Tell us a little more about how these composite and leaf objects are
structured.

Composite: Usually it’s a tree structure, some kind of hierarchy. The root is the top-
level composite, and all its children are either composites or leaf nodes.

HeadFirst: Do children ever point back up to their parents?

Composite: Yes, a component can have a pointer to a parent to make traversal of the
structure easier. And, if you have a reference to a child, and you need to delete it, you’ll
need to get the parent to remove the child. Having the parent reference makes that easier
too.

HeadFirst: There’s really quite a lot to consider in your implementation. Are there other
issues we should think about when implementing the Composite Pattern?

Composite: Actually there are... one is the ordering of children. What if you have a
composite that needs to keep its children in a particular order? Then you’ll need a more
sophisticated management scheme for adding and removing children, and you’ll have to
be careful about how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.

Composite: And did you think about caching?

HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the composite structure is complex or
expensive to traverse, it’s helpful to implement caching of the composite nodes. For
instance, if you are constantly traversing a composite and all its children to compute
some result, you could implement a cache that stores the result temporarily to save

traversals.

HeadFirst: Well, there’s a lot more to the Composite Patterns than I ever would have
guessed. Before we wrap this up, one more question: what do you consider your greatest
strength?

Composite: I think I’d definitely have to say simplifying life for my clients. My clients
don’t have to worry about whether they’re dealing with a composite object or a leaf
object, so they don’t have to write if statements everywhere to make sure they’re calling
the right methods on the right objects. Often, they can make one method call and execute
an operation over an entire structure.

HeadFirst: That does sound like an important benefit. There’s no doubt you’re a useful
pattern to have around for collecting and managing objects. And, with that, we’re out of
time... Thanks so much for joining us and come back soon for another Patterns Exposed.

DESIGN PATTERNS CROSSWORD

Wrap your brain around this composite crossword.

Across Down

5. Third company acquired. 1. A class should have only one reason to do

6. This class indirectly supports Iterator.

12. HashMap and ArrayList both implement this
interface.

13. A separate object that can traverse a collection.

15. We deleted PancakeHouseMenuIterator because
this class already provides an Iterator.

16. Has no children.

17. Name of principle that states only one
responsibility per class (two words).

19. CompositeIterator used a lot of this.

this.

2. We encapsulated this.

3. The Iterator Pattern decouples the client
from the aggregate’s _________.

4. Merged with the Diner (two words).

7. User interface packages often use this
pattern for their components.

8. Collection and Iterator are in this
package.

9. Iterators are usually created using this
pattern (two words).

10. A composite holds this.

11. We Java-enabled her.

14. This menu caused us to change our
entire implementation.

18. A component can be a composite or this.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Strategy Clients treat collections of objects and individual objects uniformly

Adapter Provides a way to traverse a collection of objects without exposing the collection’s
implementation

Iterator Simplifies the interface of a group of classes

Facade Changes the interface of one or more classes

Composite Allows a group of objects to be notified when some state changes

Observer Encapsulates interchangeable behaviors and uses delegation to decide which one to
use

Tools for your Design Toolbox
Two new patterns for your toolbox — two great ways to deal with collections
of objects.

BULLET POINTS

An Iterator allows access to an aggregate’s elements without exposing its internal
structure.
An Iterator takes the job of iterating over an aggregate and encapsulates it in another
object.
When using an Iterator, we relieve the aggregate of the responsibility of supporting
operations for traversing its data.
An Iterator provides a common interface for traversing the items of an aggregate,
allowing you to use polymorphism when writing code that makes use of the items of
the aggregate.
We should strive to assign only one responsibility to each class.
The Composite Pattern provides a structure to hold both individual objects and
composites.
The Composite Pattern allows clients to treat composites and individual objects
uniformly.
A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.
There are many design tradeoffs in implementing Composite. You need to balance
transparency and safety with your needs.

SHARPEN YOUR PENCIL SOLUTION

Based on our implementation of printMenu(), which of the following apply?

A. We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

B. The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a
standard.

C. If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

D. The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

E. We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

F. The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as
it should be.

SHARPEN YOUR PENCIL SOLUTION

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1. implement the Menu
interface___

2. get rid of
getItems()__

3. add createIterator() and return an Iterator that can step through the Hashtable
values___

CODE MAGNETS SOLUTION

The unscrambled “Alternating” DinerMenu Iterator.

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

DESIGN PATTERNS CROSSWORD SOLUTION

Wrap your brain around this composite crossword. Here’s our solution.

Chapter 10. The State Pattern: The
State of Things

A little-known fact: the Strategy and State Patterns were twins separated
at birth. As you know, the Strategy Pattern went on to create a wildly
successful business around interchangeable algorithms. State, however, took
the perhaps more noble path of helping objects to control their behavior by
changing their internal state. He’s often overheard telling his object clients,
“Just repeat after me: I’m good enough, I’m smart enough, and doggonit...”

Jawva Breakers

Java toasters are so ’90s. Today people are building Java into real devices,
like gumball machines. That’s right, gumball machines have gone high tech;
the major manufacturers have found that by putting CPUs into their
machines, they can increase sales, monitor inventory over the network and
measure customer satisfaction more accurately.

NOTE

At least that’s their story – we think they just got bored with the circa 1800’s technology
and needed to find a way to make their jobs more exciting.

But these manufacturers are gumball machine experts, not software
developers, and they’ve asked for your help:

Cubicle Conversation

Judy: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Judy: ... and each of the arrows is a state transition.
Frank: Slow down, you two, it’s been too long since I studied state
diagrams. Can you remind me what they’re all about?
Judy: Sure, Frank. Look at the circles; those are states. “No Quarter” is
probably the starting state for the gumball machine because it’s just sitting
there waiting for you to put your quarter in. All states are just different
configurations of the machine that behave in a certain way and need some
action to take them to another state.
Joe: Right. See, to go to another state, you need to do something like put a
quarter in the machine. See the arrow from “No Quarter” to “Has Quarter”?
Frank: Yes...
Joe: That just means that if the gumball machine is in the “No Quarter” state
and you put a quarter in, it will change to the “Has Quarter” state. That’s the
state transition.
Frank: Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank

and change to the “Gumball Sold” state, or eject the quarter and change back
to the “No Quarter” state.
Judy: You got it!
Frank: This doesn’t look too bad then. We’ve obviously got four states, and I
think we also have four actions: “inserts quarter,” “ejects quarter,” “turns
crank” and “dispense.” But... when we dispense, we test for zero or more
gumballs in the “Gumball Sold” state, and then either go to the “Out of
Gumballs” state or the “No Quarter” state. So we actually have five
transitions from one state to another.
Judy: That test for zero or more gumballs also implies we’ve got to keep
track of the number of gumballs too. Any time the machine gives you a
gumball, it might be the last one, and if it is, we need to transition to the “Out
of Gumballs” state.
Joe: Also, don’t forget that you could do nonsensical things, like try to eject
the quarter when the gumball machine is in the “No Quarter” state, or insert
two quarters.
Frank: Oh, I didn’t think of that; we’ll have to take care of those too.
Joe: For every possible action we’ll just have to check to see which state
we’re in and act appropriately. We can do this! Let’s start mapping the state
diagram to code...

State machines 101
How are we going to get from that state diagram to actual code? Here’s a
quick introduction to implementing state machines:

① First, gather up your states:

② Next, create an instance variable to hold the current state, and define
values for each of the states:

③ Now we gather up all the actions that can happen in the system:

④ Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine what
behavior is appropriate in each state. For instance, for the insert quarter
action, we might write a method like this:

With that quick review, let’s go implement the Gumball Machine!

Writing the code
It’s time to implement the Gumball Machine. We know we’re going to have
an instance variable that holds the current state. From there, we just need to
handle all the actions, behaviors and state transitions that can happen. For
actions, we need to implement inserting a quarter, removing a quarter,
turning the crank, and dispensing a gumball; we also have the empty Gumball
Machine condition to implement.

In-house testing
That feels like a nice solid design using a well-thought-out methodology,
doesn’t it? Let’s do a little in-house testing before we hand it off to Mighty
Gumball to be loaded into their actual gumball machines. Here’s our test

harness:

You knew it was coming... a change request!
Mighty Gumball, Inc., has loaded your code into their newest machine
and their quality assurance experts are putting it through its paces. So
far, everything’s looking great from their perspective.
In fact, things have gone so smoothly they’d like to take things to the
next level...

DESIGN PUZZLE

Draw a state diagram for a Gumball Machine that handles the 1 in 10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Check
your answer with ours (at the end of the chapter) to make sure we agree before you go
further...

The messy STATE of things...
Just because you’ve written your gumball machine using a well-thought-out
methodology doesn’t mean it’s going to be easy to extend. In fact, when you
go back and look at your code and think about what you’ll have to do to
modify it, well...

SHARPEN YOUR PENCIL

Which of the following describe the state of our implementation? (Choose all that
apply.)

A. This code certainly isn’t adhering to the Open Closed Principle.

B. This code would make a FORTRAN programmer proud.

C. This design isn’t even very object-oriented.

D. State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

E. We haven’t encapsulated anything that varies here.

F. Further additions are likely to cause bugs in working code.

Frank: You’re right about that! We need to refactor this code so that it’s easy
to maintain and modify.
Judy: We really should try to localize the behavior for each state so that if we
make changes to one state, we don’t run the risk of messing up the other
code.
Frank: Right; in other words, follow that ol’ “encapsulate what varies”
principle.
Judy: Exactly.
Frank: If we put each state’s behavior in its own class, then every state just
implements its own actions.
Judy: Right. And maybe the Gumball Machine can just delegate to the state
object that represents the current state.
Frank: Ah, you’re good: favor composition... more principles at work.
Judy: Cute. Well, I’m not 100% sure how this is going to work, but I think

we’re on to something.
Frank: I wonder if this will make it easier to add new states?
Judy: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.
Frank: I like the sound of that. Let’s start hashing out this new design!

The new design
It looks like we’ve got a new plan: instead of maintaining our existing code,
we’re going to rework it to encapsulate state objects in their own classes and
then delegate to the current state when an action occurs.
We’re following our design principles here, so we should end up with a
design that is easier to maintain down the road. Here’s how we’re going to do
it:

① First, we’re going to define a State interface that contains a method
for every action in the Gumball Machine.
② Then we’re going to implement a State class for every state of the
machine. These classes will be responsible for the behavior of the
machine when it is in the corresponding state.
③ Finally, we’re going to get rid of all of our conditional code and
instead delegate to the State class to do the work for us.

Not only are we following design principles, as you’ll see, we’re actually
implementing the State Pattern. But we’ll get to all the official State Pattern
stuff after we rework our code...

Defining the State interfaces and classes
First let’s create an interface for State, which all our states implement:

Then take each state in our design and encapsulate it in a class that
implements the State interface.

SHARPEN YOUR PENCIL

To implement our states, we first need to specify the behavior of the classes when each
action is called. Annotate the diagram below with the behavior of each action in each
class; we’ve already filled in a few for you.

Implementing our State classes
Time to implement a state: we know what behaviors we want; we just need to
get it down in code. We’re going to closely follow the state machine code we
wrote, but this time everything is broken out into different classes.
Let’s start with the NoQuarterState:

Reworking the Gumball Machine
Before we finish the State classes, we’re going to rework the Gumball
Machine — that way you can see how it all fits together. We’ll start with the
state-related instance variables and switch the code from using integers to

using state objects:

Now, let’s look at the complete GumballMachine class...

Implementing more states
Now that you’re starting to get a feel for how the Gumball Machine and the
states fit together, let’s implement the HasQuarterState and the SoldState
classes...

Now, let’s check out the SoldState class...

BRAIN POWER

Look back at the GumballMachine implementation. If the crank is turned and not
successful (say the customer didn’t insert a quarter first), we call dispense anyway, even
though it’s unnecessary. How might you fix this?

SHARPEN YOUR PENCIL

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Check your answer before moving on...

public class SoldOutState implements _______________ {

 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {

 }

 public void insertQuarter() {

 }

 public void ejectQuarter() {

 }

 public void turnCrank() {

 }

 public void dispense() {

 }

}

Let’s take a look at what we’ve done so far...
For starters, you now have a Gumball Machine implementation that is
structurally quite different from your first version, and yet functionally it is
exactly the same. By structurally changing the implemention, you’ve:

Localized the behavior of each state into its own class.
Removed all the troublesome if statements that would have been difficult
to maintain.
Closed each state for modification, and yet left the Gumball Machine open
to extension by adding new state classes (and we’ll do this in a second).
Created a code base and class structure that maps much more closely to
the Mighty Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

SHARPEN YOUR PENCIL

Behind the Scenes: Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate
the diagram with actions and output of the machine. For this exercise you can assume
there are plenty of gumballs in the machine.

The State Pattern defined
Yes, it’s true, we just implemented the State Pattern! So now, let’s take a
look at what it’s all about:

NOTE

The State Pattern allows an object to alter its behavior when its internal state changes.
The object will appear to change its class.

The first part of this description makes a lot of sense, right? Because the
pattern encapsulates state into separate classes and delegates to the object
representing the current state, we know that behavior changes along with the
internal state. The Gumball Machine provides a good example: when the
gumball machine is in the NoQuarterState and you insert a quarter, you get
different behavior (the machine accepts the quarter) than if you insert a
quarter when it’s in the HasQuarterState (the machine rejects the quarter).
What about the second part of the definition? What does it mean for an object
to “appear to change its class”? Think about it from the perspective of a
client: if an object you’re using can completely change its behavior, then it
appears to you that the object is actually instantiated from another class. In
reality, however, you know that we are using composition to give the
appearance of a class change by simply referencing different state objects.
Okay, now it’s time to check out the State Pattern class diagram:

You’ve got a good eye! Yes, the class diagrams are essentially the same, but

the two patterns differ in their intent.
With the State Pattern, we have a set of behaviors encapsulated in state
objects; at any time the context is delegating to one of those states. Over
time, the current state changes across the set of state objects to reflect the
internal state of the context, so the context’s behavior changes over time as
well. The client usually knows very little, if anything, about the state objects.
With Strategy, the client usually specifies the strategy object that the context
is composed with. Now, while the pattern provides the flexibility to change
the strategy object at runtime, often there is a strategy object that is most
appropriate for a context object. For instance, in Chapter 1, some of our
ducks were configured to fly with typical flying behavior (like mallard
ducks), while others were configured with a fly behavior that kept them
grounded (like rubber ducks and decoy ducks).
In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class, then
you’re stuck with that behavior even if you need to change it. With Strategy
you can change the behavior by composing with a different object.
Think of the State Pattern as an alternative to putting lots of conditionals in
your context; by encapsulating the behaviors within state objects, you can
simply change the state object in context to change its behavior.

THERE ARE NO DUMB QUESTIONS

Q: Q: In the GumballMachine, the states decide what the next state should be. Do the ConcreteStates always
decide what state to go to next?

A: A: No, not always. The alternative is to let the Context decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed they are appropriate for putting in the Context;
however, when the transitions are more dynamic, they are typically placed in the state classes themselves (for
instance, in the GumballMachine the choice of the transition to NoQuarter or SoldOut depended on the runtime
count of gumballs).

The disadvantage of having state transitions in the state classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a decision as to which classes are closed for modification —
the Context or the state classes — as the system evolves.

Q: Q: Do clients ever interact directly with the states?

A: A: No. The states are used by the Context to represent its internal state and behavior, so all requests to the states
come from the Context. Clients don’t directly change the state of the Context. It is the Context’s job to oversee its
state, and you don’t usually want a client changing the state of a Context without that Context’s knowledge.

Q: Q: If I have lots of instances of the Context in my application, is it possible to share the state objects across
them?

A: A: Yes, absolutely, and in fact this is a very common scenario. The only requirement is that your state objects do
not keep their own internal context; otherwise, you’d need a unique instance per context.

To share your states, you’ll typically assign each state to a static instance variable. If your state needs to make use
of methods or instance variables in your Context, you’ll also have to give it a reference to the Context in each
handler() method.

Q: Q: It seems like using the State Pattern always increases the number of classes in our designs. Look how
many more classes our GumballMachine had than the original design!

A: A: You’re right, by encapsulating state behavior into separate state classes, you’ll always end up with more
classes in your design. That’s often the price you pay for flexibility. Unless your code is some “one off”
implementation you’re going to throw away (yeah, right), consider building it with the additional classes and
you’ll probably thank yourself down the road. Note that often what is important is the number of classes that you
expose to your clients, and there are ways to hide these extra classes from your clients (say, by declaring them
package visible).

Also, consider the alternative: if you have an application that has a lot of state and you decide not to use separate
objects, you’ll instead end up with very large, monolithic conditional statements. This makes your code hard to
maintain and understand. By using objects, you make states explicit and reduce the effort needed to understand
and maintain your code.

Q: Q: The State Pattern class diagram shows that State is an abstract class. But didn’t you use an interface in
the implementation of the gumball machine’s state?

A: A: Yes. Given we had no common functionality to put into an abstract class, we went with an interface. In your
own implementation, you might want to consider an abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the concrete state implementations.

We still need to finish the Gumball 1 in 10 game
Remember, we’re not done yet. We’ve got a game to implement, but now
that we’ve got the State Pattern implemented, it should be a breeze. First, we
need to add a state to the GumballMachine class:

Now let’s implement the WinnerState class; it’s remarkably similar to the
SoldState class:

Finishing the game
We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add
both to the HasQuarterState since that is where the customer turns the crank:

Wow, that was pretty simple to implement! We just added a new state to the
GumballMachine and then implemented it. All we had to do from there was
to implement our chance game and transition to the correct state. It looks like
our new code strategy is paying off...

Demo for the CEO of Mighty Gumball, Inc.
The CEO of Mighty Gumball has dropped by for a demo of your new
gumball game code. Let’s hope those states are all in order! We’ll keep the
demo short and sweet (the short attention span of CEOs is well documented),
but hopefully long enough so that we’ll win at least once.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: A: That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The
downside is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a
winner, and the state in which you’re not. So you are sacrificing clarity in your State class to reduce code
duplication. Another thing to consider is the principle you learned in the previous chapter: One class, One
responsibility. By putting the WinnerState responsibility into the SoldState, you’ve just given the SoldState TWO
responsibilities. What happens when the promotion ends? Or the stakes of the contest change? So, it’s a tradeoff
and comes down to a design decision.

Sanity check...
Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold
version:

We’ve got a lot of duplicate code in the Sold and Winning states and we
might want to clean those up. How would we do it? We could make State
into an abstract class and build in some default behavior for the methods;
after all, error messages like, “You already inserted a quarter,” aren’t
going to be seen by the customer. So all “error response” behavior could
be generic and inherited from the abstract State class.

NOTE

Dammit Jim, I’m a gumball machine, not a computer!

The dispense() method always gets called, even if the crank is turned
when there is no quarter. While the machine operates correctly and
doesn’t dispense unless it’s in the right state, we could easily fix this by
having turnCrank() return a boolean, or by introducing exceptions. Which

do you think is a better solution?
All of the intelligence for the state transitions is in the State classes. What
problems might this cause? Would we want to move that logic into the
Gumball Machine? What would be the advantages and disadvantages of
that?
Will you be instantiating a lot of GumballMachine objects? If so, you may
want to move the state instances into static instance variables and share
them. What changes would this require to the GumballMachine and the
States?

FIRESIDE CHATS

Tonight’s talk: A Strategy and State Pattern Reunion.

Strategy: State:

Hey bro. Did you hear I was in
Chapter 1?

 Yeah, word is definitely getting around.

I was just over giving the Template
Method guys a hand — they needed
me to help them finish off their
chapter. So, anyway, what is my noble
brother up to?

 Same as always — helping classes to exhibit different
behaviors in different states.

I don’t know, you always sound like
you’ve just copied what I do and
you’re using different words to
describe it. Think about it: I allow
objects to incorporate different
behaviors or algorithms through
composition and delegation. You’re
just copying me.

 I admit that what we do is definitely related, but my intent
is totally different than yours. And, the way I teach my
clients to use composition and delegation is totally
different.

Oh yeah? How so? I don’t get it.

 Well, if you spent a little more time thinking about

something other than yourself, you might. Anyway, think
about how you work: you have a class you’re instantiating
and you usually give it a strategy object that implements
some behavior. Like, in Chapter 1 you were handing out
quack behaviors, right? Real ducks got a real quack;
rubber ducks got a quack that squeaked.

Yeah, that was some fine work... and
I’m sure you can see how that’s more
powerful than inheriting your
behavior, right?

 Yes, of course. Now, think about how I work; it’s totally
different.

Sorry, you’re going to have to explain
that.

 Okay, when my Context objects get created, I may tell
them the state to start in, but then they change their own
state over time.

Hey, come on, I can change behavior
at runtime too; that’s what
composition is all about!

 Sure you can, but the way I work is built around discrete
states; my Context objects change state over time
according to some well-defined state transitions. In other
words, changing behavior is built in to my scheme — it’s
how I work!

Well, I admit, I don’t encourage my
objects to have a well-defined set of
transitions between states. In fact, I
typically like to control what strategy
my objects are using.

 Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the world
has uses for both of us.

Yeah, yeah, keep living your pipe
dreams, brother. You act like you’re a
big pattern like me, but check it out:
I’m in Chapter 1; they stuck you way
out in Chapter 10. I mean, how many
people are actually going to read this
far?

Are you kidding? This is a Head First book and Head First
readers rock. Of course they’re going to get to Chapter 10!

That’s my brother, always the
dreamer.

We almost forgot!

SHARPEN YOUR PENCIL

We need you to write the refill() method for the Gumball machine. It has one argument
— the number of gumballs you’re adding to the machine — and should update the
gumball machine count and reset the machine’s state.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

State Encapsulate interchangeable behaviors and use delegation to decide which
behavior to use.

Strategy Subclasses decide how to implement steps in an algorithm.

Template
Method

Encapsulate state-based behavior and delegate behavior to the current state.

Tools for your Design Toolbox
It’s the end of another chapter; you’ve got enough patterns here to breeze
through any job interview!

BULLET POINTS

The State Pattern allows an object to have many different behaviors that are based on
its internal state.
Unlike a procedural state machine, the State Pattern represents state as a full-blown
class.
The Context gets its behavior by delegating to the current state object it is composed
with.
By encapsulating each state into a class, we localize any changes that will need to be
made.
The State and Strategy Patterns have the same class diagram, but they differ in
intent.
Strategy Pattern typically configures Context classes with a behavior or algorithm.
State Pattern allows a Context to change its behavior as the state of the Context
changes.
State transitions can be controlled by the State classes or by the Context classes.
Using the State Pattern will typically result in a greater number of classes in your
design.
State classes may be shared among Context instances.

DESIGN PUZZLE SOLUTION

Draw a state diagram for a Gumball Machine that handles the 1-in-10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Here’s
our solution.

SHARPEN YOUR PENCIL SOLUTION

Which of the following describe the state of our implementation? (Choose all that
apply.) Here’s our solution.

A. This code certainly isn’t adhering to the Open Closed Principle.

B. This code would make a FORTRAN programmer proud.

C. This design isn’t even very object-oriented.

D. State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

E. We haven’t encapsulated anything that varies here.

F. Further additions are likely to cause bugs in working code.

SHARPEN YOUR PENCIL SOLUTION

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Here’s our solution.

public class SoldOutState implements State {

 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {

 this.gumballMachine = gumballMachine;

 }

 public void insertQuarter() {

 System.out.println("You can't insert a quarter, the machine is sold

out");

 }

 public void ejectQuarter() {

 System.out.println("You can't eject, you haven't inserted a quarter

yet");

 }

 public void turnCrank() {

 System.out.println("You turned, but there are no gumballs");

 }

 public void dispense() {

 System.out.println("No gumball dispensed");

 }

 public String toString() {

 return "sold out";

 }

}

NOTE

In the Sold Out state, we really can’t do anything until someone
refills the Gumball Machine.

SHARPEN YOUR PENCIL SOLUTION

To implement the states, we first need to define what the behavior will be when the
corresponding action is called. Annotate the diagram below with the behavior of each
action in each class; here’s our solution.

BEHIND THE SCENES: SELF-GUIDED TOUR SOLUTION

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

SHARPEN YOUR PENCIL SOLUTION

To refill the Gumball Machine, we add a refill() method to the State interface, which
each State must implement. In every state except the SoldOutState, the method does
nothing. In SoldOutState, refill() transitions to NoQuarterState. We also add a refill()
method to GumballMachine that adds to the count of gumballs, and then calls the current
state’s refill() method.

Chapter 11. The Proxy Pattern:
Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide all your
services in a nice and friendly manner, but you don’t want everyone asking
you for services, so you have the bad cop control access to you. That’s what
proxies do: control and manage access. As you’re going to see, there are lots
of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied
objects; they’ve also been known to patiently stand in the place for some
pretty lazy objects.

Sounds easy enough. If you remember, we’ve already got methods in the
gumball machine code for getting the count of gumballs (getCount()), and
getting the current state of the machine (getState()).
All we need to do is create a report that can be printed out and sent back to
the CEO. Hmmm, we should probably add a location field to each gumball
machine as well; that way the CEO can keep the machines straight.
Let’s just jump in and code this. We’ll impress the CEO with a very fast
turnaround.

Coding the Monitor
Let’s start by adding support to the GumballMachine class so that it can
handle locations:

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs, and current machine state and prints them in
a nice little report:

Testing the Monitor
We implemented that in no time. The CEO is going to be thrilled and amazed
by our development skills.
Now we just need to instantiate a GumballMonitor and give it a machine to
monitor:

Frank: A remote what?
Joe: Remote proxy. Think about it: we’ve already got the monitor code
written, right? We give the GumballMonitor a reference to a machine and it
gives us a report. The problem is that the monitor runs in the same JVM as
the gumball machine and the CEO wants to sit at his desk and remotely
monitor the machines! So what if we left our GumballMonitor class as is, but
handed it a proxy to a remote object?
Frank: I’m not sure I get it.
Jim: Me neither.
Joe: Let’s start at the beginning... a proxy is a stand in for a real object. In
this case, the proxy acts just like it is a Gumball Machine object, but behind
the scenes it is communicating over the network to talk to the real, remote
GumballMachine.
Jim: So you’re saying we keep our code as it is, and we give the monitor a
reference to a proxy version of the GumballMachine...
Frank: And this proxy pretends it’s the real object, but it’s really just
communicating over the net to the real object.
Joe: Yeah, that’s pretty much the story.

Frank: It sounds like something that is easier said than done.
Joe: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the
gumball machine can act as a service and accept requests over the network;
we also need to give our monitor a way to get a reference to a proxy object,
but we’ve got some great tools already built into Java to help us. Let’s talk a
little more about remote proxies first...

The role of the ‘remote proxy’
A remote proxy acts as a local representative to a remote object. What’s a
“remote object”? It’s an object that lives in the heap of a different Java
Virtual Machine (or more generally, a remote object that is running in a
different address space). What’s a “local representative”? It’s an object that
you can call local methods on and have them forwarded on to the remote
object.

Your client object acts like it’s making remote method calls. But what it’s really
doing is calling methods on a heap-local ‘proxy’ object that handles all the low-
level details of network communication.

BRAIN POWER

Before going further, think about how you’d design a system to enable remote method
invocation. How would you make it easy on the developer so that she has to write as
little code as possible? How would you make the remote invocation look seamless?

BRAIN POWER

Should making remote calls be totally transparent? Is that a good idea? What might be a
problem with that approach?

Adding a remote proxy to the Gumball Machine
monitoring code
On paper this looks good, but how do we create a proxy that knows how to
invoke a method on an object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right?
In other words, you can’t say:

Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the
code running the statement. So how do we approach this? Well, that’s where
Java’s Remote Method Invocation comes in... RMI gives us a way to find
objects in a remote JVM and allows us to invoke their methods.
You may have encountered RMI in Head First Java; if not, take a slight
detour and get up to speed on RMI before adding the proxy support to the
Gumball Machine code.
So, here’s what we’re going to do:

① First, we’re going to take the RMI Detour and check RMI out.
Even if you are familiar with RMI, you might want to follow along
and check out the scenery.

② Then we’re going to take our GumballMachine and make it a
remote service that provides a set of methods calls that can be invoked
remotely.
③ Then, we going to create a proxy that can talk to a remote
GumballMachine, again using RMI, and put the monitoring system
back together so that the CEO can monitor any number of remote
machines.

Remote methods 101

Let’s say we want to design a system that allows us to call a local object that
forwards each request to a remote object. How would we design it? We’d
need a couple of helper objects that actually do the communicating for us.
The helpers make it possible for the client to act as though it’s calling a
method on a local object (which in fact, it is). The client calls a method on the
client helper, as if the client helper were the actual service. The client helper
then takes care of forwarding that request for us.
In other words, the client object thinks it’s calling a method on the remote
service, because the client helper is pretending to be the service object.
Pretending to be the thing with the method the client wants to call.
But the client helper isn’t really the remote service. Although the client
helper acts like it (because it has the same method that the service is
advertising), the client helper doesn’t have any of the actual method logic the
client is expecting. Instead, the client helper contacts the server, transfers
information about the method call (e.g., name of the method, arguments,
etc.), and waits for a return from the server.
On the server side, the service helper receives the request from the client
helper (through a Socket connection), unpacks the information about the call,
and then invokes the real method on the real service object. So, to the service
object, the call is local. It’s coming from the service helper, not a remote
client.
The service helper gets the return value from the service, packs it up, and
ships it back (over a Socket’s output stream) to the client helper. The client
helper unpacks the information and returns the value to the client object.

NOTE

This should look familiar...

How the method call happens
① Client object calls doBigThing() on the client helper object.

② Client helper packages up information about the call (arguments,
method name, etc.) and ships it over the network to the service helper.

③ Service helper unpacks the information from the client helper, finds out
which method to call (and on which object) and invokes the real method
on the real service object.

④ The method is invoked on the service object, which returns some result
to the service helper.

⑤ Service helper packages up information returned from the call and
ships it back over the network to the client helper.

⑥ Client helper unpackages the returned values and returns them to the
client object. To the client object, this was all transparent.

Java RMI, the Big Picture
Okay, you’ve got the gist of how remote methods work; now you just need to
understand how to use RMI to enable remote method invocation.
What RMI does for you is build the client and service helper objects, right
down to creating a client helper object with the same methods as the remote
service. The nice thing about RMI is that you don’t have to write any of the
networking or I/O code yourself. With your client, you call remote methods
(i.e., the ones the Real Service has) just like normal method calls on objects
running in the client’s own local JVM.
RMI also provides all the runtime infrastructure to make it all work,
including a lookup service that the client can use to find and access the
remote objects.
There is one difference between RMI calls and local (normal) method calls.
Remember that even though to the client it looks like the method call is local,
the client helper sends the method call across the network. So there is
networking and I/O. And what do we know about networking and I/O
methods?
They’re risky! They can fail! And so, they throw exceptions all over the
place. As a result, the client does have to acknowledge the risk. We’ll see
how in a few pages.
RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the service
helper is a ‘skeleton’.

Now let’s go through all the steps needed to make an object into a service
that can accept remote calls and also the steps needed to allow a client to
make remote calls.
You might want to make sure your seat belt is fastened; there are a lot of
steps and a few bumps and curves — but nothing to be too worried about.
Making the Remote service

This is an overview of the five steps for making the remote service. In other
words, the steps needed to take an ordinary object and supercharge it so it can
be called by a remote client. We’ll be doing this later to our
GumballMachine. For now, let’s get the steps down and then we’ll explain
each one in detail.
Step one:

Make a Remote Interface
The remote interface defines the methods that a client can call remotely.
It’s what the client will use as the class type for your service. Both the
Stub and actual service will implement this!

Step two:
Make a Remote Implementation
This is the class that does the Real Work. It has the real implementation of
the remote methods defined in the remote interface. It’s the object that the
client wants to call methods on (e.g., our GumballMachine!).

Step three:
Start the RMI registry (rmiregistry)
The rmiregistry is like the white pages of a phone book. It’s where the
client goes to get the proxy (the client stub/helper object).

Step four:
Start the remote service
You have to get the service object up and running. Your service
implementation class instantiates an instance of the service and registers it
with the RMI registry. Registering it makes the service available for
clients.

Step one: make a Remote interface
① Extend java.rmi.Remote
Remote is a ‘marker’ interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice that
we say ‘extends’ here. One interface is allowed to extend another
interface.

② Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service.
In other words, the client invokes methods on something that implements
the remote interface. That something is the stub, of course, and since the
stub is doing networking and I/O, all kinds of Bad Things can happen. The
client has to acknowledge the risks by handling or declaring the remote
exceptions. If the methods in an interface declare exceptions, any code
calling methods on a reference of that type (the interface type) must
handle or declare the exceptions.

③ Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you’ll be fine. If you are passing around your own types, just be sure that
you make your classes implement Serializable.

NOTE

Check out Head First Java if you need to refresh your memory on Serializable.

Step two: make a Remote implementation

① Implement the Remote interface
Your service has to implement the remote interface — the one with the
methods your client is going to call.

② Extend UnicastRemoteObject
In order to work as a remote service object, your object needs some
functionality related to ‘being remote’. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that class
(your superclass) do the work for you.

③ Write a no-arg constructor that declares a RemoteException
Your new superclass, UnicastRemoteObject, has one little problem — its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation, just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that
your constructor also throws an exception.

④ Register the service with the RMI registry
Now that you’ve got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stub
in the registry, since that’s what the client really needs. Register your
service using the static rebind() method of the java.rmi.Naming class.

Step three: run rmiregistry
① Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access to your classes. The
simplest way is to start it from your classes directory.

Step four: start the service
① Bring up another terminal and start your service
This might be from a main() method in your remote implementation class,
or from a separate launcher class. In this simple example, we put the
starter code in the implementation class, in a main method that instantiates
the object and registers it with RMI registry.

WATCH IT!

Before Java 5, we had to generate static stubs and skeletons using rmic. Now, we
don’t have to do this anymore and in fact, we shouldn’t do it anymore, because
static stubs and skeletons are deprecated.

Instead, stubs and skeletons are generated dynamically. This happens automatically
when we subclass the UnicastRemoteObject (like we’re doing for the MyRemoteImpl
class).

THERE ARE NO DUMB QUESTIONS

Q: Q: Why are you showing stubs and skeletons in the diagrams for the RMI code? I thought we got rid of
those way back.

A: A: You’re right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote service
using reflection, and stubs are generated dynamically using Dynamic Proxy (which you’ll learn more about a bit
later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an invocation handler)
that is automatically generated to handle all the details of getting the local method calls by the client to the remote
object. But we like to show both the stub and skeleton, because conceptually it helps you to understand that there
is something under the covers that’s making that communication between the client stub and the remote service
happen.

Complete code for the server side

The Remote interface:

The Remote service (the implementation):

How does the client get the stub object?
The client has to get the stub object (our proxy), since that’s the thing the

client will call methods on. And that’s where the RMI registry comes in. The
client does a ‘lookup’, like going to the white pages of a phone book, and
essentially says, “Here’s a name, and I’d like the stub that goes with that
name.”
Let’s take a look at the code we need to look-up and retrieve a stub object.

CODE UP CLOSE

NOTE

Here’s how it works.

How it works...
① Client does a lookup on the RMI registry

Naming.lookup("rmi://127.0.0.1/RemoteHello");

② RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically.
③ Client invokes a method on the stub, as if the stub IS the real
service

Complete client code

WATCH IT!

The things programmers do wrong with RMI are:

1. Forget to start rmiregistry before starting remote service (when the service is
registered using Naming.rebind(), the rmiregistry must be running!)

2. Forget to make arguments and return types serializable (you won’t know until
runtime; this is not something the compiler will detect.)

Back to our GumballMachine remote proxy
Okay, now that you have the RMI basics down, you’ve got the tools you need
to implement the gumball machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:

Getting the GumballMachine ready to be a remote
service
The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1. Create a remote interface for the GumballMachine. This will provide a
set of methods that can be called remotely.

2. Make sure all the return types in the interface are serializable.
3. Implement the interface in a concrete class.

We’ll start with the remote interface:

We have one return type that isn’t Serializable: the State class. Let’s fix it
up...

Actually, we’re not done with Serializable yet; we have one problem with
State. As you may remember, each State object maintains a reference to a
gumball machine so that it can call the gumball machine’s methods and
change its state. We don’t want the entire gumball machine serialized and
transferred with the State object. There is an easy way to fix this:

We’ve already implemented our GumballMachine, but we need to make sure

it can act as a service and handle requests coming from over the network. To
do that, we have to make sure the GumballMachine is doing everything it
needs to implement the GumballMachineRemote interface.
As you’ve already seen in the RMI detour, this is quite simple; all we need to
do is add a couple of things...

Registering with the RMI registry...
That completes the gumball machine service. Now we just need to fire it up
so it can receive requests. First, we need to make sure we register it with the
RMI registry so that clients can locate it.
We’re going to add a little code to the test drive that will take care of this for
us:

Let’s go ahead and get this running...

Now for the GumballMonitor client...
Remember the GumballMonitor? We wanted to reuse it without having to
rewrite it to work over a network. Well, we’re pretty much going to do that,
but we do need to make a few changes.

Writing the Monitor test drive
Now we’ve got all the pieces we need. We just need to write some code so
the CEO can monitor a bunch of gumball machines:

CODE UP CLOSE

Another demo for the CEO of Mighty Gumball...
Okay, it’s time to put all this work together and give another demo. First let’s
make sure a few gumball machines are running the new code:

And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it

By invoking methods on the proxy, we make a remote call across the wire, and get
back a String, an integer, and a State object. Because we are using a proxy, the
GumballMonitor doesn’t know, or care, that calls are remote (other than having
to worry about remote exceptions).

BEHIND THE SCENES

① The CEO runs the monitor, which first grabs the proxies to the remote gumball
machines and then calls getState() on each one (along with getCount() and
getLocation()).

② getState() is called on the proxy, which forwards the call to the remote service.
The skeleton receives the request and then forwards it to the gumball machine.

③ GumballMachine returns the state to the skeleton, which serializes it and transfers
it back over the wire to the proxy. The proxy deserializes it and returns it as an object
to the monitor.

NOTE

We also have a small bit of code to register and locate stubs using
the RMI registry. But no matter what, if we were writing
something to work over the Internet, we’d need some kind of
locator service.

The Proxy Pattern defined
We’ve already put a lot of pages behind us in this chapter; as you can see,
explaining the Remote Proxy is quite involved. Despite that, you’ll see that
the definition and class diagram for the Proxy Pattern is actually fairly

straightforward. Note that Remote Proxy is one implementation of the
general Proxy Pattern; there are actually quite a few variations of the pattern,
and we’ll talk about them later. For now, let’s get the details of the general
pattern down.
Here’s the Proxy Pattern definition:

Use the Proxy Pattern to create a representative object that controls access to
another object, which may be remote, expensive to create, or in need of securing.

NOTE

The Proxy Pattern provides a surrogate or placeholder for another object to control
access to it.

Well, we’ve seen how the Proxy Pattern provides a surrogate or placeholder
for another object. We’ve also described the proxy as a “representative” for
another object.
But what about a proxy controlling access? That sounds a little strange. No
worries. In the case of the gumball machine, just think of the proxy
controlling access to the remote object. The proxy needed to control access
because our client, the monitor, didn’t know how to talk to a remote object.
So in some sense the remote proxy controlled access so that it could handle
the network details for us. As we just discussed, there are many variations of
the Proxy Pattern, and the variations typically revolve around the way the
proxy “controls access.” We’re going to talk more about this later, but for
now here are a few ways proxies control access:

As we know, a remote proxy controls access to a remote object.
A virtual proxy controls access to a resource that is expensive to create.
A protection proxy controls access to a resource based on access rights.

Now that you’ve got the gist of the general pattern, check out the class
diagram...

Let’s step through the diagram...
First we have a Subject, which provides an interface for the RealSubject and
the Proxy. By implementing the same interface, the Proxy can be substituted
for the RealSubject anywhere it occurs.
The RealSubject is the object that does the real work. It’s the object that the
Proxy represents and controls access to.
The Proxy holds a reference to the RealSubject. In some cases, the Proxy
may be responsible for creating and destroying the RealSubject. Clients
interact with the RealSubject through the Proxy. Because the Proxy and
RealSubject implement the same interface (Subject), the Proxy can be
substituted anywhere the subject can be used. The Proxy also controls access
to the RealSubject; this control may be needed if the Subject is running on a
remote machine, if the Subject is expensive to create in some way or if access
to the subject needs to be protected in some way.
Now that you understand the general pattern, let’s look at some other ways of

using proxy beyond the Remote Proxy...

Get ready for Virtual Proxy
Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken
a look at one specific example: the Remote Proxy. Now we’re going to take a
look at a different type of proxy, the Virtual Proxy. As you’ll discover, the
Proxy Pattern can manifest itself in many forms, yet all the forms follow
roughly the general proxy design. Why so many forms? Because the Proxy
Pattern can be applied to a lot of different use cases. Let’s check out the
Virtual Proxy and compare it to Remote Proxy:

Remote Proxy
With Remote Proxy, the proxy acts as a local representative for an object that
lives in a different JVM. A method call on the proxy results in the call being
transferred over the wire, invoked remotely, and the result being returned
back to the proxy and then to the Client.

Virtual Proxy
Virtual Proxy acts as a representative for an object that may be expensive to
create. The Virtual Proxy often defers the creation of the object until it is
needed; the Virtual Proxy also acts as a surrogate for the object before and
while it is being created. After that, the proxy delegates requests directly to
the RealSubject.

Displaying CD covers
Let’s say you want to write an application that displays your favorite compact
disc covers. You might create a menu of the CD titles and then retrieve the
images from an online service like Amazon.com. If you’re using Swing, you
might create an Icon and ask it to load the image from the network. The only
problem is, depending on the network load and the bandwidth of your
connection, retrieving a CD cover might take a little time, so your application
should display something while you are waiting for the image to load. We
also don’t want to hang up the entire application while it’s waiting on the
image. Once the image is loaded, the message should go away and you
should see the image.
An easy way to achieve this is through a virtual proxy. The virtual proxy can
stand in place of the icon, manage the background loading, and before the
image is fully retrieved from the network, display “Loading CD cover, please
wait...”. Once the image is loaded, the proxy delegates the display to the Icon.

Designing the CD cover Virtual Proxy
Before writing the code for the CD Cover Viewer, let’s look at the class
diagram. You’ll see this looks just like our Remote Proxy class diagram, but
here the proxy is used to hide an object that is expensive to create (because
we need to retrieve the data for the Icon over the network) as opposed to an
object that actually lives somewhere else on the network.

How ImageProxy is going to work
① ImageProxy first creates an ImageIcon and starts loading it from a
network URL.
② While the bytes of the image are being retrieved, ImageProxy
displays “Loading CD cover, please wait...”.
③ When the image is fully loaded, ImageProxy delegates all method
calls to the image icon, including paintIcon(), getWidth() and
getHeight().
④ If the user requests a new image, we’ll create a new proxy and
start the process over.

Writing the Image Proxy

CODE UP CLOSE

CODE WAY UP CLOSE

NOTE

So, the next time the display is painted after the ImageIcon is instantiated, the paintIcon
method will paint the image, not the loading message.

DESIGN PUZZLE

The ImageProxy class appears to have two states that are controlled by conditional
statements. Can you think of another pattern that might clean up this code? How would
you redesign ImageProxy?

Testing the CD Cover Viewer

READY BAKE CODE

Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes we’ve been
baking up a new ImageProxyTestDrive that sets up the window, creates a frame, installs
the menus and creates our proxy. We don’t go through all that code in gory detail here,
but you can always grab the source code and have a look, or check it out at the end of
the chapter where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

Now let’s run the test drive:

Things to try...
① Use the menu to load different CD covers; watch the proxy display
“loading” until the image has arrived.
② Resize the window as the “loading” message is displayed. Notice that
the proxy is handling the loading without hanging up the Swing window.
③ Add your own favorite CDs to the ImageProxyTestDrive.

What did we do?

BEHIND THE SCENES

① We created an ImageProxy for the display. The paintIcon() method is called and

ImageProxy fires off a thread to retrieve the image and create the ImageIcon.

② At some point the image is returned and the ImageIcon fully instantiated.
③ After the ImageIcon is created, the next time paintIcon() is called, the proxy
delegates to the ImageIcon.

THERE ARE NO DUMB QUESTIONS

Q: Q: The Remote Proxy and Virtual Proxy seem so different to me; are they really ONE pattern?

A: A: You’ll find a lot of variants of the Proxy Pattern in the real world; what they all have in common is that they
intercept a method invocation that the client is making on the subject. This level of indirection allows us to do
many things, including dispatching requests to a remote subject, providing a representative for an expensive

object as it is created, or, as you’ll see, providing some level of protection that can determine which clients should
be calling which methods. That’s just the beginning; the general Proxy Pattern can be applied in many different
ways, and we’ll cover some of the other ways at the end of the chapter.

Q: Q: ImageProxy seems just like a Decorator to me. I mean, we are basically wrapping one object with
another and then delegating the calls to the ImageIcon. What am I missing?

A: A: Sometimes Proxy and Decorator look very similar, but their purposes are different: a decorator adds behavior
to a class, while a proxy controls access to it. You might ask, “Isn’t the loading message adding behavior?” In
some ways it is; however, more importantly, the ImageProxy is controlling access to an ImageIcon. How does it
control access? Well, think about it this way: the proxy is decoupling the client from the ImageIcon. If they were
coupled the client would have to wait until each image is retrieved before it could paint its entire interface. The
proxy controls access to the ImageIcon so that before it is fully created, the proxy provides another on screen
representation. Once the ImageIcon is created the proxy allows access.

Q: Q: How do I make clients use the Proxy rather than the Real Subject?

A: A: Good question. One common technique is to provide a factory that instantiates and returns the subject.
Because this happens in a factory method we can then wrap the subject with a proxy before returning it. The client
never knows or cares that it’s using a proxy instead of the real thing.

Q: Q: I noticed in the ImageProxy example, you always create a new ImageIcon to get the image, even if the
image has already been retrieved. Could you implement something similar to the ImageProxy that caches
past retrievals?

A: A: You are talking about a specialized form of a Virtual Proxy called a Caching Proxy. A caching proxy
maintains a cache of previously created objects and when a request is made it returns cached object, if possible.
We’re going to look at this and at several other variants of the Proxy Pattern at the end of the chapter.

Q: Q: I see how Decorator and Proxy relate, but what about Adapter? An adapter seems very similar as well.

A: A: Both Proxy and Adapter sit in front of other objects and forward requests to them. Remember that Adapter
changes the interface of the objects it adapts, while the Proxy implements the same interface.
There is one additional similarity that relates to the Protection Proxy. A Protection Proxy may allow or disallow a
client access to particular methods in an object based on the role of the client. In this way a Protection Proxy may
only provide a partial interface to a client, which is quite similar to some Adapters. We are going to take a look at
Protection Proxy in a few pages.

FIRESIDE CHATS

Tonight’s talk: Proxy and Decorator get intentional.

Proxy: Decorator:

Hello, Decorator. I presume you’re here because
people sometimes get us confused?

 Well, I think the reason people get us confused
is that you go around pretending to be an
entirely different pattern, when in fact, you’re
just a Decorator in disguise. I really don’t think
you should be copying all my ideas.

Me copying your ideas? Please. I control access
to objects. You just decorate them. My job is so
much more important than yours it’s just not
even funny.

 “Just” decorate? You think decorating is some
frivolous, unimportant pattern? Let me tell you
buddy, I add behavior. That’s the most
important thing about objects — what they do!

Fine, so maybe you’re not entirely frivolous...
but I still don’t get why you think I’m copying
all your ideas. I’m all about representing my
subjects, not decorating them.

 You can call it “representation” but if it looks
like a duck and walks like a duck... I mean, just
look at your Virtual Proxy; it’s just another way
of adding behavior to do something while some
big expensive object is loading, and your
Remote Proxy is a way of talking to remote
objects so your clients don’t have to bother with
that themselves. It’s all about behavior, just like
I said.

I don’t think you get it, Decorator. I stand in for
my Subjects; I don’t just add behavior. Clients
use me as a surrogate of a Real Subject, because
I can protect them from unwanted access, or
keep their GUIs from hanging up while they’re
waiting for big objects to load, or hide the fact
that their Subjects are running on remote
machines. I’d say that’s a very different intent
from yours!

 Call it what you want. I implement the same
interface as the objects I wrap; so do you.

Okay, let’s review that statement. You wrap an
object. While sometimes we informally say a
proxy wraps its Subject, that’s not really an
accurate term.

 Oh yeah? Why not?

Think about a remote proxy... what object am I
wrapping? The object I’m representing and
controlling access to lives on another machine!
Let’s see you do that.

 Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.

Sure, okay, take a virtual proxy... think about the
CD viewer example. When the client first uses

me as a proxy the subject doesn’t even exist! So
what am I wrapping there?

 Uh huh, and the next thing you’ll be saying is
that you actually get to create objects.

I never knew decorators were so dumb! Of
course I sometimes create objects. How do you
think a virtual proxy gets its subject?! Okay, you
just pointed out a big difference between us: we
both know decorators only add window
dressing; they never get to instantiate anything.

 Oh yeah? Instantiate this!

Hey, after this conversation I’m convinced
you’re just a dumb proxy!

 Dumb proxy? I’d like to see you recursively
wrap an object with 10 decorators and keep your
head straight at the same time.

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if
you’re wrapping something 10 times, you better
go back reexamine your design.

 Just like a proxy, acting all real when in fact you
just stand in for the objects doing the real work.
You know, I actually feel sorry for you.

Using the Java API’s Proxy to create a protection proxy
Java’s got its own proxy support right in the java.lang.reflect package. With
this package, Java lets you create a proxy class on the fly that implements one
or more interfaces and forwards method invocations to a class that you
specify. Because the actual proxy class is created at runtime, we refer to this
Java technology as a dynamic proxy.

We’re going to use Java’s dynamic proxy to create our next proxy
implementation (a protection proxy), but before we do that, let’s quickly look
at a class diagram that shows how dynamic proxies are put together. Like
most things in the real world, it differs slightly from the classic definition of
the pattern:

Because Java creates the Proxy class for you, you need a way to tell the
Proxy class what to do. You can’t put that code into the Proxy class like we
did before, because you’re not implementing one directly. So, if you can’t put
this code in the Proxy class, where do you put it? In an InvocationHandler.
The job of the InvocationHandler is to respond to any method calls on the
proxy. Think of the InvocationHandler as the object the Proxy asks to do all
the real work after it’s received the method calls.
Okay, let’s step through how to use the dynamic proxy...

Matchmaking in Objectville

Every town needs a matchmaking service, right? You’ve risen to the task and

implemented a dating service for Objectville. You’ve also tried to be
innovative by including a “Hot or Not” feature in the service where
participants can rate each other — you figure this keeps your customers
engaged and looking through possible matches; it also makes things a lot
more fun.
Your service revolves around a PersonBean that allows you to set and get
information about a person:

Now let’s check out the implementation...

The PersonBean implementation

While we suspect other factors may be keeping Elroy from getting dates, he
is right: you shouldn’t be able to vote for yourself or to change another
customer’s data. The way our PersonBean is defined, any client can call any
of the methods.
This is a perfect example of where we might be able to use a Protection
Proxy. What’s a Protection Proxy? It’s a proxy that controls access to an
object based on access rights. For instance, if we had an employee object, a
Protection Proxy might allow the employee to call certain methods on the
object, a manager to call additional methods (like setSalary()), and a human
resources employee to call any method on the object.
In our dating service we want to make sure that a customer can set his own

information while preventing others from altering it. We also want to allow
just the opposite with the HotOrNot ratings: we want the other customers to
be able to set the rating, but not that particular customer. We also have a
number of getter methods in the PersonBean, and because none of these
return private information, any customer should be able to call them.

Five-minute drama: protecting subjects

The Internet bubble seems a distant memory; those were the days when all
you needed to do to find a better, higher-paying job was to walk across the
street. Even agents for software developers were in vogue...

