
information while preventing others from altering it. We also want to allow
just the opposite with the HotOrNot ratings: we want the other customers to
be able to set the rating, but not that particular customer. We also have a
number of getter methods in the PersonBean, and because none of these
return private information, any customer should be able to call them.

Five-minute drama: protecting subjects

The Internet bubble seems a distant memory; those were the days when all
you needed to do to find a better, higher-paying job was to walk across the
street. Even agents for software developers were in vogue...

Big Picture: creating a Dynamic Proxy for the
PersonBean
We have a couple of problems to fix: customers shouldn’t be changing their
own HotOrNot rating and customers shouldn’t be able to change other
customers’ personal information. To fix these problems we’re going to create
two proxies: one for accessing your own PersonBean object and one for
accessing another customer’s PersonBean object. That way, the proxies can
control what requests can be made in each circumstance.

To create these proxies we’re going to use the Java API’s dynamic proxy that
you saw a few pages back. Java will create two proxies for us; all we need to
do is supply the handlers that know what to do when a method is invoked on
the proxy.

Step one:
Create two InvocationHandlers.
InvocationHandlers implement the behavior of the proxy. As you’ll see,
Java will take care of creating the actual proxy class and object; we just
need to supply a handler that knows what to do when a method is called
on it.

Step two:
Write the code that creates the dynamic proxies.
We need to write a little bit of code to generate the proxy class and
instantiate it. We’ll step through this code in just a bit.

Step three:
Wrap any PersonBean object with the appropriate proxy.
When we need to use a PersonBean object, either it’s the object of the
customer himself (in that case, will call him the “owner”), or it’s another
user of the service that the customer is checking out (in that case we’ll call
him “non-owner”).
In either case, we create the appropriate proxy for the PersonBean.

Step one: creating Invocation Handlers
We know we need to write two invocation handlers, one for the owner and
one for the non-owner. But what are invocation handlers? Here’s the way to
think about them: when a method call is made on the proxy, the proxy
forwards that call to your invocation handler, but not by calling the
invocation handler’s corresponding method. So, what does it call? Have a
look at the InvocationHandler interface:

There’s only one method, invoke(), and no matter what methods get called on
the proxy, the invoke() method is what gets called on the handler. Let’s see
how this works:

Creating Invocation Handlers continued...
When invoke() is called by the proxy, how do you know what to do with the
call? Typically, you’ll examine the method that was called on the proxy and
make decisions based on the method’s name and possibly its arguments.
Let’s implement the OwnerInvocationHandler to see how this works:

EXERCISE

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setHotOrNotRating() and it disallows calls to any other set method.
Go ahead and write this handler yourself:

Step two: creating the Proxy class and instantiating the
Proxy object
Now, all we have left is to dynamically create the Proxy class and instantiate
the proxy object. Let’s start by writing a method that takes a PersonBean and

knows how to create an owner proxy for it. That is, we’re going to create the
kind of proxy that forwards its method calls to the OwnerInvocationHandler.
Here’s the code:

SHARPEN YOUR PENCIL

While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t
you write getNonOwnerProxy(), which returns a proxy for the
NonOwnerInvocationHandler:

Take it further: can you write one method getProxy() that takes a handler and a person
and returns a proxy that uses that handler?

Testing the matchmaking service
Let’s give the matchmaking service a test run and see how it controls access
to the setter methods based on the proxy that is used.

Running the code...

THERE ARE NO DUMB QUESTIONS

Q: Q: So what exactly is the “dynamic” aspect of dynamic proxies? Is it that I’m instantiating the proxy and
setting it to a handler at runtime?

A: A: No, the proxy is dynamic because its class is created at runtime. Think about it: before your code runs there is
no proxy class; it is created on demand from the set of interfaces you pass it.

Q: Q: My InvocationHandler seems like a very strange proxy, it doesn’t implement any of the methods of the
class it’s proxying.

A: A: That is because the InvocationHandler isn’t a proxy — it is a class that the proxy dispatches to for handling
method calls. The proxy itself is created dynamically at runtime by the static Proxy.newProxyInstance() method.

Q: Q: Is there any way to tell if a class is a Proxy class?

A: A: Yes. The Proxy class has a static method called isProxyClass(). Calling this method with a class will return
true if the class is a dynamic proxy class. Other than that, the proxy class will act like any other class that
implements a particular set of interfaces.

Q: Q: Are there any restrictions on the types of interfaces I can pass into newProxyInstance()?

A: A: Yes, there are a few. First, it is worth pointing out that we always pass newProxyInstance() an array of
interfaces — only interfaces are allowed, no classes. The major restrictions are that all non-public interfaces need
to be from the same package. You also can’t have interfaces with clashing method names (that is, two interfaces
with a method with the same signature). There are a few other minor nuances as well, so at some point you should
take a look at the fine print on dynamic proxies in the javadoc.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Decorator Wraps another object and provides a different interface to it.

Facade Wraps another object and provides additional behavior for it.

Proxy Wraps another object to control access to it.

Adapter Wraps a bunch of objects to simplify their interface.

The Proxy Zoo
Welcome to the Objectville Zoo!

You now know about the remote, virtual and protection proxies, but out in
the wild you’re going to see lots of mutations of this pattern. Over here in the
Proxy corner of the zoo we’ve got a nice collection of wild proxy patterns
that we’ve captured for your study.
Our job isn’t done; we are sure you’re going to see more variations of this
pattern in the real world, so give us a hand in cataloging more proxies. Let’s
take a look at the existing collection:

NOTE

Field Notes: please add your observations of other proxies in the wild here:

__
__
__
__
__

DESIGN PATTERNS CROSSWORD

It’s been a LONG chapter. Why not unwind by doing a crossword puzzle before it ends?

Across Down

1. Our first mistake: the gumball machine
reporting was not _________.

5. Commonly used proxy for web services
(two words).

7. Objectville matchmaking gimmick (three
words).

11. A _______ proxy class is created at
runtime.

13. Java’s dynamic proxy forwards all
requests to this (two words).

16. In RMI, the object that takes the
network requests on the service side.

17. The CD viewer used this kind of proxy.

2. Remote _________ was used to implement the
gumball machine monitor (two words).

3. Similar to proxy, but with a different purpose.

4. Place to learn about the many proxy variants.

6. Proxy that protects method calls from
unauthorized callers.

8. This utility acts as a lookup service for RMI.

9. Why Elroy couldn’t get dates.

10. Software developer agent was being this kind of
proxy.

12. In RMI, the proxy is called this.

14. Proxy that stands in for expensive objects.

15. We took one of these to learn RMI.

Tools for your Design Toolbox

Your design toolbox is almost full; you’re prepared for almost any design
problem that comes your way.

BULLET POINTS

The Proxy Pattern provides a representative for another object in order to control the
client’s access to it. There are a number of ways it can manage that access.
A Remote Proxy manages interaction between a client and a remote object.
A Virtual Proxy controls access to an object that is expensive to instantiate.
A Protection Proxy controls access to the methods of an object based on the caller.
Many other variants of the Proxy Pattern exist including caching proxies,
synchronization proxies, firewall proxies, copy-on-write proxies, and so on.
Proxy is structurally similar to Decorator, but the two differ in their purpose.
The Decorator Pattern adds behavior to an object, while a Proxy controls access.
Java’s built-in support for Proxy can build a dynamic proxy class on demand and
dispatch all calls on it to a handler of your choosing.
Like any wrapper, proxies will increase the number of classes and objects in your
designs.

EXERCISE SOLUTION

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setHotOrNotRating() and it disallows calls to any other set method.
Here’s our solution:

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler {

 PersonBean person;

 public NonOwnerInvocationHandler(PersonBean person) {

 this.person = person;

 }

 public Object invoke(Object proxy, Method method, Object[] args)

 throws IllegalAccessException {

 try {

 if (method.getName().startsWith("get")) {

 return method.invoke(person, args);

 } else if (method.getName().equals("setHotOrNotRating")) {

 return method.invoke(person, args);

 } else if (method.getName().startsWith("set")) {

 throw new IllegalAccessException();

 }

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 return null;

 }

}

DESIGN PUZZLE SOLUTION

The ImageProxy class appears to have two states that are controlled by conditional
statements. Can you think of another pattern that might clean up this code? How would
you redesign ImageProxy?

Use State Pattern: implement two states, ImageLoaded and ImageNotLoaded. Then put
the code from the if statements into their respective states. Start in the ImageNotLoaded
state and then transition to the ImageLoaded state once the ImageIcon had been
retrieved.

SHARPEN YOUR PENCIL SOLUTION

While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t
you write getNonOwnerProxy(), which returns a proxy for the
NonOwnerInvocationHandler. Here’s our solution:

PersonBean getNonOwnerProxy(PersonBean person) {

 return (PersonBean) Proxy.newProxyInstance(

 person.getClass().getClassLoader(),

 person.getClass().getInterfaces(),

 new NonOwnerInvocationHandler(person));

}

DESIGN PATTERNS CROSSWORD SOLUTION

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

The code for the CD Cover Viewer

READY BAKE CODE
package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

public class ImageProxyTestDrive {

 ImageComponent imageComponent;

 JFrame frame = new JFrame("CD Cover Viewer");

 JMenuBar menuBar;

 JMenu menu;

 Hashtable<String, String> cds = new Hashtable<String, String>();

 public static void main (String[] args) throws Exception {

 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();

 }

 public ImageProxyTestDrive() throws Exception{

 cds.put("Buddha

Bar","http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.

jpg");

cds.put("Ima","http://images.amazon.com/images/P/B000005IRM.01.LZZZZZZZ.jpg");

cds.put("Karma","http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ.gif");

 cds.put("MCMXC

A.D.","http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.

jpg");

 cds.put("Northern

Exposure","http://images.amazon.com/images/P/B000003SFN.01.

LZZZZZZZ.jpg");

 cds.put("Selected Ambient Works, Vol.

2","http://images.amazon.com/images/P/

B000002MNZ.01.LZZZZZZZ.jpg");

 URL initialURL = new URL((String)cds.get("Selected Ambient Works, Vol.

2"));

 menuBar = new JMenuBar();

 menu = new JMenu("Favorite CDs");

 menuBar.add(menu);

 frame.setJMenuBar(menuBar);

 for(Enumeration e = cds.keys(); e.hasMoreElements();) {

 String name = (String)e.nextElement();

 JMenuItem menuItem = new JMenuItem(name);

 menu.add(menuItem);

 menuItem.addActionListener(event -> {

 imageComponent.setIcon(new

ImageProxy(getCDUrl(event.getActionCommand())));

 frame.repaint();

 });

 }

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);

 imageComponent = new ImageComponent(icon);

 frame.getContentPane().add(imageComponent);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(800,600);

 frame.setVisible(true);

 }

 URL getCDUrl(String name) {

 try {

 return new URL((String)cds.get(name));

 } catch (MalformedURLException e) {

 e.printStackTrace();

 return null;

 }

 }

}

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;

import java.awt.*;

import javax.swing.*;

class ImageProxy implements Icon {

 volatile ImageIcon imageIcon;

 final URL imageURL;

 Thread retrievalThread;

 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }

 public int getIconWidth() {

 if (imageIcon != null) {

 return imageIcon.getIconWidth();

 } else {

 return 800;

 }

 }

 public int getIconHeight() {

 if (imageIcon != null) {

 return imageIcon.getIconHeight();

 } else {

 return 600;

 }

 }

 synchronized void setImageIcon(ImageIcon imageIcon) {

 this.imageIcon = imageIcon;

 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {

 if (imageIcon != null) {

 imageIcon.paintIcon(c, g, x, y);

 } else {

 g.drawString("Loading CD cover, please wait...", x+300, y+190);

 if (!retrieving) {

 retrieving = true;

 retrievalThread = new Thread(new Runnable() {

 public void run() {

 try {

 setImageIcon(new ImageIcon(imageURL, "CD Cover"));

 c.repaint();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 retrievalThread.start();

 }

 }

 }

}

package headfirst.designpatterns.proxy.virtualproxy;

import java.awt.*;

import javax.swing.*;

class ImageComponent extends JComponent {

 private Icon icon;

 public ImageComponent(Icon icon) {

 this.icon = icon;

 }

 public void setIcon(Icon icon) {

 this.icon = icon;

 }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 int w = icon.getIconWidth();

 int h = icon.getIconHeight();

 int x = (800 - w)/2;

 int y = (600 - h)/2;

 icon.paintIcon(this, g, x, y);

 }

}

Chapter 12. Compound Patterns:
Patterns of Patterns

Who would have ever guessed that Patterns could work together?
You’ve already witnessed the acrimonious Fireside Chats (and you haven’t
even seen the Pattern Death Match pages that the editor forced us to remove
from the book[2]), so who would have thought patterns can actually get along
well together? Well, believe it or not, some of the most powerful OO designs
use several patterns together. Get ready to take your pattern skills to the next
level; it’s time for compound patterns.

Working together
One of the best ways to use patterns is to get them out of the house so they
can interact with other patterns. The more you use patterns the more you’re
going to see them showing up together in your designs. We have a special

name for a set of patterns that work together in a design that can be applied
over many problems: a compound pattern. That’s right, we are now talking
about patterns made of patterns!

You’ll find a lot of compound patterns in use in the real world. Now that
you’ve got patterns in your brain, you’ll see that they are really just patterns
working together, and that makes them easier to understand.
We’re going to start this chapter by revisiting our friendly ducks in the
SimUDuck duck simulator. It’s only fitting that the ducks should be here
when we combine patterns; after all, they’ve been with us throughout the
entire book and they’ve been good sports about taking part in lots of patterns.
The ducks are going to help you understand how patterns can work together
in the same solution. But just because we’ve combined some patterns doesn’t
mean we have a solution that qualifies as a compound pattern. For that, it has
to be a general-purpose solution that can be applied to many problems. So, in
the second half of the chapter we’ll visit a real compound pattern: that’s
right, Mr. Model-View-Controller himself. If you haven’t heard of him, you
will, and you’ll find this compound pattern is one of the most powerful
patterns in your design toolbox.

Patterns are often used together and combined within the same design solution.
A compound pattern combines two or more patterns into a solution that solves a
recurring or general problem.

Duck reunion
As you’ve already heard, we’re going to get to work with the ducks again.
This time the ducks are going to show you how patterns can coexist and even
cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some
interesting capabilities by using a bunch of patterns. Okay, let’s get started...

① First, we’ll create a Quackable interface.
Like we said, we’re starting from scratch. This time around, the Ducks are
going to implement a Quackable interface. That way we’ll know what
things in the simulator can quack() — like Mallard Ducks, Redhead
Ducks, Duck Calls, and we might even see the Rubber Duck sneak back
in.

② Now, some Ducks that implement Quackable
What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what
we mean).

This wouldn’t be much fun if we didn’t add other kinds of Ducks too.
Remember last time? We had duck calls (those things hunters use — they
are definitely quackable) and rubber ducks.

③ Okay, we’ve got our ducks; now all we need is a simulator.
Let’s cook up a simulator that creates a few ducks and makes sure their
quackers are working...

NOTE

They all implement the same Quackable interface, but their implementations allow
them to quack in their own way.

It looks like everything is working; so far, so good.
④ When ducks are around, geese can’t be far.
Where there is one waterfowl, there are probably two. Here’s a Goose
class that has been hanging around the simulator.

BRAIN POWER

Let’s say we wanted to be able to use a Goose anywhere we’d want to use a Duck.
After all, geese make noise; geese fly; geese swim. Why can’t we have Geese in the
simulator?

What pattern would allow Geese to easily intermingle with Ducks?

⑤ We need a goose adapter.
Our simulator expects to see Quackable interfaces. Since geese aren’t
quackers (they’re honkers), we can use an adapter to adapt a goose to a
duck.

⑥ Now geese should be able to play in the simulator, too.
All we need to do is create a Goose, wrap it in an adapter that implements
Quackable, and we should be good to go.

⑦ Now let’s give this a quick run....
This time when we run the simulator, the list of objects passed to the
simulate() method includes a Goose wrapped in a duck adapter. The
result? We should see some honking!

QUACKOLOGY

Quackologists are fascinated by all aspects of Quackable behavior. One thing
Quackologists have always wanted to study is the total number of quacks made by a
flock of ducks.

How can we add the ability to count duck quacks without having to change the duck
classes?

Can you think of a pattern that would help?

⑧ We’re going to make those Quackologists happy and give them
some quack counts.
How? Let’s create a decorator that gives the ducks some new behavior
(the behavior of counting) by wrapping them with a decorator object. We
won’t have to change the Duck code at all.

⑨ We need to update the simulator to create decorated ducks.
Now, we must wrap each Quackable object we instantiate in a
QuackCounter decorator. If we don’t, we’ll have ducks running around
making uncounted quacks.

You have to decorate objects to get decorated behavior.
He’s right, that’s the problem with wrapping objects: you have to make
sure they get wrapped or they don’t get the decorated behavior.
Why don’t we take the creation of ducks and localize it in one place; in
other words, let’s take the duck creation and decorating and encapsulate it.
What pattern does that sound like?
⑩ We need a factory to produce ducks!
Okay, we need some quality control to make sure our ducks get wrapped.
We’re going to build an entire factory just to produce them. The factory
should produce a family of products that consists of different types of
ducks, so we’re going to use the Abstract Factory Pattern.
Let’s start with the definition of the AbstractDuckFactory:

Let’s start by creating a factory that creates ducks without decorators, just
to get the hang of the factory:

Now let’s create the factory we really want, the CountingDuckFactory:

⑪ Let’s set up the simulator to use the factory.
Remember how Abstract Factory works? We create a polymorphic
method that takes a factory and uses it to create objects. By passing in
different factories, we get to use different product families in the method.
We’re going to alter the simulate() method so that it takes a factory and
uses it to create ducks.

NOTE

Here’s the output using the factory...

SHARPEN YOUR PENCIL

We’re still directly instantiating Geese by relying on concrete classes. Can you write an
Abstract Factory for Geese? How should it handle creating “goose ducks”?

Ah, he wants to manage a flock of ducks.
Here’s another good question from Ranger Brewer: Why are we managing
ducks individually?

What we need is a way to talk about collections of ducks and even sub-
collections of ducks (to deal with the family request from Ranger Brewer). It
would also be nice if we could apply operations across the whole set of
ducks.
What pattern can help us?

⑫ Let’s create a flock of ducks (well, actually a flock of Quackables).
Remember the Composite Pattern that allows us to treat a collection of
objects in the same way as individual objects? What better composite than
a flock of Quackables!
Let’s step through how this is going to work:

CODE UP CLOSE

Did you notice that we tried to sneak a Design Pattern by you without mentioning it?

⑬ Now we need to alter the simulator.
Our composite is ready; we just need some code to round up the ducks
into the composite structure.

Let’s give it a spin...

SAFETY VERSUS TRANSPARENCY

You might remember that in the Composite Pattern chapter the composites (the Menus)
and the leaf nodes (the MenuItems) had the same exact set of methods, including the
add() method. Because they had the same set of methods, we could call methods on
MenuItems that didn’t really make sense (like trying to add something to a MenuItem by
calling add()). The benefit of this was that the distinction between leaves and composites
was transparent: the client didn’t have to know whether it was dealing with a leaf or a
composite; it just called the same methods on both.

Here, we’ve decided to keep the composite’s child maintenance methods separate from
the leaf nodes: that is, only Flocks have the add() method. We know it doesn’t make
sense to try to add something to a Duck, and in this implementation, you can’t. You can
only add() to a Flock. So this design is safer — you can’t call methods that don’t make
sense on components — but it’s less transparent. Now the client has to know that a
Quackable is a Flock in order to add Quackables to it.

As always, there are trade-offs when you do OO design and you need to consider them

as you create your own composites.

Can you say “observer”?
It sounds like the Quackologist would like to observe individual duck
behavior. That leads us right to a pattern made for observing the behavior of
objects: the Observer Pattern.

⑭ First we need an Observable interface.
Remember that an Observable is the object being observed. An
Observable needs methods for registering and notifying observers. We
could also have a method for removing observers, but we’ll keep the
implementation simple here and leave that out.

Now we need to make sure all Quackables implement this interface...

⑮ Now, we need to make sure all the concrete classes that implement
Quackable can handle being a QuackObservable.
We could approach this by implementing registration and notification in
each and every class (like we did in Chapter 2). But we’re going to do it a
little differently this time: we’re going to encapsulate the registration and
notification code in another class, call it Observable, and compose it with
a QuackObservable. That way, we only write the real code once and the
QuackObservable just needs enough code to delegate to the helper class
Observable.
Let’s begin with the Observable helper class.

⑯ Integrate the helper Observable with the Quackable classes.
This shouldn’t be too bad. All we need to do is make sure the Quackable
classes are composed with an Observable and that they know how to
delegate to it. After that, they’re ready to be Observables. Here’s the
implementation of MallardDuck; the other ducks are the same.

SHARPEN YOUR PENCIL

We haven’t changed the implementation of one Quackable, the QuackCounter decorator.
We need to make it an Observable too. Why don’t you write that one:

⑰ We’re almost there! We just need to work on the Observer side of
the pattern.
We’ve implemented everything we need for the Observables; now we
need some Observers. We’ll start with the Observer interface:

Now we need an Observer: where are those Quackologists?!

SHARPEN YOUR PENCIL

What if a Quackologist wants to observe an entire flock? What does that mean anyway?
Think about it like this: if we observe a composite, then we’re observing everything in
the composite. So, when you register with a flock, the flock composite makes sure you
get registered with all its children (sorry, all its little quackers), which may include other
flocks.

Go ahead and write the Flock observer code before we go any further.

⑱ We’re ready to observe. Let’s update the simulator and give it a
try:

This is the big finale. Five, no, six patterns have come together to create this
amazing Duck Simulator. Without further ado, we present the
DuckSimulator!

THERE ARE NO DUMB QUESTIONS

Q: Q: So this was a compound pattern?

A: A: No, this was just a set of patterns working together. A compound pattern is a set of a few patterns that are
combined to solve a general problem. We’re just about to take a look at the Model-View-Controller compound
pattern; it’s a collection of a few patterns that has been used over and over in many design solutions.

Q: Q: So the real beauty of Design Patterns is that I can take a problem, and start applying patterns to it until
I have a solution. Right?

A: A: Wrong. We went through this exercise with Ducks to show you how patterns can work together. You’d never
actually want to approach a design like we just did. In fact, there may be solutions to parts of the Duck Simulator
for which some of these patterns were big time overkill. Sometimes just using good OO design principles can
solve a problem well enough on its own.
We’re going to talk more about this in the next chapter, but you only want to apply patterns when and where they
make sense. You never want to start out with the intention of using patterns just for the sake of it. You should
consider the design of the Duck Simulator to be forced and artificial. But hey, it was fun and gave us a good idea
of how several patterns can fit into a solution.

What did we do?
We started with a bunch of Quackables...
A goose came along and wanted to act like a Quackable too. So we used

the Adapter Pattern to adapt the goose to a Quackable. Now, you can call
quack() on a goose wrapped in the adapter and it will honk!
Then, the Quackologists decided they wanted to count quacks. So we
used the Decorator Pattern to add a QuackCounter decorator that keeps track
of the number of times quack() is called, and then delegates the quack to the
Quackable it’s wrapping.
But the Quackologists were worried they’d forget to add the
QuackCounter decorator. So we used the Abstract Factory Pattern to
create ducks for them. Now, whenever they want a duck, they ask the factory
for one, and it hands back a decorated duck. (And don’t forget, they can also
use another duck factory if they want an un-decorated duck!)
We had management problems keeping track of all those ducks and
geese and quackables. So we used the Composite Pattern to group
Quackables into Flocks. The pattern also allows the Quackologist to create
sub-Flocks to manage duck families. We used the Iterator Pattern in our
implementation by using java.util’s iterator in ArrayList.
The Quackologists also wanted to be notified when any Quackable
quacked. So we used the Observer Pattern to let the Quackologists register
as Quackable Observers. Now they’re notified every time any Quackable
quacks. We used iterator again in this implementation. The Quackologists
can even use the Observer Pattern with their composites.

A duck’s eye view: the class diagram
We’ve packed a lot of patterns into one small duck simulator! Here’s the big
picture of what we did:

The King of Compound Patterns
If Elvis were a compound pattern, his name would be
Model-View-Controller, and he’d be singing a little song
like this...

Model, View, Controller

Lyrics and music by James Dempsey.

Model a bottle of fine Chardonnay

Model all the glottal stops people
say

Model the coddling of boiling eggs

You can model the waddle in
Hexley’s legs

MVC’s a paradigm for factoring your code into
functional segments, so your brain does not
explode.

To achieve reusability, you gotta keep those
boundaries clean

Model on the one side, View on the other, the
Controller’s in between.

Model View, you can model all the
models that pose for GQ

Model View Controller

NOTE

So does Java!

View objects tend to be controls
used to display and edit

Cocoa’s got a lot of those, well
written to its credit.

Take an NSTextView, hand it any
old Unicode string

The user can interact with it, it can
hold most anything

But the view don’t know about the
Model

That string could be a phone
number or the works of Aristotle

Keep the coupling loose and so
achieve a massive level of reuse

So does Java!

Model View, it’s got three layers like Oreos do

Model View Controller

Model View, Model View, Model View Controller

Model View, all rendered very
nicely in Aqua blue

Model View Controller

Model objects represent your application’s raison
d’être

Custom objects that contain data, logic, and et
cetera

You create custom classes, in your app’s problem
domain you can choose to reuse them with all the
views but the model objects stay the same.

You’re probably wondering now

You’re probably wondering how

Data flows between Model and
View

The Controller has to mediate

Between each layer’s changing state

To synchronize the data of the two

It pulls and pushes every changed
value

You can model a throttle and a manifold

Model the toddle of a two year old

Model View, mad props to the
smalltalk crew!

Model View Controller

Model View, it’s pronounced Oh Oh not Ooo Ooo

Model View Controller

Model View

How we gonna deep six all that glue

Model View Controller

There’s a little left to this story

A few more miles upon this road

Nobody seems to get much glory

From writing the controller code

Controllers know the Model and
View very intimately

They often use hardcoding which
can be foreboding for reusability

But now you can connect each
model key that you select to any
view property

Well the model’s mission critical

And gorgeous is the view

I might be lazy, but sometimes it’s just crazy

How much code I write is just glue

And it wouldn’t be so tragic

But the code ain’t doing magic

It’s just moving values through

And once you start binding

I think you’ll be finding less code in
your source tree

Yeah I know I was elated by the
stuff they’ve automated and the
things you get for free

And I don’t mean to be vicious

But it gets repetitious

Doing all the things controllers do

And I think it bears repeating all the
code you won’t be needing when
you hook it up in

And I wish I had a dime

For every single time

I sent a TextField StringValue.

Model View, even handles multiple
selections too

Model View Controller

Model View, bet I ship my
application before you

Model View Controller

EAR POWER

Don’t just read! After all, this is a Head First book... grab your iPod, hit this URL:

http://www.youtube.com/watch?v=YYvOGPMLVDo

Sit back and give it a listen.

No. Design Patterns are your key to the MVC.
We were just trying to whet your appetite. Tell you what, after you finish
reading this chapter, go back and listen to the song again — you’ll have even
more fun.
It sounds like you’ve had a bad run-in with MVC before? Most of us have.
You’ve probably had other developers tell you it’s changed their lives and
could possibly create world peace. It’s a powerful compound pattern, for
sure, and while we can’t claim it will create world peace, it will save you
hours of writing code once you know it.
But first you have to learn it, right? Well, there’s going to be a big difference
this time around because now you know patterns!

http://www.youtube.com/watch?v=YYvOGPMLVDo

That’s right, patterns are the key to MVC. Learning MVC from the top down
is difficult; not many developers succeed. Here’s the secret to learning MVC:
it’s just a few patterns put together. When you approach learning MVC by
looking at the patterns, all of a sudden it starts to make sense.
Let’s get started. This time around you’re going to nail MVC!

Meet the Model-View-Controller
Imagine you’re using your favorite MP3 player, like iTunes. You can use its
interface to add new songs, manage playlists and rename tracks. The player
takes care of maintaining a little database of all your songs along with their
associated names and data. It also takes care of playing the songs and, as it
does, the user interface is constantly updated with the current song title, the
running time, and so on.
Well, underneath it all sits the Model-View-Controller...

A closer look...
The MP3 player description gives us a high-level view of MVC, but it really
doesn’t help you understand the nitty gritty of how the compound pattern
works, how you’d build one yourself, or why it’s such a good thing. Let’s
start by stepping through the relationships among the model, view and
controller, and then we’ll take second look from the perspective of Design
Patterns.

① You’re the user — you interact with the view.
The view is your window to the model. When you do something to the
view (like click the Play button) then the view tells the controller what
you did. It’s the controller’s job to handle that.
② The controller asks the model to change its state.
The controller takes your actions and interprets them. If you click on a
button, it’s the controller’s job to figure out what that means and how the
model should be manipulated based on that action.
③ The controller may also ask the view to change.
When the controller receives an action from the view, it may need to tell
the view to change as a result. For example, the controller could enable or
disable certain buttons or menu items in the interface.
④ The model notifies the view when its state has changed.

When something changes in the model, based either on some action you
took (like clicking a button) or some other internal change (like the next
song in the playlist has started), the model notifies the view that its state
has changed.
⑤ The view asks the model for state.
The view gets the state it displays directly from the model. For instance,
when the model notifies the view that a new song has started playing, the
view requests the song name from the model and displays it. The view
might also ask the model for state as the result of the controller requesting
some change in the view.

THERE ARE NO DUMB QUESTIONS

Q: Q: Does the controller ever become an observer of the model?

A: A: Sure. In some designs the controller registers with the model and is notified of changes. This can be the case
when something in the model directly affects the user interface controls. For instance, certain states in the model
may dictate that some interface items be enabled or disabled. If so, it is really controller’s job to ask the view to
update its display accordingly.

Q: Q: All the controller does is take user input from the view and send it to the model, correct? Why have it at
all if that is all it does? Why not just have the code in the view itself? In most cases isn’t the controller just
calling a method on the model?

A: A: The controller does more than just “send it to the model”; it is responsible for interpreting the input and
manipulating the model based on that input. But your real question is probably “why can’t I just do that in the
view code?”
You could; however, you don’t want to for two reasons. First, you’ll complicate your view code because it now
has two responsibilities: managing the user interface and dealing with the logic of how to control the model.
Second, you’re tightly coupling your view to the model. If you want to reuse the view with another model, forget
it. The controller separates the logic of control from the view and decouples the view from the model. By keeping
the view and controller loosely coupled, you are building a more flexible and extensible design, one that can more
easily accommodate change down the road.

Looking at MVC through patterns-colored glasses

We’ve already told you the best path to learning the MVC is to see it for what
it is: a set of patterns working together in the same design.
Let’s start with the model. As you might have guessed, the model uses

Observer to keep the views and controllers updated on the latest state
changes. The view and the controller, on the other hand, implement the
Strategy Pattern. The controller is the behavior of the view, and it can be
easily exchanged with another controller if you want different behavior. The
view itself also uses a pattern internally to manage the windows, buttons and
other components of the display: the Composite Pattern.
Let’s take a closer look:

Observer

Strategy

NOTE

The view only worries about presentation. The controller worries about translating user
input to actions on the model.

Composite

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You
might start your mix with a slowed, downtempo groove at 95 beats per
minute (BPM) and then bring the crowd up to a frenzied 140 BPM of trance
techno. You’ll finish off your set with a mellow 80 BPM ambient mix.
How are you going to do that? You have to control the beat and you’re going
to build the tool to get you there.

Meet the Java DJ View
Let’s start with the view of the tool. The view allows you to create a driving
drum beat and tune its beats per minute...

NOTE

Here are a few more ways to control the DJ View...

The controller is in the middle...
The controller sits between the view and model. It takes your input, like
selecting “Start” from the DJ Control menu, and turns it into an action on the
model to start the beat generation.

Let’s not forget about the model underneath it all...
You can’t see the model, but you can hear it. The model sits underneath
everything else, managing the beat and driving the speakers with MIDI.

Putting the pieces together

Building the pieces
Okay, you know the model is responsible for maintaining all the data, state
and any application logic. So what’s the BeatModel got in it? Its main job is
managing the beat, so it has state that maintains the current beats per minute
and lots of code that generates MIDI events to create the beat that we hear. It
also exposes an interface that lets the controller manipulate the beat and lets

the view and controller obtain the model’s state. Also, don’t forget that the
model uses the Observer Pattern, so we also need some methods to let objects
register as observers and send out notifications.

Let’s check out the BeatModelInterface before looking
at the implementation

Now let’s have a look at the concrete BeatModel class

READY BAKE CODE

This model uses Java’s MIDI support to generate beats. You can check out the complete
implementation of all the DJ classes in the Java source files available on the
wickedlysmart.com site, or look at the code at the end of the chapter.

The View
Now the fun starts; we get to hook up a view and visualize the BeatModel!
The first thing to notice about the view is that we’ve implemented it so that it
is displayed in two separate windows. One window contains the current BPM

and the pulse; the other contains the interface controls. Why? We wanted to
emphasize the difference between the interface that contains the view of the
model and the rest of the interface that contains the set of user controls. Let’s
take a closer look at the two parts of the view:

BRAIN POWER

Our BeatModel makes no assumptions about the view. The model is implemented using
the Observer Pattern, so it just notifies any view registered as an observer when its state
changes. The view uses the model’s API to get access to the state. We’ve implemented
one type of view; can you think of other views that could make use of the notifications
and state in the BeatModel?

A lightshow that is based on the real-time
beat.___

A textual view that displays a music genre based on the BPM (ambient, downbeat,
techno, etc.).

__

__

__

Implementing the View
The two parts of the view — the view of the model, and the view with the
user interface controls — are displayed in two windows, but live together in

one Java class. We’ll first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar. Then we’ll come
back on the next page and show you just the code that creates the user
interface controls, which displays the BPM text entry field, and the buttons.

WATCH IT!

The code on these two pages is just an outline!

What we’ve done here is split ONE class into TWO, showing you one part of the view on
this page, and the other part on the next page. All this code is really in ONE class —
DJView.java. It’s all listed at the end of the chapter.

Implementing the View, continued...

Now, we’ll look at the code for the user interface controls part of the view.
This view lets you control the model by telling the controller what to do,
which in turn, tells the model what to do. Remember, this code is in the same
class file as the other view code.

Now for the Controller
It’s time to write the missing piece: the controller. Remember the controller is
the strategy that we plug into the view to give it some smarts.
Because we are implementing the Strategy Pattern, we need to start with an

interface for any Strategy that might be plugged into the DJ View. We’re
going to call it ControllerInterface.

DESIGN PUZZLE

You’ve seen that the view and controller together make use of the Strategy Pattern. Can
you draw a class diagram of the two that represents this pattern?

And here’s the implementation of the controller

Putting it all together...
We’ve got everything we need: a model, a view, and a controller. Now it’s
time to put them all together into a MVC! We’re going to see and hear how
well they work together.

All we need is a little code to get things started; it won’t take much:

And now for a test run...

Things to do
① Start the beat generation with the Start menu item; notice the
controller disables the item afterwards.
② Use the text entry along with the increase and decrease buttons to
change the BPM. Notice how the view display reflects the changes
despite the fact that it has no logical link to the controls.
③ Notice how the beat bar always keeps up with the beat since it’s an
observer of the model.
④ Put on your favorite song and see if you can beat match the beat by
using the increase and decrease controls.
⑤ Stop the generator. Notice how the controller disables the Stop
menu item and enables the Start menu item.

Exploring Strategy
Let’s take the Strategy Pattern just a little further to get a better feel for how it
is used in MVC. We’re going to see another friendly pattern pop up too — a
pattern you’ll often see hanging around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays a beat rate and a

pulse. Does that sound like something else? How about a heartbeat? It just so
happens that we have a heart monitor class; here’s the class diagram:

BRAIN POWER

It certainly would be nice to reuse our current view with the HeartModel, but we need a
controller that works with this model. Also, the interface of the HeartModel doesn’t
match what the view expects because it has a getHeartRate() method rather than a
getBPM(). How would you design a set of classes to allow the view to be reused with
the new model? Jot down your class design ideas below.

Adapting the Model
For starters, we’re going to need to adapt the HeartModel to a BeatModel. If
we don’t, the view won’t be able to work with the model, because the view
only knows how to getBPM(), and the equivalent heart model method is
getHeartRate(). How are we going to do this? We’re going to use the Adapter
Pattern, of course! It turns out that this is a common technique when working
with the MVC: use an adapter to adapt a model to work with existing
controllers and views.
Here’s the code to adapt a HeartModel to a BeatModel:

Now we’re ready for a HeartController
With our HeartAdapter in hand we should be ready to create a controller and
get the view running with the HeartModel. Talk about reuse!

And that’s it! Now it’s time for some test code...

And now for a test run...

Things to do
① Notice that the display works great with a heart! The beat bar
looks just like a pulse. Because the HeartModel also supports BPM
and Beat Observers we can get beat updates just like with the DJ
beats.
② As the heartbeat has natural variation, notice the display is
updated with the new beats per minute.
③ Each time we get a BPM update the adapter is doing its job of
translating getBPM() calls to getHeartRate() calls.
④ The Start and Stop menu items are not enabled because the
controller disabled them.
⑤ The other buttons still work but have no effect because the
controller implements no ops for them. The view could be changed to
support the disabling of these items.

MVC and the Web
It wasn’t long after the Web was spun that developers started adapting the
MVC to fit the browser/server model. The prevailing adaptation is known
simply as “Model 2” and uses a combination of servlet and JSP technology to
achieve the same separation of model, view and controller that we see in
conventional GUIs.
Let’s check out how Model 2 works:

① You make an HTTP request, which is received by a servlet.

Using your web browser you make an HTTP request. This typically involves sending
along some form data, like your username and password. A servlet receives this form
data and parses it.

② The servlet acts as the controller.

The servlet plays the role of the controller and processes your request, most likely
making requests on the model (usually a database). The result of processing the
request is usually bundled up in the form of a JavaBean.

③ The controller forwards control to the view.

The View is represented by a JSP. The JSP’s only job is to generate the page
representing the view of model (❹ which it obtains via the JavaBean) along with any
controls needed for further actions.

④ The view returns a page to the browser via HTTP.

A page is returned to the browser, where it is displayed as the view. The user submits
further requests, which are processed in the same fashion.

Model 2 is more than just a clean design.
The benefits of the separation of the view, model and controller are pretty
clear to you now. But you need to know the “rest of the story” with Model 2
— that it saved many web shops from sinking into chaos.
How? Well, Model 2 not only provides a separation of components in terms
of design, it also provides a separation in production responsibilities. Let’s
face it, in the old days, anyone with access to your JSPs could get in and
write any Java code they wanted, right? And that included a lot of people
who didn’t know a jar file from a jar of peanut butter. The reality is that most
web producers know about content and HTML, not software.
Luckily Model 2 came to the rescue. With Model 2 we can leave the
developer jobs to the men & women who know their servlets and let the web
producers loose on simple Model 2-style JSPs where all the producers have
access to is HTML and simple JavaBeans.

Model 2: DJ’ing from a cell phone
You didn’t think we’d try to skip out without moving that great BeatModel
over to the Web, did you? Just think, you can control your entire DJ session

through a web page on your cellular phone. So now you can get out of that
DJ booth and get down in the crowd. What are you waiting for? Let’s write
that code!

The plan
① Fix up the model.
Well, actually, we don’t have to fix the model; it’s fine just like it is!
② Create a servlet controller
We need a simple servlet that can receive our HTTP requests and perform
a few operations on the model. All it needs to do is stop, start and change
the beats per minute.
③ Create a HTML view.
We’ll create a simple view with a JSP. It’s going to receive a JavaBean
from the controller that will tell it everything it needs to display. The JSP
will then generate an HTML interface.

GEEK BITS

Setting up your servlet environment

Showing you how to set up your servlet environment is a little bit off topic for a book on

Design Patterns, at least if you don’t want the book to weigh more than you do!

Fire up your web browser and head straight to http://jakarta.apache.org/tomcat/ for the
Apache Jakarta Project’s Tomcat Servlet Container. You’ll find everything you need
there to get you up and running.

You’ll also want to check out Head First Servlets & JSP by Bryan Basham, Kathy Sierra
and Bert Bates.

http://jakarta.apache.org/tomcat/

Step one: the model
Remember that in MVC, the model doesn’t know anything about the views or
controllers. In other words, it is totally decoupled. All it knows is that it may
have observers it needs to notify. That’s the beauty of the Observer Pattern. It
also provides an interface the views and controllers can use to get and set its
state.
Now all we need to do is adapt it to work in the web environment, but, given
that it doesn’t depend on any outside classes, there is really no work to be
done. We can use our BeatModel off the shelf without changes. So, let’s be
productive and move on to step two!

Step two: the controller servlet
Remember, the servlet is going to act as our controller; it will receive web
browser input in a HTTP request and translate it into actions that can be
applied to the model.
Then, given the way the Web works, we need to return a view to the browser.
To do this we’ll pass control to the view, which takes the form of a JSP.
We’ll get to that in step three.
Here’s the outline of the servlet; on the next page, we’ll look at the full
implementation.

Here’s the implementation of the doGet() method from the page before:

Now we need a view...
All we need is a view and we’ve got our browser-based beat generator ready
to go! In Model 2, the view is just a JSP. All the JSP knows about is the bean
it receives from the controller. In our case, that bean is just the model and the
JSP is only going to use its BPM property to extract the current beats per
minute. With that data in hand, it creates the view and also the user interface
controls.

NOTE

NOTICE that just like MVC, in Model 2 the view doesn’t alter the model (that’s the
controller’s job); all it does is use its state!

Putting Model 2 to the test...
It’s time to start your web browser, hit the DJView Servlet and give the
system a spin...

Things to do

① First, hit the web page; you’ll see the beats per minute at 0. Go
ahead and click the “on” button.
② Now you should see the beats per minute at the default setting: 90
BPM. You should also hear a beat on the machine the server is
running on.
③ Enter a specific beat, say, 120, and click the “set” button. The page
should refresh with a beats per minute of 120 (and you should hear
the beat increase).
④ Now play with the increase/decrease buttons to adjust the beat up
and down.
⑤ Think about how each step of the system works. The HTML
interface makes a request to the servlet (the controller); the servlet
parses the user input and then makes requests to the model. The
servlet then passes control to the JSP (the view), which creates the
HTML view that is returned and displayed.

Design Patterns and Model 2
After implementing the DJ control for the Web using Model 2, you might be
wondering where the patterns went. We have a view created in HTML from a
JSP, but the view is no longer a listener of the model. We have a controller
that’s a servlet that receives HTTP requests, but are we still using the
Strategy Pattern? And what about Composite? We have a view that is made
from HTML and displayed in a web browser. Is that still the Composite
Pattern?

Model 2 is an adaptation of MVC to the Web
Even though Model 2 doesn’t look exactly like “textbook” MVC, all the parts
are still there; they’ve just been adapted to reflect the idiosyncrasies of the
web browser model. Let’s take another look...

Observer
The view is no longer an observer of the model in the classic sense; that is, it
doesn’t register with the model to receive state change notifications.
However, the view does receive the equivalent of notifications indirectly
from the controller when the model has been changed. The controller even
passes the view a bean that allows the view to retrieve the model’s state.

If you think about the browser model, the view only needs an update of state
information when an HTTP response is returned to the browser; notifications
at any other time would be pointless. Only when a page is being created and
returned does it make sense to create the view and incorporate the model’s
state.

Strategy
In Model 2, the Strategy object is still the controller servlet; however, it’s not
directly composed with the view in the classic manner. That said, it is an

object that implements behavior for the view, and we can swap it out for
another controller if we want different behavior.

Composite
Like our Swing GUI, the view is ultimately made up of a nested set of
graphical components. In this case, they are rendered by a web browser from
an HTML description; however, underneath there is an object system that
most likely forms a composite.

NOTE

The controller still provides the view behavior, even if it isn’t composed with the view
using object composition.

THERE ARE NO DUMB QUESTIONS

Q: Q: It seems like you are really hand-waving the fact that the Composite Pattern is really in MVC. Is it
really there?

A: A: Yes, Virginia, there really is a Composite Pattern in MVC. But, actually, this is a very good question. Today
GUI packages, like Swing, have become so sophisticated that we hardly notice the internal structure and the use
of Composite in the building and update of the display. It’s even harder to see when we have web browsers that
can take markup language and convert it into a user interface.
Back when MVC was first discovered, creating GUIs required a lot more manual intervention and the pattern was
more obviously part of the MVC.

Q: Q: Does the controller ever implement any application logic?

A: A: No, the controller implements behavior for the view. It is the smarts that translates the actions from the view to
actions on the model. The model takes those actions and implements the application logic to decide what to do in
response to those actions. The controller might have to do a little work to determine what method calls to make on
the model, but that’s not considered the “application logic.” The application logic is the code that manages and
manipulates your data and it lives in your model.

Q: Q: I’ve always found the word “model” hard to wrap my head around. I now get that it’s the guts of the
application, but why was such a vague, hard-to-understand word used to describe this aspect of the MVC?

A: A: When MVC was named they needed a word that began with a “M” or otherwise they couldn’t have called it
MVC.
But seriously, we agree with you. Everyone scratches their head and wonders what a model is. But then everyone
comes to the realization that they can’t think of a better word either.

Q: Q: You’ve talked a lot about the state of the model. Does this mean it has the State Pattern in it?

A: A: No, we mean the general idea of state. But certainly some models do use the State Pattern to manage their
internal states.

Q: Q: I’ve seen descriptions of the MVC where the controller is described as a “mediator” between the view
and the model. Is the controller implementing the Mediator Pattern?

A: A: We haven’t covered the Mediator Pattern (although you’ll find a summary of the pattern in the appendix), so
we won’t go into too much detail here, but the intent of the mediator is to encapsulate how objects interact and
promote loose coupling by keeping two objects from referring to each other explicitly. So, to some degree, the
controller can be seen as a mediator, since the view never sets state directly on the model, but rather always goes
through the controller. Remember, however, that the view does have a reference to the model to access its state. If
the controller were truly a mediator, the view would have to go through the controller to get the state of the model
as well.

Q: Q: Does the view always have to ask the model for its state? Couldn’t we use the push model and send the
model’s state with the update notification?

A: A: Yes, the model could certainly send its state with the notification, and in fact, if you look again at the
JSP/HTML view, that’s exactly what we’re doing. We’re sending the entire model in a bean, which the view uses
to access the state it needs using the bean properties. We could do something similar with the BeatModel by
sending just the state that the view is interested in. If you remember the Observer Pattern chapter, however, you’ll
also remember that there’s a couple of disadvantages to this. If you don’t, go back and have a second look.

Q: Q: If I have more than one view, do I always need more than one controller?

A: A: Typically, you need one controller per view at runtime; however, the same controller class can easily manage
many views.

Q: Q: The view is not supposed to manipulate the model; however, I noticed in your implementation that the

view has full access to the methods that change the model’s state. Is this dangerous?

A: A: You are correct; we gave the view full access to the model’s set of methods. We did this to keep things simple,
but there may be circumstances where you want to give the view access to only part of your model’s API. There’s
a great design pattern that allows you to adapt an interface to only provide a subset. Can you think of it?

Tools for your Design Toolbox
You could impress anyone with your design toolbox. Wow, look at all those
principles, patterns and now, compound patterns!

BULLET POINTS

The Model View Controller Pattern (MVC) is a compound pattern consisting of the
Observer, Strategy and Composite patterns.
The model makes use of the Observer Pattern so that it can keep observers updated
yet stay decoupled from them.
The controller is the strategy for the view. The view can use different
implementations of the controller to get different behavior.
The view uses the Composite Pattern to implement the user interface, which usually
consists of nested components like panels, frames and buttons.
These patterns work together to decouple the three players in the MVC model, which
keeps designs clear and flexible.
The Adapter Pattern can be used to adapt a new model to an existing view and
controller.
Model 2 is an adaptation of MVC for web applications.
In Model 2, the controller is implemented as a servlet and JSP & HTML implement
the view.

Exercise Solutions

SHARPEN YOUR PENCIL SOLUTION

The QuackCounter is a Quackable too. When we change Quackable to extend
QuackObservable, we have to change every class that implements Quackable, including
QuackCounter:

SHARPEN YOUR PENCIL SOLUTION

What if our Quackologist wants to observe an entire flock? What does that mean
anyway? Think about it like this: if we observe a composite, then we’re observing
everything in the composite. So, when you register with a flock, the flock composite
makes sure you get registered with all its children, which may include other flocks.

SHARPEN YOUR PENCIL SOLUTION

We’re still directly instantiating Geese by relying on concrete classes. Can you write an
Abstract Factory for Geese? How should it handle creating “goose ducks”?

You could add a createGooseDuck() method to the existing Duck Factories. Or, you
could create a completely separate Factory for creating families of Geese.

DESIGN PUZZLE SOLUTION

You’ve seen that the view and controller together make use of the Strategy Pattern. Can

you draw a class diagram of the two that represents this pattern?

READY BAKE CODE

Here’s the complete implementation of the DJView. It shows all the MIDI code to
generate the sound, and all the Swing components to create the view. You can also
download this code at http://www.wickedlysmart.com. Have fun!

package headfirst.designpatterns.combined.djview;

public class DJTestDrive {

 public static void main (String[] args) {

 BeatModelInterface model = new BeatModel();

 ControllerInterface controller = new BeatController(model);

 }

}

The Beat Model
package headfirst.designpatterns.combined.djview;

public interface BeatModelInterface {

 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

http://www.wickedlysmart.com

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);

}

package headfirst.designpatterns.combined.djview;

import javax.sound.midi.*;

import java.util.*;

public class BeatModel implements BeatModelInterface, MetaEventListener {

 Sequencer sequencer;

 ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();

 ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();

 int bpm = 90;

 Sequence sequence;

 Track track;

 public void initialize() {

 setUpMidi();

 buildTrackAndStart();

 }

 public void on() {

 System.out.println("Starting the sequencer");

 sequencer.start();

 setBPM(90);

 }

 public void off() {

 setBPM(0);

 sequencer.stop();

 }

 public void setBPM(int bpm) {

 this.bpm = bpm;

 sequencer.setTempoInBPM(getBPM());

 notifyBPMObservers();

 }

 public int getBPM() {

 return bpm;

 }

 void beatEvent() {

 notifyBeatObservers();

 }

 public void registerObserver(BeatObserver o) {

 beatObservers.add(o);

 }

 public void notifyBeatObservers() {

 for(int i = 0; i < beatObservers.size(); i++) {

 BeatObserver observer = (BeatObserver)beatObservers.get(i);

 observer.updateBeat();

 }

 }

 public void registerObserver(BPMObserver o) {

 bpmObservers.add(o);

 }

 public void notifyBPMObservers() {

 for(int i = 0; i < bpmObservers.size(); i++) {

 BPMObserver observer = (BPMObserver)bpmObservers.get(i);

 observer.updateBPM();

 }

 }

 public void removeObserver(BeatObserver o) {

 int i = beatObservers.indexOf(o);

 if (i >= 0) {

 beatObservers.remove(i);

 }

 }

 public void removeObserver(BPMObserver o) {

 int i = bpmObservers.indexOf(o);

 if (i >= 0) {

 bpmObservers.remove(i);

 }

 }

 public void meta(MetaMessage message) {

 if (message.getType() == 47) {

 beatEvent();

 sequencer.start();

 setBPM(getBPM());

 }

 }

 public void setUpMidi() {

 try {

 sequencer = MidiSystem.getSequencer();

 sequencer.open();

 sequencer.addMetaEventListener(this);

 sequence = new Sequence(Sequence.PPQ,4);

 track = sequence.createTrack();

 sequencer.setTempoInBPM(getBPM());

 sequencer.setLoopCount(Sequencer.LOOP_CONTINUOUSLY);

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 public void buildTrackAndStart() {

 int[] trackList = {35, 0, 46, 0};

 sequence.deleteTrack(null);

 track = sequence.createTrack();

 makeTracks(trackList);

 track.add(makeEvent(192,9,1,0,4));

 try {

 sequencer.setSequence(sequence);

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 public void makeTracks(int[] list) {

 for (int i = 0; i < list.length; i++) {

 int key = list[i];

 if (key != 0) {

 track.add(makeEvent(144,9,key, 100, i));

 track.add(makeEvent(128,9,key, 100, i+1));

 }

 }

 }

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick)

{

 MidiEvent event = null;

 try {

 ShortMessage a = new ShortMessage();

 a.setMessage(comd, chan, one, two);

 event = new MidiEvent(a, tick);

 } catch(Exception e) {

 e.printStackTrace();

 }

 return event;

 }

}

The View
package headfirst.designpatterns.combined.djview;

public interface BeatObserver {

 void updateBeat();

}

package headfirst.designpatterns.combined.djview;

public interface BPMObserver {

 void updateBPM();

}

package headfirst.designpatterns.combined.djview;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class DJView implements ActionListener, BeatObserver, BPMObserver {

 BeatModelInterface model;

 ControllerInterface controller;

 JFrame viewFrame;

 JPanel viewPanel;

 BeatBar beatBar;

 JLabel bpmOutputLabel;

 JFrame controlFrame;

 JPanel controlPanel;

 JLabel bpmLabel;

 JTextField bpmTextField;

 JButton setBPMButton;

 JButton increaseBPMButton;

 JButton decreaseBPMButton;

 JMenuBar menuBar;

 JMenu menu;

 JMenuItem startMenuItem;

 JMenuItem stopMenuItem;

 public DJView(ControllerInterface controller, BeatModelInterface model) {

 this.controller = controller;

 this.model = model;

 model.registerObserver((BeatObserver)this);

 model.registerObserver((BPMObserver)this);

 }

public void createView() {

 // Create all Swing components here

 viewPanel = new JPanel(new GridLayout(1, 2));

 viewFrame = new JFrame("View");

 viewFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 viewFrame.setSize(new Dimension(100, 80));

 bpmOutputLabel = new JLabel("offline", SwingConstants.CENTER);

 beatBar = new BeatBar();

 beatBar.setValue(0);

 JPanel bpmPanel = new JPanel(new GridLayout(2, 1));

 bpmPanel.add(beatBar);

 bpmPanel.add(bpmOutputLabel);

 viewPanel.add(bpmPanel);

 viewFrame.getContentPane().add(viewPanel, BorderLayout.CENTER);

 viewFrame.pack();

 viewFrame.setVisible(true);

}

public void createControls() {

 // Create all Swing components here

 JFrame.setDefaultLookAndFeelDecorated(true);

 controlFrame = new JFrame("Control");

 controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 controlFrame.setSize(new Dimension(100, 80));

 controlPanel = new JPanel(new GridLayout(1, 2));

 menuBar = new JMenuBar();

 menu = new JMenu("DJ Control");

 startMenuItem = new JMenuItem("Start");

 menu.add(startMenuItem);

 startMenuItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 controller.start();

 }

 });

 stopMenuItem = new JMenuItem("Stop");

 menu.add(stopMenuItem);

 stopMenuItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 controller.stop();

 }

 });

 JMenuItem exit = new JMenuItem("Quit");

 exit.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 System.exit(0);

 }

 });

 menu.add(exit);

 menuBar.add(menu);

 controlFrame.setJMenuBar(menuBar);

 bpmTextField = new JTextField(2);

 bpmLabel = new JLabel("Enter BPM:", SwingConstants.RIGHT);

 setBPMButton = new JButton("Set");

 setBPMButton.setSize(new Dimension(10,40));

 increaseBPMButton = new JButton(">>");

 decreaseBPMButton = new JButton("<<");

 setBPMButton.addActionListener(this);

 increaseBPMButton.addActionListener(this);

 decreaseBPMButton.addActionListener(this);

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2));

 buttonPanel.add(decreaseBPMButton);

 buttonPanel.add(increaseBPMButton);

 JPanel enterPanel = new JPanel(new GridLayout(1, 2));

 enterPanel.add(bpmLabel);

 enterPanel.add(bpmTextField);

 JPanel insideControlPanel = new JPanel(new GridLayout(3, 1));

 insideControlPanel.add(enterPanel);

 insideControlPanel.add(setBPMButton);

 insideControlPanel.add(buttonPanel);

 controlPanel.add(insideControlPanel);

 bpmLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

 bpmOutputLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

 controlFrame.getRootPane().setDefaultButton(setBPMButton);

 controlFrame.getContentPane().add(controlPanel, BorderLayout.CENTER);

 controlFrame.pack();

 controlFrame.setVisible(true);

 }

 public void enableStopMenuItem() {

 stopMenuItem.setEnabled(true);

 }

 public void disableStopMenuItem() {

 stopMenuItem.setEnabled(false);

 }

 public void enableStartMenuItem() {

 startMenuItem.setEnabled(true);

 }

 public void disableStartMenuItem() {

 startMenuItem.setEnabled(false);

 }

 public void actionPerformed(ActionEvent event) {

 if (event.getSource() == setBPMButton) {

 int bpm = Integer.parseInt(bpmTextField.getText());

 controller.setBPM(bpm);

 } else if (event.getSource() == increaseBPMButton) {

 controller.increaseBPM();

 } else if (event.getSource() == decreaseBPMButton) {

 controller.decreaseBPM();

 }

 }

 public void updateBPM() {

 int bpm = model.getBPM();

 if (bpm == 0) {

 bpmOutputLabel.setText("offline");

 } else {

 bpmOutputLabel.setText("Current BPM: " + model.getBPM());

 }

 }

 public void updateBeat() {

 beatBar.setValue(100);

 }

}

The Controller
package headfirst.designpatterns.combined.djview;

public interface ControllerInterface {

 void start();

 void stop();

 void increaseBPM();

 void decreaseBPM();

 void setBPM(int bpm);

}

package headfirst.designpatterns.combined.djview;

public class BeatController implements ControllerInterface {

 BeatModelInterface model;

 DJView view;

 public BeatController(BeatModelInterface model) {

 this.model = model;

 view = new DJView(this, model);

 view.createView();

 view.createControls();

 view.disableStopMenuItem();

 view.enableStartMenuItem();

 model.initialize();

 }

 public void start() {

 model.on();

 view.disableStartMenuItem();

 view.enableStopMenuItem();

 }

 public void stop() {

 model.off();

 view.disableStopMenuItem();

 view.enableStartMenuItem();

 }

 public void increaseBPM() {

 int bpm = model.getBPM();

 model.setBPM(bpm + 1);

 }

 public void decreaseBPM() {

 int bpm = model.getBPM();

 model.setBPM(bpm - 1);

 }

 public void setBPM(int bpm) {

 model.setBPM(bpm);

 }

}

The Heart Model
package headfirst.designpatterns.combined.djview;

public class HeartTestDrive {

 public static void main (String[] args) {

 HeartModel heartModel = new HeartModel();

 ControllerInterface model = new HeartController(heartModel);

 }

}

package headfirst.designpatterns.combined.djview;

public interface HeartModelInterface {

 int getHeartRate();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);

}

package headfirst.designpatterns.combined.djview;

import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable {

 ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();

 ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();

 int time = 1000;

 int bpm = 90;

 Random random = new Random(System.currentTimeMillis());

 Thread thread;

 public HeartModel() {

 thread = new Thread(this);

 thread.start();

 }

 public void run() {

 int lastrate = -1;

 for(;;) {

 int change = random.nextInt(10);

 if (random.nextInt(2) == 0) {

 change = 0 - change;

 }

 int rate = 60000/(time + change);

 if (rate < 120 && rate > 50) {

 time += change;

 notifyBeatObservers();

 if (rate != lastrate) {

 lastrate = rate;

 notifyBPMObservers();

 }

 }

 try {

 Thread.sleep(time);

 } catch (Exception e) {}

 }

 }

 public int getHeartRate() {

 return 60000/time;

 }

 public void registerObserver(BeatObserver o) {

 beatObservers.add(o);

 }

 public void removeObserver(BeatObserver o) {

 int i = beatObservers.indexOf(o);

 if (i >= 0) {

 beatObservers.remove(i);

 }

 }

 public void notifyBeatObservers() {

 for(int i = 0; i < beatObservers.size(); i++) {

 BeatObserver observer = (BeatObserver)beatObservers.get(i);

 observer.updateBeat();

 }

 }

 public void registerObserver(BPMObserver o) {

 bpmObservers.add(o);

 }

 public void removeObserver(BPMObserver o) {

 int i = bpmObservers.indexOf(o);

 if (i >= 0) {

 bpmObservers.remove(i);

 }

 }

 public void notifyBPMObservers() {

 for(int i = 0; i < bpmObservers.size(); i++) {

 BPMObserver observer = (BPMObserver)bpmObservers.get(i);

 observer.updateBPM();

 }

 }

}

The Heart Adapter
package headfirst.designpatterns.combined.djview;

public class HeartAdapter implements BeatModelInterface {

 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {

 this.heart = heart;

 }

 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {

 return heart.getHeartRate();

 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {

 heart.registerObserver(o);

 }

 public void removeObserver(BeatObserver o) {

 heart.removeObserver(o);

 }

 public void registerObserver(BPMObserver o) {

 heart.registerObserver(o);

 }

 public void removeObserver(BPMObserver o) {

 heart.removeObserver(o);

 }

}

The Controller
package headfirst.designpatterns.combined.djview;

public class HeartController implements ControllerInterface {

 HeartModelInterface model;

 DJView view;

 public HeartController(HeartModelInterface model) {

 this.model = model;

 view = new DJView(this, new HeartAdapter(model));

 view.createView();

 view.createControls();

 view.disableStopMenuItem();

 view.disableStartMenuItem();

 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}

}

[2] send us email for a copy.

Chapter 13. Better Living with
Patterns: Patterns in the Real
World

Ahhhh, now you’re ready for a bright new world filled with Design
Patterns. But, before you go opening all those new doors of opportunity, we
need to cover a few details that you’ll encounter out in the real world —
that’s right, things get a little more complex than they are here in Objectville.
Come along, we’ve got a nice guide to help you through the transition on the
next page...

THE OBJECTVILLE GUIDE TO BETTER LIVING WITH DESIGN
PATTERNS

Please accept our handy guide with tips & tricks for living with patterns in the real
world. In this guide you will:

Learn the all too common misconceptions about the definition of a “Design Pattern.”

Discover those nifty Design Patterns catalogs and why you just have to get one.

Avoid the embarrassment of using a Design Pattern at the wrong time.

Learn how to keep patterns in classifications where they belong.

See that discovering patterns isn’t just for the gurus; read our quick How To and become a
patterns writer too.

Be there when the true identity of the mysterious Gang of Four is revealed.

Keep up with the neighbors — the coffee table books any patterns user must own.

Learn to train your mind like a Zen master.

Win friends and influence developers by improving your patterns vocabulary.

Design Pattern defined
We bet you’ve got a pretty good idea of what a pattern is after reading this
book. But we’ve never really given a definition for a Design Pattern. Well,
you might be a bit surprised by the definition that is in common use:

NOTE

A Pattern is a solution to a problem in a context.

That’s not the most revealing definition is it? But don’t worry, we’re going to
step through each of these parts: context, problem and solution:

The context is the situation in which the pattern applies. This should be a
recurring situation.

NOTE

Example: You have a collection of objects.

The problem refers to the goal you are trying to achieve in this context,
but it also refers to any constraints that occur in the context.

NOTE

You need to step through the objects without exposing the collection’s
implementation.

The solution is what you’re after: a general design that anyone can apply
which resolves the goal and set of constraints.

NOTE

Encapsulate the iteration into a separate class.

This is one of those definitions that takes a while to sink in, but take it one
step at a time. Here’s a little mnemonic you can repeat to yourself to
remember it:

“If you find yourself in a context with a problem that has a goal that is affected by a set
of constraints, then you can apply a design that resolves the goal and constraints and
leads to a solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern is.
After all, you already know that a Design Pattern gives you a solution to a
common recurring design problem. What is all this formality getting you?
Well, you’re going to see that by having a formal way of describing patterns
we can create a catalog of patterns, which has all kinds of benefits.

You might be right; let’s think about this a bit... We need a problem, a
solution and a context:

Problem: How do I get to work on time?
Context: I’ve locked my keys in the car.
Solution: Break the window, get in the car, start the engine and drive to
work.

We have all the components of the definition: we have a problem, which
includes the goal of getting to work, and the constraints of time, distance and
probably some other factors. We also have a context in which the keys to the
car are inaccessible. And we have a solution that gets us to the keys and
resolves both the time and distance constraints. We must have a pattern now!
Right?

BRAIN POWER

We followed the Design Pattern definition and defined a problem, a context, and a
solution (which works!). Is this a pattern? If not, how did it fail? Could we fail the same
way when defining an OO Design Pattern?

Looking more closely at the Design Pattern definition
Our example does seem to match the Design Pattern definition, but it isn’t a
true pattern. Why? For starters, we know that a pattern needs to apply to a
recurring problem. While an absent-minded person might lock his keys in the
car often, breaking the car window doesn’t qualify as a solution that can be
applied over and over (or at least isn’t likely to if we balance the goal with
another constraint: cost).
It also fails in a couple of other ways: first, it isn’t easy to take this
description, hand it to someone and have him apply it to his own unique
problem. Second, we’ve violated an important but simple aspect of a pattern:
we haven’t even given it a name! Without a name, the pattern doesn’t become
part of a vocabulary that can be shared with other developers.
Luckily, patterns are not described and documented as a simple problem,
context and solution; we have much better ways of describing patterns and
collecting them together into patterns catalogs.

THERE ARE NO DUMB QUESTIONS

Q: Q: Am I going to see pattern descriptions that are stated as a problem, a context and a solution?

A: A: Pattern descriptions, which you’ll typically find in pattern catalogs, are usually a bit more revealing than that.
We’re going to look at patterns catalogs in detail in just a minute; they describe a lot more about a pattern’s intent
and motivation and where it might apply, along with the solution design and the consequences (good and bad) of
using it.

Q: Q: Is it okay to slightly alter a pattern’s structure to fit my design? Or am I going to have to go by the strict
definition?

A: A: Of course you can alter it. Like design principles, patterns are not meant to be laws or rules; they are
guidelines that you can alter to fit your needs. As you’ve seen, a lot of real-world examples don’t fit the classic
pattern designs.
However, when you adapt patterns, it never hurts to document how your pattern differs from the classic design —
that way, other developers can quickly recognize the patterns you’re using and any differences between your
pattern and the classic pattern.

Q: Q: Where can I get a patterns catalog?

A: A: The first and most definitive patterns catalog is Design Patterns: Elements of Reusable Object-Oriented

Software, by Gamma, Helm, Johnson & Vlissides (Addison Wesley). This catalog lays out 23 fundamental
patterns. We’ll talk a little more about this book in a few pages.
Many other patterns catalogs are starting to be published in various domain areas such as enterprise software,
concurrent systems and business systems.

GEEK BITS

May the force be with you

The Design Pattern definition tells us that the problem consists of a goal and a set of
constraints. Patterns gurus have a term for these: they call them forces. Why? Well,
we’re sure they have their own reasons, but if you remember the movie, the force
“shapes and controls the Universe.” Likewise, the forces in the pattern definition shape
and control the solution. Only when a solution balances both sides of the force (the light
side: your goal, and the dark side: the constraints) do we have a useful pattern.

This “force” terminology can be quite confusing when you first see it in pattern
discussions, but just remember that there are two sides of the force (goals and
constraints) and that they need to be balanced or resolved to create a pattern solution.
Don’t let the lingo get in your way and may the force be with you!

Frank: Fill us in, Jim. I’ve just been learning patterns by reading a few
articles here and there.
Jim: Sure, each patterns catalog takes a set of patterns and describes each in
detail along with its relationship to the other patterns.
Joe: Are you saying there is more than one patterns catalog?
Jim: Of course; there are catalogs for fundamental Design Patterns and there
are also catalogs on domain-specific patterns, like EJB patterns.
Frank: Which catalog are you looking at?
Jim: This is the classic GoF catalog; it contains 23 fundamental Design
Patterns.
Frank: GoF?
Jim: Right, that stands for the Gang of Four. The Gang of Four are the guys
that put together the first patterns catalog.
Joe: What’s in the catalog?
Jim: There is a set of related patterns. For each pattern there is a description
that follows a template and spells out a lot of details of the pattern. For
instance, each pattern has a name.
Frank: Wow, that’s earth-shattering — a name! Imagine that.
Jim: Hold on, Frank; actually, the name is really important. When we have a
name for a pattern, it gives us a way to talk about the pattern; you know, that
whole shared vocabulary thing.
Frank: Okay, okay. I was just kidding. Go on, what else is there?
Jim: Well, like I was saying, every pattern follows a template. For each
pattern we have a name and a few sections that tell us more about the pattern.
For instance, there is an Intent section that describes what the pattern is, kind
of like a definition. Then there are Motivation and Applicability sections that
describe when and where the pattern might be used.
Joe: What about the design itself?
Jim: There are several sections that describe the class design along with all
the classes that make it up and what their roles are. There is also a section
that describes how to implement the pattern and often sample code to show
you how.

Frank: It sounds like they’ve thought of everything.
Jim: There’s more. There are also examples of where the pattern has been
used in real systems, as well as what I think is one of the most useful
sections: how the pattern relates to other patterns.
Frank: Oh, you mean they tell you things like how state and strategy differ?
Jim: Exactly!
Joe: So Jim, how are you actually using the catalog? When you have a
problem, do you go fishing in the catalog for a solution?
Jim: I try to get familiar with all the patterns and their relationships first.
Then, when I need a pattern, I have some idea of what it is. I go back and
look at the Motivation and Applicability sections to make sure I’ve got it
right. There is also another really important section: Consequences. I review
that to make sure there won’t be some unintended effect on my design.
Frank: That makes sense. So once you know the pattern is right, how do you
approach working it into your design and implementing it?
Jim: That’s where the class diagram comes in. I first read over the Structure
section to review the diagram and then over the Participants section to make
sure I understand each class’s role. From there, I work it into my design,
making any alterations I need to make it fit. Then I review the
Implementation and Sample code sections to make sure I know about any
good implementation techniques or gotchas I might encounter.
Joe: I can see how a catalog is really going to accelerate my use of patterns!
Frank: Totally. Jim, can you walk us through a pattern description?

THERE ARE NO DUMB QUESTIONS

Q: Q: Is it possible to create your own Design Patterns? Or is that something you have to be a “patterns guru”
to do?

A: A: First, remember that patterns are discovered, not created. So, anyone can discover a Design Pattern and then
author its description; however, it’s not easy and doesn’t happen quickly, nor often. Being a “patterns writer”
takes commitment.
You should first think about why you’d want to — the majority of people don’t author patterns; they just use
them. However, you might work in a specialized domain for which you think new patterns would be helpful, or
you might have come across a solution to what you think is a recurring problem, or you may just want to get
involved in the patterns community and contribute to the growing body of work.

Q: Q: I’m game; how do I get started?

A: A: As with any discipline, the more you know the better. Studying existing patterns, what they do, and how they
relate to other patterns is crucial. Not only does it make you familiar with how patterns are crafted, it also
prevents you from reinventing the wheel. From there you’ll want to start writing your patterns on paper, so you
can communicate them to other developers; we’re going to talk more about how to communicate your patterns in
a bit. If you’re really interested, you’ll want to read the section that follows these Q&As.

Q: Q: How do I know when I really have a pattern?

A: A: That’s a very good question: you don’t have a pattern until others have used it and found it to work. In general,
you don’t have a pattern until it passes the “Rule of Three.” This rule states that a pattern can be called a pattern
only if it has been applied in a real-world solution at least three times.

So you wanna be a design patterns star?
Well, listen now to what I tell.
Get yourself a patterns catalog,
Then take some time and learn it well.
And when you’ve got your description right,
And three developers agree without a fight,
Then you’ll know it’s a pattern alright.

NOTE

To the tune of “So you wanna be a Rock’n Roll Star.”

So you wanna be a Design Patterns writer
Do your homework. You need to be well versed in the existing patterns
before you can create a new one. Most patterns that appear to be new, are, in
fact, just variants of existing patterns. By studying patterns, you become
better at recognizing them, and you learn to relate them to other patterns.
Take time to reflect, evaluate. Your experience — the problems you’ve
encountered, and the solutions you’ve used — are where ideas for patterns
are born. So take some time to reflect on your experiences and comb them for
novel designs that recur. Remember that most designs are variations on
existing patterns and not new patterns. And when you do find what looks like
a new pattern, its applicability may be too narrow to qualify as a real pattern.
Get your ideas down on paper in a way others can understand. Locating

new patterns isn’t of much use if others can’t make use of your find; you
need to document your pattern candidates so that others can read, understand,
and apply them to their own solution and then supply you with feedback.
Luckily, you don’t need to invent your own method of documenting your
patterns. As you’ve already seen with the GoF template, a lot of thought has
already gone into how to describe patterns and their characteristics.
Have others try your patterns; then refine and refine some more. Don’t
expect to get your pattern right the first time. Think of your pattern as a work
in progress that will improve over time. Have other developers review your
candidate pattern, try it out, and give you feedback. Incorporate that feedback
into your description and try again. Your description will never be perfect,
but at some point it should be solid enough that other developers can read and
understand it.
Don’t forget the Rule of Three. Remember, unless your pattern has been
successfully applied in three real-world solutions, it can’t qualify as a pattern.
That’s another good reason to get your pattern into the hands of others so
they can try it, give feedback, and allow you to converge on a working
pattern.

WHO DOES WHAT?

Match each pattern with its description:

Organizing Design Patterns
As the number of discovered Design Patterns grows, it makes sense to
partition them into classifications so that we can organize them, narrow our
searches to a subset of all Design Patterns, and make comparisons within a

group of patterns.
In most catalogs, you’ll find patterns grouped into one of a few classification
schemes. The most well-known scheme was used by the first patterns catalog
and partitions patterns into three distinct categories based on their purposes:
Creational, Behavioral, and Structural.

SHARPEN YOUR PENCIL

Pattern Categories
Sharpen your pencil Solution
Here’s the grouping of patterns into categories. You probably found the

exercise difficult, because many of the patterns seem like they could fit into
more than one category. Don’t worry, everyone has trouble figuring out the
right categories for the patterns.

Patterns are often classified by a second attribute: whether or not the pattern
deals with classes or objects:

THERE ARE NO DUMB QUESTIONS

Q: Q: Are these the only classification schemes?

A: A: No, other schemes have been proposed. Some other schemes start with the three categories and then add
subcategories, like “Decoupling Patterns.” You’ll want to be familiar with the most common schemes for
organizing patterns, but also feel free to create your own, if it helps you to understand the patterns better.

Q: Q: Does organizing patterns into categories really help you remember them?

A: A: It certainly gives you a framework for the sake of comparison. But many people are confused by the
creational, structural and behavioral categories; often a pattern seems to fit into more than one category. The most
important thing is to know the patterns and the relationships among them. When categories help, use them!

Q: Q: Why is the Decorator Pattern in the structural category? I would have thought of that as a behavioral
pattern; after all, it adds behavior!

A: A: Yes, lots of developers say that! Here’s the thinking behind the Gang of Four classification: structural patterns
describe how classes and objects are composed to create new structures or new functionality. The Decorator
Pattern allows you to compose objects by wrapping one object with another to provide new functionality. So the
focus is on how you compose the objects dynamically to gain functionality, rather than on the communication and
interconnection between objects, which is the purpose of behavioral patterns. But remember, the intent of these
patterns is different, and that’s often the key to understanding which category a pattern belongs to.

MASTER AND STUDENT...

Master: Grasshopper, you look troubled.

Student: Yes, I’ve just learned about pattern classification and I’m confused.

Master: Grasshopper, continue...

Student: After learning much about patterns, I’ve just been told that each pattern fits
into one of three classifications: structural, behavioral, or creational. Why do we need

these classifications?

Master: Grasshopper, whenever we have a large collection of anything, we naturally
find categories to fit those things into. It helps us to think of the items at a more abstract
level.

Student: Master; can you give me an example?

Master: Of course. Take automobiles; there are many different models of automobiles
and we naturally put them into categories like economy cars, sports cars, SUVs, trucks,
and luxury car categories.

Master: Grasshopper, you look shocked; does this not make sense?

Student: Master, it makes a lot of sense, but I am shocked you know so much about cars!

Master: Grasshopper, I can’t relate everything to lotus flowers or rice bowls. Now, may
I continue?

Student: Yes, yes, I’m sorry, please continue.

Master: Once you have classifications or categories you can easily talk about the
different groupings: “If you’re doing the mountain drive from Silicon Valley to Santa
Cruz, a sports car with good handling is the best option.” Or, “With the worsening oil
situation, you really want to buy a economy car; they’re more fuel-efficient.”

Student: So by having categories we can talk about a set of patterns as a group. We
might know we need a creational pattern, without knowing exactly which one, but we
can still talk about creational patterns.

Master: Yes, and it also gives us a way to compare a member to the rest of the category.
For example, “the Mini really is the most stylish compact car around,” or to narrow our
search, “I need a fuel-efficient car.”

Student: I see. So I might say that the Adapter Pattern is the best structural pattern for
changing an object’s interface.

Master: Yes. We also can use categories for one more purpose: to launch into new
territory. For instance, “we really want to deliver a sports car with Ferrari performance
at Miata prices.”

Student: That sounds like a death trap.

Master: I’m sorry, I did not hear you Grasshopper.

Student: Uh, I said “I see that.”

Student: So categories give us a way to think about the way groups of patterns relate
and how patterns within a group relate to one another. They also give us a way to
extrapolate to new patterns. But why are there three categories and not four, or five?

Master: Ah, like stars in the night sky, there are as many categories as you want to see.
Three is a convenient number and a number that many people have decided makes for a

nice grouping of patterns. But others have suggested four, five or more.

Thinking in Patterns
Contexts, constraints, forces, catalogs, classifications... boy, this is starting to
sound mighty academic. Okay, all that stuff is important and knowledge is
power. But, let’s face it, if you understand the academic stuff and don’t have
the experience and practice using patterns, then it’s not going to make much
difference in your life.
Here’s a quick guide to help you start to think in patterns. What do we mean
by that? We mean being able to look at a design and see where patterns
naturally fit and where they don’t.

Keep it simple (KISS)
First of all, when you design, solve things in the simplest way possible. Your

goal should be simplicity, not “how can I apply a pattern to this problem?”
Don’t feel like you aren’t a sophisticated developer if you don’t use a pattern
to solve a problem. Other developers will appreciate and admire the
simplicity of your design. That said, sometimes the best way to keep your
design simple and flexible is to use a pattern.

Design Patterns aren’t a magic bullet; in fact, they’re
not even a bullet!
Patterns, as you know, are general solutions to recurring problems. Patterns
also have the benefit of being well tested by lots of developers. So, when you
see a need for one, you can sleep well knowing many developers have been
there before and solved the problem using similar techniques.
However, patterns aren’t a magic bullet. You can’t plug one in, compile and
then take an early lunch. To use patterns, you also need to think through the
consequences for the rest of your design.

You know you need a pattern when...
Ah... the most important question: when do you use a pattern? As you
approach your design, introduce a pattern when you’re sure it addresses a
problem in your design. If a simpler solution might work, give that
consideration before you commit to using a pattern.
Knowing when a pattern applies is where your experience and knowledge
come in. Once you’re sure a simple solution will not meet your needs, you
should consider the problem along with the set of constraints under which the
solution will need to operate — these will help you match your problem to a
pattern. If you’ve got a good knowledge of patterns, you may know of a
pattern that is a good match. Otherwise, survey patterns that look like they
might solve the problem. The intent and applicability sections of the patterns
catalogs are particularly useful for this. Once you’ve found a pattern that
appears to be a good match, make sure it has a set of consequences you can
live with and study its effect on the rest of your design. If everything looks
good, go for it!
There is one situation in which you’ll want to use a pattern even if a simpler
solution would work: when you expect aspects of your system to vary. As
we’ve seen, identifying areas of change in your design is usually a good sign

that a pattern is needed. Just make sure you are adding patterns to deal with
practical change that is likely to happen, not hypothetical change that may
happen.
Design time isn’t the only time you want to consider introducing patterns;
you’ll also want to do so at refactoring time.

Refactoring time is Patterns time!
Refactoring is the process of making changes to your code to improve the
way it is organized. The goal is to improve its structure, not change its
behavior. This is a great time to reexamine your design to see if it might be
better structured with patterns. For instance, code that is full of conditional
statements might signal the need for the State Pattern. Or, it may be time to
clean up concrete dependencies with a Factory. Entire books have been
written on the topic of refactoring with patterns, and as your skills grow,
you’ll want to study this area more.

Take out what you don’t really need. Don’t be afraid to
remove a Design Pattern from your design.
No one ever talks about when to remove a pattern. You’d think it was
blasphemy! Nah, we’re all adults here; we can take it.
So when do you remove a pattern? When your system has become complex
and the flexibility you planned for isn’t needed. In other words, when a
simpler solution without the pattern would be better.

If you don’t need it now, don’t do it now.
Design Patterns are powerful, and it’s easy to see all kinds of ways they can
be used in your current designs. Developers naturally love to create beautiful
architectures that are ready to take on change from any direction.
Resist the temptation. If you have a practical need to support change in a
design today, go ahead and employ a pattern to handle that change. However,
if the reason is only hypothetical, don’t add the pattern; it is only going to add
complexity to your system, and you might never need it!

MASTER AND STUDENT...

Master: Grasshopper, your initial training is almost complete. What are your plans?

Student: I’m going to Disneyland! And, then I’m going to start creating lots of code with
patterns!

Master: Whoa, hold on. Never use your big guns unless you have to.

Student: What do you mean, Master? Now that I’ve learned design patterns shouldn’t I
be using them in all my designs to achieve maximum power, flexibility and
manageability?

Master: No; patterns are a tool, and a tool that should only be used when needed.
You’ve also spent a lot of time learning design principles. Always start from your

principles and create the simplest code you can that does the job. However, if you see
the need for a pattern emerge, then use it.

Student: So I shouldn’t build my designs from patterns?

Master: That should not be your goal when beginning a design. Let patterns emerge
naturally as your design progresses.

Student: If patterns are so great, why should I be so careful about using them?

Master: Patterns can introduce complexity, and we never want complexity where it is
not needed. But patterns are powerful when used where they are needed. As you already
know, patterns are proven design experience that can be used to avoid common
mistakes. They’re also a shared vocabulary for communicating our design to others.

Student: Well, when do we know it’s okay to introduce design patterns?

Master: Introduce a pattern when you are sure it’s necessary to solve a problem in your
design, or when you are quite sure that it is needed to deal with a future change in the
requirements of your application.

Student: I guess my learning is going to continue even though I already understand a lot
of patterns.

Master: Yes, grasshopper; learning to manage the complexity and change in software is
a life-long pursuit. But now that you know a good set of patterns, the time has come to
apply them where needed in your design and to continue learning more patterns.

Student: Wait a minute, you mean I don’t know them ALL?

Master: Grasshopper, you’ve learned the fundamental patterns; you’re going to find
there are many more, including patterns that just apply to particular domains such as
concurrent systems and enterprise systems. But now that you know the basics, you’re in
good shape to learn them.

Your Mind on Patterns
The Beginner uses patterns everywhere. This is good: the beginner gets
lots of experience with and practice using patterns. The beginner also thinks,
“The more patterns I use, the better the design.” The beginner will learn this
is not so, that all designs should be as simple as possible. Complexity and
patterns should only be used where they are needed for practical extensibility.

“I need a pattern for Hello World.”

As learning progresses, the Intermediate mind starts to see where
patterns are needed and where they aren’t. The intermediate mind still
tries to fit too many square patterns into round holes, but also begins to see
that patterns can be adapted to fit situations where the canonical pattern
doesn’t fit.

“Maybe I need a Singleton here.”

The Zen mind is able to see patterns where they fit naturally. The Zen
mind is not obsessed with using patterns; rather it looks for simple solutions
that best solve the problem. The Zen mind thinks in terms of the object
principles and their trade-offs. When a need for a pattern naturally arises, the
Zen mind applies it knowing well that it may require adaptation. The Zen
mind also sees relationships to similar patterns and understands the subtleties
of differences in the intent of related patterns. The Zen mind is also a
Beginner mind — it doesn’t let all that pattern knowledge overly influence
design decisions.

“This is a natural place for Decorator.”

NOTE

WARNING: Overuse of design patterns can lead to code that is downright over-
engineered. Always go with the simplest solution that does the job and introduce
patterns where the need emerges.

Of course we want you to use Design Patterns!
But we want you to be a good OO designer even more.
When a design solution calls for a pattern, you get the benefits of using a
solution that has been time-tested by lots of developers. You’re also using a
solution that is well documented and that other developers are going to
recognize (you know, that whole shared vocabulary thing).
However, when you use Design Patterns, there can also be a downside.

Design Patterns often introduce additional classes and objects, and so they
can increase the complexity of your designs. Design Patterns can also add
more layers to your design, which adds not only complexity, but also
inefficiency.
Also, using a Design Pattern can sometimes be outright overkill. Many times
you can fall back on your design principles and find a much simpler solution
to solve the same problem. If that happens, don’t fight it. Use the simpler
solution.
Don’t let us discourage you, though. When a Design Pattern is the right tool
for the job, the advantages are many.

Don’t forget the power of the shared vocabulary
We’ve spent so much time in this book discussing OO nuts and bolts that it’s
easy to forget the human side of Design Patterns — they don’t just help load
your brain with solutions, they also give you a shared vocabulary with other
developers. Don’t underestimate the power of a shared vocabulary, it’s one of
the biggest benefits of Design Patterns.
Just think, something has changed since the last time we talked about shared
vocabularies; you’ve now started to build up quite a vocabulary of your own!
Not to mention, you have also learned a full set of OO design principles from
which you can easily understand the motivation and workings of any new
patterns you encounter.
Now that you’ve got the Design Pattern basics down, it’s time for you to go
out and spread the word to others. Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, it leads to
better designs, better communication, and, best of all, it’ll save you a lot of
time that you can spend on cooler things.

Top five ways to share your vocabulary
1. In design meetings: When you meet with your team to discuss a

software design, use design patterns to help stay “in the design” longer.
Discussing designs from the perspective of Design Patterns and OO
principles keeps your team from getting bogged down in
implementation details and prevent many misunderstandings.

2. With other developers: Use patterns in your discussions with other
developers. This helps other developers learn about new patterns and
builds a community. The best part about sharing what you’ve learned is
that great feeling when someone else “gets it”!

3. In architecture documentation: When you write architectural
documentation, using patterns will reduce the amount of documentation
you need to write and gives the reader a clearer picture of the design.

4. In code comments and naming conventions: When you’re writing
code, clearly identify the patterns you’re using in comments. Also,
choose class and method names that reveal any patterns underneath.

Other developers who have to read your code will thank you for
allowing them to quickly understand your implementation.

5. To groups of interested developers: Share your knowledge. Many
developers have heard about patterns but don’t have a good
understanding of what they are. Volunteer to give a brown-bag lunch on
patterns or a talk at your local user group.

Cruisin’ Objectville with the Gang of Four

You won’t find the Jets or Sharks hanging around Objectville, but you will
find the Gang of Four. As you’ve probably noticed, you can’t get far in the
World of Patterns without running into them. So, who is this mysterious
gang?
Put simply, “the GoF,” which includes Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, is the group of guys who put together the first
patterns catalog and in the process, started an entire movement in the
software field!
How did they get that name? No one knows for sure; it’s just a name that
stuck. But think about it: if you’re going to have a “gang element” running
around Objectville, could you think of a nicer bunch of guys? In fact, they’ve
even agreed to pay us a visit...

Your journey has just begun...
Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got
three definitive texts that you need to add to your bookshelf...
The definitive Design Patterns text
This is the book that kicked off the entire field of Design Patterns when it
was released in 1995. You’ll find all the fundamental patterns here. In fact,
this book is the basis for the set of patterns we used in Head First Design
Patterns.
You won’t find this book to be the last word on Design Patterns — the field
has grown substantially since its publication — but it is the first and most
definitive.
Picking up a copy of Design Patterns is a great way to start exploring
patterns after Head First.

The definitive Patterns texts
Patterns didn’t start with the GoF; they started with Christopher Alexander, a
professor of architecture at Berkeley — that’s right, Alexander is an
architect, not a computer scientist. Alexander invented patterns for building
living architectures (like houses, towns and cities).
The next time you’re in the mood for some deep, engaging reading, pick up
The Timeless Way of Building and A Pattern Language. You’ll see the true
beginnings of Design Patterns and recognize the direct analogies between
creating “living architecture” and flexible, extensible software.
So grab a cup of Starbuzz Coffee, sit back, and enjoy...

Other Design Patterns resources
You’re going to find there is a vibrant, friendly community of patterns users
and writers out there and they’re glad to have you join them. Here are a few
resources to get you started...
Websites
The Portland Patterns Repository, run by Ward Cunningham, is a wiki
devoted to all things related to patterns. Anyone can participate. You’ll find
threads of discussion on every topic you can think of related to patterns and
OO systems.

http://c2.com/cgi/wiki?WelcomeVisitors

The Hillside Group fosters common programming and design practices and

provides a central resource for patterns work. The site includes information
on many patterns-related resources such as articles, books, mailing lists and
tools.

http://hillside.net/

Conferences and Workshops
And if you’d like to get some face-to-face time with the patterns community,
be sure to check out the many patterns-related conferences and workshops.
The Hillside site maintains a complete list. At the least you’ll want to check
out Pattern Languages of Programs (PLoP), and the ACM Conference on
Object-Oriented Systems, Languages and Applications (OOPSLA).

The Patterns Zoo

As you’ve just seen, patterns didn’t start with software; they started with the
architecture of buildings and towns. In fact, the patterns concept can be
applied in many different domains. Take a walk around the Patterns Zoo to
see a few...

Architectural Patterns are used to create the living, vibrant architecture of
buildings, towns, and cities. This is where patterns got their start.

NOTE

Habitat: found in buildings you like to live in, look at and visit.

NOTE

Habitat: seen hanging around 3-tier architectures, client-server systems and the web.

Application Patterns are patterns for creating system-level architecture.
Many multi-tier architectures fall into this category.

NOTE

Field note: MVC has been known to pass for an application pattern.

Domain-Specific Patterns are patterns that concern problems in specific
domains, like concurrent systems or real-time systems.

NOTE

Help find a habitat___________________

_____J2EE________________________

Business Process Patterns describe the interaction between businesses,
customers and data, and can be applied to problems such as how to
effectively make and communicate decisions.

NOTE

Help find a habitat__________

Development team_____________

Customer support team________

Organizational Patterns describe the structures and practices of human
organizations. Most efforts to date have focused on organizations that
produce and/or support software.

User Interface Design Patterns address the problems of how to design
interactive software programs.

NOTE

Habitat: seen in the vicinity of video game designers, GUI builders, and producers.

NOTE

Field notes: please add your observations of pattern domains here:

Annihilating evil with Anti-Patterns

The Universe just wouldn’t be complete if we had patterns and no anti-
patterns, now would it?
If a Design Pattern gives you a general solution to a recurring problem in a

particular context, then what does an anti-pattern give you?

NOTE

An Anti-Pattern tells you how to go from a problem to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone waste their
time documenting bad solutions?”
Think about it like this: if there is a recurring bad solution to a common
problem, then by documenting it we can prevent other developers from
making the same mistake. After all, avoiding bad solutions can be just as
valuable as finding good ones!
Let’s look at the elements of an anti-pattern:
An anti-pattern tells you why a bad solution is attractive. Let’s face it, no
one would choose a bad solution if there wasn’t something about it that
seemed attractive up front. One of the biggest jobs of the anti-pattern is to
alert you to the seductive aspect of the solution.
An anti-pattern tells you why that solution in the long term is bad. In
order to understand why it’s an anti-pattern, you’ve got to understand how
it’s going to have a negative effect down the road. The anti-pattern describes
where you’ll get into trouble using the solution.
An anti-pattern suggests other patterns that are applicable which may
provide good solutions. To be truly helpful, an anti-pattern needs to point
you in the right direction; it should suggest other possibilities that may lead to
good solutions.
Let’s have a look at an anti-pattern.

An anti-pattern always looks like a good solution, but then turns out to be a bad
solution when it is applied.
By documenting anti-patterns we help others to recognize bad solutions before
they implement them.
Like patterns, there are many types of anti-patterns including development, OO,
organizational, and domain-specific anti-patterns.

NOTE

Here’s an example of a software development anti-pattern.

ANTI-PATTERN

Name: Golden Hammer

NOTE

Just like a Design Pattern, an anti-pattern has a name so we can
create a shared vocabulary.

Problem: You need to choose technologies for your development and you believe that
exactly one technology must dominate the architecture.

Context: You need to develop some new system or piece of software that doesn’t fit
well with the technology that the development team is familiar with.

NOTE

The problem and context, just like a Design Pattern description.

Forces:

NOTE

Tells you why the solution is attractive.

The development team is committed to the technology they know.
The development team is not familiar with other technologies.
Unfamiliar technologies are seen as risky.
It is easy to plan and estimate for development using the familiar technology.

Supposed Solution: Use the familiar technology anyway. The technology is applied
obsessively to many problems, including places where it is clearly inappropriate.

NOTE

The bad, yet attractive, solution.

Refactored Solution: Expanding the knowledge of developers through education,
training, and book study groups that expose developers to new solutions.

NOTE

How to get to a good solution.

Examples:

NOTE

Example of where this anti-pattern has been observed.

Web companies keep using and maintaining their internal homegrown caching systems
when open source alternatives are in use.

NOTE

Adapted from the Portland Pattern Repository’s WIKI at
http://c2.com/ where you’ll find many anti patterns and
discussions.

Tools for your Design Toolbox
You’ve reached that point where you’ve outgrown us. Now’s the time to go
out in the world and explore patterns on your own...

http://c2.com/

BULLET POINTS

Let Design Patterns emerge in your designs; don’t force them in just for the sake of
using a pattern.
Design Patterns aren’t set in stone; adapt and tweak them to meet your needs.
Always use the simplest solution that meets your needs, even if it doesn’t include a
pattern.
Study Design Patterns catalogs to familiarize yourself with patterns and the
relationships among them.
Pattern classifications (or categories) provide groupings for patterns. When they
help, use them.
You need to be committed to be a patterns writer: it takes time and patience, and you
have to be willing to do lots of refinement.
Remember, most patterns you encounter will be adaptations of existing patterns, not
new patterns.
Build your team’s shared vocabulary. This is one of the most powerful benefits of
using patterns.
Like any community, the patterns community has its own lingo. Don’t let that hold
you back. Having read this book, you now know most of it.

Leaving Objectville...

Boy, it’s been great having you in Objectville.
We’re going to miss you, for sure. But don’t worry — before you know it,

the next Head First book will be out and you can visit again. What’s the next
book, you ask? Hmmm, good question! Why don’t you help us decide? Send
email to booksuggestions@wickedlysmart.com.

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

mailto:booksuggestions@wickedlysmart.com

Appendix A. Leftover Patterns

Not everyone can be the most popular. A lot has changed in the last 20
years. Since Design Patterns: Elements of Reusable Object-Oriented
Software first came out, developers have applied these patterns thousands of
times. The patterns we summarize in this appendix are full-fledged, card-
carrying, official GoF patterns, but aren’t used as often as the patterns we’ve
explored so far. But these patterns are awesome in their own right, and if
your situation calls for them, you should apply them with your head held
high. Our goal in this appendix is to give you a high-level idea of what these
patterns are all about.

Bridge
Use the Bridge Pattern to vary not only your implementations, but also

your abstractions.
A scenario
Imagine you’re going to revolutionize “extreme lounging.” You’re writing
the code for a new ergonomic and user-friendly remote control for TVs. You
already know that you’ve got to use good OO techniques because while the
remote is based on the same abstraction, there will be lots of implementations
— one for each model of TV.

Your dilemma
You know that the remote’s user interface won’t be right the first time. In
fact, you expect that the product will be refined many times as usability data
is collected on the remote control.
So your dilemma is that the remotes are going to change and the TVs are
going to change. You’ve already abstracted the user interface so that you can
vary the implementation over the many TVs your customers will own. But
you are also going to need to vary the abstraction because it is going to
change over time as the remote is improved based on the user feedback.

NOTE

Using this design we can vary only the TV implementation, not the user interface.

So how are you going to create an OO design that allows you to vary the
implementation and the abstraction?

Why use the Bridge Pattern?
The Bridge Pattern allows you to vary the implementation and the abstraction
by placing the two in separate class hierarchies.

Now you have two hierarchies, one for the remotes and a separate one for
platform-specific TV implementations. The bridge allows you to vary either
side of the two hierarchies independently.

BRIDGE BENEFITS

Decouples an implementation so that it is not bound permanently to an interface.
Abstraction and implementation can be extended independently.
Changes to the concrete abstraction classes don’t affect the client.

BRIDGE USES AND DRAWBACKS

Useful in graphics and windowing systems that need to run over multiple platforms.
Useful any time you need to vary an interface and an implementation in different
ways.
Increases complexity.

Builder
Use the Builder Pattern to encapsulate the construction of a product and
allow it to be constructed in steps.
A scenario
You’ve just been asked to build a vacation planner for Patternsland, a new
theme park just outside of Objectville. Park guests can choose a hotel and
various types of admission tickets, make restaurant reservations, and even
book special events. To create a vacation planner, you need to be able to
create structures like this:

You need a flexible design
Each guest’s planner can vary in the number of days and types of activities it
includes. For instance, a local resident might not need a hotel, but wants to
make dinner and special event reservations. Another guest might be flying
into Objectville and needs a hotel, dinner reservations, and admission tickets.
So, you need a flexible data structure that can represent guest planners and all
their variations; you also need to follow a sequence of potentially complex
steps to create the planner. How can you provide a way to create the complex
structure without mixing it with the steps for creating it?

Why use the Builder Pattern?
Remember Iterator? We encapsulated the iteration into a separate object and
hid the internal representation of the collection from the client. It’s the same
idea here: we encapsulate the creation of the trip planner in an object (let’s
call it a builder), and have our client ask the builder to construct the trip
planner structure for it.

BUILDER BENEFITS

Encapsulates the way a complex object is constructed.
Allows objects to be constructed in a multistep and varying process (as opposed to
one-step factories).
Hides the internal representation of the product from the client.
Product implementations can be swapped in and out because the client only sees an
abstract interface.

BUILDER USES AND DRAWBACKS

Often used for building composite structures.
Constructing objects requires more domain knowledge of the client than when using
a Factory.

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to give more
than one object a chance to handle a request.
A scenario
Mighty Gumball has been getting more email than they can handle since the
release of the Java-powered Gumball Machine. From their own analysis they
get four kinds of email: fan mail from customers that love the new 1-in-10
game, complaints from parents whose kids are addicted to the game, and
requests to put machines in new locations. They also get a fair amount of
spam.
All fan mail should go straight to the CEO, all complaints should go to the
legal department and all requests for new machines should go to business
development. Spam should be deleted.
Your task
Mighty Gumball has already written some AI detectors that can tell if an
email is spam, fan mail, a complaint, or a request, but they need you to create
a design that can use the detectors to handle incoming email.

How to use the Chain of Responsibility Pattern
With the Chain of Responsibility Pattern, you create a chain of objects to
examine requests. Each object in turn examines a request and either handles
it, or passes it on to the next object in the chain.

NOTE

Each object in the chain acts as a handler and has a successor object. If it can handle the
request, it does; otherwise, it forwards the request to its successor.

As email is received, it is passed to the first handler: the SpamHandler. If the
SpamHandler can’t handle the request, it is passed on to the FanHandler. And
so on...

CHAIN OF RESPONSIBILITY BENEFITS

Decouples the sender of the request and its receivers.
Simplifies your object because it doesn’t have to know the chain’s structure and keep
direct references to its members.
Allows you to add or remove responsibilities dynamically by changing the members
or order of the chain.

CHAIN OF RESPONSIBILITY USES AND DRAWBACKS

Commonly used in windows systems to handle events like mouse clicks and
keyboard events.
Execution of the request isn’t guaranteed; it may fall off the end of the chain if no

object handles it (this can be an advantage or a disadvantage).
Can be hard to observe and debug at runtime.

Flyweight
Use the Flyweight Pattern when one instance of a class can be used to
provide many “virtual instances.”
A scenario
You want to add trees as objects in your hot new landscape design
application. In your application, trees don’t really do very much; they have an
X-Y location, and they can draw themselves dynamically, depending on how
old they are. The thing is, a user might want to have lots and lots of trees in
one of their home landscape designs. It might look something like this:

Your big client’s dilemma
You’ve just landed your “reference account.” That key client you’ve been
pitching for months. They’re going to buy 1,000 seats of your application,
and they’re using your software to do the landscape design for huge planned
communities. After using your software for a week, your client is

complaining that when they create large groves of trees, the app starts getting
sluggish...

Why use the Flyweight Pattern?
What if, instead of having thousands of Tree objects, you could redesign your
system so that you’ve got only one instance of Tree, and a client object that
maintains the state of ALL your trees? That’s the Flyweight!

FLYWEIGHT BENEFITS

Reduces the number of object instances at runtime, saving memory.
Centralizes state for many “virtual” objects into a single location.

FLYWEIGHT USES AND DRAWBACKS

The Flyweight is used when a class has many instances, and they can all be
controlled identically.
A drawback of the Flyweight pattern is that once you’ve implemented it, single,
logical instances of the class will not be able to behave independently from the other
instances.

Interpreter
Use the Interpreter Pattern to build an interpreter for a language.

A scenario
Remember the Duck Simulator? You have a hunch it would also make a great
educational tool for children to learn programming. Using the simulator, each
child gets to control one duck with a simple language. Here’s an example of
the language:

RELAX

The Interpreter Pattern requires some knowledge of formal grammars.

If you’ve never studied formal grammars, go ahead and read through the pattern; you’ll
still get the gist of it.

Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar:

Now what?
You’ve got a grammar; now all you need is a way to represent and interpret
sentences in the grammar so that the students can see the effects of their
programming on the simulated ducks.

How to implement an interpreter
When you need to implement a simple language, the Interpreter Pattern
defines a class-based representation for its grammar along with an interpreter
to interpret its sentences. To represent the language, you use a class to
represent each rule in the language. Here’s the duck language translated into
classes. Notice the direct mapping to the grammar.

To interpret the language, call the interpret() method on each expression type.
This method is passed a context — which contains the input stream of the
program we’re parsing — and matches the input and evaluates it.

INTERPRETER BENEFITS

Representing each grammar rule in a class makes the language easy to implement.
Because the grammar is represented by classes, you can easily change or extend the
language.
By adding methods to the class structure, you can add new behaviors beyond
interpretation, like pretty printing and more sophisticated program validation.

INTERPRETER USES AND DRAWBACKS

Use interpreter when you need to implement a simple language.
Appropriate when you have a simple grammar and simplicity is more important than
efficiency.

Used for scripting and programming languages.
This pattern can become cumbersome when the number of grammar rules is large. In
these cases a parser/compiler generator may be more appropriate.

Mediator
Use the Mediator Pattern to centralize complex communications and
control between related objects.
A scenario
Bob has a Java-enabled auto-house, thanks to the good folks at
HouseOfTheFuture. All of his appliances are designed to make his life easier.
When Bob stops hitting the snooze button, his alarm clock tells the coffee
maker to start brewing. Even though life is good for Bob, he and other clients
are always asking for lots of new features: No coffee on the weekends... Turn
off the sprinkler 15 minutes before a shower is scheduled... Set the alarm
early on trash days...

HouseOfTheFuture’s dilemma
It’s getting really hard to keep track of which rules reside in which objects,

and how the various objects should relate to each other.

Mediator in action...
With a Mediator added to the system, all of the appliance objects can be
greatly simplified:

They tell the Mediator when their state changes.
They respond to requests from the Mediator.

Before we added the Mediator, all of the appliance objects needed to know
about each other... they were all tightly coupled. With the Mediator in place,
the appliance objects are all completely decoupled from each other.
The Mediator contains all of the control logic for the entire system. When an
existing appliance needs a new rule, or a new appliance is added to the
system, you’ll know that all of the necessary logic will be added to the
Mediator.

MEDIATOR BENEFITS

Increases the reusability of the objects supported by the Mediator by decoupling
them from the system.
Simplifies maintenance of the system by centralizing control logic.
Simplifies and reduces the variety of messages sent between objects in the system.

MEDIATOR USES AND DRAWBACKS

The Mediator is commonly used to coordinate related GUI components.
A drawback of the Mediator Pattern is that without proper design, the Mediator

object itself can become overly complex.

Memento
Use the Memento Pattern when you need to be able to return an object
to one of its previous states; for instance, if your user requests an
“undo.”
A scenario
Your interactive role playing game is hugely successful, and has created a
legion of addicts, all trying to get to the fabled “level 13.” As users progress
to more challenging game levels, the odds of encountering a game-ending
situation increase. Fans who have spent days progressing to an advanced
level are understandably miffed when their character gets snuffed, and they
have to start all over. The cry goes out for a “save progress” command, so
that players can store their game progress and at least recover most of their
efforts when their character is unfairly extinguished. The “save progress”
function needs to be designed to return a resurrected player to the last level
she completed successfully.

The Memento at work
The Memento has two goals:

Saving the important state of a system’s key object.
Maintaining the key object’s encapsulation.

Keeping the single responsibility principle in mind, it’s also a good idea to
keep the state that you’re saving separate from the key object. This separate
object that holds the state is known as the Memento object.

MEMENTO BENEFITS

Keeping the saved state external from the key object helps to maintain cohesion.
Keeps the key object’s data encapsulated.
Provides easy-to-implement recovery capability.

MEMENTO USES AND DRAWBACKS

The Memento is used to save state.
A drawback to using Memento is that saving and restoring state can be time
consuming.
In Java systems, consider using Serialization to save a system’s state.

Prototype
Use the Prototype Pattern when creating an instance of a given class is
either expensive or complicated.
A scenario
Your interactive role playing game has an insatiable appetite for monsters. As

your heroes make their journey through a dynamically created landscape,
they encounter an endless chain of foes that must be subdued. You’d like the
monster’s characteristics to evolve with the changing landscape. It doesn’t
make a lot of sense for bird-like monsters to follow your characters into
underseas realms. Finally, you’d like to allow advanced players to create their
own custom monsters.

Prototype to the rescue
The Prototype Pattern allows you to make new instances by copying existing
instances. (In Java this typically means using the clone() method, or de-
serialization when you need deep copies.) A key aspect of this pattern is that
the client code can make new instances without knowing which specific class
is being instantiated.

PROTOTYPE BENEFITS

Hides the complexities of making new instances from the client.
Provides the option for the client to generate objects whose type is not known.
In some circumstances, copying an object can be more efficient than creating a new
object.

PROTOTYPE USES AND DRAWBACKS

Prototype should be considered when a system must create new objects of many
types in a complex class hierarchy.
A drawback to using the Prototype is that making a copy of an object can sometimes
be complicated.

Visitor
Use the Visitor Pattern when you want to add capabilities to a composite
of objects and encapsulation is not important.
A scenario
Customers who frequent the Objectville Diner and Objectville Pancake
House have recently become more health conscious. They are asking for
nutritional information before ordering their meals. Because both
establishments are so willing to create special orders, some customers are
even asking for nutritional information on a per ingredient basis.
Lou’s proposed solution:

Mel’s concerns...
“Boy, it seems like we’re opening Pandora’s box. Who knows what new
method we’re going to have to add next, and every time we add a new
method we have to do it in two places. Plus, what if we want to enhance the
base application with, say, a recipes class? Then we’ll have to make these
changes in three different places...”

The Visitor drops by

The Visitor works hand in hand with a Traverser. The Traverser knows how
to navigate to all of the objects in a Composite. The Traverser guides the
Visitor through the Composite so that the Visitor can collect state as it goes.
Once state has been gathered, the Client can have the Visitor perform various
operations on the state. When new functionality is required, only the Visitor
must be enhanced.

VISITOR BENEFITS

Allows you to add operations to a Composite structure without changing the
structure itself.
Adding new operations is relatively easy.
The code for operations performed by the Visitor is centralized.

VISITOR DRAWBACKS

The Composite classes’ encapsulation is broken when the Visitor is used.
Because the traversal function is involved, changes to the Composite structure are
more difficult.

Appendix B.

And now, a final word from the Head First Institute...
Our world class researchers are working day and night in a mad race to
uncover the mysteries of Life, the Universe and Everything–before it’s too
late. Never before has a research team with such noble and daunting goals
been assembled. Currently, we are focusing our collective energy and brain
power on creating the ultimate learning machine. Once perfected, you and
others will join us in our quest!
You’re fortunate to be holding one of our first prototypes in your hands. But
only through constant refinement can our goal be achieved. We ask you, a
pioneer user of the technology, to send us periodic field reports of your
progress, at fieldreports@wickedlysmart.com

mailto:fieldreports@wickedlysmart.com

Appendix C. Mighty Gumball

Without your help the next generation may never know the joys of the
gumball machine. Today, inflexible, poorly designed code is putting our
Java-powered machines at risk. Mighty Gumball won’t let that happen.
We’re devoting ourselves to helping you improve your Java and OO design
skills so that you can help us build the next generation of Mighty Gumball
machines.

Come on, Java toasters are sooo ‘90s, visit us at
http://www.wickedlysmart.com.

http://www.wickedlysmart.com

Index

A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears.
Because some sections have multiple index markers, it is not unusual for an entry to
have several links to the same section. Clicking on any link will take you directly to the
place in the text in which the marker appears.

A

abstract class

about, Our PizzaStore isn’t going to be very popular without some pizzas,
so let’s implement them

definition of, Template Method Pattern defined

methods in, Template Method Pattern defined

Abstract Factory Pattern

about, What have we done?

building ingredient factories, Building the ingredient factories, A very
dependent PizzaStore

combining patterns, Duck reunion, Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

abstract superclasses, Designing the Duck Behaviors

ACM Conference, Your journey has just begun...

Adapter Pattern

about, The Adapter Pattern explained

adapting to Iterator Enumeration interface, Adapting an Enumeration to an
Iterator

combining patterns, Duck reunion

dealing with remove() method, Dealing with the remove() method

Decorator Pattern vs., Writing the EnumerationIterator adapter

definition of, Adapter Pattern defined

designing Adapter, Adapting an Enumeration to an Iterator

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Running the code..., So you
wanna be a Design Patterns writer, Boy, it’s been great having you in
Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

Facade Pattern vs., Lights, Camera, Facade!

in Model-View-Controller, Adapting the Model

object and class adapters, Object and class adapters

Proxy Pattern vs., What did we do?

simple real world adapters, Real-world adapters

writing Enumeration Iterator Adapter, Dealing with the remove() method

adapters, OO (Object-Oriented)

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must might
be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

aggregates, Meet the Iterator Pattern, Iterator Pattern defined

Alexander, Christopher

A Pattern Language, Your journey has just begun...

The Timeless Way of Building, Your journey has just begun...

algorithms, encapsulating

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

Template Method Pattern and

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Anti-Patterns, Annihilating evil with Anti-Patterns

Applet, Template Method Pattern and, Applets

Applicability section, in pattern catalog, Looking more closely at the Design
Pattern definition

Application Patterns, The Patterns Zoo

Architectural Patterns, The Patterns Zoo

ArrayList, arrays and, Lou and Mel’s Menu implementations, Iterators and
Collections

arrays

iteration and, Can we encapsulate the iteration?

iterator and hasNext() method with, Adding an Iterator to DinerMenu

iterator and next() method with, Adding an Iterator to DinerMenu

removing an element, Cleaning things up with java.util.Iterator

sorting with Template Method Pattern, Sorting with Template Method

B

Basham, Bryan, (Head First Servlets & JSP), Model 2: DJ’ing from a cell
phone

Be the JVM solution exercises, dealing with multithreading, Houston,
Hershey, PA we have a problem..., Tools for your Design Toolbox

behavior, encapsulating, Designing the Duck Behaviors

behavioral patterns category, Design Patterns, Pattern Categories, Pattern
Categories

behaviors

classes as, Implementing the Duck Behaviors

classes extended to incorporate new, The Open-Closed Principle

declaring variables, Integrating the Duck Behavior

delegating to decorated objects while adding, Constructing a drink order
with Decorators

designing, Designing the Duck Behaviors

encapsulating, The Big Picture on encapsulated behaviors

implementing, Implementing the Duck Behaviors

integrating, Integrating the Duck Behavior

setting dynamically, Setting behavior dynamically

Bert Bates, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

Bridge Pattern, Bridge

Builder Pattern, Builder

Business Process Patterns, The Patterns Zoo

C

Caching Proxy, as form of Virtual Proxy, What did we do?, The Proxy Zoo

Cafe Menu, integrating into framework (Iterator Pattern)

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

CD covers, displaying using Proxy Pattern

about, Displaying CD covers

code for, Compound Patterns: Patterns of Patterns

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing viewer, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Chain of Responsibility Pattern, Chain of Responsibility

change

constant in software development, The one constant in software
development

identifying, The power of Loose Coupling

iteration and, Single Responsibility

Chocolate Factory, using Singleton Pattern

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...

class adapters, object vs., Object and class adapters

class design, of Observer Pattern, The Observer Pattern defined

class hierarchies, parallel, Another perspective: parallel class hierarchies

class patterns, Design Patterns, Pattern Categories

classes., Welcome to Starbuzz Coffee

(see also subclasses)

abstract, Our PizzaStore isn’t going to be very popular without some
pizzas, so let’s implement them

adapter, Here’s how the Client uses the Adapter, Tools for your Design
Toolbox

Adapter Pattern, Adapter Pattern defined

altering decorator, Tools for your Design Toolbox

as behaviors, Implementing the Duck Behaviors

command

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

creating, Separating what changes from what stays the same

Factory Method Pattern creator and product, It’s finally time to meet the
Factory Method Pattern

having single responsibility, Single Responsibility

high-level component, The Dependency Inversion Principle

identifying as Proxy class, Running the code...

Open-Closed Principle, The Open-Closed Principle

state

defining, Defining the State interfaces and classes

implementing, Implementing our State classes, Implementing more
states, We still need to finish the Gumball 1 in 10 game

increasing number in design of, The State Pattern defined

reworking state classes, Reworking the Gumball Machine

state transitions in, The State Pattern defined

using composition with, HAS-A can be better than IS-A

using instance variables instead of, Welcome to Starbuzz Coffee

using instead of Singletons static, Congratulations!

using new operator for instantiating concrete, The Factory Pattern: Baking
with OO Goodness

Classification section, in pattern catalog, Looking more closely at the Design
Pattern definition

classloaders, using with Singletons, Congratulations!

client heap, Remote methods 101

client helper (stubs), in RMI, Java RMI, the Big Picture, Java RMI, the Big
Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

Code Magnets exercise

for DinerMenu Iterator, Iterators and Collections, Tools for your Design
Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in
support, Tools for your Design Toolbox

cohesion, Single Responsibility

Collaborations section, in pattern catalog, Looking more closely at the
Design Pattern definition

collection classes, Iterators and Collections

collection of objects

abstracting with Iterator Pattern

about, The Iterator and Composite Patterns: Well-Managed Collections

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

remove() method in, Making some improvements...

implementing Iterators for, Meet the Iterator Pattern

integrating into framework

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

meaning of, Meet the Iterator Pattern

using Composite Pattern

about, Designing Menus with Composite

implementing components, Implementing the Menu Component

testing code, Getting ready for a test drive...

tree structure, The Composite Pattern defined, Getting ready for a test
drive...

using with Iterators, Flashback to Iterator

using whole-part relationships, The magic of Iterator & Composite
together...

Collections, Iterators and, Iterators and Collections

Combining Patterns

Abstract Factory Pattern, Duck reunion

Adapter Pattern, Duck reunion

class diagram for, A duck’s eye view: the class diagram

Composite Pattern, Duck reunion

Decorator Pattern, Duck reunion

Iterator Pattern, Duck reunion

Observer Pattern, Duck reunion

command classes, in Command Pattern

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

command objects

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

Command Pattern

command classes in

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

command objects

building, Our first command object

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

definition of, The Command Pattern defined

dumb and smart command objects, Using a macro command

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

home automation remote control

about, Taking a look at the vendor classes

building, Our first command object, Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in, The Command Pattern means lots of command
classes, Simplifying even more with method references

creating commands to be loaded, The Command Pattern defined: the
class diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda
expression commands...

implementing, Implementing the Commands

macro commands, Every remote needs a Party Mode!, Using a macro
command, Tools for your Design Toolbox

mapping, From the Diner to the Command Pattern, Tools for your
Design Toolbox

Null Object in, Now, let’s check out the execution of our remote control
test..., Test the remote control with lambda expressions

testing, Using the command object, Putting the Remote Control through
its paces, Using a macro command, Test the remote control with lambda
expressions

undo commands, Time to write that documentation..., Get ready to test
the ceiling fan, Using a macro command, Tools for your Design
Toolbox

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

logging requests using, More uses of the Command Pattern: logging
requests

mapping, From the Diner to the Command Pattern, Tools for your Design
Toolbox

Null Object, Now, let’s check out the execution of our remote control
test...

queuing requests using, More uses of the Command Pattern: queuing
requests

understanding, Meanwhile, back at the Diner..., or, A brief introduction to
the Command Pattern

Complexity Hiding Proxy, The Proxy Zoo

components of object, The Principle of Least Knowledge

Composite Iterator, Flashback to Iterator

Composite Pattern

combining patterns, Duck reunion

definition of, The Composite Pattern defined

dessert submenu using

about, Just when we thought it was safe...

designing, Designing Menus with Composite, Getting ready for a test
drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, So you wanna be a Design
Patterns writer, Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored
glasses, Composite

Iterator Pattern and, Flashback to Iterator

on implementation issues, The magic of Iterator & Composite together...

safety versus transparency, Duck reunion

transparency in, Getting ready for a test drive...

tree structure of, The Composite Pattern defined, Getting ready for a test
drive...

try/catch, using, The magic of Iterator & Composite together...

using with Iterator, Flashback to Iterator

vegetarian menu using Iterators, Give me the vegetarian menu

composition

adding behavior at runtime, Welcome to Starbuzz Coffee

favoring over inheritance, HAS-A can be better than IS-A, Welcome to
Starbuzz Coffee

inheritance vs., Cubicle Conversation

object adapters and, Object and class adapters

compound patterns, using

about, Compound Patterns: Patterns of Patterns

Model 2

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller

about, If Elvis were a compound pattern, his name would be Model-
View-Controller, and he’d be singing a little song like this..., Meet the
Model-View-Controller

Adapter Pattern, Exploring Strategy

Beat model, Meet the Java DJ View, Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses,
Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController, Exercise
Solutions

Heart model, Exploring Strategy, Exercise Solutions

implementing controller, Now for the Controller

implementing DJ View, Using MVC to control the beat..., Exercise
Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses,
Building the pieces

song, If Elvis were a compound pattern, his name would be Model-
View-Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses,
Now for the Controller, Exploring Strategy

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

multiple patterns vs., Duck reunion

concrete classes

deriving from, A few guidelines to help you follow the Principle...

Factory Pattern and, Factory Method Pattern defined

getting rid of, Reworking the PizzaStore class

instantiating objects and, Looking at object dependencies

using new operator for instantiating, The Factory Pattern: Baking with OO
Goodness

variables holding reference to, A few guidelines to help you follow the
Principle...

concrete creators, Factory Method Pattern defined

concrete implementation object, assigning, Designing the Duck Behaviors

concrete methods, as hooks, Template Method Pattern defined

concrete subclasses

abstract class methods defined by, Let’s run the Test Drive

in Pizza Store project, Allowing the subclasses to decide

Consequences section, in pattern catalog, Looking more closely at the Design
Pattern definition

constant in software development, The one constant in software development

controlling object access, using Proxy Pattern

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?, The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Copy-On-Write Proxy, The Proxy Zoo

create method

replacing new operator with, Reworking the PizzaStore class

static method vs., Building a simple pizza factory

using subclasses with, Allowing the subclasses to decide

creating static classes instead of Singleton, Houston, Hershey, PA we have a
problem...

creational patterns category, Design Patterns, Pattern Categories, Pattern
Categories

creator classes, in Factory Method Pattern, It’s finally time to meet the
Factory Method Pattern, Factory Method Pattern defined

crossword puzzle, Tools for your Design Toolbox

Cunningham, Ward, Your journey has just begun...

D

Decorator Pattern

about, Meet the Decorator Pattern, Give it a spin

Adapter Pattern vs., Writing the EnumerationIterator adapter

combining patterns, Duck reunion

definition of, The Decorator Pattern defined

disadvantages of, Decorating the java.io classes

exercise matching description of, Running the code..., So you wanna be a
Design Patterns writer, Boy, it’s been great having you in Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

in Java I/O, Real World Decorators: Java I/O

in Structural patterns category, Pattern Categories

Proxy Pattern vs., What did we do?

Starbuzz Coffee project

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training, Tools for your
Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

decoupling, Iterator allowing, What we have so far..., What does this get us?,
Iterator Pattern defined, Iterators and Collections

delegation, adding behavior at runtime, Welcome to Starbuzz Coffee

dependence, in Observer Pattern, The Observer Pattern defined: the class
diagram

Dependency Inversion Principle, The Dependency Inversion Principle, The
Hollywood Principle and Template Method

dependency rot, The Hollywood Principle

Design Patterns

becoming writer of, So you wanna be a Design Patterns writer

behavioral patterns category, Pattern Categories, Pattern Categories

categories of, Pattern Categories

class patterns, Pattern Categories

creational patterns category, Pattern Categories, Pattern Categories

definition of, Design Pattern defined

discovering own, Looking more closely at the Design Pattern definition

exercise matching description of, Boy, it’s been great having you in
Objectville.

frameworks vs., How do I use Design Patterns?

guide to better living with, Better Living with Patterns: Patterns in the Real
World

implement on interface in, The Simple Factory defined

libraries vs., How do I use Design Patterns?

object patterns, Pattern Categories

organizing, Organizing Design Patterns

overusing, Your Mind on Patterns

resources for, Your journey has just begun...

rule of three applied to, So you wanna be a Design Patterns writer

structural patterns category, Pattern Categories, Pattern Categories

thinking in patterns, Thinking in Patterns

using, How do I use Design Patterns?, If you don’t need it now, don’t do it
now., Your Mind on Patterns

your mind on patterns, Your Mind on Patterns

Design Patterns: Reusable Object-Oriented Software (Gamma et al.), Your
journey has just begun...

design principles

Dependency Inversion Principle, The Dependency Inversion Principle

designing upon abstractions, The Dependency Inversion Principle

encapsulate what varies, Zeroing in on the problem..., Tools for your
Design Toolbox, Tools for your Design Toolbox, Factory Method Pattern
defined

favor composition over inheritance, HAS-A can be better than IS-A, Tools
for your Design Toolbox, Tools for your Design Toolbox, The messy
STATE of things...

One Class, One Responsibility Principle, Congratulations!, Single
Responsibility, Getting ready for a test drive...

one instance. (see Singleton Pattern)

Open-Closed Principle, The Open-Closed Principle, Is the Waitress ready
for prime time?, The messy STATE of things...

Principle of Least Knowledge, The Principle of Least Knowledge

program to an interface, not an implementation, Designing the Duck
Behaviors, The dark side of java.util.Observable, Tools for your Design
Toolbox, Tools for your Design Toolbox, What does this get us?

Single Responsibility Principle, Single Responsibility

strive for loosely coupled designs between objects that interact, The power
of Loose Coupling

The Hollywood Principle, The Hollywood Principle

using Observer Pattern, Tools for your Design Toolbox, Tools for your
Design Toolbox

Design Puzzles

drawing class diagram making use of view and controller, Now for the
Controller, Exercise Solutions

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

drawing state diagram, You knew it was coming... a change request!, Tools
for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns..., Tools for your
Design Toolbox

redesigning classes to remove redundancy, It’s time for some more
caffeine

redesigning Image Proxy, Writing the Image Proxy, Tools for your Design
Toolbox

dessert submenu, using Composite Pattern

about, Just when we thought it was safe...

designing, Designing Menus with Composite, Getting ready for a test
drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

diner menus, merging (Iterator Pattern)

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

DJ View, Using MVC to control the beat..., Exercise Solutions

Domain-Specific Patterns, The Patterns Zoo

double-checked locking, reducing use of synchronization using, 3. Use
“double-checked locking” to reduce the use of synchronization in
getInstance().

Duck Magnets exercises, object and class object and class adapters, Object
and class adapters

duck simulator, rebuilding

about, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

dumb command objects, Using a macro command

dynamic aspect of dynamic proxies, Running the code...

dynamic proxy

creating, Big Picture: creating a Dynamic Proxy for the PersonBean

using to create proxy implementation, Using the Java API’s Proxy to
create a protection proxy

E

encapsulate what varies, Zeroing in on the problem..., Tools for your Design
Toolbox, Tools for your Design Toolbox, Factory Method Pattern defined,
The messy STATE of things...

encapsulating algorithms

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

encapsulating behavior, Designing the Duck Behaviors

encapsulating code

in behaviors, The Big Picture on encapsulated behaviors

in object creation, Encapsulating object creation

object creation, Factory Method Pattern defined

Template Method Pattern and

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

encapsulating iteration, Can we encapsulate the iteration?

encapsulating method invocation, The Command Pattern: Encapsulating
Invocation, The Command Pattern defined

encapsulating object construction, Builder

encapsulating requests, The Command Pattern defined

encapsulating subsystem, Facades, Lights, Camera, Facade!

Enumeration

about, Real-world adapters

adapting to Iterator, Adapting an Enumeration to an Iterator

java.util.Enumeration as older implementation of Iterator, Real-world
adapters, Iterator Pattern defined

remove() method and, Dealing with the remove() method

writing Adapter that adapts Iterator to, Writing the EnumerationIterator
adapter, Tools for your Design Toolbox

exercises

Be the JVM solution, dealing with multithreading, Houston, Hershey, PA
we have a problem..., Tools for your Design Toolbox

Code Magnets

for DinerMenu Iterator, Iterators and Collections, Tools for your Design
Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in
support, Tools for your Design Toolbox

dealing with multithreading, Object and class adapters

Design Puzzles

drawing class diagram making use of view and controller, Now for the
Controller, Exercise Solutions

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns..., Tools for your
Design Toolbox

redesigning classes to remove redundancy, And now the Tea...

redesigning Image Proxy, Writing the Image Proxy, Tools for your
Design Toolbox

Duck Magnets exercises, object and class object and class adapters, Object
and class adapters

implementing Iterator, Reworking the Diner Menu with Iterator

implementing undo button for macro command, Using a macro command,
Tools for your Design Toolbox

Sharpen Your Pencil

altering decorator classes, Serving some coffees, Tools for your Design
Toolbox

annotating Gumball Machine states, Let’s take a look at what we’ve
done so far..., Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

building ingredient factory, Building the New York ingredient factory,
A very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion, Exercise
Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the
Café Menu, Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of
things..., Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting
prepareRecipe(), Tools for your Design Toolbox

creating commands for off buttons, Using a macro command, Tools for
your Design Toolbox

determining classes violating Principle of Least Knowledge, Keeping
your method calls in bounds..., Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate
Factory..., Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the
Remote Control, Tools for your Design Toolbox

implementing state classes, Implementing more states, Tools for your
Design Toolbox

matching patterns with categories, Organizing Design Patterns

method for refilling gumball machine, We almost forgot!, Tools for your
Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress
Specification, Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance..., Tools for your Design
Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development, Tools
for your Design Toolbox

turning class into Singleton, The Chocolate Factory, Tools for your
Design Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather
Station, Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion, Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter,
Tools for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and
instantiating the Proxy object, Tools for your Design Toolbox

writing Flock observer code, Duck reunion, Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee, Tools for
your Design Toolbox

Who Does What

matching objects and methods to Command Pattern, From the Diner to
the Command Pattern, Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and
Template Method, Tools for your Design Toolbox, The magic of Iterator

& Composite together..., Tools for your Design Toolbox, We almost
forgot!, Tools for your Design Toolbox, Running the code..., Tools for
your Design Toolbox, So you wanna be a Design Patterns writer, Boy,
it’s been great having you in Objectville.

matching patterns with its intent, And now for something different...,
Tools for your Design Toolbox

writing Adapter that adapts Iterator to Enumeration, Writing the
EnumerationIterator adapter, Tools for your Design Toolbox

writing handler for matchmaking service, Creating Invocation Handlers
continued..., Tools for your Design Toolbox

external iterators, Iterator Pattern defined

F

Facade Pattern

about, And now for something different...

Adapter Pattern vs., Lights, Camera, Facade!

advantages, Lights, Camera, Facade!

benefits of, Lights, Camera, Facade!

building home theater system

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing Facade class, Lights, Camera, Facade!

implementing interface, Implementing the simplified interface

testing, Time to watch a movie (the easy way)

class diagram, Facade Pattern defined

Complexity Hiding Proxy vs., The Proxy Zoo

definition of, Facade Pattern defined

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Running the code..., So you
wanna be a Design Patterns writer, Boy, it’s been great having you in
Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

Principle of Least Knowledge and, Tools for your Design Toolbox

factory method

about, Declaring a factory method, Factory Method Pattern defined

as abstract, Factory Method Pattern defined

declaring, Declaring a factory method

parallel class hierarchies and, Another perspective: parallel class
hierarchies

Factory Method Pattern

about, It’s finally time to meet the Factory Method Pattern

about factory objects, Encapsulating object creation

Abstract Factory Pattern and, Abstract Factory Pattern defined

code up close, Reworking the pizzas, continued...

concrete classes and, Factory Method Pattern defined

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class

hierarchies, Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Factory Pattern

Abstract Factory

about, What have we done?

building ingredient factories, Building the ingredient factories, A very
dependent PizzaStore

combining patterns, Duck reunion, Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox

Factory Method

about, It’s finally time to meet the Factory Method Pattern

Abstract Factory and, Abstract Factory Pattern defined

Abstract Factory in, What have we done?, Abstract Factory Pattern
defined

advantages of, Factory Method Pattern defined

code up close, Reworking the pizzas, continued...

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Simple Factory

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory
Pattern: Baking with OO Goodness

favor composition over inheritance, HAS-A can be better than IS-A, Tools
for your Design Toolbox, Tools for your Design Toolbox, The messy STATE

of things...

Firewall Proxy, The Proxy Zoo

Flyweight Pattern, Flyweight

forces, Looking more closely at the Design Pattern definition

frameworks vs. libraries, How do I use Design Patterns?

G

Gamma, Erich, Cruisin’ Objectville with the Gang of Four

Gang of Four (GoF)

about, Looking more closely at the Design Pattern definition, Cruisin’
Objectville with the Gang of Four

catalogs, Looking more closely at the Design Pattern definition

garbage collectors, Congratulations!

global access point, Singleton Pattern defined

global variables vs. Singleton, Congratulations!

guide to better living with Design Patterns, Better Living with Patterns:
Patterns in the Real World

gumball machine controller implementation, using State Pattern

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

one in ten contest

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

implementing state classes, Implementing our State classes,
Implementing more states, We still need to finish the Gumball 1 in 10
game

new design, The new design

reworking state classes, Reworking the Gumball Machine

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball, Inc.

testing code, In-house testing

writing code, Writing the code

gumball machine monitoring, using Proxy Patterns

about, The Proxy Pattern: Controlling Object Access

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

H

HAS-A relationships

about, HAS-A can be better than IS-A

wrapping components, The Decorator Pattern defined

HashMap, Reworking the Café Menu code, Iterators and Collections,
Iterators and Collections

hasNext() method

in arrays, Adding an Iterator to DinerMenu

in java.util.Iterator, Iterator Pattern defined

Head First learning principles, And we know what your brain is thinking.

Head First Servlets & JSP (Basham, Sierra and Bates), Model 2: DJ’ing from
a cell phone

Helm, Richard, Cruisin’ Objectville with the Gang of Four

high-level component classes, The Dependency Inversion Principle

The Hillside Group (website), Your journey has just begun...

The Hollywood Principle, The Hollywood Principle

home automation remote control, using Command Pattern

about, Taking a look at the vendor classes

building, Our first command object, Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

creating commands to be loaded, The Command Pattern defined: the class
diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda
expression commands...

implementing, Implementing the Commands

macro commands

about, Every remote needs a Party Mode!

hard coding vs., Using a macro command

undo button, Using a macro command, Tools for your Design Toolbox

using, Using a macro command

mapping, From the Diner to the Command Pattern, Tools for your Design
Toolbox

Null Object, Now, let’s check out the execution of our remote control
test..., Test the remote control with lambda expressions

testing, Using the command object, Putting the Remote Control through its
paces, Using a macro command, Test the remote control with lambda

expressions

undo commands

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Tools for your Design Toolbox

testing, Time to QA that Undo button!, Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

home theater system, building

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing interface, Implementing the simplified interface

Sharpen Your Pencil, Keeping your method calls in bounds...

testing, Time to watch a movie (the easy way)

using Facade Pattern, Lights, Camera, Facade!

hooks, in Template Method Pattern, Template Method Pattern defined

I

Image Proxy, writing, Writing the Image Proxy

implement on interface, in design patterns, The Simple Factory defined

Implementation section, in pattern catalog, Looking more closely at the
Design Pattern definition

implementations

coding to, What’s wrong with our implementation?

programming, More integration...

implementing behaviors, Implementing the Duck Behaviors

import and package statements, Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement them

inheritance

about, Joe thinks about inheritance...

composition vs., Cubicle Conversation

disadvantages, Joe thinks about inheritance...

disadvantages of, Welcome to Starbuzz Coffee

favoring composition over, HAS-A can be better than IS-A

for maintenance, But something went horribly wrong...

for reuse, But something went horribly wrong..., Implementing the Duck
Behaviors

implementing multiple, Object and class adapters

instance variables

using instead of classes, Welcome to Starbuzz Coffee

wrapping to object, Coding condiments

instantiating concrete classes

in objects, Looking at object dependencies

using new operator for, The Factory Pattern: Baking with OO Goodness

instantiating one object, The Singleton Pattern: One of a Kind Objects

integrating behaviors, Integrating the Duck Behavior

integrating Cafe Menu, using Iterator Pattern

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

Intent section, in pattern catalog, Looking more closely at the Design Pattern
definition

interface

coding to, The Factory Pattern: Baking with OO Goodness

programming to, Designing the Duck Behaviors, The dark side of
java.util.Observable

interface type, Integrating the Duck Behavior, Testing the Duck code

internal iterators, Iterator Pattern defined

Interpreter Pattern, Interpreter

inversion, in Dependency Inversion Principle, Applying the Principle

invoker, From the Diner to the Command Pattern, The Command Pattern
defined, Assigning Commands to slots, Tools for your Design Toolbox

Iterator Pattern

about, Meet the Iterator Pattern

class diagram, Iterator Pattern defined

code up close using HashMap, Reworking the Café Menu code

code violating Open-Closed Principle, Is the Waitress ready for prime
time?

Collections and, Iterators and Collections

combining patterns, Duck reunion

Composite Pattern and, Getting ready for a test drive...

definition of, Iterator Pattern defined

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, So you wanna be a Design
Patterns writer, Boy, it’s been great having you in Objectville.

integrating Cafe Menu

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

java.util.Iterator, Making some improvements...

merging diner menus

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

Null Iterator, Flashback to Iterator, The Null Iterator

removing objects, Making some improvements...

Single Responsibility Principle, Single Responsibility

Iterators

adding, Adding an Iterator to DinerMenu

allowing decoupling, What we have so far..., What does this get us?,
Iterator Pattern defined, Iterators and Collections

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

Collections and, Iterators and Collections

encapsulating, Can we encapsulate the iteration?

Enumeration adapting to, Adapting an Enumeration to an Iterator, Iterator
Pattern defined

external, Iterator Pattern defined

HashMap and, Iterators and Collections

implementing, Meet the Iterator Pattern

internal and external, Iterator Pattern defined

ordering of, Iterator Pattern defined

polymorphic code using, Iterator Pattern defined, Iterator Pattern defined

using ListInterator, Iterator Pattern defined

using with Composite Pattern, Flashback to Iterator

writing Adapter for Enumeration, Dealing with the remove() method

writing Adapter that adapts to Enumeration, Writing the
EnumerationIterator adapter, Tools for your Design Toolbox

J

Java Collections Framework, Iterators and Collections

Java decorators (java.io packages), Real World Decorators: Java I/O

Java Virtual Machines (JVMs)

bug in garbage collector, Congratulations!

Remote Method Invocation (RMI), Adding a remote proxy to the Gumball
Machine monitoring code

support of volatile keyword, 3. Use “double-checked locking” to reduce
the use of synchronization in getInstance().

java.lang.reflect package, proxy support in, Java RMI, the Big Picture, Using
the Java API’s Proxy to create a protection proxy, Creating Invocation
Handlers continued...

java.util, built-in Observer Pattern, Using Java’s built-in Observer Pattern

java.util.Collection, Iterators and Collections

java.util.Enumeration, as older implementation of Iterator, Real-world
adapters, Iterator Pattern defined

java.util.Iterator

cleaning up code using, Cleaning things up with java.util.Iterator

interface of, Making some improvements...

using, Iterator Pattern defined

JButton, in Swing API, Other places you’ll find the Observer Pattern in the
JDK

JFrames, Swing, Swingin’ with Frames

Johnson, Ralph, Cruisin’ Objectville with the Gang of Four

K

Kathy Sierra, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

KISS (Keep It Simple), in designing patterns, Thinking in Patterns

Known Uses section, in pattern catalog, Looking more closely at the Design
Pattern definition

L

lambda expressions, And the code..., Simplifying the Remote Control with
lambda expressions

Law of Demeter, Keeping your method calls in bounds...

lazy instantiation, Singleton Pattern defined

leaves, in Composite Pattern tree structure, The Composite Pattern defined,
Getting ready for a test drive...

libraries

design patterns vs., How do I use Design Patterns?

frameworks vs., How do I use Design Patterns?

LinkedList, Iterators and Collections

ListInterator, Iterator Pattern defined

logging requests, using Command Pattern, More uses of the Command
Pattern: logging requests

looping through array items, The Java-Enabled Waitress Specification, What
now?

loose coupling, The power of Loose Coupling

M

macro commands

about, Every remote needs a Party Mode!

macro commands

hard coding vs., Using a macro command

undo button, Using a macro command, Tools for your Design Toolbox

using, Using a macro command

magic bullet, Design Patterns as not, Thinking in Patterns

maintenance, inheritance for, But something went horribly wrong...

matchmaking service, using Proxy Pattern

about, Matchmaking in Objectville

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing, Testing the matchmaking service

Mediator Pattern, Composite, Mediator

Memento Pattern, Memento

merging diner menus (Iterator Pattern)

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

method of objects, components of object vs., The Principle of Least
Knowledge

method references, passing, Simplifying even more with method references

methods

as hooks, Template Method Pattern defined

overriding from implemented, A few guidelines to help you follow the

Principle...

Model 2

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller (MVC)

about, If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this..., Meet the Model-
View-Controller

Adapter Pattern, Adapting the Model

Beat model, Meet the Java DJ View, Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses,
Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController, Exercise
Solutions

Heart model, Exploring Strategy

implementing controller, Now for the Controller, Exercise Solutions

implementing DJ View, Using MVC to control the beat..., Exercise
Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses,

Building the pieces

song, If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses, Now
for the Controller, Exploring Strategy, Exercise Solutions

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

modeling state, State machines 101

Motivation section, in pattern catalog, Looking more closely at the Design
Pattern definition

multiple patterns, using

about, Compound Patterns: Patterns of Patterns

in duck simulator

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

multithreading

dealing with, Tools for your Design Toolbox

improving, Can we improve multithreading?

N

Name section, in pattern catalog, Looking more closely at the Design Pattern
definition

new operator, replacing with concrete method, Reworking the PizzaStore
class

next() method

in java.util.Iterator, Iterator Pattern defined

with Iterator, arrays, Adding an Iterator to DinerMenu

NoCommand, in remote control code, Now, let’s check out the execution of
our remote control test..., Test the remote control with lambda expressions

nodes, in Composite Pattern tree structure, The Composite Pattern defined,
Getting ready for a test drive...

Null Iterator, Flashback to Iterator, The Null Iterator

Null Objects, Now, let’s check out the execution of our remote control test...

O

object access, using Proxy Pattern for controlling

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?, The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

object adapters vs. class adapters, Object and class adapters

object construction, encapsulating, Builder

object creation, encapsulating, Encapsulating object creation, Factory Method
Pattern defined

object patterns, Design Patterns, Pattern Categories

Object-Oriented (OO) design., The Dependency Inversion Principle

(see also design principles)

adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must
might be a duck turkey wrapped with a duck adapter..., Test drive the
adapter

object and class object and class, Object and class adapters

design patterns vs., How do I use Design Patterns?

extensibility and modification of code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A
few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

Object-Oriented Systems, Languages and Applications (OOPSLA)

conference, Your journey has just begun...

objects

components of, The Principle of Least Knowledge

creating, Factory Method Pattern defined

loosely coupled designs between, The power of Loose Coupling

sharing state, The State Pattern defined

Singleton, A small Socratic exercise in the style of The Little Lisper,
Dissecting the classic Singleton Pattern implementation

wrapping, Meet the Decorator Pattern, Here’s how the Client uses the
Adapter, Writing the EnumerationIterator adapter, Lights, Camera,
Facade!, Duck reunion

Observer Pattern

about, The Observer Pattern: Keeping your Objects in the know, Meet the
Observer Pattern

class design of, The Observer Pattern defined

class patterns category, So you wanna be a Design Patterns writer

combining patterns, Duck reunion

definition of, The Observer Pattern defined

dependence in, The Observer Pattern defined: the class diagram

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Boy, it’s been great having you
in Objectville.

in Five Minute Drama, Five-minute drama: a subject for observation

in Model 2, Design Patterns and Model 2

in Model-View-Controller, Looking at MVC through patterns-colored

glasses, Building the pieces

lambada expressions and, And the code...

loose coupling in, The power of Loose Coupling

Observer object in, Publishers + Subscribers = Observer Pattern

one-to-many relationships, The Observer Pattern defined

process, A day in the life of the Observer Pattern

Publish-Subscribe as, Publishers + Subscribers = Observer Pattern

Subject object in, Publishers + Subscribers = Observer Pattern

Swing and, Other places you’ll find the Observer Pattern in the JDK

using built-in java.util, Using Java’s built-in Observer Pattern

weather station using

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station
with the built-in support

observers

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

One Class, One Responsibility Principle, Congratulations!, Single
Responsibility, Getting ready for a test drive...

one in ten contest in gumball machine, using State Pattern

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes, Tools
for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!, Tools
for your Design Toolbox

implementing state classes, Implementing our State classes, Implementing
more states, We still need to finish the Gumball 1 in 10 game

new design, The new design

reworking state classes, Reworking the Gumball Machine

one-to-many relationships, Observer Pattern defining, The Observer Pattern
defined

OO (Object-Oriented) design., The Dependency Inversion Principle

(see also design principles)

adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must
might be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

design patterns vs., How do I use Design Patterns?

extensibility and modification os code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A
few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

OOPSLA (Object-Oriented Systems, Languages and Applications)
conference, Your journey has just begun...

Open-Closed Principle

code violating, Is the Waitress ready for prime time?, The messy STATE
of things...

effect on maintaining code, The Open-Closed Principle

Organizational Patterns, The Patterns Zoo

overusing Design Patterns, Your Mind on Patterns

P

package and import statements, Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement them

parallel class hierarchies, Another perspective: parallel class hierarchies

part-whole hierarchy, The Composite Pattern defined

Participants section, in pattern catalog, Looking more closely at the Design
Pattern definition

pattern catalogs, Looking more closely at the Design Pattern definition,
Looking more closely at the Design Pattern definition

Pattern Death Match pages, Compound Patterns: Patterns of Patterns

Pattern Languages of Programs (PLoP) conference, Your journey has just
begun...

pattern templates, uses of, So you wanna be a Design Patterns writer

A Pattern Language (Alexander), Your journey has just begun...

patterns, using compound, Compound Patterns: Patterns of Patterns

patterns, using multiple

about, Compound Patterns: Patterns of Patterns

in duck simulator

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

Pizza Store project, using Factory Pattern

Abstract Factory in, What have we done?, Abstract Factory Pattern defined

behind the scenes, More pizza for Ethan and Joel...

building factory, Building a simple pizza factory

concrete subclasses in, Allowing the subclasses to decide

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

encapsulating object creation, Encapsulating object creation

ensuring consistency in ingredients, Meanwhile, back at the PizzaStore...,
A very dependent PizzaStore

framework for, A framework for the pizza store

franchising store, Franchising the pizza store

identifying aspects in, Identifying the aspects that vary

implementing, Inverting your thinking...

making pizza store in, Let’s make a PizzaStore

ordering pizza, Our PizzaStore isn’t going to be very popular without some
pizzas, so let’s implement them

referencing local ingredient factories, Revisiting our pizza stores

reworking pizzas, Reworking the pizzas...

PLoP (Pattern Languages of Programs) conference, Your journey has just
begun...

polymorphic code, using on iterator, Iterator Pattern defined, Iterator Pattern
defined

polymorphism, Designing the Duck Behaviors

prepareRecipe(), abstracting, Abstracting prepareRecipe()

Principle of Least Knowledge, The Principle of Least Knowledge

print() method, in dessert submenu using Composite Pattern, Implementing
the Menu Component, The Composite Iterator

program to an interface, not an implementation, Designing the Duck
Behaviors, The dark side of java.util.Observable, Tools for your Design
Toolbox, Tools for your Design Toolbox, What does this get us?

program to interface vs. program to supertype, Designing the Duck Behaviors

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the

PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

Proxy Pattern and, What did we do?

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Prototype Pattern, Prototype

proxies, The Proxy Pattern: Controlling Object Access

Proxy class, identifying class as, Running the code...

Proxy Pattern

Adapter Pattern vs., What did we do?

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Decorator Pattern vs., What did we do?

definition of, The Proxy Pattern defined

dynamic aspect of dynamic proxies, Running the code...

exercise matching description of, Running the code..., So you wanna be a
Design Patterns writer, Boy, it’s been great having you in Objectville.

Firewall Proxy, The Proxy Zoo

implementation of Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

java.lang.reflect package, Java RMI, the Big Picture, Using the Java API’s
Proxy to create a protection proxy, Creating Invocation Handlers
continued...

Protection Proxy and

about, Using the Java API’s Proxy to create a protection proxy

Adapters and, What did we do?

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Real Subject

as surrogate of, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use Proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating
the Proxy object

restrictions on passing types of interfaces, Running the code...

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

variations, What did we do?, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?, The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Publish-Subscribe, as Observer Pattern, Publishers + Subscribers = Observer
Pattern

Q

queuing requests, using Command Pattern, More uses of the Command
Pattern: queuing requests

R

Real Subject

as surrogate of Proxy Pattern, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating the
Proxy object

refactoring, What do we need?, You know you need a pattern when...

Related patterns section, in pattern catalog, Looking more closely at the
Design Pattern definition

Remote Method Invocation (RMI)

about, Adding a remote proxy to the Gumball Machine monitoring code,
Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote
service

importing packages, Getting the GumballMachine ready to be a remote
service, Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

Remote proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

remove() method

Enumeration and, Dealing with the remove() method

in collection of objects, Making some improvements...

in java.util.Iterator, Iterator Pattern defined

requests, encapsulating, The Command Pattern defined

resources, Design Patterns, Your journey has just begun...

reuse, But something went horribly wrong..., Welcome to Starbuzz Coffee

RMI (Remote Method Invocation)

about, Adding a remote proxy to the Gumball Machine monitoring code,
Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote
service

importing packages, Getting the GumballMachine ready to be a remote

service, Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

rule of three, applied to Design Patterns, So you wanna be a Design Patterns
writer

runtime errors, causes of, Factory Method Pattern defined

S

Sample code section, in pattern catalog, Looking more closely at the Design
Pattern definition

server heap, Remote methods 101

service helper (skeletons), in RMI, Java RMI, the Big Picture, Java RMI, the
Big Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

servlet environment, setting up, Model 2: DJ’ing from a cell phone

shared vocabulary

importance of, Overheard at the local diner...

power of, The power of a shared pattern vocabulary, Don’t forget the
power of the shared vocabulary

Sharpen Your Pencil

altering decorator classes, Serving some coffees, Tools for your Design
Toolbox

annotating Gumball Machine States, Let’s take a look at what we’ve done
so far..., Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes, Tools
for your Design Toolbox

building ingredient factory, Building the New York ingredient factory, A
very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion, Exercise Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the
Café Menu, Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of
things..., Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting
prepareRecipe(), Tools for your Design Toolbox

code not using factories, A very dependent PizzaStore, A very dependent
PizzaStore

creating commands for off buttons, Using a macro command, Tools for
your Design Toolbox

creating heat index, Power up the Weather Station

determining classes violating Principle of Least Knowledge, Keeping your
method calls in bounds..., Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...,
Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the
Remote Control, Tools for your Design Toolbox

implementing state classes, Implementing more states, Tools for your
Design Toolbox

making pizza store, Let’s make a PizzaStore, Tools for your Design

Toolbox

matching patterns with categories, Organizing Design Patterns, Organizing
Design Patterns

method for refilling gumball machine, We almost forgot!, Tools for your
Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress
Specification, Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance..., Tools for your Design
Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development, Tools
for your Design Toolbox

turning class into Singleton, The Chocolate Factory, Tools for your Design
Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather
Station, Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion, Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter, Tools
for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and instantiating
the Proxy object, Tools for your Design Toolbox

writing Flock observer code, Duck reunion, Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee, Tools for your
Design Toolbox

Simple Factory Pattern

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory Pattern:
Baking with OO Goodness

Single Responsibility Principle, Single Responsibility

Singleton objects, A small Socratic exercise in the style of The Little Lisper,
Dissecting the classic Singleton Pattern implementation

Singleton Pattern

about, The Singleton Pattern: One of a Kind Objects

advantages of, The Singleton Pattern: One of a Kind Objects

Chocolate Factory

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate
Factory...

class diagram, Singleton Pattern defined

code up close, Dissecting the classic Singleton Pattern implementation

dealing with multithreading, Houston, Hershey, PA we have a problem...,
Tools for your Design Toolbox

definition of, Singleton Pattern defined

disadvantages of, Congratulations!

double-checked locking, 3. Use “double-checked locking” to reduce the
use of synchronization in getInstance().

exercise matching description of, So you wanna be a Design Patterns
writer

global variables vs., Congratulations!

implementing, Dissecting the classic Singleton Pattern implementation

One Class, One Responsibility Principle and, Congratulations!

subclasses in, Congratulations!

using, Congratulations!

skeletons (service helper), in RMI, Java RMI, the Big Picture, Java RMI, the
Big Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

smart command objects, Using a macro command

Smart Reference Proxy, The Proxy Zoo

sorting methods, in Template Method Pattern, Sorting with Template Method

Starbuzz Coffee Barista training manual project

about, It’s time for some more caffeine

abstracting prepareRecipe(), Abstracting prepareRecipe()

using Template Method Pattern

about, Meet the Template Method

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Starbuzz Coffee project, using Decorator Pattern

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training, Tools for your
Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

state machines, State machines 101

State Pattern

definition of, The State Pattern defined

exercise matching description of, We almost forgot!, Tools for your
Design Toolbox, So you wanna be a Design Patterns writer, Boy, it’s been
great having you in Objectville.

gumball machine controller implementation

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball,
Inc.

testing code, In-house testing

writing code, Writing the code

increasing number of classes in design, The State Pattern defined

modeling state, State machines 101

one in ten contest in gumball machine

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

implementing state classes, Implementing our State classes,
Implementing more states, We still need to finish the Gumball 1 in 10
game

new design, The new design

reworking state classes, Reworking the Gumball Machine

sharing state objects, The State Pattern defined

state transitions in state classes, The State Pattern defined

Strategy Pattern vs., The State Pattern defined, Sanity check...

state transitions, in state classes, The State Pattern defined

state, using to implement undo commands, Using state to implement Undo

static classes, using instead of Singletons, Congratulations!

static method vs. create method, Building a simple pizza factory

Strategy Pattern

definition of, Speaking of Design Patterns...

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, The magic of Iterator &
Composite together..., Tools for your Design Toolbox, We almost forgot!,
Tools for your Design Toolbox, So you wanna be a Design Patterns writer,
Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored
glasses, Now for the Controller, Exploring Strategy

State Pattern vs., The State Pattern defined, Sanity check...

Template Method Pattern and, The making of the sorting duck machine,
Applets

structural patterns category, Design Patterns, Pattern Categories, Pattern
Categories

Structure section, in pattern catalog, Looking more closely at the Design
Pattern definition

stubs (client helper), in RMI, Java RMI, the Big Picture, Java RMI, the Big
Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

subclasses

class explosion and, Welcome to Starbuzz Coffee

concrete commands and, The Command Pattern defined: the class diagram

concrete states and, The State Pattern defined

Factory Method and, letting subclasses decide which class to instantiate,
Factory Method Pattern defined

in Singletons, Congratulations!

inheritance gone wrong and, But something went horribly wrong...

Pizza Store concrete, Allowing the subclasses to decide

Template Method, Meet the Template Method

Subject

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

subsystems, Facades and, Lights, Camera, Facade!

superclasses

abstract, Designing the Duck Behaviors

using, But something went horribly wrong...

supertype (programming to interface), vs. programming to interface,
Designing the Duck Behaviors

SWAG, Taking a first, misguided SWAG at the Weather Station

Swing

Composite Pattern and, Composite

Observer Pattern in, Other places you’ll find the Observer Pattern in the
JDK

Template Method Pattern and, Swingin’ with Frames

Synchronization Proxy, The Proxy Zoo

synchronization, as overhead, Dealing with multithreading

T

Template Method Pattern

about, Meet the Template Method

abstract class in

definition of, Template Method Pattern defined

hooks vs., Let’s run the Test Drive

methods in, Template Method Pattern defined

Applet and, Applets

class diagram, Template Method Pattern defined

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, We almost forgot!, Tools for
your Design Toolbox, So you wanna be a Design Patterns writer, Boy, it’s
been great having you in Objectville.

hooks in, Template Method Pattern defined, Let’s run the Test Drive

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Strategy Pattern and, The making of the sorting duck machine, Applets

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

The Timeless Way of Building (Alexander), Your journey has just begun...

thinking in patterns, Thinking in Patterns

tightly coupled, The power of Loose Coupling

transparency, in Composite Pattern, Getting ready for a test drive...

tree structure, Composite Pattern, The Composite Pattern defined, Getting

ready for a test drive...

try/catch, not supporting method, The magic of Iterator & Composite
together...

Two Way Adapters, creating, Here’s how the Client uses the Adapter

type safe parameters, Factory Method Pattern defined

U

undo commands

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Using a macro command

support of, Time to write that documentation...

testing, Time to QA that Undo button!, Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

User Interface Design Patterns, The Patterns Zoo

V

variables

declaring behavior, Integrating the Duck Behavior

holding reference to concrete class, A few guidelines to help you follow
the Principle...

Vector, Iterators and Collections

vegetarian menu, using Composite Pattern, Give me the vegetarian menu

Virtual Proxy

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?, The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Visitor Pattern, Visitor

Vlissides, John, Cruisin’ Objectville with the Gang of Four

volatile keyword, 3. Use “double-checked locking” to reduce the use of
synchronization in getInstance().

W

weather station

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station with
the built-in support

web, Model-View-Controller and, MVC and the Web

Who Does What exercises

matching objects and methods to Command Pattern, From the Diner to the
Command Pattern, Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, The magic of Iterator &
Composite together..., Tools for your Design Toolbox, We almost forgot!,
Tools for your Design Toolbox, Running the code..., Tools for your Design
Toolbox, So you wanna be a Design Patterns writer, Boy, it’s been great
having you in Objectville.

matching patterns with its intent, Tools for your Design Toolbox

whole-part relationships, collection of objects using, The magic of Iterator &
Composite together...

wickedlysmart web site, Read Me

wrapping objects, Meet the Decorator Pattern, Here’s how the Client uses the
Adapter, Writing the EnumerationIterator adapter, Lights, Camera, Facade!,
What did we do?, Duck reunion

Y

your mind on patterns, Your Mind on Patterns

About the Authors
Eric Freeman recently ended nearly a decade as a media company executive,
having held the position of CTO of Disney Online & Disney.com at The Walt
Disney Company. Eric is now devoting his time to WickedlySmart.com and
lives with his wife and young daughter in Austin, TX. He holds a Ph.D. in
Computer Science from Yale University.
Elisabeth Robson is co-founder of Wickedly Smart, an education company
devoted to helping customers gain mastery in web technologies. She's co-
author of four bestselling books, Head First Design Patterns, Head First
HTML and CSS, Head First HTML5 Programming, and Head First
JavaScript Programming.
Bert Bates is a 20-year software developer, a Java instructor, and a co-
developer of Sun's upcoming EJB exam (Sun Certified Business Component
Developer). His background features a long stint in artificial intelligence,
with clients like the Weather Channel, A&E Network, Rockwell, and
Timken.
Kathy Sierra has been interested in learning theory since her days as a game
developer (Virgin, MGM, Amblin'). More recently, she's been a master
trainer for Sun Microsystems, teaching Sun's Java instructors how to teach
the latest technologies to customers, and a lead developer of several Sun
certification exams. Along with her partner Bert Bates, Kathy created the
Head First series. She's also the original founder of the Software
Development/Jolt Productivity Award-winning javaranch.com, the largest
(and friendliest) all-volunteer Java community.

Colophon

All interior layouts were designed by Eric Freeman, Elisabeth Robson,
Kathy Sierra and Bert Bates. Kathy and Bert created the look & feel of the
Head First series. The book was produced using Adobe InDesign CS (an
unbelievably cool design tool that we can’t get enough of) and Adobe
Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky (you
think we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro,
Skippy Sharp, Savoye LET, Jokerman LET, Courier New and Woodrow
typefaces.
Interior design and production all happened exclusively on Apple
Macintoshes — at Head First we’re all about “Think Different” (even if it
isn’t grammatical). All Java code was created using James Gosling’s favorite
IDE, vi, Erich Gamma’s Eclipse.
Long days of writing were powered by the caffeine fuel of Honest Tea and
Tejava, the clean Santa Fe air, and the grooving sounds of Banco de Gaia,
Cocteau Twins, Buddha Bar I-VI, Delerium, Enigma, Mike Oldfield, Olive,
Orb, Orbital, LTJ Bukem, Massive Attack, Steve Roach, Sasha and Digweed,
Thievery Corporation, Zero 7 and Neil Finn (in all his incarnations) along

with a heck of a lot of acid trance and more 80s music than you’d care to
know about.

Head First: Design Patterns
Eric Freeman
Elisabeth Robson
Bert Bates
Kathy Sierra
Editor
Mike Hendrickson

Editor
Mike Loukides

Copyright © 2009 O’Reilly Media, Inc., Bert Bates and Kathy Sierra
Head First Design Patterns

by Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safaribooksonline.com). For more
information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editors: Mike Hendrickson, Mike Loukides

Cover Designer: Ellie Volckhausen

Pattern Wranglers: Eric Freeman, Elisabeth Freeman

Facade Decoration: Elisabeth Robson

Strategy: Kathy Sierra and Bert Bates

Observer: Oliver

Printing History:

mailto:corporate@oreilly.com

July 2014: Second release.

October 2004: First release.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

In other words, if you use anything in Head First Design Patterns to, say, run a nuclear
power plant, you’re on your own. We do, however, encourage you to use the DJ View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-
looking.

[LSI] [2014-
06-30]

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2017-09-13T12:54:18-07:00

Head First: Design Patterns
Table of Contents
Dedication
Praise for Head First Design Patterns
More Praise for Head First Design Patterns
Praise for other books by Eric Freeman and Elisabeth Robson
Authors of Head First Design Patterns
Creators of the Head First series (and co-conspirators on this book)
How to Use This Book: Intro
Who is this book for?
Who should probably back away from this book?

We know what you’re thinking.
And we know what your brain is thinking.
Metacognition: thinking about thinking
Here’s what WE did
Here’s what YOU can do to bend your brain into submission
Read Me
Tech Reviewers
Acknowledgments
Even more people

1. Intro to Design Patterns: Welcome to Design Patterns
It started with a simple SimUDuck app
But now we need the ducks to FLY
But something went horribly wrong...
Joe thinks about inheritance...
How about an interface?
What would you do if you were Joe?
The one constant in software development
Zeroing in on the problem...

Separating what changes from what stays the same
Designing the Duck Behaviors
Implementing the Duck Behaviors
Integrating the Duck Behavior
More integration...
Testing the Duck code
Setting behavior dynamically
The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A
Speaking of Design Patterns...
Overheard at the local diner...
Overheard in the next cubicle...
The power of a shared pattern vocabulary
How do I use Design Patterns?
Tools for your Design Toolbox

2. The Observer Pattern: Keeping your Objects in the know
The Weather Monitoring application overview
Unpacking the WeatherData class
What do we know so far?
Taking a first, misguided SWAG at the Weather Station
What’s wrong with our implementation?
Meet the Observer Pattern
Publishers + Subscribers = Observer Pattern
A day in the life of the Observer Pattern
Five-minute drama: a subject for observation
Two weeks later...
The Observer Pattern defined
The Observer Pattern defined: the class diagram
The power of Loose Coupling
Cubicle conversation
Designing the Weather Station

Implementing the Weather Station
Implementing the Subject interface in WeatherData
Now, let’s build those display elements
Power up the Weather Station
Using Java’s built-in Observer Pattern
How Java’s built-in Observer Pattern works
Reworking the Weather Station with the built-in support
Running the new code
The dark side of java.util.Observable
Other places you’ll find the Observer Pattern in the JDK
And the code...
The updated code, using lambda expressions

Tools for your Design Toolbox
3. The Decorator Pattern: Decorating Objects
Welcome to Starbuzz Coffee
The Open-Closed Principle
Meet the Decorator Pattern
Constructing a drink order with Decorators
Okay, here’s what we know so far...

The Decorator Pattern defined
Decorating our Beverages
Cubicle Conversation
New barista training
Writing the Starbuzz code
Coding beverages
Coding condiments
Serving some coffees
Real World Decorators: Java I/O
Decorating the java.io classes
Writing your own Java I/O Decorator
Test out your new Java I/O Decorator

Give it a spin
Tools for your Design Toolbox

4. The Factory Pattern: Baking with OO Goodness
Identifying the aspects that vary
But the pressure is on to add more pizza types
Encapsulating object creation
Building a simple pizza factory
Reworking the PizzaStore class
The Simple Factory defined
Franchising the pizza store
We’ve seen one approach...
But you’d like a little more quality control...

A framework for the pizza store
Allowing the subclasses to decide
Let’s make a PizzaStore
Declaring a factory method
Let’s see how it works: ordering pizzas with the pizza factory method
So how do they order?
Let’s check out how these pizzas are really made to order...

We’re just missing one thing: PIZZA!
Our PizzaStore isn’t going to be very popular without some pizzas, so
let’s implement them
Now we just need some concrete subclasses... how about defining New
York and Chicago style cheese pizzas?

You’ve waited long enough. Time for some pizzas!
It’s finally time to meet the Factory Method Pattern
The Creator classes
The Product classes

Another perspective: parallel class hierarchies
Factory Method Pattern defined
A very dependent PizzaStore

Looking at object dependencies
The Dependency Inversion Principle
Applying the Principle
Inverting your thinking...
A few guidelines to help you follow the Principle...
Meanwhile, back at the PizzaStore...
Ensuring consistency in your ingredients

Families of ingredients...
Building the ingredient factories
Building the New York ingredient factory
Reworking the pizzas...
Reworking the pizzas, continued...
Revisiting our pizza stores
What have we done?
More pizza for Ethan and Joel...
From here things change, because we are using an ingredient factory

Abstract Factory Pattern defined
Factory Method and Abstract Factory compared
Tools for your Design Toolbox
A very dependent PizzaStore

5. The Singleton Pattern: One of a Kind Objects
The Little Singleton
A small Socratic exercise in the style of The Little Lisper

Dissecting the classic Singleton Pattern implementation
The Chocolate Factory
Singleton Pattern defined
Houston, Hershey, PA we have a problem...
Dealing with multithreading
Can we improve multithreading?
1. Do nothing if the performance of getInstance() isn’t critical to your
application.

2. Move to an eagerly created instance rather than a lazily created one.
3. Use “double-checked locking” to reduce the use of synchronization in
getInstance().

Meanwhile, back at the Chocolate Factory...
Congratulations!
Tools for your Design Toolbox

6. The Command Pattern: Encapsulating Invocation
Free hardware! Let’s check out the Remote Control...
Taking a look at the vendor classes
Cubicle Conversation
Meanwhile, back at the Diner..., or, A brief introduction to the Command
Pattern
Let’s study the interaction in a little more detail...
The Objectville Diner roles and responsibilities
From the Diner to the Command Pattern
Our first command object
Using the command object
Creating a simple test to use the Remote Control
The Command Pattern defined
The Command Pattern defined: the class diagram
Assigning Commands to slots
Implementing the Remote Control
Implementing the Commands
Putting the Remote Control through its paces
Now, let’s check out the execution of our remote control test...

Time to write that documentation...
What are we doing?
Time to QA that Undo button!
Using state to implement Undo
Adding Undo to the CeilingFan commands
Get ready to test the ceiling fan

Testing the ceiling fan...
Every remote needs a Party Mode!
Using a macro command
The Command Pattern means lots of command classes
Do we really need all these command classes?

Simplifying the Remote Control with lambda expressions
Simplifying even more with method references
What if we need to do more than one thing in our lambda expression?

Test the remote control with lambda expressions
Check out the results of all those lambda expression commands...

More uses of the Command Pattern: queuing requests
More uses of the Command Pattern: logging requests
Tools for your Design Toolbox

7. The Adapter and Facade Patterns: Being Adaptive
Adapters all around us
Object-oriented adapters
If it walks like a duck and quacks like a duck, then it must might be a duck
turkey wrapped with a duck adapter...
Test drive the adapter
The Adapter Pattern explained
Here’s how the Client uses the Adapter

Adapter Pattern defined
Object and class adapters
Real-world adapters
Old-world Enumerators
New-world Iterators
And today...

Adapting an Enumeration to an Iterator
Designing the Adapter
Dealing with the remove() method
Writing the EnumerationIterator adapter

And now for something different...
Home Sweet Home Theater
Watching a movie (the hard way)
Lights, Camera, Facade!
Constructing your home theater facade
Implementing the simplified interface
Time to watch a movie (the easy way)
Facade Pattern defined
The Principle of Least Knowledge
How NOT to Win Friends and Influence Objects
Keeping your method calls in bounds...

The Facade and the Principle of Least Knowledge
Tools for your Design Toolbox

8. The Template Method Pattern: Encapsulating Algorithms
It’s time for some more caffeine
Whipping up some coffee and tea classes (in Java)
And now the Tea...
Sir, may I abstract your Coffee, Tea?
Taking the design further...
Abstracting prepareRecipe()
What have we done?
Meet the Template Method
Let’s make some tea...
What did the Template Method get us?
Template Method Pattern defined
Hooked on Template Method...
Using the hook
Let’s run the Test Drive
The Hollywood Principle
The Hollywood Principle and Template Method
Template Methods in the Wild

Sorting with Template Method
We’ve got some ducks to sort...
What is compareTo()?
Comparing Ducks and Ducks
Let’s sort some Ducks
The making of the sorting duck machine
Swingin’ with Frames
Applets
Tools for your Design Toolbox

9. The Iterator and Composite Patterns: Well-Managed Collections
Breaking News: Objectville Diner and Objectville Pancake House Merge
Check out the Menu Items
Lou and Mel’s Menu implementations
What’s the problem with having two different menu representations?
The Java-Enabled Waitress Specification

What now?
Can we encapsulate the iteration?
Meet the Iterator Pattern
Adding an Iterator to DinerMenu
Reworking the Diner Menu with Iterator
Fixing up the Waitress code
Testing our code
Here’s the test run...

What have we done so far?
What we have so far...
Making some improvements...
Cleaning things up with java.util.Iterator
We are almost there...
What does this get us?
Iterator Pattern defined
Single Responsibility

Taking a look at the Café Menu
Reworking the Café Menu code
Adding the Café Menu to the Waitress
Breakfast, lunch AND dinner
Here’s the test run; check out the new dinner menu from the Café!

What did we do?
We decoupled the Waitress....
... and we made the Waitress more extensible
But there’s more!
Iterators and Collections
Is the Waitress ready for prime time?
Just when we thought it was safe...
What do we need?
The Composite Pattern defined
Designing Menus with Composite
Implementing the Menu Component
Implementing the Menu Item
Implementing the Composite Menu
Fixing the print() method

Getting ready for a test drive...
Now for the test drive...
Getting ready for a test drive...
Flashback to Iterator
The Composite Iterator
The Null Iterator
Give me the vegetarian menu
The magic of Iterator & Composite together...
Tools for your Design Toolbox

10. The State Pattern: The State of Things
Jawva Breakers
Cubicle Conversation

State machines 101
Writing the code
In-house testing
You knew it was coming... a change request!
The messy STATE of things...
The new design
Defining the State interfaces and classes
Implementing our State classes
Reworking the Gumball Machine
Now, let’s look at the complete GumballMachine class...
Implementing more states
Let’s take a look at what we’ve done so far...
The State Pattern defined
We still need to finish the Gumball 1 in 10 game
Finishing the game
Demo for the CEO of Mighty Gumball, Inc.
Sanity check...
We almost forgot!
Tools for your Design Toolbox

11. The Proxy Pattern: Controlling Object Access
Coding the Monitor
Testing the Monitor
The role of the ‘remote proxy’
Adding a remote proxy to the Gumball Machine monitoring code
Remote methods 101
Java RMI, the Big Picture
How does the client get the stub object?
Back to our GumballMachine remote proxy
Getting the GumballMachine ready to be a remote service
Registering with the RMI registry...
Now for the GumballMonitor client...

Writing the Monitor test drive
Another demo for the CEO of Mighty Gumball...
And now let’s put the monitor in the hands of the CEO. Hopefully, this
time he’ll love it

The Proxy Pattern defined
Get ready for Virtual Proxy
Remote Proxy
Virtual Proxy

Displaying CD covers
Designing the CD cover Virtual Proxy
How ImageProxy is going to work

Writing the Image Proxy
Testing the CD Cover Viewer
Things to try...

What did we do?
Using the Java API’s Proxy to create a protection proxy
Matchmaking in Objectville
The PersonBean implementation
Five-minute drama: protecting subjects
Big Picture: creating a Dynamic Proxy for the PersonBean
Step one: creating Invocation Handlers
Creating Invocation Handlers continued...
Step two: creating the Proxy class and instantiating the Proxy object
Testing the matchmaking service
Running the code...
The Proxy Zoo
Tools for your Design Toolbox
The code for the CD Cover Viewer

12. Compound Patterns: Patterns of Patterns
Working together
Duck reunion

What did we do?
A duck’s eye view: the class diagram
The King of Compound Patterns
If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this...

Meet the Model-View-Controller
A closer look...
Looking at MVC through patterns-colored glasses
Observer
Strategy
Composite

Using MVC to control the beat...
Meet the Java DJ View
The controller is in the middle...
Let’s not forget about the model underneath it all...

Putting the pieces together
Building the pieces
Let’s check out the BeatModelInterface before looking at the
implementation

Now let’s have a look at the concrete BeatModel class
The View
Implementing the View
Implementing the View, continued...
Now for the Controller
And here’s the implementation of the controller

Putting it all together...
And now for a test run...
Things to do

Exploring Strategy
Adapting the Model
Now we’re ready for a HeartController

And that’s it! Now it’s time for some test code...
And now for a test run...
Things to do

MVC and the Web
Model 2: DJ’ing from a cell phone
The plan

Step one: the model
Step two: the controller servlet
Now we need a view...
Putting Model 2 to the test...
Things to do

Design Patterns and Model 2
Model 2 is an adaptation of MVC to the Web

Observer
Strategy
Composite

Tools for your Design Toolbox
Exercise Solutions

13. Better Living with Patterns: Patterns in the Real World
Design Pattern defined
Looking more closely at the Design Pattern definition
So you wanna be a Design Patterns writer
Organizing Design Patterns
Pattern Categories
Thinking in Patterns
Keep it simple (KISS)
Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!
You know you need a pattern when...
Refactoring time is Patterns time!
Take out what you don’t really need. Don’t be afraid to remove a Design
Pattern from your design.

If you don’t need it now, don’t do it now.
Your Mind on Patterns
Don’t forget the power of the shared vocabulary
Cruisin’ Objectville with the Gang of Four
Your journey has just begun...
The Patterns Zoo
Annihilating evil with Anti-Patterns
Tools for your Design Toolbox
Leaving Objectville...
Boy, it’s been great having you in Objectville.

A. Leftover Patterns
Bridge
Why use the Bridge Pattern?
Builder
Why use the Builder Pattern?
Chain of Responsibility
How to use the Chain of Responsibility Pattern
Flyweight
Why use the Flyweight Pattern?
Interpreter
How to implement an interpreter
Mediator
Mediator in action...
Memento
The Memento at work
Prototype
Prototype to the rescue
Visitor
The Visitor drops by

B.
C. Mighty Gumball

Index
About the Authors
Colophon
Copyright

