

Docker Deep Dive
Zero to Docker in a single book!

Nigel Poulton

This book is for sale at http://leanpub.com/dockerdeepdive

This version was published on 2018-02-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2016 - 2018 Nigel Poulton

http://leanpub.com/dockerdeepdive
http://leanpub.com/
http://leanpub.com/manifesto

Huge thanks to my wife and kids for putting up with a geek in the house who
genuinely thinks he’s a bunch of software running inside of a container on top of

midrange biological hardware. It can’t be easy living with me!

Massive thanks as well to everyone who watches my Pluralsight videos. I love
connecting with you and really appreciate all the feedback I’ve gotten over the

years. This was one of the major reasons I decided to write this book! I hope it’ll be
an amazing tool to help you drive your careers even further forward.

Contents

0: About the book . 1
What’s this Docker Certified Associate stuff? 1
What about a print (paperback) version 2
Why should I read this book or care about Docker? 3
Isn’t Docker just for developers? . 3
Should I buy the book if I’ve already watched your video training courses? 3
How the book is organized . 4
Versions of the book . 5
Having problems getting the latest updates on your Kindle? 6

Part 1: The big picture stuff 7

1: Containers from 30,000 feet . 8
The bad old days . 8
Hello VMware! . 8
VMwarts . 9
Hello Containers! . 9
Linux containers . 10
Hello Docker! . 10
Windows containers . 11
Windows containers vs Linux containers 11
What about Mac containers? . 11
What about Kubernetes . 12
Chapter Summary . 13

CONTENTS

2: Docker . 14
Docker - The TLDR . 14
Docker, Inc. 14
The Docker runtime and orchestration engine 16
The Docker open-source project (Moby) 17
The container ecosystem . 18
The Open Container Initiative (OCI) . 19
Chapter summary . 21

3: Installing Docker . 22
Docker for Windows (DfW) . 22
Docker for Mac (DfM) . 28
Installing Docker on Linux . 32
Installing Docker on Windows Server 2016 35
Upgrading the Docker Engine . 37
Docker and storage drivers . 40
Chapter Summary . 46

4: The big picture . 47
The Ops Perspective . 48
The Dev Perspective . 56
Chapter Summary . 61

Part 2: The technical stuff 62

5: The Docker Engine . 63
Docker Engine - The TLDR . 63
Docker Engine - The Deep Dive . 64
Chapter summary . 73

6: Images . 74
Docker images - The TLDR . 74
Docker images - The deep dive . 75
Images - The commands . 102
Chapter summary . 103

CONTENTS

7: Containers . 104
Docker containers - The TLDR . 104
Docker containers - The deep dive . 106
Containers - The commands . 127
Chapter summary . 128

8: Containerizing an app . 130
Containerizing an app - The TLDR . 130
Containerizing an app - The deep dive 131
Containerizing an app - The commands 153
Chapter summary . 154

9: Deploying Apps with Docker Compose 155
Deploying apps with Compose - The TLDR 155
Deploying apps with Compose - The Deep Dive 156
Deploying apps with Compose - The commands 176
Chapter Summary . 177

10: Docker Swarm . 178
Docker Swarm - The TLDR . 178
Docker Swarm - The Deep Dive . 179
Docker Swarm - The Commands . 204
Chapter summary . 205

11: Docker Networking . 206
Docker Networking - The TLDR . 206
Docker Networking - The Deep Dive . 207
Docker Networking - The Commands 234
Chapter Summary . 235

12: Docker overlay networking . 236
Docker overlay networking - The TLDR 236
Docker overlay networking - The deep dive 237
Docker overlay networking - The commands 252
Chapter Summary . 253

CONTENTS

13: Volumes and persistent data . 254
Volumes and persistent data - The TLDR 254
Volumes and persistent data - The Deep Dive 255
Volumes and persistent data - The Commands 265
Chapter Summary . 266

14: Deploying apps with Docker Stacks . 267
Deploying apps with Docker Stacks - The TLDR 267
Deploying apps with Docker Stacks - The Deep Dive 268
Deploying apps with Docker Stacks - The Commands 292
Chapter Summary . 293

15: Security in Docker . 294
Security in Docker - The TLDR . 294
Security in Docker - The deep dive . 296
Chapter Summary . 321

16: Tools for the enterprise . 322
Tools for the enterprise - The TLDR . 322
Tools for the enterprise - The Deep Dive 323
Chapter Summary . 353

17: Enterprise-grade features . 355
Enterprise-grade features - The TLDR 355
Enterprise-grade features - The Deep Dive 355
Chapter Summary . 384

Appendix A: Securing client and daemon communication 386
Lab setup . 388
Create a CA (self-signed certs) . 389
Configure Docker for TLS . 394
Docker TLS Recap . 399

Appendix B: The DCA Exam . 401
Other resources to help with the exam 401
Mapping exam objectives to chapters . 403

CONTENTS

Domain 1: Orchestration (25% of exam) 403
Domain 2: Image Creation, Management, and Registry (20% of exam) . . 404
Domain 3: Installation and Configuration (15% of exam) 405
Domain 4: Networking (15% of exam) 405
Domain 5: Security (15% of exam) . 406
Domain 6: Storage and Volumes (10% of exam) 406

Appendix C: What next . 408
Practice . 408
Video training . 408
Certifications . 408
Community events . 409
Feedback . 409

0: About the book
This is a book about Docker. No prior knowledge required! The motto of the book is
Zero to Docker in a single book!

If you’re interested in Docker and want to know how it works and how to do things
properly this book is dedicated to you!

If you just want to use Docker, and you don’t care if you get things wrong, this book
is not for you.

What’s this Docker Certified Associate stuff?

Docker released its first professional certification in the fall of 2017. It’s called
the Docker Certified Associate (DCA) and it’s for people wanting to prove their
mastery of Docker.

The exam objectives match a lot of real-world scenarios, so I decided to update the
book so that it covered all objectives. In doing this, I worked extremely hard to keep
the book interesting and applicable in the real world.

This is not an exam-cram book. Yes, it covers all exam topics, but this is a real-world
book that is enjoyable to read.

At the time of publishing, this is the only resource available that covers the entire
set of DCA exam objectives!

Good luck with your exam!

0: About the book 2

What about a print (paperback) version

No offense Leanpub and Amazon Kindle, but as good as modern e-books are, I’m
still a fan of ink and paper! So…. this book is available as a high-quality, full-color,
paperback edition via Amazon. None of this black-and-white nonsense.

On the topic of Amazon… I’d love it if you could write a quick review on Amazon!
You can even do this if you bought the book on Leanpub. Cheers!

0: About the book 3

Why should I read this book or care about
Docker?

Docker is here and there’s no point hiding. Developers are all over it, and IT Ops need
to be on their game!We damnwell better know how to build and support production-
quality containerized apps in our business-critical environments. This book will help
you.

Isn’t Docker just for developers?

If you think Docker is just for developers, then prepare to have your world flipped
on its head!

Containerized apps need somewhere to run and someone to manage them. If you
think developers are going to do that, you’re dreaming. Ops will need to build and
run high-performance production-grade Docker infrastructures. If you’ve got an Ops
focus and you’re not skilled-up on Docker, you’re in for a world of pain. But don’t
stress, the book will skill you up!

Should I buy the book if I’ve already watched
your video training courses?

Yes. The book is usually more up to date and covers additional material.

If you like my video courses1 you’ll probably like the book. If you don’t like my video
courses you probably won’t like the book.

If you haven’t watched my video courses, you should! They’re fast-paced and fun
and get rave reviews!

1https://app.pluralsight.com/library/search?q=nigel+poulton

https://app.pluralsight.com/library/search?q=nigel+poulton
https://app.pluralsight.com/library/search?q=nigel+poulton

0: About the book 4

How the book is organized

I’ve divided the book into two sections:

• The big picture stuff
• The technical stuff

The big picture stuff section covers things like:

• Who is Docker, Inc.
• What is the Docker (Moby) project.
• What is the OCI.
• Why do we even have containers…

It’s the kind of stuff that you need to know if you want a good rounded knowledge
of Docker and containers.

The technical stuff section is what the book is all about! This is where you’ll find
everything you need to start working with Docker. It gets into the detail of images,
containers, and the increasingly important topic of orchestration. It even cover’s the
stuff that enterprises love, like TLS, RBAC, AD integration, and backups. You’ll get
the theory so that you know how it all fits together, and you’ll get commands and
examples to show you how it all works in practice.

Most of the chapters in the technical stuff section are divided into three parts:

• The TLDR
• The Deep Dive
• The Commands

The TLDR give’s you two or three paragraphs that you can use to explain the topic
at the coffee machine. They’re also a great way to remind yourself what something
is about.

0: About the book 5

The Deep Dive is where we explain how everything works and go through the
examples.

The Commands lists all the relevant commands in an easy to read list with brief
reminders of what each one does.

I think you’ll love that format.

Versions of the book

Docker is developing at a warp speed! As a result, the value of a book like this is
inversely proportional to how old it is! In other words… the older this book is, the
less valuable it is. So I keep this book up-to-date!

Welcome to the new normal!

We no-longer live in a world where a 1-year old book is valuable. That makes my
life as an author really hard. But it’s true!

Don’t worry though, your investment in this book is safe!

If you buy the paperback copy from Amazon.com, you get the Kindle version for
dirt-cheap as part of the Kindle MatchBook scheme! Kindle MatchBook is a new
service that is only available on Amazon.com and is a bit buggy. If you cannot
see how to get your Kindle version through MatchBook you need to contact Kindle
support — I cannot help you with this :-(

The Kindle and Leanpub versions get all updates at no extra cost!

That’s the best I can currently do!

Below is a list of versions:

• Version 5. This is the version of the book published on 6th February 2018.
It includes ∼200 new pages and covers all Docker Certified Associate exam
topics. This version of the book got a new cover.

• Version 4. This is version 4 of the book, published on 3rd October 2017. This
version added a new chapter titled “Containerizing an app”. It also added
content aboutmulti-architecture images and crypto ID’s to the Images chapter,
and some additional content to The Big Picture chapter.

0: About the book 6

• Version 3. Added The Docker Engine chapter.
• Version 2. Added Security in Docker chapter.
• Version 1. Initial version.

Having problems getting the latest updates
on your Kindle?

It’s come to my attention that Kindle does not always download the latest version of
the book. To fix this:

Go to http://amzn.to/2l53jdg

Under Quick Solutions (on the left) select Digital Purchases. Select Content and

Devices for the Docker Deep Dive order. Your book should show up in the list with
a button that says “Update Available”. Click that button. Delete your old version in
Kindle and download the new one.

If this doesn’t work, contact Kindle support and they will resolve the issue for you.
https://kdp.amazon.com/en_US/self-publishing/contact-us/

Part 1: The big picture stuff

1: Containers from 30,000 feet
Containers are definitely a thing.

In this chapter we’ll get into things like; why do we have containers, what do they
do for us, and where can we use them.

The bad old days

Applications run businesses. If applications break, businesses break. Sometimes they
even go bust. These statements get truer every day!

Most applications run on servers. And in the past, we could only run one application
per server. The open-systems world of Windows and Linux just didn’t have the
technologies to safely and securely run multiple applications on the same server.

So, the story usually went something like this… Every time the business needed a
new application, IT would go out and buy a new server. Andmost of the time nobody
knew the performance requirements of the new application! This meant IT had to
make guesses when choosing the model and size of servers to buy.

As a result, IT did the only thing it could do — it bought big fast servers with lots of
resiliency. After all, the last thing anyone wanted, including the business, was under-
powered servers. Under-powered servers might be unable to execute transactions,
which might result in lost customers and lost revenue. So, IT usually bought big.
This resulted in huge numbers of servers operating as low as 5-10% of their potential
capacity. A tragic waste of company capital and resources!

Hello VMware!

Amid all of this, VMware, Inc. gave the world a gift — the virtual machine (VM).
And almost overnight, the world changed into a much better place! We finally had a

1: Containers from 30,000 feet 9

technology that would let us safely and securely run multiple business applications
on a single server. Cue wild celebrations!

This was a game changer! IT no longer needed to procure a brand new oversized
server every time the business asked for a new application. More often than not,
they could run new apps on existing servers that were sitting around with spare
capacity.

All of a sudden, we could squeeze massive amounts of value out of existing corporate
assets, such as servers, resulting in a lot more bang for the company’s buck ($).

VMwarts

But… and there’s always a but! As great as VMs are, they’re far from perfect!

The fact that every VM requires its own dedicated OS is a major flaw. Every OS
consumes CPU, RAM and storage that could otherwise be used to power more
applications. Every OS needs patching and monitoring. And in some cases, every
OS requires a license. All of this is a waste of op-ex and cap-ex.

The VM model has other challenges too. VMs are slow to boot, and portability
isn’t great — migrating and moving VM workloads between hypervisors and cloud
platforms is harder than it needs to be.

Hello Containers!

For a long time, the big web-scale players, like Google, have been using container
technologies to address the shortcomings of the VM model.

In the container model, the container is roughly analogous to the VM. The major
difference is that every container does not require its own full-blown OS. In fact, all
containers on a single host share a single OS. This frees up huge amounts of system
resources such as CPU, RAM, and storage. It also reduces potential licensing costs
and reduces the overhead of OS patching and other maintenance. Net result: savings
on the cap-ex and op-ex fronts.

1: Containers from 30,000 feet 10

Containers are also fast to start and ultra-portable. Moving container workloads from
your laptop, to the cloud, and then to VMs or bare metal in your data center, is a
breeze.

Linux containers

Modern containers started in the Linux world, and are the product of an immense
amount of work from a wide variety of people, over a long period of time. Just as
one example, Google LLC has contributed many container-related technologies to
the Linux kernel. Without these, and other contributions, we wouldn’t have modern
containers today.

Some of the major technologies that enabled the massive growth of containers in
recent years include; kernel namespaces, control groups, union filesystems, and
of course Docker. To re-emphasize what was said earlier — the modern container
ecosystem is deeply indebted to the many individuals and organizations that laid the
strong foundations that we currently build on. Thank you!

Despite all of this, containers remained complex and outside of the reach of most
organizations. It wasn’t until Docker came along that containers were effectively
democratized and accessible to the masses.

* There aremany operating system virtualization technologies similar to
containers that pre-date Docker andmodern containers. Some even date
back to System/360 on the Mainframe. BSD Jails and Solaris Zones are
some other well-known examples of Unix-type container technologies.
However, in this bookwe are restricting our conversation and comments
to modern containers that have been made popular by Docker.

Hello Docker!

We’ll talk about Docker in a bit more detail in the next chapter. But for now, it’s
enough to say that Docker was the magic that made Linux containers usable for
mere mortals. Put another way, Docker, Inc. made containers simple!

1: Containers from 30,000 feet 11

Windows containers

Over the past few years, Microsoft Corp. has worked extremely hard to bring Docker
and container technologies to the Windows platform.

At the time of writing, Windows containers are available on the Windows 10 and
Windows Server 2016 platforms. In achieving this, Microsoft has worked closely with
Docker, Inc. and the community.

The core Windows kernel technologies required to implement containers are col-
lectively referred to as Windows Containers. The user-space tooling to work with
theseWindows Containers is Docker. This makes the Docker experience onWindows
almost exactly the same as Docker on Linux. This way developers and sysadmins
familiar with the Docker toolset from the Linux platform will feel at home using
Windows containers.

This revision of the book includes Linux and Windows examples for many of
the lab exercises cited throughout the book.

Windows containers vs Linux containers

It’s vital to understand that a running container shares the kernel of the host machine
it is running on. This means that a containerized app designed to run on a host with
a Windows kernel will not run on a Linux host. This means that you can think of it
like this at a high level — Windows containers require a Windows Host, and Linux
containers require a Linux host. However, it’s not that simple…

At the time of writing, it is possible to run Linux containers on Windows machines.
For example, Docker for Windows (a product offering from Docker, Inc. designed for
Windows 10) can switch modes betweenWindows containers and Linux containers.
This is an area that is developing fast and you should consult the Docker documen-
tation for the latest.

What about Mac containers?

There is currently no such thing as Mac containers.

1: Containers from 30,000 feet 12

However, you can run Linux containers on your Mac using Docker for Mac. This
works by seamlessly running your containers inside of a lightweight Linux VM on
your Mac. It’s extremely popular with developers, who can easily develop and test
their Linux containers on their Mac.

What about Kubernetes

Kubernetes is an open-source project out of Google that has quickly emerged as
the leading orchestrator of containerized apps. That’s just a fancy way of saying
Kubernetes is an important piece of software that helps us deploy our containerized
apps and keep them running.

At the time of writing, Kubernetes uses Docker as its default container runtime —
the piece of Kubernetes that starts and stops containers, as well as pulls images etc.
However, Kubernetes has a pluggable container runtime interface called the CRI.
This makes it easy to swap-out Docker for a different container runtime. In the
future, Docker might be replaced by containerd as the default container runtime
in Kubernetes. More on containerd later in the book.

The important thing to know about Kubernetes, at this stage, is that it’s a higher-level
platform than Docker, and it currently uses Docker for its low-level container-related
operations.

1: Containers from 30,000 feet 13

Check out my Kubernetes book and my Getting Started with Kubernetes video
training course2 for more info on Kubernetes.

Chapter Summary

We used to live in a world where every time the business wanted a new application,
we had to buy a brand-new server for it. Then VMware came along and enabled
IT departments to drive more value out of new and existing company IT assets.
But as good as VMware and the VM model is, it’s not perfect. Following the
success of VMware and hypervisors came a newer more efficient and lightweight
virtualization technology called containers. But containers were initially hard to
implement and were only found in the data centers of web giants that had Linux
kernel engineers on staff. Then along came Docker Inc. and suddenly container
virtualization technologies were available to the masses.

Speaking of Docker… let’s go find who, what, and why Docker is!

2https://app.pluralsight.com/library/courses/getting-started-kubernetes/

https://app.pluralsight.com/library/courses/getting-started-kubernetes/
https://app.pluralsight.com/library/courses/getting-started-kubernetes/
https://app.pluralsight.com/library/courses/getting-started-kubernetes/

2: Docker
No book or conversation about containers is complete without talking about Docker.
But when somebody says “Docker” they can be referring to any of at least three
things:

1. Docker, Inc. the company
2. Docker the container runtime and orchestration technology
3. Docker the open source project (this is now called Moby)

If you’re going tomake it in the container world, you’ll need to know a bit about all
three.

Docker - The TLDR

Docker is software that runs on Linux and Windows. It creates, manages and
orchestrates containers. The software is developed in the open as part of the Moby
open-source project on GitHub. Docker, Inc. is a company based out of San Francisco
and is the overall maintainer of the open-source project. Docker, Inc. also offers
commercial versions of Docker with support contracts etc.

Ok that’s the quick version. Nowwe’ll explore each in a bit more detail.We’ll also talk
a bit about the container ecosystem, and we’ll mention the Open Container Initiative
(OCI).

Docker, Inc.

Docker, Inc. is the San Francisco based technology startup founded by French-born
American developer and entrepreneur Solomon Hykes.

2: Docker 15

Figure 2.1 Docker, Inc. logo.

Interestingly, Docker, Inc. started its life as a platform as a service (PaaS) provider
called dotCloud. Behind the scenes, the dotCloud platform leveraged Linux contain-
ers. To help them create and manage these containers they built an internal tool that
they eventually nick-named “Docker”. And that’s how Docker was born!

In 2013 the dotCloud PaaS business was struggling and the company needed a new
lease of life. To help with this they hired Ben Golub as new CEO, rebranded the
company as “Docker, Inc.”, got rid of the dotCloud PaaS platform, and started a new
journey with a mission to bring Docker and containers to the world.

Today Docker, Inc. is widely recognized as an innovative technology company with
a market valuation, said by some, to be in the region of $1BN. At the time of writing,
it has raised over $240M via several rounds of funding from some of the biggest
names in Silicon Valley venture capital. Almost all of this funding was raised after
the company pivoted to become Docker, Inc.

Since becoming Docker, Inc. they’ve made several small acquisitions, for undisclosed
fees, to help grow their portfolio of products and services.

At the time ofwriting, Docker, Inc. has somewhere in the region of 300-400 employees
and holds an annual conference called Dockercon. The goal of Dockercon is to bring
together the growing container ecosystem and drive the adoption of Docker and
container technologies.

Throughout this book we’ll use the term “Docker, Inc.” when referring to Docker the
company. All other uses of the term “Docker” will refer to the technology or the
open-source project.

2: Docker 16

Note: The word “Docker” comes from a British colloquialism meaning
dockwork__er__ — somebodywho loads and unloads cargo from ships.

The Docker runtime and orchestration engine

When most technologists talk about Docker, they’re referring to the Docker Engine.

TheDocker Engine is the infrastructure plumbing software that runs and orchestrates
containers. If you’re a VMware admin, you can think of it as being similar to ESXi. In
the same way that ESXi is the core hypervisor technology that runs virtual machines,
the Docker Engine is the core container runtime that runs containers.

All other Docker, Inc. and 3rd party products plug into the Docker Engine and build
around it. Figure 2.2 shows the Docker Engine at the center. All of the other products
in the diagram build on top of the Engine and leverage its core capabilities.

Figure 2.2

The Docker Engine can be downloaded from the Docker website or built from
source from GitHub. It’s available on Linux and Windows, with open-source and
commercially supported offerings.

2: Docker 17

At the time of writing there two main editions:

• Enterprise Edition (EE)
• Community Edition (CE)

The Enterprise Edition and the Community Edition both have a stable release
channel with quarterly releases. Each Community Edition will be supported for 4
months and each Enterprise Edition will be supported for 12 months.

The Community Edition has an additional monthly release via an edge channel.

Starting from Q1 2017 Docker version numbers follow the YY.MM-xx versioning
scheme, similar to Ubuntu and other projects. For example, the first release of the
Community Edition in June 2018 will be 18.06.0-ce.

Note: Prior to Q1 2017, Docker version numbers followed the ma-

jor.minor versioning scheme. The last version prior to the new scheme
was Docker 1.13.

The Docker open-source project (Moby)

The term “Docker” is also used to refer to the open-source Docker project. This is the
set of tools that get combined into things like the Docker daemon and client you can
download and install from docker.com. However, the project was officially renamed
as the Moby project at DockerCon 2017 in Austin, Tx. As part of this rename, the
GitHub repo was moved from docker/docker to moby/moby and the project got its
own logo.

The goal of the Moby project is to be the upstream for Docker, and to break Docker
down into more modular components — and to do this in the open. It’s hosted on

2: Docker 18

GitHub and you can see a list of the current sub-projects and tools included in
the Moby repository at https://github.com/moby. The core Docker Engine project
is currently located at https://github.com/moby/moby, but more parts of the Engine
are being broken out and modularized all the time.

As an open-source project, the source code is publicly available, and you are free to
download it, contribute to it, tweak it, and use it, as long as you adhere to the terms
of the Apache License 2.03.

If you take the time to look at the project’s commit history, you’ll see the who’s-
who of infrastructure technology including; RedHat,Microsoft, IBM, Cisco, andHPE.
You’ll also see the names of individuals not associated with large corporations.

Most of the project and its tools are written in Golang — the relatively new system-
level programming language fromGoogle also known asGo. If you code in Go, you’re
in a great position to contribute to the project!

A nice side effect of Moby/Docker being an open-source project is the fact that so
much of it is developed and designed in the open. This does away with a lot of the
old ways where code was proprietary and locked behind closed doors. It also means
that release cycles are published and worked on in the open. No more uncertain
release cycles that are kept a secret and then pre-announced months-in-advance to
ridiculous pomp and ceremony. The Moby/Docker project doesn’t work like that.
Most things are done in the open for all to see and all to contribute to.

TheMoby project, and the wider Docker movement, is huge and gainingmomentum.
It has thousands of GitHub pull requests, tens of thousands of Dockerized projects,
not to mention the billions of image pulls from Docker Hub. The project literally is
taking the industry by storm!

Be under no illusion, Docker is being used!

The container ecosystem

One of the core philosophies at Docker, Inc. is often referred to as Batteries included
but removable.

3https://github.com/docker/docker/blob/master/LICENSE

https://github.com/docker/docker/blob/master/LICENSE
https://github.com/docker/docker/blob/master/LICENSE

2: Docker 19

This is a way of saying you can swap out a lot of the native Docker stuff and replace
it with stuff from 3rd-parties. A good example of this is the networking stack. The
core Docker product ships with built-in networking. But the networking stack is
pluggable meaning you can rip out the native Docker networking and replace it with
something else from a 3rd-party. Plenty of people do that.

In the early days, it was common for 3rd-party plugins to be better than the native
offerings that shipped with Docker. However, this presented some business model
challenges for Docker, Inc. After all, Docker, Inc. has to turn a profit at some point to
be a viable long-term business. As a result, the batteries that are included are getting
better and better. This has caused tension and raised levels competition within the
ecosystem.

To cut a long story short, the native Docker batteries are still removable, there’s just
less and less of a need to remove them.

Despite this, the container ecosystem is flourishing with a healthy balance of co-
operation and competition. You’ll often hear people use terms like co-opetition
(a balance of co-operation and competition) and frenemy (a mix of a friend and
an enemy) when talking about the container ecosystem. This is great! Healthy
competition is the mother of innovation!

The Open Container Initiative (OCI)

No discussion of Docker and the container ecosystem is complete without mention-
ing the Open Containers Initiative — OCI4.

The OCI is a governance council responsible for standardizing the most fundamental
components of container infrastructure such as image format and container runtime
(don’t worry if these terms are new to you, we’ll cover them in the book).

4https://www.opencontainers.org

https://www.opencontainers.org/
https://www.opencontainers.org/

2: Docker 20

It’s also true that no discussion of the OCI is complete without mentioning a bit of
history. And as with all accounts of history, the version you get depends on who’s
doing the talking. So, this is container history according to Nigel :-D

From day one, use of Docker has grown like crazy. More and more people used it
in more and more ways for more and more things. So, it was inevitable that some
parties would get frustrated. This is normal and healthy.

The TLDR of this history according to Nigel is that a company called CoreOS5 didn’t
like the wayDocker did certain things. So they did something about it! They created a
new open standard called appc6 that defined things like image format and container
runtime. They also created an implementation of the spec called rkt (pronounced
“rocket”).

This put the container ecosystem in an awkward position with two competing
standards.

Getting back to the story though, this threatened to fracture the ecosystem and
present users and customers with a dilemma. While competition is usually a good
thing, competing standards is usually not. They cause confusion and slowdown user
adoption. Not good for anybody.

With this in mind, everybody did their best to act like adults and came together to
form the OCI — a lightweight agile council to govern container standards.

At the time of writing, the OCI has published two specifications (standards) -

• The image-spec7

• The runtime-spec8

An analogy that’s often used when referring to these two standards is rail tracks.
These two standards are like agreeing on standard sizes and properties of rail
tracks. Leaving everyone else free to build better trains, better carriages, better
signalling systems, better stations… all safe in the knowledge that they’ll work on
the standardized tracks. Nobody wants two competing standards for rail track sizes!

5https://coreos.com
6https://github.com/appc/spec/
7https://github.com/opencontainers/image-spec
8https://github.com/opencontainers/runtime-spec

https://coreos.com/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://coreos.com/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec

2: Docker 21

It’s fair to say that the two OCI specifications have had a major impact on the
architecture and design of the core Docker product. As of Docker 1.11, the Docker
Engine architecture conforms to the OCI runtime spec.

So far, the OCI has achieved good things and gone some way to bringing the
ecosystem together. However, standards always slow innovation! Especially with
new technologies that are developing at close to warp speed. This has resulted in
some raging arguments passionate discussions in the container community. In the
opinion of your author, this is a good thing! The container industry is changing the
world and it’s normal for the people at the vanguard to be passionate, opinionated,
and sometimes downright off the planet! Expect more passionate discussions about
standards and innovation!

The OCI is organized under the auspices of the Linux Foundation and both Docker,
Inc. and CoreOS, Inc. are major contributors.

Chapter summary

In this chapter, we learned a bit about Docker, Inc. They’re a startup tech company
out of San Francisco with an ambition to change the way we do software. They were
arguably the first-movers and instigators of the container modern revolution. But a
huge ecosystem of partners and competitors now exists.

The Docker project is open-source and the upstream lives in the moby/moby repo on
GitHub.

The Open Container Initiative (OCI) has been instrumental in standardizing the
container runtime format and container image format.

3: Installing Docker
There are loads of ways and places to install Docker. There’s Windows, there’s Mac,
and there’s obviously Linux. But there’s also in the cloud, on premises, on your laptop,
andmore…On top of those, we’ve got manual installs, scripted installs, wizard-based
installs… There literally are loads of ways and places to install Docker!

But don’t let that scare you! They’re all easy.

In this chapter we’ll cover some of the most important installs:

• Desktop installs
– Docker for Windows
– Docker for Mac

• Server installs
– Linux
– Windows Server 2016

• Upgrading Docker
• Storage driver considerations

We’ll also look at upgrading the Docker Engine and selecting an appropriate storage
driver.

Docker for Windows (DfW)

The first thing to note is that Docker for Windows is a “packaged” product from
Docker, Inc. This means it’s easy to download and has a slick installer. It spins up a
single-engine Docker environment on a 64-bit Windows 10 desktop or laptop.

The second thing to note is that it is a Community Edition (CE) app. So it’s not
intended for production.

3: Installing Docker 23

The third thing of note is that it might suffer some feature-lag. This is because Docker,
Inc. are taking a stability first, features second approach with the product.

All three points add up to a quick and easy installation, but one that is not intended
for production.

Enough waffle. Let’s see how to install Docker for Windows.

First up, pre-requisites. Docker for Windows requires:

• Windows 10 Pro | Enterprise | Education (1607 Anniversary Update, Build
14393 or newer)

• Must be 64-bit Windows 10
• The Hyper-V and Containers features must be enabled in Windows
• Hardware virtualization support must be enabled in your system’s BIOS

The following will assume that hardware virtualization support is already enabled
in your system’s BIOS. If it is not, you should carefully follow the procedure for your
particular machine.

The first thing to do in Windows 10, is make sure the Hyper-V and Containers
features are installed and enabled.

1. Right-click the Windows Start button and choose Apps and Features.
2. Click the Programs and Features link (a small link on the right).
3. Click Turn Windows features on or off.
4. Check the Hyper-V and Containers checkboxes and click OK.

This will install and enable the Hyper-V and Containers features. Your system may
require a restart.

3: Installing Docker 24

Figure 3.1

The Containers feature is only available if you are running the summer 2016
Windows 10 Anniversary Update (build 14393) or later.

Once you’ve installed the Hyper-V and Containers features, and restarted your
machine, it’s time to install Docker for Windows.

1. Head over to https://www.docker.com/get-docker and click the GET DOCKER

COMMUNITY EDITION link.
2. Click the Download from Docker Store link beneath the DOCKER CE FOR WIN-

DOWS section. This will take you to the Docker Store and you may need to login
with your Docker ID.

3. Click one of the Get Docker download links.

Docker forWindows has a stable and edge channel. The edge channel contains
newer features but may not be as stable.

An installer package called Docker for Windows Installer.exewill be down-
loaded to your default downloads directory.

4. Locate and launch the installer package downloaded in the previous step.

Step through the installation wizard and provide local administrator credentials to
complete the installation. Docker will automatically start, as a system service, and a
Moby Dock whale icon will appear in the Windows notifications tray.

3: Installing Docker 25

Congratulations! You have installed Docker for Windows.

Open a command prompt or PowerShell terminal and try the following commands:

```

Client:

Version: 18.01.0-ce

API version: 1.35

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:05:55 2018

OS/Arch: windows/amd64

Experimental: false

Orchestrator: swarm

Server:

Engine:

Version: 18.01.0-ce

API version: 1.35 (minimum version 1.12)

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:13:12 2018

OS/Arch: linux/amd64

Experimental: false

```

Notice that the output is showing OS/Arch: linux/amd64 for the Server component.
This is because the default installation currently installs the Docker daemon inside
of a lightweight Linux Hyper-V VM. In this scenario, you will only be able to run
Linux containers on your Docker for Windows install.

If you want to run native Windows containers, you can right click the Docker whale
icon in the Windows notifications tray and select Switch to Windows contain-

ers.... You can achieve the same thing from the command line with the following
command (located in the \Program Files\Docker\Docker directory):

3: Installing Docker 26

C:\Program Files\Docker\Docker> .\dockercli -SwitchDaemon

You will get the following alert if you have not enabled the Windows Containers

feature.

Figure 3.2

If you already have the Windows Containers feature enabled, it will only take a few
seconds to make the switch. Once the switch has been made, the output to the docker
version command will look like this.

C:\> docker version

Client:

<Snip>

Server:

Engine:

Version: 18.01.0-ce

API version: 1.35 (minimum version 1.24)

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:20:36 2018

OS/Arch: windows/amd64

Experimental: true

Notice that the Server version is now showing as windows/amd64. This means the
daemon is running natively on the Windows kernel and will only run Windows
containers.

3: Installing Docker 27

Also note that the system is now running the experimental version of Docker
(Experimental: true). As previously mentioned, Docker for Windows has a stable
and an edge channel. At the time of writing, Windows Containers is an experimental
feature of the edge channel.

You can check which channel you are running with the dockercli -Version com-
mand. The dockercli command is located in C:\Program Files\Docker\Docker.

PS C:\Program Files\Docker\Docker> .\dockercli -Version

Docker for Windows

Version: 18.01.0-ce-win48 (15285)

Channel: edge

Sha1: ee2282129dec07b8c67890bd26865c8eccdea88e

OS Name: Windows 10 Pro

Windows Edition: Professional

Windows Build Number: 16299

The following listing shows that regular Docker commands work as normal.

> docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

> docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

> docker system info

Containers: 1

Running: 0

Paused: 0

Stopped: 1

Images: 6

Server Version: 17.12.0-ce

Storage Driver: windowsfilter

<Snip>

Docker for Windows includes the Docker Engine (client and daemon), Docker
Compose, Docker Machine, and the Docker Notary command line. Use the following
commands to verify that each was successfully installed:

3: Installing Docker 28

C:\> docker --version

Docker version 18.01.0-ce, build 03596f5

C:\> docker-compose --version

docker-compose version 1.18.0, build 8dd22a96

C:\> docker-machine --version

docker-machine.exe version 0.13.0, build 9ba6da9

C:\> notary version

notary

Version: 0.4.3

Git commit: 9211198

Docker for Mac (DfM)

Docker for Mac is also a packaged product from Docker, Inc. So relax, you don’t
need to be a kernel engineer, and we’re not about to walk through a complex hack
for getting Docker onto your Mac. Installing DfM is ridiculously easy.

What is Docker for Mac?

First up, Docker for Mac is a packaged product from Docker, Inc. that is based on the
Community Edition of Docker. This means it’s an easy way to install a single-engine
version of Docker on youMac. It also means that it’s not intended for production use.
If you’ve heard of boot2docker, then Docker for Mac is what you always wished
boot2docker was — smooth, simple, and stable.

It’s also worth noting that Docker for Mac will not give you the Docker Engine
running natively on the Mac OS Darwin kernel. Behind the scenes, the Docker
daemon is running inside a lightweight Linux VM. It then seamlessly exposes the
daemon and API to your Mac environment. This means you can open a terminal on
your Mac and use the regular Docker commands.

3: Installing Docker 29

Although this works seamlessly on your Mac, don’t forget that it’s Docker on Linux
under the hood — so it’s only going work with Linux-based Docker containers. This
is good though, as it’s where most of the container action is.

Figure 3.3 shows a high-level representation of the Docker for Mac architecture.

Figure 3.3

Note: For the curious reader, Docker for Mac leverages HyperKit9 to
implement an extremely lightweight hypervisor. HyperKit is based on
the xhive hypervisor10. Docker for Mac also leverages features from
DataKit11 and runs a highly tuned Linux distro calledMoby that is based
on Alpine Linux12.

Let’s get Docker for Mac installed.

1. Point your browser to https://www.docker.com/get-docker and click GET DOCKER

COMMUNITY EDITION.
2. Click the Download from Docker Store option below DOCKER CE FOR MAC.

This will take you to the Docker Store and you will need to provide your
Docker ID and password.

3. Click one of the Get Docker CE download links.

Docker for Mac has a stable and edge channel. Edge has newer features, at the
expense of stability.

A Docker.dmg installation package will be downloaded.
9https://github.com/docker/hyperkit
10https://github.com/mist64/xhyve
11https://github.com/docker/datakit
12https://alpinelinux.org/andhttps://github.com/alpinelinux

https://github.com/docker/hyperkit
https://github.com/mist64/xhyve
https://github.com/docker/datakit
https://alpinelinux.org/%20and%20https://github.com/alpinelinux
https://github.com/docker/hyperkit
https://github.com/mist64/xhyve
https://github.com/docker/datakit
https://alpinelinux.org/%20and%20https://github.com/alpinelinux

3: Installing Docker 30

4. Launch the Docker.dmg file that you downloaded in the previous step. You will
be asked to drag and drop the Moby Dock whale image into the Applications
folder.

5. Open your Applications folder (it may open automatically) and double-click
the Docker application icon to Start it. You may be asked to confirm the action
because the application was downloaded from the internet.

6. Enter your password so that the installer can create the components that
require elevated privileges.

7. The Docker daemon will now start.

An animated whale icon will appear in the status bar at the top of your screen
while Docker starts. Once Docker has successfully started, the whale will stop
being animated. You can click the whale icon to manage DfM.

Now that DfM is installed, you can open a terminal window and run some regular
Docker commands. Try the following.

$ docker version

Client:

Version: 17.05.0-ce

API version: 1.29

Go version: go1.7.5

Git commit: 89658be

Built: Thu May 4 21:43:09 2017

OS/Arch: darwin/amd64

Server:

Version: 17.05.0-ce

API version: 1.29 (minimum version 1.12)

Go version: go1.7.5

Git commit: 89658be

Built: Thu May 4 21:43:09 2017

OS/Arch: linux/amd64

Experimental: true

Notice that the OS/Arch: for the Server component is showing as linux/amd64. This
is because the daemon is running inside of the Linux VM we mentioned earlier.

3: Installing Docker 31

The Client component is a native Mac application and runs directly on the Mac
OS Darwin kernel (OS/Arch: darwin/amd64).

Also note that the system is running the experimental version (Experimental: true)
of Docker. This is because the system is running the edge channel which comes with
experimental features turned on.

Run some more Docker commands.

$ docker --version

Docker version 17.05.0-ce, build 89658be

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Docker for Mac installs the Docker Engine (client and daemon), Docker Compose,
Docker machine, and the Notary command line. The following three commands
show you how to verify that all of these components installed successfully, as well
as which versions you have.

$ docker --version

Docker version 17.05.0-ce, build 89658be

$ docker-compose --version

docker-compose version 1.13.0, build 1719ceb

$ docker-machine --version

docker-machine version 0.11.0, build 5b27455

3: Installing Docker 32

$ notary version

notary

Version: 0.4.3

Git commit: 9211198

Installing Docker on Linux

Installing Docker on Linux is the most common installation type and it’s surprisingly
easy. The most common difficulty is the slight variations between Linux distros such
as Ubuntu vs CentOS. The example we’ll use in this section is based on Ubuntu Linux,
but should work on upstream and downstream forks. It should also work on CentOS
and its upstream and downstream forks. It makes absolutely no difference if your
Linux machine is a physical server in your own data center, on the other side of the
planet in a public cloud, or a VM on your laptop. The only requirements are that the
machine be running Linux and has access to https://get.docker.com.

The first thing you need to decide is which edition to install. There are currently two
editions:

• Community Edition (CE)
• Enterprise Edition (EE)

Docker CE is free and is the version we’ll be demonstrating. Docker EE is the same
as CE, but comes with commercial support and access to other Docker products such
as Docker Trusted Registry and Universal Control Plane.

In this example, we’ll use the wget command to call a shell script that installs
Docker CE. For information on other ways to install Docker on Linux, go to
https://www.docker.com and click on Get Docker.

Note: You should ensure that your system is up-to-date with the latest
packages and security patches before continuing.

1. Open a new shell on your Linux machine.
2. Use wget to retrieve and run the Docker install script from

https://get.docker.com and pipe it through your shell.

3: Installing Docker 33

$ wget -qO- https://get.docker.com/ | sh

modprobe: FATAL: Module aufs not found /lib/modules/4.4.0-36-generic

+ sh -c 'sleep 3; yum -y -q install docker-engine'

<Snip>

If you would like to use Docker as a non-root user, you should

now consider adding your user to the "docker" group with

something like:

sudo usermod -aG docker your-user

Remember that you will have to log out and back in...

3. It is best practice to use non-root users when working with Docker. To do
this, you need to add your non-root users to the local docker Unix group. The
following command shows you how to add the npoulton user to the docker
group and verify that the operation succeeded. You will need to use a valid
user account on your own system.

$ sudo usermod -aG docker npoulton

$ cat /etc/group | grep docker

docker:x:999:npoulton

If you are already logged in as the user that you just added to the docker

group, you will need to log out and log back in for the group membership to
take effect.

Congratulations! Docker is now installed on your Linux machine. Run the following
commands to verify the installation.

3: Installing Docker 34

$ docker --version

Docker version 18.01.0-ce, build 03596f5

$ docker system info

Containers: 0

Running: 0

Paused: 0

Stopped: 0

Images: 0

Server Version: 18.01.0-ce

Storage Driver: overlay2

Backing Filesystem: extfs

<Snip>

If the process described above doesn’t work for your Linux distro, you can go to
the Docker Docs13 website and click on the link relating to your distro. This will
take you to the official Docker installation instructions which are usually kept up to
date. Be warned though, the instructions on the Docker website tend use package
managers that require a lot more steps than the procedure we used above. In fact, if
you open a web browser to https://get.docker.com you will see that it’s a shell script
that does all of the installation grunt-work for you — including configuring Docker
to automatically start when the system boots.

Warning: If you install Docker from a source other than the official
Docker repositories, you may end up with a forked version of Docker. In
the past, some vendors and distros chose to fork the Docker project and
develop their own slightly customized versions. You need to watch out
for things like this, as you could unwittingly end up in a situation where
you are running a fork that has diverged from the official Docker project.
This isn’t a problem if this is what you intend to do. If it is not what
you intend, it can lead to situations where modifications and fixes your
vendor makes do not make it back upstream in to the official Docker
project. In these situations, you will not be able to get commercial
support for your installation from Docker, Inc. or its authorized service
partners.

13https://docs.docker.com/engine/installation/

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

3: Installing Docker 35

Installing Docker on Windows Server 2016

In this section we’ll look at one of the ways to install Docker on Windows Server
2016. We’ll complete the following high-level steps:

1. Install the Windows Containers feature
2. Install Docker
3. Verify the installation

Before proceeding, you should ensure that your system is up-to-date with the latest
package versions and security updates. You can do this quickly with the sconfig

command and choosing option 6 to install updates. This may require a system restart.

We’ll be demonstrating an installation on a version of Windows Server 2016 that
does not have the Containers feature or an older version of Docker already installed.

Ensure that the Containers feature is installed and enabled.

1. Right-click theWindows Start button and select Programs and Features. This
will open the Programs and Features console.

2. Click Turn Windows features on or off. This will open the Server Manager

app.
3. Make sure the Dashboard is selected and choose Add Roles and Features.
4. Click through the wizard until you get to the Features page.
5. Make sure that the Containers feature is checked, then complete the wizard.

Your system may require a system restart.

Now that the Windows Containers feature is installed, you can install Docker. We’ll
use PowerShell to do this.

1. Open a new PowerShell Administrator terminal.
2. Use the following command to install the Docker package management

provider.

3: Installing Docker 36

> Install-Module DockerProvider -Force

If prompted, accept the request to install the NuGet provider.
3. Install Docker.

> Install-Package Docker -ProviderName DockerProvider -Force

Once the installation is complete you will get a summary as shown.

Name Version Source Summary

---- ------- ------ -------

Docker 17.06.2-ee-6 Docker Docker for Windows Server 2016

Docker is now installed and configured to automatically start when the system
boots.

4. You may want to restart your system to make sure that none of changes have
introduced issues that cause your system not to boot. You can also check that
Docker automatically starts after the reboot.

Docker is now installed and you can start deploying containers. The following two
commands are good ways to verify that the installation succeeded.

> docker --version

Docker version 17.06.2-ee-6, build e75fdb8

> docker system info

Containers: 0

Running: 0

Paused: 0

Stopped: 0

Images: 0

Server Version: 17.06.2-ee-6

Storage Driver: windowsfilter

<Snip>

Docker is now installed and you are ready to start using Windows containers.

3: Installing Docker 37

Upgrading the Docker Engine

Upgrading the Docker Engine is an important task in any Docker environment —
especially production. This section of the chapter will give you the high-level process
of upgrading the Docker engine, as well as some general tips and a couple of upgrade
examples.

The high-level process of upgrading the Docker Engine is this:

Take care of any pre-requisites. These can include; making sure your containers
have an appropriate restart policy, or draining nodes if you’re using Services in
Swarm mode. Once you’ve completed any potential pre-requisites you can follow
the procedure below.

1. Stop the Docker daemon
2. Remove the old version
3. Install the new version
4. configure the new version to automatically start when the system boots
5. Ensure containers have restarted

That’s the high-level process. Let’s look at some examples.

Each version of Linux has its own slightly different commands for upgrading Docker.
We’ll show you Ubuntu 16.04. We’ll also show you Windows Server 2016.

Upgrading Docker CE on Ubuntu 16.04

We’re assuming you’ve completed all pre-requisites and your Docker host is ready
for the upgrade. We’re also assuming you’re running commands as root. Running
commands as root is obviously not recommended, but it does keep examples in the
book simpler. If you’re not running as root, well done! However, you will have to
prepend the following commands with sudo.

1. Update your apt package list.

3: Installing Docker 38

$ apt-get update

2. Uninstall existing versions of Docker.

$ apt-get remove docker docker-engine docker-ce docker.io -y

The Docker engine has had several different package names in the past. This
command makes sure all older versions get removed.

3. Install the new version.

There are different versions of Docker and different ways to install each one.
For example, Docker CE or Docker EE, both of which can be installed in
more than one way. For example, Docker CE can be installed from apt or
deb packages, or using a script on docker.com

The following command will use a shell script at get.docker.com to install
and configure the latest version of Docker CE.

$ wget -qO- https://get.docker.com/ | sh

4. Configure Docker to automatically start each time the system boots.

$ systemctl enable docker

Synchronizing state of docker.service...

Executing /lib/systemd/systemd-sysv-install enable docker

$ systemctl is-enabled docker

enabled

At this point you might want to restart the node. This will make sure that
no issues have been introduced that prevent your system from booting in the
future.

5. Make sure any containers and services have restarted.

3: Installing Docker 39

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS \

NAMES

97e599aca9f5 alpine "sleep 1d" 14 minutes ago Up 1 minute

$ docker service ls

ID NAME MODE REPLICAS IMAGE

ibyotlt1ehjy prod-equus1 replicated 1/1 alpine:latest

Remember, other methods of upgrading and installing Docker exist. We’ve just
shown you one way, on Ubuntu Linux 16.04.

Upgrading Docker EE on Windows Server 2016

This section will walk you through the process of upgrading Docker on Windows
from 1.12.2, to the latest version of Docker EE.

The process assumes you have completed any pre-flight tasks, such as configuring
containers with appropriate restart policies and draining Swarm nodes if you’re using
Swarm services.

All commands should be ran from a PowerShell terminal.

1. Check the current version of Docker.

> docker version

Client:

Version: 1.12.2-cs2-ws-beta

<Snip>

Server:

Version: 1.12.2-cs2-ws-beta

2. Uninstall any potentially older modules provided by Microsoft, and install the
module from Docker.

3: Installing Docker 40

> Uninstall-Module DockerMsftProvider -Force

> Install-Module DockerProvider -Force

3. Update the docker package.

This command will force the update (no uninstall is required) and configure
Docker to automatically start each time the system boots.

> Install-Package -Name docker -ProviderName DockerProvider -Update -Force

Name Version Source Summary

---- ------- ------ -------

Docker 17.06.2-ee-6 Docker Docker for Windows Server 2016

You might want to reboot your server at this point to make sure the changes
have not introduced any issues that prevent it from restarting in the future.

4. Check that containers and services have restarted.

That’s it. That’s how to upgrade to the latest version of Docker EE on Windows
Server 2016.

Docker and storage drivers

Every Docker container gets its own area of local storage where image layers
are stacked and the container filesystem is mounted. By default, this is where all
container read/write operations occur, making it integral to the performance and
stability of every container.

Historically, this local storage area has beenmanaged by the storage driver, which we
sometimes call the graph driver or graphdriver. Although the high-level concepts of
stacking image layers and using copy-on-write technologies are constant, Docker on
Linux supports several different storage drivers, each of which implements layering
and copy-on-write in its own way. While these implementation differences do not
affect the way we interact with Docker, they can have a significant impact on
performance and stability.

Some of the storage drivers available for Docker on Linux include:

3: Installing Docker 41

• aufs (the original and oldest)
• overlay2 (probably the best choice for the future)
• devicemapper

• btrfs

• zfs

Docker onWindows only supports a single storage driver, the windowsfilter driver.

Selecting a storage driver is a per node decision. This means a single Docker host can
only run a single storage driver — you cannot select the storage driver per-container.
On Linux, you set the storage driver in /etc/docker/daemon.json and you need to
restart Docker for any changes to take effect. The following snippet shows the storage
driver set to overlay2.

{

"storage-driver": "overlay2"

}

Note: If the configuration line is not the last line in the configuration
file, you will need to add a comma to the end.

If you change the storage driver on an already-running Docker host, existing images
and containers will not be available after Docker is restarted. This is because each
storage driver has its own subdirectory on the host where it stores image layers
(usually below /var/lib/docker/<storage-driver>/...). Changing the storage
driver obviously changes where Docker looks for images and containers. Reverting
the storage driver to the previous configuration will make the older images and
containers available again.

If you need to change your storage driver, and you need your images and containers
to be available after the change, you need to save them with docker save, push the
saved images to a repo, change the storage driver, restart Docker, pull the images
locally, and restart your containers.

You can check the current storage driver with the docker system info command:

3: Installing Docker 42

$ docker system info

<Snip>

Storage Driver: overlay2

Backing Filesystem: xfs

Supports d_type: true

Native Overlay Diff: true

<Snip>

Choosing which storage driver, and configuring it properly, is important in any
Docker environment — especially production. The following list can be used as
a guide to help you choose which storage driver to use. However, you should
always consult the latest support documentation from Docker, as well as your Linux
provider.

• Red Hat Enterprise Linux with a 4.x kernel or higher + Docker 17.06 and
higher: overlay2

• Red Hat Enterprise Linux with an older kernel and older versions of Docker:
devicemapper

• Ubuntu Linux with a 4.x kernel or higher: overlay2
• Ubuntu Linux with an earlier kernel: aufs
• SUSE Linux Enterprise Server: btrfs

Again, this list should only be used as a guide. Always check the latest support and
compatibility matrixes in the Docker documentation, and with your Linux provider.
This is especially important if you are using Docker Enterprise Edition (EE) with a
support contract.

Devicemapper configuration

Most of the Linux storage drivers require little or no configuration. However,
devicemapper needs configuring in order to perform well.

By default, devicemapper uses loopback mounted sparse files to underpin the storage
it provides to Docker. This is fine for a smooth out-of-the box experience that just

3: Installing Docker 43

works. But it’s terrible for production. In fact, it’s so bad that it’s not supported on
production systems!

To get the best performance out of devicemapper, as well as production support, you
must configure it in direct-lvm mode. This significantly increases performance by
leveraging an LVM thinpool backed by raw block devices.

Docker 17.06 and higher can configure direct-lvm for you. However, at the time
of writing, it has some limitations. The main ones being; it will only configure a
single block device, and it only works for fresh installations. This might change in
the future, but a single block device will not give you the best in terms of performance
and resiliency.

Letting Docker automatically configure direct-lvm

The following simple procedure will let Docker automatically configure devicemap-
per for direct-lvm.

1. Add the following storage driver configuration to /etc/docker/daemon.json

{

"storage-driver": "devicemapper",

"storage-opts": [

"dm.directlvm_device=/dev/xdf",

"dm.thinp_percent=95",

"dm.thinp_metapercent=1",

"dm.thinp_autoextend_threshold=80",

"dm.thinp_autoextend_percent=20",

"dm.directlvm_device_force=false"

]

}

Device Mapper and LVM are complex topics, and beyond the scope of a
heterogeneous Docker book like this. However, let’s quickly explain each
option:

• dm.directlvm_device is where you specify the block device. For best
performance and availability, this should be a dedicated high-perfor-
mance device such as a local SSD, or RAID protected high performance
LUN from an external storage array.

3: Installing Docker 44

• dm.thinp_percent=95 allows you to specify how much of the space you
want Images and containers to be able to use. Default is 95%.

• dm.thinp_metapercent sets the percentage of space to be used for
metadata storage. Default is 1%.

• dm.thinp_autoextend_threshold sets the threshold atwhich LVM should
automatically extend the thinpool. The default value is currently 80%.

• dm.thinp_autoextend_percent is the amount of space that should be
added to the thin pool when an auto-extend operation is triggered.

• dm.directlvm_device_force lets you specify whether or not to format
the block device with a new filesystem.

2. Restart Docker.
3. Verify that Docker is running and the devicemapper configuration is correctly

loaded.

$ docker version

Client:

Version: 18.01.0-ce

<Snip>

Server:

Version: 18.01.0-ce

<Snip>

$ docker system info

<Snipped output only showing relevant data>

Storage Driver: devicemapper

Pool Name: docker-thinpool

Pool Blocksize: 524.3 kB

Base Device Size: 25 GB

Backing Filesystem: xfs

Data file: << Would show a loop file if in loopback mode

Metadata file: << Would show a loop file if in loopback mode

Data Space Used: 1.9 GB

Data Space Total: 23.75 GB

Data Space Available: 21.5 GB

Metadata Space Used: 180.5 kB

Metadata Space Total: 250 MB

Metadata Space Available: 250 MB

3: Installing Docker 45

Although Docker will only configure direct-lvm mode with a single block device,
it will still perform significantly better than loopback mode!

Manually configuring devicemapper direct-lvm

Walking you through the entire process of manually configuring device mapper

direct-lvm is beyond the scope of this book. It is also something that can change
and vary between OS versions. However, the following items are things you should
know and consider when performing a configuration.

• Block devices. You need to have block devices available in order to configure
direct-lvm mode. These should be high performance devices such as local
SSD or high performance external LUNs. If your Docker environment is on-
premises, external LUNs can be on FC, iSCSI, or other block-protocol storage
arrays. If your Docker environment is in the public cloud, these can be any
form of high performance block storage (usually SSD-based) supported by
your cloud provider.

• LVM config. The devicemapper storage driver leverages LVM, the Linux
Logical Volume Manager. This means you will need to configure the required
physical devices (pdev), volume group (vg), logical volumes (lv), and thinpool
(tp). You should use dedicated physical volumes and form them into a new
volume group. You should not share the volume group with non-Docker
workloads. You will also need to configure two logical volumes; one for data
and the other for metadata. Create an LVM profile specifying the auto-extend
threshold and auto-extend values, and configure monitoring so that auto-
extend operations can happen.

• Docker config. Backup the current Docker config file (/etc/docker/daemon.json)
and then update it as follows. The name of the dm.thinpooldev might be
different in your environment and you should adjust as appropriate.

3: Installing Docker 46

{

"storage-driver": "devicemapper",

"storage-opts": [

"dm.thinpooldev=/dev/mapper/docker-thinpool",

"dm.use_deferred_removal=true",

"dm.use_deferred_deletion=true"

]

}

Once the configuration is saved you can start the Docker daemon.

For more detailed information, see the Docker documentation or talk to your Docker
technical account manager.

Chapter Summary

Docker is available for Linux and Windows, and has a Community Edition (CE) and
an Enterprise Edition (EE). In this chapter, we looked at some of the ways to install
Docker on Windows 10, Mac OS X, Linux, and Windows Server 2016.

We looked at how to upgrade the Docker Engine on Ubuntu 16.04 and Windows
Server 2016, as these are two of the most common configurations.

We also learned that selecting the right storage driver is essential when using Docker
on Linux in production environments.

4: The big picture
The idea of this chapter is to paint a quick big-picture of what Docker is all about
before we dive in deeper in later chapters.

We’ll break this chapter into two:

• The Ops perspective
• The Dev perspective

In the Ops Perspective section, we’ll download an image, start a new container, log
in to the new container, run a command inside of it, and then destroy it.

In the Dev Perspective section, we’ll focus more on the app. We’ll pull some app-code
from GitHub, inspect a Dockerfile, containerize the app, run it as a container.

These two sections will give you a good idea of what Docker is all about and how
some of the major components fit together. It is recommended that you read both
sections to get the dev and the ops perspectives. DevOps anyone?

Don’t worry if some of the stuff we do here is totally new to you. We’re not trying
to make you an expert by the end of this chapter. This is about giving you a feel of
things — setting you up so that when we get into the details in later chapters, you
have an idea of how the pieces fit together.

All you need, to follow along, is a single Docker host with an internet connection.
This can be Linux or Windows, and it doesn’t matter if it’s a VM on your laptop, an
instance in the public cloud, or a bare metal server in your data center. All it needs, is
to be running Docker with a connection to the internet. We’ll be showing examples
using Linux and Windows!

Another great way to get Docker, and get it fast, is Play With Docker (PWD). Play
With Docker is a web-based Docker playground that you can use for free. Just point
your web browser to https://play-with-docker.com/ and you’re ready to go (you may
need a Docker Hub account to be able to login). It’s my favourite way of spinning
up temporary Docker environment!

4: The big picture 48

The Ops Perspective

When you install Docker, you get two major components:

• the Docker client
• the Docker daemon (sometimes called “server” or “engine”)

The daemon implements the Docker Engine API14.

In a default Linux installation, the client talks to the daemon via a local IPC/Unix
socket at /var/run/docker.sock. On Windows this happens via a named pipe at
npipe:////./pipe/docker_engine. You can use the docker version command to
test that the client and daemon (server) are running and talking to each other.

> docker version

Client:

Version: 18.01.0-ce

API version: 1.35

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:11:05 2018

OS/Arch: linux/amd64

Experimental: false

Orchestrator: swarm

Server:

Engine:

Version: 18.01.0-ce

API version: 1.35 (minimum version 1.12)

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:09:37 2018

OS/Arch: linux/amd64

Experimental: false

14https://docs.docker.com/engine/api/v1.35/

https://docs.docker.com/engine/api/v1.35/
https://docs.docker.com/engine/api/v1.35/

4: The big picture 49

If you get a response back from the Client and Server, you’re good to go. If you are
using Linux and get an error response from the Server component, try the command
again with sudo in front of it: sudo docker version. If it works with sudo you will
need to add your user account to the local docker group, or prefix the remainder of
the commands in the book with sudo.

Images

It’s useful to think of a Docker image as an object that contains an OS filesystem
and an application. If you work in operations, it’s like a virtual machine template.
A virtual machine template is essentially a stopped virtual machine. In the Docker
world, an image is effectively a stopped container. If you’re a developer, you can
think of an image as a class.

Run the docker image ls command on your Docker host.

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

If you are working from a freshly installed Docker host, or Play With Docker, you
will have no images and will look like the output above.

Getting images onto your Docker host is called “pulling”. If you are following along
with Linux, pull the ubuntu:latest image. If you are following along on Windows,
pull the microsoft/powershell:nanoserver image.

latest: Pulling from library/ubuntu

50aff78429b1: Pull complete

f6d82e297bce: Pull complete

275abb2c8a6f: Pull complete

9f15a39356d6: Pull complete

fc0342a94c89: Pull complete

Digest: sha256:fbaf303...c0ea5d1212

Status: Downloaded newer image for ubuntu:latest

Run the docker image ls command again to see the image you just pulled.

4: The big picture 50

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest 00fd29ccc6f1 3 weeks ago 111MB

We’ll get into the details of where the image is stored and what’s inside of it in later
chapters. For now, it’s enough to know that an image contains enough of an operating
system (OS), as well as all the code and dependencies to run whatever application
it’s designed for. The ubuntu image that we’ve pulled has a stripped-down version of
the Ubuntu Linux filesystem, including a few of the common Ubuntu utilities. The
microsoft/powershell image, pulled in the Windows example, contains a Windows
Nano Server OS with PowerShell.

If you pull an application container such as nginx or microsoft/iis, you will get an
image that contains some OS, as well as the code to run either NGINX or IIS.

It’s also worth noting that each image gets its own unique ID. When working with
images, you can refer to them using either IDs or names. If you’re working with
image ID’s, it’s usually enough just to type the first few characters of the ID — as
long as it’s unique, Docker will know which image you mean.

Containers

Now that we have an image pulled locally, we can use the docker container run

command to launch a container from it.

For Linux:

$ docker container run -it ubuntu:latest /bin/bash

root@6dc20d508db0:/#

For Windows:

4: The big picture 51

> docker container run -it microsoft/powershell:nanoserver pwsh.exe

Windows PowerShell

Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\>

Look closely at the output from the previous commands. You should notice that the
shell prompt has changed in each instance. This is because the -it flags switch your
shell into the terminal of the container — you are literally inside of the new container!

Let’s examine that docker container run command. docker container run tells
the Docker daemon to start a new container. The -it flags tell Docker to make
the container interactive and to attach our current shell to the container’s terminal
(we’ll get more specific about this in the chapter on containers). Next, the command
tells Docker that we want the container to be based on the ubuntu:latest image
(or the microsoft/powershell:nanoserver image if you’re following along with
Windows). Finally, we tell Docker which process we want to run inside of the
container. For the Linux example we’re running a Bash shell, for the Windows
container were running PowerShell.

Run a ps command from inside of the container to list all running processes.

Linux example:

root@6dc20d508db0:/# ps -elf

F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 0 0 - 4560 wait 13:38 ? 00:00:00 /bin/bash

0 R root 9 1 0 - 8606 - 13:38 ? 00:00:00 ps -elf

Windows example:

4: The big picture 52

PS C:\> ps

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

0 5 964 1292 0.00 4716 4 CExecSvc

0 5 592 956 0.00 4524 4 csrss

0 0 0 4 0 0 Idle

0 18 3984 8624 0.13 700 4 lsass

0 52 26624 19400 1.64 2100 4 powershell

0 38 28324 49616 1.69 4464 4 powershell

0 8 1488 3032 0.06 2488 4 services

0 2 288 504 0.00 4508 0 smss

0 8 1600 3004 0.03 908 4 svchost

0 12 1492 3504 0.06 4572 4 svchost

0 15 20284 23428 5.64 4628 4 svchost

0 15 3704 7536 0.09 4688 4 svchost

0 28 5708 6588 0.45 4712 4 svchost

0 10 2028 4736 0.03 4840 4 svchost

0 11 5364 4824 0.08 4928 4 svchost

0 0 128 136 37.02 4 0 System

0 7 920 1832 0.02 3752 4 wininit

0 8 5472 11124 0.77 5568 4 WmiPrvSE

The Linux container only has two processes:

• PID 1. This is the /bin/bash process that we told the container to run with the
docker container run command.

• PID 9. This is the ps -elf command/process that we ran to list the running
processes.

The presence of the ps -elf process in the Linux output can be a bit misleading, as
it is a short-lived process that dies as soon as the ps command exits. This means the
only long-running process inside of the container is the /bin/bash process.

The Windows container has a lot more going on. This is an artefact of the way the
Windows Operating System works. However, even though the Windows container

4: The big picture 53

has a lot more processes than the Linux container, it is still a lot less than a regular
Windows Server.

Press Ctrl-PQ to exit the container without terminating it. This will land your shell
back at the terminal of your Docker host. You can verify this by looking at your shell
prompt.

Now that you are back at the shell prompt of your Docker host, run the ps command
again.

Linux example:

$ ps -elf

F S UID PID PPID NI ADDR SZ WCHAN TIME CMD

4 S root 1 0 0 - 9407 - 00:00:03 /sbin/init

1 S root 2 0 0 - 0 - 00:00:00 [kthreadd]

1 S root 3 2 0 - 0 - 00:00:00 [ksoftirqd/0]

1 S root 5 2 -20 - 0 - 00:00:00 [kworker/0:0H]

1 S root 7 2 0 - 0 - 00:00:00 [rcu_sched]

<Snip>

0 R ubuntu 22783 22475 0 - 9021 - 00:00:00 ps -elf

Windows example:

> ps

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

220 11 7396 7872 0.33 1732 0 amazon-ssm-agen

84 5 908 2096 0.00 2428 3 CExecSvc

87 5 936 1336 0.00 4716 4 CExecSvc

203 13 3600 13132 2.53 3192 2 conhost

210 13 3768 22948 0.08 5260 2 conhost

257 11 1808 992 0.64 524 0 csrss

116 8 1348 580 0.08 592 1 csrss

85 5 532 1136 0.23 2440 3 csrss

242 11 1848 952 0.42 2708 2 csrss

95 5 592 980 0.00 4524 4 csrss

137 9 7784 6776 0.05 5080 2 docker

4: The big picture 54

401 17 22744 14016 28.59 1748 0 dockerd

307 18 13344 1628 0.17 936 1 dwm

<SNIP>

1888 0 128 136 37.17 4 0 System

272 15 3372 2452 0.23 3340 2 TabTip

72 7 1184 8 0.00 3400 2 TabTip32

244 16 2676 3148 0.06 1880 2 taskhostw

142 7 6172 6680 0.78 4952 3 WmiPrvSE

148 8 5620 11028 0.77 5568 4 WmiPrvSE

Notice howmanymore processes are running on your Docker host compared to their
respective containers. Windows containers run far fewer processes than Windows
hosts, and Linux containers run far less than Linux hosts.

In a previous step, you pressed Ctrl-PQ to exit from the container. Doing this from
inside of a container will exit you from the container without killing it. You can see
all running containers on your system using the docker container ls command.

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

e2b69eeb55cb ubuntu:latest "/bin/bash" 7 mins Up 7 min vigilant_borg

The output above shows a single running container. This is the container that you
created earlier. The presence of the container in this output proves that it’s still
running. You can also see that it was created 7 minutes ago and has been running for
7 minutes.

Attaching to running containers

You can attach your shell to the terminal of a running container with the docker

container exec command. As the container from the previous steps is still running,
let’s make a new connection to it.

Linux example:

This example references a container called “vigilant_borg”. The name of your
container will be different, so remember to substitute “vigilant_borg” with the name
or ID of the container running on your Docker host.

4: The big picture 55

$ docker container exec -it vigilant_borg bash

root@e2b69eeb55cb:/#

Windows example:

This example references a container called “pensive_hamilton”. The name of your
container will be different, so remember to substitute “pensive_hamilton” with the
name or ID of the container running on your Docker host.

> docker container exec -it pensive_hamilton pwsh.exe

Windows PowerShell

Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\>

Notice that your shell prompt has changed again. You are logged in to the container
again.

The format of the docker container exec command is: docker container exec

<options> <container-name or container-id> <command/app>. In our example,
we used the -it options to attach our shell to the container’s shell. We referenced
the container by name, and told it to run the bash shell (PowerShell in the Windows
example). We could easily have referenced the container by its hex ID.

Exit the container again by pressing Ctrl-PQ.

Your shell prompt should be back to your Docker host.

Run the docker container ls command again to verify that your container is still
running.

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

e2b69eeb55cb ubuntu:latest "/bin/bash" 9 mins Up 9 min vigilant_borg

Stop the container and kill it using the docker container stop and docker con-

tainer rm commands. Remember to substitute the names/IDs of your own contain-
ers.

4: The big picture 56

$ docker container stop vigilant_borg

vigilant_borg

$ docker container rm vigilant_borg

vigilant_borg

Verify that the container was successfully deleted by running the docker container

ls command with the -a flag. Adding -a tells Docker to list all containers, even those
in the stopped state.

$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The Dev Perspective

Containers are all about the apps!

In this section, we’ll clone an app from a Git repo, inspect its Dockerfile, containerize
it, and run it as a container.

The Linux app can be cloned from: https://github.com/nigelpoulton/psweb.git

The Windows app can be cloned from: https://github.com/nigelpoulton/dotnet-
docker-samples.git

The rest of this section will walk you through the Linux example. However, both
examples are containerizing simple web apps, so the process is the same.Where there
are differences in the Windows example we will highlight them to help you follow
along.

Run all of the following commands from a terminal on your Docker host.

Clone the repo locally. This will pull the application code to your local Docker host
ready for you to containerize it.

Be sure to substitute the following repo with the Windows repo if you are following
along with the Windows example.

4: The big picture 57

$ git clone https://github.com/nigelpoulton/psweb.git

Cloning into 'psweb'...

remote: Counting objects: 15, done.

remote: Compressing objects: 100% (11/11), done.

remote: Total 15 (delta 2), reused 15 (delta 2), pack-reused 0

Unpacking objects: 100% (15/15), done.

Checking connectivity... done.

Change directory into the cloned repo’s directory and list its contents.

$ cd psweb

$ ls -l

total 28

-rw-rw-r-- 1 ubuntu ubuntu 341 Sep 29 12:15 app.js

-rw-rw-r-- 1 ubuntu ubuntu 216 Sep 29 12:15 circle.yml

-rw-rw-r-- 1 ubuntu ubuntu 338 Sep 29 12:15 Dockerfile

-rw-rw-r-- 1 ubuntu ubuntu 421 Sep 29 12:15 package.json

-rw-rw-r-- 1 ubuntu ubuntu 370 Sep 29 12:15 README.md

drwxrwxr-x 2 ubuntu ubuntu 4096 Sep 29 12:15 test

drwxrwxr-x 2 ubuntu ubuntu 4096 Sep 29 12:15 views

For theWindows example you should cd into the dotnet-docker-samples\aspnetapp
directory.

The Linux example is a simple nodejs web app. The Windows example is a simple
ASP.NET Core web app.

Both Git repos contain a file called Dockerfile. A Dockerfile is a plain-text document
describing how to build an app into a Docker image.

List the contents of the Dockerfile.

4: The big picture 58

$ cat Dockerfile

FROM alpine

LABEL maintainer="nigelpoulton@hotmail.com"

RUN apk add --update nodejs nodejs-npm

COPY . /src

WORKDIR /src

RUN npm install

EXPOSE 8080

ENTRYPOINT ["node", "./app.js"]

The contents of the Dockerfile in the Windows example are different. However, this
isn’t important at this stage. We’ll cover Dockerfiles in more detail later in the book.
For now, it’s enough to understand that each line represents an instruction that is
used to build an image.

At this point we have pulled some application code from a remote Git repo. We also
have a Dockerfile containing instructions on how to build the app into a Docker
image.

Use the docker image build command to create a new image using the instructions
in the Dockerfile. This example creates a new Docker image called test:latest.

Be sure to perform this command from within the directory containing the app code
and Dockerfile.

$ docker image build -t test:latest .

Sending build context to Docker daemon 74.75kB

Step 1/8 : FROM alpine

latest: Pulling from library/alpine

88286f41530e: Pull complete

Digest: sha256:f006ecbb824...0c103f4820a417d

Status: Downloaded newer image for alpine:latest

---> 76da55c8019d

<Snip>

Successfully built f154cb3ddbd4

Successfully tagged test:latest

4: The big picture 59

Note: It may take a long time for the build to finish in the Windows
example. This is because of the size and complexity of the image being
pulled.

Once the build is complete, check to make sure that the new test:latest image
exists on your host.

$ docker image ls

REPO TAG IMAGE ID CREATED SIZE

test latest f154cb3ddbd4 1 minute ago 55.6MB

...

You now have a newly-built Docker image with the app inside.

Run a container from the image and test the app.

Linux example:

$ docker container run -d \

--name web1 \

--publish 8080:8080 \

test:latest

Open a web browser and navigate to the DNS name or IP address of the Docker host
that you are running the container from, and point it to port 8080. You will see the
following web page.

If you are following along with Docker for Windows or Docker for Mac, you will be
able to use localhost:8080 or 127.0.0.1:8080. If you’re following along on Play
with Docker, you will be able to click the 8080 hyperlink above the terminal screen.

4: The big picture 60

Figure 4.1

Windows example:

> docker container run -d \

--name web1 \

--publish 8080:8080 \

test:latest

Open a web browser and navigate to the DNS name or IP address of the Docker host
that you are running the container from, and point it to port 8080. You will see the
following web page.

The same rules apply if you’re following along with Docker for Windows or Play
with Docker.

4: The big picture 61

Figure 4.2

Well done. You’ve taken some application code from a remote Git repo and built it
into a Docker image. You then ran a container from it. We call this “containerizing
an app”.

Chapter Summary

In the Op section of the chapter you; downloaded a Docker image, launched a
container from it, logged into the container, executed a command inside of it, and
then stopped and deleted the container.

In the Dev section, you containerized a simple application by pulling some source
code from GitHub and building it into an image using instructions in a Dockerfile.
You then ran the containerized app.

This big picture view should help you with the up-coming chapters where we will
dig deeper into images and containers.

Part 2: The technical stuff

5: The Docker Engine
In this chapter, we’ll take a quick look under the hood of the Docker Engine.

You can use Docker without understanding any of the things we’ll cover in this
chapter. So, feel free to skip it. However, to be a real master of anything, you need
to understand what’s going on under the hood. So, to be a real Docker master, you
need to know the stuff in this chapter.

This will be a theory-based chapter with no hands-on exercises.

As this chapter is part of the Technical section of the book, we’re going to employ
the three-tiered approach where we split the chapter into three sections:

• The TLDR: Two or three quick paragraphs that you can read while standing
in line for a coffee

• The deep dive: The really long bit where we get into the detail
• The commands: A quick recap of the commands we learned

Let’s go and learn about the Docker Engine!

Docker Engine - The TLDR

The Docker engine is the core software that runs and manages containers. We often
refer to it simply as Docker, or the Docker platform. If you know a thing or two about
VMware, it might be useful to think of it as being like ESXi.

The Docker engine is modular in design with many swappable components. Where
possible, these are based on open-standards outlined by the Open Container Initiative
(OCI).

In many ways, the Docker Engine is like a car engine — both are modular and created
by connecting many small specialized parts:

5: The Docker Engine 64

• A car engine is made from many specialized parts that work together to make
a car drive — intake manifolds, throttle body, cylinders, spark plugs, exhaust
manifolds etc.

• The Docker Engine is made from many specialized tools that work together to
create and run containers — APIs, execution driver, runtime, shims etc.

At the time of writing, the major components that make up the Docker engine are:
the Docker client, the Docker daemon, containerd, and runc. Together, these create
and run containers.

Figure 5.1 shows a high-level view.

Figure 5.1

Throughout the book we’ll refer to runc and containerdwith lower-case “r” and “c”.
This means sentences starting with either ____r____unc ____c____ontainerd will
not start with a capital letter. This is intentional and not a mistake.

Docker Engine - The Deep Dive

When Docker was first released, the Docker engine had two major components:

• The Docker daemon (hereafter referred to as just “the daemon”)
• LXC

5: The Docker Engine 65

The Docker daemon was a monolithic binary. It contained all of the code for the
Docker client, the Docker API, the container runtime, image builds, andmuchmore.

LXC provided the daemon with access to the fundamental building-blocks of
containers that existed in the Linux kernel. Things like namespaces and control
groups (cgroups).

Figure 5.2. shows how the daemon, LXC, and the OS, interacted in older versions of
Docker.

Figure 5.2 Previous Docker architecture

Getting rid of LXC

The reliance on LXC was an issue from the start.

First up, LXC is Linux-specific. This was a problem for a project that had aspirations
of being multi-platform.

Second up, being reliant on an external tool for something so core to the project was
a huge risk that could hinder development.

As a result, Docker. Inc. developed their own tool called libcontainer as a replacement
for LXC. The goal of libcontainer was to be a platform-agnostic tool that provided

5: The Docker Engine 66

Docker with access to the fundamental container building-blocks that exist inside
the kernel.

Libcontainer replaced LXC as the default execution driver in Docker 0.9.

Getting rid of the monolithic Docker daemon

Over time, the monolithic nature of the Docker daemon became more and more
problematic:

1. It’s hard to innovate on.
2. It got slower.
3. It wasn’t what the ecosystem (or Docker, Inc.) wanted.

Docker, Inc. was aware of these challenges, and began a huge effort to break apart
the monolithic daemon and modularize it. The aim of this work was to break out
as much of the functionality as possible from the daemon, and re-implement it in
smaller specialized tools. These specialized tools can be swapped out, as well as easily
re-used by third parties to build other tools. This plan follows the tried-and-tested
Unix philosophy of building small specialized tools that can be pieced together into
larger tools.

This work of breaking apart and re-factoring the Docker engine is an ongoing
process. However, it has already seen all of the container execution and container
runtime code entirely removed from the daemon and refactored into small,
specialized tools.

Figure 5.3 shows a high-level view of the current Docker engine architecture with
brief descriptions.

5: The Docker Engine 67

Figure 5.3

The influence of the Open Container Initiative (OCI)

While Docker, Inc. was breaking the daemon apart and refactoring code, the OCI15

was in the process of defining two container-related specifications (a.k.a. standards):

1. Image spec16

2. Container runtime spec17

Both specifications were released as version 1.0 in July 2017.

Docker, Inc. was heavily involved in creating these specifications and contributed a
lot of code to them.

15https://www.opencontainers.org/
16https://github.com/opencontainers/image-spec
17https://github.com/opencontainers/runtime-spec/blob/master/RELEASES.md

https://www.opencontainers.org/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec/blob/master/RELEASES.md
https://www.opencontainers.org/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec/blob/master/RELEASES.md

5: The Docker Engine 68

As of Docker 1.11 (early 2016), the Docker engine implements the OCI specifications
as closely as possible. For example, the Docker daemon no longer contains any
container runtime code — all container runtime code is implemented in a separate
OCI-compliant layer. By default, Docker uses a tool called runc for this. runc is
the reference implementation of the OCI container-runtime-spec. This is the runc

container runtime layer in Figure 5.3. A goal of the runc project be in-line with the
OCI spec. However, now that the OCI spec’s are both at 1.0, we shouldn’t expect
them to iterate too much — stability is the name of the game here.

As well as this, the containerd component of the Docker Engine makes sure Docker
images are presented to runc as valid OCI bundles.

Note: The Docker engine implemented portions of the OCI specs before
the specs were officially released as version 1.0.

runc

As previously mentioned, runc is the reference implementation of the OCI container-
runtime-spec. Docker, Inc. was heavily involved in defining the spec and developing
runc.

If you strip everything else away, runc is a small, lightweight CLI wrapper for
libcontainer (remember that libcontainer originally replaced LXC in the early Docker
architecture).

runc has a single purpose in life — create containers. And it’s damn good at it. And
fast! But as it’s a CLI wrapper, it’s effectively a standalone container runtime tool.
This means you can download and build the binary, and you’ll have everything you
need to build and play with runc (OCI) containers. But it’s bare bones, you’ll have
none of the richness that you get with the full-blown Docker engine.

We sometimes call the layer that runc operates at, “the OCI layer”. See Figure 5.3.

You can see runc release information at:

• https://github.com/opencontainers/runc/releases

5: The Docker Engine 69

containerd

As part of the effort to strip functionality out of the Docker daemon, all of the
container execution logic was ripped out and refactored into a new tool called
containerd (pronounced container-dee). Its sole purpose in life was to manage
container lifecycle operations — start | stop | pause | rm....

containerd is available as a daemon for Linux and Windows, and Docker has been
using it on Linux since the 1.11 release. In the Docker engine stack, containerd sits
between the daemon and runc at the OCI layer. Kubernetes can also use containerd
via cri-containerd.

As previously stated, containerdwas originally intended to be small, lightweight, and
designed for a single task in life — container lifecycle operations. However, over time
it has branched out and taken on more functionality. Things like image management.

One of the reasons for this, is to make it easier to use in other projects. For example,
containerd is a popular container runtime in Kubernetes. However, in projects like
Kubernetes, it was beneficial for containerd to be able to do additional things like
push and pull images. For these reasons, containerd now does a lot more than simple
container lifecycle management. However, all the extra functionality is modular and
optional, meaning you can pick and choose which bits you want. So it’s possible to
include containerd in projects such as Kubernetes, but only to take the pieces your
project needs.

containerd was developed by Docker, Inc. and donated to the Cloud Native Comput-
ing Foundation (CNCF). It released version 1.0 in December 2017. You can see release
information at:

• https://github.com/containerd/containerd/releases

Starting a new container (example)

Now that we have a view of the big picture, and some of the history, let’s walk
through the process of creating a new container.

The most common way of starting containers is using the Docker CLI. The following
docker container run command will start a simple new container based on the
alpine:latest image.

5: The Docker Engine 70

$ docker container run --name ctr1 -it alpine:latest sh

When you type commands like this into the Docker CLI, the Docker client converts
them into the appropriate API payload and POSTs them to the correct API endpoint.

The API is implemented in the daemon. It is the same rich, versioned, REST API that
has become a hallmark of Docker, and is accepted in the industry as the de facto
container API.

Once the daemon receives the command to create a new container, it makes a call
to containerd. Remember that the daemon no-longer contains any code to create
containers!

The daemon communicates with containerd via a CRUD-style API over gRPC18.

Despite its name, containerd cannot actually create containers. It uses runc to do
that. It converts the required Docker image into an OCI bundle and tells runc to use
this to create a new container.

runc interfaces with the OS kernel to pull together all of the constructs necessary to
create a container (namespaces, cgroups etc.). The container process is started as a
child-process of runc, and as soon as it is started runc will exit.

Voila! The container is now started.

The process is summarized in Figure 5.4.

18https://grpc.io/

https://grpc.io/
https://grpc.io/

5: The Docker Engine 71

Figure 5.4

One huge benefit of this model

Having all of the logic and code to start and manage containers removed from
the daemon means that the entire container runtime is decoupled from the Docker
daemon. We sometimes call this “daemonless containers”, and it makes it possible
to perform maintenance and upgrades on the Docker daemon without impacting
running containers!

In the old model, where all of container runtime logic was implemented in the
daemon, starting and stopping the daemon would kill all running containers on the
host. This was a huge problem in production environments — especially when you
consider how frequently new versions of Docker are released! Every daemon upgrade
would kill all containers on that host — not good!

Fortunately, this is no longer a problem.

5: The Docker Engine 72

What’s this shim all about?

Some of the diagrams in the chapter have shown a shim component.

The shim is integral to the implementation of daemonless containers (what we just
mentioned about decoupling running containers from the daemon for things like
daemon upgrades).

We mentioned earlier that containerd uses runc to create new containers. In fact,
it forks a new instance of runc for every container it creates. However, once each
container is created, its parent runc process exits. This means we can run hundreds
of containers without having to run hundreds of runc instances.

Once a container’s parent runc process exits, the associated containerd-shim process
becomes the container’s parent. Some of the responsibilities the shim performs as a
container’s parent include:

• Keeping any STDIN and STDOUT streams open so that when the daemon is
restarted, the container doesn’t terminate due to pipes being closed etc.

• Reports the container’s exit status back to the daemon.

How it’s implemented on Linux

On a Linux system, the components we’ve discussed are implemented as separate
binaries as follows:

• dockerd (the Docker daemon)
• docker-containerd (containerd)
• docker-containerd-shim (shim)
• docker-runc (runc)

You can see all of these on a Linux system by running a ps command on the Docker
host. Obviously, some of them will only be present when the system has running
containers.

5: The Docker Engine 73

So what’s the point of the daemon

With all of the execution and runtime code stripped out of the daemon you might be
asking the question: “what is left in the daemon?”.

Obviously, the answer to this question will change over time as more and more
functionality is stripped out and modularized. However, at the time of writing,
some of the major functionality that still exists in the daemon includes; image
management, image builds, the REST API, authentication, security, core networking,
and orchestration.

Chapter summary

The Docker engine is modular in design and based heavily on open-standards from
the OCI.

TheDocker daemon implements the Docker API which is currently a rich, versioned,
HTTP API that has developed alongside the rest of the Docker project.

Container execution is handled by containerd. containerd was written by Docker,
Inc. and contributed to the CNCF. You can think of it as a container supervisor that
handles container lifecycle operations. It is small and lightweight and can be used by
other projects and third-party tools. For example, it’s poised to become the default,
and most common, container runtime in Kubernetes.

containerd needs to talk to an OCI-compliant container runtime to actually create
containers. By default, Docker uses runc as its default container runtime. runc is
the de facto implementation of the OCI container-runtime-spec and expects to start
containers fromOCI-compliant bundles. containerd talks to runc and ensures Docker
images are presented to runc as OCI-compliant bundles.

runc can be used as a standalone CLI tool to create containers. It’s based on code
from libcontainer, and can also be used by other projects and third-party tools.

There is still a lot of functionality implemented in the Docker daemon. More of
this may be broken out over time. Functionality currently still inside of the Docker
daemon include, but is not limited to: the API, image management, authentication,
security features, core networking, and volumes.

The work of modularizing the Docker engine is ongoing.

6: Images
In this chapter we’ll dive into Docker images. The aim of the game is to give
you a solid understanding of what Docker images are, and how to perform basic
operations. In a later chapter we’ll see how to build new images with our own
applications inside of them (containerizing an app).

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Let’s go and learn about images!

Docker images - The TLDR

If you’re a former VM admin you can think of Docker images as being like VM
templates. A VM template is like a stopped VM — a Docker image is like a stopped
container. If you’re a developer you can think of them as being similar to classes.

You start by pulling images from an image registry. The most popular registry is
Docker Hub19, but others do exist. The pull operation downloads the image to your
local Docker host where you can use it to start one or more Docker containers.

Images are made up of multiple layers that get stacked on top of each other and
represented as a single object. Inside of the image is a cut-down operating system
(OS) and all of the files and dependencies required to run an application. Because
containers are intended to be fast and lightweight, images tend to be small.

Congrats! You’ve now got half a clue what a Docker image is :-D Now it’s time to
blow your mind!

19https://hub.docker.com

https://hub.docker.com/
https://hub.docker.com/

6: Images 75

Docker images - The deep dive

We’ve mentioned a couple of times already that images are like stopped containers
(or classes if you’re a developer). In fact, you can stop a container and create a
new image from it. With this in mind, images are considered build-time constructs,
whereas containers are run-time constructs.

Figure 6.1

Images and containers

Figure 6.1 shows high-level view of the relationship between images and containers.
We use the docker container run and docker service create commands to start
one ormore containers from a single image. However, once you’ve started a container
from an image, the two constructs become dependent on each other and you cannot
delete the image until the last container using it has been stopped and destroyed.
Attempting to delete an image without stopping and destroying all containers using
it will result in the following error:

$ docker image rm <image-name>

Error response from daemon: conflict: unable to remove repository reference \

"<image-name>" (must force) - container <container-id> is using its referenc\

ed image <image-id>

Images are usually small

The whole purpose of a container is to run an application or service. This means
that the image a container is created from must contain all OS and application files

6: Images 76

required to run the app/service. However, containers are all about being fast and
lightweight. This means that the images they’re built from are usually small and
stripped of all non-essential parts.

For example, Docker images do not ship with 6 different shells for you to choose from
— they usually ship with a single minimalist shell, or no shell at all. They also don’t
contain a kernel — all containers running on a Docker host share access to the host’s
kernel. For these reasons, we sometimes say images contain just enough operating
system (usually just OS-related files and filesystem objects).

Note:Hyper-V containers run inside of a dedicated lightweight VM and
leverage the kernel of the OS running inside the VM.

The official Alpine Linux Docker image is about 4MB in size and is an extreme
example of how small Docker images can be. That’s not a typo! It really is about
4 megabytes! However, a more typical example might be something like the official
Ubuntu Docker image which is currently about 110MB. These are clearly stripped of
most non-essential parts!

Windows-based images tend to be bigger than Linux-based images because of
the way that the Windows OS works. For example, the latest Microsoft .NET
image (microsoft/dotnet:latest) is over 1.7GB when pulled an uncompressed.
The Windows Server 2016 Nano Server image (microsoft/nanoserver:latest) is
slightly over 1GB when pulled and uncompressed.

Pulling images

A cleanly installed Docker host has no images in its local repository.

The local image repository on a Linux-based Docker host is usually located at
/var/lib/docker/<storage-driver>. On Windows-based Docker hosts this is C:\
ProgramData\docker\windowsfilter.

You can check if your Docker host has any images in its local repository with the
following command.

6: Images 77

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

The process of getting images onto a Docker host is called pulling. So, if you want
the latest Ubuntu image on your Docker host, you’d have to pull it. Use the following
commands to pull some images and then check their sizes.

If you are following along on Linux and haven’t added your user account
to the local docker Unix group, you may need to add sudo to the
beginning of all the following commands.

Linux example:

$ docker image pull ubuntu:latest

latest: Pulling from library/ubuntu

b6f892c0043b: Pull complete

55010f332b04: Pull complete

2955fb827c94: Pull complete

3deef3fcbd30: Pull complete

cf9722e506aa: Pull complete

Digest: sha256:38245....44463c62a9848133ecb1aa8

Status: Downloaded newer image for ubuntu:latest

$ docker image pull alpine:latest

latest: Pulling from library/alpine

cfc728c1c558: Pull complete

Digest: sha256:c0537...497c0a7726c88e2bb7584dc96

Status: Downloaded newer image for alpine:latest

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest ebcd9d4fca80 3 days ago 118MB

alpine latest 02674b9cb179 8 days ago 3.99MB

Windows example:

6: Images 78

> docker image pull microsoft/powershell:nanoserver

nanoserver: Pulling from microsoft/powershell

bce2fbc256ea: Pull complete

58f68fa0ceda: Pull complete

04083aac0446: Pull complete

e42e2e34b3c8: Pull complete

0c10d79c24d4: Pull complete

715cb214dca4: Pull complete

a4837c9c9af3: Pull complete

2c79a32d92ed: Pull complete

11a9edd5694f: Pull complete

d223b37dbed9: Pull complete

aee0b4393afb: Pull complete

0288d4577536: Pull complete

8055826c4f25: Pull complete

Digest: sha256:090fe875...fdd9a8779592ea50c9d4524842

Status: Downloaded newer image for microsoft/powershell:nanoserver

>

> docker image pull microsoft/dotnet:latest

latest: Pulling from microsoft/dotnet

bce2fbc256ea: Already exists

4a8c367fd46d: Pull complete

9f49060f1112: Pull complete

0334ad7e5880: Pull complete

ea8546db77c6: Pull complete

710880d5cbd5: Pull complete

d665d26d9a25: Pull complete

caa8d44fb0b1: Pull complete

cfd178ff221e: Pull complete

Digest: sha256:530343cd483dc3e1...6f0378e24310bd67d2a

Status: Downloaded newer image for microsoft/dotnet:latest

>

> docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

microsoft/dotnet latest 831..686d 7 hrs ago 1.65 GB

microsoft/powershell nanoserver d06..5427 8 days ago 1.21 GB

6: Images 79

As you can see, the images just pulled are now present in the Docker host’s local
repository. You can also see that the Windows images are a lot larger and comprise
a lot more layers.

Image naming

As part of each command, we had to specify which image to pull. So let’s take a
minute to look at image naming. To do that we need a bit of background on how we
store images.

Image registries

Docker images are stored in image registries. The most common registry is Docker
Hub (https://hub.docker.com). Other registries exist, including 3rd party registries
and secure on-premises registries. However, the Docker client is opinionated and
defaults to using Docker Hub. We’ll be using Docker Hub for the rest of the book.

Image registries contain multiple image repositories. In turn, image repositories can
contain multiple images. That might be a bit confusing, so Figure 6.2 shows a picture
of an image registry containing 3 repositories, and each repository contains one or
more images.

6: Images 80

Figure 6.2

Official and unofficial repositories

Docker Hub also has the concept of official repositories and unofficial repositories.

As the name suggests, official repositories contain images that have been vetted by
Docker, Inc. This means they should contain up-to-date, high-quality code, that is
secure, well-documented, and in-line with best practices (please can I have an award
for using five hyphens in a single sentence).

Unofficial repositories can be like the wild-west — you should not expect them to
be safe, well-documented or built according to best practices. That’s not saying
everything in unofficial repositories is bad! There’s some brilliant stuff in unofficial
repositories. You just need to be very careful before trusting code from them. To be
honest, you should always be careful when getting software from the internet — even
images from official repositories!

Most of the popular operating systems and applications have their own official
repositories on Docker Hub. They’re easy to spot because they live at the top level
of the Docker Hub namespace. The following list contains a few of the official
repositories, and shows their URLs that exist at the top-level of the Docker Hub
namespace:

6: Images 81

• nginx: https://hub.docker.com/_/nginx/
• busybox: https://hub.docker.com/_/busybox/
• redis: https://hub.docker.com/_/redis/
• mongo: https://hub.docker.com/_/mongo/

On the other hand, my own personal images live in the wild west of unofficial
repositories and should not be trusted! Here are some examples of images in my
repositories:

• nigelpoulton/tu-demo

https://hub.docker.com/r/nigelpoulton/tu-demo/
• nigelpoulton/pluralsight-docker-ci

https://hub.docker.com/r/nigelpoulton/pluralsight-docker-ci/

Not only are images in my repositories not vetted, not kept up-to-date, not secure,
and not well documented… you should also notice that they don’t live at the top-
level of the Docker Hub namespace. My repositories all live within a second-level
namespace called nigelpoulton.

You’ll probably notice that the Microsoft images we’ve used do not exist at the top-
level of the Docker Hub namespace. At the time of writing, they exist under the
microsoft second-level namespace.

After all of that, we can finally look at how we address images on the Docker
command line.

Image naming and tagging

Addressing images from official repositories is as simple as giving the repository
name and tag separated by a colon (:). The format for docker image pull, when
working with an image from an official repository is:

docker image pull <repository>:<tag>

In the Linux examples from earlier, we pulled an Alpine and an Ubuntu images with
the following two commands:

6: Images 82

docker image pull alpine:latest and docker image pull ubuntu:latest

These two commands pull the images tagged as “latest” from the “alpine” and
“ubuntu” repositories.

The following examples show how to pull various different images from official
repositories:

$ docker image pull mongo:3.3.11

//This will pull the image tagged as `3.3.11`

//from the official `mongo` repository.

$ docker image pull redis:latest

//This will pull the image tagged as `latest`

//from the official `redis` repository.

$ docker image pull alpine

//This will pull the image tagged as `latest`

//from the official `alpine` repository.

A couple of points about those commands.

First, if you do not specify an image tag after the repository name, Docker will
assume you are referring to the image tagged as latest.

Second, the latest tag doesn’t have any magical powers! Just because an image is
tagged as latest does not guarantee it is the most recent image in a repository! For
example, the most recent image in the alpine repository is usually tagged as edge.
Moral of the story — take care when using the latest tag!

Pulling images from an unofficial repository is essentially the same — you just
need to prepend the repository name with a Docker Hub username or organization
name. The following example shows how to pull the v2 image from the tu-demo

repository owned by a not-to-be-trusted person whose Docker Hub account name is
nigelpoulton.

6: Images 83

$ docker image pull nigelpoulton/tu-demo:v2

//This will pull the image tagged as `v2`

//from the `tu-demo` repository within the namespace

//of my personal Docker Hub account.

In our earlier Windows examples, we pulled a PowerShell and a .NET image with
the following two commands:

> docker image pull microsoft/powershell:nanoserver

> docker image pull microsoft/dotnet:latest

The first command pulls the image tagged as nanoserver from the microsoft/pow-
ershell repository. The second command pulls the image tagged as latest from the
microsoft/dotnet repository.

If you want to pull images from 3rd party registries (not Docker Hub), you need
to prepend the repository name with the DNS name of the registry. For example,
if the image in the example above was in the Google Container Registry (GCR)
you’d need to add gcr.io before the repository name as follows — docker pull

gcr.io/nigelpoulton/tu-demo:v2 (no such repository and image exists).

You may need to have an account on 3rd party registries and be logged into them
before you can pull images from them.

Images with multiple tags

One final word about image tags…A single image can have asmany tags as youwant.
This is because tags are arbitrary alpha-numeric values that are stored as metadata
alongside the image. Let’s look at an example.

Pull all of the images in a repository by adding the -a flag to them docker image

pull command. Then run docker image ls to look at the images pulled. If you
are following along with Windows you can pull from the microsoft/nanoserver

repository instead of nigelpoulton/tu-demo.

Note: If the repository you are pulling from contains images for multiple
architectures and platforms, such as Linux andWindows, the command
is likely to fail.

6: Images 84

$ docker image pull -a nigelpoulton/tu-demo

latest: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Pull complete

a3ed95caeb02: Pull complete

<Snip>

Digest: sha256:42e34e546cee61adb1...3a0c5b53f324a9e1c1aae451e9

v1: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb02: Already exists

<Snip>

Digest: sha256:9ccc0c67e5c5eaae4b...624c1d5c80f2c9623cbcc9b59a

v2: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb02: Already exists

<Snip>

Digest: sha256:d3c0d8c9d5719d31b7...9fef58a7e038cf0ef2ba5eb74c

Status: Downloaded newer image for nigelpoulton/tu-demo

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

nigelpoulton/tu-demo v2 6ac21e..bead 1 yr ago 211.6 MB

nigelpoulton/tu-demo latest 9b915a..1e29 1 yr ago 211.6 MB

nigelpoulton/tu-demo v1 9b915a..1e29 1 yr ago 211.6 MB

A couple of things about what just happened:

First. the command pulled three images from the nigelpoulton/tu-demo repository:
latest, v1, and v2.

Second. Look closely at the IMAGE ID column in the output of the docker image ls

command. You’ll see that there are only two unique image IDs. This is because only
two images were actually downloaded. This is because two of the tags refer to the
same image. Put another way… one of the images has two tags. If you look closely
you’ll see that the v1 and latest tags have the same IMAGE ID. This means they’re
two tags of the same image.

This is a perfect example of the warning issued earlier about the latest tag. In this
example, the latest tag refers to the same image as the v1 tag. This means it’s

6: Images 85

pointing to the older of the two images — not the newest! latest is an arbitrary
tag and is not guaranteed to point to the newest image in a repository!

Filtering the output of docker image ls

Docker provides the --filter flag to filter the list of images returned by docker

image ls.

The following example will only return dangling images.

$ docker image ls --filter dangling=true

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> 4fd34165afe0 7 days ago 14.5MB

A dangling image is an image that is no longer tagged, and appears in listings as
<none>:<none>. A common way they occur is when building a new image and
tagging it with an existing tag. When this happens, Docker will build the new image,
notice that an existing image has a matching tag, remove the tag from the existing
image, give the tag to the new image. For example, you build a new image based
on alpine:3.4 and tag it as dodge:challenger. Then you update the Dockerfile to
replace alpine:3.4 with alpine:3.5 and run the exact same docker image build

command. The build will create a new image tagged as dodge:challenger and
remove the tags from the older image. The old image will become a dangling image.

You can delete all dangling images on a system with the docker image prune

command. If you add the -a flag, Docker will also remove all unused images (those
not in use by any containers).

Docker currently supports the following filters:

• dangling: Accepts true or false, and returns only dangling images (true), or
non-dangling images (false).

• before: Requires an image name or ID as argument, and returns all images
created before it.

• since: Same as above, but returns images created after the specified image.
• label: Filters images based on the presence of a label or label and value. The
docker image ls command does not display labels in its output.

6: Images 86

For all other filtering you can use reference.

Here’s an example using reference to display only images tagged as “latest”.

$ docker image ls --filter=reference="*:latest"

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine latest 3fd9065eaf02 8 days ago 4.15MB

test latest 8426e7efb777 3 days ago 122MB

You can also use the --format flag to format output using Go templates. For example,
the following commandwill only return the size property of images on a Docker host.

$ docker image ls --format "{{.Size}}"

99.3MB

111MB

82.6MB

88.8MB

4.15MB

108MB

Use the following command to return all images, but only display repo, tag and size.

$ docker image ls --format "{{.Repository}}: {{.Tag}}: {{.Size}}"

dodge: challenger: 99.3MB

ubuntu: latest: 111MB

python: 3.4-alpine: 82.6MB

python: 3.5-alpine: 88.8MB

alpine: latest: 4.15MB

nginx: latest: 108MB

If you need more powerful filtering, you can always use the tools provided by your
OS and shell such as grep and awk.

6: Images 87

Searching Docker Hub from the CLI

The docker search command lets you search Docker Hub from the CLI. You can
pattern match against strings in the “NAME” field, and filter output based on any of
the returned columns.

In its simplest form, it searches for all repos containing a certain string in the “NAME”
field. For example, the following command searches for all repos with “nigelpoulton”
in the “NAME” field.

$ docker search nigelpoulton

NAME DESCRIPTION STARS AUTOMATED

nigelpoulton/pluralsight.. Web app used in... 8 [OK]

nigelpoulton/tu-demo 7

nigelpoulton/k8sbook Kubernetes Book web app 1

nigelpoulton/web-fe1 Web front end example 0

nigelpoulton/hello-cloud Quick hello-world image 0

The “NAME” field is the repository name, and includes the Docker ID, or organiza-
tion name, for unofficial repositories. For example, the following command will list
all repositories that include the string “alpine” in the name.

$ docker search alpine

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

alpine A minimal Docker.. 2988 [OK]

mhart/alpine-node Minimal Node.js.. 332

anapsix/alpine-java Oracle Java 8... 270 [OK]

<Snip>

Notice how some of the repositories returned are official and some are unofficial.
You can use --filter "is-official=true" so that only official repos are displayed.

$ docker search alpine --filter "is-official=true"

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

alpine A minimal Docker.. 2988 [OK]

You can do the same again, but this time only show repos with automated builds.

6: Images 88

$ docker search alpine --filter "is-automated=true"

NAME DESCRIPTION OFFICIAL AUTOMATED

anapsix/alpine-java Oracle Java 8 (and 7).. [OK]

frolvlad/alpine-glibc Alpine Docker image.. [OK]

kiasaki/alpine-postgres PostgreSQL docker.. [OK]

zzrot/alpine-caddy Caddy Server Docker.. [OK]

<Snip>

One last thing about docker search. By default, Docker will only display 25 lines
of results. However, you can use the --limit flag to increase that to a maximum of
100.

Images and layers

A Docker image is just a bunch of loosely-connected read-only layers. This is shown
in Figure 6.3.

Figure 6.3

Docker takes care of stacking these layers and representing them as a single unified
object.

There are a few ways to see and inspect the layers that make up an image, and we’ve
already seen one of them. Let’s take a second look at the output of the docker image

pull ubuntu:latest command from earlier:

6: Images 89

$ docker image pull ubuntu:latest

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118ca682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bbaa99d...28ae95a60369c506dd6e6f6ab

Status: Downloaded newer image for ubuntu:latest

Each line in the output above that ends with “Pull complete” represents a layer in the
image that was pulled. As we can see, this image has 5 layers. Figure 6.4 shows this
in picture form, displaying layer IDs.

Figure 6.4

Another way to see the layers of an image is to inspect the image with the docker
image inspect command. The following example inspects the same ubuntu:latest
image.

6: Images 90

$ docker image inspect ubuntu:latest

[

{

"Id": "sha256:bd3d4369ae.......fa2645f5699037d7d8c6b415a10",

"RepoTags": [

"ubuntu:latest"

<Snip>

"RootFS": {

"Type": "layers",

"Layers": [

"sha256:c8a75145fc...894129005e461a43875a094b93412",

"sha256:c6f2b330b6...7214ed6aac305dd03f70b95cdc610",

"sha256:055757a193...3a9565d78962c7f368d5ac5984998",

"sha256:4837348061...12695f548406ea77feb5074e195e3",

"sha256:0cad5e07ba...4bae4cfc66b376265e16c32a0aae9"

]

}

}

]

The trimmed output shows 5 layers again. Only this time they’re shown using their
SHA256 hashes. However, both commands show that the image has 5 layers.

Note: The docker history command shows the build history of an
image and is not a strict list of layers in the image. For example, some
Dockerfile instructions used to build an image do not result in layers
being created. These include; “ENV”, “EXPOSE”, “CMD”, and “ENTRY-
POINT”. Instead of these creating new layers, they add metadata to the
image.

All Docker images start with a base layer, and as changes are made and new content
is added, new layers are added on top.

As an over-simplified example, you might create a new image based off Ubuntu
Linux 16.04. This would be your image’s first layer. If you later add the Python

6: Images 91

package, this would be added as a second layer on top of the base layer. If you
then added a security patch, this would be added as a third layer at the top. Your
image would now have three layers as shown in Figure 6.5 (remember this is an
over-simplified example for demonstration purposes).

Figure 6.5

It’s important to understand that as additional layers are added, the image is always
the combination of all layers. Take a simple example of two layers as shown in Figure
6.6. Each layer has 3 files, but the overall image has 6 files as it is the combination of
both layers.

Figure 6.6

6: Images 92

Note:We’ve shown the image layers in Figure 6.6 in a slightly different
way to previous figures. This is just to make showing the files easier.

In the slightly more complex example of the three-layered image in Figure 6.7, the
overall image only presents 6 files in the unified view. This is because file 7 in the top
layer is an updated version of file 5 directly below (inline). In this situation, the file
in the higher layer obscures the file directly below it. This allows updated versions
of files to be added as new layers to the image.

Figure 6.7

Docker employs a storage driver (snapshotter in newer versions) that is responsible
for stacking layers and presenting them as a single unified filesystem. Examples
of storage drivers on Linux include AUFS, overlay2, devicemapper, btrfs and zfs.
As their names suggest, each one is based on a Linux filesystem or block-device
technology, and each has its own unique performance characteristics. The only driver
supported by Docker onWindows is windowsfilter, which implements layering and
CoW on top of NTFS.

Figure 6.8 shows the same 3-layer image as it will appear to the system. I.e. all three
layers stacked and merged, giving a single unified view.

6: Images 93

Figure 6.8

Sharing image layers

Multiple images can, and do, share layers. This leads to efficiencies in space and
performance.

Let’s take a second look at the docker image pull command with the -a flag that
we ran previously to pull all tagged images in the nigelpoulton/tu-demo repository.

$ docker image pull -a nigelpoulton/tu-demo

latest: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Pull complete

a3ed95caeb02: Pull complete

<Snip>

Digest: sha256:42e34e546cee61adb100...a0c5b53f324a9e1c1aae451e9

v1: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb02: Already exists

<Snip>

Digest: sha256:9ccc0c67e5c5eaae4beb...24c1d5c80f2c9623cbcc9b59a

v2: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb02: Already exists

<Snip>

eab5aaac65de: Pull complete

Digest: sha256:d3c0d8c9d5719d31b79c...fef58a7e038cf0ef2ba5eb74c

6: Images 94

Status: Downloaded newer image for nigelpoulton/tu-demo

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

nigelpoulton/tu-demo v2 6ac...ead 4 months ago 211.6 MB

nigelpoulton/tu-demo latest 9b9...e29 4 months ago 211.6 MB

nigelpoulton/tu-demo v1 9b9...e29 4 months ago 211.6 MB

Notice the lines ending in Already exists.

These lines tell us that Docker is smart enough recognize when it’s being asked to pull
an image layer that it already has a copy of. In this example, Docker pulled the image
tagged as latest first. Then, when it pulled the v1 and v2 images, it noticed that it
already had some of the layers that make up those images. This happens because the
three images in this repository are almost identical, and therefore share many layers.

As mentioned previously, Docker on Linux supports many storage drivers (snapshot-
ters). Each is free to implement image layering, layer sharing, and copy-on-write
(CoW) behaviour in its own way. However, the overall result and user experience is
essentially the same. Although Windows only supports a single storage driver, that
driver provides the same experience as Linux.

Pulling images by digest

So far, we’ve shown you how to pull images by tag, and this is by far the most
common way. But it has a problem — tags are mutable! This means it’s possible
to accidentally tag an image with the wrong tag. Sometimes it’s even possible to
tag an image with the same tag as an existing, but different, image. This can cause
problems!

As an example, imagine that you’ve got an image called golftrack:1.5 and it has a
known bug. You pull the image, apply a fix, and push the updated image back to its
repository using the same tag.

Take a second to understand what just happened there… You have an image
called golftrack:1.5 that has a bug. That image is being used in your production
environment. You create a new version of the image that includes a fix. Then comes
the mistake… you build and push the fixed image back to its repository with the same

6: Images 95

tag as the vulnerable image!. This overwrites the original image and leaves without
a great way of knowing which of your production containers are running from the
vulnerable image and which are running from the fixed image? Both images have
the same tag!

This is where image digests come to the rescue.

Docker 1.10 introduced a new content addressable storage model. As part of this
new model, all images now get a cryptographic content hash. For the purposes of
this discussion, we’ll refer to this hash as the digest. Because the digest is a hash
of the contents of the image, it is not possible to change the contents of the image
without the digest also changing. This means digests are immutable. This helps avoid
the problem we just talked about.

Every time you pull an image, the docker image pull command will include the
image’s digest as part of the return code. You can also view the digests of images
in your Docker host’s local repository by adding the --digests flag to the docker

image ls command. These are both shown in the following example.

$ docker image pull alpine

Using default tag: latest

latest: Pulling from library/alpine

e110a4a17941: Pull complete

Digest: sha256:3dcdb92d7432d56604d...6d99b889d0626de158f73a

Status: Downloaded newer image for alpine:latest

$ docker image ls --digests alpine

REPOSITORY TAG DIGEST IMAGE ID CREATED SIZE

alpine latest sha256:3dcd...f73a 4e38e38c8ce0 10 weeks ago 4.8 MB

The snipped output above shows the digest for the alpine image as -

sha256:3dcdb92d7432d56604d...6d99b889d0626de158f73a

Now that we know the digest of the image, we can use it when pulling the image
again. This will ensure that we get exactly the image we expect!

At the time of writing, there is no native Docker command that will retrieve the
digest of an image from a remote registry such as Docker Hub. This means the only

6: Images 96

way to determine the digest of an image is to pull it by tag and then make a note of
its digest. This will no doubt change in the future.

The following example deletes the alpine:latest image from your Docker host and
then shows how to pull it again using its digest instead of its tag.

$ docker image rm alpine:latest

Untagged: alpine:latest

Untagged: alpine@sha256:c0537...7c0a7726c88e2bb7584dc96

Deleted: sha256:02674b9cb179d...abff0c2bf5ceca5bad72cd9

Deleted: sha256:e154057080f40...3823bab1be5b86926c6f860

$ docker image pull alpine@sha256:c0537...7c0a7726c88e2bb7584dc96

sha256:c0537...7726c88e2bb7584dc96: Pulling from library/alpine

cfc728c1c558: Pull complete

Digest: sha256:c0537ff6a5218...7c0a7726c88e2bb7584dc96

Status: Downloaded newer image for alpine@sha256:c0537...bb7584dc96

A little bit more about image hashes (digests)

Since Docker version 1.10, an image is a very loose collection of independent layers.

The image itself is really just a configuration object that lists the layers and some
metadata.

The layers are where the data lives (files etc.). Each one is fully independent, and has
no concept of being part of a collective image.

Each image is identified by a crypto ID that is a hash of the config object. Each layer
is identified by a crypto ID that is a hash of the content it contains.

This means that changing the contents of the image, or any of its layers, will cause
the associated crypto hashes to change. As a result, images and layers are immutable,
and we can easily identify any changes made to either.

We call these hashes content hashes.

So far, things are pretty simple. But they’re about to get a bit more complicated.

When we push and pull images, we compress their layers to save bandwidth, as well
as space in the Registry’s blob store.

6: Images 97

Cool, but compressing a layer changes its content! This means that its content hash
will no longer match after the push or pull operation! This is obviously a problem.

For example, when you push an image layer to Docker Hub, Docker Hub will attempt
to verify that the image arrived without being tampered with en-route. To do this, it
runs a hash against the layer and checks to see if it matches the hash that was sent.
Because the layer was compressed (changed) the hash verification will fail.

To get around this, each layer also gets something called a distribution hash. This
is a hash of the compressed version of the layer. When a layer is pushed and pulled
from the registry, its distribution hash is included, and this is what is used to verify
that the layer arrived without being tampered with.

This content-addressable storage model vastly improves security by giving us a way
to verify image and layer data after push and pull operations. It also avoids ID
collisions that could occur if image and layer IDs were randomly generated.

Multi-architecture images

One of the best things about Docker is how simple it is to use. For example, running
an application is as simple as pulling the image and running a container. No need to
worry about setup, dependencies, or config. It just works.

However, as Docker grew, things started getting complex — especially when new
platforms and architectures, such as Windows, ARM, and s390x were added. All of
a sudden we have to think about whether the image we’re pulling is built for the
architecture we’re running on. This breaks the smooth experience.

Multi-architecture images to the rescue!

Docker (image and registry specs) now supports multi-architecture images. This
means a single image (repository:tag) can have an image for Linux on x64, Linux
on PowerPC, Windows x64, ARM etc. Let me be clear, we’re talking about a single
image tag supporting multiple platforms and architectures. We’ll see it in action in a
second.

To make this happen, the Registry API supports two important constructs:

• manifest lists (new)

6: Images 98

• manifests

The manifest list is exactly what it sounds like: a list of architectures supported
by a particular image tag. Each supported architecture then has its own *manifest
detailing the layers it’s composed from.

Figure 6.9 uses the official golang image as an example. On the left is the manifest
listwith entries for each architecture the image supports. The arrows show that each
entry in the manifest list points to a manifest containing image config and layer
data.

Figure 6.9

Let’s look at the theory before seeing it in action.

Assume you are running Docker on a Raspberry Pi (Linux running on ARM
architecture). When you pull an image, your Docker client makes the relevant calls
to the Docker Registry API running on Docker Hub. If a manifest list exists for the
image, it will be parsed to see if an entry exists for Linux on ARM. If an ARM entry
exists, the manifest for that image is retrieved and parsed for the crypto ID’s of the
layers that make up the image. Each layer is then pulled from Docker Hub’s blob
store.

6: Images 99

The following examples show how this works by pulling the official golang image
(which supports multiple architectures) and running a simple command to show the
version of Go along with the CPU architecture of the host. The thing to note, is that
both examples use the exact same docker container run command.We do not have
to tell Docker that we need the Linux x64 or Windows x64 versions of the image. We
just run normal commands and let Docker take care of getting the right image for
the platform and architecture we are running!

Linux on x64 example:

$ docker container run --rm golang go version

Unable to find image 'golang:latest' locally

latest: Pulling from library/golang

723254a2c089: Pull complete

<Snip>

39cd5f38ffb8: Pull complete

Digest: sha256:947826b5b6bc4...

Status: Downloaded newer image for golang:latest

go version go1.9.2 linux/amd64

Windows on x64 example:

PS> docker container run --rm golang go version

Using default tag: latest

latest: Pulling from library/golang

3889bb8d808b: Pull complete

8df8e568af76: Pull complete

9604659e3e8d: Pull complete

9f4a4a55f0a7: Pull complete

6d6da81fc3fd: Pull complete

72f53bd57f2f: Pull complete

6464e79d41fe: Pull complete

dca61726a3b4: Pull complete

9150276e2b90: Pull complete

cd47365a14fb: Pull complete

6: Images 100

1783777af4bb: Pull complete

3b8d1834f1d7: Pull complete

7258d77b22dd: Pull complete

Digest: sha256:e2be086d86eeb789...e1b2195d6f40edc4

Status: Downloaded newer image for golang:latest

go version go1.9.2 windows/amd64

The previous operations pull the golang image from Docker Hub, start a container
from it, execute the go version command, and output the version of Go and the
OS/CPU architecture of the host system. The last line of each example shows the
output of each go version command. See that both examples used exactly the same
command, but the Linux example pulled the linux/amd64 image, and the Windows
example pulled the windows/amd64 image.

At the time of writing, all official images have manifest lists. However, support for
all architectures is an ongoing process.

Creating images that run on multiple architectures requires additional effort from
the image publisher. Also, some software is not cross-platform. With this in mind,
manifest lists are optional — if one doesn’t exist for an image, the Registry will
return the normal manifest.

Deleting Images

When you no longer need an image, you can delete it from your Docker host with
the docker image rm command. rm is short for remove.

Deleting an image will remove the image and all of its layers from your Docker
host. This means it will no longer show up in docker image ls commands, and all
directories on the Docker host containing the layer data will be deleted. However, if
an image layer is shared by more than one image, that layer will not be deleted until
all images that reference it have been deleted.

Delete the images pulled in the previous steps with the docker image rm command.
The following example deletes an image by its ID, this might be different on your
system.

6: Images 101

$ docker image rm 02674b9cb179

Untagged: alpine@sha256:c0537ff6a5218...c0a7726c88e2bb7584dc96

Deleted: sha256:02674b9cb179d57...31ba0abff0c2bf5ceca5bad72cd9

Deleted: sha256:e154057080f4063...2a0d13823bab1be5b86926c6f860

If the image you are trying to delete is in use by a running container you will not
be able to delete it. Stop and delete any containers before trying the delete operation
again.

A handy shortcut for deleting all images on aDocker host is to run the docker image

rm command and pass it a list of all image IDs on the system by calling docker image

ls with the -q flag. This is shown next.

If you are performing the following command on a Windows system, it will only
work in a PowerShell terminal. It will not work on a CMD prompt.

$ docker image rm $(docker image ls -q) -f

To understand how this works, download a couple of images and then run docker

image ls -q.

$ docker image pull alpine

Using default tag: latest

latest: Pulling from library/alpine

e110a4a17941: Pull complete

Digest: sha256:3dcdb92d7432d5...3626d99b889d0626de158f73a

Status: Downloaded newer image for alpine:latest

$ docker image pull ubuntu

Using default tag: latest

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118ca682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bba...128ae95a60369c506dd6e6f6ab

6: Images 102

Status: Downloaded newer image for ubuntu:latest

$ docker image ls -q

bd3d4369aebc

4e38e38c8ce0

See how docker image ls -q returns a list containing just the image IDs of all
images pulled locally on the system. Passing this list to docker image rm will delete
all images on the system as shown next.

$ docker image rm $(docker image ls -q) -f

Untagged: ubuntu:latest

Untagged: ubuntu@sha256:f4691c9...2128ae95a60369c506dd6e6f6ab

Deleted: sha256:bd3d4369aebc494...fa2645f5699037d7d8c6b415a10

Deleted: sha256:cd10a3b73e247dd...c3a71fcf5b6c2bb28d4f2e5360b

Deleted: sha256:4d4de39110cd250...28bfe816393d0f2e0dae82c363a

Deleted: sha256:6a89826eba8d895...cb0d7dba1ef62409f037c6e608b

Deleted: sha256:33efada9158c32d...195aa12859239d35e7fe9566056

Deleted: sha256:c8a75145fcc4e1a...4129005e461a43875a094b93412

Untagged: alpine:latest

Untagged: alpine@sha256:3dcdb92...313626d99b889d0626de158f73a

Deleted: sha256:4e38e38c8ce0b8d...6225e13b0bfe8cfa2321aec4bba

Deleted: sha256:4fe15f8d0ae69e1...eeeeebb265cd2e328e15c6a869f

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

Let’s remind ourselves of the major commands we use to work with Docker images.

Images - The commands

• docker image pull is the command to download images. We pull images
from repositories inside of remote registries. By default, images will be pulled
from repositories on Docker Hub. This command will pull the image tagged
as latest from the alpine repository on Docker Hub docker image pull

alpine:latest.

6: Images 103

• docker image ls lists all of the images stored in your Docker host’s local
cache. To see the SHA256 digests of images add the --digests flag.

• docker image inspect is a thing of beauty! It gives you all of the glorious
details of an image — layer data and metadata.

• docker image rm is the command to delete images. This command shows how
to delete the alpine:latest image — docker image rm alpine:latest. You
cannot delete an image that is associated with a container in the running (Up)
or stopped (Exited) states.

Chapter summary

In this chapter, we learned about Docker images. We learned that they are like virtual
machine templates and are used to start containers. Under the hood they are made
up one or more read-only layers, that when stacked together, make up the overall
image.

We used the docker image pull command to pull some images into our Docker
host’s local registry.

We covered image naming, official and unofficial repos, layering, sharing, and crypto
IDs.

We looked at how Docker supports multi-architecture and multi-platform images,
and we finished off by looking at some of the most common commands used to
work with images.

In the next chapter we’ll take a similar tour of containers — the runtime cousin of
images.

7: Containers
Now that we know a bit about images, it’s time to get into containers. As this is a book
about Docker, we’ll be talking specifically about Docker containers. However, Docker
has been hard at work implementing the image and container specs published by the
Open Container Initiative (OCI) at https://www.opencontainers.org. This means a lot
of what you learn here will apply to other container runtimes that are OCI compliant.

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Let’s go and learn about containers!

Docker containers - The TLDR

A container is the runtime instance of an image. In the same way that we can start
a virtual machine (VM) from a virtual machine template, we start one or more
containers from a single image. The big difference between a VM and a container
is that containers are faster and more lightweight — instead of running a full-blown
OS like a VM, containers share the OS/kernel with the host they’re running on.

Figure 7.1 shows a single Docker image being used to start multiple Docker contain-
ers.

7: Containers 105

Figure 7.1

The simplest way to start a container is with the docker container run command.
The command can take a lot of arguments, but in its most basic form you tell it
an image to use and a app to run: docker container run <image> <app>. This
next command will start an Ubuntu Linux container running the Bash shell as its
app: docker container run -it ubuntu /bin/bash. To start a Windows container
running the PowerShell app, you could do docker container run -it microsoft-

/powershell:nanoserver pwsh.exe.

The -it flags will connect your current terminal window to the container’s shell.

Containers run until the app they are executing exits. In the two examples above, the
Linux container will exit when the Bash shell exits, and the Windows container will
exit when the PowerShell process terminates.

A really simple way to demonstrate this is to start a new container and tell it to
run the sleep command for 10 seconds. The container will start, run for 10 seconds
and exit. If you run the following command from a Linux host (or Windows host
running in Linux containers mode) your shell will attach to the container’s shell
for 10 seconds and then exit: docker container run alpine:latest sleep 10. You
can do the same with a Windows container with the following command docker

container run microsoft/powershell:nanoserver Start-Sleep -s 10.

You can manually stop a container with the docker container stop command, and
then restart it with docker container start. To get rid of a container forever you
have to explicitly delete it using docker container rm.

That’s the elevator pitch! Now let’s get into the detail…

7: Containers 106

Docker containers - The deep dive

The first things we’ll cover here are the fundamental differences between a container
and a VM. It’s mainly theory at this stage, but it’s important stuff. Along the way,
we’ll point out where the container model has potential advantages over the VM
model.

Heads-up:As the author, I’m going to say this before we go any further.
A lot of us get passionate about the things we do and the skills we
have. I remember big Unix people resisting the rise of Linux. You might
remember the same. You might also remember people attempting to
resist VMware and the VM juggernaut. In both cases “resistance was
futile”. In this section I’m going to highlight what I consider some of
the advantages the container model has over the VM model. But I’m
guessing a lot of you will be VM experts with a lot invested in the VM
ecosystem. And I’m guessing that one or two of you might want to fight
me over some of the things I say. So let me be clear… I’m a big guy and
I’d beat you down in hand-to-hand combat :-D Just kidding. But I’m not
trying to destroy your empire or call your baby ugly! I’m trying to help.
The whole reason for me writing this book is to help you get started
with Docker and containers!

Here we go.

Containers vs VMs

Containers and VMs both need a host to run on. This can be anything from your
laptop, a bare metal server in your data center, all the way up to an instance the
public cloud. In this example we’ll assume a single physical server that we need to
run 4 business applications on.

In the VM model, the physical server is powered on and the hypervisor boots (we’re
skipping the BIOS and bootloader code etc.). Once the hypervisor boots, it lays claim
to all physical resources on the system such as CPU, RAM, storage, and NICs. The
hypervisor then carves these hardware resources into virtual versions that look smell

7: Containers 107

and feel exactly like the real thing. It then packages them into a software construct
called a virtual machine (VM). We then take those VMs and install an operating
system and application on each one. We said we had a single physical server and
needed to run 4 applications, so we’d create 4 VMs, install 4 operating systems, and
then install the 4 applications. When it’s all done it looks a bit like Figure 7.2.

Figure 7.2

Things are a bit different in the container model.

When the server is powered on, your chosen OS boots. In the Docker world this
can be Linux, or a modern version of Windows that has support for the container
primitives in its kernel. Similar to the VM model, the OS claims all hardware
resources. On top of the OS, we install a container engine such as Docker. The
container engine then takes OS resources such as the process tree, the filesystem,
and the network stack, and carves them up into secure isolated constructs called
containers. Each container looks smells and feels just like a real OS. Inside of each
container we can run an application. Like before, we’re assuming a single physical
server with 4 applications. Therefore, we’d carve out 4 containers and run a single
application inside of each. This is shown in Figure 7.3.

7: Containers 108

Figure 7.3

At a high level, we can say that hypervisors perform hardware virtualization —
they carve up physical hardware resources into virtual versions. On the other hand,
containers perform OS virtualization — they carve up OS resources into virtual
versions.

The VM tax

Let’s build on what we just covered and drill into one of the main problems with the
hypervisor model.

We started out with a single physical server and the requirement to run 4 business
applications. In both models we installed either an OS or a hypervisor (a type of OS
that is highly tuned for VMs). So far the models are almost identical. But this is where
the similarities stop.

The VM model then carves low-level hardware resources into VMs. Each VM is a
software construct containing virtual CPU, virtual RAM, virtual disk etc. As such,
every VM needs its own OS to claim, initialize, and manage all of those virtual
resources. And sadly, every OS comes with its own set of baggage and overheads.
For example, every OS consumes a slice of CPU, a slice of RAM, a slice of storage
etc. Most need their own licenses as well as people and infrastructure to patch and
upgrade them. Each OS also presents a sizable attack surface. We often refer to all of
this as the OS tax, or VM tax — every OS you install consumes resources!

7: Containers 109

The container model has a single kernel running in the host OS. It’s possible to run
tens or hundreds of containers on a single host with every container sharing that
single OS/kernel. That means a single OS consuming CPU, RAM, and storage. A
single OS that needs licensing. A single OS that needs upgrading and patching. And
a single OS kernel presenting an attack surface. All in all, a single OS tax bill!

That might not seem a lot in our example of a single server needing to run 4 business
applications. But when we’re talking about hundreds or thousands of apps, this can
be game changing.

Another thing to consider is start times. Because a container isn’t a full-blown OS, it
startsmuch faster than a VM. Remember, there’s no kernel inside of a container that
needs locating, decompressing, and initializing — not to mention all of the hardware
enumerating and initializing associated with a normal kernel bootstrap. None of that
is needed when starting a container! The single shared kernel, down at the OS level, is
already started! Net result, containers can start in less than a second. The only thing
that has an impact on container start time is the time it takes to start the application
it’s running.

This all amounts to the container model being leaner and more efficient than the VM
model. We can pack more applications onto less resources, start them faster, and pay
less in licensing and admin costs, as well as present less of an attack surface to the
dark side. What’s not to like about that!

With that theory out of the way, let’s have a play around with some containers.

Running containers

To follow along with these examples, you’ll need a working Docker host. For most
of the commands it won’t make a difference if it’s Linux or Windows.

Checking the Docker daemon

The first thing I always do when I log on to a Docker host is check that Docker is
running.

7: Containers 110

$ docker version

Client:

Version: 17.05.0-ce

API version: 1.29

Go version: go1.7.5

Git commit: 89658be

Built: Thu May 4 22:10:54 2017

OS/Arch: linux/amd64

Server:

Version: 17.05.0-ce

API version: 1.29 (minimum version 1.12)

Go version: go1.7.5

Git commit: 89658be

Built: Thu May 4 22:10:54 2017

OS/Arch: linux/amd64

Experimental: false

As long as you get a response back in the Client and Server sections you should
be good to go. If you get an error code in the Server section there’s a good chance
that the docker daemon (server) isn’t running, or that your user account doesn’t have
permission to access it.

If you’re running Linux, and your user account doesn’t have permission to access
the daemon, you need to make sure it’s a member of the local docker Unix group.
If it isn’t, you can add it with usermod -aG docker <user> and then you’ll have to
logout and log back in to your shell for the changes to take effect.

If your user account is already a member of the local docker group, the problem
might be that the Docker daemon isn’t running. To check the status of the Docker
daemon, run one of the following commands depending on your Docker host’s
operating system.

7: Containers 111

//Run this command on Linux systems not using Systemd

$ service docker status

docker start/running, process 29393

//Run this command on Linux systems that are using Systemd

$ systemctl is-active docker

active

//Run this command on Windows Server 2016 systems from a PowerShell window

> Get-Service docker

Status Name DisplayName

------ ---- -----------

Running Docker docker

If the Docker daemon is running, you’re fine to continue.

Starting a simple container

The simplest way to start a container is with the docker container run command.

The following command starts a simple container that will run a containerized
version of Ubuntu Linux.

$ docker container run -it ubuntu:latest /bin/bash

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118ca682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bbaa99d9...e95a60369c506dd6e6f6ab

Status: Downloaded newer image for ubuntu:latest

root@3027eb644874:/#

A Windows example could be

7: Containers 112

docker container run -it microsoft/powershell:nanoserver pwsh.exe

The format of the command is essentially docker container run <options> <im-

age>:<tag> <app>.

Let’s break the command down.

We started with docker container run, this is the standard command to start a new
container. We then used the -it flags to make the container interactive and attach
it to our terminal. Next, we told it to use the ubuntu:latest or microsoft/pow-

ershell:nanoserver image. Finally, we told it to run the Bash shell in the Linux
example, and the PowerShell app in the Windows example.

When we hit Return, the Docker client made the appropriate API calls to the Docker
daemon. The Docker daemon accepted the command and searched the Docker host’s
local cache to see if it already had a copy of the requested image. In the example cited,
it didn’t, so it went to Docker Hub to see if it could find it there. It could, so it pulled
it locally and stored it in its local cache.

Note: In a standard, out-of-the-box Linux installation, the Docker
daemon implements the Docker Remote API on a local IPC/Unix socket
at /var/run/docker.sock. On Windows, it listens on a named pipe
at npipe:////./pipe/docker_engine. It’s also possible to configure
the Docker client and daemon to communicate over the network. The
default non-TLS network port for Docker is 2375, the default TLS port
is 2376.

Once the image was pulled, the daemon created the container and executed the
specified app inside of it.

If you look closely, you’ll see that your shell prompt has changed and you’re now
inside of the container. In the example cited, the shell prompt has changed to
root@3027eb644874:/#. The long number after the @ is the first 12 characters of the
container’s unique ID.

Try executing some basic commands inside of the container. You might notice that
some commands do not work. This is because the images we used, like almost all
container images, are highly optimized for containers. This means they don’t have
all of the normal commands and packages installed. The following example shows a
couple of commands — one succeeds and the other one fails.

7: Containers 113

root@3027eb644874:/# ls -l

total 64

drwxr-xr-x 2 root root 4096 Aug 19 00:50 bin

drwxr-xr-x 2 root root 4096 Apr 12 20:14 boot

drwxr-xr-x 5 root root 380 Sep 13 00:47 dev

drwxr-xr-x 45 root root 4096 Sep 13 00:47 etc

drwxr-xr-x 2 root root 4096 Apr 12 20:14 home

drwxr-xr-x 8 root root 4096 Sep 13 2015 lib

drwxr-xr-x 2 root root 4096 Aug 19 00:50 lib64

drwxr-xr-x 2 root root 4096 Aug 19 00:50 media

drwxr-xr-x 2 root root 4096 Aug 19 00:50 mnt

drwxr-xr-x 2 root root 4096 Aug 19 00:50 opt

dr-xr-xr-x 129 root root 0 Sep 13 00:47 proc

drwx------ 2 root root 4096 Aug 19 00:50 root

drwxr-xr-x 6 root root 4096 Aug 26 18:50 run

drwxr-xr-x 2 root root 4096 Aug 26 18:50 sbin

drwxr-xr-x 2 root root 4096 Aug 19 00:50 srv

dr-xr-xr-x 13 root root 0 Sep 13 00:47 sys

drwxrwxrwt 2 root root 4096 Aug 19 00:50 tmp

drwxr-xr-x 11 root root 4096 Aug 26 18:50 usr

drwxr-xr-x 13 root root 4096 Aug 26 18:50 var

root@3027eb644874:/# ping www.docker.com

bash: ping: command not found

root@3027eb644874:/#

As shown in the output above, the ping utility is not included as part of the official
Ubuntu image.

Container processes

When we started the Ubuntu container in the previous section, we told it to run
the Bash shell (/bin/bash). This makes the Bash shell the one and only process
running inside of the container. You can see this by running ps -elf from inside
the container.

7: Containers 114

root@3027eb644874:/# ps -elf

F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 0 0 - 4558 wait 00:47 ? 00:00:00 /bin/bash

0 R root 11 1 0 - 8604 - 00:52 ? 00:00:00 ps -elf

Although it might look like there are two processes running in the output above,
there aren’t. The first process in the list, with PID 1, is the Bash shell we told the
container to run. The second process is the ps -elf command we ran to produce the
list. This is a short-lived process that has already exited by the time the output is
displayed. Long story short, this container is running a single process — /bin/bash.

Note:Windows containers are slightly different and tend to run quite a
few processes.

This means that if you type exit, to exit the Bash shell, the container will also exit
(terminate). The reason for this is that a container cannot exist without a running
process — killing the Bash shell kills the container’s only process, resulting in the
container also being killed. This is also true of Windows containers — killing the
main process in the container will also kill the container.

Press Ctrl-PQ to exit the container without terminating it. Doing this will place
you back in the shell of your Docker host and leave the container running in the
background. You can use the docker container ls command to view the list of
running containers on your system.

$ docker container ls

CNTNR ID IMAGE COMMAND CREATED STATUS NAMES

302...74 ubuntu:latest /bin/bash 6 mins Up 6mins sick_montalcini

It’s important to understand that this container is still running and you can re-attach
your terminal to it with the docker container exec command.

$ docker container exec -it 3027eb644874 bash

root@3027eb644874:/#

7: Containers 115

The command to re-attach to theWindows Nano Server PowerShell container would
be docker container exec -it <container-name-or-ID> pwsh.exe.

As you can see, the shell prompt has changed back to the container. If you run the ps
command again you will now see two Bash or PowerShell processes. This is because
the docker container exec command created a new Bash or PowerShell process
and attached to that. This means that typing exit in this shell will not terminate the
container, because the original Bash or PowerShell process will continue running.

Type exit to leave the container and verify it’s still running with a docker con-

tainer ps. It will still be running.

If you are following along with the examples on your own Docker host, you should
stop and delete the container with the following two commands (you will need to
substitute the ID of your container).

$ docker container stop 3027eb64487

3027eb64487

$ docker container rm 3027eb64487

3027eb64487

The containers started in the previous examples will no longer be present on your
system.

Container lifecycle

It’s a common myth that containers can’t persist data. They can!

A big part of the reason people think containers aren’t good for persistent workloads,
or persisting data, is because they’re so good at non-persistent stuff. But being good
at one thing doesn’t mean you can’t do other things. A lot of VM admins out there
will remember companies like Microsoft and Oracle telling you that you couldn’t
run their applications inside of VMs — or at least they wouldn’t support you if you
did. I wonder if we’re seeing something similar with the move to containerization
— are there people out there trying to protect their empires of persistent workloads
from what they perceive as the threat of containers?

7: Containers 116

In this section we’ll look at the lifecycle of a container — from birth, through work
and vacations, to eventual death.

We’ve already seen how to start containers with the docker container run com-
mand. Let’s start another one so we can walk it through its entire lifecycle. The
following examples will be from a Linux Docker host running an Ubuntu container.
However, all of the examples will work with the Windows PowerShell container
we’ve used in previous examples — though you’ll have to substitute Linux commands
with their equivalent Windows commands.

$ docker container run --name percy -it ubuntu:latest /bin/bash

root@9cb2d2fd1d65:/#

That’s our container created, and we named it “percy” for persistent :-S

Now let’s put it to work by writing some data to it.

From within the shell of your new container, follow the procedure below to write
some data to a new file in the tmp directory and verify that the write operation
succeeded.

root@9cb2d2fd1d65:/# cd tmp

root@9cb2d2fd1d65:/tmp# ls -l

total 0

root@9cb2d2fd1d65:/tmp# echo "DevOps FTW" > newfile

root@9cb2d2fd1d65:/tmp# ls -l

total 4

-rw-r--r-- 1 root root 14 May 23 11:22 newfile

root@9cb2d2fd1d65:/tmp# cat newfile

DevOps FTW

Press Ctrl-PQ to exit the container without killing it.

Now use the docker container stop command to stop the container and put in on
vacation.

7: Containers 117

$ docker container stop percy

percy

You can use the container’s name or ID with the docker container stop command.
The format is docker container stop <container-id or container-name>.

Now run a docker container ls command to list all running containers.

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container is not listed in the output above because you put it in the stopped state
with the docker container stop command. Run the same command again, only
this time add the -a flag to show all containers, including those that are stopped.

$ docker container ls -a

CNTNR ID IMAGE COMMAND CREATED STATUS NAMES

9cb...65 ubuntu:latest /bin/bash 4 mins Exited (0) percy

Now we can see the container showing as Exited (0). Stopping a container is
like stopping a virtual machine. Although it’s not currently running, its entire
configuration and contents still exist on the filesystem of the Docker host, and it
can be restarted at any time.

Let’s use the docker container start command to bring it back from vacation.

$ docker container start percy

percy

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

9cb2d2fd1d65 ubuntu:latest "/bin/bash" 4 mins Up 3 secs percy

The stopped container is now restarted. Time to verify that the file we created
earlier still exists. Connect to the restarted container with the docker container

exec command.

7: Containers 118

$ docker container exec -it percy bash

root@9cb2d2fd1d65:/#

Your shell prompt will change to show that you are now operating within the
namespace of the container.

Verify that the file you created earlier is still there and contains the data you wrote
to it.

root@9cb2d2fd1d65:/# cd tmp

root@9cb2d2fd1d65:/# ls -l

-rw-r--r-- 1 root root 14 Sep 13 04:22 newfile

root@9cb2d2fd1d65:/#

root@9cb2d2fd1d65:/# cat newfile

DevOps FTW

As if by magic, the file you created is still there and the data it contains is exactly
how you left it! This proves that stopping a container does not destroy the container
or the data inside of it.

While this example illustrates the persistent nature of containers, I should point out
that volumes are the preferred way to store persistent data in containers. But at this
stage of our journey I think this is an effective example of the persistent nature of
containers.

So far I think you’d be hard pressed to draw a major difference in the behavior of a
container vs a VM.

Now let’s kill the container and delete it from our system.

It is possible to delete a running container with a single command by passing the
-f flag to docker container rm. However, it’s considered a best practice to take the
two-step approach of stopping the container first and then deleting it. This gives
the application/process that the container is running a fighting chance of stopping
cleanly. More on this in a second.

The next example will stop the percy container, delete it, and verify the operation.
If your terminal is still attached to the percy container, you will need to get back to
your Docker host’s terminal by pressing Ctrl-PQ.

7: Containers 119

$ docker container stop percy

percy

$ docker container rm percy

percy

$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container is now deleted — literally wiped off the face of the planet. If it was a
good container, it becomes a serverless function in the afterlife. If it was a naughty
container, it becomes a dumb terminal :-D

To summarize the lifecycle of a container… You can stop, start, pause, and restart
a container as many times as you want. And it’ll all happen really fast. But the
container and its data will always be safe. It’s not until you explicitly delete a
container that you run any chance of losing its data. And even then, if you’re storing
container data in a volume, that data’s going to persist even after the container has
gone.

Let’s quickly mention why we recommended a two-stage approach of stopping the
container before deleting it.

Stopping containers gracefully

Most containers in the Linux world will run a single process. In the Windows world
they run a few processes, but the following rules still apply.

In our previous example the container was running the /bin/bash app. When you
kill a running container with docker container rm <container> -f, the container
will be killed without warning. The procedure is quite violent — a bit like sneaking
up behind the container and shooting it in the back of the head. You’re literally giving
the container, and the app it’s running, no chance to straighten its affairs before being
killed.

However, the docker container stop command is far more polite (like pointing
a gun to the containers head and saying “you’ve got 10 seconds to say any final
words”). It gives the process inside of the container a heads-up that it’s about to

7: Containers 120

be stopped, giving it a chance to get things in order before the end comes. Once
the docker stop command returns, you can then delete the container with docker

container rm.

The magic behind the scenes here can be explained with Linux/POSIX signals.
docker container stop sends a SIGTERM signal to the PID 1 process inside of
the container. As we just said, this gives the process a chance to clean things up
and gracefully shut itself down. If it doesn’t exit within 10 seconds, it will receive a
SIGKILL. This is effectively the bullet to the head. But hey, it got 10 seconds to sort
itself out first!

docker container rm <container> -f doesn’t bother asking nicelywith a SIGTERM,
it goes straight to the SIGKILL. Like we said a second ago, this is like creeping up
from behind and smashing it over the head. I’m not a violent person by the way!

Self-healing containers with restart policies

It’s often a good idea to run containers with a restart policy. It’s a form of self-healing
that enables Docker to automatically restart them after certain events or failures have
occurred.

Restart policies are applied per-container, and can be configured imperatively on
the command line as part of docker-container run commands, or declaratively in
Compose files for use with Docker Compose and Docker Stacks.

At the time of writing, the following restart policies exist:

• always

• unless-stopped

• on-failed

The always policy is the simplest. It will always restart a stopped container unless
it has been explicitly stopped, such as via a docker container stop command. An
easy way to demonstrate this is to start a new interactive container with the --

restart always policy, and tell it to run a shell process. When the container starts
you will be attached to its shell. Typing exit from the shell will kill the container’s
PID 1 process and therefore kill the container. However, Docker will automatically

7: Containers 121

restart it because it was started with the --restart always policy. If you issue a
docker container ls command, you will see that the container’s uptime will be
less than the time since it was created. We show this in the following example.

If you’re following a longwithWindows, substitute the docker container run com-
mand in the example with this one: docker container run --name neversaydie

-it --restart always microsoft/powershell:nanoserver.

$ docker container run --name neversaydie -it --restart always alpine sh

//Wait a few seconds before typing the `exit` command

/# exit

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS

0901afb84439 alpine "sh" 35 seconds ago Up 1 second

Notice that the container was created 35 seconds ago, but has only been up for 1
second. This is because we killed it when we issued the exit command from within
the container, and Docker has had to restart it.

An interesting feature of the --restart always policy is that a stopped containerwill
be restarted when the Docker daemon starts. For example, you start a new container
with the --restart always policy and then stop it with the docker container stop

command. At this point the container is in the Stopped (Exited) state. However, if
you restart the Docker daemon, the container will be automatically restarted when
the daemon comes back up.

The main difference between the always and unless-stopped policies is that
containers with the --restart unless-stopped policy will not be restarted when
the daemon restarts if they were in the Stopped (Exited) state. That might be a
confusing sentence, so let’s walk through an example.

We’ll create two new containers. One called “always” with the --restart always

policy, and one called “unless-stopped” with the --restart unless-stopped policy.
We’ll stop them both with the docker container stop command and then restart
Docker. The “always” container will restart, but the “unless-stopped” container will
not.

7: Containers 122

1. Create the two new containers

$ docker container run -d --name always \

--restart always \

alpine sleep 1d

$ docker container run -d --name unless-stopped \

--restart unless-stopped \

alpine sleep 1d

$ docker container ls

CONTAINER ID IMAGE COMMAND STATUS NAMES

3142bd91ecc4 alpine "sleep 1d" Up 2 secs unless-stopped

4f1b431ac729 alpine "sleep 1d" Up 17 secs always

We now have two containers running. One called “always” and one called “unless-
stopped”.

1. Stop both containers

$ docker container stop always unless-stopped

$ docker container ls -a

CONTAINER ID IMAGE STATUS NAMES

3142bd91ecc4 alpine Exited (137) 3 seconds ago unless-stopped

4f1b431ac729 alpine Exited (137) 3 seconds ago always

2. Restart Docker.

The process for restarting Docker is different on different Operating Systems. This
example shows how to stop Docker on Linux hosts running systemd. To restart
Docker on Windows Server 2016 use restart-service Docker.

$ systemlctl restart docker

1. Once Docker has restarted, you can check the status of the containers.

7: Containers 123

$ docker container ls -a

CONTAINER CREATED STATUS NAMES

314..cc4 2 minutes ago Exited (137) 2 minutes ago unless-stopped

4f1..729 2 minutes ago Up 9 seconds always

Notice that the “always” container (started with the --restart always policy)
has been restarted, but the “unless-stopped” container (started with the --restart

unless-stopped policy) has not.

The on-failure policy will restart a container if it exits with a non-zero exit code. It
will also restart containers when the Docker daemon restarts, even containers that
were in the stopped state.

If you are working with Docker Compose or Docker Stacks, you can apply the restart
policy to a service object as follows:

version: "3"

services:

myservice:

<Snip>

restart_policy:

condition: always | unless-stopped | on-failure

Web server example

So far, we’ve seen how to start a simple container and interact with it. We’ve also
seen how to stop, restart and delete containers. Now let’s take a look at a Linux web
server example.

In this example, we’ll start a new container from an image I use in a few of my
Pluralsight video courses20. The image runs an insanely simple web server on port
8080.

Use the docker container stop and docker container rm commands to clean up
any existing containers on your system. Then run the following docker container

run command.

20https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all

https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all
https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all

7: Containers 124

$ docker container run -d --name webserver -p 80:8080 \

nigelpoulton/pluralsight-docker-ci

Unable to find image 'nigelpoulton/pluralsight-docker-ci:latest' locally

latest: Pulling from nigelpoulton/pluralsight-docker-ci

a3ed95caeb02: Pull complete

3b231ed5aa2f: Pull complete

7e4f9cd54d46: Pull complete

929432235e51: Pull complete

6899ef41c594: Pull complete

0b38fccd0dab: Pull complete

Digest: sha256:7a6b0125fe7893e70dc63b2...9b12a28e2c38bd8d3d

Status: Downloaded newer image for nigelpoulton/plur...docker-ci:latest

6efa1838cd51b92a4817e0e7483d103bf72a7ba7ffb5855080128d85043fef21

Notice that your shell prompt hasn’t changed. This is because we started this
container in the background with the -d flag. Starting a container in the background
does not attach it to your terminal.

This example threw a few more arguments at the docker container run command,
so let’s take a quick look at them.

We know docker container run starts a new container. But this time we give it the
-d flag instead of -it. -d stands for daemon mode, and tells the container to run in
the background.

After that, we name the container and then give it -p 80:8080. The -p flag maps
ports on the Docker host to ports inside the container. This time we’re mapping port
80 on the Docker host to port 8080 inside the container. This means that traffic hitting
the Docker host on port 80 will be directed to port 8080 inside of the container. It just
so happens that the image we’re using for this container defines a web service that
listens on port 8080. This means our container will come up running a web server
listening on port 8080.

Finally, we tell it which image to use: nigelpoulton/pluralsight-docker-ci. This
image is not kept up-to-date and will contain vulnerabilities!

Running a docker container ls command will show the container as running and
show the ports that are mapped. It’s important to know that port mappings are
expressed as host-port:container-port.

7: Containers 125

$ docker container ls

CONTAINER ID COMMAND STATUS PORTS NAMES

6efa1838cd51 /bin/sh -c... Up 2 mins 0.0.0.0:80->8080/tcp webserver

Note: We’ve removed some of the columns from the output above to
help with readability.

Now that the container is running and ports are mapped, we can connect to the
container by pointing a web browser at the IP address or DNS name of the Docker
host on port 80. Figure 7.4 shows the web page that is being served up by the
container.

Figure 7.4

The same docker container stop, docker container pause, docker container

start, and docker container rm commands can be used on the container. Also,
the same rules of persistence apply — stopping or pausing the container does not
destroy the container or any data stored in it.

Inspecting containers

In the previous example, youmight have noticed that we didn’t specify an app for the
container when we issued the docker container run command. Yet the container
ran a simple web service. How did this happen?

7: Containers 126

When building a Docker image, it’s possible to embed an instruction that lists the
default app you want containers using the image to run. If we run a docker image

inspect against the image we used to run our container, we’ll be able to see the app
that the container will run when it starts.

$ docker image inspect nigelpoulton/pluralsight-docker-ci

[

{

"Id": "sha256:07e574331ce3768f30305519...49214bf3020ee69bba1",

"RepoTags": [

"nigelpoulton/pluralsight-docker-ci:latest"

<Snip>

],

"Cmd": [

"/bin/sh",

"-c",

"#(nop) CMD [\"/bin/sh\" \"-c\" \"cd /src \u0026\u0026 node \

./app.js\"]"

],

<Snip>

We’ve snipped the output to make it easier to find the information we’re interested
in.

The entries after Cmd show the command/app that the container will run unless
you override with a different one when you launch the container with docker

container run. If you remove all of the shell escapes in the example, you get the
following command /bin/sh -c "cd /src && node ./app.js". That’s the default
app a container based on this image will run.

It’s common to build images with default commands like this, as it makes starting
containers easier. It also forces a default behavior and is a form of self documentation
for the image — i.e. we can inspect the image and know what app it’s supposed to
run.

7: Containers 127

That’s us done for the examples in this chapter. Let’s see a quick way to tidy our
system up.

Tidying up

Let’s look at the simplest and quickest way to get rid of every running container
on your Docker host. Be warned though, the procedure will forcible destroy all
containers without giving them a chance to clean up. This should never be
performed on production systems or systems running important containers.

Run the following command from the shell of your Docker host to delete all
containers.

$ docker container rm $(docker container ls -aq) -f

6efa1838cd51

In this example, we only had a single container running, so only one was deleted
(6efa1838cd51). However, the command works the same way as the docker image

rm $(docker image ls -q) command we used in the previous chapter to delete all
images on a single Docker host. We already know the docker container rm com-
mand deletes containers. Passing it $(docker container ls -aq) as an argument,
effectively passes it the ID of every container on the system. The -f flag forces
the operation so that running containers will also be destroyed. Net result… all
containers, running or stopped, will be destroyed and removed from the system.

The above command will work in a PowerShell terminal on a Windows Docker host.

Containers - The commands

• docker container run is the command used to start new containers. In its
simplest form, it accepts an image and a command as arguments. The image
is used to create the container and the command is the application you
want the container to run. This example will start an Ubuntu container in
the foreground, and tell it to run the Bash shell: docker container run -it

ubuntu /bin/bash.

7: Containers 128

• Ctrl-PQ will detach your shell from the terminal of a container and leave the
container running (UP) in the background.

• docker container ls lists all containers in the running (UP) state. If you add
the -a flag you will also see containers in the stopped (Exited) state.

• docker container exec lets you run a new process inside of a running
container. It’s useful for attaching the shell of your Docker host to a terminal
inside of a running container. This command will start a new Bash shell
inside of a running container and connect to it: docker container exec -it

<container-name or container-id> bash. For this to work, the image used
to create your container must contain the Bash shell.

• docker container stopwill stop a running container and put it in the Exited
(0) state. It does this by issuing a SIGTERM to the process with PID 1 inside of
the container. If the process has not cleaned up and stopped within 10 seconds,
a SIGKILL will be issued to forcibly stop the container. docker container

stop accepts container IDs and container names as arguments.
• docker container start will restart a stopped (Exited) container. You can
give docker container start the name or ID of a container.

• docker container rm will delete a stopped container. You can specify con-
tainers by name or ID. It is recommended that you stop a container with the
docker container stop command before deleting it with docker container

rm.
• docker container inspectwill show you detailed configuration and runtime
information about a container. It accepts container names and container IDs
as its main argument.

Chapter summary

In this chapter, we compared and contrasted the container and VM models. We
looked at the OS tax problem inherent in the VM model, and saw how the container
model can bring huge advantages in much the same way as the VM model brought
huge advantages over the physical model.

We saw how to use the docker container run command to start a couple of
simple containers, and we saw the difference between interactive containers in the
foreground versus containers running in the background.

7: Containers 129

We know that killing the PID 1 process inside of a container will kill the container.
And we’ve seen how to start, stop, and delete containers.

We finished the chapter using the docker container inspect command to view
detailed container metadata.

So far so good!

8: Containerizing an app
Docker is all about taking applications and running them in containers.

The process of taking an application and configuring it to run as a container is called
“containerizing”. Sometimes we call it “Dockerizing”.

In this chapter we’ll walk through the process of containerizing a simple Linux web
application. If you don’t have a Linux Docker environment to follow along with, you
can use Play With Docker for free. Just point your web browser to https://play-with-
docker.com and spin up some Linux Docker nodes. It’s my favourite way to spin up
Docker and do testing!

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Let’s containerize an app!

Containerizing an app - The TLDR

Containers are all about apps! In particular, they’re about making apps simple to
build, ship, and run.

The process of containerizing an app looks like this:

1. Start with your application code.
2. Create a Dockerfile that describes your app, its dependencies, and how to run

it.
3. Feed this Dockerfile into the docker image build command.

8: Containerizing an app 131

4. Sit back while Docker builds your application into a Docker image.

Once your app is containerized (made into a Docker image), you’re ready to ship it
and run it as a container.

Figure 8.1 shows the process in picture form.

Figure 8.1 - Basic flow of containerizing an app

Containerizing an app - The deep dive

We’ll break up this Deep Dive section of the chapter as follows:

• Containerize a single-container app
• Moving to Production with multi-stage builds
• A few best practices

8: Containerizing an app 132

Containerize a single-container app

The rest of this chapter will walk you through the process of containerizing a simple
single-container Node.js web app. The process is the same for Windows, and future
editions of the book will include a Windows example.

We’ll complete the following high-level steps:

• Get the app code
• Inspect the Dockerfile
• Containerize the app
• Run the app
• Test the app
• Look a bit closer
• Move to production withMulti-stage Builds
• A few best practices

Although we’ll be working with a single-container app in this chapter, we’ll move
on to a multi-container app in the next chapter on Docker Compose. After that, we’ll
move on to an even more complicated app in the chapter on Docker Stacks.

Getting the application code

The application used in this example can be cloned form GitHub:

https://github.com/nigelpoulton/psweb.git

Clone the sample app from GitHub.

8: Containerizing an app 133

$ git clone https://github.com/nigelpoulton/psweb.git

Cloning into 'psweb'...

remote: Counting objects: 15, done.

remote: Compressing objects: 100% (11/11), done.

remote: Total 15 (delta 2), reused 15 (delta 2), pack-reused 0

Unpacking objects: 100% (15/15), done.

Checking connectivity... done.

The clone operation creates a new directory called psweb. Change directory into
psweb and list its contents.

$ cd psweb

$ ls -l

total 28

-rw-r--r-- 1 root root 341 Sep 29 16:26 app.js

-rw-r--r-- 1 root root 216 Sep 29 16:26 circle.yml

-rw-r--r-- 1 root root 338 Sep 29 16:26 Dockerfile

-rw-r--r-- 1 root root 421 Sep 29 16:26 package.json

-rw-r--r-- 1 root root 370 Sep 29 16:26 README.md

drwxr-xr-x 2 root root 4096 Sep 29 16:26 test

drwxr-xr-x 2 root root 4096 Sep 29 16:26 views

This directory contains all of the application source code, as well as subdirectories
for views and unit tests. Feel free to look at the files - the app is extremely simple.
We won’t be using the unit tests in this chapter.

Now that we have the app code, let’s look at its Dockerfile.

Inspecting the Dockerfile

Notice that the repo has a file called Dockerfile. This is the file that describes the
application and tells Docker how to build it into an image.

The directory containing the application is referred to as the build context. It’s a
common practice to keep your Dockerfile in the root directory of the build context.

8: Containerizing an app 134

It’s also important that Dockerfile starts with a capital “D” and is all one word.
“dockerfile” and “Docker file” are not valid.

Let’s look at the contents of the Dockerfile.

$ cat Dockerfile

FROM alpine

LABEL maintainer="nigelpoulton@hotmail.com"

RUN apk add --update nodejs nodejs-npm

COPY . /src

WORKDIR /src

RUN npm install

EXPOSE 8080

ENTRYPOINT ["node", "./app.js"]

The Dockerfile has two main purposes:

1. To describe the application
2. To tell Docker how to containerize the application (create an image with the

app inside)

Do not underestimate the impact of the Dockerfile as a from of documentation! It
has the ability to help bridge the gap between development and operations! It also
has the power to speed up on-boarding of new developers etc. This is because the file
accurately describes the application and its dependencies in an easy-to-read format.
As such, it should be treated as code, and checked into a source control system.

At a high-level, the example Dockerfile says: Start with the alpine image, add
“nigelpoulton@hotmail.com” as the maintainer, install Node.js and NPM, copy in
the application code, set the working directory, install dependencies, document the
app’s network port, and set app.js as the default application to run.

Let’s look at it in a bit more detail.

All Dockerfiles start with the FROM instruction. This will be the base layer of the
image, and the rest of the appwill be added on top as additional layers. This particular

8: Containerizing an app 135

application is a Linux app, so it’s important that the FROM instruction refers to a
Linux-based image. If you are containerizing a Windows application, you will need
to specify the appropriate Windows base image - such as microsoft/aspnetcore-
build.

At this point, the image looks like Figure 8.2 .

Figure 8.2

Next, the Dockerfile creates a LABEL that specifies “nigelpoulton@hotmail.com” as
the maintainer of the image. Labels are simple key-value pairs and are an excellent
way of adding custom metadata to an image. It’s considered a best practice to list a
maintainer of an image so that other potential users have a point of contact when
working with it.

Note: I will not be maintaining this image. I’m including the label to
show you how to use labels as well as showing you a best practice.

The RUN apk add --update nodejs nodejs-npm instruction uses the Alpine apk

package manager to install nodejs and nodejs-npm into the image. The RUN
instruction installs these packages as a new image layer on top of the alpine base
image created by the FROM alpine instruction. The image now looks like Figure 8.3.

Figure 8.3

8: Containerizing an app 136

The COPY . /src instruction copies in the app files from the build context. It copies
these files into the image as a new layer. The image now has three layers as shown
in Figure 8.4.

Figure 8.4

Next, the Dockerfile uses the WORKDIR instruction to set the working directory for the
rest of the instructions in the file. This directory is relative to the image, and the info
is added as metadata to the image config and not as a new layer.

Then the RUN npm install instruction uses npm to install application dependencies
listed in the package.json file in the build context. It runs within the context of the
WORKDIR set in the previous instruction, and installs the dependencies as a new layer
in the image. The image now has four layers as shown in Figure 8.5.

Figure 8.5

The application exposes a web service on TCP port 8080, so the Dockerfile documents
this with the EXPOSE 8080 instruction. This is added as image metadata and not an
image layer.

8: Containerizing an app 137

Finally, the ENTRYPOINT instruction is used to set the main application that the image
(container) should run. This is also added as metadata and not an image layer.

Containerize the app/build the image

Now that we understand how it works, let’s build it!

The following command will build a new image called web:latest. The period (.)
at the end of the command tells Docker to use the shell’s current working directory
as the build context.

Be sure to include the period (.) at the end of the command, and be sure to run the
command from the psweb directory that contains the Dockerfile and application code.

$ docker image build -t web:latest .

Sending build context to Docker daemon 76.29kB

Step 1/8 : FROM alpine

latest: Pulling from library/alpine

ff3a5c916c92: Pull complete

Digest: sha256:7df6db5aa6...0bedab9b8df6b1c0

Status: Downloaded newer image for alpine:latest

---> 76da55c8019d

<Snip>

Step 8/8 : ENTRYPOINT node ./app.js

---> Running in 13977a4f3b21

---> fc69fdc4c18e

Removing intermediate container 13977a4f3b21

Successfully built fc69fdc4c18e

Successfully tagged web:latest

Check that the image exists in your Docker host’s local repository.

$ docker image ls

REPO TAG IMAGE ID CREATED SIZE

web latest fc69fdc4c18e 10 seconds ago 64.4MB

8: Containerizing an app 138

Congratulations, the app is containerized!

You can use the docker image inspect web:latest command to verify the config-
uration of the image. It will list all of the settings that were configured from the
Dockerfile.

Pushing images

Once you’ve created an image, it’s a good idea to store it in an image registry to keep
it safe and make it available to others. Docker Hub is the most common public image
registry, and it’s the default push location for docker image push commands.

In order to push an image to Docker Hub, you need to login with your Docker ID.
You also need tag the image appropriately.

Let’s log in to Docker Hub and push the newly created image.

In the following example’s you will need to substitute my Docker ID with your own.
So any time you see “nigelpoulton”, swap it out for your Docker ID.

$ docker login

Login with **your** Docker ID to push and pull images from Docker Hub...

Username: nigelpoulton

Password:

Login Succeeded

Before you can push an image, you need to tag it in a special way. This is because
Docker needs all of the following information when pushing an image:

• Registry

• Repository

• Tag

Docker is opinionated, so you don’t need to specify values for Registry and Tag. If
you don’t specify values, Docker will assume Registry=docker.io and Tag=latest.
However, Docker does not have a default value for the Repository value, it gets this
from the “REPOSITORY” value of the image it is pushing. This might be confusing,
so let’s take a closer look at the one from our example.

8: Containerizing an app 139

The previous docker image ls output shows our image with web as the repos-
itory name. This means a docker image push will try and push the image to
docker.io/web:latest. However, I don’t have access to the web repository, all of
my images have to sit within the nigelpoulton second-level namespace. This means
we need to re-tag the image to include my Docker ID.

$ docker image tag web:latest nigelpoulton/web:latest

The format of the command is docker image tag <current-tag> <new-tag> and it
adds an additional tag, it does not overwrite the original.

Another image listing shows the image now has two tags, one of which includes my
Docker ID.

$ docker image ls

REPO TAG IMAGE ID CREATED SIZE

web latest fc69fdc4c18e 10 secs ago 64.4MB

nigelpoulton/web latest fc69fdc4c18e 10 secs ago 64.4MB

Now we can push it to Docker Hub.

$ docker image push nigelpoulton/web:latest

The push refers to repository [docker.io/nigelpoulton/web]

2444b4ec39ad: Pushed

ed8142d2affb: Pushed

d77e2754766d: Pushed

cd7100a72410: Mounted from library/alpine

latest: digest: sha256:68c2dea730...f8cf7478 size: 1160

Figure 8.6 shows how Docker determined the push location.

8: Containerizing an app 140

Figure 8.6

You will not be able to push images to repos in my Docker Hub namespace, you will
have to use your own.

All of the examples in the rest of the chapter will use the shorter of the two tags
(web:latest).

Run the app

The application that we’ve containerized is a simple web server that listens on TCP
port 8080. You can verify this in the app.js file.

The following commandwill start a new container called c1 based on the web:latest
image we just created. It maps port 80 on the Docker host, to port 8080 inside the
container. This means that you will be able to point a web browser at the DNS name
or IP address of the Docker host and access the app.

Note: If your host is already running a service on port 80, you can specify
a different port as part of the docker container run command. For
example, to map the app to port 5000 on the Docker host, use the -p

5000:8080 flag.

$ docker container run -d --name c1 \

-p 80:8080 \

web:latest

8: Containerizing an app 141

The -d flag runs the container in the background, and the -p 80:8080 flag maps port
80 on the host to port 8080 inside the running container.

Check that the container is running and verify the port mapping.

$ docker container ls

ID IMAGE COMMAND STATUS PORTS

49.. web:latest "node ./app.js" UP 6 secs 0.0.0.0:80->8080/tcp

The output above is snipped for readability, but shows that the app container is
running. Note that port 80 is mapped, on all host interfaces (0.0.0.0:80), to port
8080 in the container.

Test the app

Open a web browser and point it to the DNS name or IP address of the host that the
container is running on. You will see the web page shown in Figure .

Figure 8.7

If the test does not work, try the following:

8: Containerizing an app 142

1. Make sure that the container is up and running with the docker container

ls command. The container name is c1 and you should see the port mapping
as 0.0.0.0:80->8080/tcp.

2. Check that the firewall and other network security settings are not blocking
traffic to port 80 on the Docker host.

Congratulations, the application is containerized and running!

Looking a bit closer

Now that the application is containerized, let’s take a closer look at how some of the
machinery works.

Comment lines in a Dockerfile start with the # character.

All non-comment lines are Instructions. Instructions take the format INSTRUCTION
argument. Instruction names are not case sensitive, but it is normal practice to write
them in UPPERCASE. This makes reading the Dockerfile easier.

The docker image build command parses the Dockerfile one-line-at-a-time starting
from the top.

Some instructions create new layers, whereas others just add metadata to the image.

Examples of instructions that create new layers are FROM, RUN, and COPY. Examples of
instructions that create metadata include EXPOSE, WORKDIR, ENV, and ENTRYPOINT. The
basic premise is this - if an instruction is adding content such as files and programs
to the image, it will create a new layer. If it is adding instructions on how to build
the image and run the application, it will create metadata.

You can view the instructions that were used to build the image with the docker

image history command.

8: Containerizing an app 143

$ docker image history web:latest

IMAGE CREATED BY SIZE

fc6..18e /bin/sh -c #(nop) ENTRYPOINT ["node" "./a... 0B

334..bf0 /bin/sh -c #(nop) EXPOSE 8080/tcp 0B

b27..eae /bin/sh -c npm install 14.1MB

932..749 /bin/sh -c #(nop) WORKDIR /src 0B

052..2dc /bin/sh -c #(nop) COPY dir:2a6ed1703749e80... 22.5kB

c1d..81f /bin/sh -c apk add --update nodejs nodejs-npm 46.1MB

336..b92 /bin/sh -c #(nop) LABEL maintainer=nigelp... 0B

3fd..f02 /bin/sh -c #(nop) CMD ["/bin/sh"] 0B

<missing> /bin/sh -c #(nop) ADD file:093f0723fa46f6c... 4.15MB

Two things from the output above are worth noting.

First. Each line corresponds to an instruction in the Dockerfile (starting from the
bottom and working up). The CREATED BY column even lists the exact Dockerfile
instruction that was executed.

Second. Only 4 of the lines displayed in the output create new layers (the ones with
non-zero values in the SIZE column). These correspond to the FROM, RUN, and COPY

instructions in the Dockerfile. Although the other instructions might look like they
create layers, they actually create metadata instead of layers. The reason that the
docker image history output makes it looks like all instructions create layers is an
artefact of the way Docker builds and image layering used to work.

Use the docker image inspect command to confirm that only 4 layers were created.

$ docker image inspect web:latest

<Snip>

},

"RootFS": {

"Type": "layers",

"Layers": [

"sha256:cd7100...1882bd56d263e02b6215",

"sha256:b3f88e...cae0e290980576e24885",

"sha256:3cfa21...cc819ef5e3246ec4fe16",

8: Containerizing an app 144

"sha256:4408b4...d52c731ba0b205392567"

]

},

It is considered a good practice to use images from official repositories with the FROM
instruction. This is because they tend to follow best practices and be relatively free
from known vulnerabilities. It is also a good idea to start from (FROM) small images
as this reduces potential vulnerabilities.

You can view the output of the docker image build command to see the general
process for building an image. As the following snippet shows, the basic process is:
spin up a temporary container > run the Dockerfile instruction inside of

that container > save the results as a new image layer > remove the tem-

porary container.

Step 3/8 : RUN apk add --update nodejs nodejs-npm

---> Running in e690ddca785f << Run inside of temp container

fetch http://dl-cdn...APKINDEX.tar.gz

fetch http://dl-cdn...APKINDEX.tar.gz

(1/10) Installing ca-certificates (20171114-r0)

<Snip>

OK: 61 MiB in 21 packages

---> c1d31d36b81f << Create new layer

Removing intermediate container << Remove temp container

Step 4/8 : COPY . /src

Moving to production with Multi-stage Builds

When it comes to Docker images, big is bad!

Big means slow. Big means hard to work with. And big means a more potential
vulnerabilities and possibly a bigger attack surface!

For these reasons, Docker images should be small. The aim of the game is to only
ship production images containing the stuff needed to run your app in production.

The problem is… keeping images small was hard work.

8: Containerizing an app 145

For example, the way you write your Dockerfiles has a huge impact on the size of
your images. A common example is that every RUN instruction adds a new layer.
As a result, it’s usually considered a best practice to include multiple commands as
part of a single RUN instruction - all glued together with double-ampersands (&&)
and backslash (\) line-breaks. While this isn’t rocket science, it requires time and
discipline.

Another issue is that we don’t clean up after ourselves.We’ll RUN a command against
an image that pulls some build-time tools, and we’ll leave all those tools in the image
when we ship it to production. Not ideal!

There were ways around this - most notably the builder pattern. But most of these
required discipline and added complexity.

The builder pattern required you to have at least two Dockerfiles - one for develop-
ment and one for production. You’d write your Dockerfile.dev to start from a large
base image, pull in any additional build tools required, and build your app. You’d
then build an image from the Dockerfile.dev and create a container from it. You’d
then use your Dockerfile.prod to build a new image from a smaller base image, and
copy over just the application stuff from the container you just created from the build
image. And everything needed to be glued together with a script.

This approach was doable, but at the expense of complexity.

Multi-stage builds to the rescue!

Multi-stage builds are all about optimizing builds without adding complexity. And
they deliver on the promise!

Here’s the high-level…

With multi-stage builds, we have a single Dockerfile containing multiple FROM
instructions. Each FROM instruction is a new build stage that can easily COPY
artefacts from previous stages.

Let’s look at an example!

This example app is available at https://github.com/nigelpoulton/atsea-sample-shop-
app.git and the Dockerfile is in the app directory. It’s a Linux-based application so,
will only work on a Linux Docker host.

The repo is a fork of dockersamples/atsea-sample-shop-app and I’ve forked it in
case the upstream repo is removed or deleted.

8: Containerizing an app 146

The Dockerfile is shown below:

FROM node:latest AS storefront

WORKDIR /usr/src/atsea/app/react-app

COPY react-app .

RUN npm install

RUN npm run build

FROM maven:latest AS appserver

WORKDIR /usr/src/atsea

COPY pom.xml .

RUN mvn -B -f pom.xml -s /usr/share/maven/ref/settings-docker.xml dependency\

:resolve

COPY . .

RUN mvn -B -s /usr/share/maven/ref/settings-docker.xml package -DskipTests

FROM java:8-jdk-alpine AS production

RUN adduser -Dh /home/gordon gordon

WORKDIR /static

COPY --from=storefront /usr/src/atsea/app/react-app/build/ .

WORKDIR /app

COPY --from=appserver /usr/src/atsea/target/AtSea-0.0.1-SNAPSHOT.jar .

ENTRYPOINT ["java", "-jar", "/app/AtSea-0.0.1-SNAPSHOT.jar"]

CMD ["--spring.profiles.active=postgres"]

The first thing to note is that the Dockerfile has three FROM instructions. Each of these
constitutes a distinct build stage. Internally they’re numbered form the top starting
at 0. However, we’ve also given each stage a friendly name.

• Stage 0 is called storefront

• Stage 1 is called appserver

• Stage 2 is called production

The storefront stage pulls the node:latest image which is over 600MB in size. It
sets the working directory, copies in some app code, and uses two RUN instructions

8: Containerizing an app 147

to perform some npm magic. This adds three layers and considerable size. The result
is an even bigger image containing lots of build stuff and not very much app code.

The appserver stage pulls the maven:latest image which is over 700MB in size. It
adds four layers of content via two COPY instructions and two RUN instructions.
This produces another very large image with lots of build tools and very little actual
production code.

The production stage starts by pulling the java:8-jdk-alpine image. This image is
approximately 150MB - considerably smaller than the node and maven images used
by the previous build stages. It adds a user, sets the working directory, and copies
in some app code from the image produced by the storefront stage. After that, it
sets a different working directory and copies in the application code form the image
produced by the appserver stage. Finally, it sets the main application for the image
to run when it’s started as a container.

An important thing to note, is that COPY --from instructions are used to only copy
production-related application code from the images built by the previous stages.
They do not copy across build artefacts that are not needed for production.

It’s also important to note that we only need a single Dockerfile, and no extra
arguments are needed for the docker image build command!

Speaking of which… let’s build it.

Clone the repo.

$ git clone https://github.com/nigelpoulton/atsea-sample-shop-app.git

Cloning into 'atsea-sample-shop-app'...

remote: Counting objects: 632, done.

remote: Total 632 (delta 0), reused 0 (delta 0), pack-reused 632

Receiving objects: 100% (632/632), 7.23 MiB | 1.88 MiB/s, done.

Resolving deltas: 100% (195/195), done.

Checking connectivity... done.

Change directory into the app folder of the cloned repo and verify that the Dockerfile
exists.

8: Containerizing an app 148

$ cd atsea-sample-shop-app/app

$ ls -l

total 24

-rw-r--r-- 1 root root 682 Oct 1 22:03 Dockerfile

-rw-r--r-- 1 root root 4365 Oct 1 22:03 pom.xml

drwxr-xr-x 4 root root 4096 Oct 1 22:03 react-app

drwxr-xr-x 4 root root 4096 Oct 1 22:03 src

Perform the build (this may take several minutes to complete).

$ docker image build -t multi:stage .

Sending build context to Docker daemon 3.658MB

Step 1/19 : FROM node:latest AS storefront

latest: Pulling from library/node

aa18ad1a0d33: Pull complete

15a33158a136: Pull complete

<Snip>

Step 19/19 : CMD --spring.profiles.active=postgres

---> Running in b4df9850f7ed

---> 3dc0d5e6223e

Removing intermediate container b4df9850f7ed

Successfully built 3dc0d5e6223e

Successfully tagged multi:stage

Note: The multi:stage tag used in the example above is arbitrary. You
can tag your images according to your own requirements and standards
- there is no requirement to tag multi-stage builds the way we did in
this example.

Run a docker image ls to see the list of images pulled and created by the build
operation.

8: Containerizing an app 149

$ docker image ls

REPO TAG IMAGE ID CREATED SIZE

node latest 9ea1c3e33a0b 4 days ago 673MB

<none> <none> 6598db3cefaf 3 mins ago 816MB

maven latest cbf114925530 2 weeks ago 750MB

<none> <none> d5b619b83d9e 1 min ago 891MB

java 8-jdk-alpine 3fd9dd82815c 7 months ago 145MB

multi stage 3dc0d5e6223e 1 min ago 210MB

The top line in the output above shows the node:latest image pulled by the
storefront stage. The image below is the image produced by that stage (created
by adding the code and running the npm install and build operations). Both are very
large images with lots of build tools included.

The 3rd and 4th lines are the images pulled and produced by the appserver stage.
These are both large and contain lots of builds tools.

The last line is the multi:stage image built by the final build stage in the Dockerfile
(stage2/production). You can see that this is significantly smaller than the images
pulled and produced by the previous stages. This is because it’s based off the much
smaller java:8-jdk-alpine image and has only added the production-related app
files from the previous stages.

The net result is a small production image created by a single Dockerfile, a normal
docker image build command, and zero additional scripting!

Multi-stage builds were new with Docker 17.05 and are an excellent feature for
building small production-worthy images.

A few best practices

Let’s list a few best practices before closing out the chapter. This list is not intended
to be exhaustive.

Leverage the build cache

The build process used by Docker has the concept of a cache. The best way to
see the impact of the cache is to build a new image on a clean Docker host, then

8: Containerizing an app 150

repeat the same build immediately after. The first build will pull images and take
time building layers. The second build will complete almost instantaneously. This is
because artefacts form the first build, such as layers, are cached and leveraged by
later builds.

As we know, the docker image build process iterates through a Dockerfile one-line-
at-a-time starting from the top. For each instruction, Docker looks to see if it already
has an image layer for that instruction in its cache. If it does, this is a cache hit and
it uses that layer. If it doesn’t, this is a cache miss and it builds a new layer from the
instruction. Getting cache hits can hugely speed up the build process.

Let’s look a little closer.

We’ll use this example Dockerfile to provide a quick walk-through:

FROM alpine

RUN apk add --update nodejs nodejs-npm

COPY . /src

WORKDIR /src

RUN npm install

EXPOSE 8080

ENTRYPOINT ["node", "./app.js"]

The first instruction tells Docker to use the alpine:latest image as its base image. If
this image already exists on the host, the build will move on to the next instruction.
If the image does not exist, it is pulled from Docker Hub (docker.io).

The next instruction (RUN apk...) runs a command against the image. At this point,
Docker checks its build cache for a layer that was built from the same base image, as
well as using the same instruction it is currently being asked to execute. In this case,
it’s looking for a layer that was built directly on top of alpine:latest by executing
the RUN apk add --update nodejs nodejs-npm instruction.

If it finds a layer, it skips the instruction, links to that existing layer, and continues
the build with the cache in tact. If it does not find a layer, it invalidates the cache
and builds the layer. This operation of invalidating the cache invalidates it for
the remainder of the build. This means all subsequent Dockerfile instructions are
completed in full without attempting to reference the build cache.

8: Containerizing an app 151

Let’s assume that Docker already had a layer for this instruction in the cache (a cache
hit). And let’s assume the ID of that layer was AAA.

The next instruction copies some code into the image (COPY . /src). Because the
previous instruction resulted in a cache hit, Docker now checks to see if it has a
cached layer that was built from the AAA layer with the COPY . /src command. If it
does, it links to the layer and proceeds to the next instruction. If it does not, it builds
the layer and invalidates the cache for the rest of the build.

Let’s assume that Docker already has a layer for this instruction in the cache (a cache
hit). And let’s assume the ID of that layer is BBB.

This process continues for the rest of the Dockerfile.

It’s important to understand a few things.

Firstly, as soon as any instruction results in a cache-miss (no layer was found for that
instruction), the cache is no longer used for the rest of the entire build. This has an
important impact on how you write your Dockerfiles. Try and build them in a way
that places any instructions that are likely to change towards the end of the file. This
means that a cache-miss will not occur until later stages of the build - allowing the
build to benefit as much as possible from the cache.

You can force the build process to ignore the entire cache by passing the --no-

cache=true flag to the docker image build command.

It is also important to understand that the COPY and ADD instructions include steps to
ensure that the content being copied into the image has not changed since the last
build. For example, it’s possible that the COPY . /src instruction in the Dockerfile
has not changed since the previous, but… the contents of the directory being copied
into the image have changed!

To protect against this, Docker performs a checksum against each file being copied,
and compares that to a checksum of the same file in the cached layer. If the checksums
do not match, the cache is invalidated and a new layer is built.

Squash the image

Squashing an image isn’t really a best practice as it has pros and cons.

At a high level, Docker follows the normal process to build an image, but then adds
an additional step that squashes everything into a single layer.

8: Containerizing an app 152

Squashing can be good in situations where images are starting to have a lot of layers
and this isn’t ideal. And example might be when creating a new base image that you
want to build other images from in the future - this is much better as a single-layer
image.

On the negative side, squashed images do not share image layers. This can result in
storage inefficiencies and larger push and pull operations.

Add the --squash flag to the docker image build command if you want to create
a squashed image.

Figure 8.8 shows some of the inefficiencies that come with squashed images. Both
images are exactly the same except for the fact that one is squashed and the other
is not. The squashed image shares layers with other images on the host (saving disk
space) but the squashed image does not. The squashed image will also need to send
every byte to Docker Hub on a docker image push command, whereas the non-
squashed image only needs to send unique layers.

Figure 8.8 - Squashed images vs non-squashed images

Use no-install-recommends

If you are building Linux images, and using the apt package manager, you should use
the no-install-recommends flag with the apt-get install command. This makes

8: Containerizing an app 153

sure that apt only installs main dependencies (packages in the Depends field) and
not recommended or suggested packages. This can greatly reduce the number of
unwanted packages that are downloaded into your images.

Do not install from MSI packages (Windows)

If you are building Windows images, you should try not to use the MSI package
manager. It is not space efficient and results in substantially larger images than are
required.

Containerizing an app - The commands

• docker image build is the command that reads aDockerfile and containerizes
an application. The -t flag tags the image, and the -f flag lets you specify the
name and location of the Dockerfile. With the -f flag, it is possible to use
a Dockerfile with an arbitrary name and in an arbitrary location. The build
context is where your application files exist, and this can be a directory on
your local Docker host or a remote Git repo.

• The FROM instruction in a Dockerfile specifies the base image for the new image
you will build. It is usually the first instruction in a Dockerfile.

• The RUN instruction in a Dockerfile allows you to run commands inside the
imagewhich create new layers. Each RUN instruction creates a single new layer.

• The COPY instruction in a Dockerfile adds files into the image as a new layer.
It is common to use the COPY instruction to copy your application code into an
image.

• The EXPOSE instruction in a Dockerfile documents the network port that the
application uses.

• The ENTRYPOINT instruction in a Dockerfile sets the default application to run
when the image is started as a container.

• Other Dockerfile instructions include LABEL, ENV, ONBUILD, HEALTHCHECK, CMD
and more…

8: Containerizing an app 154

Chapter summary

In this chapter we learned how to containerize (Dockerize) an application.

We pulled some application code from a remote Git repo. The repo included the
application code, as well as a Dockerfile containing instructions on how to build the
application into an image. We learned the basics of the how Dockerfiles work, and
fed one into a docker image build command to create a new image.

Once the image was created, we started a container form it and tested it worked with
a web browser.

After that, we saw how multi-stage builds give us a simple way to build and ship
smaller images to our production environments.

We also learned that the Dockerfile is a great tool for documenting an app. As such,
it can speed-up the on-boarding of new developers and bridge the divide between
developers and operations staff! With this in mind, treat it like code and check it in
and out of a source control system.

Although the example cited was a Linux-based example, the process for container-
izing Windows apps is the same: Start with your app code, create a Dockerfile
describing the app, build the image with docker image build. Job done!

9: Deploying Apps with Docker
Compose
In this chapter, we’ll look at how to deploymulti-container applications using Docker
Compose.

Docker Compose and Docker Stacks are very similar. In this chapter we’ll focus
on Docker Compose, which deploys and manages multi-container applications on
Docker nodes operating in single-engine mode. In a later chapter, we’ll focus on
Docker Stacks. Stacks deploy and manage multi-container apps on Docker nodes
operating in Swarm mode.

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Deploying apps with Compose - The TLDR

Most modern apps are made of multiple smaller services that interact to form a useful
app.We call this microservices. A simple example might be an appwith the following
four services:

• web front-end
• ordering
• catalog
• back-end database

9: Deploying Apps with Docker Compose 156

Put all of these together, and you have a useful application.

Deploying and managing lots of services can be hard. This is whereDocker Compose
comes in to play.

Instead of gluing everything together with scripts and long docker commands,
Docker Compose lets you describe an entire app in a single declarative configuration
file. You then deploy it with a single command.

Once the app is deployed, you can manage its entire lifecycle with a simple set of
commands. You can even store and manage the configuration file in a version control
system! It’s all very grown-up :-D

That’s the basics. Let’s dig deeper.

Deploying apps with Compose - The Deep Dive

We’ll divide the Deep Dive section as follows:

• Compose background
• Installing Compose
• Compose files
• Deploying an app with Compose
• Managing an app with Compose

Compose background

In the beginning was Fig. Fig was a powerful tool, created by a company called
Orchard, and it was the best way to manage multi-container Docker apps. It was
a Python tool that sat on top of Docker, and allowed you to define entire multi-
container apps in a single YAML file. You could then deploy the app with the fig

command-line tool. Fig could even manage the entire life-cycle of the app.

Behind the scenes, Fig would read the YAML file and deploy and manage the app via
the Docker API. It was a good thing!

9: Deploying Apps with Docker Compose 157

In fact, it was so good, that in 2014, Docker, Inc. acquired Orchard and re-branded
Fig as Docker Compose. The command-line tool was renamed from fig to docker-

compose, and ever since the acquisition, it’s been an external tool that gets bolted
on top of the Docker Engine. Even though it’s never been fully integrated into the
Docker Engine, it’s always been immensely popular and very widely used.

As things stand today, Compose is still an external Python binary that you have
to install on a host running the Docker Engine. You define multi-container (multi-
service) apps in a YAML file, pass the YAML file to the docker-compose binary, and
Compose deploys it via the Docker Engine API.

Time to see it in action.

Installing Compose

Docker Compose is available on multiple platforms. In this section we’ll demonstrate
some of the ways to install it on Windows, Mac, and Linux. More installation
methods exist, but the ones we show here will get you started.

Installing Compose on Windows 10

The recommended way to run Docker onWindows 10 is Docker for Windows (DfW).
Docker Compose is included as part of the standard DfW installation. So if you’ve
got DfW, you’ve got Docker Compose.

Use the following command to check that Compose is installed. You can run this
command from a PowerShell or CMD terminal.

> docker-compose --version

docker-compose version 1.18.0, build 8dd22a96

SeeChapter 3: Installing Docker if you need more information on installingDocker
for Windows on Windows 10.

9: Deploying Apps with Docker Compose 158

Installing Compose on Mac

As with Windows 10, Docker Compose is installed as part of Docker for Mac (DfM).
So if you have DfM, you have Docker Compose.

Run the following command from a terminal window to verify you have Docker
Compose.

$ docker-compose --version

docker-compose version 1.18.0, build 8dd22a96

SeeChapter 3: Installing Docker if you need more information on installingDocker
for Mac.

Installing Compose on Windows Server

Docker Compose is installed on Windows Server as a separate binary. To use it, you
will need an up-to-date working installation of Docker on your Windows Server.

Type the following command into a PowerShell terminal to install Docker Compose.

For readability, the command uses backticks (‘) to escape carriage returns and wrap
the command over multiple lines.

The following commands installs version 1.18.0 of Docker Compose. You can install
any version listed here: https://github.com/docker/compose/releases. Just replace the
1.18.0 in the URL with the version you want to install.

> Invoke-WebRequest ` "https://github.com/docker/compose/releases/download/1\

.18.0/docker-compose-Windows-x86_64.exe" `

-UseBasicParsing `

-OutFile $Env:ProgramFiles\docker\docker-compose.exe

Writing web request

Writing request stream... (Number of bytes written: 5260755)

Use the docker-compose --version command to verify the installation.

9: Deploying Apps with Docker Compose 159

> docker-compose --version

docker-compose version 1.18.0, build 8dd22a96

Compose is now installed. As long as your Windows Server machine has an up-to-
date installation of the Docker Engine, you’re ready to go.

Installing Compose on Linux

Installing Docker Compose on Linux is a two-step process. First, you download the
binary using the curl command. Then you make it executable using chmod.

For Docker Compose to work on Linux, you’ll need a working version of the Docker
Engine.

The following commandwill download version 1.18.0 of Docker Compose and copy
it to /usr/bin/local. You can check the releases page on GitHub21 for the latest
version and replace the 1.18.0 in the URL with the version you want to install.

The command may wrap over multiple lines in the book. If you run the command
on a single line you will need to remove any backslashes (\).

$ curl -L \

https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`\

uname -s`-`uname -m` \

-o /usr/local/bin/docker-compose

% Total % Received Time Time Time Current

Total Spent Left Speed

100 617 0 617 0 --:--:-- --:--:-- --:--:-- 1047

100 8280k 100 8280k 0 0:00:03 0:00:03 --:--:-- 4069k

Now that you’ve downloaded the docker-compose binary, use the following chmod

command to make it executable.

21https://github.com/docker/compose/releases

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

9: Deploying Apps with Docker Compose 160

$ chmod +x /usr/local/bin/docker-compose

Verify the installation and check the version.

$ docker-compose --version

docker-compose version 1.18.0, build 8dd22a9

You’re ready to use Docker Compose on Linux.

You can also use pip to install Compose from its Python package. But we don’t want
to waste pages showing every possible installation method. Enough is enough, time
to move on!

Compose files

Compose uses YAML files to define multi-service applications. YAML is a subset of
JSON, so you can also use JSON. However, all of the examples in this chapter will be
YAML.

The default name for the Compose YAML file is docker-compose.yml. However, you
can use the -f flag to specify custom filenames.

The following example shows a very simple Compose file that defines a small Flask
app with two services (web-fe and redis). The app is a simple web server that counts
the number of visits and stores the value in Redis. We’ll call the app counter-app and
use it as the example application for the rest of the chapter.

version: "3.5"

services:

web-fe:

build: .

command: python app.py

ports:

- target: 5000

published: 5000

networks:

- counter-net

9: Deploying Apps with Docker Compose 161

volumes:

- type: volume

source: counter-vol

target: /code

redis:

image: "redis:alpine"

networks:

counter-net:

networks:

counter-net:

volumes:

counter-vol:

We’ll skip through the basics of the file before taking a closer look.

The first thing to note is that the file has 4 top-level keys:

• version

• services

• networks

• volumes

Other top-level keys exist, such as secrets and configs, but we’re not looking at
those right now.

The version key is mandatory, and it’s always the first line at the root of the file.
This defines the version of the Compose file format (basically the API). You should
normally use the latest version.

It’s important to note that the versions key does not define the version of Docker
Compose or the Docker Engine. For information regarding compatibility between
versions of the Docker Engine, Docker Compose, and the Compose file format, google
“Compose file versions and upgrading”.

For the remainder of this chapter we’ll be using version 3 or higher of the Compose
file format.

9: Deploying Apps with Docker Compose 162

The top-level services key is where we define the different application services. The
example we’re using defines two services; a web front-end called web-fe, and an in-
memory database called redis. Compose will deploy each of these services as its
own container.

The top-level networks key tells Docker to create new networks. By default, Compose
will create bridge networks. These are single-host networks that can only connect
containers on the same host. However, you can use the driver property to specify
different network types.

The following code can be used in your Compose file to create a new overlay network
called over-net that allows standalone containers to connect to it (attachable).

networks:

over-net:

driver: overlay

attachable: true

The top-level volumes key is where we tell Docker to create new volumes.

Our specific Compose file

The example file we’ve listed uses the Compose v3.5 file format, defines two services,
defines a network called counter-net, and defines a volume called counter-vol.

Most of the detail is in the services section, so let’s take a closer look at that.

The services section of our Compose file has two second-level keys:

• web-fe
• redis

Each of these defines a service in the app. It’s important to understand that Compose
will deploy each of these as a container, and it will use the name of the keys as part
of the container names. In our example, we’ve defined two keys; web-fe and redis.
This means Compose will deploy two containers, one will have web-fe in its name
and the other will have redis.

Within the definition of the web-fe service, we give Docker the following instruc-
tions:

9: Deploying Apps with Docker Compose 163

• build: . This tells Docker to build a new image using the instructions in the
Dockerfile in the current directory (.). The newly built image will be used to
create the container for this service.

• command: python app.py This tells Docker to run a Python app called app.py

as the main app in the container. The app.py file must exist in the image, and
the image must contain Python. The Dockerfile takes care of both of these
requirements.

• ports: Tells Docker to map port 5000 inside the container (-target) to port
5000 on the host (published). This means that traffic sent to the Docker host
on port 5000 will be directed to port 5000 on the container. The app inside the
container listens on port 5000.

• networks: Tells Docker which network to attach the service’s container to.
The network should already exist, or be defined in the networks top-level
key. If it’s an overlay network, it will need to have the attachable flag so
that standalone containers can be attached to it (Compose deploys standalone
containers instead of Docker Services).

• volumes: Tells Docker to mount the counter-vol volume (source:) to /code

(‘target:’) inside the container. The counter-vol volume needs to already exist,
or be defined in the volumes top-level key at the bottom of the file.

In summary, Compose will instruct Docker to deploy a single standalone container
for the web-fe service. It will be based on an image built from a Dockerfile in the
same directory as the Compose file. This image will be started as a container and run
app.py as its main app. It will expose itself on port 5000 on the host, attach to the
counter-net network, and mount a volume to /code.

Note:Technically speaking, we don’t need the command: python app.py

option. This is because the application’s Dockerfile already defines
python app.py as the default app for the image. However, we’re show-
ing it here so you know how it works. You can also use it to override
CMD instructions set in Dockerfiles.

The definition of the redis service is simpler:

9: Deploying Apps with Docker Compose 164

• image: redis:alpine This tells Docker to start a standalone container called
redis based on the redis:alpine image. This image will be pulled from
Docker Hub.

• networks: The redis container will be attached to the counter-net network.

As both services will be deployed onto the same counter-net network, they will be
able to resolve each other by name. This is important as the application is configured
to communicate with the redis service by name.

Now that we understand how the Compose file works, let’s deploy it!

Deploying an app with Compose

In this section, we’ll deploy the app defined in the Compose file from the previous sec-
tion. To do this, you’ll need the following 4 files fromhttps://github.com/nigelpoulton/counter-
app:

• Dockerfile
• app.py
• requirements.txt
• docker-compose.yml

Clone the Git repo locally.

$ git clone https://github.com/nigelpoulton/counter-app.git

Cloning into 'counter-app'...

remote: Counting objects: 9, done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 9 (delta 1), reused 5 (delta 0), pack-reused 0

Unpacking objects: 100% (9/9), done.

Checking connectivity... done.

Cloning the repo will create a new sub-directory called counter-app. This will
contain all of the required files and will be considered your build context. Compose
will also use the name of the directory (counter-app) as your project name. We’ll
see this later, but Compose will pre-pend all resource names with counter-app_.

Change into the counter-app directory and check the files are present.

9: Deploying Apps with Docker Compose 165

$ cd counter-app

$ ls

app.py docker-compose.yml Dockerfile requirements.txt ...

Let’s quickly describe each file:

• app.py is the application code (a Python Flask app)
• docker-compose.yml is the Docker Compose file that describes how Docker
should deploy the app

• Dockerfile describes how to build the image for the web-fe service
• requirements.txt lists the Python packages required for the app

Feel free to inspect the contents of each file.

The app.py file is obviously the core of the application. But docker-compose.yml is
the glue that sticks all the app components together.

Let’s use Compose to bring the app up. You must run the all of the following
commands fromwithin the counter-app directory that you just cloned fromGitHub.

$ docker-compose up &

[1] 1635

Creating network "counterapp_counter-net" with the default driver

Creating volume "counterapp_counter-vol" with default driver

Pulling redis (redis:alpine)...

alpine: Pulling from library/redis

1160f4abea84: Pull complete

a8c53d69ca3a: Pull complete

<Snip>

web-fe_1 | * Debugger PIN: 313-791-729

It’ll take a few seconds for the app to come up, and the output can be quite verbose.

We’ll step through what happened in a second, but first let’s talk about the docker-
compose command.

9: Deploying Apps with Docker Compose 166

docker-compose up is the most common way to bring up a Compose app (we’re
calling a multi-container app defined in a Compose file a Compose app). It builds all
required images, creates all required networks and volumes, and starts all required
containers.

By default, docker-compose up expects the name of the Compose file to docker-

compose.yml or docker-compose.yaml. If your Compose file has a different name,
you need to specify it with the -f flag. The following example will deploy an
application from a Compose file called prod-equus-bass.yml

$ docker-compose -f prod-equus-bass.yml up

It’s also common to use the -d flag to bring the app up in the background. For
example:

docker-compose up -d

--OR--

docker-compose -f prod-equus-bass.yml up -d

Our example brought the app up in the foreground (we didn’t use the -d flag), but
we used the & to give us the terminal window back. This is not normal, but it will
output logs directly in our terminal window which we’ll use later.

Now that the app is built and running, we can use normal docker commands to view
the images, containers, networks, and volumes that Compose created.

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

counterapp_web-fe latest 96..6ff9e 3 minutes ago 95.9MB

python 3.4-alpine 01..17a02 2 weeks ago 85.5MB

redis alpine ed..c83de 5 weeks ago 26.9MB

We can see that three images were either built or pulled as part of the deployment.

9: Deploying Apps with Docker Compose 167

The counterapp_web-fe:latest image was created by the build: . instruction in
the docker-compose.yml file. This instruction caused Docker to build a new image
using the Dockerfile in the same directory. It contains the application code for the
Python Flask web app, and was built from the python:3.4-alpine image. See the
contents of the Dockerfile for more information.

FROM python:3.4-alpine << Base image

ADD . /code << Copy app into image

WORKDIR /code << Set working directory

RUN pip install -r requirements.txt << install requirements

CMD ["python", "app.py"] << Set the default app

I’ve added comments to the end of each line to help explain. They must be removed
before deploying the app.

Notice how Compose has named the newly built image as a combination of the
project name (counter-app), and the resource name as specified in the Compose file
(web-fe). Compose has removed the dash (-) from the project name. All resources
deployed by Compose will follow this naming convention.

The redis:alpine imagewas pulled fromDockerHub by the image: "redis:alpine"

instruction in the .Services.redis section of the Compose file.

The following container listing shows two containers. The name of each is prefixed
with the name of the project (name of the working directory). Also, each one has a
numeric suffix that indicates the instance number — this is because Compose allows
for scaling.

$ docker container ls

ID COMMAND STATUS PORTS NAMES

12.. "python app.py" Up 2 min 0.0.0.0:5000->5000/tcp counterapp_web-fe_1

57.. "docker-entry.." Up 2 min 6379/tcp counterapp_redis_1

The counterapp_web-fe container is running the application’s web front end. This is
running the app.py code and is mapped to port 5000 on all interfaces on the Docker
host. We’ll connect to this in just a second.

The following network and volume listings show the counterapp_counter-net and
counterapp_counter-vol networks and volumes.

9: Deploying Apps with Docker Compose 168

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

1bd949995471 bridge bridge local

40df784e00fe counterapp_counter-net bridge local

f2199f3cf275 host host local

67c31a035a3c none null local

$ docker volume ls

DRIVER VOLUME NAME

<Snip>

local counterapp_counter-vol

With the application successfully deployed, you can point a web browser at your
Docker host on port 5000 and see the application in all its glory.

Pretty impressive ;-)

Hitting your browser’s refresh buttonwill cause the counter to increment. Feel free to
inspect the app (app.py) to see how the counter data is stored in the Redis back-end.

If you brought the application up using the &, you will be able to see the HTTP

200 response codes being logged in the terminal window. These indicate successful
requests, and you’ll see one for each time you load the web page.

9: Deploying Apps with Docker Compose 169

web-fe_1 | 172.18.0.1 - - [09/Jan/2018 11:13:21] "GET / HTTP/1.1" 200 -

web-fe_1 | 172.18.0.1 - - [09/Jan/2018 11:13:33] "GET / HTTP/1.1" 200 -

Congratulations. You’ve successfully deployed a multi-container application using
Docker Compose!

Managing an app with Compose

In this section, we’ll see how to start, stop, delete, and get the status of applications
being managed by Docker Compose. We’ll also see how the volume we’re using can
be used to directly inject updates to the app’s web front-end.

As the application is already up, let’s see how to bring it down. To do this, replace
the up sub-command with down.

$ docker-compose down

1. Stopping counterapp_redis_1 ...

2. Stopping counterapp_web-fe_1 ...

3. redis_1 | 1:signal-handler Received SIGTERM scheduling shutdown...

4. redis_1 | 1:M 09 Jan 11:16:00.456 # User requested shutdown...

5. redis_1 | 1:M 09 Jan 11:16:00.456 * Saving the final RDB snap...

6. redis_1 | 1:M 09 Jan 11:16:00.463 * DB saved on disk

7. Stopping counterapp_redis_1 ... done

8. counterapp_redis_1 exited with code 0

9. Stopping counterapp_web-fe_1 ... done

10. Removing counterapp_redis_1 ... done

11. Removing counterapp_web-fe_1 ... done

12. Removing network counterapp_counter-net

13. [1]+ Done docker-compose up

Because we started the app with the &, it’s running in the foreground. This means we
get a verbose output to the terminal, giving us an excellent insight into how things
work. Let’s step through what each line is telling us.

Lines 1 and 2 are stopping the two services. These are the web-fe and redis services
defined in the Compose file.

9: Deploying Apps with Docker Compose 170

Line 3 shows that the stop instruction sends a SIGTERM signal. This is sent to the PID
1 process in each container. Lines 4-6 show the Redis container gracefully handling
the signal and shutting itself down. Lines 7 and 8 report the success of stop operation.

Line 9 shows the web-fe service successfully stopping.

Lines 10 and 11 show the stopped services being removed.

Line 12 shows the counter-net network being removed, and line 13 shows the
docker-compose up process exiting.

It’s important to note that the counter-vol volume was not deleted. This is because
volumes are intended to be long-term persistent data stores. As such, their lifecycle
is entirely decoupled from the containers they serve. Running a docker volume ls

will show that the volume is still present on the system. If you’d written any data to
the volume it would still exist.

Also, any images that were built or pulled as part of the docker-compose up

operation will still remain on the system. This means future deployments of the app
will be faster.

Let’s look at a few other docker-compose sub-commands.

Use the following command to bring the app up again, but this time in the
background.

$ docker-compose up -d

Creating network "counterapp_counter-net" with the default driver

Creating counterapp_redis_1 ... done

Creating counterapp_web-fe_1 ... done

See how the app started much faster this time — the counter-vol volume already
exists, and no images needed building or pulling.

Show the current state of the app with the docker-compose ps command.

9: Deploying Apps with Docker Compose 171

$ docker-compose ps

Name Command State Ports

--

counterapp_redis_1 docker-entrypoint... Up 6379/tcp

counterapp_web-fe_1 python app.py Up 0.0.0.0:5000->5000/tcp

We can see both containers, the commands they are running, their current state, and
the network ports they are listening on.

Use the docker-compose top command to list the processes running inside of each
service (container).

$ docker-compose top

counterapp_redis_1

PID USER TIME COMMAND

843 dockrema 0:00 redis-server

counterapp_web-fe_1

PID USER TIME COMMAND

928 root 0:00 python app.py

1016 root 0:00 /usr/local/bin/python app.py

The PID numbers returned are the PID numbers as seen from the Docker host (not
from within the containers).

Use the docker-compose stop command to stop the app without deleting its re-
sources. Then show the status of the app with docker-compose ps.

9: Deploying Apps with Docker Compose 172

$ docker-compose stop

Stopping counterapp_web-fe_1 ... done

Stopping counterapp_redis_1 ... done

$ docker-compose ps

Name Command State

counterapp_redis_1 docker-entrypoint.sh redis Exit 0

counterapp_web-fe_1 python app.py Exit 0

As we can see, stopping a Compose app does not remove the application definition
from the system. It just stops the app’s containers. You can verify this with the docker
container ls -a command.

You can delete a stopped Compose app with the docker-compose rm command. This
will delete the containers and networks the app is using, but it will not delete volumes
or images. Nor will it delete the application source code (app.py, Dockerfile,
requirements.txt, and docker-compose.yml) in your project directory.

Restart the app with the docker-compose restart command.

$ docker-compose restart

Restarting counterapp_web-fe_1 ... done

Restarting counterapp_redis_1 ... done

Verify the operation.

$ docker-compose ps

Name Command State Ports

--

counterapp_redis_1 docker-entrypoint... Up 6379/tcp

counterapp_web-fe_1 python app.py Up 0.0.0.0:5000->5000/tcp

Use the docker-compose down command to stop and delete the app with a single
command.

9: Deploying Apps with Docker Compose 173

$ docker-compose down

Stopping counterapp_web-fe_1 ... done

Stopping counterapp_redis_1 ... done

Removing counterapp_web-fe_1 ... done

Removing counterapp_redis_1 ... done

Removing network counterapp_counter-net

The app is now deleted. Only its images, volumes and source code remain.

Let’s deploy the app one last time and see its volume in action.

$ docker compose up -d

Creating network "counterapp_counter-net" with the default driver

Creating counterapp_redis_1 ... done

Creating counterapp_web-fe_1 ... done

If you look in the Compose file, you’ll see that we’re defing a new volume called
counter-vol and mounting it in to the web-fe service at /code.

services:

web-fe:

<Snip>

volumes:

- type: volume

source: counter-vol

target: /code

<Snip>

volumes:

counter-vol:

The first time we deployed the app, Compose checked to see if a volume already
existed with this name. It did not, so it created it. You can see it with the docker

volume ls command.

9: Deploying Apps with Docker Compose 174

$ docker volume ls

RIVER VOLUME NAME

local counterapp_counter-vol

It’s also worth knowing that Compose builds networks and volumes before deploy-
ing services. This makes sense, as they are lower-level infrastructure objects that are
consumed by services (containers). The following snippet shows Compose creating
the network and volume as its first two tasks (even before building and pulling
images).

$ docker-compose up -d

Creating network "counterapp_counter-net" with the default driver

Creating volume "counterapp_counter-vol" with default driver

Pulling redis (redis:alpine)...

<Snip>

If we take another look at the service definition for web-fe, we’ll see that it’s
mounting the counter-app volume into the service’s container at /code. We can also
see from the Dockerfile that /code is where the app is installed and executed from.
Net result, our app code resides on a Docker volume.

This all means we can make changes to files in the volume, from the host side, and
have them reflected immediately in the app. Let’s see it.

9: Deploying Apps with Docker Compose 175

The next few steps will walk through the following process. We’ll edit the app.py

file in the project’s working directory so that the app will display different text in
the web browser. We’ll copy updated app to the volume on the Docker host. We’ll
refresh the app’s web page to see the updated text. This will work because whatever
you write to the location of the volume on the Docker host will immediately appear
in the volume in the container.

Use you favourite text editor to edit the app.py file in the projects working directory.
We’ll use vim in the example.

$ vim ~/counter-app/app.py

Change text between the double quote marks (“”) on line 22. The line starts with
return "What's up...". Enter any text you like, as long as it’s within the double-
quote marks, and save your changes.

Now that we’ve updated the app, we need to copy it into the volume on the
Docker host. Each Docker volume is exposed at a location within the Docker host’s
filesystem, as well as a mount point in one or more containers. Use the following
docker volume inspect command to find where the volume is exposed on the
Docker host.

$ docker volume inspect counterapp_counter-vol | grep Mount

"Mountpoint": "/var/lib/docker/volumes/counterapp_counter-vol/_data",

Copy the updated app file to the volume’s mount point on your Docker host. This
will make it appear in the web-fe container at /code. The operation will overwrite
the existing /code/app.py file in the container.

$ cp ~/counterapp/app.py \

/var/lib/docker/volumes/counterapp_counter-vol/_data/app.py

The updated app file is now on the container. Connect to the app to see your change.
You can do this by pointing your web browser to the IP of your Docker host on port
5000.

9: Deploying Apps with Docker Compose 176

Figure 9.3 shows the updated app.

Obviously you wouldn’t do this in production, but it’s a real time-saver in develop-
ment.

Congratulations! You’ve deployed and managed a simple multi-container app using
Docker Compose.

Before reminding ourselves of the major commands we learned, it’s important to
understand that this was a very simple example. Docker Compose is capable of
deploying and managing far more complex applications.

Deploying apps with Compose - The
commands

• docker-compose up is the command we use to deploy a Compose app. It ex-
pects the Compose file to be called docker-compose.yml or docker-compose.yaml,
but you can specify a custom filename with the -f flag. It’s common to start
the app in the background with the -d flag.

• docker-compose stopwill stop all of the containers in a Compose app without

9: Deploying Apps with Docker Compose 177

deleting them from the system. The app can be easily restarted with docker-

compose restart.
• docker-compose rm will delete a stopped Compose app. It will delete contain-
ers and networks, but it will not delete volumes and images.

• docker-compose restart will restart a Compose app that has been stopped
with docker-compose stop. If you have made changes to your Compose app
since stopping it, these changes will not appear in the restarted app. You will
need to re-deploy the app to get the changes.

• docker-compose ps will list each container in the Compose app. It shows
current state, the command each one is running, and network ports.

• docker-compose down will stop and delete a running Compose app. It deletes
containers and networks, but not volumes and images.

Chapter Summary

In this chapter, we learned how to deploy and manage a multi-container application
using Docker Compose.

Docker Compose is a Python application that we install on top of the Docker Engine.
It lets us define multi-container apps in a single declarative configuration file and
deploy it with a single command.

Compose files can be YAML or JSON, and they define all of the containers, networks,
volumes, and secrets that an application requires.We then feed the file to the docker-
compose command line tool, and Compose instructs Docker to deploy it.

Once the app is deployed, we can manage its entire lifecycle using the many docker-
compose sub-commands.

We also saw how volumes can be used to mount changes directly into containers.

Docker Compose is very popular with developers, and the Compose file is an
excellent source of application documentation — it defies all the services that make
up the app, the images they use, ports they expose, networks and volumes they use,
and much more. As such, it can help bridge the gap between dev and ops. You should
also treat your Compose files as if they were code. This means, among other things,
storing them in source control repos.

10: Docker Swarm
Now that we know how to install Docker, pull images, and work with containers,
the next thing we need is a way to work with things at scale. That’s where Docker
Swarm comes into the picture.

At a high level Swarm has two major components:

• A secure cluster
• An orchestration engine

As usual, we’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

The examples and outputs we’ll use will be from a Linux-based swarm. However,
most commands and features work with Docker on Windows.

Docker Swarm - The TLDR

Docker Swarm is two things: an enterprise-grade secure cluster of Docker hosts, and
an engine for orchestrating microservices apps.

On the clustering front, it groups one or more Docker nodes and lets you manage
them as a cluster. Out-of-the-box you get an encrypted distributed cluster store,
encrypted networks, mutual TLS, secure cluster join tokens, and a PKI that makes
managing and rotating certificates a breeze! And you can non-disruptively add and
remove nodes. It’s a beautiful thing!

10: Docker Swarm 179

On the orchestration front, swarm exposes a rich API that allows you to deploy
and manage complicated microservices apps with ease. You can define your apps
in declarative manifest files, and deploy them with native Docker commands. You
can even perform rolling updates, rollbacks, and scaling operations. Again, all with
simple commands.

In the past, Docker Swarm was a separate product that you layered on top of the
Docker engine. Since Docker 1.12 it’s fully integrated into the Docker engine and
can be enabled with a single command. As of 2018, it has the ability to deploy and
manage native swarm apps as well as Kubernetes apps. Though at the time of writing,
support for Kubernetes apps is relatively new.

Docker Swarm - The Deep Dive

We’ll split the deep dive part of this chapter as follows:

• Swarm primer
• Build a secure swarm cluster
• Deploy some swarm services
• Troubleshooting

The examples cited will be based on Linux, but they will also work on Windows.
Where there are differences we’ll be sure to point them out.

Swarmmode primer

On the clustering front, a swarm consists of one or more Docker nodes. These can
be physical servers, VMs, Raspberry Pi’s, or cloud instances. The only requirement
is that all nodes can communicate over reliable networks.

Nodes are configured asmanagers or workers.Managers look after the control plane
of the cluster, meaning things like the state of the cluster and dispatching tasks to
workers.Workers accept tasks from managers and execute them.

The configuration and state of the swarm is held in a distributed etcd database located
on all managers. It’s kept in memory and is extremely up-to-date. But the best thing

10: Docker Swarm 180

about it is the fact that it requires zero configuration — it’s installed as part of the
swarm and just takes care of itself.

Something that’s game changing on the clustering front is the approach to security.
TLS is so tightly integrated that it’s impossible to build a swarmwithout it. In today’s
security conscious world, things like this deserve all the props they get! Anyway,
swarm uses TLS to encrypt communications, authenticate nodes, and authorize roles.
Automatic key rotation is also thrown in as the icing on the cake! And it all happens
so smoothly that you wouldn’t even know it was there!

On the application orchestration front, the atomic unit of scheduling on a swarm is
the service. This is a new object in the API, introduced along with swarm, and is a
higher level construct that wraps some advanced features around containers.

When a container is wrapped in a service we call it a task or a replica, and the service
construct adds things like scaling, rolling updates, and simple rollbacks.

The high-level view is shown in Figure 10.1.

Figure 10.1 High-level swarm

That’s enough of a primer. Let’s get our hands dirty with some examples.

Build a secure Swarm cluster

In this section we’ll build a secure swarm cluster with threemanager nodes and three
worker nodes. You can use a different lab with different numbers of managers and

10: Docker Swarm 181

workers, and with different names and IPs, but the examples that follow will use the
values in Figure 10.2.

Figure 10.2

Each of the nodes needs Docker installed and needs to be able to communicate with
the rest of the swarm. It’ also beneficial if name resolution is configured — it makes
it easier to identify nodes in command outputs and helps when troubleshooting.

On the networking front, you should have the following ports open on routers and
firewalls:

• 2377/tcp: for secure client-to-swarm communication
• 7946/tcp and 7946/udp: for control plane gossip
• 4789/udp: for VXLAN-based overlay networks

Once you’ve satisfied the pre-requisites, you can go ahead and build a swarm.

The process of building a swarm is sometimes called initializing a swarm, and the
high-level process is this: Initialize the first manager node > Join additional manager
nodes > Join worker nodes > Done.

Initializing a brand new swarm

Docker nodes that are not part of a swarm are said to be in single-engine mode. Once
they’re added to a swarm they’re switched into swarm mode.

10: Docker Swarm 182

Figure 10.3 Swarm mode vs single-engine mode

Running docker swarm init on aDocker host in single-enginemodewill switch that
node into swarm mode, create a new swarm, and make the node the first manager
of the swarm.

Additional nodes can then be joined as workers and managers. This obviously
switches them into swarm mode as part of the operation.

The following steps will put mgr1 into swarm mode and initialize a new swarm. It
will then joinwrk1,wrk2, andwrk3 as worker nodes — automatically putting them
into swarm mode. Finally, it will add mgr2 and mgr3 as additional managers and
switch them into swarm mode. At the end of the procedure all 6 nodes will be in
swarm mode and operating as part of the same swarm.

This example will use the IP addresses and DNS names of the nodes shown in Figure
10.2. Yours may be different.

1. Log on to mgr1 and initialize a new swarm (don’t forget to use backticks
instead of backslashes if you’re following alongwithWindows in a PowerShell
terminal).

10: Docker Swarm 183

$ docker swarm init \

--advertise-addr 10.0.0.1:2377 \

--listen-addr 10.0.0.1:2377

Swarm initialized: current node (d21lyz...c79qzkx) is now a manager.

The command can be broken down as follows:
• docker swarm init tells Docker to initialize a new swarm and make this
node the first manager. It also enables swarm mode on the node.

• --advertise-addr is the IP and port that other nodes should use to
connect to this manager. It’s an optional flag, but it gives you control
over which IP gets used on nodes with multiple IPs. It also gives you the
chance to specify an IP address that does not exist on the node, such as
a load balancer IP.

• --listen-addr lets you specify which IP and port you want to listen on
for swarm traffic. This will usually match the --advertise-addr, but is
useful in situations where you want to restrict swarm to a particular IP
on a system with multiple IPs. It’s also required in situations where the
--advertise-addr refers to a remote IP address like a load balancer.

I recommend you be specific and always use both flags.

The default port that swarm mode operates on is 2377. This is customizable,
but it’s convention to use 2377/tcp for secured (HTTPS) client-to-swarm
connections.

2. List the nodes in the swarm

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

d21...qzkx * mgr1 Ready Active Leader

Notice that mgr1 is currently the only node in the swarm, and is listed as the
Leader. We’ll come back to this in a second.

3. From mgr1 run the docker swarm join-token command to extract the com-
mands and tokens required to add new workers and managers to the swarm.

10: Docker Swarm 184

$ docker swarm join-token worker

To add a manager to this swarm, run the following command:

docker swarm join \

--token SWMTKN-1-0uahebax...c87tu8dx2c \

10.0.0.1:2377

$ docker swarm join-token manager

To add a manager to this swarm, run the following command:

docker swarm join \

--token SWMTKN-1-0uahebax...ue4hv6ps3p \

10.0.0.1:2377

Notice that the commands to join a worker and a manager are identical apart
from the join tokens (SWMTKN...). This means that whether a node joins as a
worker or a manager depends entirely on which token you use when joining
it. You should ensure that your join tokens are protected, as they are all
that is required to join a node to a swarm!

4. Log on to wrk1 and join it to the swarm using the docker swarm join

command with the worker join token.

$ docker swarm join \

--token SWMTKN-1-0uahebax...c87tu8dx2c \

10.0.0.1:2377 \

--advertise-addr 10.0.0.4:2377 \

--listen-addr 10.0.0.4:2377

This node joined a swarm as a worker.

The --advertise-addr, and --listen-addr flags optional. I’ve added them as
I consider it best practice to be as specific as possible when it comes to network
configuration.

5. Repeat the previous step on wrk2 and wrk3 so that they join the swarm as
workers. Make sure you use wrk2 and wrk3’s own IP addresses for the --

advertise-addr and --listen-addr flags.
6. Log on tomgr2 and join it to the swarm as a manager using the docker swarm

join command with the token used for joining managers.

10: Docker Swarm 185

$ docker swarm join \

--token SWMTKN-1-0uahebax...ue4hv6ps3p \

10.0.0.1:2377 \

--advertise-addr 10.0.0.2:2377 \

--listen-addr 10.0.0.1:2377

This node joined a swarm as a manager.

7. Repeat the previous step on mgr3, remembering to use mgr3’s IP address for
the advertise-addr and --listen-addr flags.

8. List the nodes in the swarm by running docker node ls from any of the
manager nodes in the swarm.

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

0g4rl...babl8 * mgr2 Ready Active Reachable

2xlti...l0nyp mgr3 Ready Active Reachable

8yv0b...wmr67 wrk1 Ready Active

9mzwf...e4m4n wrk3 Ready Active

d21ly...9qzkx mgr1 Ready Active Leader

e62gf...l5wt6 wrk2 Ready Active

Congratulations! You’ve just created a 6-node swarmwith 3managers and 3 workers.
As part of the process you put the Docker Engine on each node into swarm mode. As
a bonus, the swarm is automatically secured with TLS.

If you look in the MANAGER STATUS column you’ll see that the threemanager nodes are
showing as either “Reachable” or “Leader”. We’ll learn more about leaders shortly.
Nodes with nothing in the MANAGER STATUS column are workers. Also note the
asterisk (*) after the ID on the line showing mgr2. This shows us which node we
ran the docker node ls command from. In this instance the command was issued
from mgr2.

Note: It’s a pain to specify the --advertise-addr and --listen-addr

flags every time you join a node to the swarm. However, it can be a
much bigger pain if you get the network configuration of your swarm
wrong. Also, manually adding nodes to a swarm is unlikely to be a daily

10: Docker Swarm 186

task, so I think it’s worth the extra up-front effort to use the flags. It’s
your choice though. In lab environments or nodes with only a single IP
you probably don’t need to use them.

Now that we have a swarm up and running, let’s take a look at manager high
availability (HA).

Swarmmanager high availability (HA)

So far, we’ve added three manager nodes to a swarm. Why did we add three, and
how do they work together? We’ll answer all of this, plus more in this section.

Swarm managers have native support for high availability (HA). This means one or
more can fail, and the survivors will keep the swarm running.

Technically speaking, swarm implements a form of active-passive multi-manager
HA. This means that although you might — and should — have multiple managers,
only one of them is ever considered active. We call this active manager the “leader”,
and the leader’s the only one that will ever issue live commands against the swarm.
So it’s only ever the leader that changes the config, or issues tasks to workers. If
a passive (non-active) manager receives commands for the swarm, it proxies them
across to the leader.

This process is shown in Figure 10.4. Step 1 is the command coming in to amanager
from a remoteDocker client. Step 2 is the non-leadermanager proxying the command
to the leader. Step 3 is the leader executing the command on the swarm.

10: Docker Swarm 187

Figure 10.4

If you look closely at Figure 10.4 you’ll notice that managers are either leaders or
followers. This is Raft terminology, because swarm uses an implementation of the
Raft consensus algorithm22 to power manager HA. And on the topic of HA, the
following two best practices apply:

1. Deploy an odd number of managers.
2. Don’t deploy too many managers (3 or 5 is recommended)

Having an odd number of managers reduces the chances of split-brain conditions.
For example, if you had 4 managers and the network partitioned, you could be left
with twomanagers on each side of the partition. This is known as a split brain — each
side knows there used to be 4 but can now only see 2. But crucially, neither side has
any way of knowing if the other two are still alive and whether it holds a majority
(quorum). The cluster continues to operate during split-brain conditions, but you are
no longer able to alter the configuration or add and manage application workloads.

However, if you had 3 or 5 managers and the same network partition occurred, it
would be impossible to have the same number of managers on both sides of the
partition. This means that one side achieve quorum and cluster management would
remain available. The example on the right side of Figure 10.5 shows a partitioned
cluster where the left side of the split knows it has a majority of managers.

22https://raft.github.io/

https://raft.github.io/
https://raft.github.io/

10: Docker Swarm 188

Figure 10.5

As with all consensus algorithms, more participants means more time required to
achieve consensus. It’s like deciding where to eat — it’s always quicker and easier
to decide with 3 people than it is with 33! With this in mind, it’s a best practice to
have either 3 or 5 managers for HA. 7 might work, but it’s generally accepted that 3
or 5 is optimal. You definitely don’t want more than 7, as the time taken to achieve
consensus will be longer.

A final word of caution regarding manager HA. While it’s obviously a good practice
to spread your managers across availability zones within your network, you need to
make sure that the networks connecting them are reliable! Network partitions can
be a royal pain in the backside! This means, at the time of writing, the nirvana of
hosting your active production applications and infrastructure across multiple cloud
providers such as AWS and Azure is a bit of a daydream. Take time to make sure
your managers are connected via reliable high-speed networks!

Built-in Swarm security

Swarm clusters have a ton of built-in security that’s configured out-of-the-box with
sensible defaults — CA settings, join tokens, mutual TLS, encrypted cluster store,

10: Docker Swarm 189

encrypted networks, cryptographic node ID’s and more. See Chapter 15: Security
in Docker for a detailed look at these.

Locking a Swarm

Despite all of this built-in native security, restarting an older manager or restoring
an old backup has the potential to compromise the cluster. Old managers re-joining a
swarm automatically decrypt and gain access to the Raft log time-series database —
this can pose security concerns. Restoring old backups can wipe the current swarm
configuration.

To prevent situations like these, Docker allows you to lock a swarmwith the Autolock
feature. This forces managers that have been restarted to present the cluster unlock
key before being permitted back into the cluster.

It’s possible to apply a lock directly to a new swarm you are creating by passing the
--autolock flag to the docker swarm init command. However, we’ve already built
a swarm, so we’ll lock our existing swarmwith the docker swarm update command.

Run the following command from a swarm manager.

$ docker swarm update --autolock=true

Swarm updated.

To unlock a swarm manager after it restarts, run the `docker swarm

unlock`command and provide the following key:

SWMKEY-1-5+ICW2kRxPxZrVyBDWzBkzZdSd0Yc7Cl2o4Uuf9NPU4

Please remember to store this key in a password manager, since without

it you will not be able to restart the manager.

Be sure to keep the unlock key in a secure place!

Restart one of your manager nodes to see if it automatically re-joins the cluster. You
may need to prepend the command with sudo.

$ service docker restart

Try and list the nodes in the swarm.

10: Docker Swarm 190

$ docker node ls

Error response from daemon: Swarm is encrypted and needs to be unlocked befo\

re

it can be used.

Although the Docker service has restarted on the manager, it has not been allowed to
re-join the cluster. You can prove this even further by running the docker node ls

command on another manager node. The restarted manager will show as down and
unreachable.

Use the docker swarm unlock command to unlock the swarm for the restarted
manager. You’ll need to run this command on the restarted manager, and you’ll need
to provide the unlock key.

$ docker swarm unlock

Please enter unlock key: <enter your key>

The nodewill be allowed to re-join the swarm, andwill show as ready and reachable
if you run another docker node ls.

Locking your swarm and protecting the unlock key is recommended for production
environments.

Now that we’ve got our swarm built, and we understand the concepts of leaders and
manager HA, let’s move on to services.

Swarm services

Everything we do in this section of the chapter gets improved on by Docker Stacks
(Chapter 14). However, it’s important that you learn the concepts here so that you’re
prepared for Chapter 14.

Like we said in the swarm primer… services are a new construct introduced with
Docker 1.12, and they only exist in swarm mode.

They let us specify most of the familiar container options, such as name, port
mappings, attaching to networks, and images. But they add things, like letting us
declare the desired state for an application service, feed that to Docker, and let Docker

10: Docker Swarm 191

take care of deploying it and managing it. For example, assume you’ve got an app
with aweb front-end. You have an image for it, and testing has shown that you’ll need
5 instances to handle normal daily traffic. You would translate this requirement into
a single service declaring the image the containers should use, and that the service
should always have 5 running replicas.

We’ll see some of the other things that can be declared as part of a service in aminute,
but before we do that, let’s see how to create what we just described.

You create a new service with the docker service create command.

Note: The command to create a new service is the same on Windows.
However, the image used in this example is a Linux image and will not
work on Windows. You can substitute the image for a Windows web
server image and the command will work. Remember, if you are typing
Windows commands from a PowerShell terminal you will need to use
the backtick (‘) to indicate continuation on the next line.

$ docker service create --name web-fe \

-p 8080:8080 \

--replicas 5 \

nigelpoulton/pluralsight-docker-ci

z7ovearqmruwk0u2vc5o7ql0p

Notice that many of the familiar docker container run arguments are the same.
In the example, we specified --name and -p which work the same for standalone
containers as well as services.

Let’s review the command and output.

We used docker service create to tell Docker we are declaring a new service, and
we used the --name flag to name it web-fe. We told Docker to map port 8080 on
every node in the swarm to 8080 inside of each service replica. Next, we used the --
replicas flag to tell Docker that there should always be 5 replicas of this service.
Finally, we told Docker which image to use for the replicas — it’s important to
understand that all service replicas use the same image and config!

10: Docker Swarm 192

After we hit Return, the manager acting as leader instantiated 5 replicas across
the swarm — remember that swarm managers also act as workers. Each worker or
manager then pulled the image and started a container from it running on port 8080.
The swarm leader also ensured a copy of the service’s desired state was stored on the
cluster and replicated to every manager in the swarm.

But this isn’t the end. All services are constantly monitored by the swarm — the
swarm runs a background reconciliation loop that constantly compares the actual
state of the service to the desired state. If the two states match, the world is a happy
place and no further action is needed. If they don’t match, swarm takes actions so
that they do. Put another way, the swarm is constantly making sure that actual state
matches desired state.

As an example, if a worker hosting one of the 5web-fe replicas fails, the actual state
for the web-fe service will drop from 5 replicas to 4. This will no longer match the
desired state of 5, so Docker will start a newweb-fe replica to bring actual state back
in line with desired state. This behavior is very powerful and allows the service to
self-heal in the event of node failures and the likes.

Viewing and inspecting services

You can use the docker service ls command to see a list of all services running on
a swarm.

$ docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

z7o...uw web-fe replicated 5/5 nigel...ci:latest *:8080->8080/t\

cp

The output above shows a single running service as well as some basic information
about state. Among other things, we can see the name of the service and that 5 out
of the 5 desired replicas are in the running state. If you run this command soon after
deploying the service it might not show all tasks/replicas as running. This is often
due to the time it takes to pull the image on each node.

You can use the docker service ps command to see a list of service replicas and the
state of each.

10: Docker Swarm 193

$ docker service ps web-fe

ID NAME IMAGE NODE DESIRED CURRENT

817...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 2 mins

a1d...mzn web-fe.2 nigelpoulton/... wrk1 Running Running 2 mins

cc0...ar0 web-fe.3 nigelpoulton/... wrk2 Running Running 2 mins

6f0...azu web-fe.4 nigelpoulton/... mgr3 Running Running 2 mins

dyl...p3e web-fe.5 nigelpoulton/... mgr1 Running Running 2 mins

The format of the command is docker service ps <service-name or service-

id>. The output displays each replica (container) on its own line, shows which node
in the swarm it’s executing on, and shows desired state and actual state.

For detailed information about a service, use the docker service inspect com-
mand.

$ docker service inspect --pretty web-fe

ID: z7ovearqmruwk0u2vc5o7ql0p

Name: web-fe

Service Mode: Replicated

Replicas: 5

Placement:

UpdateConfig:

Parallelism: 1

On failure: pause

Monitoring Period: 5s

Max failure ratio: 0

Update order: stop-first

RollbackConfig:

Parallelism: 1

On failure: pause

Monitoring Period: 5s

Max failure ratio: 0

Rollback order: stop-first

ContainerSpec:

Image: nigelpoulton/pluralsight-docker-ci:latest@sha256:7a6b01...d8d3d

Resources:

Endpoint Mode: vip

Ports:

10: Docker Swarm 194

PublishedPort = 8080

Protocol = tcp

TargetPort = 8080

PublishMode = ingress

The example above uses the --pretty flag to limit the output to the most interesting
items printed in an easy-to-read format. Leaving off the --pretty flag will give a
more verbose output. I highly recommend you read through the output of docker
inspect commands as they’re a great source of information and a great way to learn
what’s going on under the hood.

We’ll come back to some of these outputs later.

Replicated vs global services

The default replication mode of a service is replicated. This will deploy a desired
number of replicas and distribute them as evenly as possible across the cluster.

The other mode is global, which runs a single replica on every node in the swarm.

To deploy a global service you need to pass the --mode global flag to the docker

service create command.

Scaling a service

Another powerful feature of services is the ability to easily scale them up and down.

Let’s assume business is booming and we’re seeing double the amount of traffic
hitting the web front-end. Fortunately, scaling the web-fe service is as simple as
running the docker service scale command.

$ docker service scale web-fe=10

web-fe scaled to 10

This command will scale the number of service replicas from 5 to 10. In the
background it’s updating the service’s desired state from 5 to 10. Run another docker
service ls command to verify the operation was successful.

10: Docker Swarm 195

$ docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

z7o...uw web-fe replicated 10/10 nigel...ci:latest *:8080->8080/t\

cp

Running a docker service ps command will show that the service replicas are
balanced across all nodes in the swarm evenly.

$ docker service ps web-fe

ID NAME IMAGE NODE DESIRED CURRENT

nwf...tpn web-fe.1 nigelpoulton/... mgr1 Running Running 7 mins

yb0...e3e web-fe.2 nigelpoulton/... wrk3 Running Running 7 mins

mos...gf6 web-fe.3 nigelpoulton/... wrk2 Running Running 7 mins

utn...6ak web-fe.4 nigelpoulton/... wrk3 Running Running 7 mins

2ge...fyy web-fe.5 nigelpoulton/... mgr3 Running Running 7 mins

64y...m49 web-fe.6 igelpoulton/... wrk3 Running Running about a min

ild...51s web-fe.7 nigelpoulton/... mgr1 Running Running about a min

vah...rjf web-fe.8 nigelpoulton/... wrk2 Running Running about a mins

xe7...fvu web-fe.9 nigelpoulton/... mgr2 Running Running 45 seconds ago

l7k...jkv web-fe.10 nigelpoulton/... mgr2 Running Running 46 seconds ago

Behind the scenes, swarm runs a scheduling algorithm that defaults to balancing
replicas as evenly as possible across the nodes in the swarm. At the time of writing,
this amounts to running an equal number of replicas on each node without taking
into consideration things like CPU load etc.

Run another docker service scale command to bring the number back down from
10 to 5.

$ docker service scale web-fe=5

web-fe scaled to 5

Now that we know how to scale a service, let’s see how we remove one.

Removing a service

Removing a service is simple — may be too simple.

The following docker service rm command will delete the service deployed earlier.

10: Docker Swarm 196

$ docker service rm web-fe

web-fe

Confirm it’s gone with the docker service ls command.

$ docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

Be careful using the docker service rm command, as it deletes all service replicas
without asking for confirmation.

Now that the service is deleted from the system, let’s look at how to push rolling
updates to one.

Rolling updates

Pushing updates to deployed applications is a fact of life. And for the longest time
it’s been really painful. I’ve lost more than enough weekends to major application
updates, and I’ve no intention of doing it again.

Well… thanks to Docker services, pushing updates to well-designed apps just got a
lot easier!

To see this, we’re going to deploy a new service. But before we do that we’re going
to create a new overlay network for the service. This isn’t necessary, but I want you
to see how it is done and how to attach the service to it.

$ docker network create -d overlay uber-net

43wfp6pzea470et4d57udn9ws

This creates a new overlay network called “uber-net” that we’ll be able to leverage
with the service we’re about to create. An overlay network creates a new layer 2
network that we can place containers on, and all containers on it will be able to
communicate. This works even if the Docker hosts the containers are running on are
on different underlying networks. Basically, the overlay network creates a new layer
2 container network on top of potentially multiple different underlying networks.

10: Docker Swarm 197

Figure 10.6 shows two underlay networks connected by a layer 3 router. There is then
a single overlay network across both. Docker hosts are connected to the two underlay
networks and containers are connected to the overlay. All containers on the overlay
can communicate even if they are on Docker hosts plumbed into different underlay
networks.

Figure 10.6

Run a docker network ls to verify that the network created properly and is visible
on the Docker host.

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

<Snip>

43wfp6pzea47 uber-net overlay swarm

The uber-net networkwas successfully created with the swarm scope and is currently
only visible on manager nodes in the swarm.

Let’s create a new service and attach it to the network.

10: Docker Swarm 198

$ docker service create --name uber-svc \

--network uber-net \

-p 80:80 --replicas 12 \

nigelpoulton/tu-demo:v1

dhbtgvqrg2q4sg07ttfuhg8nz

Let’s see what we just declared with that docker service create command.

The first thing we did was name the service and then use the --network flag to tell
it to place all replicas on the new uber-net network. We then exposed port 80 across
the entire swarm and mapped it to port 80 inside of each of the 12 replicas we asked
it to run. Finally, we told it to base all replicas on the nigelpoulton/tu-demo:v1 image.

Run a docker service ls and a docker service ps command to verify the state of
the new service.

$ docker service ls

ID NAME REPLICAS IMAGE

dhbtgvqrg2q4 uber-svc 12/12 nigelpoulton/tu-demo:v1

$ docker service ps uber-svc

ID NAME IMAGE NODE DESIRED CURRENT STATE

0v...7e5 uber-svc.1 nigelpoulton/...:v1 wrk3 Running Running 1 min

bh...wa0 uber-svc.2 nigelpoulton/...:v1 wrk2 Running Running 1 min

23...u97 uber-svc.3 nigelpoulton/...:v1 wrk2 Running Running 1 min

82...5y1 uber-svc.4 nigelpoulton/...:v1 mgr2 Running Running 1 min

c3...gny uber-svc.5 nigelpoulton/...:v1 wrk3 Running Running 1 min

e6...3u0 uber-svc.6 nigelpoulton/...:v1 wrk1 Running Running 1 min

78...r7z uber-svc.7 nigelpoulton/...:v1 wrk1 Running Running 1 min

2m...kdz uber-svc.8 nigelpoulton/...:v1 mgr3 Running Running 1 min

b9...k7w uber-svc.9 nigelpoulton/...:v1 mgr3 Running Running 1 min

ag...v16 uber-svc.10 nigelpoulton/...:v1 mgr2 Running Running 1 min

e6...dfk uber-svc.11 nigelpoulton/...:v1 mgr1 Running Running 1 min

e2...k1j uber-svc.12 nigelpoulton/...:v1 mgr1 Running Running 1 min

Passing the service the -p 80:80 flag will ensure that a swarm-wide mapping is
created that maps all traffic, coming in to any node in the swarm on port 80, through
to port 80 inside of any service replica.

10: Docker Swarm 199

This mode of publishing a port on every node in the swarm— even nodes not running
service replicas — is called ingress mode and is the default. The alternative mode
is host mode which only publishes the service on swarm nodes running replicas.
Publishing a service in host mode requires the long-form syntax and looks like the
following:

docker service create --name uber-svc \

--network uber-net \

--publish published=80,target=80,mode=host \

--replicas 12 \

nigelpoulton/tu-demo:v1

Open a web browser and point it to the IP address of any of the nodes in the swarm
on port 80 to see the service running.

Figure 10.7

As you can see, it’s a simple voting application that will register votes for either
“football” or “soccer”. Feel free to point your web browser to other nodes in the
swarm. You’ll be able to reach the web service from any node because the -p 80:80

flag creates an ingress mode mapping on every swarm node. This is true even on

10: Docker Swarm 200

nodes that are not running a replica for the service — every node gets a mapping
and can therefore redirect your request to a node that runs the service.

Now let’s assume that this particular vote has come to an end and your company
is wants to run a new poll. A new image has been created for the new poll and has
been added to the same Docker Hub repository, but this one is tagged as v2 instead
of v1.

Let’s also assume that you’ve been tasked with pushing the updated image to the
swarm in a staged manner — 2 replicas at a time with a 20 second delay between
each. We can use the following docker service update command to accomplish
this.

$ docker service update \

--image nigelpoulton/tu-demo:v2 \

--update-parallelism 2 \

--update-delay 20s uber-svc

Let’s review the command. docker service update lets us make updates to running
services by updating the service’s desired state. This time we gave it a new image tag
v2 instead of v1. And we used the --update-parallelism and the --update-delay
flags to make sure that the new image was pushed to 2 replicas at a time with a
20 second cool-off period in between each. Finally, we told Docker to make these
changes to the uber-svc service.

If we run a docker service ps against the service we’ll see that some of the replicas
are at v2 while some are still at v1. If we give the operation enough time to complete
(4 minutes) all replicas will eventually reach the new desired state of using the v2

image.

10: Docker Swarm 201

$ docker service ps uber-svc

ID NAME IMAGE NODE DESIRED CURRENT STATE

7z...nys uber-svc.1 nigel...v2 mgr2 Running Running 13 secs

0v...7e5 _uber-svc.1 nigel...v1 wrk3 Shutdown Shutdown 13 secs

bh...wa0 uber-svc.2 nigel...v1 wrk2 Running Running 1 min

e3...gr2 uber-svc.3 nigel...v2 wrk2 Running Running 13 secs

23...u97 _uber-svc.3 nigel...v1 wrk2 Shutdown Shutdown 13 secs

82...5y1 uber-svc.4 nigel...v1 mgr2 Running Running 1 min

c3...gny uber-svc.5 nigel...v1 wrk3 Running Running 1 min

e6...3u0 uber-svc.6 nigel...v1 wrk1 Running Running 1 min

78...r7z uber-svc.7 nigel...v1 wrk1 Running Running 1 min

2m...kdz uber-svc.8 nigel...v1 mgr3 Running Running 1 min

b9...k7w uber-svc.9 nigel...v1 mgr3 Running Running 1 min

ag...v16 uber-svc.10 nigel...v1 mgr2 Running Running 1 min

e6...dfk uber-svc.11 nigel...v1 mgr1 Running Running 1 min

e2...k1j uber-svc.12 nigel...v1 mgr1 Running Running 1 min

You can witness the update happening in real-time by opening a web browser to any
node in the swarm and hitting refresh several times. Some of the requests will be
serviced by replicas running the old version and some will be serviced by replicas
running the new version. After enough time, all requests will be serviced by replicas
running the updated version of the service.

Congratulations. You’ve just pushed a rolling update to a live containerized applica-
tion. Remember, Docker Stacks take all of this to the next level in Chapter 14.

If you run a docker inspect --pretty command against the service, you’ll see the
update parallelism and update delay settings are now part of the service definition.
This means future updates will automatically use these settings unless you override
them as part of the docker service update command.

10: Docker Swarm 202

$ docker service inspect --pretty uber-svc

ID: mub0dgtc8szm80ez5bs8wlt19

Name: uber-svc

Service Mode: Replicated

Replicas: 12

UpdateStatus:

State: updating

Started: About a minute

Message: update in progress

Placement:

UpdateConfig:

Parallelism: 2

Delay: 20s

On failure: pause

Monitoring Period: 5s

Max failure ratio: 0

Update order: stop-first

RollbackConfig:

Parallelism: 1

On failure: pause

Monitoring Period: 5s

Max failure ratio: 0

Rollback order: stop-first

ContainerSpec:

Image: nigelpoulton/tu-demo:v2@sha256:d3c0d8c9...cf0ef2ba5eb74c

Resources:

Networks: uber-net

Endpoint Mode: vip

Ports:

PublishedPort = 80

Protocol = tcp

TargetPort = 80

PublishMode = ingress

You should also note a couple of things about the service’s network config. All nodes
in the swarm that are running a replica for the service will have the uber-net overlay
network that we created earlier. We can verify this by running docker network ls

on any node running a replica.

10: Docker Swarm 203

You should also note the Networks portion of the docker inspect output. This shows
the uber-net network as well as the swarm-wide 80:80 port mapping.

Troubleshooting

Swarm Service logs can be viewed with the docker service logs command. How-
ever, not all logging drivers support the command.

By default, Docker nodes configure services to use the json-file log driver, but other
drivers exist, including:

• journald (only works on Linux hosts running systemd)
• syslog

• splunk

• gelf

json-file and journald are the easiest to configure, and both work with the
docker service logs command. The format of the command is docker service

logs <service-name>.

If you’re using 3rd-party logging drivers you should view those logs using the logging
platform’s native tools.

The following snippet from a daemon.json configuration file shows a Docker host
configured to use syslog.

{

"log-driver": "syslog"

}

You can force individual services to use a different driver by passing the --log-

driver and --log-opts flags to the docker service create command. These will
override anything set in daemon.json.

Service logs work on the premise that your application is running as PID 1 in its
container and sending logs to STDOUT, and errors to STDERR. The logging driver
forwards these “logs” to the locations configured via the logging driver.

The following docker service logs command shows the logs for all replicas in the
svc1 service that experienced a couple of failures starting a replica.

10: Docker Swarm 204

$ docker service logs seastack_reverse_proxy

svc1.1.zhc3cjeti9d4@wrk-2 | [emerg] 1#1: host not found...

svc1.1.6m1nmbzmwh2d@wrk-2 | [emerg] 1#1: host not found...

svc1.1.6m1nmbzmwh2d@wrk-2 | nginx: [emerg] host not found..

svc1.1.zhc3cjeti9d4@wrk-2 | nginx: [emerg] host not found..

svc1.1.1tmya243m5um@mgr-1 | 10.255.0.2 "GET / HTTP/1.1" 302

The output is trimmed to fit the page, but you can see that logs from all three service
replicas are shown (the two that failed and the one that’s running). Each line starts
with the name of the replica, which includes the service name, replica number, replica
ID, and name of host that it’s scheduled on. Following that is the log output.

It’s hard to tell because it’s trimmed to fit the book, but it looks like the first two
replicas failed because they were trying to connect to another service that was still
starting (a sort of race condition when dependent services are starting).

You can follow the logs (--follow), tail them (--tail), and get extra details (--
details).

Docker Swarm - The Commands

• docker swarm init is the command to create a new swarm. The node that
you run the command on becomes the first manager and is switched to run in
swarm mode.

• docker swarm join-token reveals the commands and tokens needed to join
workers and managers to existing swarms. To expose the command to join
a new manager, use the docker swarm join-token manager command. To
get the command to join a worker, use the docker swarm join-token worker

command.
• docker node ls lists all nodes in the swarm including which are managers
and which is the leader.

• docker service create is the command to create a new service.
• docker service ls lists running services in the swarm and gives basic info
on the state of the service and any replicas it’s running.

• docker service ps <service> gives more detailed information about indi-
vidual service replicas.

10: Docker Swarm 205

• docker service inspect gives very detailed information on a service. It
accepts the --pretty flag to limit the information returned to the most
important information.

• docker service scale lets you scale the number of replicas in a service up
and down.

• docker service update lets you update many of the properties of a running
service.

• docker service logs lets you view the logs of a service.
• docker service rm is the command to delete a service from the swarm. Use it
with caution as it deletes all service replicas without asking for confirmation.

Chapter summary

Docker swarm is key to the operation of Docker at scale.

At its core, swarm has a secure clustering component, and an orchestration compo-
nent.

The secure clustering component is enterprise-grade and offers a wealth of security
and HA features that are automatically configured and extremely simple to modify.

The orchestration component allows you to deploy and manage microservices appli-
cations in a simple declarative manner. Native Docker Swarm apps are supported,
and so are Kubernetes apps.

We’ll dig deeper into deploying microservices apps in a declarative manner in
Chapter 14.

11: Docker Networking
It’s always the network!

Any time there’s a an infrastructure problem, we always blame the network. Part of
the reason is that networks are at the center of everything — no network, no app!

In the early days of Docker, networking was hard — really hard! These days it’s
almost a pleasure ;-)

In this chapter, we’ll look at the fundamentals of Docker networking. Things like the
Container Network Model (CNM) and libnetwork. We’ll also get our hands dirty
building some networks.

As usual, we’ll split the chapter into three parts:

• The TLDR
• The deep dive
• The commands

Docker Networking - The TLDR

Docker runs applications inside of containers, and these need to communicate over
lots of different networks. This means Docker needs strong networking capabilities.

Fortunately, Docker has solutions for container-to-container networks, as well as
connecting to existing networks and VLANs. The latter is important for containerized
apps that need to communicate with functions and services on external systems such
as VM’s and physicals.

Docker networking is based on an open-source pluggable architecture called the Con-
tainer Network Model (CNM). libnetwork is Docker’s real-world implementation of
the CNM, and it provides all of Docker’s core networking capabilities. Drivers plug
in to libnetwork to provide specific network topologies.

11: Docker Networking 207

To create a smooth out-of-the-box experience, Docker ships with a set of native
drivers that deal with the most common networking requirements. These include
single-host bridge networks, multi-host overlays, and options for plugging into
existing VLANs. Ecosystem partners extend things even further by providing their
own drivers.

Last but not least, libnetwork provides a native service discovery and basic container
load balancing solution.

That’s this big picture. Let’s get into the detail.

Docker Networking - The Deep Dive

We’ll organize this section of the chapter as follows:

• The theory
• Single-host bridge networks
• Multi-host overlay networks
• Connecting to existing networks
• Service Discovery
• Ingress networking

The theory

At the highest level, Docker networking comprises three major components:

• The Container Network Model (CNM)
• libnetwork

• Drivers

The CNM is the design specification. It outlines the fundamental building blocks of
a Docker network.

libenetwork is a real-world implementation of the CNM, and is used by Docker. It’s
written in Go, and implements the core components outlined in the CNM.

11: Docker Networking 208

Drivers extend the model by implementing specific network topologies such as
VXLAN-based overlay networks.

Figure 11.1 shows how they fit together at a very high level.

Figure 11.1

Let’s look a bit closer at each.

The Container Network Model (CNM)

Everything starts with a design!

The design guide for Docker networking is the CNM. It outlines the fundamen-
tal building blocks of a Docker network, and you can read the full spec here:
https://github.com/docker/libnetwork/blob/master/docs/design.md

I recommend reading the entire spec, but at a high level, it defines three building
blocks:

• Sandboxes
• Endpoints
• Networks

A sandbox is an isolated network stack. It includes; Ethernet interfaces, ports,
routing tables, and DNS config.

11: Docker Networking 209

Endpoints are virtual network interfaces (E.g. veth). Like normal network interfaces,
they’re responsible for making connections. In the case of the CNM, it’s the job of
the endpoint to connect a sandbox to a network.

Networks are a software implementation of an 802.1d bridge (more commonly
known as a switch). As such, they group together, and isolate, a collection of
endpoints that need to communicate.

Figure 11.2 shows the three components and how they connect.

Figure 11.2 The Container Network Model (CNM)

The atomic unit of scheduling in a Docker environment is the container, and as the
name suggests, the Container Network Model is all about providing networking
to containers. Figure 11.3 shows how CNM components relate to containers —
sandboxes are placed inside of containers to provide themwith network connectivity.

Figure 11.3

Container A has a single interface (endpoint) and is connected to Network A.

11: Docker Networking 210

Container B has two interfaces (endpoints) and is connected to Network A and
Network B. The containers will be able to communicate because they are both
connected to Network A. However, the two endpoints in Container B cannot
communicate with each other without the assistance of a layer 3 router.

It’s also important to understand that endpoints behave like regular network adapters,
meaning they can only be connected to a single network. Therefore, if a container
needs connecting to multiple networks, it will need multiple endpoints.

Figure 11.4 extends the diagram again, this time adding a Docker host. Although
Container A and Container B are running on the same host, their network stacks are
completely isolated at the OS-level via the sandboxes.

Figure 11.4

Libnetwork

The CNM is the design doc, and libnetwork is the canonical implementation. It’s
open-source, written in Go, cross-platform (Linux and Windows), and used by
Docker.

In the early days of Docker, all the networking code existed inside the daemon.
This was a nightmare — the daemon became bloated, and it didn’t follow the Unix
principle of building modular tools that can work on their own, but also be easily
composed into other projects. As a result, it all got ripped out and refactored into
an external library called libnetwork. Nowadays, all of the core Docker networking
code lives in libnetwork.

11: Docker Networking 211

As you’d expect, it implements all three of the components defined in the CNM.
It also implements native service discovery, ingress-based container load balancing,
and the network control plane and management plane functionality.

Drivers

If libnetwork implements the control plane and management plane functions, then
drivers implement the data plane. For example, connectivity and isolation is all
handled by drivers. So is the actual creation of network objects. The relationship
is shown in Figure 11.5.

Figure 11.5

Docker ships with several built-in drivers, known as native drivers or local drivers.
On Linux they include; bridge, overlay, and macvlan. On Windows they include;
nat, overlay, transparent, and l2bridge. We’ll see how to use some of them later
in the chapter.

3rd-parties can also write Docker network drivers. These are known as remote
drivers, and examples include calico, contiv, kuryr, and weave.

Each driver is in charge of the actual creation and management of all resources on
the networks it is responsible for. For example, an overlay network called “prod-fe-
cuda” will be owned and managed by the overlay driver. This means the overlay

driver will be invoked for the creation, management, and deletion of all resources on
that network.

11: Docker Networking 212

In order to meet the demands of complex highly-fluid environments,libnetwork
allows multiple network drivers to be active at the same time. This means your
Docker environment can sport a wide range of heterogeneous networks.

Single-host bridge networks

The simplest type of Docker network is the single-host bridge network.

The name tells us two things:

• Single-host tells us it only exists on a single Docker host and can only connect
containers that are on the same host.

• Bridge tells us that it’s an implementation of an 802.1d bridge (layer 2 switch).

Docker on Linux creates single-host bridge networks with the built-in bridge driver,
whereas Docker on Windows creates them using the built-in nat driver. For all
intents and purposes, they work the same.

Figure 11.6 shows two Docker hosts with identical local bridge networks called
“mynet”. Even though the networks are identical, they are independent isolated
networks. This means the containers in the picture cannot communicate directly
because they are on different networks.

Figure 11.6

Every Docker host gets a default single-host bridge network. On Linux it’s called
“bridge”, and on Windows it’s called “nat” (yes, those are the same names as the

11: Docker Networking 213

drivers used to create them). By default, this is the network that all new containers
will attach to unless you override it on the command line with the --network flag.

The following listing shows the output of a docker network ls command on newly
installed Linux and Windows Docker hosts. The output is trimmed so that it only
shows the default network on each host. Notice how the name of the network is the
same as the driver that was used to create it — this is coincidence.

//Linux

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

333e184cd343 bridge bridge local

//Windows

> docker network ls

NETWORK ID NAME DRIVER SCOPE

095d4090fa32 nat nat local

The docker network inspect command is a treasure trove of great information!
I highly recommended reading through its output if you’re interested in low-level
detail.

docker network inspect bridge

[

{

"Name": "bridge", << Will be nat on Windows

"Id": "333e184...d9e55",

"Created": "2018-01-15T20:43:02.566345779Z",

"Scope": "local",

"Driver": "bridge", << Will be nat on Windows

"EnableIPv6": false,

"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "172.17.0.0/16"

11: Docker Networking 214

}

]

},

"Internal": false,

"Attachable": false,

"Ingress": false,

"ConfigFrom": {

"Network": ""

},

<Snip>

}

]

Docker networks built with the bridge driver on Linux hosts are based on the battle-
hardened linux bridge technology that has existed in the Linux kernel for over 15
years. This means they’re high performance and extremely stable! It also means you
can inspect them using standard Linux utilities. For example.

$ ip link show docker0

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc...

link/ether 02:42:af:f9:eb:4f brd ff:ff:ff:ff:ff:ff

The default “bridge” network, on all Linux-based Docker hosts, maps to an underly-
ing Linux bridge in the kernel called “docker0”. We can see this from the output of
docker network inspect.

$ docker network inspect bridge | grep bridge.name

"com.docker.network.bridge.name": "docker0",

The relationship betweenDocker’s default “bridge” network and the “docker0” bridge
in the Linux kernel is shown in Figure 11.7.

11: Docker Networking 215

Figure 11.7

Figure 11.8 extends the diagram by adding containers at the top that plug into the
“bridge” network. The “bridge” network maps to the “docker0” Linux bridge in the
host’s kernel, which can be mapped back to an Ethernet interface on the host via port
mappings.

Figure 11.8

Let’s use the docker network create command to create a new single-host bridge
network called “localnet”.

//Linux

$ docker network create -d bridge localnet

//Windows

> docker network create -d nat localnet

The new network is created, and will appear in the output of any future docker

11: Docker Networking 216

network ls commands. If you are using Linux, youwill also have a new Linux bridge
created in the kernel.

Let’s use the Linux brctl tool to look at the Linux bridges currently on the system.
You may have to manually install the brctl binary using apt-get install bridge-

utils, or the equivalent for your Linux distro.

$ brctl show

bridge name bridge id STP enabled interfaces

docker0 8000.0242aff9eb4f no

br-20c2e8ae4bbb 8000.02429636237c no

The output shows two bridges. The first line is the “docker0” bridge that we
already know about. This relates to the default “bridge” network in Docker. The
second bridge (br-20c2e8ae4bbb) relates to the new localnetDocker bridge network.
Neither of them have spanning tree enabled, and neither have any devices connected
(interfaces column).

At this point, the bridge configuration on the host looks like Figure 11.9.

Figure 11.9

Let’s create a new container and attach it to the new localnet bridge network. If
you’re following along on Windows, you should substitute “alpine sleep 1d” with
“microsoft/powershell:nanoserver pwsh.exe -Command Start-Sleep 86400”.

$ docker container run -d --name c1 \

--network localnet \

alpine sleep 1d

This container will now be on the localnet network. You can confirm this with a
docker network inspect.

11: Docker Networking 217

$ docker network inspect localnet --format '{{json .Containers}}'

{

"4edcbd...842c3aa": {

"Name": "c1",

"EndpointID": "43a13b...3219b8c13",

"MacAddress": "02:42:ac:14:00:02",

"IPv4Address": "172.20.0.2/16",

"IPv6Address": ""

}

},

The output shows that the new “c1” container is on the localnet bridge/nat network.

It we run the Linux brctl show command again, we’ll see c1’s interface attached to
the br-20c2e8ae4bbb bridge.

$ brctl show

bridge name bridge id STP enabled interfaces

br-20c2e8ae4bbb 8000.02429636237c no vethe792ac0

docker0 8000.0242aff9eb4f no

This is shown in Figure 11.10.

Figure 11.10

If we add another new container to the same network, it should be able to ping the
“c1” container by name. This is because all new containers are registered with the
embedded Docker DNS service so can resolve the names of all other containers on
the same network.

11: Docker Networking 218

Beware: The default bridge network on Linux does not support name
resolution via the Docker DNS service. All other user-defined bridge
networks do!

Let’s test it.

1. Create a new interactive container called “c2” and put it on the same localnet
network as “c1”.

//Linux

$ docker container run -it --name c2 \

--network localnet \

alpine sh

//Windows

> docker container run -it --name c2 `

--network localnet `

microsoft/powershell:nanoserver

Your terminal will switch into the “c2” container.
2. From within the “c2” container, ping the “c1” container by name.

> ping c1

Pinging c1 [172.26.137.130] with 32 bytes of data:

Reply from 172.26.137.130: bytes=32 time=1ms TTL=128

Reply from 172.26.137.130: bytes=32 time=1ms TTL=128

Control-C

It works! This is because the c2 container is running a local DNS resolver
that forwards requests to an internal Docker DNS server. This DNS server
maintains mappings for all containers started with the --name or --net-alias
flag.

Try running some network-related commands while you’re still logged on to the
container. It’s a great way of learning more about how Docker container networking
works. The following snippet shows the ipconfig command ran from inside the “c2”
Windows container previously created. You can match this IP address to the one
shown in the docker network inspect nat output.

11: Docker Networking 219

> ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix . :

Link-local IPv6 Address : fe80::14d1:10c8:f3dc:2eb3%4

IPv4 Address. : 172.26.135.0

Subnet Mask : 255.255.240.0

Default Gateway : 172.26.128.1

So far, we’ve said that containers on bridge networks can only communicate with
other containers on the same network. However, you can get around this using port
mappings.

Port mappings let you map a container port to a port on the Docker host. Any traffic
hitting the Docker host on the configured port will be directed to the container. The
high-level flow is shown in Figure 1.11

Figure 11.11

In the diagram, the application running in the container is operating on port 80. This
is mapped to port 5000 on the host’s 10.0.0.15 interface. The end result is all traffic
hitting the host on 10.0.0.15:5000 being redirected to the container on port 80.

11: Docker Networking 220

Let’s walk through an example of mapping port 80 on a container running a web
server, to port 5000 on the Docker host. The example will use NGINX on Linux. If
you’re following along onWindows, you’ll need to substitute nginxwith aWindows-
based web server image.

1. Run a new web server container and map port 80 on the container to port 5000
on the Docker host.

$ docker container run -d --name web \

--network localnet \

--publish 5000:80 \

nginx

2. Verify the port mapping.

$ docker port web

80/tcp -> 0.0.0.0:5000

This shows that port 80 in the container is mapped to port 5000 on all interfaces
on the Docker host.

3. Test the configuration by pointing a web browser to port 5000 on the Docker
host. To complete this step, you will need to know the IP or DNS name of your
Docker host. If you’re using Docker for Windows or Docker for Mac, you’ll be
able to use localhost or 127.0.0.1.

Figure 11.12

11: Docker Networking 221

External systems, can now access the NGINX container running on the
localnet bridge network via a port mapping to TCP port 5000 on the Docker
host.

Mapping ports like this works, but it’s clunky and doesn’t scale. For example, only
a single container can bind to any port on the host. This means no other containers
will be able to use port 5000 on the host we’re running the NGINX container on.
This is one of the reason’s that single-host bridge networks are only useful for local
development and very small applications.

Multi-host overlay networks

We’ve got an entire chapter dedicated to multi-host overlay networks. So we’ll keep
this section short.

Overlay networks are multi-host. They allow a single network to span multiple hosts
so that containers on different hosts can communicate at layer 2. They’re ideal for
container-to-container communication, including container-only applications, and
they scale well.

Docker provides a native driver for overlay networks. This makes creating them as
simple as adding the --d overlay flag to the docker network create command.

Connecting to existing networks

The ability to connect containerized apps to external systems and physical networks
is vital. A common example is a partially containerized app — the containerized parts
will need a way to communicate with the non-containerized parts still running on
existing physical networks and VLANs.

The built-in MACVLAN driver (transparent on Windows) was created with this in
mind. It makes containers first-class citizens on the existing physical networks by
giving each one its own MAC and IP addresses. We show this in Figure 11.13.

11: Docker Networking 222

Figure 11.13

On the positive side, MACVLAN performance is good as it doesn’t require port
mappings or additional bridges — you connect the container interface through to
the hosts interface (or a sub-interface). However, on the negative side, it requires
the host NIC to be in promiscuous mode, which isn’t allowed on most public cloud
platforms. So MACVLAN is great for your corporate data center networks (assuming
your network team can accommodate promiscuous mode), but it won’t work in the
public cloud.

Let’s dig a bit deeper with the help of some pictures and a hypothetical example.

Assume we have an existing physical network with two VLANS:

• VLAN 100: 10.0.0.0/24
• VLAN 200: 192.168.3.0/24

Figure 11.14

Next, we add a Docker host and connect it to the network.

11: Docker Networking 223

Figure 11.15

We then have a requirement for a container (app service) to be plumbed into VLAN
100. To do this, we create a new Docker network with the macvlan driver. However,
the macvlan driver needs us to tell it a few things about the network we’re going to
associate it with. Things like:

• Subnet info
• Gateway
• Range of IP’s it can assign to containers
• Which interface or sub-interface on the host to use

The following command will create a newMACVLAN network called “macvlan100”
that will connect containers to VLAN 100.

$ docker network create -d macvlan \

--subnet=10.0.0.0/24 \

--ip-range=10.0.00/25 \

--gateway=10.0.0.1 \

-o parent=eth0.100 \

macvlan100

This will create the “macvlan100” network and the eth0.100 sub-interface. The config
now looks like this.

11: Docker Networking 224

Figure 11.16

MACVLAN uses standard Linux sub-interfaces, and you have to tag them with the
ID of the VLAN they will connect to. In this example we’re connecting to VLAN 100,
so we tag the sub-interface with .100 (etho.100).

We also used the --ip-range flag to tell the MACVLAN network which sub-set of IP
addresses it can assign to containers. It’s vital that this range of addresses be reserved
for Docker and not in use by other nodes or DHCP servers, as there is nomanagement
plane feature to check for overlapping IP ranges.

The macvlan100 network is ready for containers, so let’s deploy one with the
following command.

$ docker container run -d --name mactainer1 \

--network macvlan100 \

alpine sleep 1d

The config now looks like Figure 11.17. But remember, the underlying network
(VLAN 100) does not see any of the MACVLAN magic, it only sees the container

11: Docker Networking 225

with its MAC and IP addresses. And with that in mind, the “mactainer1” container
will be able to ping and communicate with any other systems on VLAN 100. Pretty
sweet!

Note: If you can’t get this to work, it might be because the host NIC is
not in promiscuous mode. Remember that public cloud platforms do not
allow promiscuous mode.

Figure 11.17

At this point, we’ve got aMACVLAN network and used it to connect a new container
to an existing VLAN. However, it doesn’t stop there. The DockerMACVLAN driver is
built on top of the tried-and-tested Linux kernel driver with the same name. As such,
it supports VLAN trunking. This means we can create multiple MACVLAN networks
and connect containers on the same Docker host to them as shown in Figure 11.18.

11: Docker Networking 226

Figure 11.18

That pretty much covers MACVLAN. Windows offers a similar solution with the
transparent driver.

Container and Service logs for troubleshooting

A quick note on troubleshooting connectivity issues before moving on to Service
Discovery.

If you think you’re experiencing connectivity issues between containers, it’s worth
checking the daemon logs and container logs (app logs).

On Windows systems, the daemon logs are stored under ∼AppData\Local\Docker,
and you can view them in the Windows Event Viewer. On Linux, it depends what
init system you’re using. If you’re running a systemd, the logs will go to journald

and you can view them with the journalctl -u docker.service command. If
you’re not running systemd you should look under the following locations:

• Ubuntu systems running upstart: /var/log/upstart/docker.log

11: Docker Networking 227

• RHEL-based systems: /var/log/messages
• Debian: /var/log/daemon.log
• Docker forMac:∼/Library/Containers/com.docker.docker/Data/com.docker.driver.amd64-

linux/console-ring

You can also tell Docker how verbose you want daemon logging to be. To do this,
you edit the daemon config file (daemon.json) so that “debug” is set to “true” and
“log-level” is set to one of the following:

• debug The most verbose option
• info The default value and second-most verbose option
• warn Third most verbose option
• error Fourth most verbose option
• fatal Least verbose option

The following snippet from a daemon.json enables debugging and sets the level to
debug. It will work on all Docker platforms.

{

<Snip>

"debug":true,

"log-level":"debug",

<Snip>

}

Be sure to restart Docker after making changes to the file.

That was the daemon logs. What about container logs?

Logs from standalone containers can be viewed with the docker container logs

command, and Swarm Service logs can be viewed with the docker service logs

command. However, Docker supports lots of logging drivers, and they don’t all work
with the docker logs command.

As well as a driver and configuration for engine logs, every Docker host has a default
logging driver and configuration for containers. Some of the drivers include:

11: Docker Networking 228

• json-file (default)
• journald (only works on Linux hosts running systemd)
• syslog

• splunk

• gelf

json-file and journald are probably the easiest to configure, and they both
work with the docker logs and docker service logs commands. The format
of the commands is docker logs <container-name> and docker service logs

<service-name>.

If you’re using other logging drivers you can view logs using the 3-rd party platform’s
native tools.

The following snippet from a daemon.json shows a Docker host configured to use
syslog.

{

"log-driver": "syslog"

}

You can configure an individual container, or service, to start with a particular
logging driver with the --log-driver and --log-opts flags. These will override
anything set in daemon.json.

Container logs work on the premise that your application is running as PID 1 in its
container, and sending logs to STDOUT, and errors to STDERR. The logging driver then
forwards these “logs” to the locations configured via the logging driver.

If your application logs to a file, it’s possible to use a symlink to redirect log-file
writes to STDOUT and STDERR.

The following is an example of running the docker logs command against a
container called “vantage-db” configured to use the json-file logging driver.

11: Docker Networking 229

$ docker logs vantage-db

1:C 2 Feb 09:53:22.903 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo

1:C 2 Feb 09:53:22.904 # Redis version=4.0.6, bits=64, commit=00000000, modi\

fied=0, pid=1

1:C 2 Feb 09:53:22.904 # Warning: no config file specified, using the defaul\

t config.

1:M 2 Feb 09:53:22.906 * Running mode=standalone, port=6379.

1:M 2 Feb 09:53:22.906 # WARNING: The TCP backlog setting of 511 cannot be e\

nforced because...

1:M 2 Feb 09:53:22.906 # Server initialized

1:M 2 Feb 09:53:22.906 # WARNING overcommit_memory is set to 0!

There’s a good chance you’ll find network connectivity errors reported in the daemon
logs or container logs.

Service discovery

As well as core networking, libnetwork also provides some important network
services.

Service discovery allows all containers and Swarm services to locate each other by
name. The only requirement is that they be on the same network.

Under the hood, this leverages Docker’s embedded DNS server, as well as a DNS
resolver in each container. Figure 11.19 shows container “c1” pinging container “c2”
by name. The same principle applies to Swarm Services.

Figure 11.19

Let’s step through the process.

11: Docker Networking 230

• step 1: The ping c2 command invokes the local DNS resolver to resolve the
name “c2” to an IP address. All Docker containers have a local DNS resolver.

• Step 2: If the local resolver does not have an IP address for “c2” in its local
cache, it initiates a recursive query to theDocker DNS server. The local resolver
is pre-configured to know the details of the embedded Docker DNS server.

• Step 3: The Docker DNS server holds name-to-IP mappings for all containers
created with the --name or --net-alias flags. This means it knows the IP
address of container “c2”.

• Step 4: The DNS server returns the IP address of “c2” to the local resolver in
“c1”. It does this because the two containers are on the same network — if they
were on different networks this would not work.

• Step 5: The ping command is sent to the IP address of “c2”.

Every Swarm Service and standalone container started with the --name flag will
register its name and IP with the Docker DNS service. This means all containers and
service replicas can use the Docker DNS service to find each other.

However, service discovery is network-scoped. This means that name resolution only
works for containers and Services on the same network. If two containers are on
different networks, they will not be able to resolve each other.

One last point on service discovery and name resolution…

It’s possible to configure Swarm Services and standalone containers with customized
DNS options. For example, the --dns flag lets you specify a list of customDNS servers
to use in case the embedded Docker DNS server cannot resolve a query. You can
also use the --dns-search flag to add custom search domains for queries against
unqualified names (i.e. when the query is not a fully qualified domain name).

On Linux, these all work by adding entries to the /etc/resolv.conf file inside the
container.

The following example will start a new standalone container and add the infamous
8.8.8.8Google DNS server, as well as dockercerts.com as search domain to append
to unqualified queries.

11: Docker Networking 231

$ docker container run -it --name c1 \

--dns=8.8.8.8 \

--dns-search=dockercerts.com \

alpine sh

Ingress load balancing

Swarm supports two publishing modes that make Services accessible from outside of
the cluster:

• Ingress mode (default)
• Host mode

Services published via ingress mode can be accessed from any node in the Swarm —
even nodes not running a service replica. Services published via host mode can only
be accessed via nodes running service replicas. Figure 11.20 shows the difference
between the two modes.

Figure 11.20

11: Docker Networking 232

Ingress mode is the default. This means that any time you publish a service with -p

or --publish it will default to ingress mode. To publish a service in host mode you
need to use the long format of the --publish flag and add mode=host. Let’s see an
example using host mode.

$ docker service create -d --name svc1 \

--publish published=5000,target=80,mode=host \

nginx

A few notes about the command. docker service create lets you publish a service
using either a long form syntax or short form syntax. The short form looks like this:
-p 5000:80 and we’ve seen it a few times already. However, you cannot publish a
service in host mode using short form.

The long form looks like this: --publish published=5000,target=80,mode=host.
It’s a comma-separate list with no whitespace after each comma. The options work
as follows:

• published=5000 makes the service available externally via port 5000
• target=80makes sure that external requests to the published port get mapped
back to port 80 on the service replicas

• mode=hostmakes sure that external requests will only reach the service if they
come in via nodes running a service replica.

Ingress mode is what you’ll normally use.

Behind the scenes, ingress mode uses a layer 4 routing mesh called the Service Mesh
or the Swarm Mode Service Mesh. Figure 11.21 shows the basic traffic flow of an
external request to a service exposed in ingress mode.

11: Docker Networking 233

Figure 11.21

Let’s quickly walk through the diagram.

1. The command at the top is deploying a new Swarm service called “svc1”. It’s
attaching the service to the overnet network and publishing it on port 5000.

2. Publishing a Swarm service like this (--publish published=5000,target=80)
will publish it on port 5000 on the ingress network. As all nodes in a Swarm are
attached to the ingress network, this means the port is published swarm-wide.

3. Logic is implemented on the cluster ensuring that any traffic hitting the ingress
network, via any node, on port 5000 will be routed to the “svc1” service on
port 80.

4. At this point, a single replica for the “svc1” service is deployed, and the cluster
has a mapping rule that says “all traffic hitting the ingress network on port
5000 needs routing to a node running a replica for the “svc1” service”.

5. The red line shows traffic hitting node1 on port 5000 and being routed to the
service replica running on node2 via the ingress network.

It’s vital to know that the incoming traffic could have hit any of the four Swarm
nodes on port 5000 and we would get the same result. This is because the service is
published swarm-wide via the ingress network.

11: Docker Networking 234

It’s also vital to know that if there were multiple replicas running, as shown in Figure
11.22, the traffic would be balanced across all replicas.

Figure 11.22

Docker Networking - The Commands

Docker networking has its own docker network sub-command. The main com-
mands include:

• docker network ls Lists all networks on the local Docker host.
• docker network create Creates new Docker networks. By default, it creates
themwith the nat driver onWindows, and the bridge driver on Linux. You can
specify the driver (type of network) with the -d flag. docker network create

-d overlay overnet will create a new overlay network called overnet with
the native Docker overlay driver.

• docker network inspect Provides detailed configuration information about
a Docker network.

• docker network prune Deletes all unused networks on a Docker host.
• docker network rm Deletes specific networks on a Docker host.

11: Docker Networking 235

Chapter Summary

The Container Network Model (CNM) is the master design document for Docker
networking and defines the three major constructs that are used to build Docker
networks — sandboxes, endpoints, and networks.

libnetwork is the open-source library, written in Go, that implements the CNM. It’s
used by Docker and is where all of the core Docker networking code lives. It also
provides Docker’s network control plane and management plane.

Drivers extend the Docker network stack (libnetwork) by adding code to implement
specific network types, such as bridge networks and overlay networks. Docker ships
with several built-in drivers, but you can also use 3rd-party drivers.

Single-host bridge networks are the most basic type of Docker network and are
suitable for local development and very small applications. They do not scale, and
they require port mappings if you want to publish your services outside of the
network. Docker on Linux implements bridge networks using the built-in bridge

driver, whereas Docker on Windows implements them using the built-in nat driver.

Overlay networks are all the rage and are excellent container-only multi-host
networks. We’ll talk about them in-depth in the next chapter.

The macvlan driver (transparent on Windows) allows you to connect containers
to existing physical networks and VLANs. They make containers first-class citizens
by giving them their own MAC and IP addresses. Unfortunately, they require
promiscuous on the host NIC, meaning they won’t work in the public cloud.

Docker also uses libnetwork to implement basic service discovery, as well as a
service mesh for container-based load balancing of ingress traffic.

12: Docker overlay networking
Overlay networks are at the beating heart of most things we do with container-
related networking. In this chapter we’ll cover the fundamentals of native Docker
overlay networking, as implemented in a Docker Swarm cluster.

Docker overlay networking on Windows has feature parity with Linux. This means
the examples we’ll use in this chapter will all work on Linux and Windows.

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Let’s do some networking magic!

Docker overlay networking - The TLDR

In the real world, it’s vital that containers can communicate with each other reliably
and securely, even when they’re on different hosts that are on different networks.
This is where overlay networking comes in to play. It allows you to create a flat,
secure, layer-2 network, spanning multiple hosts. Containers connect to this and can
communicate directly.

Docker offers native overlay networking that is simple to configure and secure by
default.

Behind the scenes, it’s built on top of libnetwork and drivers.

• libnetwork

• drivers

12: Docker overlay networking 237

Libnetwork is the canonical implementation of the Container Network Model
(CNM), and drivers are pluggable components that implement different networking
technologies and topologies. Docker offers native drivers such as the overlay driver,
and third parties also offer drivers.

Docker overlay networking - The deep dive

In March 2015, Docker, Inc. acquired a container networking startup called Socket
Plane. Two of the reasons behind the acquisition were to bring real networking to
Docker, and to make container networking simple enough that even developers could
do it :-P

They’ve made immense progress on both fronts.

However, hiding behind the simple networking commands are a lot of moving parts.
The kind of stuff you need understand before doing production deployments and
attempting to troubleshoot issues!

The rest of this chapter will be broken into two parts:

• Part 1: we’ll build and test a Docker overlay network in Swarm mode
• Part 2: We’ll explain the theory behind how it works.

Build and test a Docker overlay network in Swarm
mode

For the following examples, we’ll use two Docker hosts, on two separate Layer 2
networks, connected by a router. See Figure 12.1, and note the different networks
that each node is on.

12: Docker overlay networking 238

Figure 12.1

You can follow along with either Linux orWindows Docker hosts. Linux should have
at least a 4.4 Linux kernel (newer is always better) andWindows should beWindows
Server 2016 with the latest hotfixes installed.

Build a Swarm

The first thing we’ll do is configure the two hosts into a two-node Swarm. We’ll run
the docker swarm init command on node1 to make it a manager, and then we’ll
run the docker swarm join command on node2 to make it a worker.

Warning: If you are following along in your own lab, you’ll need to
swap the IP addresses, container IDs, tokens etc. with the correct values
for your environment.

Run the following command on node1.

12: Docker overlay networking 239

$ docker swarm init \

--advertise-addr=172.31.1.5 \

--listen-addr=172.31.1.5:2377

Swarm initialized: current node (1ex3...o3px) is now a manager.

Run the next command on node2. For this to work on Windows Server, you may
need to modify your Windows firewall rules to allow ports 2377/tcp, 7946/tcp and
7946/udp.

$ docker swarm join \

--token SWMTKN-1-0hz2ec...2vye \

172.31.1.5:2377

This node joined a swarm as a worker.

We now have a two-node Swarm with node1 as a manager and node2 as a worker.

Create a new overlay network

Now let’s create a new overlay network called uber-net.

Run the following command from node1 (manager). For this to work on Windows
you may need to add a rule for port 4789/udp on your Windows Docker nodes.

$ docker network create -d overlay uber-net

c740ydi1lm89khn5kd52skrd9

That’s it! You’ve just created a brand-new overlay network that is available to all
hosts in the Swarm and has its control plane encrypted with TLS! If you want to
encrypt the data plane, you just add the -o encrypted flag to the command.

You can list all networks on each node with the docker network ls command.

12: Docker overlay networking 240

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

ddac4ff813b7 bridge bridge local

389a7e7e8607 docker_gwbridge bridge local

a09f7e6b2ac6 host host local

ehw16ycy980s ingress overlay swarm

2b26c11d3469 none null local

c740ydi1lm89 uber-net overlay swarm

The output will look more like this on a Windows server:

NETWORK ID NAME DRIVER SCOPE

8iltzv6sbtgc ingress overlay swarm

6545b2a61b6f nat nat local

96d0d737c2ee none null local

nil5ouh44qco uber-net overlay swarm

The network we created is at the bottom of the list called uber-net. The other
networks were automatically created when Docker was installed and when we
initialized the Swarm.

If you run the docker network ls command on node2, you’ll notice that it can’t see
the uber-net network. This is because new overlay networks are only made available
to worker nodes that are running containers attached to them. This lazy approach
improves network scalability by reducing the amount of network gossip.

Attach a service to the overlay network

Now that we have an overlay network, let’s create a new Docker service and attach
it to it. We’ll create the service with two replicas (containers) so that one runs on
node1 and the other runs on node2. This will automatically extend the uber-net
overlay to node2

Run the following commands from node1.

Linux example:

12: Docker overlay networking 241

$ docker service create --name test \

--network uber-net \

--replicas 2 \

ubuntu sleep infinity

Windows example:

> docker service create --name test `

--network uber-net `

--replicas 2 `

microsoft\powershell:nanoserver Start-Sleep 3600

Note: The Windows example uses the backtick character to split pa-
rameters over multiple lines to make the command more readable. The
backtick is how PowerShell escapes line feeds.

The command creates a new service called test, attaches it to the uber-net overlay
network, and creates two replicas (containers) based on the image provided. In both
examples, we issued a sleep command to the containers to keep them running and
stop them from exiting.

Because we’re running two replicas (containers), and the Swarm has two nodes, one
replica will be scheduled on each node.

Verify the operation with a docker service ps command.

$ docker service ps test

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE

77q...rkx test.1 ubuntu node1 Running Running

97v...pa5 test.2 ubuntu node2 Running Running

When Swarm starts a container on an overlay network, it automatically extends
that network to the node the container is running on. This means that the uber-net
network is now visible on node2.

Congratulations! You’ve created a new overlay network spanning two nodes on
separate physical underlay networks. You’ve also attached two containers to it. How
simple was that!

12: Docker overlay networking 242

Test the overlay network

Now let’s test the overlay network with the ping command.

As shown in Figure 12.2, we’ve got two Docker hosts on separate networks, with a
single overlay plumbed into both. We’ve got one container connected to the overlay
network on each node. Let’s see if they can ping each other.

Figure 12.2

To perform the test, we’ll need the IP address of each container (for the purposes of
this test, we’re ignoring the fact that containers on the same overlay can ping each
other by name).

Run a docker network inspect to see the Subnet assigned to the overlay.

12: Docker overlay networking 243

$ docker network inspect uber-net

[

{

"Name": "uber-net",

"Id": "c740ydi1lm89khn5kd52skrd9",

"Scope": "swarm",

"Driver": "overlay",

"EnableIPv6": false,

"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{

"Subnet": "10.0.0.0/24",

"Gateway": "10.0.0.1"

}

<Snip>

The output above shows that uber-net’s subnet is 10.0.0.0/24. Note that this
does not match either of the physical underlay networks (172.31.1.0/24 and
192.168.1.0/24).

Run the following two commands onnode1 and node2. Thesewill get the container’s
ID’s and IP addresses. Be sure to use the container ID’s from your own lab in the
second command.

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS

396c8b142a85 ubuntu:latest "sleep infinity" 2 hours ago Up 2 hrs

$ docker container inspect \

--format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' 396c8b\

142a85

10.0.0.3

Make sure you run these commands on both nodes to get the IP addresses of both
containers.

12: Docker overlay networking 244

Figure 12.3 shows the configuration so far. Subnet and IP addresses may be different
in your lab.

Figure 12.3

As we can see, there is a Layer 2 overlay network spanning both hosts, and each
container has an IP address on this overlay network. This means that the container
on node1 will be able to ping the container on node2 using its 10.0.0.4 address
from the overlay network. This works despite the fact that both nodes are on different
Layer 2 underlay networks. Let’s prove it.

Log on to the container on node1 and ping the remote container.

To do this on the Linux Ubuntu container you will need to install the ping utility.
If you’re following along with the Windows PowerShell example the ping utility is
already installed.

Remember that the container IDs will be different in your environment.

Linux example:

12: Docker overlay networking 245

$ docker container exec -it 396c8b142a85 bash

root@396c8b142a85:/# apt-get update

<Snip>

root@396c8b142a85:/# apt-get install iputils-ping

Reading package lists... Done

Building dependency tree

Reading state information... Done

<Snip>

Setting up iputils-ping (3:20121221-5ubuntu2) ...

Processing triggers for libc-bin (2.23-0ubuntu3) ...

root@396c8b142a85:/# ping 10.0.0.4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=1.06 ms

64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=1.07 ms

64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=1.03 ms

64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=1.26 ms

^C

root@396c8b142a85:/#

Windows example:

> docker container exec -it 1a4f29e5a4b6 pwsh.exe

Windows PowerShell

Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\> ping 10.0.0.4

Pinging 10.0.0.4 with 32 bytes of data:

Reply from 10.0.0.4: bytes=32 time=1ms TTL=128

Reply from 10.0.0.4: bytes=32 time<1ms TTL=128

Reply from 10.0.0.4: bytes=32 time=2ms TTL=128

Reply from 10.0.0.4: bytes=32 time=2ms TTL=12

PS C:\>

12: Docker overlay networking 246

Congratulations. The container on node1 can ping the container on node2 using the
overlay network.

You can also trace the route of the ping command from within the container. This
will report a single hop, proving that the containers are communicating directly over
the overlay network — blissfully unaware of any underlay networks that are being
traversed.

Note: For the traceroute to work on the Linux example, you will need
to install the traceroute package.

Linux example:

$ root@396c8b142a85:/# traceroute 10.0.0.4

traceroute to 10.0.0.4 (10.0.0.4), 30 hops max, 60 byte packets

1 test-svc.2.97v...a5.uber-net (10.0.0.4) 1.110ms 1.034ms 1.073ms

Windows example:

PS C:\> tracert 10.0.0.3

Tracing route to test.2.ttcpiv3p...7o4.uber-net [10.0.0.4]

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms test.2.ttcpiv3p...7o4.uber-net [10.0.0.4]

Trace complete.

So far, we’ve created an overlay network with a single command. We then added
containers to it. The containers were scheduled on two hosts that were on two
different Layer 2 underlay networks. Once we worked out the container’s IP
addresses, we proved that they could talk directly over the overlay network.

12: Docker overlay networking 247

The theory of how it all works

Now that we’ve seen how to build and use a container overlay network, let’s find
out how it’s all put together behind the scenes.

Some of the detail in this section will be specific to Linux. However, the same overall
principles apply to Windows.

VXLAN primer

First and foremost, Docker overlay networking uses VXLAN tunnels to create virtual
Layer 2 overlay networks. So, before we go any further, let’s do a quick VXLAN
primer.

At the highest level, VXLANs let you create a virtual Layer 2 network on top of an
existing Layer 3 infrastructure. The example we used earlier created a new 10.0.0.0/24
Layer 2 network on top of a Layer 3 IP network comprising two Layer 2 networks —
172.31.1.0/24 and 192.168.1.0/24. This is shown in Figure 12.4.

Figure 12.4

The beauty of VXLAN is that it’s an encapsulation technology that existing routers
and network infrastructure just see as regular IP/UDP packets and handle without
issue.

12: Docker overlay networking 248

To create the virtual Layer 2 overlay network, a VXLAN tunnel is created through
the underlying Layer 3 IP infrastructure. You might hear the term underlay network
used to refer to the underlying Layer 3 infrastructure.

Each end of the VXLAN tunnel is terminated by a VXLAN Tunnel Endpoint (VTEP).
It’s this VTEP that performs the encapsulation/de-encapsulation and other magic
required to make all of this work. See Figure 12.5.

Figure 12.5

Walk through our two-container example

In the example we built earlier, we had two hosts connected via an IP network. Each
host ran a single container, and we created a single VXLAN overlay network for the
containers to connect to.

To accomplish this, a new sandbox (network namespace) was created on each host.
As mentioned in the previous chapter, a sandbox is like a container, but instead of
running an application, it runs an isolated network stack — one that’s sandboxed
from the network stack of the host itself.

A virtual switch (a.k.a. virtual bridge) called Br0 is created inside the sandbox. A
VTEP is also created with one end plumbed into the Br0 virtual switch, and the

12: Docker overlay networking 249

other end plumbed into the host network stack (VTEP). The end in the host network
stack gets an IP address on the underlay network the host is connected to, and is
bound to a UDP socket on port 4789. The two VTEPs on each host create the overlay
via a VXLAN tunnel as seen in Figure 12.6.

Figure 12.6

This is essentially the VXLAN overlay network created and ready for use.

Each container then gets its own virtual Ethernet (veth) adapter that is also plumbed
into the local Br0 virtual switch. The topology now looks like Figure 12.7, and it
should be getting easier to see how the two containers can communicate over the
VXLAN overlay network despite their hosts being on two separate networks.

12: Docker overlay networking 250

Figure 12.7

Communication example

Now that we’ve seen the main plumbing elements, let’s see how the two containers
communicate.

For this example, we’ll call the container on node1 “C1” and the container on node2
“C2”. And let’s assume C1 wants to ping C2 like we did in the practical example
earlier in the chapter.

12: Docker overlay networking 251

Figure 12.8

C1 creates the ping requests and sets the destination IP address to be the 10.0.0.4
address of C2. It sends the traffic over its veth interface which is connected to the
Br0 virtual switch. The virtual switch doesn’t know where to send the packet as
it doesn’t have an entry in its MAC address table (ARP table) that corresponds to
the destination IP address. As a result, it floods the packet to all ports. The VTEP
interface connected to Br0 knows how to forward the frame, so responds with its
own MAC address. This is a proxy ARP reply and results in the Br0 switch learning
how to forward the packet. So it updates its ARP table, mapping 10.0.0.4 to the MAC
address of the local VTEP.

Now that the Br0 switch has learned how to forward traffic to C2, all future packets
for C2 will be transmitted directly to the VTEP interface. The VTEP interface knows
about C2 because all newly started containers have their network details propagated
to other nodes in the Swarm using the network’s built-in gossip protocol.

The switch then sends the packet to the VTEP interface, which encapsulates the
frames so they can be sent over the underlay transport infrastructure. At a fairly high
level, this encapsulation includes adding a VXLAN header to the Ethernet frame.

12: Docker overlay networking 252

The VXLAN header contains the VXLAN network ID (VNID) which is used to map
frames from VLANs to VXLANs and vice versa. Each VLAN gets mapped to VNID
so that the packet can be de-encapsulated on the receiving end and forwarded to
the correct VLAN. This obviously maintains network isolation. The encapsulation
also wraps the frame in a UDP packet with the IP address of the remote VTEP on
node2 in the destination IP field, and the UDP port 4789 socket information. This
encapsulation allows the data to be sent across the underlying networks without the
underlying networks having to know anything about VXLAN.

When the packet arrives at node2, the kernel sees that it’s addressed to UDP port
4789. The kernel also knows that it has a VTEP interface bound to this socket. As a
result, it sends the packet to the VTEP, which reads the VNID, de-encapsulates the
packet, and sends it on to its own local Br0 switch on the VLAN that corresponds
the VNID. From there it is delivered to container C2.

That’s the basics of how VXLAN technology is leveraged by native Docker overlay
networking.

We’re only scratching the surface here, but it should be enough for you to be able
to start the ball rolling with any potential production Docker deployments. It should
also give you the knowledge required to talk to your networking team about the
networking aspects of your Docker infrastructure.

One final thing. Docker also supports Layer 3 routing within the same overlay net-
work. For example, you can create an overlay network with two subnets, and Docker
will take care of routing between them. The command to create a network like this
could be docker network create --subnet=10.1.1.0/24 --subnet=11.1.1.0/24

-d overlay prod-net. This would result in two virtual switches, Br0 and Br1, being
created inside the sandbox, and routing happens by default.

Docker overlay networking - The commands

• docker network create is the command that we use to create a new container
network. The -d flag lets you specify the driver to use, and the most common
driver is the overlay driver. You can also specify remote drivers from 3rd
parties. For overlay networks, the control plane is encrypted by default. Just
add the -o encrypted flag to encrypt the data plane (performance overheads
may be incurred).

12: Docker overlay networking 253

• docker network ls lists all of the container networks visible to a Docker host.
Docker hosts running in Swarm mode only see overlay networks if they are
hosting containers running on that particular network. This keeps network-
related gossip to a minimum.

• docker network inspect shows you detailed information about a particular
container network. This includes scope, driver, IPv6, subnet configuration,
VXLAN network ID, and encryption state.

• docker network rm deletes a network

Chapter Summary

In this chapter, we saw how easy it is to create new Docker overlay networks with
the docker network create command. We then learned how they are put together
behind the scenes using VXLAN technology.

We’ve only scratched the surface of what can be done with Docker overlay network-
ing.

13: Volumes and persistent data
It’s time to look at how Docker manages data. We’ll look at persistent and non-
persistent data. However, the main focus of the chapter will be on persistent data.

We’ll split the chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Volumes and persistent data - The TLDR

There are two main categories of data. Persistent and non-persistent.

Persistent is the stuff you need to keep. Things like; customer records, financials,
bookings, audit logs, and even some types of application log data. Non-persistent is
the stuff you don’t need to keep.

Both are important, and Docker has options for both.

Every Docker container gets its own non-persistent storage. It’s automatically
created, alongside the container, and it’s tied to the lifecycle of the container. That
means deleting the container will delete this storage and any data on it.

If you want your container’s data to stick around (persist), you need to put it on a
volume. Volumes are decoupled from containers, meaning you create and manage
them separately, and they’re not tied to the lifecycle of any container. Net result, you
can delete a container with a volume, and the volume will not be deleted.

That’s the TLDR. Let’s take a closer look.

13: Volumes and persistent data 255

Volumes and persistent data - The Deep Dive

Containers are excellent for microservices design patters. And we often associate
microservices with words like ephemeral and stateless. So…. microservices are all
about stateless and ephemeral workloads, and containers are great microservices.
Therefore, we often jump to the conclusion that containersmust be just for ephemeral
stuff.

Bu that’s wrong. Just wrong, wrong, wrong!

Containers and non-persistent data

It’s true that containers are great at stateless and non-persistent stuff.

Every container automatically gets a bunch of local storage. By default, this is where
all of the container’s files and filesystem go. You’ll hear this referred to by names
like; local storage, graphdriver storage, and snapshotter storage. Either way, it’s an
integral part of the container, and is tied to the container’s lifecycle — it gets created
when the container gets created, and it gets deleted when the container gets deleted.
Simple.

On Linux systems, it exists somewhere under /var/lib/docker/<storage-driver>/
as part of the container. OnWindows it goes under C:\ProgramData\Docker\windowsfilter\.

If you’re runningDocker in production on Linux, you’ll want tomake sure youmatch
the right storage driver (graphdriver) with the version of Linux on your Docker host.
Use the following list as a guide:

• Red Hat Enterprise Linux: Use the overlay2 driver with modern versions of
RHEL running Docker 17.06 or higher. Use the devicemapper driver with older
versions. This applies to Oracle Linux and other Red Hat related upstream and
downstream distros.

• Ubuntu: Use the overlay2 or aufs drivers. If you’re using a Linux 4.x kernel
or higher you should go with overlay2.

• SUSE Linux Enterprise Server: Use the btrfs storage driver.
• WindowsWindows only has one driver and it is configured by default.

13: Volumes and persistent data 256

The above list should only be used as a guide. As things progress, the overlay2 driver
is increasing in popularity and may become the recommended storage driver on
more platforms. If you are using Docker Enterprise Edition (EE), and have a support
contract, you should consult the latest compatibility support matrix.

Let’s get back on track.

By default, all storage within a container uses this local storage. So every directory
in a container uses this storage by default.

If your containers don’t create persistent data, local storage will be fine and you’re
good to go. But if your containers do need to persist data, you need to read the next
section.

Containers and persistent data

The recommended way to persist data in containers is with volumes.

At a high-level, you create a volume, then you create a container, and you mount the
volume into it. The volume gets mounted to a directory in the container’s filesystem,
and anything written to that directory is written to the volume. If you then delete
the container, the volume and its data will still exist.

Figure 13.1 shows a Docker volume mounted into a container at /code. Any data
written to the /code directory will be stored on the volume and will exist after the
container is deleted.

13: Volumes and persistent data 257

Figure 13.1 High-level view of volumes and containers

In Figure 13.1, the /code directory is a Docker volume. All other directories use
the containers ephemeral local storage. The arrow from the volume to the /code

directory is a dashed line to represent the decoupled relationship between volumes
and containers.

Creating and managing Docker volumes

Volumes are first-class citizens in Docker. Among other things, this means they are
their own object in the API, and they have their own docker volume sub-command.

Use the following command to create a new volume called myvol.

$ docker volume create myvol

By default, Docker creates new volumes with the built-in local driver. As the name
suggests, local volumes are only available to containers on the node they’re created
on. Use the -d flag to specify a different driver.

Third-party drivers are available as plugins. These can provide advanced storage
features, and integrate external storage systems with Docker. Figure 13.2 shows an
external storage system (e.g. SAN or NAS) being used to provide the backend storage
for the volume. The driver integrates the external storage system, with its advanced
features, into the Docker environment.

13: Volumes and persistent data 258

Figure 13.2 Plugging external storage into Docker

At the time of writing, there are over 25 volume plugins. These cover block storage,
file storage, object storage, and more:

• Block storage tends to be high performance and good for small-block random
access workloads. Examples of block storage systems with Docker volume
plugins include HPE 3PAR, Amazon EBS, and the OpenStack Block Storage
service (cinder).

• File storage includes systems that use the NFS and SMB protocols, and is also
good for high performance workloads. Examples of file storage systems that
have Docker volume plugins include NetApp FAS, Azure Files storage, and
Amazon EFS.

• Object storage is good for long term storage of large data blobs that do
not change frequently. It is often content addressable, and is usually low
performance. Examples with Docker volume drivers include; Amazon S3,
Ceph, and Minio.

Now that the volume is created, you can see it with the docker volume ls command,
and inspect it with the docker volume inspect command.

13: Volumes and persistent data 259

$ docker volume ls

DRIVER VOLUME NAME

local myvol

$ docker volume inspect myvol

[

{

"CreatedAt": "2018-01-12T12:12:10Z",

"Driver": "local",

"Labels": {},

"Mountpoint": "/var/lib/docker/volumes/myvol/_data",

"Name": "myvol",

"Options": {},

"Scope": "local"

}

]

Some interesting points from the output of the inspect command. The driver

and scope are both local. This means the volume was created with the de-
fault local driver, and is only available to containers on this Docker host. The
mountpoint property tells us where on the host the volume is surfaced. In this
example the volume is surfaced on the Docker host at /var/lib/docker/vol-

umes/myvol/_data. On a Windows Docker host it will report as Mountpoint":

"C:\\ProgramData\\Docker\\volumes\\myvol_data.

All volumes created with the local driver get their own directory under /var/lib/-
docker/volumes on Linux, and C:\ProgramData\Docker\volumes onWindows. This
means you can see them in your Docker host’s filesystem, and even read and write
data to them from your Docker host. We saw an example of this in the chapter on
Docker Compose — where we copied a file into a volume’s directory on the Docker
host, and the file immediately appeared in the volume inside the container.

You can nowuse the myvol volumewithDocker services and containers. For example,
you can mount it into a new container using docker container run with the --

mount flag. We’ll see some examples in a minute.

There are two ways to delete a Docker volume:

• docker volume prune

13: Volumes and persistent data 260

• docker volume rm

docker volume prunewill delete all volumes that are not mounted into a container
or service replica, so use with caution! docker volume rm lets you specify exactly
which volumes you want to delete. Neither command will delete a volume that is in
use by a container or service replica.

As the myvol volume is not in use, delete it with the prune command.

$ docker volume prune

WARNING! This will remove all volumes not used by at least one container.

Are you sure you want to continue? [y/N] y

Deleted Volumes:

myvol

Total reclaimed space: 0B

Congratulations, you’ve created, inspected, and deleted a Docker volume. And you
did it all without interacting with a container. This demonstrates the independent
nature of volumes.

At this point, you know all of the commands to create, list, inspect, and delete Docker
volumes. However, it’s also possible to deploy volumes via Dockerfiles using the
VOLUME instruction. The format is VOLUME <container-mount-point. However, it’s
not possible to specify the host directory portion in a Dockerfile. This is because host
directories are, by nature, host-dependent, meaning they can change between hosts
and potentially break builds. If specifying via a Dockerfile, you have to specify host
directories at deploy-time.

Demonstrating volumes with containers and services

Now that we know the basic volume-related Docker commands, let’s see howwe use
them with containers and services.

We’ll be working from a system with no volumes, and everything we demonstrate
applies to both Linux and Windows.

13: Volumes and persistent data 261

Use the following command to create a new standalone container and mount a
volume called bizvol.

Linux example:

$ docker container run -dit --name voltainer \

--mount source=bizvol,target=/vol \

alpine

Windows example:

Use PowerShell for all Windows examples, and note the use of backticks (‘) to split
commands across multiple lines.

> docker container run -dit --name voltainer `

--mount source=bizvol,target=c:\vol `

microsoft/powershell:nanoserver

The command should run successfully, even though there is no volume on the system
called bizvol. This raises an interesting point:

• If you specify an existing volume, Docker will use the existing volume
• If you specify a volume that does not exist, Docker will create it for you

In this case, bizvol did not exist, so Docker created it and mounted it into the new
container. This means you’ll be able to see it with docker volume ls.

$ docker volume ls

DRIVER VOLUME NAME

local bizvol

Although containers and volumes have separate lifecycle’s, you cannot delete a
volume that is in use by a container. Try it.

13: Volumes and persistent data 262

$ docker volume rm bizvol

Error response from daemon: unable to remove volume: volume is in use - [b44\

d3f82...dd2029ca]

The volume is currently empty. Let’s exec onto the container and write some data
to it. The example cited is Linux, if you’re following along on Windows, you should
replace sh with pwsh.exe at the end of the docker container exec command. All
other commands will work on Linux and Windows.

$ docker container exec -it voltainer sh

/# echo "I promise to write a review of the book on Amazon" > /vol/file1

/# ls -l /vol

total 4

-rw-r--r-- 1 root root 50 Jan 12 13:49 file1

/# cat /vol/file1

I promise to write a review of the book on Amazon

Type exit to return to the shell of your Docker host, and then delete the container
with the following command.

$ docker container rm voltainer -f

voltainer

Even though the container is deleted, the volume still exists:

$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

$ docker volume ls

DRIVER VOLUME NAME

local bizvol

13: Volumes and persistent data 263

Because the volume still exists, you can look at its mount point on the host to check
if the data you wrote is still there.

Run the following commands from the terminal of your Docker host. The first one
will show that the file still exists, the second will show the contents of the file.

Be sure to use the C:\ProgramData\Docker\volumes\bizvol_data directory if
you’re following along on Windows.

$ ls -l /var/lib/docker/volumes/bizvol/_data/

total 4

-rw-r--r-- 1 root root 50 Jan 12 14:25 file1

$ cat /var/lib/docker/volumes/bizvol/_data/file1

I promise to write a review of the book on Amazon

Great, the volume and data still exists.

It’s even possible to mount the bizvol volume into a new service or container. The
following command creates a new Docker service, called hellcat, and mounts bizvol
into the service replica at /vol.

$ docker service create \

--name hellcat \

--mount source=bizvol,target=/vol \

alpine sleep 1d

overall progress: 1 out of 1 tasks

1/1: running [====================================>]

verify: Service converged

We didn’t specify the --replicas flag, so only a single service replica will be
deployed. Find which node in the Swarm it’s running on.

13: Volumes and persistent data 264

$ docker service ps hellcat

ID NAME NODE DESIRED STATE CURRENT STATE

l3nh... hellcat.1 node1 Running Running 19 seconds ago

In this example, the replica is running on node1. Log on to node1 and get the ID of
the service replica container.

node1$ docker container ls

CTR ID IMAGE COMMAND STATUS NAMES

df6..a7b alpine:latest "sleep 1d" Up 25 secs hellcat.1.l3nh...

Notice that the container name is combination of service-name, replica-number,
and replica-ID separated by periods.

Exec onto the container and check that the data is present in /vol. We’ll use the
service replica’s container ID in the exec example. If you’re following along on
Windows, remember to replace sh with pwsh.exe.

node1$ docker container exec -it df6 sh

/# cat /vol/file1

I promise to write a review of the book on Amazon

I guess it’s time to jump over to Amazon and write that book review :-D

Excellent, the volume has preserved the original data and made it available to a new
container.

Sharing storage across cluster nodes

Integrating Docker with external storage systems makes it easy to share the external
storage between cluster nodes. For example, a single storage LUN or NFS share can
be presented to multiple Docker hosts, and therefore made available to containers
and service replicas no-matter which host they’re running on. Figure 13.3 shows a
single external shared volume being shared presented to two Docker nodes. These
Docker nodes then make the shared volume available to a couple of containers.

13: Volumes and persistent data 265

Figure 13.3

Building a setup like this requires knowledge of the external storage system, as well
as how your applications read and write data to the shared storage.

A major concern with a configuration like this is data corruption.

Assume the following example based on Figure 13.3: Container A on node1 updates
some data in the shared volume. But instead of writing the update directly to the
volume, it holds it in its local buffer for faster recall. At this point, Container A
thinks the data has been updated. However, before container A on node 1 flushes
its buffers and commits the data to the volume, container B on node 2 updates the
same data with a different value and commits it straight to the volume. At this point,
both containers think they’ve updated the data in the volume, but in reality only
container B has. At a later date, container A on node 1 flushes its buffers, overwriting
the previous changes container B on node 2 made. But container B and node 2 may
not be made aware of this. This is how corruption happens.

To prevent this, you need to write your applications in a way to avoid this.

Volumes and persistent data - The Commands

• docker volume create is the command we use to create new volumes. By
default, volumes are created with the native local driver, but you can use the
-d flag to specify a different driver.

• docker volume ls will list all volumes on the local Docker host.

13: Volumes and persistent data 266

• docker volume inspect shows detailed volume information. Use this com-
mand to find out where a volume exists in the Docker host’s filesystem.

• docker volume prunewill delete all volumes that are not in use by a container
or service replica. Use with caution!

• docker volume rm deletes specific volumes that are not in use.

Chapter Summary

There are two main types of data: persistent and non-persistent data. Persistent data
is data that you need to keep, non-persistent is data that you don’t need to keep. By
default, all containers get non-persistent storage that lives and dies with the container
— we call this local storage and it’s ideal for non-persistent data. However, if your
containers create data that you need to keep, you should store the data in a Docker
volume.

Docker volumes are first-class citizens in the Docker API, and are managed indepen-
dently of containers with their own docker volume sub-command. This means that
deleting a container will not delete the volumes it was using.

Volumes are the recommended way to work with persistent data in a Docker
environment.

14: Deploying apps with Docker
Stacks
Deploying and managing multi-service apps at scale is hard.

Fortunately, Docker Stacks are here to help! They simplify application management
by providing; desired state, rolling updates, simple, scaling operations, health checks,
and more! All wrapped in a nice declarative model. Love it!

Now then, if these buzzwords are new to you or sound complicated, don’t worry!
You’ll understand them all by the end of the chapter!

We’ll split this chapter into the usual three parts:

• The TLDR
• The deep dive
• The commands

Deploying apps with Docker Stacks - The TLDR

Testing and deploying simple apps on your laptop is easy. But that’s for amateurs. De-
ploying and managing multi-service apps, in real-world production environments…
That’s for pro’s!

Fortunately, stacks are here to help!. They let you define complex multi-service apps
in a single declarative file. They also provide a simpleway deploy the app andmanage
its entire lifecycle — initial deployment > health checks > scaling > updates > rollbacks
and more!

The process is simple. Define your app in a Compose file, then deploy and manage it
with the docker stack deploy command. That’s it!

The Compose file includes the entire stack of services that make up the app. It also
includes all of the volumes, networks, secrets, and other infrastructure the app needs.

14: Deploying apps with Docker Stacks 268

You then use the docker stack deploy command to deploy the app from the file.
Simple.

To accomplish all of this, stacks build on top of Docker Swarm, meaning you get all
of the security and advanced features that come with Swarm.

In a nutshell, Docker is great for development and testing. Docker Stacks are great
for scale and production!

Deploying apps with Docker Stacks - The Deep
Dive

If you know Docker Compose, you’ll find Docker Stacks really easy. In fact, in
many ways, stacks are what we always wished Compose was — fully integrated
into Docker, and able to manage the entire lifecycle of applications.

Architecturally speaking, stacks are at the top of the Docker application hierarchy.
They build on top of services, which in turn build on top of containers. See Figure
14.1.

Figure 14.1 AtSea Shop high level architecture

We’ll divide this section of the chapter as follows:

14: Deploying apps with Docker Stacks 269

• Overview of the sample app
• Looking closer at the stack file
• Deploying the app
• Managing the app

Overview of the sample app

For the rest of the chapter, we’ll be using the popular AtSea Shop demo app. It lives
on GitHub23 and is open-sourced under the Apache 2.0 license24.

We’re using this app because it’s moderately complicated without being too big to
list and describe in a book. Beneath the covers, it’s a multi-technology microservices
app that leverages certificates and secrets. The high-level application architecture is
shown in Figure 14.2.

Figure 14.2 AtSea Shop high level architecture

As we can see, it comprises 5 Services, 3 networks, 4 secrets, and 3 port mappings.
We’ll see each of these in detail when we inspect the stack file.

Note: When referring to services in this chapter, we’re talking about
Docker Services (a collection of containers managed as a single object
and the service object that exists in the Docker API).

23https://github.com/dockersamples/atsea-sample-shop-app
24https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE

https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE
https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE

14: Deploying apps with Docker Stacks 270

Clone the application’s GitHub repo so that you have all of the application source
files on your local machine.

$ git clone https://github.com/dockersamples/atsea-sample-shop-app.git

Cloning into 'atsea-sample-shop-app'...

remote: Counting objects: 636, done.

remote: Total 636 (delta 0), reused 0 (delta 0), pack-reused 636

Receiving objects: 100% (636/636), 7.23 MiB | 28.25 MiB/s, done.

Resolving deltas: 100% (197/197), done.

The application consists of several directories and source files. Feel free to explore
them all. However, we’re going to focus on the docker-stack.yml file. We’ll refer to
this as the stack file, as this defines the app and its requirements.

At the highest level, it defines 4 top-level keys.

version:

services:

networks:

secrets:

Version indicates the version of the Compose file format. This has to be 3.0 or higher
to work with stacks. Services is where we define the stack of services that make up
the app. Networks lists the required networks, and secrets defines the secrets the
app uses.

If we expand each top-level key, we’ll see how things map to Figure 14.1. The stack
file has five services called “reverse_proxy”, “database”, “appserver”, “visualizer”, and
“payment_gateway”. So does Figure 14.1. The stack file has three networks called
“front-tier”, “back-tier”, and “payment”. So does Figure 14.1. Finally, the stack file
has four secrets called “postgres_password”, “staging_token”, “revprox_key”, and
“revprox_cert”. So does Figure 14.1.

14: Deploying apps with Docker Stacks 271

version: "3.2"

services:

reverse_proxy:

database:

appserver:

visualizer:

payment_gateway:

networks:

front-tier:

back-tier:

payment:

secrets:

postgres_password:

staging_token:

revprox_key:

revprox_cert:

It’s important to understand that the stack file captures and defines many of the
requirements of the entire application. As such, it’s a form of application self-
documentation and a great tool for bridging the gap between dev and ops.

Let’s take a closer look at each section of the stack file.

Looking closer at the stack file

The stack file is a Docker Compose file. The only requirement is that the version: key
specify a value of “3.0” or higher. See the the Docker docs25 for the latest information
on Compose file versions.

One of the first things Docker does when deploying an app from a stack file, is check
for, and create the networks listed under the networks: key. If the networks do not
already exist, Docker will create them.

Let’s see the networks defined in the stack file.

Networks

25https://docs.docker.com/compose/compose-file/

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

14: Deploying apps with Docker Stacks 272

networks:

front-tier:

back-tier:

payment:

driver: overlay

driver_opts:

encrypted: 'yes'

Three networks are defined; front-tier, back-tier, and payment. By default, they’ll
all be created as overlay networks by the overlay driver. But the payment network
is special — it requires an encrypted data plane.

By default, the control plane of all overlay networks is encrypted. To encrypt the
data plane, you have two choices:

• Pass the -o encrypted flag to the docker network create command.
• Specify encrypted: 'yes' under driver_opts in the stack file.

The overhead incurred by encrypting the data plane depends on various factors such
traffic type and traffic flow. However, expect it to be in the region of 10%.

As previously mentioned, all three networks will be created before the secrets and
services.

Now let’s look at the secrets.

Secrets

Secrets are defined as top-level objects, and the stack file we’re using defines four:

14: Deploying apps with Docker Stacks 273

secrets:

postgres_password:

external: true

staging_token:

external: true

revprox_key:

external: true

revprox_cert:

external: true

Notice that all four are defined as external. This means that they must already exist
before the stack can be deployed.

It’s possible for secrets to be created on-demand when the application is deployed
— just replace external: true with file: <filename>. However, for this to work,
a plaintext file containing the unencrypted value of the secret must already exist on
the host’s filesystem. This has obvious security implications.

We’ll see how to create these secrets when we come to deploy the app. For now, it’s
enough to know that the application defines four secrets that need pre-creating.

Let’s look at each of the services.

Services

Services are where most of the action happens.

Each service is a JSON collection (dictionary) that contains a bunch of keys. We’ll
step through each one and explain what each of the options does.

The reverse_proxy service

As we can see, the reverse_proxy service defines an image, ports, secrets, and
networks.

14: Deploying apps with Docker Stacks 274

reverse_proxy:

image: dockersamples/atseasampleshopapp_reverse_proxy

ports:

- "80:80"

- "443:443"

secrets:

- source: revprox_cert

target: revprox_cert

- source: revprox_key

target: revprox_key

networks:

- front-tier

The image key is the only mandatory key in the service object. As the name suggests,
it defines the Docker image that will be used to build the replicas for the service.

Docker is opinionated, so unless you specify otherwise, the image will be pulled
from Docker Hub. You can specify images from 3rd-party registries by prepending
the image name with the DNS name of the registry’s API endpoint such as gcr.io
for Google’s container registry.

One difference between Docker Stacks and Docker Compose, is that stacks do not
support builds. This means all images have to be built prior to deploying the stack.

The ports key defines two mappings:

• 80:80 maps port 80 on the Swarm to port 80 on each service replica.
• 443:443 maps port 443 on the Swarm to port 443 on each service replica.

By default, all ports are mapped using ingress mode. This means they’ll be mapped
and accessible from every node in the Swarm — even nodes not running a replica.
The alternative is host mode, where ports are only mapped on Swarm nodes running
replicas for the service. However, host mode requires you to use the long-form syntax.
For example, mapping port 80 in host mode using the long-form syntax would be like
this:

14: Deploying apps with Docker Stacks 275

ports:

- target: 80

published: 80

mode: host

The long-form syntax is recommended, as it’s easier to read and more powerful (it
supports ingress mode and host mode). However, it requires at least version 3.2 of
the Compose file format.

The secrets key defines two secrets — revprox_cert and revprox_key. These must
be defined in the top-level secrets key, and must exist on the system.

Secrets get mounted into service replicas as a regular file. The name of the file will be
whatever you specify as the target value in the stack file, and the file will appear in
the replica under /run/secrets on Linux, and C:\ProgramData\Docker\secrets on
Windows. Linux mounts /run/secrets as an in-memory filesystem, but Windows
does not.

The secrets defined in this service will be mounted in each service replica as
/run/secrets/revprox_cert and /run/secrets/revprox_key. To mount one of
them as /run/secrets/uber_secret you would define it in the stack file as follows:

secrets:

- source: revprox_cert

target: uber_secret

The networks key ensures that all replicas for the service will be attached to the
front-tier network. The network specified here must be defined in the networks

top-level key, and if it doesn’t already exist, Docker will create it as an overlay.

The database service

The database service also defines; an image, a network, and a secret. As well as those,
it introduces environment variables and placement constraints.

14: Deploying apps with Docker Stacks 276

database:

image: dockersamples/atsea_db

environment:

POSTGRES_USER: gordonuser

POSTGRES_DB_PASSWORD_FILE: /run/secrets/postgres_password

POSTGRES_DB: atsea

networks:

- back-tier

secrets:

- postgres_password

deploy:

placement:

constraints:

- 'node.role == worker'

The environment key lets you inject environment variables into services replica.
This service uses three environment variables to define a database user, the location
of the database password (a secret mounted into every service replica), and the name
of the database.

environment:

POSTGRES_USER: gordonuser

POSTGRES_DB_PASSWORD_FILE: /run/secrets/postgres_password

POSTGRES_DB: atsea

Note: It would be more secure to pass all three values in as secrets, as
this would avoid documenting the database name and database user in
plaintext variables.

The service also defines a placement constraint under the deploy key. This ensures
that replicas for this service will always run on Swarm worker nodes.

14: Deploying apps with Docker Stacks 277

deploy:

placement:

constraints:

- 'node.role == worker'

Placement constraints are a form of topology-aware scheduling, and can be a great
way of influencing scheduling decisions. Swarm currently lets you schedule against
all of the following:

• Node ID. node.id == o2p4kw2uuw2a

• Node name. node.hostname == wrk-12

• Role. node.role != manager

• Engine labels. engine.labels.operatingsystem==ubuntu 16.04

• Custom node labels. node.labels.zone == prod1

Notice that == and != are both supported.

The appserver service

The appserver service uses an image, attaches to three networks, and mounts a
secret. It also introduces several additional features under the deploy key.

appserver:

image: dockersamples/atsea_app

networks:

- front-tier

- back-tier

- payment

deploy:

replicas: 2

update_config:

parallelism: 2

failure_action: rollback

placement:

constraints:

14: Deploying apps with Docker Stacks 278

- 'node.role == worker'

restart_policy:

condition: on-failure

delay: 5s

max_attempts: 3

window: 120s

secrets:

- postgres_password

Let’s take a closer look at the new stuff under the deploy key.

First up, services.appserver.deploy.replicas = 2 will set the desired number of
replicas for the service to 2. If omitted, the default value is 1. If the service is running,
and you need to change the number of replicas, you should do so declaratively. This
means updating services.appserver.deploy.replicas in the stack file with the
new value, and then redeploying the stack. We’ll see this later, but re-deploying a
stack does not affect services that you haven’t made a change to.

services.appserver.deploy.update_config tells Docker how to act when rolling-
out updates to the service. For this service, Docker will update two replicas at-a-
time (parallelism) and will perform a ‘rollback’ if it detects the update is failing.
Rolling back will start new replicas based on the previous definition of the service.
The default value for failure_action is pause, which will stop further replicas being
updated. The other option is continue.

update_config:

parallelism: 2

failure_action: rollback

The services.appserver.deploy.restart-policy object tells Swarmhow to restart
replicas (containers) if and when they fail. The policy for this service will restart a
replica if it stops with a non-zero exit code (condition: on-failure). It will try to
restart the failed replica 3 times, and wait up to 120 seconds to decide if the restart
worked. It will wait 5 seconds between each of the three restart attempts.

14: Deploying apps with Docker Stacks 279

restart_policy:

condition: on-failure

delay: 5s

max_attempts: 3

window: 120s

visualizer

The visualizer service references an image, maps a port, defines an update config, and
defines a placement constraint. It also and mounts a volume and defines a custom
grace period for container stop operations.

visualizer:

image: dockersamples/visualizer:stable

ports:

- "8001:8080"

stop_grace_period: 1m30s

volumes:

- "/var/run/docker.sock:/var/run/docker.sock"

deploy:

update_config:

failure_action: rollback

placement:

constraints:

- 'node.role == manager'

When Docker stops a container, it issues a SIGTERM to the process with PID 1
inside the container. The container (its PID 1 process) then has a 10-second grace
period to perform any clean-up operations. If it doesn’t handle the signal, it will
be forcibly terminated after 10 seconds with a SIGKILL. The stop_grace_period

property overrides this 10 second grace period.

The volumes key is used to mount pre-created volumes and host directories into a
service replica. In this case, it’s mounting /var/run/docker.sock from the Docker
host, into /var/run/docker.sock inside of each service replica. This means any reads
and writes to /var/run/docker.sock in the replica will be passed through to the
same directory in the host.

14: Deploying apps with Docker Stacks 280

/var/run/docker.sock happens to be the IPC socket that the Docker daemon
exposes all of its API endpoints on. This means giving a container access to it allows
the container to consume all API endpoints — essentially giving the container the
ability to query and manage the Docker daemon. In most situations this is a huge
“No!”. However, this is a demo app in a lab environment.

The reason this service requires access to the Docker socket is because it provides
a graphical representation of services on the Swarm. To do this, it needs to be able
to query the Docker daemon on a manager node. To accomplish this, a placement
constraint forces all service replicas onto manager nodes, and the Docker socket is
bind-mounted into each service replica. The bind mount is shown in Figure 14.3.

Figure 14.3

payment_gateway

The payment_gateway service specifies an image, mounts a secret, attaches to a
network, defines a partial deployment strategy, and then imposes a couple of
placement constraints.

14: Deploying apps with Docker Stacks 281

payment_gateway:

image: dockersamples/atseasampleshopapp_payment_gateway

secrets:

- source: staging_token

target: payment_token

networks:

- payment

deploy:

update_config:

failure_action: rollback

placement:

constraints:

- 'node.role == worker'

- 'node.labels.pcidss == yes'

We’ve seen all of these options before, except for the node.label in the placement
constraint. Node labels are custom-defined labels added to Swarm nodes with the
docker node update command. As such, they’re only applicable within the context
of the nodes role in the Swarm (you can’t leverage them on standalone containers or
outside of the Swarm).

In this example, the payment_gateway service performs operations that require it to
run on a Swarm node that has been hardened to PCI DSS standards. To enable this,
you can apply a custom node label to any Swarm node meeting these requirements.
We’ll do this when we build the lab to deploy the app.

As this service defines two placement constraints, replicas will only be deployed to
nodes that match both. I.e. a worker node with the pcidss=yes node label.

Now that we’re finished examining the stack file, we should have a good under-
standing of the application’s requirements. As mentioned previously, the stack file
is a great piece of application documentation. We know that the application has
5 services, 3 networks, and 4 secrets. We know which services attach to which
networks, which ports need publishing, which images are required, and we even
know that some services need to run on specific nodes.

Let’s deploy it.

14: Deploying apps with Docker Stacks 282

Deploying the app

There’s a few pre-requisites that need taking care of before we can deploy the app:

• Swarm mode: We’ll deploy the app as a Docker Stack, and stacks require
Swarm mode.

• Labels: One of the Swarm worker nodes needs a custom node label.
• Secrets: The app uses secrets which need pre-creating before we can deploy
it.

Building a lab for the sample app

In this section we’ll build a three-node Linux-based Swarm cluster that satisfies all
of the application’s pre-req’s. Once we’re done, the lab will look like this.

Figure 14.4 Sample lab

We’ll complete the following three steps:

• Create a new Swarm
• Add a node label
• Create the secrets

Let’s create a new three-node Swarm cluster.

14: Deploying apps with Docker Stacks 283

1. Initialize a new Swarm.

Run the following command on the node that you want to be your Swarm
manager.

$ docker swarm init

Swarm initialized: current node (lhma...w4nn) is now a manager.

<Snip>

2. Add worker nodes.

Copy the docker swarm join command that displayed in the output of the
previous command. Paste it into the two nodes you want to join as workers.

//Worker 1 (wrk-1)

wrk-1$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377

This node joined a swarm as a worker.

//Worker 2 (wrk-2)

wrk-2$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377

This node joined a swarm as a worker.

3. Verify that the Swarm is configured with one manager and two workers.

Run this command from the manager node.

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

lhm...4nn * mgr-1 Ready Active Leader

b74...gz3 wrk-1 Ready Active

o9x...um8 wrk-2 Ready Active

The Swarm is now ready.

The payment_gateway service has set of placement constraints forcing it to only run
on worker nodes with the pcidss=yes node label. In this step we’ll add that node
label to wrk-1.

In the real world you would harden at least one of your Docker nodes to PCI
standards before labelling it. However, this is just a lab, so we’ll skip the hardening
step and just add the label to wrk-1.

Run the following commands from the Swarm manager.

14: Deploying apps with Docker Stacks 284

1. Add the node label to wrk-1.

$ docker node update --label-add pcidss=yes wrk-1

Node labels only apply within the Swarm.
2. Verify the node label.

$ docker node inspect wrk-1

[

{

"ID": "b74rzajmrimfv7hood6l4lgz3",

"Version": {

"Index": 27

},

"CreatedAt": "2018-01-25T10:35:18.146831621Z",

"UpdatedAt": "2018-01-25T10:47:57.189021202Z",

"Spec": {

"Labels": {

"pcidss": "yes"

},

<Snip>

The wrk-1worker node is now configured so that it can run replicas for the payment_-
gateway service.

The application defines four secrets, all of which need creating before the app can be
deployed:

• postgress_password

• staging_token

• revprox_cert

• revprox_key

Run the following commands from the manager node to create them.

14: Deploying apps with Docker Stacks 285

1. Create a new key pair.

Three of the secrets will be populated with cryptographic keys. We’ll create
the keys in this step and then place them inside of Docker secrets in the next
steps.

$ openssl req -newkey rsa:4096 -nodes -sha256 \

-keyout domain.key -x509 -days 365 -out domain.crt

You’ll have two new files in your current directory. We’ll use them in the next
step.

2. Create the revprox_cert, revprox_key, and postgress_password secrets.

$ docker secret create revprox_cert domain.crt

cqblzfpyv5cxb5wbvtrbpvrrj

$ docker secret create revprox_key domain.key

jqd1ramk2x7g0s2e9ynhdyl4p

$ docker secret create postgres_password domain.key

njpdklhjcg8noy64aileyod6l

3. Create the staging_token secret.

$ echo staging | docker secret create staging_token -

sqy21qep9w17h04k3600o6qsj

4. List the secrets.

$ docker secret ls

ID NAME CREATED UPDATED

njp...d6l postgres_password 47 seconds ago 47 seconds ago

cqb...rrj revprox_cert About a minute ago About a minute ago

jqd...l4p revprox_key About a minute ago About a minute ago

sqy...qsj staging_token 23 seconds ago 23 seconds ago

That’s all of the pre-requisites taken care of. Time to deploy the app!

Deploying the sample app

If you haven’t already done so, clone the app’s GitHub repo to your Swarm manager.

14: Deploying apps with Docker Stacks 286

$ git clone https://github.com/dockersamples/atsea-sample-shop-app.git

Cloning into 'atsea-sample-shop-app'...

remote: Counting objects: 636, done.

Receiving objects: 100% (636/636), 7.23 MiB | 3.30 MiB/s, done.

remote: Total 636 (delta 0), reused 0 (delta 0), pack-reused 636

Resolving deltas: 100% (197/197), done.

Checking connectivity... done.

$ cd atsea-sample-shop-app

Now that you have the code, you are ready to deploy the app.

Stacks are deployed using the docker stack deploy command. In its basic form, it
accepts two arguments:

• name of the stack file
• name of the stack

The application’s GitHub repository contains a stack file called docker-stack.yml,
so we’ll use this as stack file. We’ll call the stack seastack, though you can choose a
different name if you don’t like that.

Run the following commands from within the atsea-sample-shop-app directory on
the Swarm manager.

Deploy the stack (app).

$ docker stack deploy -c docker-stack.yml seastack

Creating network seastack_default

Creating network seastack_back-tier

Creating network seastack_front-tier

Creating network seastack_payment

Creating service seastack_database

Creating service seastack_appserver

Creating service seastack_visualizer

Creating service seastack_payment_gateway

Creating service seastack_reverse_proxy

14: Deploying apps with Docker Stacks 287

You can run docker network ls and docker service ls commands to see the
networks and services that were deployed as part of the app.

A few things to note from the output of the command.

The networks were created before the services. This is because the services attach to
the networks, so need the networks to be created before they can start.

Docker prepends the name of the stack to every resource it creates. In our example,
the stack is called seastack, so all resources are named seastack_<resource>. For
example, the payment network is called seastack_payment. Resources that were
created prior to the deployment, such as secrets, do not get renamed.

Another thing to note is the presence of a network called seastack_default. This
isn’t defined in the stack file, so why was it created? Every service needs to attach to
a network, but the visualizer service didn’t specify one. Therefore, Docker created
one called seastack_default and attached it to that.

You can verify the status of a stack with a couple of commands. docker stack ls

lists all stacks on the system, including how many services they have. docker stack

ps <stack-name> gives more detailed information about a particular stack, such as
desired state and current state. Let’s see them both.

$ docker stack ls

NAME SERVICES

seastack 5

$ docker stack ps seastack

NAME NODE DESIRED STATE CURRENT STATE

seastack_reverse_proxy.1 wrk-2 Running Running 7 minutes ago

seastack_payment_gateway.1 wrk-1 Running Running 7 minutes ago

seastack_visualizer.1 mgr-1 Running Running 7 minutes ago

seastack_appserver.1 wrk-2 Running Running 7 minutes ago

seastack_database.1 wrk-2 Running Running 7 minutes ago

seastack_appserver.2 wrk-1 Running Running 7 minutes ago

The docker stack ps command is a good place to start when troubleshooting
services that fail to start. It gives an overview of every service in the stack, including
which node each replica is scheduled on, current state, desired state, and error

14: Deploying apps with Docker Stacks 288

message. The following output shows two failed attempts to start a replica for the
reverse_proxy service on the wrk-2 node.

$ docker stack ps seastack

NAME NODE DESIRED CURRENT ERROR

STATE STATE

reverse_proxy.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"

_reverse_proxy.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"

For more detailed logs of a particular service you can use the docker service logs

command. You pass it either the service name/ID, or replica ID. If you pass it the
service name or ID, you’ll get the logs for all service replicas. If you pass it a particular
replica ID, you’ll only get the logs for that replica.

The following docker service logs command shows the logs for all replicas in the
seastack_reverse_proxy service that had the two failed replicas in the previous
output.

$ docker service logs seastack_reverse_proxy

seastack_reverse_proxy.1.zhc3cjeti9d4@wrk-2 | [emerg] 1#1: host not found...

seastack_reverse_proxy.1.6m1nmbzmwh2d@wrk-2 | [emerg] 1#1: host not found...

seastack_reverse_proxy.1.6m1nmbzmwh2d@wrk-2 | nginx: [emerg] host not found..

seastack_reverse_proxy.1.zhc3cjeti9d4@wrk-2 | nginx: [emerg] host not found..

seastack_reverse_proxy.1.1tmya243m5um@mgr-1 | 10.255.0.2 "GET / HTTP/1.1" 302

The output is trimmed to fit the page, but you can see that logs from all three service
replicas are shown (the two that failed and the one that’s running). Each line starts
with the name of the replica, which includes the service name, replica number, replica
ID, and name of host that it’s scheduled on. Following that is the log output.

Note: You might have noticed that all of the replicas in the previous
output showed as replica number 1. This is because Docker created one
at a time and only started a new one when the previous one had failed.

It’s hard to tell because the output is trimmed to fit the book, but it looks like the first
two replicas failed because they were relying on something in another service that
was still starting (a sort of race condition when dependent services are starting).

14: Deploying apps with Docker Stacks 289

You can follow the logs (--follow), tail them (--tail), and get extra details (--
details).

Now that the stack is up and running, let’s see how to manage it.

Managing the app

We know that a stack is set of related services and infrastructure that gets deployed
and managed as a unit. And while that’s a fancy sentence full of buzzwords, it
reminds us that the stack is built from normal Docker resources — networks, volumes,
secrets, services etc. This means we can inspect and reconfigure these with their
normal docker commands: docker network, docker volume, docker secret, docker
service…

With this in mind, it’s possible to use the docker service command to manage
services that are part of the stack. A simple example would be using the docker

service scale command to increase the number of replicas in the appserver

service. However, this is not the recommended method!

The recommended method is the declarative method, which uses the stack file as the
ultimate source of truth. As such, all changes to the stack should be made to the stack
file, and the updated stack file used to redeploy the app.

Here’s a quick example of why the imperative method (making changes via the CLI)
is bad:

Imagine that we have a stack deployed from the docker-stack.yml file
that we cloned from GitHub earlier in the chapter. This means we have
two replicas of the appserver service. If we use the docker service

scale command to change that to 4 replicas, the current state of the
cluster will be 4 replicas, but the stack file will still define 2. Admittedly,
that doesn’t sound like the end of the world. However, imagine we then
make a different change to the stack, this time via the stack file, and
we roll it out with the docker stack deploy command. As part of this
rollout, the number of appserver replicas in the cluster will be rolled
back to 2, because this is what the stack file defines. For this kind of
reason, it is recommended to make all changes to the application via the
stack file, and to manage the file in a proper version control system.

14: Deploying apps with Docker Stacks 290

Let’s walk through the process of making a couple of declarative changes to the stack.

We’ll make the following changes:

• Increase the number of appserver replicas from 2 to 10
• Increase the stop grace period for the visualizer service to 2 minutes

Edit the docker-stack.yml file and update the following two values:

• .services.appserver.deploy.replicas=10

• .services.visualizer.stop_grace_period=2m

The relevant sections of the stack file will now look like this:

<Snip>

appserver:

image: dockersamples/atsea_app

networks:

- front-tier

- back-tier

- payment

deploy:

replicas: 2 <<Updated value

<Snip>

visualizer:

image: dockersamples/visualizer:stable

ports:

- "8001:8080"

stop_grace_period: 2m <<Updated value

<Snip

Save the file and redeploy the app.

14: Deploying apps with Docker Stacks 291

$ docker stack deploy -c docker-stack.yml seastack

Updating service seastack_reverse_proxy (id: z4crmmrz7zi83o0721heohsku)

Updating service seastack_database (id: 3vvpkgunetxaatbvyqxfic115)

Updating service seastack_appserver (id: ljht639w33dhv0dmht1q6mueh)

Updating service seastack_visualizer (id: rbwoyuciglre01hsm5fviabjf)

Updating service seastack_payment_gateway (id: w4gsdxfnb5gofwtvmdiooqvxs)

Re-deploying the app like this will only update the changed components.

Run a docker stack ps to see the number of appserver replicas increasing.

$ docker stack ps seastack

NAME NODE DESIRED STATE CURRENT STATE

seastack_visualizer.1 mgr-1 Running Running 1 second ago

seastack_visualizer.1 mgr-1 Shutdown Shutdown 3 seconds ago

seastack_appserver.1 wrk-2 Running Running 24 minutes ago

seastack_appserver.2 wrk-1 Running Running 24 minutes ago

seastack_appserver.3 wrk-2 Running Running 1 second ago

seastack_appserver.4 wrk-1 Running Running 1 second ago

seastack_appserver.5 wrk-2 Running Running 1 second ago

seastack_appserver.6 wrk-1 Running Starting 7 seconds ago

seastack_appserver.7 wrk-2 Running Running 1 second ago

seastack_appserver.8 wrk-1 Running Starting 7 seconds ago

seastack_appserver.9 wrk-2 Running Running 1 second ago

seastack_appserver.10 wrk-1 Running Starting 7 seconds ago

The output has been trimmed so that it fits on the page, and so that only the affected
services are shown.

Notice that there are two lines for the visualizer service. One line shows a replica
that was shutdown 3 seconds ago, and the other line shows a replica that has been
running for 1 second. This is because we pushed a change to the visualizer service,
so Swarm terminated the existing replica and started a new one with the new stop_-

grace_period value.

Also note that we now have 10 replicas for the appserver service, and that they are
in various states in the “CURRENT STATE” column — some are running whereas
others are still starting.

14: Deploying apps with Docker Stacks 292

After enough time, the cluster will converge so that desired state and current state
match. At that point, what is deployed and observed on the cluster will exactly match
what is defined in the stack file. This is a happy place to be :-D

This update pattern should be used for all updates to the app/stack. I.e. all changes
should be made declaratively via the stack file, and rolled out using docker

stack deploy.

The correct way to delete a stack is with the docker stack rm command. Be warned
though! It deletes the stack without asking for confirmation.

$ docker stack rm seastack

Removing service seastack_appserver

Removing service seastack_database

Removing service seastack_payment_gateway

Removing service seastack_reverse_proxy

Removing service seastack_visualizer

Removing network seastack_front-tier

Removing network seastack_payment

Removing network seastack_default

Removing network seastack_back-tier

Notice that the networks and services were deleted, but the secrets were not. This
is because the secrets were pre-created and existed before the stack was deployed.
If your stack defines volumes at the top-level, these will not be deleted by docker

stack rm either. This is because volumes are intended as long-term persistent data
stores and exist independent of the lifecycle of containers, services, and stacks.

Congratulations! You know how to deploy and manage a multi-service app using
Docker Stacks.

Deploying apps with Docker Stacks - The
Commands

• docker stack deploy is the command we use to deploy and update stacks of
services defined in a stack file (usually docker-stack.yml).

14: Deploying apps with Docker Stacks 293

• docker stack ls will list all stacks on the Swarm, including how many
services they have.

• docker stack ps gives detailed information about a deployed stack. It accepts
the name of the stack as its main argument, lists which node each replica is
running on, and shows desired state and current state.

• docker stack rm is the command to delete a stack from the Swarm. It does
not ask for confirmation before deleting the stack.

Chapter Summary

Stacks are the native Docker solution for deploying and managing multi-service
applications. They’re baked into the Docker engine, and offer a simple declarative
interface for deploying and managing the entire lifecycle of an application.

We start with application code and a set of infrastructure requirements — things
like networks, ports, volumes and secrets. We containerize the application and
group together all of the app services and infrastructure requirements into a single
declarative stack file. We set the number of replicas, as well as rolling update and
restart policies. Then we take the file and deploy the application from it using the
docker stack deploy command.

Future updates to the deployed app should be done declaratively by checking the
stack file out of source control, updating it, re-deploying the app, and checking the
stack file back in to source control.

Because the stack file defines things like number of service replicas, you should
maintain separate stack files for each of your environments, such as dev, test and
prod.

15: Security in Docker
Good security is all about layers, and Docker has lots of layers. It supports all the
major Linux security technologies, as well as having plenty of its own — and most
of them are simple and easy to configure.

In this chapter, we’ll look at some of the technologies that make running containers
on Docker very secure.

When we get to the deep dive part of the chapter, we’ll divide things up into two
categories:

• Linux security technologies
• Docker platform security technologies

Large parts of the chapter will be Linux specific. However, the Docker platform
security technologies section is platform agnostic and applies equally to Linux and
Windows.

Security in Docker - The TLDR

Security is all about layers! Generally speaking, the more security layers you have,
the more secure you are. Well… Docker offers a lot of security layers. Figure 15.1
shows some of the security technologies that we’ll cover in the chapter.

15: Security in Docker 295

Figure 15.1

Docker on Linux leverages most of the common Linux security technologies. These
include namespaces, control groups (cgroups), capabilities,mandatory access control
(MAC) systems, and seccomp. For each one, Docker implements sensible defaults for
a seamless andmoderately secure out-of-the-box experience. However, it also allows
you to customize each one to your own specific requirements.

The Docker platform itself offers some excellent native security technologies. And
one of the best things about these, is that they’re amazingly simple to use!

Docker Swarm Mode is secure by default. You get all of the following with zero
configuration required; cryptographic node IDs, mutual authentication, automatic
CA configuration, automatic certificate rotation, encrypted cluster store, encrypted
networks, and more.

Docker Content Trust (DCT) lets you sign your images and verify the integrity and
publisher of images you pull.

Docker Security Scanning analyses Docker images, detects known vulnerabilities,
and provides detailed reports.

Docker secrets makes secrets first-class citizens in the Docker ecosystem. They
get stored in the encrypted cluster store, encrypted in-flight when delivered to
containers, stored in in-memory filesystems when in use, and operate a least-
privilege model.

The important thing to know, is that Docker works with the major Linux security

15: Security in Docker 296

technologies as well as providing its own extensive and growing set of security
technologies. While the Linux security technologies can be a bit complicated to
configure, the Docker platform’s own security technologies are very simple.

Security in Docker - The deep dive

We all know that security is important. We also know that security can be compli-
cated and boring!

When Docker decided to bake security into its platform, it decided to make it simple
and easy. They knew that if security was hard to configure, people wouldn’t use
it. As a result, most of the security technologies offered by the Docker platform are
simple to use. They also ship with sensible defaults — this means that you get a fairly
secure platform at zero effort. Of course, the defaults are not perfect, but they’re
usually enough to give you a safe start. If they don’t suit your needs, you can always
customize them.

We’ll organize the rest of this chapter as follows:

• Linux security technologies
– Namespaces
– Control Groups
– Capabilities
– Mandatory Access Control
– seccomp

• Docker platform security technologies
– Swarm Mode
– Docker Security Scanning
– Docker Content Trust
– Docker Secrets

Linux security technologies

All good container platforms should use namespaces and cgroups to build containers.
The best container platforms will also integrate with other Linux security tech-
nologies such as capabilities, Mandatory Access Control systems like SELinux and
AppArmor, and seccomp. As expected, Docker integrates with them all!

15: Security in Docker 297

In this section of the chapter we’ll take a brief look at some of the major Linux
security technologies used by Docker. We won’t go into detail, as I want the main
focus of the chapter to be on the Docker platform technologies.

Namespaces

Kernel namespaces are at the very heart of containers! They let us slice up an
operating system (OS) so that it looks and feels like multiple isolated operating
systems. This lets us do really cool things like run multiple web servers on the same
OS without having port conflicts. It also lets us run multiple apps on the same OS
without them fighting over shared config files and shared libraries.

A couple of quick examples:

• You can run multiple web servers, each on port 443, on a single OS. To do this
you just run each web server app inside of its own network namespace. This
works because each network namespace gets its own IP address and full range
of ports. You may have to map each one to a separate port on the Docker host,
but each can run without being re-written or reconfigured to use a different
port.

• You can run multiple applications, each requiring their own particular version
of a shared library or configuration file. To do this you run each application
inside of its own mount namespace. This works because each mount names-
pace can have its own isolated copy of any directory on the system (e.g. /etc,
/var, /dev etc.)

Figure 15.2 shows a high-level example of two web server applications running on a
single host and both using port 443. Each web server app is running inside of its own
network namespace.

15: Security in Docker 298

Figure 15.2

Docker on Linux currently utilizes the following kernel namespaces:

• Process ID (pid)
• Network (net)
• Filesystem/mount (mnt)
• Inter-process Communication (ipc)
• User (user)
• UTS (uts)

We’ll briefly explain what each one does in a moment. But the most important
thing to understand is that Docker containers are an organized collection of
namespaces. Let me repeat that…ADocker container is an organized collection
of namespaces.

For example, every container is made up of its own pid, net, mnt, ipc, uts, and
potentially user namespace. The organized collection of these namespaces is what
we call a container. Figure 15.3 shows a single Linux host running two containers.

15: Security in Docker 299

Figure 15.3

Let’s briefly look at how Docker uses each namespace:

• Process ID namespace: Docker uses the pid namespace to provide isolated
process trees for each container. Every container gets its own process tree,
meaning that every container can have its own PID 1. PID namespaces
also mean that a container cannot see or access to the process tree of other
containers, or the host it’s running on.

• Network namespace: Docker uses the net namespace to provide each con-
tainer its own isolated network stack. This stack includes; interfaces, IP
addresses, port ranges, and routing tables. For example, every container gets
its own eth0 interface with its own unique IP and range of ports.

• Mount namespace: Every container gets its own unique isolated root / filesys-
tem. This means that every container can have its own /etc, /var, /dev etc.
Processes inside of a container cannot access the mount namespace of the
Linux host or other containers — they can only see and access their own
isolated mount namespace.

• Inter-process Communication namespace: Docker uses the ipc namespace
for sharedmemory access within a container. It also isolates the container from
shared memory outside of the container.

• User namespace: Docker lets you use user namespaces to map users inside
of a container to different users on the Linux host. A common example is
mapping the root user of a container to a non-root user on the Linux host.
User namespaces are quite new to Docker and currently optional. This may
change in the future.

15: Security in Docker 300

• UTS namespace: Docker uses the uts namespace to provide each container
with its own hostname.

Remember… a container is an organized collection of namespaces!!!

Figure 15.4

Control Groups

If namespaces are about isolation, control groups (cgroups) are about setting limits.

Think of containers as similar to rooms in a hotel. Yes, each room is isolated, but each
room also shares a common set of resources — things like water supply, electricity
supply, shared swimming pool, shared gym, shared breakfast bar etc. Cgroups let us
set limits so that (sticking with the hotel analogy) no single container can use all of
the water or eat everything at the breakfast bar.

In the real world, not the silly hotel analogy, containers are isolated from each other
but all share a common set of OS resources — things like CPU, RAM and disk I/O.
Cgroups let us set limits on each of these so that a single container cannot use all of
the CPU, RAM, or storage I/O of the host.

Capabilities

It’s a bad idea to run containers as root — root is all-powerful and therefore very
dangerous. But, it’s a pain in the backside running containers as non-root — non-
root is so powerless it’s practically useless. What we need is a technology that lets

15: Security in Docker 301

us pick and choose which root powers our containers need in order to run. Enter
capabilities!

Under the hood, the Linux root account is made up of a long list of capabilities. Some
of these include:

• CAP_CHOWN lets you change file ownership
• CAP_NET_BIND_SERVICE lets you bind a socket to low numbered network ports
• CAP_SETUID lets you elevate the privilege level of a process
• CAP_SYS_BOOT lets you reboot the system.

The list goes on.

Docker works with capabilities so that you can run containers as root, but strip out
the root capabilities that you don’t need. For example, if the only root privilege your
container needs is the ability to bind to low numbered network ports, you should
start a container and drop all root capabilities, then add back the CAP_NET_BIND_-
SERVICE capability.

Docker also imposes restrictions so that containers cannot re-add the removed
capabilities.

Mandatory Access Control systems

Docker works with major Linux MAC technologies such as AppArmor and SELinux.

Depending on your Linux distribution, Docker applies a default AppArmor profile
to all new containers. According to the Docker documentation, this default profile is
“moderately protective while providing wide application compatibility”.

Docker also lets you start containers without a policy applied, as well as giving you
the ability to customize policies to meet your specific requirements.

seccomp

Docker uses seccomp, in filter mode, to limit the syscalls a container can make to the
host’s kernel.

15: Security in Docker 302

As per the Docker security philosophy, all new containers get a default seccomp
profile configured with sensible defaults. This is intended to provide moderate
security without impacting application compatibility.

As always, you can customize seccomp profiles, and you can pass a flag to Docker
so that containers can be started without a seccomp profile.

Final thoughts on the Linux security technologies

Docker supports most of the important Linux security technologies and ships with
sensible defaults that add security but aren’t too restrictive.

Figure 15.5

Some of these technologies can be complicated to customize, as they require deep
knowledge of how they work, as well as how the Linux kernel works. Hopefully they
will get simpler to configure in the future, but for now, the default configurations that
ship with Docker are a good place to start.

Docker platform security technologies

In this section of the chapter, we’ll take a look at some of the major security
technologies offered by the Docker platform.

15: Security in Docker 303

Security in Swarm Mode

Swarm Mode is the future of Docker. It lets you cluster multiple Docker hosts
and deploy your applications in a declarative way. Every Swarm is comprised of
managers andworkers that can be Linux orWindows. Managers make up the control
plane of the cluster and are responsible for configuring the cluster and dispatching
work to it. Workers are the nodes that run your application code as containers.

As expected, Swarm Mode includes many security features that are enabled out-of-
the-box with sensible defaults. These include:

• Cryptographic node IDs
• Mutual authentication via TLS
• Secure join tokens
• CA configuration with automatic certificate rotation
• Encrypted cluster store (config DB)
• Encrypted networks

Let’s walk through the process of building a secure Swarm and configuring some of
the security aspects.

To follow along, you will need at least three Docker hosts running Docker 1.13
or higher. The examples cited use three Docker hosts called “mgr1”, “mgr2”, and
“wrk1”. Each one is running Docker 18.01.0-ce on Ubuntu 16.04. There is network
connectivity between all three hosts, and all three can ping each other by name. The
setup is shown in Figure 15.6.

15: Security in Docker 304

Figure 15.6

Configure a secure Swarm

Run the following command from the node you want to be the first manager in the
new Swarm. In the example, we will run it from “mgr1”.

$ docker swarm init

Swarm initialized: current node (7xam...662z) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token \

SWMTKN-1-1dmtwu...r17stb-ehp8g...hw738q 172.31.5.251:2377

To add a manager to this swarm, run 'docker swarm join-token manager'

and follow the instructions.

That’s it! That is literally all you need to do to configure a secure Swarm!

“mgr1” is configured as the first manager of the Swarm and also as the root CA. The
Swarm has been given a cryptographic Swarm ID, and “mgr1” has issued itself with

15: Security in Docker 305

a client certificate that identifies it as a manager in the Swarm. Certificate rotation
has been configured with the default value of 90 days, and a cluster config database
has been configured and encrypted. A set of secure tokens have also been created
so that new managers and new workers can be joined to the Swarm. And all of this
with a single command!

Figure 15.7 shows how the lab looks now.

Figure 15.7

Now let’s join “mgr2” as an additional manager.

Joining newmanagers to a Swarm is a two-step process. In the first step, you’ll extract
the token required to join new managers to the Swarm. In the second, you’ll run a
docker swarm join command on “mgr2”. As long as you include the manager join
token as part of the docker swarm join command, “mgr2” will join the Swarm as a
manager.

Run the following command from “mgr1” to extract the manager join token.

15: Security in Docker 306

$ docker swarm join-token manager

To add a manager to this swarm, run the following command:

docker swarm join --token \

SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \

172.31.5.251:2377

The output of the command gives you the exact command you need to run on nodes
that you want to join the Swarm as managers. The join token and IP address will be
different in your lab.

Copy the command and run it on “mgr2”:

$ docker swarm join --token SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \

> 172.31.5.251:2377

This node joined a swarm as a manager.

“mgr2” has now joined the Swarm as an additional manager.

The format of the join command is docker swarm join --token <manager-

join-token> <ip-of-existing-manager>:<swarm-port>.

You can verify the operation by running a docker node ls on either of the two
managers.

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

7xamk...ge662z mgr1 Ready Active Leader

i0ue4...zcjm7f * mgr2 Ready Active Reachable

The output above shows that “mgr1” and “mgr2” are both part of the Swarm and are
both Swarm managers. The updated configuration is shown in Figure 15.8.

15: Security in Docker 307

Figure 15.8

Two managers is possibly the worst number you can have. However, we’re just
messing about in a demo lab, not building a business critical production environment
;-)

Adding a Swarm worker is a similar two-step process. Step 1 is to extract the join
token for new workers, and step 2 is to run a docker swarm join command on the
node you want to join as a worker.

Run the following command on either of the managers to expose the worker join
token.

$ docker swarm join-token worker

To add a worker to this swarm, run the following command:

docker swarm join --token \

SWMTKN-1-1dmtw...17stb-ehp8g...w738q \

172.31.5.251:2377

Again, you get the exact command you need to run on nodes that you want to join
as workers. The join token and IP address will be different in your lab.

Copy the command and run it on “wrk1” as shown:

15: Security in Docker 308

$ docker swarm join --token SWMTKN-1-1dmtw...17stb-ehp8g...w738q \

> 172.31.5.251:2377

This node joined a swarm as a worker.

Run another docker node ls command from either of the Swarm managers.

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

7xamk...ge662z * mgr1 Ready Active Leader

ailrd...ofzv1u wrk1 Ready Active

i0ue4...zcjm7f mgr2 Ready Active Reachable

You now have a Swarm with two managers and one worker. The managers are
configured for high availability (HA) and the cluster store is replicated to them both.
This updated configuration is shown in Figure 15.9.

Figure 15.9

15: Security in Docker 309

Looking behind the scenes at Swarm security

Now that we’ve built a secure Swarm let’s take a minute to look behind the scenes
at some of the security technologies involved.

Swarm join tokens

The only thing that is needed to join managers and workers to an existing Swarm
is the relevant join token. For this reason, it is vital that you keep your join-tokens
safe! No posting them on public GitHub repos!

Every Swarm maintains two distinct join tokens:

• One for joining new managers
• One for joining new workers

It’s worth understanding the format of the Swarm join token. Every join token is
comprised of 4 distinct fields separated by dashes (-):

PREFIX - VERSION - SWARM ID - TOKEN

The prefix is always “SWMTKN”, enabling you to pattern match against it and
prevent people from accidentally posting it publicly. The version field indicates the
version of the Swarm. The Swarm ID field is a hash of the Swarm’s certificate. The
token portion is the part that determines if it can be used to join nodes as managers
or workers.

As the following shows, the manager and worker join tokens for a given Swarm are
identical except for the final TOKEN field.

• MANAGER: SWMTKN-1-1dmtwusdc…r17stb-2axi53zjbs45lqxykaw8p7glz
• WORKER: SWMTKN-1-1dmtwusdc…r17stb-ehp8gltji64jbl45zl6hw738q

If you suspect that either of your join tokens has been compromised you can revoke
them and issue new ones with a single command. The following example revokes
the existing manager join token and issues a new one.

15: Security in Docker 310

$ docker swarm join-token --rotate manager

Successfully rotated manager join token.

To add a manager to this swarm, run the following command:

docker swarm join --token \

SWMTKN-1-1dmtwu...r17stb-1i7txlh6k3hb921z3yjtcjrc7 \

172.31.5.251:2377

Notice that the only difference between the old and new join tokens is the last field.
The Swarm ID remains the same.

Join tokens are stored in the cluster config database which is encrypted by default.

TLS and mutual authentication

Every manager and worker that joins a Swarm is issued a client certificate. This
certificate is used for mutual authentication. It identifies the node, which Swarm the
node is a member of, and role the node performs in the Swarm (manager or worker).

On a Linux host, you can inspect a node’s client certificate with the following
command.

$ sudo openssl x509 \

-in /var/lib/docker/swarm/certificates/swarm-node.crt \

-text

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

80:2c:a7:b1:28...a8:af:89:a1:2a:51:89

Signature Algorithm: ecdsa-with-SHA256

Issuer: CN=swarm-ca

Validity

Not Before: Jul 19 07:56:00 2017 GMT

Not After : Oct 17 08:56:00 2017 GMT

15: Security in Docker 311

Subject: O=mfbkgjm2tlametbnfqt2zid8x, OU=swarm-manager,

CN=7xamk8w3hz9q5kgr7xyge662z

Subject Public Key Info:

<SNIP>

The Subject data in the output above uses the standard O, OU, and CN fields to specify
the Swarm ID, the node’s role, and the node ID.

• The Organization O field stores the Swarm ID
• The Organizational Unit OU field stores the node’s role in the Swarm
• The Canonical Name CN field stores the node’s crypto ID.

This is shown in Figure 15.10.

Figure 15.10

We can also see the certificate rotation period in the Validity section directly above.

We can match these values to the corresponding values shown in the output of a
docker system info command.

15: Security in Docker 312

$ docker system info

<SNIP>

Swarm: active

NodeID: 7xamk8w3hz9q5kgr7xyge662z # Relates to the CN field

Is Manager: true # Relates to the OU field

ClusterID: mfbkgjm2tlametbnfqt2zid8x # Relates to the O field

...

<SNIP>

...

CA Configuration:

Expiry Duration: 3 months # Relates to Validity field

Force Rotate: 0

Root Rotation In Progress: false

<SNIP>

Configuring some CA settings

You can configure the certificate rotation period for the Swarm with the docker

swarm update command. The following example changes the certificate rotation
period to 30 days.

$ docker swarm update --cert-expiry 720h

Swarm allows nodes to renew certificates early (slightly before they expire) so that
not all nodes in the Swarm try and update their certificates at the same time.

You can configure an external CA when creating a Swarm by passing the --

external-ca flag to the docker swarm init command.

The new docker swarm ca sub-command can be used to manage CA related config-
uration. Run the command with the --help flag to see a list of things it can do.

15: Security in Docker 313

$ docker swarm ca --help

Usage: docker swarm ca [OPTIONS]

Manage root CA

Options:

--ca-cert pem-file Path to the PEM-formatted root CA

certificate to use for the new cluster

--ca-key pem-file Path to the PEM-formatted root CA

key to use for the new cluster

--cert-expiry duration Validity period for node certificates

(ns|us|ms|s|m|h) (default 2160h0m0s)

-d, --detach Exit immediately instead of waiting for

the root rotation to converge

--external-ca external-ca Specifications of one or more certificate

signing endpoints

--help Print usage

-q, --quiet Suppress progress output

--rotate Rotate the swarm CA - if no certificate

or key are provided, new ones will be gene\

rated

The cluster store

The cluster store is the brains of a Swarm and is the place where cluster config and
state are stored.

The store is currently based on an implementation of etcd, and is automatically
configured to replicate itself to all managers in the Swarm. It is also encrypted by
default.

The cluster store is becoming a critical component of many Docker platform
technologies. For example, Docker networking and Docker Secrets both leverage the
cluster store. This is one of the reasons that SwarmMode is so important to the future
of Docker — many parts of the Docker platform already leverage the cluster store,
and more will leverage it in the future. The moral of the story… if you’re not running
in Swarm Mode, you’ll be limited in what other Docker features you can use.

15: Security in Docker 314

The day-to-day maintenance of the cluster store is taken care of automatically by
Docker. However, in production environments, you should have strong backup and
recovery solutions in place for it.

That’s enough for now about Swarm Mode security.

Detecting vulnerabilities with Docker Security Scanning

The ability to quickly identify code vulnerabilities is vital. Docker Security Scanning
makes detecting known vulnerabilities in Docker images simple.

Note: At the time of writing, Docker Security Scanning is available for
images in private repositories on Docker Hub. It is also available as part
of the Docker Trusted Registry on-premises registry solution. Finally,
all official Docker images are scanned and scan reports are available in
their repos.

Docker Security Scanning performs binary-level scans of Docker images and checks
the software in them against databases of known vulnerabilities (CVE databases).
After the scan is performed, a detailed report is made available.

Open aweb browser to https://hub.docker.com and search for the alpine repo. Figure
15.11 shows the Tags tab of the official Alpine repo.

Figure 15.11

15: Security in Docker 315

The Alpine repo is an official repo. This means it automatically gets scanned and
scan reports are made available. As you can see, the images tagged as edge, latest,
and 3.6 are free from known vulnerabilities. However, the alpine:3.5 image has
known vulnerabilities (red).

If you drill into the alpine:3.5 image you get a more detailed report as shown in
Figure 15.12.

Figure 15.12

This is a simple and easyway to get detailed information about known vulnerabilities
in your software.

Docker Trusted Registry (DTR), which is an on-premises Docker registry included
as part of Docker Enterprise Edition, provides the same capabilities and gives you
control over how and when image scans are performed. For example, DTR lets you
decide if images should be automatically scanned as soon as they are pushed, or
if scans should only be triggered manually. It also allows you to manually upload
CVE database updates — this is ideal for situations where your DTR infrastructure
is air-gapped from the internet and cannot automatically sync updates.

That’s Docker Security Scanning — a great way to deeply inspect your Docker
images for known vulnerabilities. Beware though, with great knowledge comes great
responsibility — once you know about vulnerabilities, it’s your responsibility to deal
with them.

15: Security in Docker 316

Signing and verifying images with Docker Content Trust

Docker Content Trust (DCT) makes it simple and easy to verify the integrity and the
publisher of images that you download. This is especially important when pulling
images over untrusted networks such as the internet.

At a high level, DCT allows developers to sign their images when they are pushed
to Docker Hub or Docker Trusted Registry. It will also automatically verify images
when they are pulled. This high-level process is shown in Figure 15.13

Figure 15.13

DCT can also provide important context. This includes things like; whether or not
an image has been signed for use in a production environment, or whether an image
has been superseded by a newer version and is therefore stale.

At the time of writing, the context offerings of DTC are in their infancy and quite
complex to configure.

All you need to do, to enable DCT on a Docker host, is export an environment
variable called DOCKER_CONTENT_TRUST with a value of 1.

$ export DOCKER_CONTENT_TRUST=1

In the real world, you may want to make this a more permanent feature of your
system.

15: Security in Docker 317

If you are using Docker Universal Control Plane (part of Docker Enterprise Edition),
you need to set the Only run signed images checkbox as shown in Figure 15.14.
This will force all nodes in the UCP cluster to only work with signed images.

Figure 15.14

You can see from Figure 15.14 that Universal Control Plane takes DCT one step
further by giving the option to list security principals that are required to sign an
image. For example, you might have a corporate policy that all images used in
production need to be signed by the secops team.

Once DCT has been enabled, you will no longer be able to pull and work with
unsigned images. Figure 15.15 shows the errors you will get if you attempt to pull an
unsigned image using the Docker CLI and the Universal Control Plane web UI (both
examples are attempting to pull an image tagged as “unsigned”)

15: Security in Docker 318

Figure 15.15

Figure 15.16 shows howDCT prevents a Docker client from pulling an image that has
been tampered with. Figure 15.17 shows DCT preventing a client pulling an image
that is stale.

Figure 15.16 Pulling an image that has been tampered with

Figure 15.17 Pulling a stale image

Docker Content Trust is an important technology for helping you verify the images
you are pulling from Docker registries. It’s simple to configure in its basic form, but
more advanced features, such as context, are currently more complex to configure.

15: Security in Docker 319

Docker Secrets

Many applications need secrets. Things like passwords, TLS certificates, SSH keys,
and more.

Prior to Docker 1.13, there was no standard way of making secrets available to apps
in a secure way. It was common for developers to insert secrets into apps via plain
text environment variables (we’ve all done it). This was far from ideal.

Docker 1.13 introduced Docker Secrets, effectively making secrets first-class citizens
in the Docker ecosystem. For example, there is a whole new docker secret sub-
command dedicated to managing secrets. There’s also a page for creating and
managing secrets in the Docker Universal Control Plane UI. Behind the scenes,
secrets are encrypted at rest, encrypted in-flight, mounted in in-memory filesystems,
and operate under a least-privilege model where they are only made available to
services that have been explicitly granted access to them. It’s quite a comprehensive
end-to-end solution.

Figure 15.18 shows a high-level workflow:

15: Security in Docker 320

Figure 15.18

The following steps walk through the high-level workflow shown in Figure 15.18.

1. The blue secret is created and posted to the Swarm
2. It gets stored in the encrypted cluster store (all managers have access to the

cluster store)
3. The blue service is created and the secret is attached to it
4. The secret is encrypted in-flight while it is delivered to the tasks (containers)

in the blue service
5. The secret is mounted into the containers of the blue service as an unencrypted

file at /run/secrets/. This is an in-memory tmpfs filesystem (this step is
different on Windows Docker hosts as they do not have the notion of an in-
memory filesystem like tmpfs)

6. Once the container (service task) completes, the in-memory filesystem is torn
down and the secret flushed from the node.

7. The red containers in the red service cannot access the secret.

15: Security in Docker 321

You can create and manage secrets with the docker secret sub-command, and you
can attach them to services by specifying the --secret flag to the docker service

create command.

Chapter Summary

Docker can be configured to be extremely secure. It supports all of the major Linux
security technologies, including; kernel namespaces, cgroups, capabilities, MAC, and
seccomp. It ships with sensible defaults for all of these, but you can customize them
and even disable them.

Over and above the general Linux security technologies, the Docker platform
includes an extensive set of its own security technologies. Swarm Mode is built
on TLS and is insanely simple to configure and customize. Security Scanning
performs binary-level scans of Docker images and provides detailed reports of known
vulnerabilities. Docker Content Trust lets you sign and verify content, and secrets are
now first-class citizens in Docker.

The net result is that your Docker environment can be configured to be as secure or
insecure as you desire — it all depends on how you configure it.

16: Tools for the enterprise
In this chapter, we’ll look at some of the enterprise-grade tools provided by Docker,
Inc. We’ll see how to install them, configure them, back them up, and restore.

This will be quite a long chapter with a lot of step-by-step technical detail. I’ll try
and keep it interesting, but it’ll be hard :-D

Other tools exist, but we’ll be concentrating on the ones from Docker, Inc.

Let’s dive straight in.

Tools for the enterprise - The TLDR

Docker and containers have taken the application development world by storm —
building, shipping, and running applications has never been easier. So it’s no surprise
that enterprises want in on the action. But enterprises have a much stricter set of
requirements than the typical bleeding-edge developer.

Enterprises need Docker packaged in a way they can consume. This usually means
an on-premises solution that they own and manage themselves. It also means roles
and security features that allow it to fit their internal structure and be blessed by
the security department. And it means having everything backed by a meaningful
support contract.

This is where Docker Enterprise Edition (EE) comes into play!

Docker EE isDocker for the enterprise. It’s a suit of products that includes a hardened
engine, an Operations UI, and a secure private registry. You can deploy it on-premises
and it’s wrapped in a support contract.

The high-level stack is shown in Figure 16.1.

16: Tools for the enterprise 323

Figure 16.1 Docker EE

Tools for the enterprise - The Deep Dive

We’ll divide the rest of the chapter as follows:

• Docker EE Engine
• Docker Universal Control Plane (UCP)
• Docker Trusted Registry (DTR)

We’ll see how to install each, and where applicable, configure HA, and perform
backup and restore jobs.

Docker EE engine

The Docker engine provides all of the core Docker features. Things like image and
container management, networks, volumes, clustering, secrets, andmore. At the time
of writing, there are two versions:

• Community Edition (CE)
• Enterprise Edition (EE)

16: Tools for the enterprise 324

The two biggest differences, as far as we’re concerned, are the release cycles and
support.

Docker EE is on a quarterly release cycle, and uses a time-based versioning scheme.
For example, the June 2018 release of Docker EE will be 18.06.x-ee. Docker, Inc.
guarantees 1 year of support and patches for each version.

Installing Docker EE

Installing Docker EE is simple. However, there are slight differences between
platforms. We’ll show you how to do it on Ubuntu 16.04, but doing it on other
platforms is just as easy.

Docker EE is a subscription-based service, so you’ll need a Docker ID and an active
subscription. This gives you access to a unique personalized Docker EE repository
that we’ll configure and use in the next steps. Trial licenses26 are usually available.

Note: Docker on Windows Server always installs Docker EE. See
Chapter 3 for information on how to install Docker EE on Windows
Server 2016.

You may need to prefix the following commands with sudo.

1. Make sure you’ve got the latest package lists.

$ apt-get update

2. Install the packages needed to access the Docker EE repo over HTTPS.

$ apt-get install -y \

apt-transport-https \

curl \

software-properties-common

26https://store.docker.com/editions/enterprise/docker-ee-trial

https://store.docker.com/editions/enterprise/docker-ee-trial
https://store.docker.com/editions/enterprise/docker-ee-trial

16: Tools for the enterprise 325

3. Log in to the Docker Store27 and copy your unique Docker EE repository URL.

Point your web browser to store.docker.com. Click your username at the top
right and select My Content. Select Setup under one of your active Docker EE
subscriptions.

Copy your repository URL from under the Resources pane.

Download your license as well.

We’re demonstrating how to setup the repo for Ubuntu. However, this Docker
Store page contains instructions on how to do the setup for other flavors of
Linux.

4. Add you unique Docker EE repository URL to an environment variable.

$ DOCKER_EE_REPO=<paste-in-your-unique-ee-url>

5. Add the official Docker GPG key to all your keyrings.

27https://store.docker.com/

https://store.docker.com/
https://store.docker.com/

16: Tools for the enterprise 326

$ curl -fsSL "${DOCKER_EE_REPO}/ubuntu/gpg" | sudo apt-key add -

6. Setup the latest stable repository. You may have to substitute the value on the
last line with the latest stable release.

$ add-apt-repository \

"deb [arch=amd64] $DOCKER_EE_REPO/ubuntu \

$(lsb_release -cs) \

stable-17.06"

7. Run another apt-get update to pull the latest package lists from your newly
added Docker EE repo.

$ apt-get update

8. Uninstall previous versions of Docker.

$ apt-get remove docker docker-engine docker-ce docker.io

9. Install Docker EE

$ apt-get install docker-ee -y

10. Check that the installation worked.

$ docker --version

Docker version 17.06.2-ee-6, build e75fdb8

That’s it, you’ve installed the Docker EE engine.

Now you can install Universal Control Plane.

16: Tools for the enterprise 327

Docker Universal Control Plane (UCP)

We’ll be referring to Docker Universal Control Plane as UCP for the rest of the
chapter.

UCP is an enterprise-grade container-as-a-service platform with an Operations UI.
It takes the Docker Engine, and adds all of the features enterprises love and require.
Things like; RBAC, policies, trust, a highly-available control plane, and a simple UI.
Under-the-covers, it’s a containerized microservices app that you download and run
as a bunch of containers.

Architecturally, UCP builds on top of Docker EE in Swarmmode. As shown in Figure
16.4, the UCP control plane runs on Swarm managers, and apps are deployed on
Swarm workers.

Figure 16.4 High level UCP architecture

At the time of writing, UCP managers have to be Linux. Workers can be a mix of
Windows and Linux.

Planning a UCP installation

When planning a UCP installation, it’s important to size and spec your cluster
appropriately. We’ll look at some of things you should consider.

All nodes in the cluster should have their clocks in sync (e.g. NTP). If they don’t,
problems can occur that are a pain to troubleshoot.

16: Tools for the enterprise 328

All nodes should have a static IP address and a stable DNS name.

By default, UCP managers don’t run user workloads. This is a recommended best
practice, and you should enforce it for production environments— it allowsmanagers
to focus solely on control plane duties. It also makes troubleshooting easier.

You should always have an odd number of managers. This helps avoid split-brain
conditions where managers fail or become partitioned from the rest of the cluster.
The ideal number is 3, 5, or 7, with 3 or 5 usually being the best. Having more than 7
can cause issues with the back-end Raft and cluster reconciliation. If you don’t have
enough nodes for 3 managers, 1 is better than 2!

If you’re implementing a backup schedule (which you should) and taking regular
backups, you might want to deploy 5 managers. This is because Swarm and UCP
backup operations require stopping Docker and UCP services. Having 5 managers
can help maintain cluster resiliency during such operations.

Manager nodes should be spread across data center availability zones. The last thing
you want, is a single availability zone failing and taking all of the UCP managers
with it. However, it’s important to connect your managers via high-speed reliable
networks. So if your data center availability zones are not connected by good
networks, you might be better-off keeping all managers in a single availability zone.
As a general rule, if you’re deploying on public cloud infrastructure, you should
deploy your managers in availability zones within a single region. Spanning regions
usually involves less-reliable high-latency networks.

You can have as many worker nodes as you want — they don’t participate in cluster
Raft operations, so won’t impact control plane operations.

Planning the number and size of worker nodes requires an understanding of the
apps you plan on running on the cluster. For example, knowing this will help you
determine things like how manyWindows vs Linux nodes you require. You will also
need to know if any of your apps have special requirements and need specialised
worker nodes — may be PCI workloads.

Also, although the Docker engine is lightweight and small, the containerized appli-
cations you run on your nodes might not be. With this in mind, it’s important to
size nodes according to the CPU, RAM, network, and disk I/O requirements of your
applications.

16: Tools for the enterprise 329

Making server sizing requirements isn’t something I like to do, as it’s entirely
dependant on your workloads. However, the Docker website is currently suggesting
the following minimum requirements for Docker UCP 2.2.4 on Linux:

• UCP Manager nodes running DTR: 8GB of RAM with 3GB of disk space
• UCP Worker nodes: 4GB of RAM with 3GB of free disk space

Recommended requirements are:

• UCPManager nodes running DTR: 8GB RAM, 4 vCPUs, and 100GB disk space
• UCP Worker nodes: 4GB RAM 25-100GB of free disk space

Take this with a pinch of salt, and be sure to do your own sizing exercise.

One thing’s for sure — Windows images are a lot bigger than Linux images. So be
sure to factor this into your sizing.

One final word on sizing requirements. Docker Swarm and Docker UCP make
it extremely easy to add and remove managers and workers. New managers are
automagically added to the HA control plane, and new workers are immediately
available for workload scheduling. Similarly, removing managers and workers is
simple. As long as you have multiple managers, you can remove a manager without
impacting cluster operations. With worker nodes, you can drain them and remove
them from a running cluster. This all makes UCP very forgiving when it comes to
changing your managers and workers.

With these considerations in mind, we’re ready to install UCP.

Installing Docker UCP

In this section, we’ll walk through the process of installing Docker UCP on the first
manager node in a new cluster.

1. Run the following command from a Linux-based Docker EE node that you
want to be the first manager in your UCP cluster.

16: Tools for the enterprise 330

A few things to note about the command. The example installs UCP using the
docker/ucp:2.2.5 image, you will want to substitute your desired version.
The --host-address is the address you will use to access the web UI. For
example, if you’re installing in AWS and plan on accessing from your corporate
network via the internet, you would enter the AWS public IP.

The installation is interactive, so you’ll be prompted for further input to
complete it.

$ docker container run --rm -it --name ucp \

-v /var/run/docker.sock:/var/run/docker.sock \

docker/ucp:2.2.5 install \

--host-address <node-ip-address> \

--interactive

2. Configure credentials.

You’ll be prompted to create a username and password for the UCP Admin
account. This is a local account, and you should follow your corporate
guidelines for choosing the username and password. Be sure you don’t forget
it :-D

3. Subject alternative names (SANs).

The installer gives you the option to enter a list of alternative IP addresses and
names that might be used to access UCP. These can be public and private IP
addresses and DNS names, and will be added to the certificates.

A few things to note about the install.

UCP leverages Docker Swarm. This means UCP managers have to run on Swarm
managers. If you install UCP on a node in single-engine mode, it will automatically
be switched into Swarm mode.

The installer pulls all of the images for the various UCP services, and starts containers
from them. The following listing shows some of them being pulled by the installer.

16: Tools for the enterprise 331

INFO[0008] Pulling required images... (this may take a while)

INFO[0008] Pulling docker/ucp-auth-store:2.2.5

INFO[0013] Pulling docker/ucp-hrm:2.2.5

INFO[0015] Pulling docker/ucp-metrics:2.2.5

INFO[0020] Pulling docker/ucp-swarm:2.2.5

INFO[0023] Pulling docker/ucp-auth:2.2.5

INFO[0026] Pulling docker/ucp-etcd:2.2.5

INFO[0028] Pulling docker/ucp-agent:2.2.5

INFO[0030] Pulling docker/ucp-cfssl:2.2.5

INFO[0032] Pulling docker/ucp-dsinfo:2.2.5

INFO[0080] Pulling docker/ucp-controller:2.2.5

INFO[0084] Pulling docker/ucp-proxy:2.2.5

Some of the interesting ones include:

• ucp-agent This is the main UCP agent. It gets deployed to all nodes in the
cluster and is in charge of making sure the required UCP containers are up
and running.

• ucp-etcd The cluster’s persistent key-value store.
• ucp-auth Shared authentication service (also used by DTR for single-sign-on).
• ucp-proxy Controls access to the local Docker socket so that unauthenticated
clients cannot make changes to the cluster.

• ucp-swarm Provides compatibility with the underlying Swarm.

Finally, the installation creates a couple of root CA’s: one for internal cluster
communications, and one for external access. They issue self-signed certs, which
are fine for labs and testing, but not production.

To install UCP with certificates from a trusted CA, you will need a certificate bundle
with the following three files:

• ca.pem Certificate of the trusted CA (usually one of your internal corporate
CA’s).

• cert.pem UCP’s public certificate. This needs to contain all IP addresses and
DNS names that the cluster will be accessed by— including any load-balancers
that are fronting it.

16: Tools for the enterprise 332

• key.pem UCP’s private key.

If you have these files, you need to mount them into a Docker volume called ucp-

controller-server-certs, and use the --external-ca flag to specify the volume.
You can also change the certificates from the Admin Settings page of the web UI
after the installation.

The last thing the UCP installer outputs is the URL that you can access it from.

<Snip>

INFO[0049] Login to UCP at https://<IP or DNS>:443

Point a web browser to that address and login. If you’re using self-signed certificates
you’ll need to accept the browser warnings. You’ll also need to specify your license
file, which can be downloaded from the My Content section of the Docker Store.

Once you’re logged in, you’ll be landed at the UCP Dashboard.

16: Tools for the enterprise 333

At this point, you have a single-node UCP cluster.

You can add more manager and worker nodes from the Add Nodes link at the bottom
of the Dashboard.

Figure 16.6 shows the Add Nodes screen. You can choose to add managers or workers,
and it gives you the appropriate command to run on the nodes you want to add. The
example shows the command to add a Linux worker node. Notice that the command
is a docker swarm command.

Adding a node will join it to the Swarm and configure the required UCP services on
it. If you’re adding managers, it’s recommended to wait between each new addition.
This gives Docker a chance to download and run the required UCP containers, as
well as allow the cluster to register the new manager and achieve quorum.

Newly added managers are automatically configured into the highly-available (HA)
Raft consensus group and granted access to the cluster store. Also, although external
load-balancers aren’t generally considered core parts of UCP HA, they provide a
stable DNS hostname that masks what’s going on behind the scenes — such as node
failures.

You should configure external load-balancers for TCP pass-through on port 443, with
a custom HTTPS health check for each UCP manager node at https://<ucp_man-

16: Tools for the enterprise 334

ager>/_ping.

Now that you have a working UCP, you should look at the options that can be
configured from the Admin Settings page.

Figure 16.7 UCP Admin Settings

The settings on this page make up the bulk of the configuration data that is backed
as part of the UCP backup operation.

Controlling access to UCP

All access to UCP is controlled via the identity management sub-system. This means
you need to authenticate with a valid UCP username and password before you can
perform any actions on the cluster. This includes cluster administration, as well as
deploying and managing services.

We’ve seen this already with UI — we had to log in with a username and password.
But the same applies to the Docker CLI — you cannot run unauthenticated commands
against UCP from the command line! This is because the local Docker socket on UCP

16: Tools for the enterprise 335

cluster nodes is protected by the ucp-proxy service that will not accept unauthorized
commands.

Let’s see it.

Client bundles

Any node running the Docker CLI is capable of deploying and managing workloads
on a UCP cluster, so long as it presents a valid certificate for a UCP user!

In this section we’ll create a new UCP user, create and download a certificate bundle
for that user, and configure a Docker client to use the certificates. Once we’re done,
we’ll explain how it works.

1. If you aren’t already, login to UCP as admin.
2. Click User Management > Users and then create a new user.

As we haven’t discussed roles and grants yet, make the user a Docker EE
Admin.

3. With the new user still selected, click the Configure drop-down box and
choose Client Bundle.

4. Click the New Client Bundle + link to generate and download a client bundle
for the user.

At this point, it’s important to note that client bundles are user-specific. The
certificates downloaded will enable any properly configured Docker client to
execute commands on the UCP cluster under the identity of the user that the
bundle belongs to.

16: Tools for the enterprise 336

5. Copy the bundle to the Docker client that you want to configure to manage
UCP.

6. Logon to the client node and perform all of the following commands from that
node.

7. Unzip the contents of the bundle.

This example uses the Linux unzip package to unzip the contents of the bundle
to the current directory. Substitute the name of the bundle to match the one
in your environment.

$ unzip ucp-bundle-nigelpoulton.zip

Archive: ucp-bundle-nigelpoulton.zip

extracting: ca.pem

extracting: cert.pem

extracting: key.pem

extracting: cert.pub

extracting: env.sh

extracting: env.ps1

extracting: env.cmd

As the output shows, the bundle contains the required ca.pem, cert.pem, and
key.pem files. It also includes scripts that will configure the Docker client to
use the certificates.

8. Use the appropriate script to configure the Docker client. env.sh works on
Linux and Mac, env.ps1 and env.cmd work on Windows.

You’ll probably need administrator/root privileges to run the scripts.

The example works on Linux and Mac.

$ eval "$(<env.sh)"

At this point, the client node is fully configured.
9. Test access.

16: Tools for the enterprise 337

$ docker version

<Snip>

Server:

Version: ucp/2.2.5

API version: 1.30 (minimum version 1.20)

Go version: go1.8.3

Git commit: 42d28d140

Built: Wed Jan 17 04:44:14 UTC 2018

OS/Arch: linux/amd64

Experimental: false

Notice that the server portion of the output shows the version as ucp/2.2.5.
This proves the Docker client is successfully talking to the daemon on a UCP
node!

Under-the-hood, the script configures three environment variables:

• DOCKER_HOST

• DOCKER_TLS_VERIFY

• DOCKER_CERT_PATH

DOCKER_HOST points the client to the remote Docker daemon on the UCP con-
troller. An example might look like this DOCKER_HOST=tcp://34.242.196.63:443.
As we can see, access via port 443.

DOCKER_TLS_VERIFY is set to 1, telling the client to use TLS verification in client
mode.

DOCKER_CERT_PATH tells the Docker client where to find the certificate bundle.

The net result is all docker commands from the client will be signed by the user’s
certificate and sent across the network to the remote UCP manager. This is shown in
Figure 16.9.

16: Tools for the enterprise 338

Figure16.9

Let’s switch tack and see how we backup and recover UCP.

Backing up UCP

First and foremost, high availability (HA) is not the same as a backup!

Consider the following example. You have a highly available UCP cluster with 5
managers nodes. All manager nodes are healthy and the control plane is replicating.
A dissatisfied employee corrupts the cluster (or deletes all user accounts). This
corruption is automatically replicated to all 5 manager nodes, rendering the cluster
broken. There is no way that HA can help you in this situation. What you need, is a
backup!

AUCP cluster is made from threemajor components that need backing up separately:

• Swarm
• UCP
• Docker Trusted Registry (DTR)

We’ll walk you through the process of backing up Swarm and UCP, and we’ll show
you how to back up DTR later in the chapter.

16: Tools for the enterprise 339

Although UCP sits on top of Swarm, they are separate components. Swarm holds all
of the node membership, networks, volumes, and service definitions. UCP sits on top
and maintains its own databases and volumes that hold things such as users, groups,
grants, bundles, license files, certificates, and more.

Let’s see how to backup Swarm.

Swarm configuration and state is stored in /var/lib/docker/swarm. This includes
Raft log keys, and it’s replicated to every manager node. A Swarm backup is a copy
of all the files in this directory.

Because it’s replicated to every manager, you can perform the backup from any
manager.

You need to stop Docker on the node that you want to perform the backup on. This
means it’s probably not a good idea to perform the backup on the leader manager,
as a leader election will be instigated. You should also perform the backup at a quiet
time for the business — even though stopping Docker on a single manager node isn’t
a problem in a multi-manager Swarm, it can increase the risk of the cluster losing
quorum if another manager fails during the backup.

Before proceeding, you might want to create a couple of Swarm objects so that
you can prove the backup and restore operation work. The example Swarm we’ll
be backing up in these examples has an overlay network called vantage-net and a
Swarm service called vantage-svc.

1. Stop Docker on the Swarmmanager node you are performing the backup from.

This will stop all UCP containers on the node. If UCP is configured for HA,
the other managers will make sure the control plane remains available.

$ service docker stop

2. Backup the Swarm config.

The example uses the Linux tar utility to perform the file copy. Feel free to
use a different tool.

16: Tools for the enterprise 340

$ tar -czvf swarm.bkp /var/lib/docker/swarm/

tar: Removing leading `/' from member names

/var/lib/docker/swarm/

/var/lib/docker/swarm/docker-state.json

/var/lib/docker/swarm/state.json

<Snip>

3. Verify that the backup file exists.

$ ls -l

-rw-r--r-- 1 root root 450727 Jan 29 14:06 swarm.bkp

You should rotate, and store the backup file off-site according to your corporate
backup policies.

4. Restart Docker.

$ service docker restart

Now that Swarm is backed up, it’s time to backup UCP.

A few notes on backing up UCP before we start.

The UCP backup job runs as a container, so Docker needs to be running for the
backup to work.

You can run the backup from any UCP manager node in the cluster, and you only
need to run the operation on one node (UCP replicates its configuration to all
manager nodes, so backing up from multiple nodes is not required).

Backing up UCP will stop all UCP containers on the manager that you’re executing
the operation on. With this in mind, you should be running a highly available UCP
cluster, and you should run the operation at a quiet time for the business.

Finally, user workloads running on the manager node will not be stopped. However,
it is not recommended to run user workloads on UCP managers.

Let’s backup UCP.

Perform the following command on a UCP manager node. Docker will need to be
running on the node.

16: Tools for the enterprise 341

$ docker container run --log-driver none --rm -i --name ucp \

-v /var/run/docker.sock:/var/run/docker.sock \

docker/ucp:2.2.5 backup --interactive \

--passphrase "Password123" > ucp.bkp

It’s a long command, so let’s step through it.

The first line is a standard docker container run command that tells Docker to run
a container with no log driver, to remove it when the operation is complete, and to
call it ucp. The second line mounts the Docker socket into the container so that the
container has access to the Docker API to stop containers etc. The third line tells
Docker to run a backup --interactive command inside of a container based on the
docker/ucp:2.2.5 image. The final line creates an encrypted file called ucp.bkp and
protects it with a password.

A few points worth noting.

It’s a good idea to be specific about the version (tag) of the UCP image to use. This
example specifies docker/ucp:2.2.5. One of the reasons for being specific, is that
it’s recommended to run backup and restore operations with the same version of
the image. If you don’t explicitly state which image to use, Docker will use the one
tagged as latest, which might be different between the time you run the backup
command and the time you run the restore.

You should always use the --passphrase flag to protect the contents of the backup,
and you should definitely use a better password than the one in the example :-D

You should catalogue and make off-site copies of the backup file according to your
corporate backup policies. You should also configure a backup schedule and job
verification.

Now that Swarm and UCP are backed up, you can safely recover them in the event
of disaster. Speaking of which….

Recovering UCP

We need to be clear about one thing before we get into the weeds of recovering UCP:
Restoring from backup is a last resort, and should only be used when the cluster has
been corrupted or all manager nodes have been lost!

16: Tools for the enterprise 342

You do not need to recover from a backup if you’ve lost a single manager in an
HA cluster. In that case, you can easily add a new manager and it’ll join the cluster.

We’ll show how to recover Swarm from a backup, and then UCP.

Perform the following tasks from the Swarm/UCP manager node that you wish to
recover.

1. Stop Docker.

$ service docker stop

2. Delete any existing Swarm configuration.

$ rm -r /var/lib/docker/swarm

3. Restore the Swarm configuration from backup.

In this example, we’ll restore from a zipped tar file called swarm.bkp. Restoring
to the root directory is required with this command as it will include the full
path to the original files as part of the extract operation. This may be different
in your environment.

$ tar -zxvf swarm.bkp -C /

4. Initialize a new Swarm cluster.

Remember, you are not recovering a manager and adding it back to a working
cluster. This operation is to recover a failed Swarm that has no surviving
managers. The --force-new-cluster flag tells Docker to create a new cluster
using the configuration stored in /var/lib/docker/swarm on the current node.

$ docker swarm init --force-new-cluster

Swarm initialized: current node (jhsg...3l9h) is now a manager.

5. Check that the network and service were recovered as part of the operation.

16: Tools for the enterprise 343

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

snkqjy0chtd5 vantage-net overlay swarm

$ docker service ls

ID NAME MODE REPLICAS IMAGE

w9dimu8jfrze vantage-svc replicated 5/5 alpine:latest

Congratulations. The Swarm is recovered.
6. Add new manager and worker nodes to the Swarm, and take a fresh backup.

With Swarm recovered, you can now recover UCP.

In this example, UCP was backed up to a file called ucp.bkp in the current directory.
Despite the name of the backup file, it is a Linux tarball.

Run the following commands from the node that you want to recover UCP on. This
can be the node that you just recovered Swarm on.

1. Remove any existing, and potentially corrupted, UCP installations.

$ docker container run --rm -it --name ucp \

-v /var/run/docker.sock:/var/run/docker.sock \

docker/ucp:2.2.5 uninstall-ucp --interactive

INFO[0000] Your engine version 17.06.2-ee-6, build e75fdb8 is compatible

INFO[0000] We're about to uninstall from this swarm cluster.

Do you want to proceed with the uninstall? (y/n): y

INFO[0000] Uninstalling UCP on each node...

INFO[0009] UCP has been removed from this cluster successfully.

INFO[0011] Removing UCP Services

2. Restore UCP from the backup.

16: Tools for the enterprise 344

$ docker container run --rm -i --name ucp \

-v /var/run/docker.sock:/var/run/docker.sock \

docker/ucp:2.2.5 restore --passphrase "Password123" < ucp.bkp

INFO[0000] Your engine version 17.06.2-ee-6, build e75fdb8 is compatible

<Snip>

time="2018-01-30T10:16:29Z" level=info msg="Parsing backup file"

time="2018-01-30T10:16:38Z" level=info msg="Deploying UCP Agent Service"

time="2018-01-30T10:17:18Z" level=info msg="Cluster successfully restored.

3. Log on to the UCPwebUI and ensure that the user created earlier is still present
(or any other UCP objects that previously existed in your environment).

Congrats. You now know how to backup and recover Docker Swarm and Docker
UCP.

Let’s shift our attention to Docker Trusted Registry.

Docker Trusted Registry (DTR)

Docker Trusted Registry, which we’re going to refer to as DTR, is a secure, highly
available on-premises Docker registry. If you know Docker Hub, think of DTR as a
private Docker Hub that you can install on-premises and manage yourself.

In this section, we’ll show how to install it in an HA configuration, and how to back
it up and perform recovery operations. We’ll show how DTR implements advanced
features in the next chapter.

Let’s mention a few important things before getting your hands dirty with the
installation.

If possible, you should run your DTR instances on dedicated nodes. You definitely
shouldn’t run user workloads on your production DTR nodes.

As with UCP, you should run an odd number of DTR instances. 3 or 5 is best for fault
tolerance. A recommended configuration for a production environment might be:

• 3 dedicated UCP managers

16: Tools for the enterprise 345

• 3 dedicated DTR instances
• However many worker nodes your application requirements demand

Let’s install and configure a single DTR instance.

Install DTR

The next few steps will walk through the process of configuring the first DTR
instance in a UCP cluster.

To follow along, you’ll need a UCP node that you will install DTR on, and a load
balancer configured to listen on port 443 in TCP passthrough mode with a health
check configured for /health on port 443. Figure 16.10 shows a high-level diagram
of what we’ll build.

Configuring a load balancer is beyond the scope of this book, but the diagram shows
the important DTR-related configuration requirements.

Figure 16.10 High level single-instance DTR config.

1. Log on to the UCP web UI and click Admin > Admin Settings > Docker

Trusted Registry.
2. Fill out the DTR configuration form.

• DTR EXTERNAL URL: Set this to the URL of your external load balancer.

16: Tools for the enterprise 346

• UCP NODE: Select the name of the node you wish to install DTR on.
• Disable TLS Verification For UCP: Check this box if you’re using
self-signed certificates.

3. Copy the long command at the bottom of the form.
4. Paste the command into any UCP manager node.

The command includes the --ucp-node flag telling UCP which node to
perform the install on.

The following is an example DTR install command that matches the con-
figuration in Figure 16.10. It assumes that you already have a load balancer
configured at dtr.mydns.com

$ docker run -it --rm docker/dtr install \

--dtr-external-url dtr.mydns.com \

--ucp-node dtr1 \

--ucp-url https://34.252.195.122 \

--ucp-username admin --ucp-insecure-tls

Youwill need to provide the UCP admin password to complete the installation.
5. Once the installation is complete, point your web browser to your load

balancer. You will be automatically logged in to DTR.

16: Tools for the enterprise 347

Figure 16.11 DTR home page

DTR is ready to use. But it’s not configured for HA.

Configure DTR for high availability

Configuring DTR with multiple replicas for HA requires a shared storage backend.
This can be NFS or object storage, and can be on-premises or in the public cloud.
We’ll walk through the process of configuring DTR for HA using an Amazon S3
bucket as the shared backend.

1. Log on to the DTR console and navigate to Settings.
2. Select the Storage tab and configure the shared storage backend.

Figure 16.12 shows DTR configured to use an AWS S3 bucket called deep-

dive-dtr in the eu-west-1 AWS availability zone. You will not be able to use
this example.

16: Tools for the enterprise 348

Figure 16.12 DTR Shared Storage configuration for AWS

DTR is now configured with a shared storage backend and ready to have additional
replicas.

1. Run the following command from a manager node in the UCP cluster.

$ docker run -it --rm \

docker/dtr:2.4.1 join \

--ucp-node dtr2 \

--existing-replica-id 47f20fb864cf \

--ucp-insecure-tls

The --ucp-node flag tells the command which node to add the new DTR
replica on. The --insecure-tls flag is required if you’re using self-signed
certificates.

You will need to substitute the version of the image and the replica ID. The
replica ID was displayed as part of the output when you installed the initial
replica.

16: Tools for the enterprise 349

2. Enter the UCP URL and port, as well as admin credentials when prompted.

When the join is complete, you will see some messages like the following.

INFO[0166] Join is complete

INFO[0166] Replica ID is set to: a6a628053157

INFO[0166] There are currently 2 replicas in your DTR cluster

INFO[0166] You have an even number of replicas which can impact availability

INFO[0166] It is recommended that you have 3, 5 or 7 replicas in your cluster

Be sure to follow the advice and install additional replicas so that you operate an odd
number.

You may need to update your load balancer configuration so that it balances traffic
across the new replicas.

DTR is now configured for HA. This means you can lose a replica without impacting
the availability of the service. Figure 16.13 shows an HA DTR configuration.

Figure 16.13 DTR HA

16: Tools for the enterprise 350

Notice that the external load balancer is sending traffic to all three DTR replicas, as
well as performing health checks on all three. All three DTR replicas are also sharing
the same external shared storage backend.

In the diagram, the load balancer and the shared storage backend are 3rd party
products and depicted as singletons (not HA). In order to keep the entire environment
as highly available as possible, you should ensure they have native HA, and that you
back up their contents and configurations as well (e.g. make sure the load balancer
and storage systems are natively HA, and perform backups of them).

Backup DTR

As with UCP, DTR has a native backup command that is part of the Docker image
that was used to install the DTR. This native backup command will backup the DTR
configuration that is stored in a set of named volumes, and includes:

• DTR configuration
• Repository metadata
• Notary data
• Certificates

Images are not backed up as part of a native DTR backup. It is expected that
images are stored in a highly available storage backend that has its own independent
backup schedule using non-Docker tools.

Run the following command from a UCP manager node to perform a DTR backup.

$ read -sp 'ucp password: ' UCP_PASSWORD; \

docker run --log-driver none -i --rm \

--env UCP_PASSWORD=$UCP_PASSWORD \

docker/dtr:2.4.1 backup \

--ucp-insecure-tls \

--ucp-username admin \

> ucp.bkp

16: Tools for the enterprise 351

Let’s explain what the command is doing.

The read command will prompt you to enter the password for the UCP admin
account, and will store it in a variable called UCP_PASSWORD. The second line tells
Docker to start a new temporary container for the operation. The third line makes
the UCP password available inside the container as an environment variable. The
fourth line issues the backup command. The fifth line makes it work with self-signed
certificates. The sixth line sets the UCP username to “admin”. The last line directs
the backup to a file in the current directory called ucp.bkp.

You will be prompted to enter the UCP URL as well as a replica ID. You can specify
these as part of the backup command, I just didn’t want to explain a single command
that was 9 lines long!

When the backup is finished, you will have a file called ucp.bkp in your working
directory. This should be picked up by your corporate backup tool and managed in-
line with your existing corporate backup policies.

Recover DTR from backups

Restoring DTR from backups should be a last resort, and only attempted when the
majority of replicas are down and the cluster cannot be recovered any other way.
If you have lost a single replica and the majority are still up, you should add a new
replica using the dtr join command.

If you are sure you have to restore from backup, the workflow is like this:

1. Stop and delete DTR on the node (might already be stopped)
2. Restore images to the shared storage backend (might not be required)
3. Restore DTR

Run the following commands from the node that you want to restore DTR to. This
node will obviously need to be a member of the same UCP cluster that the DTR is a
member of. You should also use the same version of the docker/dtr image that was
used to create the backup.

1. Stop and delete DTR.

16: Tools for the enterprise 352

$ docker run -it --rm \

docker/dtr:2.4.1 destroy \

--ucp-insecure-tls

INFO[0000] Beginning Docker Trusted Registry replica destroy

ucp-url (The UCP URL including domain and port): https://34.252.195.122:443

ucp-username (The UCP administrator username): admin

ucp-password:

INFO[0020] Validating UCP cert

INFO[0020] Connecting to UCP

INFO[0021] Searching containers in UCP for DTR replicas

INFO[0023] This cluster contains the replicas: 47f20fb864cf a6a628053157

Choose a replica to destroy [47f20fb864cf]:

INFO[0030] Force removing replica

INFO[0030] Stopping containers

INFO[0035] Removing containers

INFO[0045] Removing volumes

INFO[0047] Replica removed.

You’ll be prompted to enter the UCP URL, admin credentials, and replica ID
that you want to delete.

If you have multiple replicas, you can run the command multiple times to
remove them all.

2. If the images were lost from the shared backend, youwill need to recover them.
This step is beyond the scope of the book as it can be specific to your shared
storage backend.

3. Restore DTR with the following command.

You will need to substitute the values on lines 5 and 6 with the values
from your environment. Unfortunately the restore command cannot be ran
interactively, so you cannot be prompted for values once the restore has
started.

16: Tools for the enterprise 353

$ read -sp 'ucp password: ' UCP_PASSWORD; \

docker run -i --rm \

--env UCP_PASSWORD=$UCP_PASSWORD \

docker/dtr:2.4.1 restore \

--ucp-url <ENTER_YOUR_ucp-url> \

--ucp-node <ENTER_DTR_NODE_hostname> \

--ucp-insecure-tls \

--ucp-username admin \

< ucp.bkp

DTR is now recovered.

Congratulations. You now know how to backup and recover; Swarm, UCP, and DTR.

Time for one final thing before wrapping up the chapter — network ports!

UCP managers, workers, and DTR nodes need to be able to communicate over the
network. Figure 16.14 summarizes the port requirements.

Figure 16.14 UCP cluster network port requirements

Chapter Summary

Docker Enterprise Edition (EE) is a suite of products that form an “enterprise
friendly” container-as-a-service platform. It comprises a hardened Docker Engine,

16: Tools for the enterprise 354

an Operations UI, and a secure registry. All of which can be deployed on-premises
and managed by the customer. It’s even bundled with a support contract.

Docker Universal Control Plane (UCP) provides a simple-to-use web UI focussed at
traditional enterprise Ops teams. It supports native high availability (HA) and has
tools to perform backup and restore operations. Once up and running, it provides a
whole suite of enterprise-grade features that we’ll discuss in the next chapter.

Docker Trusted Registry (DTR) sits on top of UCP and provides a highly available
secure registry. Like UCP, this can be deployed on-premises within the safety of the
corporate “firewall”, and provides native tools for backup and recovery.

17: Enterprise-grade features
This chapter follows on from the previous chapter, and covers some of the enterprise-
grade features provided by Docker Universal Control Plane (UCP) and Docker
Trusted Registry (DTR).

We’ll be assuming you’ve read the previous chapter, so know how to install and
configure them, as well as perform backup and recovery operations.

We’ll split this chapter into two parts:

• The TLDR
• The deep dive

Enterprise-grade features - The TLDR

Enterprises want to use Docker and containers, but they need things packaged and
supported like a real enterprise app. They also need things like role-based access
control and integration with enterprise directory services like Active Directory. This
is where Docker Enterprise Edition comes into play.

Docker Enterprise Edition is a hardened version of the Docker engine, an Ops UI, a
secure registry, and a bunch of enterprise-focussed features. You can deploy it on-
premises or in the cloud, you manage it yourself, and you can get it with a support
contract.

In summary, it’s a container-as-a-service platform that you can run in the safety of
your own corporate data center.

Enterprise-grade features - The Deep Dive

We’ll divide this main section of the chapter as follows:

17: Enterprise-grade features 356

• Role-based access control (RBAC)
• Active Directory integration
• Docker Content Trust (DCT)
• Configuring Docker Trusted Registry (DTR)
• Using Docker Trusted Registry
• Image promotions
• HTTP Routing Mesh (HRM)

Role-based access control (RBAC)

I’ve spent the majority of the last 10 years of my career running IT in the financial
services sector. Two checkboxes that are mandatory at most places I worked, are
role-based access control (RBAC) and Active Directory (AD) integration. If you were
trying to sell us a product, and it didn’t have these two features, we wouldn’t buy it!

Fortunately, Docker EE has both. In this section we’ll talk about RBAC.

UCP implements RBAC via something called a grant. At a high level, a grant is made
of three things:

• Subject
• Role
• Collection

The subject is one or more users or a team. The role is the set of permissions, and the
collection is the resources these permissions apply to. See Figure 17.1.

Figure 17.1 Grant

17: Enterprise-grade features 357

Figure 17.2, shows an example where the SRT team has container-full-control

access to all resources in the /zones/dev/srt collection.

Figure 17.2

Let’s complete the following steps to create a grant:

• Create users and teams
• Create a custom role
• Create a collection
• Create a grant

Only UCP Admins can create and manage users, teams, roles, collections, and grants.
So to follow along, you’ll need to be logged in as a UCP admin.

Create users and teams

It’s a best practice to group users into teams, and assign teams to grants. You can
assign individual users to a grant, but it’s not recommended.

Let’s create some users and teams.

1. Log in to UCP.
2. Expand User Management and click Users.

From here you can create users.
3. Click Organization & Teams.

From here you can create organizations. For the examples in the next few steps,
we’ll be using an organization called “manufacturing”.

17: Enterprise-grade features 358

4. Click the manufacturing organization and create a team.

Teams exist within an organization. It’s not possible to create a team that isn’t
part of an organization, and a team can only be a member of one organization.

5. Add users to a team.

To add a user to a team, you need to click into the team and choose Add Users

from the Actions menu.

Figure 17.3 shows how to add users to the SRT team in the manufacturing

organization.

Figure 17.3 Adding users to teams

You now have some users and teams. UCP shares its user database with DTR,
meaning any users and teams you create in UCP are also available in DTR.

Create a custom role

Custom roles are powerful, they let you get extremely granular with the permissions
you assign. In this step we’ll create a new custom role called secret-ops that allows
subjects to create, delete, update, use, and view Docker secrets.

1. Expand the User Management tab of the left-hand navigation pane and select
Roles.

2. Create a new role.
3. Give the role a name.

In this example we’re going to create a new custom role called “secret-ops”
with permission to perform all secret-related operations.

17: Enterprise-grade features 359

4. Select Operations and explore the list of operations that can be assigned to
the role.

The list is long, and allows you to specify individual API operations.
5. Select the individual API operations you want to assign to the role.

In the example, we’ll assign all secret-related API operations.

Figure 17.4 Assigning API operations to a custom role

6. Click Create.

The role is now on the system and can be assigned to multiple grants.

Let’s create a collection.

Create a collection

In the previous chapter we learned that networks, volumes, secrets, services, and
nodes are Swarm resources — they get stored in the Swarm config at /var/lib/dock-
er/swarm. Collections let you group these in ways that match your organizational
structure and IT requirements. For example, your IT infrastructure might be divided
into three zones; prod, test, and dev. If this is the case, you could create three
collections and assign resources to each, as shown in Figure 17.5.

17: Enterprise-grade features 360

Figure 17.5 High-level collections

Each resource can only be in one collection.

In the next steps, we’ll create a new collection called zones/dev/srt and assign a
secret to it. Collections are hierarchical by nature, so you’ll need to create three nested
collections like this: zones > dev > srt.

Perform all of the following steps from the Docker UCP web UI.

1. Select Collections from the left navigation pane, and choose Create Collec-

tion.
2. Create the root collection called zones.
3. Click View Children for the /zones collection.
4. Create a nested child collection called dev.
5. Click View Children for the /zones/dev collection.
6. Create the final nested child collection called srt.

You now have a collection called /zones/dev/srt. However, it’s currently empty. In
the next steps we’ll add a secret to it.

1. Create a new secret.

You can create it from the command line or the UCP web UI. We’ll explain the
web UI method.

From the UCP web UI click: Secrets > Create Secret. Give it a name, some
data and click Save.

It’s possible to configure the collection at the same time you create the secret.
But we’re not doing it that way.

2. Locate and select the secret in the UCP web UI.
3. Click Collection from the Configure drop-down menu.

17: Enterprise-grade features 361

4. Navigate through the View Children hierarchy until the /zones/dev/srt

collection is selected and click Save.

The secret is now part of the /zones/dev/srt collection. It cannot be a member of
any other collections.

One final thing about collections before we create the grant. Collections have an
inheritance model where access to any collection automatically implies access to
nested child collections. In Figure 17.6, the dev team has access to the /zones/dev

collection, and as such, it automatically gets access to the resources in the srt,
hellcat and daemon child collections.

Figure 17.6 Collection inheritance

Create a grant

Now that you have users and teams, a custom role, and a collection, you can create a
grant. In this example, we’ll create a grant for the srt-dev team to have the custom
secret-ops role against all resources in the /zones/dev/srt collection.

Grants are about who, gets what access, to which resources.

1. Expand the User Management tab on the left navigation pane and click Grants.

17: Enterprise-grade features 362

2. Create a new grant.
3. Click Subject and choose the SRT team from the manufacturing organization.

It’s possible to select an entire organization. If you do this, all teams within
the organization will be included in the grant.

4. Click Role and select the custom secret-ops role.
5. Click Collections and select the /zones/dev/srt collection.

You may have to view the children of the top-level Swarm collection before you
see /zones.

6. Click Save to create the grant.

The grant is now created and can be viewed in the list of all grants on the
system. Members of the manufacturing/SRT team can now perform all secret-related
operations on resources in the /zones/dev/srt collection.

You can modify components of a grant while the grant is live. For example, you can
add users to the team, and resources to the collection. But you cannot alter the API
operations assigned to the role. If you want to change the permissions of the role,
you will need to create a new one with the desired permissions.

RBAC for nodes

One final thing on RBAC. It’s possible to group the worker nodes in your cluster for
scheduling purposes. For example, you might run a single cluster for dev, testing,
and QA workloads — a single cluster might reduce admin overheads and make it
easier to assign nodes to the three different environments. But you might also want

17: Enterprise-grade features 363

worker nodes divided up so that only members of the dev team can schedule work
onto nodes in the dev collection etc.

As you’d expect, you accomplish this with grants. First of all, you’d assign UCP
Worker nodes to a custom collection. Then you’d create a grant comprising the
collection, the built-in Scheduler role, and the team that you want to assign the
grant to. This lets you control which users can schedule work to which nodes in the
cluster.

As a simple example, the grant shown in Figure 17.9 will allow members of the
dev team to be able to schedule services and containers onto worker nodes in the
/zones/dev collection.

Figure 17.9 RBAC for nodes

That’s it! You know how to implement RBAC in Docker UCP!

Active Directory integration

Like all good enterprise tools, UCP integrates with Active Directory and other LDAP
directory services. This allows it to leverage existing users and groups from your
organization’s established single-sign-on system.

Before going any further in this section, it is vital that you discuss any AD/DLAP
integration plans with the teams responsible for directory services in your organi-
zation. Get them involved from the start, so that your planning and implementation
can be as smooth as possible!

Out-of-the-box, UCP user and group data is stored in a local database that’s leveraged
by DTR for a single-sign-on (SSO) experience. This authenticates all access requests
locally, and allows you to login to DTRwithout having to enter your UCP credentials
again. However, UCP admins can configure UCP to leverage existing corporate user

17: Enterprise-grade features 364

accounts stored in AD or other LDAP directory services — offloading authentication
and account management to existing teams and processes.

The following procedure will show you how to configure UCP to leverage AD for
user accounts. At a high level, the process tells UCP to search for user accounts, in
a specific directory, and copy them into UCP. As previously stated, co-ordinate this
work with your directory services team.

Let’s do it.

1. Expand the Admin drop-down in the left navigation pane and select Admin
Settings.

2. Select Authentication & Authorization and click Yes under the LDAP En-
abled heading.

3. Configure LDAP Server settings.

At a high level, you can think of the LDAP Server Settings aswhere to search.
E.g. which directories to look in for user accounts.

The values entered here will be specific to your environment.

LDAP Server URL is the name of an LDAP server in the domain you’ll be
searching for accounts in. For example, ad.mycompany.internal.

Reader DN and Reader Password are the credentials for an account in the
directory with permission to search it. The account must exist in, or be trusted
by, the directory you are searching. It’s best practice for it to have read-only
permissions in the directory.

You can use the Add LDAP Domain + button to add additional domains to
search. Each one needs its own LDAP Server URL and Reader account.

4. Configure LDAP User Search Configuration.

If LDAP Server Settings iswhere to search, then LDAP User Search Config-

uration is what to search for.

Base DN Specifies the LDAP node to start the search from.

Username Attribute is the LDAP attribute to use as the UCP username.

Full Name Attribute is the LDAP Attribute to use as the full name of the UCP
account.

17: Enterprise-grade features 365

See the documentation for other more advanced settings. You should also
consult with you directory services team when configuring LDAP integration.

5. Once you’ve configured the LDAP settings, UCP Will search for matching
users and create them in the UCP user database. It will then perform periodic
sync operations according to the Sync Interval (Hours) setting.

If you checked the Just-In-Time User Provisioning box, UCP will defer the
creation of user accounts until each account’s first logon event.

6. Before clicking Save, you should always perform a test login under the LDAP
Test Login section.

The test login needs to be with a valid user account in the LDAP system you’re
configuring UCP To use. The test will apply all of the configuration values
defined in the sections above (the LDAP config you’re about to save).

Only save the configuration if the test login succeeds.
7. Save the configuration.

At this point, UCP will search the LDAP system and create the user accounts
matching the Base DN and other criteria provided.

Local user accounts created prior to configuring LDAP will still be present on the
system and can still be used.

Docker Content Trust (DCT)

In themodern ITworld, trust is a big deal! And going forward, it’s going to get bigger.
Fortunately, Docker implements trust through a feature called Docker Content Trust
(DCT).

At a very high level, publishers of Docker images can sign their images when pushing
them to a repo. Consumers can then verify them when they pull them, or perform
build and run operations. To cut a long story short, DCT enables consumers to
guarantee they’re getting what they ask for!

Figure 17.10 shows the high level architecture.

17: Enterprise-grade features 366

Figure 17.10 High level DCT architecture

DCT implements client-side signing and verification operations, meaning the Docker
client performs them.

While it’s obvious that cryptographic guarantees like this are important when pulling
and pushing software across the internet, it’s increasingly important at every level
of the stack and at every step in the software delivery pipeline. Hopefully it won’t
be long before all aspects of the delivery chain are infused with cryptographic trust
guarantees.

Let’s walk through a quick example of configuring DCT and seeing it in action.

You’ll need a single Docker client and a repository that you can push an image to. A
repository on Docker Hub will work.

DCT is turned on and off via the DOCKER_CONTENT_TRUST environment variable.
Setting it to a value of “1” will turn DCT on in your current session. Setting it to
any other value will turn it off. The following example will turn it on a Linux-based
Docker host.

$ export DOCKER_CONTENT_TRUST=1

All future docker push commands will automatically sign images as part of the push
operation. Likewise, all pull, build, and run commands will only work if the image
they are acting on is signed.

17: Enterprise-grade features 367

Let’s push an image to a repo with a new tag.

The image being pushed can be any image. In fact, the one I’m using is the current
alpine:latest that I just pulled a minute ago. At the moment, it’s not signed by me!

1. Tag the image so it can be pushed to your desired repo. I’m going to push it to
a new repo within the namespace of my personal Docker Hub account.

$ docker image tag alpine:latest nigelpoulton/dockerbook:v1

2. Login to Docker Hub (or another registry) so you can push the image in the
next step.

$ docker login

Login with your Docker ID to push and pull images from Docker Hub.

Username: nigelpoulton

Password:

Login Succeeded

3. Push the newly tagged image.

$ docker image push nigelpoulton/dockerbook:v1

The push refers to a repository [docker.io/nigelpoulton/dockerbook]

cd7100a72410: Mounted from library/alpine

v1: digest: sha256:8c03...acbc size: 528

Signing and pushing trust metadata

<Snip>

Enter passphrase for new root key with ID 865e4ec:

Repeat passphrase for new root key with ID 865e4ec:

Enter passphrase for new repository key with ID bd0d97d:

Repeat passphrase for new repository key with ID bd0d97d:

Finished initializing "docker.io/nigelpoulton/sign"

Successfully signed "docker.io/nigelpoulton/sign":v1

With DCT enabled, the imagewas automatically signed as part of the push operation.

Two sets of keys were created as part of the signing operation:

• Root key

17: Enterprise-grade features 368

• Repository key

By default, both are stored below a hidden folder in your home directory called
docker. On Linux this is ∼/.docker/trust.

The root key is the master key (of sorts). It’s used to create and sign new repository
keys, and should be kept safe. This means you should protect it with a strong
passphrase, and you should store it offline in a secure place when not in use. If it
gets compromised, you’ll be in world of pain! You would normally only have one per
person, or may be even one per team or organization, and you’ll normally only use
it to create new repository keys.

The repository key, also known as the tagging key is a per-repository key that is
used to sign tagged images pushed to a particular repository. As such, you’ll have
one per repository. It’s quite a bit easier to recover from a loss of this key, but you
should still protect it with a strong passphrase and keep it safe.

Each time you push an image to a new repository, you’ll create a new repository
tagging key. You need your root key to do this, so you’ll need to enter the root key’s
passphrase. Subsequent pushes to the same repository will only require you to enter
the passphrase for the repository tagging key.

There’s another key called the timestamp key. This gets stored in the remote
repository and is used in more advanced use-cases to ensure things like freshness.

Let’s have a look at pulling images with DCT enabled.

Perform the following commands from the same Docker host that has DCT enabled.

Pull an unsigned image.

$ docker image pull nigelpoulton/dockerbook:unsigned

Error: trust data does not exist for docker.io/nigelpoulton/dockerbook:

notary.docker.io no trust data for docker.io/nigelpoulton/dockerbook

Note: Sometimes the error message will be No trust data for un-

signed.

See how Docker has refused to download the image because it is not signed.

17: Enterprise-grade features 369

You’ll get similar errors if you try to build new images or run new containers from
unsigned images. Let’s test it.

Pull the unsigned image by using the --disable-content-trust flag to override
DCT.

$ docker image pull --disable-content-trust nigelpoulton/dockerbook:unsigned

The --disable-content-trust flag overrides DCT on a per-command basis. Use it
wisely.

Now try and run a container from the unsigned image.

$ docker container run -d --rm nigelpoulton/dockerbook:unsigned

docker: No trust data for unsigned.

This proves that Docker Content Trust enforces policy on push, pull and run

operations. Try a build to see it work there as well.

Docker UCP also supports DCT, allowing you to set a UCP-wide signing policy.

To enable DCT across an entire UCP, expand the Admin drop-down and click Admin

Settings. Select the Docker Content Trust option and tick the Run Only Signed

Images tickbox. This will enforce a signing policy across the entire cluster that will
only allow you to deploy services using signed images.

The default configuration will allow any image signed by a valid UCP user. You can
optionally configure a list of teams that are authorized to sign images.

That’s the basics of Docker Content Trust. Let’s move on to configuring and using
Docker Trusted Registry (DTR).

Configuring Docker Trusted Registry (DTR)

In the previous chapter we installed DTR, plugged it in to a shared storage backend,
and configured HA.We also learned that UCP and DTR share a common single-sign-
on sub-system. But there’s a few other important things you should configure. Let’s
take a look.

17: Enterprise-grade features 370

Most of the DTR configuration settings are located on the Settings page of the DTR
web UI.

From the General tab you can configure:

• Automatic update settings
• Licensing
• Load balancer address
• Certificates
• Single-sign-on

The TLS Settings under Domains & proxies allows you to change the certificates
used by UCP. By default, DTR uses self-signed certificates, but you can use this page
to configure the use of custom certificates.

The Storage tab lets you configure the backend used for image storage. We saw this
in the previous chapter when we configured a shared Amazon S3 backend so that we
could configure DTR HA. Other storage options include object storage services from
other cloud providers, as well as volumes and NFS shares.

The Security tab is where you enable and disable Image Scanning — binary-
level scans that identify known vulnerabilities in images. When you enable image
scanning, you have the option of updating the vulnerability database online or
offline. Online will automatically sync the database over the internet, whereas the
offline method is for DTR instances that do not have internet access and need to
update the database manually.

See the Security in Docker chapter for more information on Image Scanning.

Last but not least, the Garbage Collection tab lets you configure when DTR will
perform garbage collection on image layers that are no longer referenced in the
Registry. By default, unreferenced layers are not garbage collected, resulting in large
amounts of wasted disk space. If you enable garbage collection, layers that are no
longer referenced by an image will be deleted, but layers that are referenced by at
least one image manifest will not.

See the chapter on Images formore information about how imagemanifests reference
image layers.

Now that we know how to configure DTR, let’s use it!

17: Enterprise-grade features 371

Using Docker Trusted Registry

Docker Trusted Registry is a secure on-premises registry that you configure and
manage yourself. It’s integrated into UCP for smooth out-of-the-box experience.

In this section, we’ll look at how to push and pull images from it, and we’ll learn how
to inspect and manage repositories using the DTR web UI.

Log in to the DTR UI and create a repo and permissions

Let’s log in toDTR and create a new repository thatmembers of the technology/devs
team can push and pull images from.

Log on to DTR. The DTR URL can be found in the UCP web UI under Admin > Admin
Settings > Docker Trusted Registry. Remember that the DTRweb UI is accessible
over HTTPS on TCP port 443.

Create a new organization and team, and add a user to it. The example will create an
organization called technology, a team called devs, and add the nigelpoulton user
to it. You can substitute these values in your environment.

1. Click Organizations in the left navigation pane.
2. Click New organization and call it technology.
3. Select the new technology organization and click the + button next to TEAMS

as shown in Figure 17.11.

Figure 17.11

17: Enterprise-grade features 372

4. With the devs team selected, add an existing user.

The example will add the nigelpoulton user. Your user will be different in
your environment.

The organization and team changes you have made in DTR will be reflected in UCP.
This is because they share the same accounts database.

Let’s create a new repository and add the technology/devs team with read/write
permission.

Perform all of the following in the DTR web UI.

1. If you aren’t already, navigate to Organizations > technology > devs.
2. Select the Repositories tab and create a new repository.
3. Configure the repository as follows.

Make it aNew repository called test under the technology organization.Make
it public, enable scan on push and assign read/write permissions. Figure 17.12
shows a screenshot of how it should look.

Figure 17.12 Creating a new DTR image repo

4. Save changes.

Congratulations! You have an image repo on DTR called <dtr-url>/technology,
and members of the technology/devs team have read/write access, meaning they
can push and pull from it.

17: Enterprise-grade features 373

Push an image to the DTR repo

In this step we’ll push a new image to the repo you just created. To do this, we’ll
complete the following steps:

1. Pull an image and re-tag it.
2. Configure a client to use a certificate bundle.
3. Push the re-tagged image to the DTR repo.
4. Verify the operation in the DTR web UI.

Let’s pull an image and tag it so that it can be pushed to the DTR repo.

It doesn’t matter what image you pull. The example uses the alpine:latest image
because it’s small.

$ docker pull alpine:latest

latest: Pulling from library/alpine

ff3a5c916c92: Pull complete

Digest: sha256:7df6...b1c0

Status: Downloaded newer image for alpine:latest

In order to push an image to a specific repo, you need to tag the image with
the name of the repo. The example DTR repo has a fully qualified name of
dtr.mydns.com/technology/test. This is made by combining the DNS name of the
DTR and the name of the repo. Yours will be different.

Tag the image so it can be pushed to the DTR repo.

$ docker image tag alpine:latest dtr.mydns.com/technology/test:v1

The next job is to configure a Docker client to authenticate as a user in the group
that has read/write permission to the repository. The high-level process is to create a
certificate bundle for the user and configure a Docker client to use those certificates.

1. Login to UCP as admin, or a user that has read/write permission to the DTR
repo.

17: Enterprise-grade features 374

2. Navigate to the desired user account and create a client bundle.
3. Copy the bundle file to the Docker client you want to configure.
4. Login to the Docker client and perform the following commands from the

client.
5. Unzip the bundle and run the appropriate shell script to configure your

environment.

The following will work on Mac and Linux.

$ eval "$(<env.sh)"

6. Run a docker version command to verify the environment has been config-
ured and the certificates are being used.

As long as the Server section of the output shows the Version as ucp/x.x.x it
is working. This is because the shell script configured the Docker client to talk
to a remote daemon on a UCP manager. It also configured the Docker client
to sign all commands with the certificates.

The next job is to log in to DTR. The DTR URL and username will be different in
your environment.

$ docker login dtr.mydns.com

Username: nigelpoulton

Password:

Login Succeeded

You are now ready to push the re-tagged image to DTR.

$ docker image push dtr.mydns.com/technology/test:v1

The push refers to a repository [dtr.mydns.com/technology/test]

cd7100a72410: Pushed

v1: digest: sha256:8c03...acbc size: 528

The push looks successful, but let’s verify the operation in the DTR web UI.

1. If you aren’t already, login to the DTR web UI.

17: Enterprise-grade features 375

2. Click Repositories in the left navigation pane.
3. Click View Details for the technology/test repository.
4. Click the IMAGES tab.

Figure 17.13 shows what the image looks like in the DTR repo. We can see that the
image is a Linux-based image and that it has 3 major vulnerabilities. We know about
the vulnerabilities because we configured the repository to scan all newly-pushed
images.

Figure 17.13

Congratulations. You’ve successfully pushed an image to a new repository on DTR.

You can select the checkbox to the left of the image and delete it. Be certain before
doing this, as the operation cannot be undone.

Image promotions

DTR has a couple other interesting features:

• Image promotions
• Immutable repos

Image promotions let you build policy-based automated pipelines that promote
images through a set of repositories in the same DTR.

17: Enterprise-grade features 376

As an example, you might have developers pushing images to a repository called
base. But you don’t want them to be able to push images straight to production in
case they contain vulnerabilities. To help with situations like this, DTR allows you
to assign a policy to the base repo, that will scan all pushed images, and promote
them to another repo based on the results of the scan. If the scan highlights issues,
the policy can promote the image to a quarantined repo, whereas if the scan results
are clean, it can promote it to a QA or prod repo. You can even re-tag the image as it
passes through the pipeline.

Let’s see it in action.

The example that we’ll walk through has a single DTR with 3 image repos:

• base

• good

• bad

The good and bad repos are empty, but the base repo has two images in it, shown in
Figure 17.14.

Figure 17.14

As we can see, both images have been scanned, v1 is clean and has no known
vulnerabilities, but v2 has 3 majors.

17: Enterprise-grade features 377

We’ll create two policies on the base repo so that images with a clean bill-of-health
are promoted to the good repo, and images with known vulnerabilities are promoted
to the bad repo.

Perform all of the following actions on the base repo.

1. Click the Policies tab and make sure that Is source is selected.
2. Click New promotion policy.
3. Under “PROMOTE TO TARGET IF…” select All Vulnerabilities and create

a policy for equals 0.

This will create a policy that acts on all images with zero vulnerabilities.

Don’t forget to click Add before moving to the next step.
4. Select the TARGET REPOSITORY as technology/good and hit Save & Apply.

Clicking Savewill apply the policy to the repo and enforce it for all new images
pushed the repo, but it will not affect images already in the repo. Save & Apply

will do the same, but also for images already in the repo.

If you click Save & Apply, the policy will immediately evaluate all images in
the repo and promote those that are clean. This means the v1 image will be
promoted to the technology/good repo.

5. Inspect the technology/good repo.

17: Enterprise-grade features 378

As you can see in Figure 17.16, the v1 image has been promoted and is showing
in the UI as PROMOTED.

Figure 17.16

The promotion policy is working. Let’s create another one to promote images that do
have vulnerabilities to the technology/bad repo.

Perform all of the following from the technology/base repo.

1. Create another new promotion policy.
2. Create a policy criteria for All Vulnerabilities > 0 and click Add.

Figure 17.17

3. Add the target repo as technology/bad, and add “-dirty” to the TAG NAME IN

TARGET box so that it is now “%n-dirty”. This last bit will re-tag the image as
part of the promotion.

4. Click Save & Apply.

17: Enterprise-grade features 379

5. Check the technology/bad repo to confirm that the policy is enforcing and
the v2 image has been promoted and re-tagged.

Figure 17.18

Now that images are being promoted to the technology/good repo if they have no
vulnerabilities, it might be a good idea to make the repo immutable. This will prevent
images from being overwritten and deleted.

1. Navigate to the technology/good repo and click the Settings tab.
2. Set IMMUTABILITY to On and click Save.
3. Try and delete the image.

You’ll get the following error.

Time for one last feature!

HTTP Routing Mesh (HRM)

Docker Swarm features a layer-4 routing mesh called the Swarm Routing Mesh.
This exposes Swarm services on all nodes in the cluster and balances incoming

17: Enterprise-grade features 380

traffic across service replicas. The end results is a moderately even balance of traffic
to all service replicas. However, it has no application intelligence. For example, it
cannot route based on data at layer 7 in the HTTP headers. To overcome this, UCP
implements a layer-7 routingmesh called the HTTP RoutingMesh, or HRM for short.
This builds on top of the Swarm Routing Mesh.

The HRM allows multiple Swarm services to be published on the same Swarm-wide
port, with ingress traffic being routed to the right service based on hostname data
stored in the HTTP headers of incoming requests.

Figure 17.20 shows a simple two-service example.

Figure 17.20

In the picture, the laptop client is making an HTTP request to mustang.internal on
TCP port 80. The UCP cluster has two services that are both listening on port 80. The
mustang service is published on port 80 and configured to receive traffic intended for
the mustang.internal hostname. The camero service is also published on port 80,
but is configured to receive traffic coming in to camero.internal.

There is a third service called HRM that maintains the mapping between hostnames
and UCP services. It is the HRM that receives incoming traffic on port 80, inspects
the HTTP headers and makes the decision of which service to route it to.

Let’s walk through an example, then explain a bit more detail when we’re done.

We’ll build the example shown in Figure 17.20. The process will be as follows: Enable
the HRM on port 80. Deploy a service called “mustang” using the nigelpoulton/-

17: Enterprise-grade features 381

dockerbook:mustang image and create a hostname route for the mustang service
so that requests to “mustang.internal” get routed to it. Deploy a second service
called “camero” based on the nigelpoulton/dockerbook:camero image and create a
hostname route for this one that maps it to requests for “camero.internal”.

You can use publicly resolvable DNS names such as mustang.mycompany.com, all
that is required is that you have name resolution configured so that requests to those
addresses resolve to the load balancer in front of your UCP cluster. IF you don’t have
a load balancer, you can point traffic to the IP of any node in the cluster.

Let’s see it.

1. If you aren’t already, log on to the UCP web UI.
2. Navigate to Admin > Admin Settings > Routing Mesh.
3. Tick the Enable Routing Mesh tickbox and make sure that the HTTP Port is

configured to 80.
4. Click Save.

That’s the UCP cluster configured to use the HRM. Behind the scenes this has
deployed a new system service called ucp-hrm, and a new overlay network called
ucp-hrm.

If you inspect the ucp-hrm system service, you’ll see that it’s publishing port 80 in
ingress mode. This means the ucp-hrm is deployed on the cluster and bound to port
80 on all nodes in the cluster. This means all traffic coming into the cluster on port 80
will be handled by this service. When the mustang and camero services are deployed,
the ucp-hrm service will be updated with hostname mappings so that it knows how
to route traffic to those services.

Now that the HRM is deployed, it’s time to deploy our services.

1. Select Services in the left navigation pane and click Create Service.
2. Deploy the “mustang” service as follows:

• Details/Name: mustang
• Details/Image: nigelpoulton/dockerbook:mustang
• Network/Ports/Publish Port: Click the option to Publish Port +

• Network/Ports/Internal Port: 8080

17: Enterprise-grade features 382

• Network/Ports/Add Hostname Based Routes: Click on the option to
add a hostname based route

• Network/Ports/External Scheme: Http://
• Network/Ports/Routing Mesh Host: mustang.internal
• Network/Ports/Networks:Make sure that the service is attached to the
ucp-hrm network

3. Click Create to deploy the service.
4. Deploy the “camero” service.

Deploy this service with the same settings as the “mustang” service, but with
the following differences:

• Details/Name: camero
• Details/Image: nigelpoulton/dockerbook:camero
• Network/Ports/Routing Mesh Host: camero.internal

5. Click Create.

It’ll take a few seconds for each service to deploy, but when they’re done, you’ll be
able to point a web browser at mustang.internal and reach the mustang service,
and camero.internal and reach the camero service.

Note: You will obviously need name resolution configured so that
mustang.internal and camero.internal resolve to your UCP cluster.
This can be to a load balancer sitting in front of your cluster forwarding
traffic to the cluster on port 80, or you’re in a lab without a load balancer,
it can be a simple local hosts file resolving the DNS names to the IP
address of a cluster node.

Figure 17.21 shows the mustang service being reached via mustang.internal.

17: Enterprise-grade features 383

Figure 17.21

Let’s remind ourselves of how this works.

The HTTP Routing Mesh is a Docker UCP feature that builds on top of the transport
layer Swarm RoutingMesh. Specifically, the HRM adds application layer intelligence
in the form of hostname rules.

Enabling the HRM deploys a new UCP system service called ucp-hrm. This service
is published swarm-wide on port 80 and 8443. This means that all traffic arriving at
the cluster on either of those ports will be sent to the ucp-hrm service. This puts the
ucp-hrm service in a position to receive, inspect, and route all traffic entering the
cluster on those ports.

We then deployed two user services. As part of deploying each service, we created
a hostname mapping that was added to the ucp-hrm service. The “mustang” service
created a mapping so that it would receive all traffic arriving on the cluster on port
80 with “mustang.internal” in the HTTP header. The “camero” service did the same
thing for traffic arriving on port 80 with “camero.internal” in the HTTP header. This
resulted in the ucp-hrm service having two entries effectively saying the following:

• All traffic arriving on port 80 for “mustang.internal” gets sent to the “mustang”
service.

• All traffic arriving on port 80 for “camero.internal” gets sent to the “camero”
service.

17: Enterprise-grade features 384

Let’s show Figure 17.20 again.

Figure 17.20

Hopefully this should be clear now!

Chapter Summary

UCP and DTR join forces to provide a great suit of features that are valuable to most
enterprise organizations.

Strong role-based access control is a fundamental part of UCP, with the ability be ex-
tremely granular with permissions – down to individual API operations. Integration
with Active Directory and other corporate LDAP solutions is also supported.

Docker Content Trust (DCT) brings cryptographic guarantees to image-based oper-
ations. These include push, pull, build, and run. When DCT is enabled, all images
pushed to remote repos are signed, and all images pulled are verified. This gives you
cryptographic certainty that the image you get is the one you asked for. UCP can be
configured to enforce a cluster-wide policy requiring all images to be signed.

DTR can be configured to use self-signed certificates, or certificates from trusted 3rd-
party CAs. You can configure it to perform binary-level image scans that identify
known vulnerabilities. And you can configure policies to automate the promotion of
images through your build pipelines.

17: Enterprise-grade features 385

Finally, we looked at the HTTP Routing mesh that performs application layer routing
based on hostnames in HTTP headers.

Appendix A: Securing client and
daemon communication
This was originally going to be a section in the “Installing Docker” chapter, or the
“Security in Docker” chapter. But it got too long, so I’ve added it here as an appendix.

Docker implements a client-server model. The client implements the CLI, and the
server (daemon) implements the functionality, including the public-facing RESTAPI.

The client is called docker (docker.exe on Windows) and the daemon is called
dockerd (dockerd.exe on Windows). A default installation puts them on the same
host and configures them to communicate over a secure local PIC socket:

• /var/run/docker.sock on Linux
• //./pipe/docker_engine on Windows

However, it’s possible to configure them to communicate over the network. But
the default daemon network configuration uses an unsecured HTTP socket on port
2375/tcp.

Appendix A: Securing client and daemon communication 387

Figure A1.1

Note: It’s convention to use 2375 for unencrypted communication
between the client and daemon, and 2376 for encrypted traffic.

This might be fine for labs, but it’s unacceptable for production.

TLS to the rescue!

Docker let’s you configure the client and daemon to only accept network connections
that are secured with TLS. This is recommended for production environments, even
if you’re using trusted internal networks!

Docker offers two modes for securing client-daemon traffic with TLS:

• Daemon mode: The Docker daemon will only accept connections from
authenticated clients.

• Client mode: The Docker client will only connect to Docker daemons that
have certificates signed by a trusted CA.

A combination of the two provides the highest security.

We’ll use a simple lab environment to walk through the process of configuring
Docker for daemon mode and client mode TLS.

Appendix A: Securing client and daemon communication 388

Lab setup

We’ll use a simple lab setup for the remainder of the chapter. It’s a three-node Linux
lab with a CA, Docker client, and Docker daemon. It’s vital that all hosts can resolve
each other by name.

We’ll configure node1 to be the secure Docker client, and node3 to be the secure
Docker daemon. node2 will be the CA.

You can follow along in your own environment, but all of the examples shown will
use the names and IPs from the lab diagram in Figure A1.2.

Figure A1.2 Sample lab setup

The high-level process will be as follows:

1. Configure a CA and certificates
2. Create a CA (self-signed certs)
3. Create and sign keys for the Daemon
4. Create and sign keys for the Client
5. Distribute keys
6. Configure Docker to use TLS
7. Configure daemon mode
8. Configure client mode

Appendix A: Securing client and daemon communication 389

Create a CA (self-signed certs)

You only need to complete this step if you are following along in a lab and need to
build a CA to sign certificates. Also, we’re building a simple CA to help demonstrate
how to configure Docker, we’re not attempting to build a production-grade PKI.

Run the following commands from the CA node in the lab.

1. Create a new private key for the CA.

You will set a passphrase as part of the operation. Don’t forget it!

$ openssl genrsa -aes256 -out ca-key.pem 4096

Generating RSA private key, 4096 bit long modulus

...++

..++

e is 65537 (0x10001)

Enter pass phrase for ca-key.pem:

Verifying - Enter pass phrase for ca-key.pem:

You will have a new file in your current directory called ca-key.pem. This is
the CA’s private key.

2. Use the CA’s private key to generate a public key (certificate).

You will need to enter the passphrase from the previous step. Hopefully you
haven’t forgotten it already :-D

$ openssl req -new -x509 -days 730 -key ca-key.pem -sha256 -out ca.pem

This has added a second file to your working directory called ca.pem. This is
the CA’s public key, a.k.a. “certificate”.

You now have two files in your current directory: ca-key.pem and ca.pem. These are
the CA’s private and public keys, and form the identity of the CA.

Appendix A: Securing client and daemon communication 390

Create a key pair for the daemon

In this step, we’ll generate a new key-pair for node3. This is the node that will run
the secure Docker daemon. It’s a four-step process:

1. Create the private key
2. Create the signing request
3. Add IP addresses and make it valid for server authorization
4. Generate the certificate

Let’s do it.

Run all commands from the CA node (node2).

1. Create the private key for the daemon.

$ openssl genrsa -out daemon-key.pem 4096

<Snip>

This has created new file in your working directory called daemon-key.pem.
This is the private key for the daemon node.

2. Create a certificate signing request (CSR) for the CA to create and sign a
certificate for the daemon. Be sure to use the correct DNS name of the node that
you intend to run your secure Docker daemon on. The example uses node3.

$ openssl req -subj "/CN=node3" \

-sha256 -new -key daemon-key.pem -out daemon.csr

You now have a fourth file in your working directory. This one is the CSR and
it is called daemon.csr.

3. Add required attributes to the certificate.

We need to create a file that will add a couple of extended attributes to the
daemon’s certificate when it gets signed by the CA. These attributes will add
the daemon’s DNS name and IP address, as well as configure the certificate to
be used for server authentication.

Create a new file called extfile.cnf with the following values. The example
uses the DNS name and IP of the daemon node in the lab from Figure A1.2.
The values in your environment might be different.

Appendix A: Securing client and daemon communication 391

subjectAltName = DNS:node3,IP:10.0.0.12

extendedKeyUsage = serverAuth

4. Generate the certificate.

This step uses the CSR file, CA keys, and the extfile.cnf file to sign and
configure the daemon’s certificate. It will output the daemon’s public key
(certificate) as a new file called daemon-cert.pem

$ openssl x509 -req -days 730 -sha256 \

-in daemon.csr -CA ca.pem -CAkey ca-key.pem \

-CAcreateserial -out daemon-cert.pem -extfile extfile.cnf

At this point, you have a working CA, as well as a key-pair for node3 which will run
the secure Docker daemon.

Delete the CSR and extfile.cnf before moving on.

$ rm daemon.csr extfile.cnf

Create a key pair for the client

In this section, we’ll repeat what we just did for the node3, but this time we’ll do it
for node1 which will run our Docker client.

Run all commands from the CA (node2).

1. Create a private key for node1.

This will generate a new file in your working directory called client-key.pem.

$ openssl genrsa -out client-key.pem 4096

2. Create a CSR. Be sure to use the correct DNS name of the node that will be
your secure Docker client. The example uses node1.

$ openssl req -subj '/CN=node1' -new -key client-key.pem -out client.csr

This will create a new file in your current directory called client.csr.
3. Create a file called extfile.cnf and populate it with the following value. This

will make the certificate valid for client authentication.

Appendix A: Securing client and daemon communication 392

extendedKeyUsage = clientAuth

4. Create the certificate for node1 using the CSR, CA’s public and private keys,
and the extfile.cnf file. This will create the client’s signed public key as a
new file in your current directory called client-cert.pem.

$ openssl x509 -req -days 730 -sha256 \

-in client.csr -CA ca.pem -CAkey ca-key.pem \

-CAcreateserial -out client-cert.pem -extfile extfile.cnf

Delete the CSR and extfile.cnf files, as these are no longer needed.

$ rm client.csr extfile.cnf

At this point you should have the following 7 files in your working directory:

ca-key.pem << CA private key

ca.pem << CA public key (cert)

ca.srl << Tracks serial numbers

client-cert.pem << client public key (Cert)

client-key.pem << client private key

daemon-cert.pem << daemon public key (cert)

daemon-key.pem << daemon private key

Before moving on, you should remove write permission from the keys, and make
them only readable to you and other accounts that are members of your group.

$ chmod 0400 ca-key.pem client-key.pem daemon-key.pem

Distribute keys

Now that you’ve got all of the keys and certificates, it’s time to distribute them to
the client and daemon nodes. We’ll be copying the following files:

• ca.pem, daemon-cert.pem, and daemon-key.pem from the CA to the node3 (the
daemon node).

Appendix A: Securing client and daemon communication 393

• ca.pem, client-cert.pem, and client-key.pem from the CA to node1 (the
client node).

We’ll show you how to do it using scp, but feel free to use a different tool.

Run the following commands from the directory containing the keys on node2 (the
CA node).

// Daemon files

$ scp ./ca.pem ubuntu@daemon:/home/ubuntu/.docker/ca.pem

$ scp ./daemon-cert.pem ubuntu@daemon:/home/ubuntu/.docker/cert.pem

$ scp ./daemon-key.pem ubuntu@daemon:/home/ubuntu/.docker/key.pem

//Client files

$ scp ./ca.pem ubuntu@client:/home/ubuntu/.docker/ca.pem

$ scp ./client-cert.pem ubuntu@client:/home/ubuntu/.docker/cert.pem

$ scp ./client-key.pem ubuntu@client:/home/ubuntu/.docker/key.pem

A few things to note about the commands:

1. The 2nd, 3rd, 5th, and 6th commands are renaming the files as part of the copy
operation. This is important, as Docker expects the files to have these names.

2. These commands will work on Ubuntu Linux, and they assume you are using
the ubuntu user account.

3. You may have to pre-create the /home/ubuntu/.docker hidden directory on
the daemon and client nodes before executing the commands. You may also
have to change permissions on the .docker directory to enable the copy —
chmod 777 .docker will work, but is not secure. Remember, we’re building
a quick CA and certificates so you can follow along. We’re not trying to
build a secure PKI.

4. If you’re working in something like AWS, you’ll need to specify the instance’s
private key with the -i <key> flag for each copy command. For example:

Appendix A: Securing client and daemon communication 394

The lab now looks like Figure A1.3

Figure A1.3 Updated lab with keys

The presence of the CA’s public key (ca.pem) on node1 and node3 is what will tell
them to trust the CA and all certificates signed by it.

With the certificates in place, it’s finally time to configure Docker so that the
client and daemon use TLS!

Configure Docker for TLS

As we mentioned previously, Docker has two TLS modes:

• daemon mode
• client mode

Daemon mode tells the daemon process to only allow connections from clients with
a valid certificate. Client mode tells the client only to connect to daemons that have
a valid certificate.

We’ll configure the daemon process on node1 for daemon mode, and test it. After
that, we’ll configure the client process on node2 for client mode, and test that.

Appendix A: Securing client and daemon communication 395

Configuring the Docker daemon for TLS

Securing the daemon is as simple as setting a few daemon flags in the daemon.json
configuration file:

• tlsverify enables TLS verification
• tlscacert tells the daemon which CA to trust
• tlscert tells Docker where the daemon’s certificate is
• tlskey tells Docker where the daemon’s private key is
• hosts tells Docker which sockets to bind the daemon on

We’ll configure these in the platform-independent daemon.json configuration file.
This is found in /etc/docker/ on Linux, and C:\ProgramData\Docker\config\ on
Windows.

Perform all of the following operations on the node that will run your secure Docker
daemon (node3 in the example lab).

Edit the daemon.json file and add the following lines.

{

"hosts": ["tcp://node3:2376"],

"tls": true,

"tlsverify": true,

"tlscacert": "/home/ubuntu/.docker/ca.pem",

"tlscert": "/home/ubuntu/.docker/cert.pem",

"tlskey": "/home/ubuntu/.docker/key.pem"

}

Warning! Linux systems running systemd do not allow you to use the “hosts” option
in daemon.json. Instead, you have specify it in a systemd override file. The simplest
way to do this is with the sudo systemctl edit docker command. This will open
a new file called /etc/systemd/system/docker.service.d/override.conf in an
editor. Add the following three lines and save the file.

Appendix A: Securing client and daemon communication 396

[Service]

ExecStart=

ExecStart=/usr/bin/dockerd -H tcp://node3:2376

Now that the TLS and host options are set, it’s time to restart Docker.

Once Docker has restarted, you can check that the new hosts value is in effect by
inspecting the output of a ps command.

$ ps -elf | grep dockerd

4 S root ... /usr/bin/dockerd -H tcp://node3:2376

The presence of “-H tcp://node3:2376” in the command output is evidence that the
daemon is listening on the network. Port 2376 is the standard port for Docker using
TLS. 2375 is the default unsecured port.

If you run a normal command, such as docker version, it will not work. This is
because we’ve just configured the daemon to listen on the network, but the Docker
client is still trying use the local IPC socket. Try the command again, but this time
specifying the -H tcp://node3:2376 flag.

$ docker -H tcp://node3:2376 version

Client:

Version: 18.01.0-ce

API version: 1.35

<Snip>

Get http://daemon:2376/v1.35/version: net/http: HTTP/1.x transport connectio\

n broken: malformed HTTP response "\x15\x03\x01\x00\x02\x02".

* Are you trying to connect to a TLS-enabled daemon without TLS?

The command looks better, but it’s still not working. This is because the daemon is
rejecting all connections from unauthenticated clients.

Congratulations. The Docker daemon is configured to listen on the network, and is
rejecting connections from unauthenticated clients.

Let’s configure the Docker client on node1 to use TLS.

Appendix A: Securing client and daemon communication 397

Configuring the Docker client for TLS

In this section, we’ll configure the Docker client on node1 for two things:

• To connect to a remote daemon over the network
• To sign all docker commands

Perform all of the following from the node that will run your secure Docker client
(node1 in the example lab).

Export the following environment variable to configure the client to connect to the
remote daemon over the network.

export DOCKER_HOST=tcp://node3:2376

Try the following command.

$ docker version

Client:

Version: 18.01.0-ce

<Snip>

Get http://daemon:2376/v1.35/version: net/http: HTTP/1.x transport connectio\

n broken: malformed HTTP response "\x15\x03\x01\x00\x02\x02".

* Are you trying to connect to a TLS-enabled daemon without TLS?

The Docker client is now sending commands to the remote daemon across the
network, but the remote daemon will only accept authenticated connections.

Export one more environment variable to tell the Docker client to sign all commands
with its certificate.

export DOCKER_TLS_VERIFY=1

Run the docker version command again.

Appendix A: Securing client and daemon communication 398

$ docker version

Client:

Version: 18.01.0-ce

<Snip>

Server:

Engine:

Version: 18.01.0-ce

API version: 1.35 (minimum version 1.12)

Go version: go1.9.2

Git commit: 03596f5

Built: Wed Jan 10 20:09:37 2018

OS/Arch: linux/amd64

Experimental: false

Congratulations. The client is successfully talking to the remote daemon over a secure
connection. The final configuration of the lab is shown in Figure A1.4.

Figure A1.4

A couple of final points before we do a quick recap.

1. This last example works because we copied the clients TLS keys to the folder
that Docker expects them to be in. This is a hidden folder in your user’s home
directory called .docker. We also gave the keys the default filenames that
Docker expects (ca.pem, cert.pem, and key.pem). You can specify a different
folder by exporting DOCKER_CERT_PATH.

2. You will probably want to make the environment variables (DOCKER_HOST and
DOCKER_TLS_VERIFY) more permanent fixtures of your environment.

Appendix A: Securing client and daemon communication 399

Docker TLS Recap

Docker supports two TLS modes:

• daemon mode

• client mode

Daemonmodewill refuse connections from clients that do not sign commands with a
valid certificate. Client mode will not connect to remote daemons that do not possess
a valid certificate.

Configuring a daemon for TLS is done through the Docker daemon configuration
file. The file is called daemon.json and it’s platform agnostic.

The following daemon.json should work on most systems:

{

"hosts": ["tcp://node3:2376"],

"tls": true,

"tlsverify": true,

"tlscacert": "/home/ubuntu/.docker/ca.pem",

"tlscert": "/home/ubuntu/.docker/cert.pem",

"tlskey": "/home/ubuntu/.docker/key.pem"

}

• hosts tells Docker which socket to bind the daemon on. The example binds it
to a network socket on port 2376. You can use any free port, but it’s convention
to use 2376 for secured Docker connections. Linux systems running systemd

cannot use this flag and require the use of a systemd override file.
• tls and tlsverify force the daemon to only use encrypted and authenticated
connections.

• tlscacert tells Docker which CA to trust. This causes Docker to trust all
certificates signed by that CA.

• tlscert tells Docker where the daemon’s certificate is located.
• tlskey tells Docker where the daemon’s private key is located.

Appendix A: Securing client and daemon communication 400

Making any changes to these values requires a Docker restart for them to take effect.

Configuring the Docker client for TLS is as simple as setting two environment
variables:

• DOCKER_HOST

• DOCKER_TLS_VERIFY

DOCKER_HOST tells the clientwhere to find the daemon. export DOCKER_HOST=tcp://node3:2376

will tell the Docker client to connect to the daemon on a remote host called node3

on port 2376.

export DOCKER_TLS_VERIFY=1will tell the Docker client to sign all of the commands
it issues.

Appendix B: The DCA Exam
This appendix will be updated over time with tips and advice for taking the DCA
exam.

I’m also starting a new website and LinkedIn group for you to share your exam
experiences and tips.

• The website is www.dockercerts.com and is currently under development
• The LinkedIn group28 is called **Docker Certified Associate (DCA)

Other resources to help with the exam

At the time of writing, this is the only resource available that covers all DCA
exam objectives.

I also have an excellent video training course29 that covers most of the exam
objectives and is a great way to help you remember what you’ve learned in this
book.

The video course is fast-paced, fun, and has excellent reviews!

28https://www.linkedin.com/groups/13578221
29https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-contents

https://www.linkedin.com/groups/13578221
https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-contents
https://www.linkedin.com/groups/13578221
https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-contents

Appendix B: The DCA Exam 402

Let me say two things if you’re unsure about spending money on a video course:

1. It’s worth it if it helps you pass the DCA exam!
2. Pluralsight always has a free trial. Sign up for the trial and see if you like it —

I think you’ll love it!

Appendix B: The DCA Exam 403

Mapping exam objectives to chapters

Here is a list of the exam objectives and which chapters they are covered in. Almost
all objectives will be covered in more chapters than shown here, but these are the
main chapters where they are covered in the most detail.

Domain 1: Orchestration (25% of exam)

• Complete the setup of a swarmmode cluster, withmanagers andworker nodes:
CHAPTER 10

• State the differences between running a container vs running a service:
CHAPTERS 10 and 14

• Demonstrate steps to lock a swarm cluster: CHAPTER 10
• Extend the instructions to run individual containers into running services
under swarm: CHAPTERS 10 and 14

• Interpret the output of “docker inspect” commands: Several chapters
• Convert an application deployment into a stack file using a YAML compose
file with docker stack deploy: CHAPTER 14

• Increase # of replicas: CHAPTERS 10 and 14
• Add networks, publish ports: CHAPTERS 9, 11, 12, and 14
• Mount volumes: CHAPTERS 9 and 13
• Illustrate running a replicated vs global service: CHAPTER 10
• Identify the steps needed to troubleshoot a service not deploying: CHAPTER
14

• Apply node labels to demonstrate placement of tasks: CHAPTER 14
• Sketch how a Dockerized application communicates with legacy systems:
CHAPTER 11

• Paraphrase the importance of quorum in a swarm cluster: CHAPTERS 10 and
16

• Demonstrate the usage of templates with “docker service create”: CHAPTER
10

Appendix B: The DCA Exam 404

Domain 2: Image Creation, Management, and
Registry (20% of exam)

• Describe Dockerfile options [add, copy, volumes, expose, entrypoint, etc):
CHAPTERS 8 and 9

• Show the main parts of a Dockerfile: CHAPTERS 8 and 9
• Give examples on how to create an efficient image via a Dockerfile:CHAPTER
8

• Use CLI commands such as list, delete, prune, rmi, etc to manage images:
CHAPTER 6

• Inspect images and report specific attributes using filter and format: CHAP-
TER 6

• Demonstrate tagging an image: CHAPTERS 6 and 17
• Utilize a registry to store an image: CHAPTER 17
• Display layers of a Docker image: CHAPTER 6
• Apply a file to create a Docker image: CHAPTER 8
• Modify an image to a single layer: CHAPTER 8
• Describe how image layers work: CHAPTER 8
• Deploy a registry (not architect): CHAPTER 16
• Configure a registry: CHAPTERS 16 and 17
• Log into a registry: CHAPTERS 6 and 17
• Utilize search in a registry: CHAPTER 6
• Tag an image: CHAPTERS 6 and 17
• Push an image to a registry: CHAPTERS 8 and 17
• Sign an image in a registry: CHAPTER 17
• Pull an image from a registry: CHAPTER 6
• Describe how image deletion works: CHAPTERS 6 and 17
• Delete an image from a registry: CHAPTER 17

Appendix B: The DCA Exam 405

Domain 3: Installation and Configuration (15%
of exam)

• Demonstrate the ability to upgrade the Docker engine: CHAPTER 3
• Complete setup of repo, select a storage driver, and complete installation of
Docker engine on multiple platforms: CHAPTER 3

• Setup swarm, configure managers, add nodes, and setup backup schedule:
CHAPTERS 10 and 16

• Create and manager user and teams: CHAPTERS 16 and 17
• Outline the sizing requirements prior to installation: CHAPTER 16
• Understand namespaces, cgroups, and configuration of certificates: CHAP-
TERS 5, 15, 16 and Appendix A

• Use certificate-based client-server authentication to ensure a Docker daemon
has the rights to access images on a registry: CHAPTER 17

• Consistently repeat steps to deploy Docker engine, UCP, and DTR on AWS and
on premises in an HA config: CHAPTERS 16 and 17

• Complete configuration of backups for UCP and DTR: CHAPTER 16
• Configure the Docker daemon to start on boot: CHAPTER 3

Domain 4: Networking (15% of exam)

• Create a Docker bridge network for a developer to use for their containers:
CHAPTER 11

• Troubleshoot container and engine logs to understand a connectivity issue
between containers: CHAPTER 11

• Publish a port so that an application is accessible externally: CHAPTERS 7, 9,
10, 11, 14, and 17

• Identify which IP and port a container is externally accessible on:CHAPTERS
7, 9, 11, 17

• Describe the different types and use cases for the built-in network drivers:
CHAPTER 11

• Understand the Container Network Model and how it interfaces with the
Docker engine and network and IPAM drivers: CHAPTER 11

Appendix B: The DCA Exam 406

• Configure Docker to use external DNS: CHAPTER 11
• Use Docker to load balance HTTP/HTTPs traffic to an application (Configure
L7 load balancing with Docker EE): CHAPTER 17

• Understand and describe the types of traffic that flow between the Docker
engine, registry, and UCP controllers: CHAPTERS 6, 17, and Appendix A

• Deploy a service on a Docker overlay network: CHAPTERS 10, 12, and 14
• Describe the difference between “host” and “ingress” port publishing mode:
CHAPTERS 11 and 14

Domain 5: Security (15% of exam)

• Describe the process of signing an image: CHAPTERS 6, 15, and 17
• Demonstrate that an image passes a security scan: CHAPTERS 15 and 17
• Enable Docker Content Trust: CHAPTERS 15 and 17
• Configure RBAC in UCP: CHAPTER 17
• Integrate UCP with LDAP/AD: CHAPTER 17
• Demonstrate creation of UCP client bundles: CHAPTERS 16 and 17
• Demonstrate creation of UCP client bundles: CHAPTER 15
• Describe swarm default security: CHAPTERS 10 and 15
• Describe MTLS: CHAPTERS 15 and 17
• Identity roles: CHAPTER 17
• Describe the difference between UCP workers and managers: CHAPTERS 16
and 17

• Describe process to use external certificates with UCP and DTR: CHAPTERS
16 and 17

Domain 6: Storage and Volumes (10% of exam)

• State which graph driver should be used on which OS: CHAPTERS 3 and 13
• Demonstrate how to configure devicemapper: CHAPTER 3
• Compare object storage to block storage, and explain which one is preferable
when available: CHAPTER 13

Appendix B: The DCA Exam 407

• Summarize how an application is composed of layers and where those layers
reside on the filesystem: CHAPTERS 6 and 13

• Describe how volumes are used with Docker for persistent storage: CHAP-
TERS 13 and 14

• Identify the steps you would take to clean up unused images on a filesystem,
also on DTR: CHAPTERS 13 and 17

• Demonstrate how storage can be used across cluster nodes: CHAPTERS 13
and 17

Appendix C: What next
Hopefully you’re feeling confident with Docker and ready to take the DCA exam!

Fortunately, taking your container journey to the next step has never been easier!

Practice

It’s never been easier to spin-up infrastructure and workloads. Docker for Mac and
Docker for Windows make it easy to play and develop with Docker on your laptop.
Play with Docker30 is a free-to-use online playground where you can practice with
Docker until you’re a world authority!

Video training

I’ve created a ton of highly-praised video training courses at Pluralsight31. If you’re
not a member of Pluralsight then become one! Yes, it costs money, but it’s worth it!
And if you’re unsure… they always have a free trial where you can get free access to
my courses for a limited period.

Certifications

There’s now an official way to prove your Docker expertise! I did, and I recommend
you do too.

30https://play-with-docker.com/
31http://app.pluralsight.com/author/nigel-poulton

https://play-with-docker.com/
http://app.pluralsight.com/author/nigel-poulton
https://play-with-docker.com/
http://app.pluralsight.com/author/nigel-poulton

Appendix C: What next 409

Community events

I highly recommend you attend events like Dockercon32 and your local Docker
meetups33. Make sure you come and say “Hi” if you see me there!

Feedback

Massive thanks for reading my book. I really hope it was useful!

Now let me ask a favor…

It takes a lot of effort to write a book! My hope in writing this book is that it inspires
you and opens new opportunities. If you’ve enjoyed it, show it some love with a few
stars and a review on Amazon!

32https://www.dockercon.com
33https://www.docker.com/community/meetup-groups

https://www.dockercon.com/
https://www.docker.com/community/meetup-groups
https://www.docker.com/community/meetup-groups
https://www.dockercon.com/
https://www.docker.com/community/meetup-groups

Appendix C: What next 410

To quote William Shakespeare “They do not love, that do not show their love.” So, if
you love the book, show it with some stars!”

Feel free to hit me on Twitter34 as well, but stars and cars are what I dream about :-D

34https://twitter.com/nigelpoulton

https://twitter.com/nigelpoulton
https://twitter.com/nigelpoulton

Appendix C: What next 411

	Table of Contents
	0: About the book
	What's this Docker Certified Associate stuff?
	What about a print (paperback) version
	Why should I read this book or care about Docker?
	Isn't Docker just for developers?
	Should I buy the book if I've already watched your video training courses?
	How the book is organized
	Versions of the book
	Having problems getting the latest updates on your Kindle?

	Part 1: The big picture stuff
	1: Containers from 30,000 feet
	The bad old days
	Hello VMware!
	VMwarts
	Hello Containers!
	Linux containers
	Hello Docker!
	Windows containers
	Windows containers vs Linux containers
	What about Mac containers?
	What about Kubernetes
	Chapter Summary

	2: Docker
	Docker - The TLDR
	Docker, Inc.
	The Docker runtime and orchestration engine
	The Docker open-source project (Moby)
	The container ecosystem
	The Open Container Initiative (OCI)
	Chapter summary

	3: Installing Docker
	Docker for Windows (DfW)
	Docker for Mac (DfM)
	Installing Docker on Linux
	Installing Docker on Windows Server 2016
	Upgrading the Docker Engine
	Docker and storage drivers
	Chapter Summary

	4: The big picture
	The Ops Perspective
	The Dev Perspective
	Chapter Summary

	Part 2: The technical stuff
	5: The Docker Engine
	Docker Engine - The TLDR
	Docker Engine - The Deep Dive
	Chapter summary

	6: Images
	Docker images - The TLDR
	Docker images - The deep dive
	Images - The commands
	Chapter summary

	7: Containers
	Docker containers - The TLDR
	Docker containers - The deep dive
	Containers - The commands
	Chapter summary

	8: Containerizing an app
	Containerizing an app - The TLDR
	Containerizing an app - The deep dive
	Containerizing an app - The commands
	Chapter summary

	9: Deploying Apps with Docker Compose
	Deploying apps with Compose - The TLDR
	Deploying apps with Compose - The Deep Dive
	Deploying apps with Compose - The commands
	Chapter Summary

	10: Docker Swarm
	Docker Swarm - The TLDR
	Docker Swarm - The Deep Dive
	Docker Swarm - The Commands
	Chapter summary

	11: Docker Networking
	Docker Networking - The TLDR
	Docker Networking - The Deep Dive
	Docker Networking - The Commands
	Chapter Summary

	12: Docker overlay networking
	Docker overlay networking - The TLDR
	Docker overlay networking - The deep dive
	Docker overlay networking - The commands
	Chapter Summary

	13: Volumes and persistent data
	Volumes and persistent data - The TLDR
	Volumes and persistent data - The Deep Dive
	Volumes and persistent data - The Commands
	Chapter Summary

	14: Deploying apps with Docker Stacks
	Deploying apps with Docker Stacks - The TLDR
	Deploying apps with Docker Stacks - The Deep Dive
	Deploying apps with Docker Stacks - The Commands
	Chapter Summary

	15: Security in Docker
	Security in Docker - The TLDR
	Security in Docker - The deep dive
	Chapter Summary

	16: Tools for the enterprise
	Tools for the enterprise - The TLDR
	Tools for the enterprise - The Deep Dive
	Chapter Summary

	17: Enterprise-grade features
	Enterprise-grade features - The TLDR
	Enterprise-grade features - The Deep Dive
	Chapter Summary

	Appendix A: Securing client and daemon communication
	Lab setup
	Create a CA (self-signed certs)
	Configure Docker for TLS
	Docker TLS Recap

	Appendix B: The DCA Exam
	Other resources to help with the exam
	Mapping exam objectives to chapters
	Domain 1: Orchestration (25% of exam)
	Domain 2: Image Creation, Management, and Registry (20% of exam)
	Domain 3: Installation and Configuration (15% of exam)
	Domain 4: Networking (15% of exam)
	Domain 5: Security (15% of exam)
	Domain 6: Storage and Volumes (10% of exam)

	Appendix C: What next
	Practice
	Video training
	Certifications
	Community events
	Feedback

