
Last updated: 22.04.2021.

Here we do a review of Locality-Sensitive Hashing for near-duplicate detection. We
demonstrate the principle, and provide a quick intro to Datasketch which is a convenient
library to run near-duplicate detection at scale.

Literature:

"Mining massive datasets", ch. 3 – theoretical foundation of Locality-Sensitive Hashing
A blog post on this topic
Datasketch – a Python library implementing, among all, the MinHashLSH algorithm

image credit

Here "historical" data can be a large dataset, e.g. 5 mln. documents.

Near-duplicate detection with
Locality-Sensitive Hashing and Datasketch

Yury Kashnitsky, Senior Machine Learning Scientist

MinHash LSH – the principle

1. When we need to deduplicate a single dataset.

2. When we have incoming "query" data that we want to compare
to a large "index" dataset

http://infolab.stanford.edu/%7Eullman/mmds/ch3n.pdf
https://mattilyra.github.io/2017/05/23/document-deduplication-with-lsh.html
https://github.com/ekzhu/datasketch
https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
https://yorko.github.io/

The "query" dataset is much smaller, e.g. 10K documents that we receive daily, say via some
API, and would-like to deduplicate.

We can do without LSH at all just comparing 10K fresh documents to 5 mln. historical
documents. But that'd require 50 bln. comparisons each day, might be too computationally
prohibitive (a dumb idea leading, above all, to a considerable carbon footprint). LSH is a
technique that approximates the exact similarity function.

The essence of the algorithm is to create signatures for each piece of text that is identified
here by a DocID . Signatures are just numeric vector of some fixed dimension, e.g. 128.

For two pieces of text to be considered as candidates for near-duplicates, it suffices for their
hash signatures to match in at least one component. In the picture above, a pair highlighted
in green is a candidate, and a pair highlighted in orange is another one. Bolded are those
matching hash values.

The method only takes care of the lexical similarity not semantical. Thus, with LSH,
we won't identify near-duplicates that differ due to parapharasing, synonym
replacement, etc.
The method is probabilistic, i.e. some errors are allowed. Not all candidates would
actually be near-duplicates. One can check this by calculating Jaccard similarity of the
candidates. Thus, the algorithm is characterized by precision (out of all pairs of
candidates found by the algorithm, what's the proportion of real near-duplicates, i.e. with
their Jaccard similarity exceeding the predefined threshold) and recall (out of all near-
duplicate pairs, what's the proportion of those found by the algorithm).
In practice, for a large enough dataset and long pieces of text (e.g. full documents not
just titles), LSH tends to work worse in terms of precision while recall can not be known

Limitations

without a crazy carbon footprint. FInding true near-duplicate pairs in a relatively small
collection of 50K texts requires >1.2B calls to a Jaccard similarity subroutine.

imports
import json
import pickle
import re
from pathlib import Path

import numpy as np
import pandas as pd
from datasketch import MinHash MinHashLSH
from matplotlib import pyplot as plt
from num2words import num2words
from tqdm import tqdm

Preprocessing and hashing

Essentially, MinHashLSH operates with shingle sets where shingles are overlapping
substrings of a fixed size. The following 4 code cells show how MinHashLSH builds hash
vectors (a.k.a. Signatures) for entry texts.

Further, as described in the picture above, for two pieces of text to be considered as
candidates for near-duplicates, it suffices for their hash signatures to match in at least one
component

s = "this is a piece of text"

shingle_size = 4

shingle_set = s i i + shingle_size
 for i in range len s - shingle_size + 1
shingle_set

,

{ [:]
(())}

{' a p',
 ' is ',
 ' of ',
 ' pie',
 ' tex',
 'a pi',
 'ce o',
 'e of',
 'ece ',
 'f te',
 'his ',
 'iece',
 'is a',
 'is i',
 'of t',
 'piec',
 's a ',
 's is',
 'text',
 'this'}

def hash_func a_string salt int = 1
 return hash a_string + str salt

These are the 5 components of a toy 5-dimensional hash signature. Each one of them is
created by hashing all shingles and taking a min. value of the hashes.

for i salt in enumerate range 5
 print i min hash_func el salt=salt for el in shingle_set

0 -7220920153181112185
1 -9127360350460247126
2 -8803612098918371157
3 -8027849914885749588
4 -9069105076530742277

from datasketch import MinHash MinHashLSH

(, :):
(())

, (()):
(, ([(,)]))

Datasketch LSH – a toy example

,

SIMILARITY_THRESHOLD = 0.6
NUM_PERMS = 96
SHINGLE_SIZE = 4

Three similar strings. We'll index first two, and then look for near-duplicates for the 3rd one.

s1 = "This is a piece of text"
s2 = "This is a similar piece of text"
s3 = "This is also a similar piece of text"

Inserting strings split by whitespaces into MinHash objects.

minhash1 = MinHash num_perm=NUM_PERMS
minhash2 = MinHash num_perm=NUM_PERMS
minhash3 = MinHash num_perm=NUM_PERMS

for d in set s1 split
 minhash1 update d encode "utf8"
for d in set s2 split
 minhash2 update d encode "utf8"
for d in set s3 split
 minhash3 update d encode "utf8"

Create LSH index and insert first 2 MinHash objects in it.

lsh = MinHashLSH threshold=SIMILARITY_THRESHOLD num_perm=NUM_PERMS
lsh insert "text1" minhash1
lsh insert "text2" minhash2

Querying near-duplicates for the 3rd piece of text.

lsh query minhash3

['text2']

Same with Redis storage as a backend, not Python dictionaries

See MinHashLSH docs to configure the algo to run with Redis backend. The idea is that to
query LSH for near-duplicates, we only need to make lookups to get signatures. Redis is an

()
()
()

(. ()):
. (. ())
(. ()):
. (. ())
(. ()):
. (. ())

(,)
. (,)
. (,)

. ()

http://ekzhu.com/datasketch/lsh.html

in-memory database which allows for very fast lookups, also, it scales much better than
Python dictionaries.

lsh_redis = MinHashLSH
 threshold=SIMILARITY_THRESHOLD
 num_perm=NUM_PERMS
 storage_config= "type" "redis"
 "redis" "host" "localhost"
 "port" 6379

lsh_redis insert "text1" minhash1
lsh_redis insert "text2" minhash2

lsh_redis query minhash3

['text2']

Further, we run the algorithm with some realistic dataset – news about cryptocurrencies,
Kaggle dataset

SIMILARITY_THRESHOLD = 0.8
NUM_PERMS = 128
SHINGLE_SIZE = 4

lsh = MinHashLSH threshold=SIMILARITY_THRESHOLD num_perm=NUM_PERMS

Reading data

you can download the dataset and customize this path
PATH_TO_DATA = Path "/Users/kashnitskiyy/Documents/data/crypto_news"

The following two parts of the dataset would imitate the historical part (index_df) and the
query part (query_df). For each title in the qury part, we'd like to find near-duplicate titles
in the historical part.

(
,

,
{ : ,

: { : ,
: }},

)
. (,)
. (,)

. ()

Running LSH near-duplicate detection with
a realistic dataset

(,)

()

https://www.kaggle.com/kashnitsky/news-about-major-cryptocurrencies-20132018-40k

index_df = pd read_csv PATH_TO_DATA /
 "crypto_news_parsed_2013-2017_train.csv"
query_df = pd read_csv PATH_TO_DATA /
 "crypto_news_parsed_2018_validation.csv"

We'll identify each title by some id, so reindexing. Also, there are quire a few fields in the
dataset, we'll take care only of the title field.

index_df index = f'train_{i}' for i in range len index_df
query_df index = f'val_{i}' for i in range len query_df

index_df 'title' head 2

title

train_0 Bitcoin Price Update: Will China Lead us Down?

train_1 Key Bitcoin Price Levels for Week 51 (15 – 22 ...

query_df 'title' head 2

title

val_0 Paris Hilton’s Hotel Mogul Father to Sell $38 ...

val_1 Playboy Sues Cryptocurrency Company for Breach...

. (
)

. (
)

. [(())]

. [(())]

[[]]. ()

[[]]. ()

def preprocess string maxlen=500
 tmp_string = string maxlen
 tmp_string = re sub r"(\d+)"
 lambda x num2words int x group 0
 tmp_string
 res = re sub r"[\W]+" "" tmp_string lower
 return res

def _shingle string shingle_size=4
 shings =
 string i i + shingle_size
 for i in range len string - shingle_size + 1

 return set shings

LSH from Datasketch

lsh = MinHashLSH threshold=SIMILARITY_THRESHOLD num_perm=NUM_PERMS

Populating the index

%%time

for id_ title in tqdm index_df 'title' iteritems

 title_shingles = _shingle preprocess title
 shingle_size=SHINGLE_SIZE

 title_minhash = MinHash num_perm=NUM_PERMS

 for shing in title_shingles
 title_minhash update shing encode "utf8"

 lsh insert id_ title_minhash check_duplication=False

CPU times: user 46.7 s, sys: 898 ms, total: 47.6 s
Wall time: 47.2 s

We've indexed that many titles:

(,):
[:]

. (,
: ((. ())),

)
. (, ,). ()

(,):
{
[:]

(())
}

()

(,)

, ([]. ()):

((),
)

()

:
. (. ())

. (, ,)

len lsh get_counts 0

27462

If needed, we can serialize the LSH object

with open "lsh.pkl" "wb" as f
 pickle dump lsh f

!du -hc lsh pkl

 35M lsh.pkl
 35M total

Get near-duplicates for the query data

%%time

dup_dict =

for id_ title in tqdm query_df 'title' iteritems

 title_shingles = _shingle preprocess title
 shingle_size=SHINGLE_SIZE

 title_minhash = MinHash num_perm=NUM_PERMS

 for shing in title_shingles
 title_minhash update shing encode "utf8"

 dups = lsh query title_minhash
 dup_dict id_ = dups

CPU times: user 17.1 s, sys: 273 ms, total: 17.4 s
Wall time: 17.2 s

len dup_dict

(. ()[])

(,) :
. (,)

.

{}

, ([]. ()):

((),
)

()

:
. (. ())

. ()
[]

()

11239

(Optional step) Analyze true Jaccard similarity

def jaccard_similarity list1 list2
 s1 = set list1
 s2 = set list2
 return len s1 intersection s2 / len s1 union s2

To access precision, we calculate the actual Jaccard similarity for the candidates identified
by LSH.

jaccard_sims =

for id_ dups in tqdm dup_dict items
 if dups
 shingle_query_title = _shingle
 preprocess
 query_df loc id_ "title"
 for dup_id in dups
 shingle_indexed_title = _shingle
 preprocess
 index_df loc dup_id "title"
 sim = jaccard_similarity shingle_query_title
 shingle_indexed_title
 jaccard_sims append sim

len jaccard_sims

1343

plt hist jaccard_sims bins=20

(,):
()
()

(. ()) (. ())

[]

, (. ()):
:

(
(

. [,]))
:

(
(

. [,]))
(,

)
. ()

()

. (,);

The distribution is nice, mostly, LSH indeed captures similar pairs.

Precision

0.8339538346984363

Note: That's the precision of the LSH algorithm. In practice, it's very easy to have 100%
precision with an additional effort of calculating the actual Jaccard similarity for the candidate
pairs (as done above) and filtering out false postives, i.e. the canidates pairs with similarity
below the predefined threshold.

Recall

Skipping this computationally intensive step in this short demo. What we can do is we can
calculate all pairwise Jaccard similarities between 11k query titles and 27k indexed titles, and
see how many true near-duplicates the LSH algo missed.

pd Series jaccard_sims >= SIMILARITY_THRESHOLD sum / len jaccard_sims(. ()). () (

At the time this tutorial is written (end of April 2021), I'm working with engineers on the
productionation of the LSH-based near-duplicate detection service. First, I sketched a
prototype API (Datasketch + Redis + Flask API + Streamlit GUI) which scaled fine and
supported ~600 RPS (requests per second). Datasketch is a pretty mature, well-
documented library with easy to read code, and we haven't yet experienced problems on the
Datasketch side. The only concern is that storing LSH signatures in memory with Redis

might be expensive with an ever growing index. While Cassandra did not satisfy the needs of
our engineers for reasons unknown to me.

Some notes on the productionization of
this solution

