Skip to content
OpenSTA engine
C++ Tcl Yacc CMake LLVM Makefile
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
app Hash -> size_t Aug 8, 2019
cmake splash include git sha1 Jul 7, 2019
dcalc thread speed Sep 7, 2019
doc set_cmd_units Jul 8, 2019
etc
examples regression fast Aug 10, 2019
graph
liberty write_verilog escaped bus name Aug 14, 2019
network write_verilog escaped bus name Aug 14, 2019
parasitics
sdc create_clock redef preserve propagated Oct 10, 2019
sdf range iterators Jul 18, 2019
search ssta met/violated include sigma Oct 10, 2019
tcl sync Sep 17, 2019
test
util sync Sep 17, 2019
verilog
.dockerignore polishing OpenSTA Docker image Jan 17, 2019
.gitignore 2019/02/21 write_path_spice include side load pins Feb 21, 2019
CMakeLists.txt sync Sep 17, 2019
Dockerfile
LICENSE LICENSE Jun 10, 2019
README.md README repo url Jul 19, 2019

README.md

Parallax Static Timing Analyzer

OpenSTA is a gate level static timing verifier. As a stand-alone executable it can be used to verify the timing of a design using standard file formats.

  • Verilog netlist
  • Liberty library
  • SDC timing constraints
  • SDF delay annotation
  • SPEF parasitics

OpenSTA uses a TCL command interpreter to read the design, specify timing constraints and print timing reports.

Clocks
  • Generated
  • Latency
  • Source latency (insertion delay)
  • Uncertainty
  • Propagated/Ideal
  • Gated clock checks
  • Multiple frequency clocks
Exception paths
  • False path
  • Multicycle path
  • Min/Max path delay
  • Exception points
  • -from clock/pin/instance -through pin/net -to clock/pin/instance
  • Edge specific exception points
  • -rise_from/-fall_from, -rise_through/-fall_through, -rise_to/-fall_to
Delay calculation
  • Integrated Dartu/Menezes/Pileggi RC effective capacitance algorithm
  • External delay calculator API
Analysis
  • Report timing checks -from, -through, -to, multiple paths to endpoint
  • Report delay calculation
  • Check timing setup
Timing Engine

OpenSTA is architected to be easily bolted on to other tools as a timing engine. By using a network adapter, OpenSTA can access the host netlist data structures without duplicating them.

  • Query based incremental update of delays, arrival and required times
  • Simulator to propagate constants from constraints and netlist tie high/low

See doc/OpenSTA.pdf for complete documentiaton.

Getting Started

OpenSTA can be run as a Docker container or built as local executable with CMake.

Run using Docker

  • Install Docker on Windows, Mac or Linux.
  • Navigate to the directory where you have the input files.
  • Run OpenSTA as a binary using
docker run -it -v $(pwd):/data openroad/opensta
  1. From the interactive terminal, use OpenSTA commands. You can read input files from /data directory inside the docker container (e.g. read_liberty /data/liberty.lib). You can use OpenSTA in non-interactive mode by passing a command file using the -f flag as follows.
docker run -it -v $(pwd):/data openroad/opensta -f /data/cmd_file

Note that the path after -f is the path inside container, not on the guest machine.

Prerequisites

The build dependency versions are show below. Other versions may work, but these are the versions used for development.

         from   Ubuntu   Xcode
                18.04.1  10.1
cmake    3.9
clang    9.1.0           10.0.0
gcc      3.3.2   7.3.0   
tcl      8.2     8.6     8.6.6
swig     1.3.28  3.0.12  3.0.12
bison    1.35    3.0.4   2.3
flex     2.5.4   2.6.4   2.5.35

These packages are optional:

libz     1.1.4   1.2.5     1.2.8
cudd             2.4.1     3.0.0

CUDD is a binary decision diageram (BDD) package that is used to improve conditional timing arc handling. OpenSTA does not require it to be installed. It is available here or here.

Note that the file hierarchy of the CUDD installation changed with version 3.0. Some changes to CMakeLists.txt are required to support older versions.

When building CUDD you may use the --prefix option to configure to install in a location other than the default (/usr/local/lib).

cd $HOME/cudd-3.0.0
mkdir $HOME/cudd
./configure --prefix $HOME/cudd
make
make install

To not use CUDD specify CUDD=0. Cmake looks for the CUDD library in CUDD/lib, CUDD/cudd/lib and for the header in CUDD/include, CUDD/cudd/include.

# equivalent to -DCUDD=0
cmake ..                     
or
cmake .. -DCUDD=0
or
# look in ~/cudd/lib, ~/cudd/include
cmake .. -DCUDD=$HOME/cudd
or
# look in /usr/local/lib/cudd, /usr/local/include/cudd
cmake .. -DCUDD=/usr/local

The Zlib library is an optional. If CMake finds libz, OpenSTA can read Verilog, SDF, SPF, and SPEF files compressed with gzip.

Installing with CMake

Use the following commands to checkout the git repository and build the OpenSTA library and excutable.

git clone https://github.com/The-OpenROAD-Project/OpenSTA.git
cd OpenSTA
mkdir build
cd build
cmake ..
make

The default build type is release to compile optimized code. The resulting executable is in app/sta. The library without a main() procedure is app/libSTA.a.

Optional CMake variables passed as -D= arguments to CMake are show below.

CMAKE_BUILD_TYPE DEBUG|RELEASE
CMAKE_CXX_FLAGS - additional compiler flags
TCL_LIB - path to tcl library
TCL_HEADER - path to tcl.h
CUDD - path to cudd installation
ZLIB_ROOT - path to zlib
CMAKE_INSTALL_PREFIX

If TCL_LIB is specified the CMake script will attempt to locate the header from the library path.

The default install directory is /usr/local. To install in a different directory with CMake use:

cmake .. -DCMAKE_INSTALL_PREFIX=<prefix_path>

Alternatively, you can use the DESTDIR variable with make.

make DESTDIR=<prefix_path> install

If you make changes to CMakeLists.txt you may need to clean out existing CMake cached variable values by deleting all of the files in the build directory.

Authors

  • James Cherry

  • William Scott authored the arnoldi delay calculator at Blaze, Inc which was subsequently licensed to Nefelus, Inc that has graciously contributed it to OpenSTA.

Bug Reports

Use the Issues tab on the github repository to report bugs.

Each issue/bug should be a separate issue. The subject of the issue should be a short description of the problem. Attach a test case to reproduce the issue as described below. Issues without test cases are unlikely to get a response.

The files in the test case should be collected into a directory named YYYYMMDD where YYYY is the year, MM is the month, and DD is the day (this format allows "ls" to report them in chronological order). The contents of the directory should be collected into a compressed tarfile named YYYYMMDD.tgz.

The test case should have a tcl command file recreates the issue named run.tcl. If there are more than one command file using the same data files, there should be separate command files, run1.tcl, run2.tcl etc. The bug report can refer to these command files by name.

Command files should not have absolute filenames like "/home/cho/OpenSTA_Request/write_path_spice/dump_spice" in them. These obviously are not portable. Use filenames relative to the test case directory.

License

OpenSTA is dual licensed. It is released under GPL v3 as OpenSTA and is also licensed for commerical applications by Parallax Software without the GPL's requirements.

OpenSTA, Static Timing Analyzer Copyright (c) 2019, Parallax Software, Inc.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

You can’t perform that action at this time.