diff --git a/quantitative_finance/kalman_filter.r b/quantitative_finance/kalman_filter.r new file mode 100644 index 0000000..2967c13 --- /dev/null +++ b/quantitative_finance/kalman_filter.r @@ -0,0 +1,32 @@ +library(Metrics) +set.seed(123) +num_obs <- 100 +true_returns <- rnorm(num_obs, mean = 0.001, sd = 0.01) +observed_prices <- cumprod(1 + true_returns) * 100 +noise <- rnorm(num_obs, mean = 0, sd = 0.1) +noisy_prices <- observed_prices + noise +# Kalman filter implementation +kalman_filter <- function(observed_prices) { + state <- c(observed_prices[1], 0) + P <- matrix(c(1, 0, 0, 1), nrow = 2) + Q <- matrix(c(0.0001, 0, 0, 0.0001), nrow = 2) + R <- 0.1 + A <- matrix(c(1, 1, 0, 1), nrow = 2) + H <- matrix(c(1, 0), nrow = 1) + filtered_states <- matrix(0, nrow = length(observed_prices), ncol = 2) + for (i in 1:length(observed_prices)) { + state_pred <- A %*% state + P_pred <- A %*% P %*% t(A) + Q + K <- P_pred %*% t(H) %*% solve(H %*% P_pred %*% t(H) + R) + state <- state_pred + K %*% (observed_prices[i] - H %*% state_pred) + P <- (matrix(1, nrow = 2, ncol = 2) - K %*% H) %*% P_pred + filtered_states[i, ] <- state + } + return(list(filtered_states = filtered_states, state_pred = state_pred, P_pred = P_pred)) +} +result <- kalman_filter(noisy_prices) +plot(observed_prices, type = "l", col = "blue", lwd = 2, main = "Kalman Filter") +lines(result$filtered_states[, 1], type = "l", col = "red", lwd = 2) +lines(true_returns, type = "l", col = "green", lwd = 2) +legend("topright", legend = c("Observed Prices", "Filtered Prices", "True Returns"), + col = c("blue", "red", "green"), lty = 1, lwd = 2) diff --git a/quantitative_finance/markowitz_portfolio_optimization.r b/quantitative_finance/markowitz_portfolio_optimization.r new file mode 100644 index 0000000..8d831ff --- /dev/null +++ b/quantitative_finance/markowitz_portfolio_optimization.r @@ -0,0 +1,28 @@ +# Required libraries +library(tidyquant) +library(quadprog) +# Set a seed for reproducibility +set.seed(123) +# Generate random data for three assets +num_assets <- 3 +num_obs <- 100 +returns <- matrix(rnorm(num_assets * num_obs), ncol = num_assets) +# Define the objective function for portfolio optimization +objective_function <- function(weights, cov_matrix) { + portfolio_return <- sum(weights * colMeans(returns)) + portfolio_volatility <- sqrt(t(weights) %*% cov_matrix %*% weights) + return(c(portfolio_return, portfolio_volatility)) +} +cov_matrix <- cov(returns) +constraints <- matrix(0, nrow = 2, ncol = num_assets) +constraints[1, ] <- colMeans(returns) +constraints[2, ] <- 1 +optimal_weights <- solve.QP(Dmat = 2 * cov_matrix, + dvec = rep(0, num_assets), + Amat = t(constraints), + bvec = c(0.05, 1), + meq = 1)$solution +cat("Optimal Weights:", optimal_weights, "\n") +optimal_portfolio <- objective_function(optimal_weights, cov_matrix) +cat("Expected Return:", optimal_portfolio[1], "\n") +cat("Volatility:", optimal_portfolio[2], "\n") diff --git a/quantitative_finance/monte_carlo_simulation.r b/quantitative_finance/monte_carlo_simulation.r new file mode 100644 index 0000000..de2a819 --- /dev/null +++ b/quantitative_finance/monte_carlo_simulation.r @@ -0,0 +1,31 @@ +# Required libraries +library("quantmod") +# Parameters +S0 <- 100 # Initial stock price +K <- 100 # Strike price +r <- 0.05 # Risk-free rate +sigma <- 0.2 # Volatility +T <- 1 # Time to maturity (in years) +n <- 252 # Number of trading days +# Function to simulate stock prices using geometric Brownian motion +simulate_stock_prices <- function(S0, r, sigma, T, n) { + dt <- T/n + t <- seq(0, T, by = dt) + W <- c(0, cumsum(sqrt(dt) * rnorm(n))) + S <- S0 * exp((r - 0.5 * sigma^2) * t + sigma * W) + return(S) +} +# Function to calculate option price using Monte Carlo simulation +monte_carlo_option_price <- function(S0, K, r, sigma, T, n, num_simulations) { + option_prices <- numeric(num_simulations) + for (i in 1:num_simulations) { + ST <- simulate_stock_prices(S0, r, sigma, T, n)[n + 1] # Final stock price + option_prices[i] <- pmax(ST - K, 0) # Payoff of the option + } + option_price <- mean(option_prices) * exp(-r * T) # Discounted expected payoff + return(option_price) +} +# Number of Monte Carlo simulations +num_simulations <- 10000 +option_price <- monte_carlo_option_price(S0, K, r, sigma, T, n, num_simulations) +cat("Option price:", option_price, "\n")