Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
462 lines (391 sloc)
15.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /* Copyright (c) 2017-2022 Hans-Kristian Arntzen | |
| * | |
| * Permission is hereby granted, free of charge, to any person obtaining | |
| * a copy of this software and associated documentation files (the | |
| * "Software"), to deal in the Software without restriction, including | |
| * without limitation the rights to use, copy, modify, merge, publish, | |
| * distribute, sublicense, and/or sell copies of the Software, and to | |
| * permit persons to whom the Software is furnished to do so, subject to | |
| * the following conditions: | |
| * | |
| * The above copyright notice and this permission notice shall be | |
| * included in all copies or substantial portions of the Software. | |
| * | |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
| * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |
| * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |
| * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
| * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| */ | |
| #include "tone_filter.hpp" | |
| #include "aligned_alloc.hpp" | |
| #include "pole_zero_filter_design.hpp" | |
| #include "dsp.hpp" | |
| #include "logging.hpp" | |
| #include <complex> | |
| #include <cmath> | |
| #include <algorithm> | |
| #include <assert.h> | |
| #ifdef TONE_DEBUG | |
| #include "audio_events.hpp" | |
| #endif | |
| #define ENABLE_SIMD 1 | |
| #if ENABLE_SIMD | |
| #include "simd_headers.hpp" | |
| #endif | |
| namespace Granite | |
| { | |
| namespace Audio | |
| { | |
| namespace DSP | |
| { | |
| static const double TwoPI = 2.0 * 3.141592653589793; | |
| struct ToneFilter::Impl : Util::AlignedAllocation<ToneFilter::Impl> | |
| { | |
| alignas(64) float fir_history[FilterTaps] = {}; | |
| alignas(64) float iir_history[FilterTaps][ToneCount] = {}; | |
| alignas(64) float fir_coeff[FilterTaps + 1][ToneCount] = {}; | |
| alignas(64) float iir_coeff[FilterTaps][ToneCount] = {}; | |
| alignas(64) float running_power[ToneCount] = {}; | |
| alignas(64) float running_total_power = {}; | |
| unsigned index = 0; | |
| unsigned iir_filter_taps = 0; | |
| unsigned fir_filter_taps = 0; | |
| float tone_power_lerp = 0.00012f; | |
| float total_tone_power_lerp = 0.0001f; | |
| float final_history = 0.0f; | |
| void filter(float *out_samples, const float *in_samples, unsigned count); | |
| #ifdef TONE_DEBUG | |
| std::vector<float> tone_buffers[ToneCount]; | |
| #endif | |
| }; | |
| #ifdef TONE_DEBUG | |
| void ToneFilter::flush_debug_info(Util::LockFreeMessageQueue &queue, StreamID id) | |
| { | |
| for (int i = 0; i < ToneCount; i++) | |
| { | |
| emplace_padded_audio_event_on_queue<ToneFilterWave>(queue, | |
| impl->tone_buffers[i].size() * | |
| sizeof(float), | |
| id, i, | |
| impl->running_power[i] / | |
| (impl->running_total_power + 0.000001f), | |
| impl->tone_buffers[i].data(), | |
| impl->tone_buffers[i].size()); | |
| impl->tone_buffers[i].clear(); | |
| } | |
| } | |
| #endif | |
| void ToneFilter::init(float sample_rate, float tuning_freq) | |
| { | |
| // Readjust falloff based on sample rate. | |
| impl->tone_power_lerp = float(1.0 - exp(log(0.00503) / sample_rate)); | |
| impl->total_tone_power_lerp = float(1.0 - exp(log(0.01215) / sample_rate)); | |
| PoleZeroFilterDesigner designer; | |
| for (int i = 0; i < ToneCount; i++) | |
| { | |
| designer.reset(); | |
| double freq = tuning_freq * std::exp2(double(i - 12) / 12.0); | |
| double angular_freq = freq * TwoPI / sample_rate; | |
| // Ad-hoc sloppy IIR filter design, wooo. | |
| // Add some zeroes to balance out the filter. | |
| designer.add_zero_dc(1.0); | |
| designer.add_zero_nyquist(1.0); | |
| // We're going to create a resonator around the desired tone we're looking for. | |
| designer.add_pole(0.9999, angular_freq); | |
| // Look ma', a biquad! | |
| impl->fir_filter_taps = designer.get_numerator_count() - 1; | |
| impl->iir_filter_taps = designer.get_denominator_count() - 1; | |
| assert(impl->fir_filter_taps <= FilterTaps); | |
| assert(impl->iir_filter_taps <= FilterTaps); | |
| // Normalize the FIR part. | |
| double inv_response = 1.0 / std::abs(designer.evaluate_response(angular_freq)); | |
| for (unsigned coeff = 0; coeff < impl->fir_filter_taps + 1; coeff++) | |
| impl->fir_coeff[coeff][i] = float(designer.get_numerator()[coeff] * inv_response); | |
| // IIR part. To apply the filter, we need to negate the Z-form coeffs. | |
| for (unsigned coeff = 0; coeff < impl->iir_filter_taps; coeff++) | |
| impl->iir_coeff[coeff][i] = float(-designer.get_denominator()[coeff + 1]); | |
| #ifdef TONE_DEBUG | |
| impl->tone_buffers[i].reserve(1024); | |
| #endif | |
| } | |
| } | |
| ToneFilter::ToneFilter() | |
| { | |
| impl = new Impl; | |
| } | |
| ToneFilter::~ToneFilter() | |
| { | |
| delete impl; | |
| } | |
| static inline float distort(float v) | |
| { | |
| float abs_v = std::abs(v); | |
| return v / (1.0f + abs_v); | |
| } | |
| #if ENABLE_SIMD | |
| #if defined(__AVX__) | |
| alignas(16) static const uint32_t absmask = 0x7fffffffu; | |
| static inline __m256 div_ps(__m256 a, __m256 b) | |
| { | |
| return _mm256_mul_ps(a, _mm256_rcp_ps(b)); | |
| } | |
| static inline __m256 sqrt_ps(__m256 v) | |
| { | |
| return _mm256_mul_ps(v, _mm256_rsqrt_ps(_mm256_max_ps(v, _mm256_set1_ps(1e-30f)))); | |
| } | |
| static inline __m256 fma_ps(__m256 c, __m256 a, __m256 b) | |
| { | |
| #ifdef __FMA__ | |
| return _mm256_fmadd_ps(a, b, c); | |
| #else | |
| return _mm256_add_ps(_mm256_mul_ps(a, b), c); | |
| #endif | |
| } | |
| #elif defined(__SSE__) | |
| alignas(16) static const uint32_t absmask[4] = {0x7fffffffu, 0x7fffffffu, 0x7fffffffu, 0x7fffffffu}; | |
| static inline __m128 div_ps(__m128 a, __m128 b) | |
| { | |
| return _mm_mul_ps(a, _mm_rcp_ps(b)); | |
| } | |
| static inline __m128 sqrt_ps(__m128 v) | |
| { | |
| return _mm_mul_ps(v, _mm_rsqrt_ps(_mm_max_ps(v, _mm_set1_ps(1e-30f)))); | |
| } | |
| #elif defined(__ARM_NEON) | |
| static inline float32x4_t div_ps(float32x4_t a, float32x4_t b) | |
| { | |
| return vmulq_f32(a, vrecpeq_f32(b)); | |
| } | |
| static inline float32x4_t sqrt_ps(float32x4_t v) | |
| { | |
| return vmulq_f32(v, vrsqrteq_f32(vmaxq_f32(v, vdupq_n_f32(1e-30f)))); | |
| } | |
| #endif | |
| #endif | |
| void ToneFilter::Impl::filter(float *out_samples, const float *in_samples, unsigned count) | |
| { | |
| for (unsigned samp = 0; samp < count; samp++) | |
| { | |
| float in_sample = in_samples[samp]; | |
| running_total_power = | |
| running_total_power * (1.0f - total_tone_power_lerp) + | |
| total_tone_power_lerp * in_sample * in_sample; | |
| float low_threshold = 0.0002f * running_total_power; | |
| float high_threshold = 0.10f * running_total_power; | |
| float low_threshold_divider = | |
| 1.0f / std::max(0.00000000001f, low_threshold * low_threshold * low_threshold); | |
| #if defined(__AVX__) && ENABLE_SIMD | |
| __m256 final_sample_vec = _mm256_setzero_ps(); | |
| __m256 in_sample_splat = _mm256_set1_ps(in_sample); | |
| for (int tone = 0; tone < ToneCount; tone += 8) | |
| { | |
| __m256 ret = _mm256_mul_ps(_mm256_load_ps(fir_coeff[0] + tone), in_sample_splat); | |
| for (unsigned x = 0; x < fir_filter_taps; x++) | |
| { | |
| __m256 history = _mm256_broadcast_ss(&fir_history[(index + x) & (FilterTaps - 1)]); | |
| ret = fma_ps(ret, | |
| _mm256_load_ps(fir_coeff[x + 1] + tone), | |
| history); | |
| } | |
| for (unsigned x = 0; x < iir_filter_taps; x++) | |
| { | |
| ret = fma_ps(ret, | |
| _mm256_load_ps(iir_coeff[x] + tone), | |
| _mm256_load_ps(iir_history[(index + x) & (FilterTaps - 1)] + tone)); | |
| } | |
| _mm256_store_ps(iir_history[(index - 1) & (FilterTaps - 1)] + tone, ret); | |
| __m256 new_power = _mm256_mul_ps(ret, ret); | |
| __m256 new_power_4 = _mm256_mul_ps(new_power, new_power); | |
| new_power_4 = _mm256_mul_ps(new_power_4, new_power_4); | |
| new_power_4 = _mm256_mul_ps(new_power_4, _mm256_set1_ps(low_threshold_divider)); | |
| new_power = _mm256_min_ps(new_power, new_power_4); | |
| new_power = _mm256_min_ps(new_power, _mm256_set1_ps(high_threshold)); | |
| new_power = _mm256_mul_ps(new_power, _mm256_set1_ps(tone_power_lerp)); | |
| new_power = fma_ps(new_power, | |
| _mm256_load_ps(running_power + tone), | |
| _mm256_set1_ps(1.0f - tone_power_lerp)); | |
| _mm256_store_ps(running_power + tone, new_power); | |
| __m256 rms = sqrt_ps(new_power); | |
| __m256 distorted = div_ps( | |
| _mm256_mul_ps(ret, _mm256_set1_ps(40.0f)), | |
| _mm256_add_ps(rms, _mm256_set1_ps(0.001f))); | |
| __m256 distorted_abs = _mm256_and_ps(distorted, _mm256_broadcast_ss(reinterpret_cast<const float *>(&absmask))); | |
| __m256 distorted_div = _mm256_add_ps(_mm256_set1_ps(1.0f), distorted_abs); | |
| distorted = div_ps(distorted, distorted_div); | |
| final_sample_vec = fma_ps(final_sample_vec, rms, distorted); | |
| #ifdef TONE_DEBUG | |
| __m256 final = _mm256_mul_ps(rms, distorted); | |
| float final_buffers[8]; | |
| _mm256_storeu_ps(final_buffers, final); | |
| for (unsigned j = 0; j < 8; j++) | |
| tone_buffers[tone + j].push_back(final_buffers[j]); | |
| #endif | |
| } | |
| #elif defined(__SSE__) && ENABLE_SIMD | |
| __m128 final_sample_vec = _mm_setzero_ps(); | |
| __m128 in_sample_splat = _mm_set1_ps(in_sample); | |
| for (int tone = 0; tone < ToneCount; tone += 4) | |
| { | |
| __m128 ret = _mm_mul_ps(_mm_load_ps(fir_coeff[0] + tone), in_sample_splat); | |
| for (unsigned x = 0; x < fir_filter_taps; x++) | |
| { | |
| __m128 history = _mm_load_ss(&fir_history[(index + x) & (FilterTaps - 1)]); | |
| history = _mm_shuffle_ps(history, history, _MM_SHUFFLE(0, 0, 0, 0)); | |
| ret = _mm_add_ps(ret, _mm_mul_ps( | |
| _mm_load_ps(fir_coeff[x + 1] + tone), | |
| history)); | |
| } | |
| for (unsigned x = 0; x < iir_filter_taps; x++) | |
| { | |
| ret = _mm_add_ps(ret, _mm_mul_ps( | |
| _mm_load_ps(iir_coeff[x] + tone), | |
| _mm_load_ps(iir_history[(index + x) & (FilterTaps - 1)] + tone))); | |
| } | |
| _mm_store_ps(iir_history[(index - 1) & (FilterTaps - 1)] + tone, ret); | |
| __m128 new_power = _mm_mul_ps(ret, ret); | |
| __m128 new_power_4 = _mm_mul_ps(new_power, new_power); | |
| new_power_4 = _mm_mul_ps(new_power_4, new_power_4); | |
| new_power_4 = _mm_mul_ps(new_power_4, _mm_set1_ps(low_threshold_divider)); | |
| new_power = _mm_min_ps(new_power, new_power_4); | |
| new_power = _mm_min_ps(new_power, _mm_set1_ps(high_threshold)); | |
| new_power = _mm_add_ps( | |
| _mm_mul_ps(_mm_load_ps(running_power + tone), _mm_set1_ps(1.0f - tone_power_lerp)), | |
| _mm_mul_ps(new_power, _mm_set1_ps(tone_power_lerp))); | |
| _mm_store_ps(running_power + tone, new_power); | |
| __m128 rms = sqrt_ps(new_power); | |
| __m128 distorted = div_ps( | |
| _mm_mul_ps(ret, _mm_set1_ps(40.0f)), | |
| _mm_add_ps(rms, _mm_set1_ps(0.001f))); | |
| __m128 distorted_abs = _mm_and_ps(distorted, _mm_load_ps(reinterpret_cast<const float *>(absmask))); | |
| __m128 distorted_div = _mm_add_ps(_mm_set1_ps(1.0f), distorted_abs); | |
| distorted = div_ps(distorted, distorted_div); | |
| __m128 final = _mm_mul_ps(rms, distorted); | |
| final_sample_vec = _mm_add_ps(final, final_sample_vec); | |
| #ifdef TONE_DEBUG | |
| float final_buffers[4]; | |
| _mm_storeu_ps(final_buffers, final); | |
| for (unsigned j = 0; j < 4; j++) | |
| tone_buffers[tone + j].push_back(final_buffers[j]); | |
| #endif | |
| } | |
| #elif defined(__ARM_NEON) && ENABLE_SIMD | |
| float32x4_t final_sample_vec = vdupq_n_f32(0.0f); | |
| for (int tone = 0; tone < ToneCount; tone += 4) | |
| { | |
| float32x4_t ret = vmulq_n_f32(vld1q_f32(fir_coeff[0] + tone), in_sample); | |
| for (unsigned x = 0; x < fir_filter_taps; x++) | |
| { | |
| float history = fir_history[(index + x) & (FilterTaps - 1)]; | |
| ret = vmlaq_n_f32(ret, | |
| vld1q_f32(fir_coeff[x + 1] + tone), | |
| history); | |
| } | |
| for (unsigned x = 0; x < iir_filter_taps; x++) | |
| { | |
| ret = vmlaq_f32(ret, | |
| vld1q_f32(iir_coeff[x] + tone), | |
| vld1q_f32(iir_history[(index + x) & (FilterTaps - 1)] + tone)); | |
| } | |
| vst1q_f32(iir_history[(index - 1) & (FilterTaps - 1)] + tone, ret); | |
| float32x4_t new_power = vmulq_f32(ret, ret); | |
| float32x4_t new_power_4 = vmulq_f32(new_power, new_power); | |
| new_power_4 = vmulq_f32(new_power_4, new_power_4); | |
| new_power_4 = vmulq_n_f32(new_power_4, low_threshold_divider); | |
| new_power = vminq_f32(new_power, new_power_4); | |
| new_power = vminq_f32(new_power, vdupq_n_f32(high_threshold)); | |
| new_power = vmulq_n_f32(new_power, tone_power_lerp); | |
| new_power = vmlaq_n_f32(new_power, vld1q_f32(running_power + tone), | |
| 1.0f - tone_power_lerp); | |
| vst1q_f32(running_power + tone, new_power); | |
| float32x4_t rms = sqrt_ps(new_power); | |
| float32x4_t distorted = div_ps( | |
| vmulq_n_f32(ret, 40.0f), | |
| vaddq_f32(rms, vdupq_n_f32(0.001f))); | |
| float32x4_t distorted_abs = vabsq_f32(distorted); | |
| float32x4_t distorted_div = vaddq_f32(vdupq_n_f32(1.0f), distorted_abs); | |
| distorted = div_ps(distorted, distorted_div); | |
| final_sample_vec = vmlaq_f32(final_sample_vec, rms, distorted); | |
| #ifdef TONE_DEBUG | |
| float32x4_t final = vmulq_f32(rms, distorted); | |
| float final_buffers[4]; | |
| vst1q_f32(final_buffers, final); | |
| for (unsigned j = 0; j < 4; j++) | |
| tone_buffers[tone + j].push_back(final_buffers[j]); | |
| #endif | |
| } | |
| #else | |
| float final_sample = 0.0f; | |
| for (int tone = 0; tone < ToneCount; tone++) | |
| { | |
| float ret = fir_coeff[0][tone] * in_sample; | |
| for (unsigned x = 0; x < fir_filter_taps; x++) | |
| ret += fir_coeff[x + 1][tone] * fir_history[(index + x) & (FilterTaps - 1)]; | |
| for (unsigned x = 0; x < iir_filter_taps; x++) | |
| ret += iir_coeff[x][tone] * iir_history[(index + x) & (FilterTaps - 1)][tone]; | |
| iir_history[(index - 1) & (FilterTaps - 1)][tone] = ret; | |
| float new_power = ret * ret; | |
| new_power = std::min(new_power, new_power * new_power * new_power * new_power * low_threshold_divider); | |
| new_power = std::min(new_power, high_threshold); | |
| new_power = (1.0f - tone_power_lerp) * running_power[tone] + tone_power_lerp * new_power; | |
| running_power[tone] = new_power; | |
| float rms = std::sqrt(new_power); | |
| float final = rms * distort(ret * 40.0f / (rms + 0.001f)); | |
| final_sample += final; | |
| #ifdef TONE_DEBUG | |
| tone_buffers[tone].push_back(final); | |
| #endif | |
| } | |
| #endif | |
| #if defined(__AVX__) && ENABLE_SIMD | |
| float final_sample; | |
| __m128 final_sample128 = _mm_add_ps( | |
| _mm256_extractf128_ps(final_sample_vec, 0), | |
| _mm256_extractf128_ps(final_sample_vec, 1)); | |
| __m128 final_sample_half = _mm_add_ps(final_sample128, | |
| _mm_movehl_ps(final_sample128, final_sample128)); | |
| final_sample_half = | |
| _mm_add_ss(final_sample_half, | |
| _mm_shuffle_ps(final_sample_half, final_sample_half, _MM_SHUFFLE(1, 1, 1, 1))); | |
| final_sample_half = _mm_mul_ss(_mm_set1_ps(0.5f), _mm_add_ss(final_sample_half, _mm_load_ss(&final_history))); | |
| _mm_store_ss(&final_history, final_sample_half); | |
| _mm_store_ss(&final_sample, final_sample_half); | |
| #elif defined(__SSE__) && ENABLE_SIMD | |
| float final_sample; | |
| __m128 final_sample_half = _mm_add_ps(final_sample_vec, | |
| _mm_movehl_ps(final_sample_vec, final_sample_vec)); | |
| final_sample_half = | |
| _mm_add_ss(final_sample_half, | |
| _mm_shuffle_ps(final_sample_half, final_sample_half, _MM_SHUFFLE(1, 1, 1, 1))); | |
| final_sample_half = _mm_mul_ss(_mm_set1_ps(0.5f), _mm_add_ss(final_sample_half, _mm_load_ss(&final_history))); | |
| _mm_store_ss(&final_history, final_sample_half); | |
| _mm_store_ss(&final_sample, final_sample_half); | |
| #elif defined(__ARM_NEON) && ENABLE_SIMD | |
| float32x2_t final_sample_half = vadd_f32(vget_low_f32(final_sample_vec), | |
| vget_high_f32(final_sample_vec)); | |
| final_sample_half = vpadd_f32(final_sample_half, final_sample_half); | |
| float final_sample = vget_lane_f32(final_sample_half, 0); | |
| final_sample = 0.5f * final_history + 0.5f * final_sample; | |
| final_history = final_sample; | |
| #else | |
| // Trivial 1-pole IIR filter to serve as a slight low-pass to dampen the worst high-end. | |
| final_sample = 0.5f * final_history + 0.5f * final_sample; | |
| final_history = final_sample; | |
| #endif | |
| fir_history[(index - 1) & (FilterTaps - 1)] = in_sample; | |
| out_samples[samp] = distort(2.0f * final_sample); | |
| index = (index - 1) & (FilterTaps - 1); | |
| } | |
| #if defined(__AVX__) && ENABLE_SIMD | |
| _mm256_zeroupper(); | |
| #endif | |
| } | |
| void ToneFilter::filter(float *out_samples, const float *in_samples, unsigned count) | |
| { | |
| impl->filter(out_samples, in_samples, count); | |
| } | |
| } | |
| } | |
| } |