
Tobie Nortje
IPython had become a popular choice for doing interactive scientific work. It extends the standard Python

interpreter and adds many useful new futures. There is really no need to use the standard Python

interpreter anymore. In addition to this IPython offers a web based Notebook that makes interactive work

much easier, and have been used to write repeatable scientific papers and more recently a book has been

written using this platform, the online Notebook Viewer and GitHub.

E o n C o n s u l t i n g

IPython Notebooks

Beautiful is better than ugly. Explicit is better

than implicit. Simple is better than complex.

Complex is better than complicated. Flat is

better than nested. Sparse is better than dense.

Readability counts. Special cases aren't special

enough to break the rules. Although practicality

beats purity. Errors should never pass silently.

Unless explicitly silenced. In the face of

ambiguity, refuse the temptation to guess. There

should be one‐‐ and preferably only one ‐‐

obvious way to do it. Although that way may not

be obvious at first unless you're Dutch. Now is

better than never. Although never is often better

than *right* now. If the implementation is hard

to explain, it's a bad idea. If the implementation

is easy to explain, it may be a good idea.

Namespaces are one honking great idea ‐‐ let's

do more of those!

http://ipython.org/static/IPyheader.png

IPython in action creating reproducible and publishable interactive work.

What is this?

This repo contains the complete talk I intend to deliver (have delivered) at PyConZA2013. It contains all

the files needed to build a final publishable PDF document from an interactive notebook and even adds a

custom front page.

The Complete Talk GitHub Website can be accessed here

Background

IPython had become a popular choice for doing interactive scientific work. It extends the standard Python

interpreter and adds many useful new futures. There is really no need to use the standard Python

interpreter anymore. In addition to this IPython offers a web based Notebook that makes interactive work

much easier, and have been used to write repeatable scientific papers and more recently a book has been

written using this platform, the online Notebook Viewer and GitHub. The development of this material and

tool chain to compile the notebook to a publishable PDF, has inspired me to maybe even try and turn this

into a complete (free) book. Let’s see what happens.

Combining the most common scientific packages with IPython makes it a formidable tool and serious

competition to R. (R is still awesome!)

http://ipython.org/static/ipy0.13.png

As a matter of fact you can run R in the notebook session, embed YouTube Videos, Images and lots more

but let me not get ahead of myself....

The science stack consists of (but not limited to):

packagepackage descriptiondescription

pandas dataframe implementation (based on numpy)

http://ipython.org/
http://za.pycon.org/talks/10/
http://za.pycon.org/
http://tooblippe.github.io/zapycon2013_ipython_science
http://pandas.pydata.org/

scipy efficient numerical routines

sympy symbolic mathematics

matplotlib python standard plotting package

sci-kit learn machine learning and well documented!

Talk contents

The talk will aim to introduce these tools and explore some practical interactive examples. Once completed

it will be shown how easy it is to publish your work to various formats. Some of the topics covered in the

talk are listed below:

itemitem descriptiondescription

ipython quick intro to ipython and the notebook

setup set up your environment / get the talk files

notebook basics navigate the notebook

notebook magic’s special notebook commands that can be very useful

getting input as from IPython 1.00 getting input from sdtin is possible

local files how to link to local files in the notebook directory

plotting how to create beautiful inline plots

symbolic math quick demo of sympy model

pandas quick intro to pandas dataframe

typesetting include markdown, Latex via MathJax

loading code how to load a remote .py code file

gist paste some of your work to gist for sharing

js some javascript examples

customising loading a customer css and custom matplotlib config file

git cell add code to a special cell that would commit to git

output formats how to publish your work to html, pdf or jeveal.js presentation

Get the processed presentation files here:

formatformat descriptiondescription

IPython notebook .ipynb file to run in browser

IPython html notebook converted to HTML and served online

IPython pdf notebook converted to PDF for download (to be added, needs pandoc)

IPython pdf book converted to pdf and a front-page stitched to it)

Ipython reveal.js presentation converted to a reveal.js presentation and served online

http://www.scipy.org/
http://sympy.org/en/index.html
http://matplotlib.org/
http://scikit-learn.org/
https://github.com/Tooblippe/zapycon2013_ipython_science/blob/master/src/pycon13_ipython.ipynb
http://htmlpreview.github.io/?https://github.com/Tooblippe/zapycon2013_ipython_science/blob/master/src/output/pycon13_ipython.html
https://github.com/Tooblippe/zapycon2013_ipython_science/blob/master/src/output/pycon13_ipython_pdf.pdf?raw=true
https://github.com/Tooblippe/zapycon2013_ipython_science/blob/master/src/output/pycon13_ipython_complete.pdf?raw=true
http://htmlpreview.github.io/?https://github.com/Tooblippe/zapycon2013_ipython_science/blob/master/src/output/pycon13_ipython.slides.html#/

Online IPython NBveiwer view on the ipython notebook viewer

Dependencies

I was given the challenge to develop all of this on a Windows machine as some of my sponsors want to

demonstrate that this stuff can not only be done on GNU/Linux/OSX. So all the tool chains are Windows

based. If you know Linux, then you are the type of person that would easily port this. That being said the

Windows GitHub client is refreshing. I have also added a MacBook Air to my arsenal and have been porting

the toolchain to Mac aswell and it seems to be working fine.

packagepackage descriptiondescription

IPython
To use NBConvert you need V1.00. If you only want to use the

interactive notebook then v0.13 will be ok.

pandoc The document converter used by IPythonr

MikeTex

If you want to do a TEX to PDF transform. I had so many issues

with the TEX to PDF conversion by NBConvert, so settled for

wkhtmltopdf(below) to convert HTML to PDF rather. (Convert

notebook to HTML with NBconvert and then from HTML to PDF

with wkhtmltopdf

wkhtmltopdf Convert HTML to PDF (i could only install this on windows)

wkpdf

I couldn't get wkhtmltopdf to work on os x so i installed wkpdf

for handling the HTML to PDF conversion on my Mac. It's a

Ruby Gem install and painless.

pdftk

Can be used to combine PDF's. In this case add a frontpage to

the generated IPython notebook PDF. Only available for

Windows.

ImageMagick | for

compressing the PDF. Still

experimenting with this.(have

not got this working yet so

not needed)GhostScript

needed by ImageMagick(not needed as PDF compression is not

functional yet)

anaconda

install anaconda from Continuum Analytics. Almost all the Python

packages are included and it has a virtual environment manager

via it's console application `conda'

How to run the Interactive Notebook

Navigate to the src directory and run from the command line:

python ipython notebook

If everything works your browser should open and you can select the notebook and start experimenting!

PDF, HTML, Slideshow Build Script

http://nbviewer.ipython.org/urls/raw.github.com/Tooblippe/zapycon2013_ipython_science/master/src/pycon13_ipython.ipynb

There is a build script in the src directory. It is an IPython file. You can basically build shell scripts this

way. To use the power of IPython commands save the file with the .ipy extension and call it with

IPython. Even the magic’s work. To build the document use ipython builddocs.ipy You will have to

change the paths to the software however. Currently I can use the build script on Windows and on my Mac

but it is a bit of a hack.

Cross Platform Output Rendering

I have tested the HTML outputs on my Galaxy S3 and S4, IPAD and Nexus7. They render very well. Even

the downloaded PDF was easily readable on the NEXUS 7 in landscape mode. In conclusion the produces

work is really very well packaged and easily consumed on most platforms. This is not bad, and all done

with open source software.

Some interesting links

A book written with IPython Notebook
Notebook Viewer
Anaconda - Installing almost everything you need

About the presenter

I am an Electrical Engineer and is currently working for a consulting firm where I manage the
Business Analytics and Quantitative Decision Support Services division.
I use python in my day to day work as a practical alternative to the limitations of EXCEL in using
large data sets.
LinkedIn
I am also a co-founder at House4Hack

The IPython notebook

The IPython notebook is part of the IPython project. The IPython project is one of the packacges making

up the python scientific stack called SciPi. SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of

open-source software for mathematics, science, and engineering. In particular, these are some of the core

packages:

SciPy

Quick IPython introdution

IPython provides a rich architecture for interactive computing with:

http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://nbviewer.ipython.org/
http://www.continuum.io/downloads
http://www.eon.co.za/index.php/our-services-main/our-services/business-analytics
http://www.linkedin.com/in/tobienortje
http://www.house4hack.co.za/

Powerful interactive shells (terminal and Qt-based).
A browser-based notebook with support for code, text, mathematical expressions, inline
plots and other rich media.
Support for interactive data visualization and use of GUI toolkits.
Flexible, embeddable interpreters to load into your own projects.
Easy to use, high performance tools for parallel computing.

The main reasons I have been using it includes:

A superior shell
Plotting is possible in the QT console or the Notebook
the magic functions makes life easier (magics gets called with a %, use %-tab to see them all)
I also use it as a replacement shell for Windows Shell or Terminal
Code Completion

GNU Readline based editing and command history

Some helpfull commands

The four most helpful commands, as well as their brief description, is shown to you in a banner, every time

you start IPython:

command description

? Introduction and overview of IPython's features.

%quickref Quick reference.

help Python's own help system.

object? Details about 'object', use 'object??' for extra details.

Some imports and settings

The following code cells make sure that plotting is enabled and also loads a customised matplotlib

confirguration file that spices up the inline plots. The custom matplotlib file has been taken from the

Bayesian Methods for Hackers Project

In [3]: # makes sure inline plotting is enabled

%pylab --no-import-all inline

In [4]: #loads a customer marplotlib configuration file

def CustomPlot():

 import json

 s = json.load(open("static/matplotlibrc.json"))

 matplotlib.rcParams.update(s)

 figsize(18, 6)

Populating the interactive namespace from numpy and matplotlib

http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter1_Introduction/Chapter1_Introduction.ipynb

Changing the notebook layout

The code cell below is an example of how you should not be chaning the layout and css of the notebook.

From IPython V1.00 it is possible to include custom css by creating IPython profiles. Since this file needs

to be distributable I have opted for the hack below as used by the Bayesian Methods for Hackers

Team

In [3]: from IPython.core.display import HTML

def css_styling():

 styles = open("static/custom.css", "r").read()

 return HTML(styles)

css_styling()

Notebook basics

The IPython Notebook is a web-based interactive computational environment where you can combine code

execution, text, mathematics, plots and rich media into a single document.

Code Completion
Help
Docstrings
Markdown cells
Running a Code cell (Shift+Enter)
Setting a cell to be included in the presentation

Run the contents of a cell

SHIFT+ENTER will run the contents of a cell and move to the next one
CTRL+ENTER run the cell in place and don't move to the next cell. (best for presenting)
CTRL-m h show keyboard shorcuts

In [4]: # press shift-enter to run code

print "Hallo Pycon"

Save the notebook

CTRL-S will save the notebook

Lets get some help

Out[3]:

Hallo Pycon

The %quickref commmand can be used to obtain a bit more information

In [5]: #IPython -- An enhanced Interactive Python - Quick Reference Card

%quickref # now press shift-ender

Code completion and introspection

The cell below defines a function with a bit of a long name. By using the ? command the docstring can we

viewed. ?? will open up the source code. The autocomplete function is also demostrated, and for fun the

function is called and the output displayed

In [6]: # lets degine a function with a long name.

def long_silly_dummy_name(a, b):

 """

 This is the docstring for dummy.

 It takes two arguments a and b

 It returns the sum of a and b

 No error checking is done!

 """

 return a+b

In [7]: # lets get the docstring or some help

long_silly_dummy_name?

In []: long_silly_dummy_name??

In []: #press tab to autocplete

long_si

In [8]: # press shift-enter to run

long_silly_dummy_name(5,6)

Setting up the notebook to enable a slideshow view

You need to activate the Cell Toolbar in the Toolbar above. Here you can set if this cell should be

compiled as a slide or not. The options are given below:

slide
sub slide
fragment
skip
notes

Out[8]: 11

Using markdown

You can set the contents type of a cell in the toolbar above. When Markdown is selected you can enter

markdown in a cell and it's contents will be rendered as HTML. The markdown syntax can by found here

This is heading 1

This is heading 2

This is heading 5

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is
better than complicated.

Notebook magics

IPython has a set of predefined ‘magic functions’ that you can call with a command line style syntax. There

are two kinds of magics, line-oriented and cell-oriented. Line magics are prefixed with the % character and

work much like OS command-line calls: they get as an argument the rest of the line, where arguments are

passed without parentheses or quotes. Cell magics are prefixed with a double %%, and they are functions

that get as an argument not only the rest of the line, but also the lines below it in a separate argument.

Timeit magic

The timeit magic can be used to evaluate the average time your loop or piece of code is taking to complete

it's run.

In [16]: %%timeit

x = 0 # setup

for i in range(100000): #lets use range here

 x = x + i**2

In [17]: %%timeit

x = 0 # setup

for i in xrange(100000): #replace range with slightly improved xrange

 x += i**2

Know when the kernel is busy

100 loops, best of 3: 12.2 ms per loop

100 loops, best of 3: 10.7 ms per loop

http://daringfireball.net/projects/markdown/

Have a look at the top right hand side of the notebook and run the code cell above again. This shows that

the kernel is busy running the current cell.

User input

In the snippet below it the raw_input() function is used to read some user input to a variable raw and

printed to stdout.

In [18]: from IPython.display import HTML

raw = raw_input("enter your input here >>> ")

print "Hallo, ",raw

How to link to the filesystem

In [11]: from IPython.display import FileLink, FileLinks

FileLinks('.', notebook_display_formatter=True)

enter your input here >>> World!

Hallo, World!

Out[11]: ./

 .DS_Store

 builddocs.ipy

 calling_r_example.ipynb

 calling_ruby_example.ipynb

 pycon13_ipython.ipynb

 README.md

./.ipynb_checkpoints/

 calling_r_example-checkpoint.ipynb

 calling_ruby_example-checkpoint.ipynb

 pycon13_ipython-checkpoint.ipynb

./data/

 CapeTown_2009_Temperatures.csv

 READEME.md

./output/

 .DS_Store

 pycon13_ipython.html

 pycon13_ipython.slides.html

 pycon13_ipython_complete.pdf

 pycon13_ipython_pdf.pdf

./static/

 .DS_Store

 custom.css

 frontpage.docx

 frontpage.pdf

 ip.png

 ip2.png

 matplotlibrc.json

 python-vs-java.jpg

Running shell commands

I now use ipython as my default shell scripting language. lets put the contents of the current directory into

a list. by using the ! before a command indicates that you want to run a system command.

In [20]: filelist = !ls #read the current directory into variable

for x,i in enumerate(filelist):

 print '#',x, '--->', i

Embedding Images

Image released under CC BY-NC-ND 2.5 IN) by Rhul Singh

In [21]: from IPython.display import Image

Image('static/python-vs-java.jpg')

 scistack.png

0 ---> README.md

1 ---> builddocs.ipy

2 ---> calling_r_example.ipynb

3 ---> calling_ruby_example.ipynb

4 ---> data

5 ---> output

6 ---> pycon13_ipython.ipynb

7 ---> static

Out[21]:

http://askrahul.com/blog/from-funny-moments-to-emails-to-sms/python-vs-java/
http://creativecommons.org/licenses/by-nc-nd/2.5/in/
http://askrahul.com/blog/about-rahul-singhs-blog/

Adding YouYube videos

I am making the video small as it does not embed into the final output pdf.

In [22]: from IPython.display import YouTubeVideo

YouTubeVideo('iwVvqwLDsJo', width=200, height=200)

Plotting with Matplotlib

matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy

formats and interactive environments across platforms. matplotlib can be used in python scripts, the python

and ipython shell, web application servers, and six graphical user interface toolkits.

In [23]: from matplotlib.pylab import xkcd

#xkcd()

CustomPlot()

from numpy import *

#generate some data

n = array([0,1,2,3,4,5])

xx = np.linspace(-0.75, 1., 100)

x = linspace(0, 5, 10)

y = x ** 2

fig, axes = plt.subplots(1, 4, figsize=(12,3))

axes[0].scatter(xx, xx + 0.25*randn(len(xx)))

axes[0].set_title('scatter')

axes[1].step(n, n**2, lw=2)

axes[1].set_title('step')

axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5)

axes[2].set_title('bar')

axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5);

axes[3].set_title('fill')

for i in range(4):

 axes[i].set_xlabel('x')

axes[0].set_ylabel('y')

show()

Out[22]:

Combined plots

In [24]: CustomPlot()

font_size = 20

figsize(11.5, 6)

fig, ax = plt.subplots()

ax.plot(xx, xx**2, xx, xx**3)

ax.set_title(r"Combined Plot $y=x^2$ vs. $y=x^3$", fontsize = font_size)

ax.set_xlabel(r'x', fontsize = font_size)

ax.set_ylabel(r'y', fontsize = font_size)

fig.tight_layout()

inset

inset_ax = fig.add_axes([0.29, 0.45, 0.35, 0.35]) # X, Y, width, height

inset_ax.plot(xx, xx**2, xx, xx**3)

inset_ax.set_title(r'zoom $x=0$',fontsize=font_size)

set axis range

inset_ax.set_xlim(-.2, .2)

inset_ax.set_ylim(-.005, .01)

set axis tick locations

inset_ax.set_yticks([0, 0.005, 0.01])

inset_ax.set_xticks([-0.1,0,.1]);

show()

Adding text to a plot

In [25]: CustomPlot()

figsize(11.5, 6)

font_size = 20

fig, ax = plt.subplots()

ax.plot(xx, xx**2, xx, xx**3)

ax.set_xlabel(r'x', fontsize = font_size)

ax.set_ylabel(r'y', fontsize = font_size)

ax.set_title(r"Adding Text $y=x^2$ vs. $y=x^3$", fontsize = font_size)

ax.text(0.15, 0.2, r"$y=x^2$", fontsize=font_size, color="blue")

ax.text(0.65, 0.1, r"$y=x^3$", fontsize=font_size, color="green");

xkcd style plotting

matplolib v1.3 now includes a setting to make plots resemple xkcd styles.

In [26]: from matplotlib import pyplot as plt

import numpy as np

plt.xkcd()

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

plt.xticks([])

plt.yticks([])

ax.set_ylim([-30, 10])

data = np.ones(100)

data[70:] -= np.arange(30)

http://matplotlib.org/xkcd/examples/showcase/xkcd.html

plt.annotate(

 'THE DAY I REALIZED\nI COULD COOK BACON\nWHENEVER I WANTED',

 xy=(70, 1), arrowprops=dict(arrowstyle='->'), xytext=(15, -10))

plt.plot(data)

plt.xlabel('time')

plt.ylabel('my overall health')

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.bar([-0.125, 1.0-0.125], [0, 100], 0.25)

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')

ax.set_xticks([0, 1])

ax.set_xlim([-0.5, 1.5])

ax.set_ylim([0, 110])

ax.set_xticklabels(['CONFIRMED BY\nEXPERIMENT', 'REFUTED BY\nEXPERIMENT'])

plt.yticks([])

plt.title("CLAIMS OF SUPERNATURAL POWERS")

plt.show()

Symbolic math using SymPy

SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra

system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily

extensible. SymPy is written entirely in Python and does not require any external libraries.

In [27]: from sympy import *

init_printing(use_latex=True)

x = Symbol('x')

y = Symbol('y')

series(exp(x), x, 1, 5)

In [28]: eq = ((x+y)**2 * (x+1))

eq

In [29]: expand(eq)

In [30]: a = 1/x + (x*sin(x) - 1)/x

a

In [31]: simplify(a)

Data analysis using the Pandas library

pandas is a Python package providing fast, flexible, and expressive data structures designed to make

working with “relational” or “labeled” data both easy and intuitive

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle

Out[27]:
e + ex + e + e + e + ()

1

2
x2 1

6
x3 1

24
x4 x5

Out[28]: (x + 1)(x + y)
2

Out[29]: + 2 y + + x + 2xy +x3 x2 x2 y2 y2

Out[30]:
+

x sin (x) − 1

x

1

x

Out[31]: sin (x)

the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering.

For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built
on top of NumPy and is intended to integrate well within a scientific computing environment with many
other 3rd party libraries.

In [32]: from pandas import DataFrame, read_csv

Cape_Weather = DataFrame(read_csv('data/CapeTown_2009_Temperatures.csv'))

Cape_Weather.head()

In [33]: CustomPlot()

figsize(11.5, 6)

font_size = 20

title('Cape Town temparature(2009)',fontsize = font_size)

xlabel('Day number',fontsize = font_size)

ylabel(r'Temperature [$^\circ C$] ',fontsize = font_size)

Cape_Weather.high.plot()

Cape_Weather.low.plot()

show()

In [34]: CustomPlot()

figsize(11.5, 6)

Out[32]:

high low radiation

0 25 16 29.0

1 23 15 25.7

2 25 15 21.5

3 26 16 15.2

4 26 17 10.8

font_size = 20

title('Mean solar radiation(horisontal plane)', fontsize=font_size)

xlabel('Month Number', fontsize = font_size)

ylabel(r'$MJ / day / m^2$',fontsize = font_size)

Cape_Weather.radiation.plot()

show()

In [35]: # lets look at a proxy for heating degree and cooling degree days

level = 25

print Cape_Weather[Cape_Weather['high'] > level].count()

print Cape_Weather[Cape_Weather['high'] <= level].count()

In [36]: # Basic descriptive statistics

print Cape_Weather['high'].describe()

high 59

low 59

radiation 5

dtype: int64

high 306

low 306

radiation 7

dtype: int64

count 365.000000

mean 21.545205

std 4.764943

min 12.000000

25% 18.000000

50% 21.000000

75% 25.000000

max 36.000000

dtype: float64

In [37]: CustomPlot()

figsize(11.5, 6)

font_size = 20

title('Cape Town temperature distribution', fontsize=font_size)

ylabel('Day count',fontsize = font_size)

xlabel(r'Temperature [$^\circ C $] ',fontsize = font_size)

Cape_Weather['high'].hist(bins=6)

show()

Typesetting

Latex

Latex is rendered using the mathjax javascript library

In [38]: from IPython.display import Math

Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')

In [39]: from IPython.display import Latex

Latex(r"""\begin{eqnarray}

\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}

 & = \frac{4\pi}{c}\vec{\mathbf{j}} \\

\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\

\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial

t} & = \vec{\mathbf{0}} \\

\nabla \cdot \vec{\mathbf{B}} & = 0

\end{eqnarray}""")

Out[38]:
F(k) = f (x) dx∫

∞

−∞

e2πik

Out[39]:

∇ × −B⃗ 1

c

∂E⃗

∂t
=

4π

c
j ⃗

Using the Python Debugger - pdb

In [40]: %pdb on

In [41]: foo = 1

bar = 'a'

print foo+bar

Loading Code Snippets

In [1]: %load http://pastebin.com/raw.php?i=mGiV1FwY

In [5]: CustomPlot()

font_size = 20

figsize(11.5, 6)

t = arange(0.0, 2.0, 0.01)

s = sin(2*pi*t)

plot(t, s)

xlabel(r'time (s)', fontsize=font_size)

ylabel('voltage (mV)', fontsize=font_size)

∇ × −B⃗
c ∂t

∇ ⋅ E⃗

∇ × +E⃗ 1

c

∂B⃗

∂t

∇ ⋅ B⃗

=
c

j ⃗

= 4πρ

= 0⃗

= 0

Automatic pdb calling has been turned ON

TypeError Traceback (most recent call last)

<ipython-input-41-08464a413a31> in <module>()

 1 foo = 1

 2 bar = 'a'

----> 3 print foo+bar

TypeError: unsupported operand type(s) for +: 'int' and 'str'

> <ipython-input-41-08464a413a31>(3)<module>()

 1 foo = 1

 2 bar = 'a'

----> 3 print foo+bar

ipdb> q

title('Voltage', fontsize=font_size)

grid(True)

It's in a browser, can it do Javascript?

source

In [6]: from IPython.display import HTML

input_form = """

<div style="background-color:gainsboro; border:solid black; width:630px; padding:20px;">

Variable Name: <input type="text" id="var_name" value="var">

Variable Value: <input type="text" id="var_value" value="val">

<button onclick="set_value()">Set Value</button>

</div>

"""

javascript = """

<script type="text/Javascript">

 function set_value(){

 var var_name = document.getElementById('var_name').value;

 var var_value = document.getElementById('var_value').value;

 var command = var_name + " = '" + var_value + "'";

 console.log("Executing Command: " + command);

 var kernel = IPython.notebook.kernel;

 kernel.execute(command);

 }

</script>

"""

HTML(input_form + javascript)

Out[6]:

http://jakevdp.github.io/blog/2013/06/01/ipython-notebook-javascript-python-communication/

In [7]: qwerty

Saving a Gist

It is possible to save spesific lines of code to a GitHub gist. This is achieved with the pastebin magic as

demonstrated below.

In [8]: %pastebin "cell one" 0-10

Connect to this kernel remotely

Using the %connect_info magic you can obtain the connection info to connect to this workbook from

another ipython console or qtconsole using :

ipython qtconsole --existing

In [9]: %connect_info

Variable Name: var

Variable Value: val

Set Value

Out[7]: 'foo'

Out[8]: u'https://gist.github.com/6651917'

{

 "stdin_port": 55291,

 "ip": "127.0.0.1",

 "control_port": 55292,

 "hb_port": 55293,

 "signature_scheme": "hmac-sha256",

 "key": "dcc990e7-2eeb-4c41-8099-a25cf2308be4",

 "shell_port": 55289,

 "transport": "tcp",

 "iopub_port": 55290

}

Paste the above JSON into a file, and connect with:

 $> ipython <app> --existing <file>

or, if you are local, you can connect with just:

 $> ipython <app> --existing kernel-5db61520-8ecd-492b-9afb-5c8e65985a19.json

or even just:

 $> ipython <app> --existing

if this is the most recent IPython session you have started.

Publishing your Work

Newly added in the 1.0 release of IPython is the nbconvert tool, which allows you to convert an .ipynb

notebook document file into various static formats.

Currently, nbconvert is provided as a command line tool, run as a script using IPython. A direct export

capability from within the IPython Notebook web app is planned.

The command-line syntax to run the nbconvert script is: MORE OPTIONS

ipython nbconvert --to FORMAT notebook.ipynb

This page is converted and published to the following formats using this tool:

HTML
PDF (the PDF is created using wkhtml2pdf that takes the html file as an input)
LATEX
Reveal.js slideshow

Building(exporting) from within the notebook

You can even call the build script from the notebook. The script will convert this page to an html and slide

file. It will also compile to PDF and stitch a front page to it. Some of the last text in the building process

wont appear as this notebook is being updated as it is being compile. Maybe not the best idea but saved a

lot of time...

In []: !ipython builddocs.ipy;

print "Done"

File links to exported content

The links below can be used to verify the output from the convertion process. This saved me a lot of time

as I could just click below and have a look at the files without exiting the notebook.

In [12]: FileLinks('output/')

Links to some interesting notebooks

The following notebooks showcase multiple aspects of IPython, from its basic use to more advanced

Out[12]: output/

 .DS_Store

 pycon13_ipython.html

 pycon13_ipython.slides.html

 pycon13_ipython_complete.pdf

 pycon13_ipython_pdf.pdf

http://ipython.org/ipython-doc/rel-1.0.0/interactive/nbconvert.html
file:///Users/tobie/zapycon2013_ipython_science/src/files/output/.DS_Store
file:///Users/tobie/zapycon2013_ipython_science/src/files/output/pycon13_ipython.html
file:///Users/tobie/zapycon2013_ipython_science/src/files/output/pycon13_ipython.slides.html
file:///Users/tobie/zapycon2013_ipython_science/src/files/output/pycon13_ipython_complete.pdf
file:///Users/tobie/zapycon2013_ipython_science/src/files/output/pycon13_ipython_pdf.pdf

scenarios. They introduce you to the use of the Notebook and also cover aspects of IPython that are

available in other clients, such as the cell magics for multi-language integration or our extended display

protocol.

For beginners, we recommend that you start with the 5-part series that introduces the system, and later

read others as the topics interest you.

Once you are familiar with the notebook system, we encourage you to visit our gallery where you will find

many more examples that cover areas from basic Python programming to advanced topics in scientific

computing.

Animations Using clear_output
Cell Magics
Custom Display Logic
Cython Magics
Data Publication API
Frontend-Kernel Model
Octave Magic
Part 1 - Running Code
Part 2 - Basic Output
Part 3 - Pylab and Matplotlib
Part 4 - Markdown Cells
Part 5 - Rich Display System
Progress Bars
R Magics
Script Magics
SymPy Examples
Trapezoid Rule
Typesetting Math Using MathJax

Sources / References

Since this talk focussed on the life cycle of the analysis to publication many of the code examples were

taken from their respective websites. If I have not given credit at any point please let me know and I will

make sure that the work is updated

1. SciPy
2. Fernando Pérez, Brian E. Granger, IPython: A System for Interactive Scientific Computing,

omputing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org3

3. Hunter, J. D.Matplotlib: A 2D graphics environment
4. Sympy
5. Bayesian Methods for Hackers, the use of the custom css and also the custom matplotlib skin
6. Custom Stylesheets and here

Embedding the final presentation into the notebook!

The build script generates a slideshow version of this notebook and saves it in the output directory. You

can also use normal HTML in a cell and using the iframe tag the slideshow was embedded to a cell

below. Since this document has not been build yet...we are editing it now, the slideshow below is linked to

the previous saved version of this notebook. So if we did not make to many changes it should be pretty

close to being the same thing.

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Animations%20Using%20clear_output.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Cell%20Magics.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Custom%20Display%20Logic.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Cython%20Magics.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Data%20Publication%20API.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Frontend-Kernel%20Model.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Octave%20Magic.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Part%201%20-%20Running%20Code.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Part%202%20-%20Basic%20Output.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Part%203%20-%20Pylab%20and%20Matplotlib.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Part%204%20-%20Markdown%20Cells.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Progress%20Bars.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/R%20Magics.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Script%20Magics.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/SymPy%20Examples.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Trapezoid%20Rule.ipynb
http://nbviewer.ipython.org/url/github.com/ipython/ipython/raw/master/examples/notebooks/Typesetting%20Math%20Using%20MathJax.ipynb
http://www.scipy.org/
http://matplotlib.org/
file:///Users/tobie/zapycon2013_ipython_science/src/pycon13_ipython.html
http://nbviewer.ipython.org/urls/raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter1_Introduction/Chapter1_Introduction.ipynb
http://python.6.x6.nabble.com/Style-Rules-for-Notebook-td4985853.html
http://zulko.wordpress.com/2013/04/14/customize-your-ipython-notebook-with-css/

