Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

456 lines (384 sloc) 14.643 kB
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
* Slabs memory allocation, based on powers-of-N. Slabs are up to 1MB in size
* and are divided into chunks. The chunk sizes start off at the size of the
* "item" structure plus space for a small key and value. They increase by
* a multiplier factor from there, up to half the maximum slab size. The last
* slab size is always 1MB, since that's the maximum item size allowed by the
* memcached protocol.
*/
#include "memcached.h"
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
/* powers-of-N allocation structures */
typedef struct {
unsigned int size; /* sizes of items */
unsigned int perslab; /* how many items per slab */
void **slots; /* list of item ptrs */
unsigned int sl_total; /* size of previous array */
unsigned int sl_curr; /* first free slot */
void *end_page_ptr; /* pointer to next free item at end of page, or 0 */
unsigned int end_page_free; /* number of items remaining at end of last alloced page */
unsigned int slabs; /* how many slabs were allocated for this class */
void **slab_list; /* array of slab pointers */
unsigned int list_size; /* size of prev array */
unsigned int killing; /* index+1 of dying slab, or zero if none */
size_t requested; /* The number of requested bytes */
} slabclass_t;
static slabclass_t slabclass[MAX_NUMBER_OF_SLAB_CLASSES];
static size_t mem_limit = 0;
static size_t mem_malloced = 0;
static int power_largest;
static void *mem_base = NULL;
static void *mem_current = NULL;
static size_t mem_avail = 0;
/**
* Access to the slab allocator is protected by this lock
*/
static pthread_mutex_t slabs_lock = PTHREAD_MUTEX_INITIALIZER;
/*
* Forward Declarations
*/
static int do_slabs_newslab(const unsigned int id);
static void *memory_allocate(size_t size);
#ifndef DONT_PREALLOC_SLABS
/* Preallocate as many slab pages as possible (called from slabs_init)
on start-up, so users don't get confused out-of-memory errors when
they do have free (in-slab) space, but no space to make new slabs.
if maxslabs is 18 (POWER_LARGEST - POWER_SMALLEST + 1), then all
slab types can be made. if max memory is less than 18 MB, only the
smaller ones will be made. */
static void slabs_preallocate (const unsigned int maxslabs);
#endif
/*
* Figures out which slab class (chunk size) is required to store an item of
* a given size.
*
* Given object size, return id to use when allocating/freeing memory for object
* 0 means error: can't store such a large object
*/
unsigned int slabs_clsid(const size_t size) {
int res = POWER_SMALLEST;
if (size == 0)
return 0;
while (size > slabclass[res].size)
if (res++ == power_largest) /* won't fit in the biggest slab */
return 0;
return res;
}
/**
* Determines the chunk sizes and initializes the slab class descriptors
* accordingly.
*/
void slabs_init(const size_t limit, const double factor, const bool prealloc) {
int i = POWER_SMALLEST - 1;
unsigned int size = sizeof(item) + settings.chunk_size;
mem_limit = limit;
if (prealloc) {
/* Allocate everything in a big chunk with malloc */
mem_base = malloc(mem_limit);
if (mem_base != NULL) {
mem_current = mem_base;
mem_avail = mem_limit;
} else {
fprintf(stderr, "Warning: Failed to allocate requested memory in"
" one large chunk.\nWill allocate in smaller chunks\n");
}
}
memset(slabclass, 0, sizeof(slabclass));
while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) {
/* Make sure items are always n-byte aligned */
if (size % CHUNK_ALIGN_BYTES)
size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
slabclass[i].size = size;
slabclass[i].perslab = settings.item_size_max / slabclass[i].size;
size *= factor;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
}
power_largest = i;
slabclass[power_largest].size = settings.item_size_max;
slabclass[power_largest].perslab = 1;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
/* for the test suite: faking of how much we've already malloc'd */
{
char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC");
if (t_initial_malloc) {
mem_malloced = (size_t)atol(t_initial_malloc);
}
}
#ifndef DONT_PREALLOC_SLABS
{
char *pre_alloc = getenv("T_MEMD_SLABS_ALLOC");
if (pre_alloc == NULL || atoi(pre_alloc) != 0) {
slabs_preallocate(power_largest);
}
}
#endif
}
#ifndef DONT_PREALLOC_SLABS
static void slabs_preallocate (const unsigned int maxslabs) {
int i;
unsigned int prealloc = 0;
/* pre-allocate a 1MB slab in every size class so people don't get
confused by non-intuitive "SERVER_ERROR out of memory"
messages. this is the most common question on the mailing
list. if you really don't want this, you can rebuild without
these three lines. */
for (i = POWER_SMALLEST; i <= POWER_LARGEST; i++) {
if (++prealloc > maxslabs)
return;
do_slabs_newslab(i);
}
}
#endif
static int grow_slab_list (const unsigned int id) {
slabclass_t *p = &slabclass[id];
if (p->slabs == p->list_size) {
size_t new_size = (p->list_size != 0) ? p->list_size * 2 : 16;
void *new_list = realloc(p->slab_list, new_size * sizeof(void *));
if (new_list == 0) return 0;
p->list_size = new_size;
p->slab_list = new_list;
}
return 1;
}
static int do_slabs_newslab(const unsigned int id) {
slabclass_t *p = &slabclass[id];
int len = p->size * p->perslab;
char *ptr;
if ((mem_limit && mem_malloced + len > mem_limit && p->slabs > 0) ||
(grow_slab_list(id) == 0) ||
((ptr = memory_allocate((size_t)len)) == 0)) {
MEMCACHED_SLABS_SLABCLASS_ALLOCATE_FAILED(id);
return 0;
}
memset(ptr, 0, (size_t)len);
p->end_page_ptr = ptr;
p->end_page_free = p->perslab;
p->slab_list[p->slabs++] = ptr;
mem_malloced += len;
MEMCACHED_SLABS_SLABCLASS_ALLOCATE(id);
return 1;
}
/*@null@*/
static void *do_slabs_alloc(const size_t size, unsigned int id) {
slabclass_t *p;
void *ret = NULL;
if (id < POWER_SMALLEST || id > power_largest) {
MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0);
return NULL;
}
p = &slabclass[id];
assert(p->sl_curr == 0 || ((item *)p->slots[p->sl_curr - 1])->slabs_clsid == 0);
#ifdef USE_SYSTEM_MALLOC
if (mem_limit && mem_malloced + size > mem_limit) {
MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
return 0;
}
mem_malloced += size;
ret = malloc(size);
MEMCACHED_SLABS_ALLOCATE(size, id, 0, ret);
return ret;
#endif
/* fail unless we have space at the end of a recently allocated page,
we have something on our freelist, or we could allocate a new page */
if (! (p->end_page_ptr != 0 || p->sl_curr != 0 ||
do_slabs_newslab(id) != 0)) {
/* We don't have more memory available */
ret = NULL;
} else if (p->sl_curr != 0) {
/* return off our freelist */
ret = p->slots[--p->sl_curr];
} else {
/* if we recently allocated a whole page, return from that */
assert(p->end_page_ptr != NULL);
ret = p->end_page_ptr;
if (--p->end_page_free != 0) {
p->end_page_ptr = ((caddr_t)p->end_page_ptr) + p->size;
} else {
p->end_page_ptr = 0;
}
}
if (ret) {
p->requested += size;
MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret);
} else {
MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
}
return ret;
}
static void do_slabs_free(void *ptr, const size_t size, unsigned int id) {
slabclass_t *p;
assert(((item *)ptr)->slabs_clsid == 0);
assert(id >= POWER_SMALLEST && id <= power_largest);
if (id < POWER_SMALLEST || id > power_largest)
return;
MEMCACHED_SLABS_FREE(size, id, ptr);
p = &slabclass[id];
#ifdef USE_SYSTEM_MALLOC
mem_malloced -= size;
free(ptr);
return;
#endif
if (p->sl_curr == p->sl_total) { /* need more space on the free list */
int new_size = (p->sl_total != 0) ? p->sl_total * 2 : 16; /* 16 is arbitrary */
void **new_slots = realloc(p->slots, new_size * sizeof(void *));
if (new_slots == 0)
return;
p->slots = new_slots;
p->sl_total = new_size;
}
p->slots[p->sl_curr++] = ptr;
p->requested -= size;
return;
}
static int nz_strcmp(int nzlength, const char *nz, const char *z) {
int zlength=strlen(z);
return (zlength == nzlength) && (strncmp(nz, z, zlength) == 0) ? 0 : -1;
}
bool get_stats(const char *stat_type, int nkey, ADD_STAT add_stats, void *c) {
bool ret = true;
if (add_stats != NULL) {
if (!stat_type) {
/* prepare general statistics for the engine */
STATS_LOCK();
APPEND_STAT("bytes", "%llu", (unsigned long long)stats.curr_bytes);
APPEND_STAT("curr_items", "%u", stats.curr_items);
APPEND_STAT("total_items", "%u", stats.total_items);
APPEND_STAT("evictions", "%llu",
(unsigned long long)stats.evictions);
APPEND_STAT("reclaimed", "%llu",
(unsigned long long)stats.reclaimed);
STATS_UNLOCK();
} else if (nz_strcmp(nkey, stat_type, "items") == 0) {
item_stats(add_stats, c);
} else if (nz_strcmp(nkey, stat_type, "slabs") == 0) {
slabs_stats(add_stats, c);
} else if (nz_strcmp(nkey, stat_type, "sizes") == 0) {
item_stats_sizes(add_stats, c);
} else {
ret = false;
}
} else {
ret = false;
}
return ret;
}
/*@null@*/
static void do_slabs_stats(ADD_STAT add_stats, void *c) {
int i, total;
/* Get the per-thread stats which contain some interesting aggregates */
struct thread_stats thread_stats;
threadlocal_stats_aggregate(&thread_stats);
total = 0;
for(i = POWER_SMALLEST; i <= power_largest; i++) {
slabclass_t *p = &slabclass[i];
if (p->slabs != 0) {
uint32_t perslab, slabs;
slabs = p->slabs;
perslab = p->perslab;
char key_str[STAT_KEY_LEN];
char val_str[STAT_VAL_LEN];
int klen = 0, vlen = 0;
APPEND_NUM_STAT(i, "chunk_size", "%u", p->size);
APPEND_NUM_STAT(i, "chunks_per_page", "%u", perslab);
APPEND_NUM_STAT(i, "total_pages", "%u", slabs);
APPEND_NUM_STAT(i, "total_chunks", "%u", slabs * perslab);
APPEND_NUM_STAT(i, "used_chunks", "%u",
slabs*perslab - p->sl_curr - p->end_page_free);
APPEND_NUM_STAT(i, "free_chunks", "%u", p->sl_curr);
APPEND_NUM_STAT(i, "free_chunks_end", "%u", p->end_page_free);
APPEND_NUM_STAT(i, "mem_requested", "%llu",
(unsigned long long)p->requested);
APPEND_NUM_STAT(i, "get_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].get_hits);
APPEND_NUM_STAT(i, "cmd_set", "%llu",
(unsigned long long)thread_stats.slab_stats[i].set_cmds);
APPEND_NUM_STAT(i, "delete_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].delete_hits);
APPEND_NUM_STAT(i, "incr_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].incr_hits);
APPEND_NUM_STAT(i, "decr_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].decr_hits);
APPEND_NUM_STAT(i, "cas_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].cas_hits);
APPEND_NUM_STAT(i, "cas_badval", "%llu",
(unsigned long long)thread_stats.slab_stats[i].cas_badval);
APPEND_NUM_STAT(i, "touch_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].touch_hits);
total++;
}
}
/* add overall slab stats and append terminator */
APPEND_STAT("active_slabs", "%d", total);
APPEND_STAT("total_malloced", "%llu", (unsigned long long)mem_malloced);
add_stats(NULL, 0, NULL, 0, c);
}
static void *memory_allocate(size_t size) {
void *ret;
if (mem_base == NULL) {
/* We are not using a preallocated large memory chunk */
ret = malloc(size);
} else {
ret = mem_current;
if (size > mem_avail) {
return NULL;
}
/* mem_current pointer _must_ be aligned!!! */
if (size % CHUNK_ALIGN_BYTES) {
size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
}
mem_current = ((char*)mem_current) + size;
if (size < mem_avail) {
mem_avail -= size;
} else {
mem_avail = 0;
}
}
return ret;
}
void *slabs_alloc(size_t size, unsigned int id) {
void *ret;
pthread_mutex_lock(&slabs_lock);
ret = do_slabs_alloc(size, id);
pthread_mutex_unlock(&slabs_lock);
return ret;
}
void slabs_free(void *ptr, size_t size, unsigned int id) {
pthread_mutex_lock(&slabs_lock);
do_slabs_free(ptr, size, id);
pthread_mutex_unlock(&slabs_lock);
}
void slabs_stats(ADD_STAT add_stats, void *c) {
pthread_mutex_lock(&slabs_lock);
do_slabs_stats(add_stats, c);
pthread_mutex_unlock(&slabs_lock);
}
void slabs_adjust_mem_requested(unsigned int id, size_t old, size_t ntotal)
{
pthread_mutex_lock(&slabs_lock);
slabclass_t *p;
if (id < POWER_SMALLEST || id > power_largest) {
fprintf(stderr, "Internal error! Invalid slab class\n");
abort();
}
p = &slabclass[id];
p->requested = p->requested - old + ntotal;
pthread_mutex_unlock(&slabs_lock);
}
Jump to Line
Something went wrong with that request. Please try again.