
/***\
* *
* 6. MECHANICAL/HARDWARE *
* *
***/

/** \def KINEMATICS_STRAIGHT KINEMATICS_COREXY

 This defines the type of kinematics your printer uses. That's essential!

 Valid values (see dda_kinematics.h):

 KINEMATICS_STRAIGHT
 Motors move axis directions directly. This is the
 traditional type, found in many printers, including
 Mendel, Prusa i3, Mendel90, Ormerod, Mantis.

 KINEMATICS_COREXY
 A bot using CoreXY kinematics. Typical for CoreXY
 are long and crossing toothed belts and a print head
 moving on the X-Y-plane.
*/
#define KINEMATICS_STRAIGHT
//#define KINEMATICS_COREXY

/** \def STEPS_PER_M_X STEPS_PER_M_Y STEPS_PER_M_Z STEPS_PER_M_E
 Steps per meter (= steps per mm * 1000), calculate these values
 appropriate for your machine.

 All numbers are integers, so no decimal point, please :-)

 Valid range: 20 to 4'0960'000 (0.02 to 40960 steps/mm)
*/
#define STEPS_PER_M_X 87489
#define STEPS_PER_M_Y 87489
#define STEPS_PER_M_Z 1280000
#define STEPS_PER_M_E 1600000

/** \def MAXIMUM_FEEDRATE_X MAXIMUM_FEEDRATE_Y MAXIMUM_FEEDRATE_Z
MAXIMUM_FEEDRATE_E
 Used for G0 rapid moves and as a cap for all other feedrates.
*/
#define MAXIMUM_FEEDRATE_X 6000
#define MAXIMUM_FEEDRATE_Y 6000
#define MAXIMUM_FEEDRATE_Z 200
#define MAXIMUM_FEEDRATE_E 2000

/** \def SEARCH_FEEDRATE_X SEARCH_FEEDRATE_Y SEARCH_FEEDRATE_Z
 Used when doing precision endstop search and as default feedrate. No

 SEARCH_FEEDRATE_E, as E can't be searched.
*/
#define SEARCH_FEEDRATE_X 200
#define SEARCH_FEEDRATE_Y 200
#define SEARCH_FEEDRATE_Z 50

/** \def ENDSTOP_CLEARANCE_X ENDSTOP_CLEARANCE_Y ENDSTOP_CLEARANCE_Z

 When hitting an endstop, Teacup properly decelerates instead of doing an
 aprupt stop to save your mechanics. Ineviteably, this means it overshoots
 the endstop trigger point by some distance.

 To deal with this, Teacup adapts homing movement speeds to what your
 endstops can deal with. The higher the allowed acceleration (= deceleration,
 see #define ACCELERATION) and the more clearance the endstop comes with,
 the faster Teacup will do homing movements.

 Set here how many micrometers (mm * 1000) your endstop allows the carriage
 to overshoot the trigger point. Typically 1000 or 2000 for mechanical
 endstops, more for optical ones. You can set it to zero, in which case
 SEARCH_FEEDRATE_{XYZ} is used, but expect very slow homing movements.

 Units: micrometers
 Sane values: 0 to 20000 (0 to 20 mm)
 Valid range: 0 to 1000000
*/
#define ENDSTOP_CLEARANCE_X 1000
#define ENDSTOP_CLEARANCE_Y 1000
#define ENDSTOP_CLEARANCE_Z 100

/** \def X_MIN X_MAX Y_MIN Y_MAX Z_MIN Z_MAX
 Soft axis limits. Define them to your machine's size relative to what your
 G-code considers to be the origin (typically the bed's center or the bed's
 front left corner).

 Note that relocating the origin at runtime with G92 will also relocate these
 limits.

 Not defining them at all will disable limits checking and make the binary
 about 250 bytes smaller. Enabling only some of them is perfectly fine.

 Units: millimeters
 Sane values: according to printer build room size
 Valid range: -1000.0 to 1000.0
*/
//#define X_MIN 0.0
//#define X_MAX 200.0

#define Y_MIN 0
#define Y_MAX 200

//#define Z_MIN 0.0
//#define Z_MAX 140.0

/** \def E_ABSOLUTE
 Some G-code creators produce relative length commands for the extruder,
 others absolute ones. G-code using absolute lengths can be recognized when
 there are G92 E0 commands from time to time. If you have G92 E0 in your
 G-code, define this flag.

 This is the startup default and can be changed with M82/M83 while running.
*/
#define E_ABSOLUTE

/** \def HOMING_OPT
 Options for homing movements a user should be able to choose from in configtool. All
 commented out.
*/
//#define HOMING_OPT none
//#define HOMING_OPT x_negative
//#define HOMING_OPT x_positive
//#define HOMING_OPT y_negative
//#define HOMING_OPT y_positive
//#define HOMING_OPT z_negative
//#define HOMING_OPT z_positive

/** \def DEFINE_HOMING
 Order (and number) of homing movements. Up to 4 homing steps are allowed.
 If you don't need even one axis just DEFINE_HOMING(none).
*/
DEFINE_HOMING(x_negative, y_positive, z_negative)

/** \def ACCELERATION_REPRAP ACCELERATION_RAMPING ACCELERATION_TEMPORAL
 Choose optionally one of ACCELERATION_REPRAP, ACCELERATION_RAMPING or
 ACCELERATION_TEMPORAL. With none of them defined, movements are done
 without acceleration. Recommended is ACCELERATION_RAMPING.
*/
//#define ACCELERATION_REPRAP
#define ACCELERATION_RAMPING
//#define ACCELERATION_TEMPORAL

/** \def ACCELERATION
 How fast to accelerate when using ACCELERATION_RAMPING. Start with 10 for
 milling (high precision) or 1000 for printing.

 Units: mm/s^2
 Useful range: 1 to 10'000
*/
#define ACCELERATION 1000

/** \def LOOKAHEAD
 Define this to enable look-ahead during *ramping* acceleration to smoothly
 transition between moves instead of performing a dead stop every move.
 Enabling look-ahead requires about 3600 bytes of flash memory.
*/
#define LOOKAHEAD

/** \def MAX_JERK_X MAX_JERK_Y MAX_JERK_Z MAX_JERK_E
 When performing look-ahead, we need to decide what an acceptable jerk to the
 mechanics is. Look-ahead attempts to instantly change direction at movement
 crossings, which means instant changes in the speed of the axes participating
 in the movement. Define here how big the speed bumps on each of the axes is
 allowed to be.

 If you want a full stop before and after moving a specific axis, define
 MAX_JERK of this axis to 0. This is often wanted for the Z axis. If you want
 to ignore jerk on an axis, define it to twice the maximum feedrate of this
 axis.

 Having these values too low results in more than neccessary slowdown at
 movement crossings, but is otherwise harmless. Too high values can result
 in stepper motors suddenly stalling. If angles between movements in your
 G-code are small and your printer runs through entire curves full speed,
 there's no point in raising the values.

 Units: mm/min
 Sane values: 0 to 400
 Valid range: 0 to 65535
*/
#define MAX_JERK_X 200
#define MAX_JERK_Y 200
#define MAX_JERK_Z 20
#define MAX_JERK_E 200

/** \def BED_LEVELING
 Define this to enable dynamic bed leveling using the G29 command and
 3-point planar bed mapping. Allows the printer to compensate dynamically
 for a print bed which is flat but is not quite level.
 Enabling bed-leveling requires about 2400 bytes of flash memory.
*/
//#define BED_LEVELING

/***\
* *
* 7. MISCELLANEOUS OPTIONS *
* *
***/

/** \def USE_INTERNAL_PULLUPS

 Most controller chips feature internal pullup resistors on their input pins,
 which get used for endstops by turning on this switch. Don't turn it on when
 using endstops which need no pull resistor, e.g. optical endstops, because
 pull resistors are counterproductive there.

 One can't use USE_INTERNAL_PULLUPS and USE_INTERNAL_PULLDOWNS at the same
 time, of course.
*/
//#define USE_INTERNAL_PULLUPS

/** \def USE_INTERNAL_PULLDOWNS

 Some controller chips feature internal pulldown resistors on their input
 pins, which get used for endstops by turning on this switch. Don't turn it
 on when using endstops which need no pull resistor, e.g. optical endstops,
 because pull resistors are counterproductive there.

 One can't use USE_INTERNAL_PULLDOWNS and USE_INTERNAL_PULLUPS at the same
 time, of course.
*/
//#define USE_INTERNAL_PULLDOWNS

/** \def Z_AUTODISABLE
 Automatically disable Z axis when not in use. This is useful for printers
 with a self-locking Z axis, e.g. the various Mendel derivates.

 Other printers have a heavy Z axis or a not self-locking spindle. In that
 case you should not activate this.

 This option has no effect on controllers with a common stepper enable pin.
*/
#define Z_AUTODISABLE

/** \def TEMP_HYSTERESIS
 Actual temperature must be target +/- this hysteresis before target
 temperature is considered to be achieved. Also, BANG_BANG tries to stay
 within half of this hysteresis.

 Unit: degree Celsius
*/
#define TEMP_HYSTERESIS 10

/** \def TEMP_RESIDENCY_TIME
 Actual temperature must be close to target (within set temperature
 +- TEMP_HYSTERESIS) for this long before target is achieved (and a M116
 succeeds).

 Unit: seconds
*/

#define TEMP_RESIDENCY_TIME 60

/** \def TEMP_EWMA

 Smooth noisy temperature sensors. Good hardware shouldn't be noisy. Set to
 1000 for unfiltered data (and a 140 bytes smaller binary).

 Instrument Engineer's Handbook, 4th ed, Vol 2 p126 says values of
 50 to 100 are typical. Smaller is smoother but slower adjusting, larger is
 quicker but rougher. If you need to use this, set the PID parameter to zero
 (M132 S0) to make the PID loop insensitive to noise.

 Valid range: 1 to 1000
*/
#define TEMP_EWMA 1000

/** \def REPORT_TARGET_TEMPS
 With this enabled, M105 commands will return the current temperatures along
 with the target temps, separated by a slash: ok T:xxx.x/xxx.x B:xxx.x/xxx.x
 With this disabled, only temps will be returned: ok T:xxx.x B:xxx.x
 Enabling adds 78 bytes to the image.
*/
#define REPORT_TARGET_TEMPS

/** \def HEATER_SANITY_CHECK
 Check if heater responds to changes in target temperature, disable and spit
 errors if not largely untested, please comment in forum if this works, or
 doesn't work for you!
*/
//#define HEATER_SANITY_CHECK

/** \def EECONFIG
 Enable EEPROM configuration storage.

 Enabled by default. Commenting this out makes the binary several hundred
 bytes smaller, so you might want to disable EEPROM storage on small MCUs,
 like the ATmega168.
*/
#define EECONFIG

/** \def BANG_BANG
 Drops PID loop from heater control, reduces code size significantly
 (1300 bytes!).
*/
//#define BANG_BANG

/** \def BANG_BANG_ON
 PWM value for Bang Bang 'on'.
*/
//#define BANG_BANG_ON 200

/** \def BANG_BANG_OFF
 PWM value for Bang Bang 'off'.
*/
//#define BANG_BANG_OFF 45

/** \def MOVEBUFFER_SIZE
 Move buffer size, in number of moves.

 Note that each move takes a fair chunk of ram (107 bytes as of this writing),
 so don't make the buffer too big. However, a larger movebuffer will probably
 help with lots of short consecutive moves, as each move takes a bunch of
 math (hence time) to set up so a longer buffer allows more of the math to
 be done during preceding longer moves.
*/
#define MOVEBUFFER_SIZE 16

/** \def DC_EXTRUDER DC_EXTRUDER_PWM
 If you have a DC motor extruder, configure it as a "heater" above and define
 this value as the index or name. You probably also want to comment out
 E_STEP_PIN and E_DIR_PIN in the Pinouts section above.
*/
//#define DC_EXTRUDER HEATER_motor
//#define DC_EXTRUDER_PWM 180

/** \def USE_WATCHDOG
 Teacup implements a watchdog, which has to be reset every 250ms or it will
 reboot the controller. As rebooting (and letting the GCode sending
 application trying to continue the build with a then different Home point)
 is probably even worse than just hanging, and there is no better restore
 code in place, this is disabled for now.
*/
//#define USE_WATCHDOG

/** \def TH_COUNT
 Temperature history count. This is how many temperature readings to keep in
 order to calculate derivative in PID loop higher values make PID derivative
 term more stable at the expense of reaction time.
*/
#define TH_COUNT 8

/** \def FAST_PWM
 Teacup offers two PWM frequencies, 76(61) Hz and 78000(62500) Hz on a
 20(16) MHz electronics. The slower one is the default, as it's the safer
 choice and reduces MOSFET heating. Drawback is, in a quiet environment you
 might notice the heaters and your power supply humming.

 Uncomment this option if you want to get rid of this humming and can afford
 a hotter MOSFET or want faster PWM for other reasons.

 See also: http://reprap.org/wiki/Gen7_Research#MOSFET_heat_and_PWM
*/
//#define FAST_PWM

/** \def PID_SCALE
 This is the scaling of internally stored PID values. 1024L is a good value.
*/
#define PID_SCALE 1024L

/** \def ENDSTOP_STEPS
 Number of steps to run into the endstops intentionally. As endstops trigger
 false alarm sometimes, Teacup debounces them by counting a number of
 consecutive positives.

 Use 4 or less for reliable endstops, 8 or even more for flaky ones.

 Valid range: 1...255.
*/
#define ENDSTOP_STEPS 4

/** \def CANNED_CYCLE
 G-code commands in this string will be executed over and over again, without
 user interaction or even a serial connection. It's purpose is e.g. for
 exhibitions or when using Teacup for other purposes than printing. You can
 add any G-code supported by Teacup.

 Note: don't miss these newlines (\n) and backslashes (\).
*/
/*
#define CANNED_CYCLE "G1 X100 F3000\n" \
"G4 P500\n" \
"G1 X0\n" \
"G4 P500\n"
*/

