
Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P
Network

Andrew Gold
Delft University of Technology

Delft, The Netherlands
a.w.r.gold@student.tudelft.nl

Abstract— Ranking algorithms in traditional search engines
are powered by enormous training data sets that are metic-
ulously engineered and curated by a centralized entity. De-
centralized peer-to-peer (p2p) networks such as torrenting
applications and Web3 protocols deliberately eschew centralized
databases and computational architectures when designing ser-
vices and features. As such, robust search-and-rank algorithms
designed for such domains must be engineered specifically
for decentralized networks, and must be lightweight enough
to operate on consumer-grade personal devices such as a
smartphone or laptop computer. This thesis introduces G-
Rank, an unsupervised ranking algorithm designed exclusively
for decentralized networks. We demonstrate that accurate,
relevant ranking results can be achieved in fully decentralized
networks without any centralized data aggregation, feature
engineering, or model training. Furthermore, we show that such
results are obtainable with minimal data preprocessing and
computational overhead, and can still return highly relevant
local results even when a user’s device is disconnected from the
network. G-Rank is highly modular in design, is not limited
to categorical data, and can be implemented in a variety of
domains with minimal modification. The results herein show
that unsupervised ranking models designed for decentralized
p2p networks are not only viable, but worthy of further
research.

I. INTRODUCTION

The problem of relevance ranking in information retrieval
problems has been well-studied for decades, solutions for
which have enabled users to query vast swathes of in-
formation on the World Wide Web and retrieve highly
relevant results within milliseconds. Nascent search-and-
rank techniques for web search culminated with PageRank
(SOURCE?) in 1998, directly leading to Google’s ascendant
dominance in the web search domain. All such algorithms,
however, depend upon ever-growing databases of mapped
relations between various information sources and topics,
requiring enormous amounts of computational power to de-
liver lightning-fast results directly to a user’s device. There-
fore, these algorithms all depend upon highly centralized
information architectures with thousands of skilled attendants
dedicated to maintaining and improving system capabilities.

As such, typical ranking algorithms are wholly unsuited
for deployment in decentralized information architectures
such as peer-to-peer (p2p) file sharing networks (e.g. Bit-
Torrent) and Web3 applications. These networks are over-
whelmingly comprised of individual users where the max-
imum computational and storage capacity available to any
search-and-rank algorithm is that of an individual’s desktop

computer or mobile device. The success of many nascent
applications built atop decentralized networks therefore de-
pends upon the efficacy of novel search-and-rank schemes
designed specifically for these domains. These algorithms
must have a serverless architecture, be lightweight enough
to run on a cheap smartphone, and yet be powerful enough
to return highly relevant results to each individual user.

Furthermore, these algorithms must adhere to the ethos
of these decentralized networks, which often weights user
privacy and information security foremost among its tenets.
Any ranking algorithm built in such a domain must therefore
be able to function effectively utilizing data immediately
available to a user of a p2p application, the majority of
which is often the user’s own data. That is not to say that
a ranking algorithm cannot be improved via the sharing of
information between participants in such networks, but rather
that the algorithm must be entirely self-sufficient and self-
contained without any meaningful expectation of obtaining
new information outside of the local device. The concept
of local-first software is not new (SOURCES), and privacy-
preserving machine learning schemes such as encrypted
machine learning (SOURCE) and federated machine learning
(SOURCES) already exist, yet the problem of storage and
overhead persists. Unfortunately, many of these machine
learning models are supervised which handicaps developers
by requiring large amounts of high-quality training data
to achieve meaningful results. Any model that can quickly
retrieve relevant information, sufficiently rank the results, and
deliver it to the user without the need for training the model
before deployment would allow for p2p networks of any size
to deliver meaningful search capabilities without needing
to bootstrap the model first. Therefore, truly decentralized
unsupervised ranking system sits at the forefront of p2p and
Web3 communications development.

The rapid growth of p2p file-sharing networks in the early
2000’s led to a boom in research for search algorithms
designed explicitly for such networks (SOURCES). Many
such algorithms attempted to recreate the efficacy of well-
known existing search and rank algorithms such as PageR-
ank, yet the number of publications had plateaued and begun
to decline around the beginning of the past decade. The ex-
plosive growth of blockchain and Web3 technologies has in-
fluenced a new generation of developers designing for a more
decentralized web experience, yet many search and rank
solutions still rely upon trusted sources, application-specific

1

hardware, or various economic incentives in order to function
effectively. Decentralized search and rank algorithms that do
not depend upon any centralized entity to function properly,
are domain-independent, and can sufficiently replicate the
performance of more centralized solutions are still nascent.
It is the purpose of this thesis to demonstrate that a simple,
lightweight, and effective ranking algorithm can be deployed
to p2p applications while achieving respectable results.

TODO: Do we mention Tribler / context at all, or focus
purely on p2p file-sharing and streaming networks as a
general concept?

This thesis introduces the unsupervised ranking algorithm
G-Rank designed explicitly for ranking search results in a
p2p torrent-based music streaming platform built atop the
Tribler platform. The goal of this first validation experiment
is to demonstrate the "correctness" of an unsupervised learn-
to-rank (LTR) model in the context of a distributed p2p
file sharing network. This model requires no training or
bootstrapping to function, is capable of returning relevant
results to users within the first few queries, and is not
constrained by any dependence upon large datasets. G-Rank
is demonstrably capable of ranking results in line with their
global popularity, even though the model itself is never
aware of any global popularity ranking. G-Rank will quickly
approach and oftentimes reach the optimal global ranking,
even if a user does not perform any queries themselves; as a
network utilizing G-Rank grows in usership, new users will
see highly relevant results even with their first query.

The rest of this paper is as follows. Section 2 expounds
upon the problem of relevance ranking, namely supervised
versus unsupervised methods. Section 3 details the imple-
mentation of the G-Rank algorithm, describing the clicklog
structure and gossip-based information dissemination mecha-
nism necessary for its functioning, as well as the experimen-
tation and evaluation of the model. Section 4 explores the
results of the experiments, comparing them to other ranking
algorithms for both traditional as well as decentralized web
applications. Section 5 concludes this thesis work.

II. PROBLEM DESCRIPTION

Learning-to-rank is a well-known and thoroughly-studied
problem with myriad solutions achieving excellent results,
yet many of the most well-known ranking algorithms are
designed around centralized data aggregators and super-
vised training methods. Past research into ranking search
results within p2p networks often utilize training, testing,
and validation datasets, which besides the traditional pitfalls
of supervised learning also constrain the ranking problem
into an optimization problem. Compiling relevant datasets
and appropriate labels requires considerable effort, which
historically has been performed manually by humans and is
infeasible for extremely large datasets. Automated labeling
methods (such as semi-supervised learning) can speed up this
process, but these methods have the drawback of imparting
their own inherent bias into the constructed dataset; therefore
the difficulty of labeling data in a manual or semi-supervised
manner grows faster relative to the increase in size of data.

Other solutions (SOURCES) treat ranking as a recom-
mendation prediction problem, where results are sorted by
the predicted score. Framing the ranking problem as a
recommendation prediction problem also depends heavily
on the manner in which users "score" items that they are
recommended. Depending on the application, the manner in
which scores are calculated heavily influences the behavior
of the recommender. In the domain of e-commerce, an item
purchased by a user may be assigned a higher score than an
item said user has viewed multiple times but not purchased,
even if the user feels that the viewed item is more relevant
to them. Meanwhile, a music recommender may assign a
higher score to a song that appears in multiple playlists of
a specific user yet has fewer overall streaming plays than
a song that does not appear in any playlist yet contains a
significant number of streaming plays for that same user. As
such, the scoring system must be thoughtfully designed for
the specific recommendation algorithm and its domain.

With regards to distributed machine learning, federated
machine learning has several drawbacks in this domain
as well. Federated models are often less accurate due to
their relative inability to capture the variance in the overall
data throughout the network, as each model is iteratively
fitted to a small subset of data. In many such settings, the
parameters of the model (e.g. the weights and biases of
a trained neural network) are often passed via messages
between nodes in the network, training on the local data
before passing the model parameters to the next node for
further training. This parameter-passing mechanism is often
considered sufficient enough to obfuscate local data - afford-
ing some degree of user privacy - though recent research
has shown that such methods are insufficient to prevent
advanced adversaries from identifying users (SOURCES).
That being said, any such supervised methods still face the
issue of requiring training datasets which limits the scope of
potential research due to inadequate training data availability
and the infeasibility of synthesizing such datasets oneself. As
such, unsupervised ranking algorithms that can approach the
performance of supervised ranking methods are much better
suited towards p2p domains, where a significant portion
of software is open-source and user privacy is often given
higher priority than for traditional web services. Significantly
reduced overhead in algorithm implementation and mainte-
nance, therefore, is a major benefit for p2p environments.
Creating a search engine for a p2p domain that requires no
training yet can converge towards an optimal ranking as if an
error rate is being minimized in a supervised model would
constitute a major development in p2p applications.

III. ARCHITECTURE OF G-RANK

The domain for this thesis is a simulation of a hypothetical
music sharing and streaming application built upon a torrent-
based p2p network such as BitTorrent. This music application
allows users (A.K.A. "nodes" when referring to network
architecture) to search other nodes’ local libraries and down-
load files to their device. Whenever a user issues a query, the
user device appends the query and its associated results to

2

a clicklog that is stored locally on the device. At various
intervals, each device shares a portion of its local clicklog
with a selection of other devices in the network via a gossip
protocol (See Section 3B). When a user’s device receives a
gossip message containing updated clicklog information, the
device appends the new information to the local clicklog to
be used by the ranking model in future queries.

The unsupervised method detailed herein focuses on rank-
ing query search results relative to one another, i.e. pairwise
comparison across all potential results. Due to the fact that
each node in the network contains only a small subset of
total possible search results, it is highly unlikely that any one
node attain perfect ranking results without the dissemination
of local clicklog information to other nodes in the network.
Such a mechanism - be it via message-passing (gossip),
broadcasting search history, or a centralized information
aggregation scheme - directly and heavily influences the
behavior of the unsupervised ranking model. Therefore, the
ranking model’s co-dependence upon the clicklog dissemina-
tion scheme is closely investigated alongside the actual per-
formance of the ranking model, where various dissemination
patterns and parameters are considered alongside ranking
model parameters and functionality.

A. Unsupervised Ranking Model

When a user searches for a query term, the ultimate goal
is to provide the most accurate list of results ranked by rele-
vance to the query term as well as the user. First, the model
checks the local clicklog for previous queries of a query
term, and if this term has never been queried before it then
searches for matches of this term in the metadata of local
files stored in the music app, which includes title, artist, and
genre tags. The model does not consider misspellings/typos,
although methods such as Cubit [2] are highly effective at
correcting for typos in information retrieval (IR) schemes
and could hypothetically be integrated with G-Rank. If the
query term has been seen before, it returns the most popular
results for this query weighted by the similarity of search and
click behavior of other users who have also issued similar
or identical queries (as described in Section 3D).

Due to the fact that the search mechanism considers only
the clicklog and item metadata, it is extremely unlikely that
a item should erroneously become popularly associated with
a query term that has no direct match with any of the item’s
metadata. The only situation in which this could arise is if
a query term has never been seen before nor is contained
in any accessible metadata. Should this happen, the search
engine returns a list of popular items that have appeared
recently in the clicklog. However, because users gossip their
local clicklogs in intervals to subsets of other users, it is
entirely plausible that a node or subset of the network could
be unaware of newly added items with matching metadata at
the time of the query. If this were to occur, a user could click
on a recommended item that contains no matching metadata
to the search query, and then gossip their clicklog history
to nearby nodes, who then also perform a search for the
same term and click on the same result. Such an occurrence

would then erroneously lead to a term-item pairing for which
the associated item actually contains no matching metadata,
which could then propagate throughout the network.

In order to avoid this situation, search results that contain
matching metadata are always ranked above items that have
term-item matches in the clicklog yet contain no matching
metadata. The justification for such is that should users wish
to find a specific item, they ostensibly are aware of the title,
artist, album, or some other trait that would be found within
the item’s metadata such that they need not rely entirely upon
the search history of a specific term in order to find said
item. A positive side-effect of this restriction is that it also
diminishes the effect of adversarial users "query-bombing"
the network to negatively influence the performance of the
ranking model.

B. Clicklog Structure

Each node in the network contains a clicklog that stores
the following information as a row entry: the node’s unique
ID, the query term, the query results in descending order,
the item the user clicked on, the title of the item clicked
upon, the tag metadata associated with that item, and a
unique key associated with the query term consisting of
the concatenation of the node’s unique ID and the local
query number. The key is used to determine the order of the
clicklog without the need for timestamps, as timekeeping in
a distributed system is a complex problem that is beyond
the scope of this thesis. When a query is performed, the
results are stored locally in memory until a user clicks upon a
result, after which the clicklog entry is created and appended
locally. Whenever a gossip round occurs, only the clicklog
entries that have been appended since the last gossip round
are included, which dramatically reduces the size of the
gossip message1 as the clicklog grows large. However, as the
subset of target nodes included in a gossip round increases,
the message space grows superlinearly as each gossip round
contains an increasingly large number of duplicate unique
queries shared between nodes, even when dropping internal
duplicates. On the other hand, as the number of queries
performed between gossip rounds increases, the message
space grows linearly.

Over time, each node becomes increasingly aware of
the click behavior of other nodes in the network without
necessarily gleaning insight into the local libraries of said
nodes. As such, the dissemination of clicklog data enables
the unsupervised model to learn from the behavior of other
users without revealing personally identifiable information
(PII).

C. Gossiping Clicklogs

The design of the gossip protocol that propagates clicklog
information directly affects the performance of the ranking
model, and therefore needs to be deliberately designed such
that clicklog information is adequately disseminated without
congesting the network. In order to determine exactly how

1Each query results in approximately 600 bytes of clicklog data.

3

the gossip parameters affect the model, specific evaluation
metrics need to be determined. For example, should a node
receive |K| = 10 results for a specific query, it is important
to determine how many of these results are in the "optimal"
ranking, i.e. for each result ki ∈ K the distance between
the local rank L(ki) in the above query versus the global
average rank G(ki) across all participants in the network for
that query term. In this situation, an item with an "optimal"
ranking has a distance of G(ki)−L(ki) = 0 for any specific
query.

In distributed and decentralized networks it is well-
understood that obtaining a global "snapshot" of the current
network state ranges from "trivial" for small networks to "in-
tractible" for large global networks. Well-known algorithms
such as Chandy-Lamport (SOURCE) are still imperfect as
they fail to capture incipient changes to the network state
deriving from messages that are currently underway during
the time of the snapshot, such that by the time the algo-
rithm terminates the state of the network may have already
changed. As such, determining a global truth for a p2p
network such as the one described in this thesis can only
be easily performed in a contained simulation environment
in which a global observer aggregates all changes to the
network’s state. Therefore, it must be understood that any
comparisons against a "global" optimum in this thesis come
with the caveat that in a live network the global optimum
may not be feasibly observable.

D. User Similarity Weighting

As nodes begin to receive new gossip messages, a brief
pipeline extrapolates certain patterns from incoming data.
After a gossip message is received by node ni, it appends the
new data to its existing clicklog and subsequently searches
the incoming data for previously unseen unique node IDs.
These unseen node IDs are added to a local list of known
nodes, which are then sorted in descending order by the
Jaccard similarity between their two clicklogs. The similarity
score S between a pair of nodes ni and nj is calculated as
follows:

• Find the intersection of query terms in the clicklog
between ni and nj .

• Within this intersection, find all matching click results.
• For each node pair, the number of identical query-click

pairs is divided by the overall number of query matches,
resulting in a similarity ratio between 0.0 and 1.0, where
1.0 indicates that two nodes have clicked on the exact
same item for every single matching query.

That is,

S =
|Ci(Q) ∩ Cj(Q)|
|Ci(Q) ∪ Cj(Q)|

where Ci(Q) indicates the set of items node ni has clicked
on for query Q. Therefore, the similarity is a ratio of identical
query-click results to the overall number of queries shared
between two nodes. As such, every node maintains a list
of nodes it has become aware of via the clicklog, and

determines its similarity to other nodes based on past click
behavior. This similarity is then used to weight the results
of future queries based on the click behavior of other users,
such that users are more likely to see results other similar
users have clicked on for similar query terms. Similarity
weighting is calculated by taking the dot product between
the aforementioned similarity scores for each node and sorted
results based on the overall number of clicks found in each
node’s local clicklog. The resulting ranking R provided to
querying node ni for query Q is therefore calculated as:

R(Q) = ∀k ∈ KQ,

N∑
i=0

(Ck · Si)

where Si indicates the similarity score coefficient for
each node ni ∈ N , and Ck indicates the number of clicks
associated with item k ∈ KQ where KQ is the unsorted
set of results for query Q. The resulting items are sorted
in descending order by their associated scores. As such,
each potential query result is assigned a score based on the
number of clicks found in each node’s clicklog, weighted
by the similarity of each node to the node performing the
query. Therefore, the dissemination of clicklog data not only
informs other nodes of the popularity of items, it also allows
for nodes to cluster themselves based on an easy-to-compute
metric, further allowing for personalization of results.

A drawback of introducing such a similarity metric into the
ranked results is that it introduces a potential attack vector
for adversaries to influence the results of future queries
throughout the network, e.g. via spam or sybil attacks. Spam
attacks become less viable as the number of legitimate users
grows larger, while more targeted attacks may be thwarted
by the user similarity scheme itself. An adversary attempting
to undermine the ranking algorithm by intentionally selecting
irrelevant results for specific queries would find themselves
increasingly isolated from other users performing legitimate
queries, as their behavior over time would continue to deviate
from that of other users. Sophisticated adversaries would then
need to mimic legitimate behavior for a large portion of their
queries in order to remain relevant to other users without
ostracizing themselves.

E. Click Modeling
TODO: Discuss how we’re clicking?
Modeling realistic user-clicking behavior is essential to the

development of ranking algorithms. Not all user clicks may
be on relevant items in a list, and as such it can be expected
that a certain degree of noise exists in user click data.
Extrapolating such noise into a domain such as this thesis
therefore requires careful consideration. Without anticipating
and modeling a certain degree of noise, a ranking model’s
query results may erroneously converge towards irrelevant
items. There exists a number of methods for modeling real-
life user click behavior (SOURCES), however for this thesis
users select the highest-ranking item in most queries, except
when multiple results with equal relevance scores were
shown to the user. In this case, the result with the lowest
ID was chosen as a tiebreaker.

4

IV. EXPERIMENTATION

The dataset utilized in this thesis was compiled from a
series of 256 musical releases by real artists via the PandaCD
record label, all of which were released under the Creative
Commons license. Entries may be singles, albums, EPs
(extended-play releases), and LPs (limited-play releases).
Each data entry contains a number of associated "tags" as
metadata, which describe the release in terms of genre. These
tags have been compiled into a corpus of potential query
terms, and every query term in this experiment consists of
exactly one tag, of which there are a total of 39 unique tags.
Each query term in these experiments is chosen uniformly
at random. The simulated network consists of 100 nodes, all
of which begin with a limited number of library items. The
simulation is initialized as follows:

For each node ni ∈ N, i = {0, ..., 99} in the network,
ni is initialized without any awareness of other nodes in
the network. Upon initialization, a node selects at uniform
random ten percent of the items from the global dataset to
add to its local library (approximately 26 songs per node).
Then, each node ni adds the clicklog contents of node ni−1

to its own local clicklog, i.e. node n99 contains a clicklog
of 99 items upon instantiation. Next, an initial search is
performed. Each node randomly selects a single query term
from the corpus and chooses at random one item from its
local library with a tag matching the query term, appending
this entry to its local clicklog. At this point, no ranking or
click modeling is performed for selection.

After every node has been initialized, nodes are chosen
uniformly at random alongside a random query term from
the corpus to perform a query-term search. The results of
the search are ranked as detailed in Section 2A, and an item
to be clicked upon is chosen based on the aforementioned
click model. The search and click results are appended to
this node’s local clicklog, and another node is chosen again
at random to perform a new search. Every 100 queries, a
random subset of nodes is chosen to gossip their clicklog
with a randomly chosen subset of other nodes. The number
of gossiping nodes, as well as the number of gossip targets,
depends (TODO: Are we doing various gossip sizes?)

A. Adversarial Simulation

This thesis simulates several adversarial conditions along-
side a "baseline" simulation with no adversaries. Each ad-
versarial simulation is intended to isolate and investigate the
effects of specific adversarial and anti-social behavior on G-
Rank’s performance. Each simulation’s results is compared
to the baseline global performance of G-Rank, as the global
optimal rankings are negatively affected by such attacks. As
such, each scenario’s impact on G-Rank’s ability to converge
towards a true global optimality without adversarial interfer-
ence is investigated with the aid of the metrics described in
Section 4B.

1) Random Sybil Attack (better name?): The first adver-
sarial simulation implements a basic sybil attack where every
five gossip rounds, five new sybil nodes are introduced to the
network with no bootstrapping. These sybil nodes perform 50

queries of terms randomly drawn from the corpus, randomly
choosing an item in the list of ranked results in an attempt to
usurp the current popular rankings for each selected query
term. After each sybil node has performed 50 queries, it
broadcasts its entire clicklog to the entire network where
other nodes append the incoming clicklog to their own local
clicklogs. In this scenario, the rate of growth of each node’s
local clicklog changes from logarithmic to quadratic, as the
rate of growth is directly proportional to the number of sybil
nodes and random queries performed by the attackers.

2) Targeted Sybil Attack (better name?): The second
adversarial simulation is a modification of the previous:
instead of choosing a term at random, each sybil attacker
chooses a single specific term to perform all 50 queries,
clicking the bottom-most item in the list of ranked results.
After the series of queries are complete, the attackers also
broadcast their entire clicklog to the entire network as if
it were legitimate clicklog gossip. This attack artificially
inflates the relevance score of otherwise low-ranked results,
undermining the veracity of the rankings other nodes are
shown.

3) Clicklog Inflation: The third adversarial simulation
differs from the previous two in that it does not broadcast
its clicklog to the entire network. Instead, an adversary
performs a significant number of queries in between gossip
rounds hoping to be chosen in the next gossip round. If
chosen, the adversary will gossip a its large clicklog with
its intended targets, resulting in a dramatic inflation in size
of non-adversarial node clicklogs. The impact such random
gossip is investigated against the more targeted sybil attacks
mentioned previously. In large decentralized p2p networks it
is highly unlikely that any single node is aware of all other
nodes in the network, and furthermore the dissemination of
"infected" gossip messages can be mitigated by preventing
gossip propagation past an initial recipient. Furthermore,
a sufficient gossip protocol can mitigate such threats by
randomly choosing a new subset of nodes for each gossip
round, relegating the adversary’s impact to that of pure
chance. Without extended clicklog propagation and deter-
ministic gossip protocols, the impact of clicklog inflation is
likely to be dramatically mitigated.

TODO: this sounds more like discussion than explana-
tion, probably not the right section to discuss "potential"
impact before the actual results are discussed.

B. Evaluation Metrics

(TODO: local clicklog growth rate, global network
bandwidth usage, rate of convergence towards optimality
between each gossip round, and...)

V. RESULTS AND DISCUSSION

The results of this initial validation thesis experiment
show that after just a few gossip rounds, user queries
return ranked results that approach or even match the global
optimum ranking for each query term. Figure 1 shows that
the percentage of queries containing the most popular song
per tag grows logarithmically, indicating that early gossip

5

Fig. 1. The median percentage of queries containing the most popular
song in the network associated with each possible query term grows
logarithmically as the number of gossip rounds increases.

Fig. 2. The percentage of queries containing the most popular song in the
network associated with each tag (after 100 gossip rounds).

rounds have a profound effect on improving search results.
As more gossip occurs, the number of queries containing
the top song associated with each query approaches 100%,
as seen in Figure 2. Figure 2 also shows how the number
of most popular songs associated with each possible query
term grows at approximately even rates, indicating that the
gossip scheme itself does not lead to an imbalance in query
term searches.

Furthermore, Figure 3 shows that the distance between
each node’s local ranking of results and the globally optimal
ranking for each possible query term drops dramatically after
just a few gossip rounds. Figure 4 expounds upon Figure 3,
showing that the vast majority of nodes converge close to
the optimal ranking across all tags, with a single notable
outlier that does not converge. (INCLUDE?) Results of
the experiment showed that this outlier was a node
that received only one round of gossip throughout the
simulation, which further demonstrates the impact the
gossip of clicklog data has on the unsupervised model.

A. Adversarial Simulation Results

Considering the known threat that sybil and spam at-
tacks pose to p2p networks, the results of the adversarial
simulations generally fall in line with expectations. G-Rank
is susceptible to sybil and spam attacks, particularly those
with high frequency, though its ability to recover in between

Fig. 3. The mean and median distances between local rankings and the
globally optimal ranking across all terms decreases dramatically after just
a few gossip rounds, eventually stabilizing at near-perfect optimality for all
nodes in the network.

Fig. 4. The average distance of each node’s total rankings to the globally
optimal ranking across all terms is shown here, where a small number
of visible outliers sit well outside the median distance most other nodes
converge towards.

attacks and continue converging towards global optimality
is notable. When exposed to consistent and persistent spam
via both random and targeted sybil attack, G-Rank’s ability
to recommend near-optimally ranked results suffers greatly.
However, clicklog inflation attacks have a diminished effect,
impacting only a subset of network participants, likely due
to their dependence upon being selected in gossip rounds
in order to disseminate "corrupted" clicklogs. This indicates
that mechanisms that mitigate or prevent the propagation
of messages throughout the network outside of designated
gossip rounds may greatly diminish negative consequences
of spam and sybil attacks.

As seen in (TODO: add figure with intermittent spam
rounds demonstrating recovery), when both random and
targeted sybil attacks occur intermittently, G-Rank is able
to begin re-converging towards prior benchmarks in ranking.
(TODO: figure with high frequency sybil attacks) Figure
X shows that high frequency attacks result in dramatically di-
minished ranking performance. However, Figure X+1 shows
that high frequency attacks diminish in efficacy if they begin

6

at later stages of the simulation. This suggests that the
length and diversity of each individual node’s clicklog has
an effect on an adversary’s ability to sabotage G-Rank. As
the number of gossip rounds increases, the average local
clicklog length also grows, affording nodes the opportunity
to calculate similarity metrics with an increasingly large
subset of other nodes. As the list of known nodes increases,
similarity between two distinct clicklogs begins to crystallize
such that spam and sybil attackers broadcasting statistically
anomalous clicklog data may begin to drift further from other
benign nodes.

TODO: not sure if I want to include this next para-
graph or not... The user similarity metric described in
Section 3D (include hlink) has the potential to include a
normalization constant such that when this constant equals 0,
clicklog data from nodes with a similarity score of 0 is conse-
quently assigned a weight of 0. This has the consequence of
disqualifying any nodes without at least one matching query-
click pair with the querying node, which thereby has the
knock-on effect of dramatically reducing the probability that
an adversary’s behavior influences any ranked results. Any
influence an adversary then has on ranking is dependent upon
the number of matching query-click pairs, which is heavily
skewed towards non-targeted attacks such as the random
sybil attack and clicklog spam attacks.

Conversely, when the normalization constant is greater
than zero, all clicklog data (including malicious entries) is
considered in the ranking process as the weight of each entry
will subsequently also be a positive non-zero value. The
positive effect this has is greater personalization results for
benign queries; clicklog results from nodes with similarity
scores of 0 will still have the number of clicks associated
with that result considered in the final ranking. The negative
effect is that all clicklog entries, including malicious entries,
will be considered. Figures X+2 and X+3 demonstrates the
difference in effect between two identical simulation envi-
ronments where the normalization constant is either equal to
0 or 1. As seen in these figures, the normalization constant
affords benign queries closer convergence to global optimum
at the expense of dramatically reduced resilience in the face
of attack.

B. Future Work

Potential for future development of unsupervised decen-
tralized search and ranking models in p2p networks is ex-
ceptionally rich. G-Rank demonstrates that a simple unsuper-
vised model can recommend near-perfect results to users in
sterile network conditions. One of the primary pitfalls of such
unsupervised methods is mitigating the threat adversarial
actors such as sybil attackers may have on the model. G-Rank
is capable of recovering and improving performance after a
singular sybil attack, but cannot adapt under consistent and
persistent sybil attacks. As such, mitigating threats above the
network and protocol layers at the model level is a rich field
for future development.

Potential model improvements may include augmenting
the user clustering model beyond a simple similarity metric,

such that sybil and other spam attacks become classified as
outliers with regards to "typical" user behavior, such that
recommendation and ranking scores become based off of
behavior of other users within clusters.

VI. CONCLUSION

This thesis demonstrates that unsupervised search-and-
rank models designed specifically for p2p applications show
merit and are worthy of further research. Relatively basic
unsupervised methods such as G-Rank are capable of con-
verging towards a global optimum, even when provided with
limited data. G-Rank shows considerable resilience in the
fact of intermittent sybil and spam attacks, though when sub-
jected to consistent and persistent adversarial interference,
the model suffers considerably. As such, spam and sybil
mitigation methods implemented between the network and
application layers of p2p networks may dramatically improve
performance. Another area worthy of further research is spam
mitigation within the unsupervised model itself, particularly
with regards to outlier detection in clicklog data.

7

REFERENCES

[1] K. Mochalski, and H. Schulze. "Ipoque internet study
2008/2009." 2009-04-20. http://www.ipoque.com/resources/internet-
studies/internet-study-2008-2009 (2009).

[2] Wong, Bernard, Alex Slivkins, and Emin Gun Sirer. Approximate
matching for peer-to-peer overlays with cubit. 2008.

8

APPENDIX

9

Fig. 5. Dataset

10

Fig. 6. Clicklog

11

	INTRODUCTION
	PROBLEM DESCRIPTION
	ARCHITECTURE OF G-RANK
	Unsupervised Ranking Model
	Clicklog Structure
	Gossiping Clicklogs
	User Similarity Weighting
	Click Modeling

	Experimentation
	Adversarial Simulation
	Random Sybil Attack (better name?)
	Targeted Sybil Attack (better name?)
	Clicklog Inflation

	Evaluation Metrics

	RESULTS AND DISCUSSION
	Adversarial Simulation Results
	Future Work

	CONCLUSION
	References

