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Abstract— Ranking algorithms in traditional search engines
are powered by enormous training data sets that are meticu-
lously engineered and curated by a centralized entity. Decentral-
ized peer-to-peer (p2p) networks such as torrenting applications
and Web3 protocols deliberately eschew centralized databases
and computational architectures when designing services and
features. As such, robust search-and-rank algorithms designed
for such domains must be engineered specifically for decen-
tralized networks, and must be lightweight enough to operate
on consumer-grade personal devices such as a smartphone or
laptop computer. We introduce G-Rank, an unsupervised rank-
ing algorithm designed exclusively for decentralized networks.
We demonstrate that accurate, relevant ranking results can be
achieved in fully decentralized networks without any central-
ized data aggregation, feature engineering, or model training.
Furthermore, we show that such results are obtainable with
minimal data preprocessing and computational overhead, and
can still return highly relevant local results even when a user’s
device is disconnected from the network. G-Rank is highly
modular in design, is not limited to categorical data, and can be
implemented in a variety of domains with minimal modification.
The results herein show that unsupervised ranking models
designed for decentralized p2p networks are not only viable,
but worthy of further research.
Author’s note: the experiments performed herein are open-source
and can be found on GitHub1.

I. INTRODUCTION

The problem of relevance ranking in information retrieval
problems has been well-studied for decades, solutions for
which have enabled users to query vast swathes of informa-
tion on the World Wide Web and retrieve highly relevant
results within milliseconds. Nascent search-and-rank tech-
niques for web search culminated with PageRank in 1998 [1],
directly leading to Google’s ascendant dominance in the web
search domain. All such algorithms, however, depend upon
ever-growing databases of mapped relations between various
information sources and topics, requiring enormous compu-
tational power to deliver lightning-fast results directly to a
user’s device. Therefore, these algorithms all depend upon
highly centralized information architectures with thousands
of skilled attendants dedicated to maintaining and improving
system capabilities.

As such, typical ranking algorithms are wholly unsuited
for deployment in decentralized information architectures
such as peer-to-peer (p2p) file sharing networks (e.g. Bit-
Torrent) and various Web3 applications. These networks are

1https://www.github.com/awrgold/G-Rank

overwhelmingly comprised of individual users where the
maximum computational and storage capacity available to
any search-and-rank algorithm is that of an individual’s desk-
top computer or mobile device. The success of many nascent
applications built atop decentralized networks therefore de-
pends upon the efficacy of novel search-and-rank schemes
designed specifically for these domains. These algorithms
must have a zero-server architecture, be lightweight enough
to run on a cheap smartphone, and yet be robust enough to
return highly relevant results to each individual user.

Furthermore, these algorithms must adhere to the ethos
of these decentralized networks, which often emphasize user
privacy and information security foremost among its tenets.
Any ranking algorithm built in such a domain must therefore
be able to function effectively utilizing data immediately
available to a user of a p2p application, the majority of
which is often the user’s own data. That is not to say that
a ranking algorithm cannot be improved via the sharing of
information between participants in such networks, but rather
that the algorithm must be entirely self-sufficient and self-
contained without any meaningful expectation of obtaining
new information outside of the local device. As first proposed
in [28], the concept of utilizing message-passing as a means
to build a cohesive model in a distributed setting became a
novel instrument in respecting user privacy by emphasizing
local-first computational paradigms.

The concept of local-first software is not new [27], and
privacy-preserving machine learning schemes such as en-
crypted machine learning [40][41] and federated machine
learning [36][37][38][39] already exist, yet the problems of
security, storage, and overhead persist. Unfortunately, most
of these machine learning models are supervised which hand-
icaps developers by requiring large amounts of high-quality
training data to achieve meaningful results. Any model that
can quickly retrieve relevant information, sufficiently rank
the results, and deliver it to the user without the need for
training the model before deployment would allow for p2p
networks of any size to deliver meaningful search capabilities
without needing to bootstrap the model first. Therefore,
truly decentralized unsupervised ranking system sits at the
forefront of p2p and Web3 communications development.

The rapid growth of p2p file-sharing networks around
the turn of the new millennium led to a boom in re-
search for search algorithms designed explicitly for such net-
works [3][4][5][9][10][11][14][17]. Many such algorithms
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attempted to recreate the efficacy of well-known existing
search and rank algorithms such as PageRank, yet the
number of publications had plateaued and begun to decline
around the beginning of the past decade. The explosive
growth of blockchain and Web3 technologies has influenced
a new generation of developers designing for a more de-
centralized web experience. Decentralized search and rank
algorithms that do not depend upon any centralized en-
tity to function properly, are domain-independent, and can
sufficiently replicate the performance of more centralized
solutions are still nascent. We demonstrate that a simple,
lightweight, and effective ranking algorithm can be deployed
to p2p applications while achieving respectable results.

We introduce the unsupervised ranking algorithm G-Rank
designed explicitly for ranking search results in a p2p torrent-
based music streaming platform. The goal of this first vali-
dation experiment is to demonstrate the "correctness" of an
unsupervised learn-to-rank (LTR) model in the context of a
distributed p2p file sharing network. This model requires no
training or bootstrapping to function, is capable of returning
relevant results to users within the first few queries, and is not
constrained by any dependence upon large datasets. G-Rank
is demonstrably capable of ranking results in line with their
global popularity, even though the model itself is unaware
of the best possible ranking for any given query term. G-
Rank will quickly approach and oftentimes reach the optimal
global ranking, even if a user does not perform any queries
themselves; as a network utilizing G-Rank grows in usership,
new users will see highly relevant results even with their first
query.

The rest of this paper is as follows. Section 2 expounds
upon the problem of relevance ranking, namely supervised
versus unsupervised methods. Section 3 details the imple-
mentation of the G-Rank algorithm, describing the clicklog
structure and gossip-based information dissemination mecha-
nism necessary for its functioning, as well as the experimen-
tation and evaluation of the model. Section 4 explores the
results of the experiments, comparing them to other ranking
algorithms for both traditional as well as decentralized web
applications. Section 5 concludes our work.

II. PROBLEM DESCRIPTION

Learn-to-rank is a well-known and thoroughly-studied
problem with myriad solutions achieving excellent results,
yet many of the most well-known ranking algorithms are
designed around centralized data aggregators and supervised
training methods. Past research into ranking search results
within p2p networks often utilize training, testing, and vali-
dation datasets [8][18][35][42], which besides the traditional
pitfalls of supervised learning also constrain the ranking
problem into an optimization problem. Furthermore, such
supervised methods lack inherent "memory" such that they
cannot retain information as they observe it; as such, they
require large training sets in order to learn latent statis-
tical representations of the information they are provided.
Compiling relevant datasets and appropriate labels requires
considerable effort, which historically has been performed

manually by humans and is infeasible for exceptionally
large datasets. Automated labeling methods such as semi-
supervised learning can speed up this process, but these
methods have the drawback of imparting their own inherent
bias into the constructed dataset [44][45]; therefore the
difficulty of labeling data in a manual or semi-supervised
manner grows faster relative to the increase in size of data.

Other solutions treat ranking as a recommendation pre-
diction problem, where results are sorted by the predicted
score [31][33][34][35]. Framing the ranking problem as a
recommendation prediction problem also depends heavily
on the manner in which users "score" items that they are
recommended. Depending on the application, the manner in
which scores are calculated heavily influences the behavior
of the recommender. In the domain of e-commerce, an item
purchased by a user may be assigned a higher score than an
item said user has viewed multiple times but not purchased,
even if the user feels that the viewed item is more relevant
to them. Meanwhile, a music recommender may assign a
higher score to a song that appears in multiple playlists of
a specific user yet has fewer overall streaming plays than
a song that does not appear in any playlist yet contains a
significant number of streaming plays for that same user. As
such, the scoring system must be thoughtfully designed for
the specific recommendation algorithm and its domain.

With regards to distributed machine learning, federated
machine learning has several drawbacks in this domain as
well. Federated models are often less accurate due to their
relative inability to capture the variance in the overall data
throughout the network, as each model is iteratively fitted
to a small subset of data. Federated learning techniques,
as presented in [36][37][38][39], utilizes message pass-
ing to disseminate model parameters during training. This
parameter-passing mechanism is often considered sufficient
enough to obfuscate local data - affording some degree of
user privacy - though such methods are insufficient to prevent
determined adversaries from recreating input data [46]. That
being said, any such supervised methods still face the issue of
requiring training datasets which limits the scope of potential
research due to inadequate training data availability and
the infeasibility of synthesizing such datasets oneself. As
such, unsupervised ranking algorithms that can approach the
performance of supervised ranking methods may be better
suited towards p2p domains, where a significant portion
of software is open-source and user privacy is often given
higher priority than for traditional web services. Significantly
reduced overhead in algorithm implementation and mainte-
nance, therefore, is a major benefit for p2p environments.
Creating a search engine for a p2p domain that requires no
training yet can converge towards an optimal ranking as if an
error rate is being minimized in a supervised model would
constitute a major development in p2p applications.

A. Security Concerns in Decentralized Networks (BETTER
TITLE?)

Machine learning models deployed in p2p networks are
vulnerable to several specific attack vectors, namely sybil
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and spam attacks, which can undermine model accuracy and
efficacy (SOURCES). Such attacks are inherently difficult
to thwart in any decentralized network setting. As shown
in [6], even PageRank is not immune to sybil attacks and
therefore also requires considerable adaptation to trustless
p2p environments. As such, sybil attacks on decentralized
machine learning models are critical vulnerabilities that
require deliberate mitigation efforts during the design of the
model, and even such mitigation efforts are imperfect [43].
Meanwhile, spam attacks in p2p networks are often broader
in scope yet still pose significant risk to machine learning
models whose efficacy depend upon the veracity of the data
they are fed.

These threats are well-understood and a variety of methods
to thwart such attacks exist [47][48][43], however many of
these solutions are based on supervised learning and there-
fore suffer from the same issues mentioned previously, or
require the aggregation of network traffic through centralized
"coordinators," eroding the trustlessness of p2p networks.
As such, unsupervised machine learning models that are
robust enough to function in the midst of spam or sybil
attacks are critical to the expansion of search, ranking, and
recommendation models for the decentralized web.

III. ARCHITECTURE OF G-RANK

The domain for the following experiments is a simulation
of a hypothetical music sharing and streaming application
built upon a torrent-based p2p network (e.g. BitTorrent).
This music application allows users (A.K.A. "nodes" when
referring to network architecture, or "peers" when referring
to other users in the network) to query other peers for the
contents of their library and download files to their device.
Whenever a user issues a query, the user device appends the
query and its associated results to a clicklog that is stored
locally on the device. At various intervals, each device shares
a portion of its local clicklog with a selection of other peers
in the network via a gossip protocol (See Section 3B). When
a user’s device receives a gossip message containing updated
clicklog information, the device appends the new information
to the local clicklog to be used by the ranking model in future
queries.

The unsupervised method detailed herein focuses on rank-
ing query search results relative to one another, i.e. pairwise
comparison across all potential results. Due to the fact that
each node in the network contains only a small subset of total
possible search results, it is highly unlikely that any one node
attain perfect ranking results without the dissemination of lo-
cal clicklog information to other nodes in the network. Such a
mechanism - be it via gossip, broadcasting search history, or
a centralized information aggregation scheme - directly and
heavily influences the behavior of the unsupervised ranking
model. The continuous updating of data accessible to G-
Rank is an example of continuous learning [13], where the
model requires no re-training as each new data point becomes
available. Instead, as each gossip message is received G-
Rank considers this new information in real time, affording
it the ability to continuously adapt to an ever-changing

Fig. 1. Users in the decentralized network may gossip irregularly, and not
all nodes in the network may be recipients of a specific gossip message.
(I honestly dunno wtf to do with this graphic, it seems so basic and
we already talked about speaking at a higher, more "thesis-worthy"
level. Also I could invert the pentagram if we wanted to go a more
"demonic" route...)

environment with zero human intervention. Therefore, the
ranking model’s dependence upon the clicklog dissemination
scheme is closely investigated alongside the actual perfor-
mance of the ranking model, where various dissemination
patterns and parameters are considered alongside ranking
model parameters and functionality.

A. Unsupervised Ranking Model

When a user searches for a query term, the ultimate goal
is to provide the most accurate list of results ranked by rele-
vance to the query term as well as the user. First, the model
checks the local clicklog for previous queries of a query
term, and if this term has never been queried before it then
searches for matches of this term in the metadata of local
files stored in the music app, which includes title, artist, and
genre tags. The model does not consider misspellings/typos,
although methods such as those mentioned in [3] are highly
effective at correcting for typos in information retrieval (IR)
schemes and could potentially be integrated with G-Rank.
If the query term has been seen before, it returns the most
popular results for this query weighted by the similarity of
search and click behavior of other users who have also issued
similar or identical queries (as described in Section 3D).

Due to the fact that the search mechanism considers only
the clicklog and item metadata, it is extremely unlikely that
a item should erroneously become popularly associated with
a query term that has no direct match with any of the item’s
metadata. The only situation in which this could arise is if a
query term has never been seen before nor is contained in any
accessible metadata. Should this happen, the search engine
returns a list of popular items that have appeared recently
in the user’s local clicklog. However, because users gossip
their local clicklogs in intervals to subsets of other users, it is
entirely plausible that a node or subset of the network could
be unaware of newly added items with matching metadata at
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key nodeID term ranked_results clicked tags

tuple integer string list[integer] integer list[string]

the time of the query. If this were to occur, a user could click
on a recommended item that contains no matching metadata
to the search query, and then gossip their clicklog history
to nearby nodes, who then also perform a search for the
same term and click on the same result. Such an occurrence
would then erroneously lead to a term-item pairing for which
the associated item actually contains no matching metadata,
which could then propagate throughout the network.

In order to avoid this situation, search results that contain
matching metadata are always ranked above items that have
term-item matches in the clicklog yet contain no matching
metadata. The justification for such is that should users wish
to find a specific item, they ostensibly are aware of the title,
artist, album, or some other trait that would be found within
the item’s metadata such that they need not rely entirely upon
the search history of a specific term in order to find said
item. A positive side-effect of this restriction is that it also
diminishes the effect of adversarial users "query-bombing"
the network to negatively influence the performance of the
ranking model.

B. Clicklog Structure

Each node in the network contains a clicklog that stores
the following information as a row entry: the node’s unique
ID, the query term, the query results in descending order,
the item the user clicked on, the title of the item clicked
upon, the tag metadata associated with that item, and a
unique key associated with the query term consisting of
the concatenation of the node’s unique ID and the local
query number. The key is used to determine the order of the
clicklog without the need for timestamps, as timekeeping in
a distributed system is a complex problem that is beyond
the scope of this paper. When a query is performed, the
results are stored locally in memory until a user clicks upon a
result, after which the clicklog entry is created and appended
locally. The gossiping node then samples at uniform random
approximately 10% of its clicklog to gossip, dramatically
reducing the size of the gossip message2, resulting in the
linear growth of message space overhead. Over time, each
node becomes increasingly aware of the click behavior of
other nodes in the network without necessarily gleaning
insight into the local libraries of said nodes. As such,
the dissemination of clicklog data enables the unsupervised
model to learn from the behavior of other users without
revealing personally identifiable information (PII).

C. Gossiping Clicklogs

The design of the gossip protocol that propagates clicklog
information directly affects the performance of the ranking
model, and therefore needs to be deliberately designed such
that clicklog information is adequately disseminated without

2Each query results in approximately 600 bytes of clicklog data.

congesting the network. In order to determine exactly how
the gossip parameters affect the model, specific evaluation
metrics need to be determined. For example, should a node
receive |K| = 10 results for a specific query, it is important
to determine how many of these results are in the "optimal"
ranking, i.e. for each result ki ∈ K the distance between
the local rank L(ki) in the above query versus the global
average rank G(ki) across all participants in the network for
that query term. In this situation, an item with an "optimal"
ranking has a distance of G(ki)−L(ki) = 0 for any specific
query.

In distributed and decentralized networks it is well-
understood that obtaining a global "snapshot" of the current
network state ranges from "trivial" for small networks to "in-
tractible" for large global networks. Well-known algorithms
such as Chandy-Lamport [26] are still imperfect as they fail
to capture incipient changes to the network state deriving
from messages that are currently underway during the time of
the snapshot, such that by the time the algorithm terminates
the state of the network may have already changed. As
such, determining a global truth for a p2p network can only
be easily performed in a contained simulation environment
in which a global observer aggregates all changes to the
network’s state. Therefore, it must be understood that any
comparisons against a "global" optimum in this experiment
come with the caveat that in a live network the global
optimum may not be feasibly observable.

D. Node Discovery and Similarity Weighting

As nodes begin to receive new gossip messages, a brief
pipeline extrapolates certain patterns from incoming data.
After a gossip message is received by node ni, it appends the
new data to its existing clicklog and subsequently searches
the incoming data for previously unseen unique node IDs.
These unseen node IDs are added to a local list of known
nodes, which are then sorted in descending order by the
Jaccard similarity between their queries and the results they
each click upon. The similarity score S between a pair of
nodes ni and nj is calculated as follows:

• Find the intersection of query terms in the clicklog
between ni and nj .

• Within this intersection, find all matching click results.
• For each node pair, the number of identical query-click

pairs is divided by the overall number of query matches,
resulting in a similarity ratio between 0.0 and 1.0, where
1.0 indicates that two nodes have clicked on the exact
same item for every single matching query.

That is,

Si(nj) =
|Ci(Q) ∩ Cj(Q)|
|Ci(Q) ∪ Cj(Q)|

where Ci(Q) indicates the set of items node ni has clicked
on for query Q. Therefore, the similarity is a ratio of identical
query-click tuples to the overall number of queries shared
between two nodes. As such, every node maintains a list
of nodes it has become aware of via the clicklog, and
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determines its similarity to other nodes based on past click
behavior. This similarity is then used to weight the results
of future queries based on the click behavior of other users,
such that users are more likely to see results other similar
users have clicked on for similar query terms.

In order to isolate highly irregular behavior, we introduce
a binary normalization coefficient F to the user similarity
score. When F = 0, only the clicklogs of adjacent nodes
with Si(nj) > 0 are considered when ranking results. When
F = 1, a node considers the clicklogs of all nodes it has
received gossip from when ranking query results. As such,
this normalization parameter allows for nodes to discount the
clicklogs of other nodes if these nodes have query and click
behavior that does not match its own at least once.

Similarity weighting is calculated by taking the dot prod-
uct between the aforementioned similarity scores for each
node and sorted results based on the overall number of clicks
found in each node’s local clicklog. The resulting ranking
R provided to querying node ni for query Q is therefore
calculated as:

Ri(Q) = (∀k ∈ KQ),

N∑
j=0

(Ck · (Si(nj) + F ))

where Si(nj) indicates the similarity score for each node
pair (ni, nj) ∈ N , and Ck indicates the number of clicks
associated with item k ∈ KQ where KQ is the unsorted
set of results for query Q. The resulting items are sorted
in descending order by their associated scores. As such,
each potential query result is assigned a score based on the
number of clicks found in each node’s clicklog, weighted
by the similarity of each node to the node performing the
query. Therefore, the dissemination of clicklog data not only
informs other nodes of the popularity of items, it also allows
for nodes to cluster themselves based on an easy-to-compute
metric, further allowing for personalization of results.

A drawback of introducing such a similarity metric into the
ranked results is that it introduces a potential attack vector
for adversaries to influence the results of future queries
throughout the network, e.g. via spam or sybil attacks. Spam
attacks become less viable as the number of legitimate users
grows larger, while more targeted attacks may be thwarted
by the user similarity scheme itself. An adversary attempting
to undermine the ranking algorithm by intentionally selecting
irrelevant results for specific queries would find themselves
increasingly isolated from other users performing legitimate
queries, as their behavior over time would continue to deviate
from that of other users. Sophisticated adversaries would then
need to mimic legitimate behavior for a large portion of their
queries in order to remain relevant to other users without
ostracizing themselves.

IV. DATASET AND EXPERIMENT SETUP

A. Dataset

The dataset utilized in this experiment was compiled from
a series of 256 musical releases by real artists via the

PandaCD record label, all of which were released under
the Creative Commons license. Entries may be singles,
albums, EPs (extended-play releases), and LPs (limited-play
releases). Every entry consists of three attributes: ’Title’,
’Artist’, and ’Album’, as well as a number of associated
’Tags’ as metadata, which describe the release in terms
of genre. These tags have been compiled into a corpus
of potential query terms, and every query term in this
experiment consists of exactly one tag, of which there are a
total of 39 unique tags.

B. Experiment Setup

Initially we conduct a baseline validation experiment to
demonstrate the sensitivity of the node discovery process
within distributed machine learning. Realistic simulations
lack any centrality and thus have no central coordinator to
discover other nodes. Our design integrates node discovery
using the clicklog itself. Thus a single clicklog message
provides both overlay network information for gossip dis-
semination, as well as the underlying data upon which the
unsupervised model relies. This baseline experiment entails
no adversarial interference, demonstrating how individual
nodes adjust their rankings over time as they receive gossip
throughout the simulation. All other experiments build upon
this validation simulation’s setup for comparison purposes.
Across all experiments, the simulated network consists of
100 nodes, all of which begin with a limited number of
library items. The simulation is initialized as follows:

For each node ni ∈ N, i = {0, ..., 99} in the network,
ni is initialized by selecting at uniform random 10% of
the items from the music dataset to add to its local library
(approximately 26 songs per node). Next, a series of initial
searches are performed. For each of the 39 possible query
terms, each node performs a search for said query term
and chooses at random one item from its library with a
tag matching the query term (should it exist) and appends
this entry to its local clicklog. Should a node’s library not
contain any items with tags matching the query term, it
selects at random a single item from its local library, thereby
introducing a small degree of noise into the clicklog. At this
point, no ranking or click modeling is utilized for selection,
and the clicklog of node ni contains exactly 39 items. Then,
ni gossips a random sample of 10% of its local clicklog
to a randomly selected node nj ∈ {n0, ..., ni} such that
each node contains no more than 44 clicklog entries - 39
belonging to itself, and up to an additional five items that it
receives via gossip from another peer.

This method of initialization affords each peer in the
network an even number of clicklog items to utilize during
a query, but an uneven distribution of network knowledge
across each node such that nodes with higher IDs are more
likely to be aware of a higher number of peers at the outset
of the simulation. After every node has been initialized, the
simulation begins and nodes are chosen uniformly at random
alongside a random query term from the corpus to perform
a query-term search. The results of the search are ranked
as detailed in Section 2A, and an item to be clicked upon
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is chosen based on the aforementioned click model. The
search and click results are then appended to this node’s
local clicklog. Thereafter, this node then performs a gossip
round by randomly selecting a subset of peers it is aware
of (except in the case of the Push vs. Pull experiments, see
Section 5D), equal to 10% of the nodes it is aware of (up to
a maximum of 10 targets).

There are two popular schemes for initiating gossip in
p2p networks: time-based and probabilistic. In time-based
schemes, a node gossips every t time units, whereas in most
probabilistic schemes any given node has a probability p per
time unit to gossip some information to a subset of other
nodes, such that after t time units there is a

Pr(X = t) = (1− p)t−1 · p

probability that a node will have gossiped. To clearly illumi-
nate the effect of adversaries on G-Rank’s performance, our
experiment implements a hybrid gossip approach such that
at every simulation tick t a random node performs a query
and then gossips its clicklog to every node it is aware of
(see Section 3C). As such, a node is guaranteed to gossip
post-query yet still is chosen probabilistically such that the
above geometric probability distribution holds, given that a
node has probability p = 1

|N | of performing a query-then-
gossip operation at an arbitrary time step t. By utilizing such
a gossip mechanism we ensure that clicklog information is
propagated regularly throughout each simulation.

C. Click Modeling

Modeling realistic user-clicking behavior is essential to
the development of ranking algorithms. Not all user clicks
may be on relevant items in a list, and as such it can be
expected that a certain degree of noise exists in user click
data. Extrapolating such noise into a simulation therefore
requires careful consideration. Without anticipating and mod-
eling a certain degree of noise, a ranking model’s query
results may erroneously converge towards irrelevant items.
Anticipating and modeling noise in user click behavior has
been investigated [16], however for this experiment users
select the highest-ranking item in most queries, except when
multiple results with equal relevance scores were shown to
the user. In this case, the result with the lowest ID was chosen
as a tiebreaker.

V. ADVERSARIAL SIMULATIONS AND PERFORMANCE
ANALYSIS

For all experiments we conducted an evaluation round
every 100 queries, where a number of performance metrics
are gathered (see Section 5E). In addition to the regular per-
formance evaluation, these evaluation rounds act as progress
markers at discrete intervals in the simulation, which are
discussed in Section 5F. Each experiment, including the
baseline, was conducted twice: once with similarity weighted
normalization coefficient F = 0 and again with F = 1,
demonstrating the effect that cluster isolation (see Section
3D) has on G-Ranks performance. Unless stated otherwise,
simulation parameters are as follows:

• When gossiping, each node targets 10% of the nodes it
is aware of (up to a maximum of 10 recipients) all of
whom are drawn from local knowledge via the clicklog.

• Gossip messages include a random uniform sampling
of 10% of the local clicklog. For clicklogs with fewer
than 10 entries, exactly one clicklog item is shared via
gossip.

• When a new node joins the network, it is bootstrapped
by a randomly selected node. This bootstrap node gos-
sips exactly as described in the previous point, affording
the new node a selection of clicklog items to work
with. Via this bootstrap mechanism, each adversarial
node becomes aware of a handful of other nodes in the
network to which it can gossip during its attack phase.

• There are exactly 10 malicious nodes in each adversarial
experiment, which are bootstrapped as stated above at
simulation time step t = 2000, exactly 20% through
the experiment. The time of attack is indicated by a red
vertical line in each figure.

A. Baseline Experiment

We simulate several adversarial conditions alongside two
"baseline" simulations with no adversaries. Each adversarial
simulation is intended to isolate and investigate the effects
of specific adversarial and anti-social behavior on G-Rank’s
performance. Each simulation’s results is compared to the
baseline global performance of G-Rank, as the global optimal
rankings are negatively affected by such attacks. As such,
each scenario’s impact on G-Rank’s ability to converge
towards a true global optimality without adversarial inter-
ference is investigated with the aid of the metrics described
in Section 4B.

B. Targeted Sybil Attack

The first adversarial simulation implements a basic sybil
attack where five new sybil nodes are bootstrapped into the
network as described above. Each sybil attacker chooses a
single specific term to perform 100 queries with, each time
clicking the bottom-most item in the list of ranked results.
After the series of queries are complete, the attackers gossip
their entire clicklog to every node they have become aware of
during their bootstrap phase as if it were legitimate clicklog
gossip. This attack artificially inflates the relevance score of
otherwise low-ranked results, undermining the veracity of the
rankings other nodes are shown. By repeatedly choosing the
lowest-ranked item in the list, the attacker attempts to usurp
G-Rank’s ability to determine the most popular item asso-
ciated with the query term. Such an attack is performed to
demonstrate how a sophisticated adversary could ostensibly
undermine a p2p network utilizing G-Rank by forcing their
desired results towards the top of query results.

C. Clicklog Inflation Attack

The second adversarial simulation differs from the pre-
vious in two ways: the number of queries each adversary
performs 1000 queries instead of 100, and each adversary
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chooses results purely at random. By performing a signifi-
cant number of queries before gossiping the entirety of its
clicklog, the adversary attempts to undermine G-Rank via the
dramatic inflation in size of non-adversarial node clicklogs.
The propagation of random clicklog noise throughout the
network is investigated against the more targeted sybil attack
mentioned previously. In large decentralized p2p networks it
is highly unlikely that any single node is aware of all other
nodes in the network. As such, the clicklog inflation attack
is most likely to have the greatest impact upon the initial
recipients of adversarial gossip due to the fact that benign
nodes gossip only a portion of their local clicklogs at any
given time, limiting the contagion.

D. Push vs. Pull Experiment

TODO: flesh this out
Within this fourth experiment we introduce a number

of malicious nodes which conduct a Sybil attack. This
experiment shows the dramatic impact of push versus pull
gossip. This experiment proves that is is vital for security that
malicious nodes can not easily insert their polluting content
with honest peers, i.e. a push architecture. With a pull archi-
tecture, peers are more autonomous and decide individually
the speed of incoming information, if they trust another peer,
or may randomly sample from discovered peers. Malicious
nodes in this experiment try to push two messages when
gossiping. With the pull architecture, only one message per
gossip phase is accepted. As Internet bandwidth is cheap,
this simple experiment shows a first line of defence against
clicklog spam without the need for significantly modifying
G-Rank’s core functionality.

E. Evaluation Metrics

For each simulation we utilized a number of metrics to
evaluate G-Rank’s ranking performance over time, its tenac-
ity when facing adversarial conditions, and its computational
performance over time. The primary performance metric
utilized is a positional edit distance metric where we compare
the sum of index distances between each unique element
in Ri(Q) and Rg(Q), where Rg(Q) indicates the globally
optimal ranking for query Q. Rg(Q) is computed simply by
ranking the most popular items by their respective number of
clicks associated with a specific query term across all nodes3.
This metric allows us to determine how far each item is from
its most optimal position at any given point in time, giving
us the ability to determine how G-Rank performs for any
given node for a specific query term.

We also consider the rate of convergence towards optimal-
ity - that is, the velocity of G-Rank’s convergence towards
the global optimal across all nodes and possible query
terms over time, measured in the above distance metric.
The rate of change in this distance metric affords us insight
into G-Ranks behavior over time, particularly during the
adversarial simulations, such that we can better understand
how G-Rank’s long-term performance is affected by transient

3This information is unavailable to individual nodes at runtime, and is
only observable during simulation.

Fig. 2. Targeted Sybil Attack: The median distance to the optimal ranking
for each node, across all possible query terms. Post-attack, non-malicious
nodes converge higher towards an equilibrium.

Fig. 3. Targeted Sybil Attack: The mean distance to the optimal ranking
for each node, across all possible query terms.

adversarial events. For each arbitrary query term, we also
measure the number of results containing the most popular
result (globally) in the top position in order to demonstrate
the roughly even distribution of performance, regardless of
the frequency a specific query term is issued. (TODO: Bad
description, can I do better?)

In terms of space and storage metrics, we also measure
the average clicklog size across all nodes over time, as
gossip occurs consistently yet as time goes on the number
of duplicate clicklog items being shared likely continues
to grow. To better understand G-Rank’s dependence upon
gossip, we monitor the rate of growth in gossip message size
(in bytes) as individual clicklogs grow large - an important
metric considering the potential variation in each node’s
processing power and storage space. However, we do not
consider any time-based computational overhead metrics as
these are highly dependent upon the programming language
in which G-Rank is implemented as well as each individual
device’s computational power.

F. Performance Analysis

The results of the initial baseline experiment show that
without any adversarial conditions the performance of G-
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Rank approaches the globally-optimal ranking for each node.
FIGURE X shows that the distance between each node’s
local ranking of results and the globally optimal ranking for
each possible query term drops dramatically after just a few
evaluation rounds. FIGURE X shows that the percentage
of queries containing the most popular song per tag grows
logarithmically, further indicating that early gossip rounds
have a profound effect on improving search results. As more
gossip occurs, the number of queries containing the top
song associated with each query approaches 100%, as seen
in FIGURE X. Figure 2 also shows how the number of
most popular songs associated with each possible query term
grows at approximately even rates, indicating that the gossip
scheme itself does not lead to an imbalance in query term
searches.

Considering the known threat that sybil and spam attacks
pose to p2p networks, the results of the adversarial simu-
lations generally fall in line with expectations. G-Rank is
susceptible to sybil and spam attacks, though its ability to
recover post-attack and continue converging towards global
optimality is notable. However, clicklog inflation attacks
have a diminished effect, with the majority of the im-
pact affecting the immediate recipients of malicious gossip.
This indicates that mechanisms that mitigate or prevent the
propagation of messages throughout the network outside of
explicitly-designated gossip messages may greatly diminish
negative consequences of spam and sybil attacks.

As seen in FIGURES X, Y, and Z, G-Rank is able to
begin re-converging towards the global optimum, albeit more
slowly in the the Clicklog Inflation attack. This is likely due
to the significant increase in clicklog size, meaning that a
significant number of benign clicklog entries are required
post-attack to offset the effect of malicious clicklog entries.
FIGURE X shows that when F = 0, benign users are not
as dramatically affected by malicious gossip, particularly
during the clicklog inflation attack. However, FIGURE X
shows that the targeted sybil attack can dramatically affect
the unfortunate recipients of malicious gossip, particularly
in the immediate aftermath of receiving such gossip. This
suggests that the length and diversity of each individual
node’s clicklog has an effect on an adversary’s ability to
sabotage G-Rank. As the simulation time increases, the
average local clicklog length also grows (as seen in FIGURE
X), affording nodes the opportunity to calculate similarity
metrics with an increasingly large subset of other nodes.

The effect of the normalization coefficient F is noticeable,
yet has varied effect depending upon the type of attack it
faces. Setting F = 0 has the consequence of effectively
disqualifying any nodes without at least one matching query-
click pair with the querying node, which thereby has the
knock-on effect of dramatically reducing the probability that
an adversary’s behavior influences any ranked results. Any
influence an adversary then has on ranking is dependent upon
the number of matching query-click pairs, which favors non-
targeted attacks such as the clicklog inflation attack.

Conversely, when F > 0, all clicklog data (including
malicious entries) is considered in the ranking process as

the weight of each entry will subsequently also be a positive
non-zero value. The positive effect this has is greater per-
sonalization results for benign queries; clicklog results from
nodes with similarity scores Si(nj) = 0 will still have the
number of clicks associated with that result considered in the
final ranking. The negative effect is that all clicklog entries,
including malicious entries, will be considered. FIGURES
X and Y demonstrates the difference in effect between two
identical simulation environments where F = 0 and F = 1.
As seen in these figures, the normalization constant affords
benign queries closer convergence to global optimum at the
expense of dramatically reduced resilience in the face of
attack.

G. Future Work

(TODO: In progress...)
Potential for future development of unsupervised decen-

tralized search and ranking models in p2p networks is ex-
ceptionally rich. G-Rank demonstrates that a simple unsuper-
vised model can recommend near-perfect results to users in
sterile network conditions. One of the primary pitfalls of such
unsupervised methods is mitigating the threat adversarial
actors such as sybil attackers may have on the model. G-Rank
is capable of recovering and improving performance after a
singular sybil attack, but cannot adapt under consistent and
persistent sybil attacks. As such, mitigating threats above the
network and protocol layers at the model level is a rich field
for future development.

Potential model improvements may include augmenting
the user clustering model beyond a simple similarity metric,
such that sybil and other spam attacks become classified as
outliers with regards to "typical" user behavior, such that
recommendation and ranking scores become based off of
behavior of other users within clusters.

VI. CONCLUSION

(TODO: In progress...)
The results demonstrate that unsupervised search-and-rank

models designed specifically for p2p applications show merit
and are worthy of further research. Relatively basic unsuper-
vised methods such as G-Rank are capable of converging
towards a global optimum, even when provided with limited
data. G-Rank shows notable resilience in the fact of transient
adversarial conditions, particularly regarding targeted nefar-
ious behavior. The impact of spam attacks depends heavily
upon the clicklog dissemination gossip scheme, such that
spam mitigation methods implemented between the network
and application layers may dramatically reduce the negative
impacts of such attacks. Another area worthy of further
research is spam mitigation within the unsupervised model
itself, particularly with regards to outlier detection in clicklog
data.
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[28] Ormándi, Róbert, István Hegedűs, and Márk Jelasity. "Gossip learn-
ing with linear models on fully distributed data." Concurrency and
Computation: Practice and Experience 25.4 (2013): 556-571.

[29] Mottin, Davide, Themis Palpanas, and Yannis Velegrakis. "Entity
ranking using click-log information." Intelligent Data Analysis 17.5
(2013): 837-856.
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Fig. 4. Dataset
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Fig. 5. Clicklog
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