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I. INTRODUCTION

In recent years, the European Central Bank (ECB) has
been exploring the possibility of realizing its own Central
Bank Digital Currency (CDBC), the ‘digital Euro’. The ECB
has published various reports and resources that outline the
need for such a project (i.e. [1], [2]). Calls for expression of
interest are being published and the ECB aims to complete
its investigation phase by October 2023 [3], [4]. The main
reason for this development is the rise of digital payments
and corresponding decline of cash usage. According to reports
published by De Nederlandsche Bank (DNB), the national
bank of the Netherlands, the share of cash payments dropped
from 56% in 2010 to 21% in 2020 [5], [6]. The Swedish
Riksbank mentions similar trends for Sweden [7].

Euro cash is the only public form of money that is directly
backed by the ECB [2]. Digital payments are not; they are
backed by private parties such as commercial banks. A critical
dependence on these parties is eroding the sovereignty of
the Euro. They cannot safeguard reliability comparable to
that of ECB-backed cash. Nevertheless, there is demand for
reliability, especially in times of crisis [8]. In recent history,
there have been several financial crises that caused large-scale
bankruptcies which consequently impacted consumer’s savings
(e.g. in 2008). CBDCs can provide reliability and safeguard
consumers against the effects of large-scale bankruptcy of
commercial payment providers.

Foreign organisations, commercial parties, and cryptocur-
rencies are threatening the influence of central banks. A
report published by the ECB discusses the risk of currency
substitution. Substitution occurs when a new form of money,
unregulated by ECB, gains major usage in the EU. The new
payment method would likely have to outperform its competi-
tors, for instance by being cheaper and/or more convenient.
According to the report, currency substitution could have a

range of negative effects on the ECB’s monetary policy and
even threaten the EU’s independence [1]. The actors respon-
sible for this consternation are mostly large corporations and
foreign central banks [2], [9]. Some interested governmental
parties are e.g. the United States government and the People’s
Bank of China [10], [11]. An interested commercial party is
for instance Meta (formerly Facebook), which initiated Diem1,
a hypothesized stablecoin that did not launch due to legal and
regulatory issues. Due to the potentially far-reaching impact
of the introduction of CBDCs to consumers and the rapid pace
with which central banks are operating, public discourse on
the topic has been increasing. Some regulators are questioning
the use case of CBDCs and their implications on the role of
central banks and consumer’s privacy [12], [13].

To determine the appropriate role for a CBDC in the EU,
and to compete with other payment solutions, the ECB has
launched an extensive exploratory phase. In this exploration,
the ECB has expressed interest for its CBDC to be usable in
an offline environment [1]. This is crucial in case of network
failure or in areas without a reliable internet connection. A
prominent example of currency that is spent offline is cash.

This thesis concerns itself with implementing a simple
transferable digital currency on the Kotlin-IPv82 protocol stack
and doing a performance analysis. In accordance with the
Offline First design principles, the currency can be spent of-
fline and guarantees retroactive fraud detection. It is therefore
resilient against temporary failure of central servers, unlike
many currently deployed systems. This thesis contributes 1) a
software-implemented simple token-based transaction system
2) a performance analysis of various bottlenecks in this system,
with a special emphasis on the Kotlin-IPv8 framework and 3)
a slightly optimized version of the EVA2 protocol.

II. PROBLEM DESCRIPTION

The main difficulty with implementing offline digital cur-
rency is the double spending problem. Double spending is the
action of spending a digital unit of value more than once,
illegitimately. In a digital environment this is possible because

1For Diem, refer to https://www.diem.com/en-us/
2For Kotlin-IPv8 and EVA, refer to https://github.com/Tribler/kotlin-ipv8.

https://www.diem.com/en-us/
https://github.com/Tribler/kotlin-ipv8


currency is easily duplicated. This makes fraud prevention
difficult, especially in offline scenarios. In such scenarios,
verifying transactions is hard due to limited communication.

The double spending problem has never been solved in an
offline setting, only in an online setting. Many cryptocurren-
cies (e.g. Bitcoin) mitigate the problem by utilizing ‘global
consensus’ [14]. This removes the need for a central authority
but does require near-immediate connectivity to parts of the
network. Global consensus disallows offline transfers and is
therefore not a well-suited solution to make offline spending
possible.

The concept of digital currency is not new; it is widely
agreed upon that the idea was first proposed by Chaum in
1983 (see Section III-A) [15]. Since then, the problem of
offline spending has been explored extensively. From the
literature we observe that most currency schemes are token-
based, as opposed to account-based. Token-based schemes
transfer tokens; monetary units that can be identified with a
serial number. By contrast, account-based schemes perform
monetary transfers by crediting and debiting accounts. The
crucial difference is that currency in token-based schemes
is identifiable, whereas in account-based schemes it is not.
A commonly used analogy is that token-based schemes are
comparable to banknotes, whereas account-based schemes are
comparable to bank deposits. A crucial lesson observed from
the literature and our main prior work (see Section III-B),
is that account-based systems complicate robustness measures
such as safeguarding against double spending [16].

We believe that a token-based scheme lends itself better
for offline spending. A token-based scheme requires the gen-
eration of tokens—analogous to minting coins—. The token
minting process and transaction protocol of our implemen-
tation are described in Section IV. We limit ourselves to
an implementation where currency is represented by digital
tokens of a fixed value.

An additional lesson from the literature is that robust real-
isations are lacking for numerous theoretical proposals made
over the last 39 years. The realisation of many of the difficult
designs is by itself a difficult challenge. Another lesson from
the literature is that adoption requires public support. This is
out of scope for the efforts presented in this thesis.

III. RELATED WORK

A. Advancements in digital currency

In 1983, Chaum introduced blind signatures in what is
widely accredited as the first paper to describe digital currency
[15]. The paper describes a novel cryptographic primitive, the
‘blind signature’. It allows parties to sign messages without
knowing their contents. The result is that the signing party
cannot relate their own signature to the original message they
signed. With this primitive, the literature’s first digital cash
scheme was described. In this scheme, a monetary authority
guarantees the validity of payments. Due to blind signatures,
the authority cannot identify the recipient of any transaction
it verifies, thereby safeguarding consumers’ privacy. Chaum’s
cash was however non-transferable. Non-transferable e-cash

can be spent only once, after which it must be redeemed by a
trusted authority. The authority returns an equivalent amount
of cash that is spendable again.

In 1989, Okamoto introduced transferable e-cash [17].
Transferable e-cash is more like physical cash; it can be
spent repeatedly, from one user to another. It does not require
a network connection to a monetary authority with every
transaction. In the same paper, divisible e-cash was introduced.
In contrast to physical cash, divisible e-cash can be spent
in smaller denominations than the piece that is owned. An
advantage of divisible e-cash is that exact payments can be
made and change is not required.

In 1995, a modification to blind signatures was proposed
that made them ‘fair’ [18]. Most blind signature schemes
were perfectly unlinkable. Perfect unlinkability means that
no monetary authority can relate withdrawals to payments.
Therefore, these schemes allowed for a variety of crimes to
be undetectable, such as money laundering. With the introduc-
tion of ‘fair’ blind signatures, an additional and independent
authority (such as a judge) would be able to obtain information
that can be used to detect crime.

In 2008, Bitcoin was presented, widely accredited as the first
major cryptocurrency. It solves the double spending problem
probabilistically and without a central authority [14]. Bitcoin’s
value is determined by market forces and highly volatile. This
is in stark contrast to CBDCs, which are tethered in value to
government-issued money.

B. Eurotoken

We consider the main prior work for this thesis to be the
first Eurotoken prototype by Delft University of Technology
[19]. This digital currency is also implemented on Kotlin-IPv8.
Eurotoken is an account-based system and is non-transferable
by default. Eurotoken opted for a trusted authority to verify
transactions. Likewise, it is therefore not decentralized. The
advantage of this approach in the context of CBDCs is that
it enables the respective central bank to exert control over
the network. Moreover, it provides a non-deterministic near-
immediate transaction finality.

Based upon Eurotoken and in line with many proposed
digital cash schemes, we also sacrificed decentralization and
opted for a monetary authority. By contrast, our prototype is
token-based and offline transferable by design.

C. Price Stability

It is fundamental for a European CBDC to be tethered
in value to the Euro. A high price volatility like Bitcoin’s
is undesirable for a medium of exchange [20]. There are
various ways in which the value of an asset can be kept
stable. This topic has gained renewed interest with the rise
of ‘stablecoins’—cryptocurrencies that aim to be non-volatile
with regards to a major non-cryptocurrency or physical asset.
There is an inverse relationship between the potential stability
of stablecoins and how much they are decentralized [21].
The strongest stabilization mechanism is collateralization by
currency or off-chain assets such as gold. By allowing free



trade between a stablecoin and its collateral at a fixed price, ar-
bitrage prevents the stablecoin’s price from fluctuating greatly.
However, off-chain assets are not traded in a decentralized
way and as such there is a trade-off between decentralization
and stability. To the best of our knowledge, no decentralized
and highly stable stablecoins exist. The prototype described in
this thesis makes use of an implied centralized exchange. The
implementation of this or other means of maintaining price
stability is intentionally left out of scope.

IV. DESIGN AND ARCHITECTURE

This research implements a centralized CBDC prototype
that allows offline transactions with fixed-value tokens and
guarantees retroactive fraud detection.

The proposed system requires a trusted monetary authority
that is in charge of token exchange and transaction verification.
We refer to this party as ‘authority’ and identify them by their
public key. Verification is therefore a centralized operation.
The motivation for this design choice is elaborated upon in
Section III-B. The process of exchanging currency for tokens
is beyond the scope of this thesis and is briefly discussed in
Section VII. Our design is deliberately simple to make it robust
and well understood.

All system participants apart from the authority are clients.
They, too, are identified by their public key. It is assumed that
clients know the public key of the authority in the network.
It is also assumed that authorities know the real identities of
clients. While this is not necessary for the proposed system to
function, implicating a public key with fraud loses its severity
if the instigator can remain anonymous. This is discussed
further in Section IV-H.

Clients can transact tokens to each other and consult the
authority to verify the validity of their tokens. If clients cannot
connect to the authority, for instance during a power outage,
they can continue transacting but defer verification until they
can connect.

To realize retroactive fraud detection, the implemented
system requires authorities to be able to unambiguously re-
construct the sequence of owners of a token. This is done
by providing each token with a linked list of all previous
owners until its last verification. Details of this procedure are
explained further in this section.

A. Token Format
The token protocol is based upon transacting tokens. A

diagram of a token is given in Figure 1. Each token contains:
1) Serial number. An 8-byte unique token identifier.
2) Value. A 1-byte representation of the token’s worth. Like

cash, tokens have a limited number of fixed denomina-
tions. Certain byte values are mapped to certain denom-
inations; the remaining values are considered invalid.

3) Authority public key. A 74-byte public key3 of the
authority that is in charge of the token (the ‘authority’).

3Public keys in Kotlin-IPv8 are 74 bytes long: 10 bytes for a string prefix;
32 bytes for an encryption key; and 32 bytes for a verification key. Only the
latter is required for our prototype. However, Kotlin-IPv8 does not allow these
to be split by design, as parties are identified by the entire 74 bytes.

Fig. 1. Graphical representation of a token. Tokens represent monetary units
of fixed value that store all their previous recipients until they are verified by
an authority.

4) Nonce. A 64-byte pseudo-random nonce used by the
authority to differentiate between differing occasions
where the same token is sent to the same recipient.

5) Recipients. A list of recipient-proof pairs in chronolog-
ical order. This list must contain at least a first pair:

a) First recipient public key. A 74-byte public key3

of the token’s first recipient after creation or vali-
dation.

b) First proof. A 64-byte signature (‘proof’) given by
the authority signing Serial number, Value, Nonce,
and First recipient public key.

All pairs in the list are of the same format and bit-length.
The second pair (if present) contains Second recipient
public key and a signature given by First recipient public
key signing First proof and Second recipient public key
together. Likewise, all subsequent pairs follow the same
pattern; they contain a signature by the previous public
key in the list, signing the previous proof together with
the next public key. This signature chain corresponds to
the token changing ownership during transactions.

The bit-lengths of the signatures and public keys were
adapted from those used in Kotlin-IPv8 and are not integral
to the protocol’s functioning.

The initial size of a token when transferred from a monetary
authority to the first recipient adds up to 285 bytes. Every
additional recipient adds 74 + 64 = 138 bytes for its public
key and signature. When a token is verified by a monetary
authority, its size is reset to 285 bytes (see Section IV-E).

B. Token Minting

When a token is created, its Serial number, Value, Nonce,
Authority public key, and Recipients list are set as specified in
Section IV-A. The authority stores a copy of the entire token
and sends it to the intended client.

C. Client Verification

When a client obtains a token, it verifies it in a 3-step
process. First, the client verifies that the token’s last recipient



Fig. 2. The authority’s double spending detection mechanism. In the figure,
recipient B double spent a token, which was detected because proof N+K+1
of the authority was not equal to proof 1 +K + 1 of the incoming token.

(that is, the last public key in the Recipients list) refers to them.
Second, the client verifies that it knows the token’s Authority
public key and that this key created the token’s First proof.
Third, the client verifies the remaining chain of proofs in the
Recipients list. The purpose of the client’s verification process
is merely to ensure that they have received an unambiguous
proof of transfer from their transaction’s counterparty. This
proof can later be used by the relevant authority to proof
potential fraud. A client deciding that a token is valid does
not imply that an authority will decide the same. The client’s
verification does however guarantee that clients victimized by
fraud can proof so eventually.

D. Client Transaction

A token’s initial recipient may choose to send it to another
client. If it does, it must append a new pair to the token’s
Recipients list that contains the desired recipient’s public key
and a signature of the token’s last proof together with the
desired recipient’s public key. This is depicted in Figure 1.

E. Authority Verification

The authority’s verification process is started when a client
sends them a token to verify. The verification process contains
6 steps:

1) The authority ensures that the received token has more
than 1 recipient in its Recipients list. If not, the token is
either invalid or ineligible for verification.

2) The authority ensures that the token’s last recipient is
the client that sent the token in for verification.

3) The authority queries if the token is still valid. The
knowledge that the authority once signed the received

token, which can be derived from the token’s First proof,
says little about the token’s current state. The authority
compares its public key against the token’s Authority
public key and queries the token’s Serial number to
ensure that itself is the authority that manages the token.
Then it verifies that the token is still in circulation and
not e.g. blacklisted.

4) The authority will, like an honest client, verify the chain
of proofs in the Recipients list.

5) The authority will attempt to detect double spending by
comparing the proof of the last pair (‘last proof‘) of its
token-copy to First proof in the received token. If these
are identical, double spending cannot be proven (see
Section IV-F) and the authority will finalize verification.
Finalizing verification requires the authority to update its
copy of the token by appending all new recipient-proof
pairs of the received token to its Recipients list. It will
also append a new pair containing the desired recipi-
ent—the one who sent the token for verification—and a
corresponding proof.

6) The authority copies the verified token, empties the
Recipients list save for its last entry, and sends the
verified token to the desired recipient.

F. Double Spending Detection

In Section IV-E it is mentioned that the authority updates
its token-copy’s Recipients list upon a valid verification. This
means that its last proof is updated as well. To detect double
spending, an authority compares the last proof of its token-
copy to First proof in the received token. A diagram of this
scenario is depicted in Figure 2.

If a token is double spent, then multiple versions of the
token will eventually reach their authority. The first time,
double spending cannot be detected and the token-copy is
updated. Subsequent times, the authority’s token-copy already
has an updated Recipients list and therefore its last proof
does not correspond to the double spent token’s First proof
anymore. Thus, double spending must have occurred if the
proofs differ. If the proofs are equal, double spending might
have occurred.

When double spending is detected, the authority will search
for the instigator. It will find the received token’s First proof
in the Recipients list of its token-copy. It will then compare
the recipient-proof pairs of the token-copy with those of the
received token. Comparison starts from the pairs that contain
First proof. All pairs before it have already been verified.
Eventually, it must find two differing pairs, after which all
pairs will be different because proofs are chained to each other.
The first differing pairs are the start of the token’s split history
and proof that double spending was performed by the client
that signed them.

G. Replay Attack Prevention

The detection mechanism of Section IV-F allows for a
replay attack in an offline environment. If a malicious sender
A were to replay sending the same token to the same receiver



B as before, said receiver would not flag this as malicious be-
havior. If B in turn were to spend this token, upon verification
of the token, B would be flagged as a double spender. When
an authority compares the transaction history of the token, it
cannot distinguish A’s first transaction to B from its second.
Thus B spending the token is the first occurrence that differs
from the authority’s history. As described in Section IV-F, B
is therefore marked as a fraudster.

There exist various solutions for preventing such an attack.
One such solution is to initiate a transaction with the receiver
sending a short handshake that includes a pseudo-random
nonce. The sender must include this nonce in its transaction to
proof with overwhelming probability that they did not replay
the transaction. Another solution is to have receivers maintain
a list of the last proofs of all tokens they have ever received.

H. Anonymity

For offline usage, the implemented system requires aggre-
gating a linked list of previous owners of a token, up until
the last verification by an authority. Specifically, recipients of
a token can see all previous recipients of that token until its
last verification. This is detrimental to privacy and anonymity.
There are digital cash schemes that provide stronger notions
of anonymity. Some schemes protect the identities of previous
recipients and provide unlinkability, such that it is also impos-
sible to relate different payments from the same client [22].
Some schemes provide an even stronger notion of anonymity
where an adversary cannot recognize a token spent between
other clients, even if it has already owned the token [23]. It has
however been proven that an adversary can always recognize
his previously-owned tokens if they are paid back to him [23].

Furthermore, it is assumed that authorities know the iden-
tities of their clients. It is expected that fraudsters cannot
always be penalized within the confines of the transaction
system. For example, dealing a corrective fine would require
a convict to own enough tokens to pay. If a fine cannot be
paid, corrective actions need to be taken in another way that
does not involve tokens. Finding a fair way to correct fraud
and penalize fraudsters was intentionally left out of scope.

V. IMPLEMENTATION

We prototyped the design described in Section IV. The
prototype deliberately includes only the basic facets required
to transact currency per Section IV. It was implemented on
the Kotlin-IPv8 protocol stack. Kotlin-IPv8 provides utilities
for peer-to-peer communication, such as UDP hole punching
and public key cryptography. The specified sizes for public
keys and signatures mentioned in Section IV-A were adapted
from Kotlin-IPv8.

The de facto way of transferring large binary files via
Kotlin-IPv8 is by using the EVA protocol [24]. EVA is an ac-
knowledgement protocol for UDP that uses acknowledgement
windows to guarantee packet delivery. We were confronted
with EVA’s limitations with regards to stability and throughput
and thus opted to use our own (slightly) modified version. Our
modified version LINK NAAR PR:

• Fixes a race condition that caused EVA to fail subsequent
data transfers arbitrarily.

• Uses a faster and more compact encoding of lost packet
numbers. HOEVEEL SNELLER?

• Allows encryption to be disabled.
Nevertheless, in Section VI-C we will demonstrate that we
were unable to solve all problems with EVA that we encoun-
tered.

Furthermore, the implementation provides several scripts
that were used for the performance analysis that will follow
in Section VI. For details, please refer to Table I.

VI. PERFORMANCE ANALYSIS

We present an analysis of our prototype’s performance. For
a proper frame of reference, we place additional emphasis
on the low-level functionality of the underlying Kotlin-IPv8
framework.

Experiments were performed on standard consumer elec-
tronics; a Lenovo Thinkpad L13 with an Intel i5 CPU operat-
ing at 2.11 GHz and 8 GB of DDR4 RAM. All experiments
were performed 10 times; the variance of the results is depicted
in most figures.

A. Cryptographic Verification

We measured the throughput of cryptographic signing and
verification operations to ascertain performance bounds of
Kotlin-IPv8 and thus the transaction protocol. The core idea
is that by stripping the implementation of all other factors,
the influence of cryptographic operations on an authority’s
throughput can be determined. All operations were performed
with Ed25519 [25] using a Kotlin port of Libsodium4 that
is also used by Kotlin-IPv8. The chosen parameters were
identical to those used in Kotlin-IPv8.

Figure 3 shows throughput of the cryptographic operations
required to sign and verify tokens in an online setting. In
this setting, three signatures are to be verified: the authority’s
initial signature (147); the signature of the first recipient to the
second; and the signature of the second back to the authority.
The figure shows that throughput increases with the number
of CPUs until a certain threshold. This limits scalability
significantly. We suspect the diminishing increase to be due
to resource sharing within Libsodium, although the exact
reasons are unknown. Interestingly, the highest verification
measurement of 22489 tokens per second, at 147+138+138 =
423 bytes to verify per token, corresponds to a verification
throughput of only 9.51 megabytes per second. To explain this,
we measured signature verification for different data sizes.

Figure 4 shows the throughput of cryptographic signing and
verification for varying data sizes on a single thread. Again
we used ed25519 and Libsodium to mimic Kotlin-IPv8. It is
apparent that larger file sizes are tremendously faster to verify
than smaller. It is worth noting again that each token requires
three separate signature operations on files that are all < 147
bytes.

4For Lazysodium, see https://github.com/terl/lazysodium-java.

https://github.com/terl/lazysodium-java


TABLE I
FACETS OF PROTOTYPE AND ANALYSIS

Prototype Analysis
Feature Client Verifier Minting Cryptography Pipe UDP (native) UDP (Kotlin) Kotlin-IPv8 EVA Plots
LoC 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%) 10 (10%)
Language Kotlin Kotlin Kotlin Kotlin C C Kotlin Kotlin Kotlin Python

Fig. 3. The benefits of parallelism diminish quickly. Throughput of only
cryptographic verification and signing of tokens.

Fig. 4. Throughput of cryptographic signing and verification collapses for
small data sizes. Operations on tokens are at most 147 bytes, marked by the
red circle.

Figure 5 show that the impact of verification on throughput
is also noticeable when tokens are transacted in an offline
setting and require additional verification after the fact.

B. Data Transfer

We performed a range of data transfers with increasingly
more high-level software. Measurements were performed on
one machine, to eliminate the fluctuations of network latency.
Figure 6 shows there are large drops in throughput when
switching from a native program to the JVM; again when
data packets are newly allocated instead of reusing the same

Fig. 5. Throughput of token verification declines for additional recipients.

memory space; and again when switching to Kotlin-IPv8.
However, the former two are unpreventable given the scope
of this thesis.

Within the scope of this thesis are the measurements re-
garding Kotlin-IPv8 and EVA. Based on the results of Figure
4, we expect per-packet encryption to also be a bottleneck for
Kotlin-IPv8’s throughput. The results for EVA are detailed in
Section VI-C.

Fig. 6. Throughput of various data transfer methods.

C. EVA

Figure 7 shows EVA’s throughput for various configurations.
We performed our measurements on a single machine to
eliminate external noise. EVA’s main configurable parameters
are the number of payload bytes per UDP packet (block
size) and the number of blocks per acknowledgement window
(blocks per window). We observed a noticeably low throughput
for some configurations of EVA. From the figure it can be
observed that the entire column of 256 blocks per window
shows subpar throughput when encryption is disabled. Notice
how there is a positive correlation between throughput and



Fig. 7. Throughput (left) and packet loss (right) for various configurations of EVA. The UDP send and receive buffers were fixed at 106496 bytes.

Fig. 8. Throughput of EVA for various UDP buffer sizes. The number of
blocks per window was fixed at 256.

both block size and blocks per window, save for the last two
columns of no encryption.

To explain the sudden drop in throughput, Figure 7 shows
the measurements’ corresponding packet loss as well. From the
figure it can be observed that packet loss is non-negligible only
in the last two columns of no encryption. Our measurements
were performed locally, so external routing devices cannot
account for the anomaly. The fact that none of the encryption
columns suffer from packet loss indicates that processing
speed is not the bottleneck either; enabling encryption is
strictly more intensive than not. We therefore hypothesized
the drop to be caused by UDP buffers overflowing.

Figure 8 shows that this is indeed the case. Packet loss can
be mitigated by increasing the UDP send and receive buffers.
From inspection of the source code, we found that Kotlin-
IPv8’s EVA implementation attempts to transmit an entire
window’s worth of data at once. For example, at 256 blocks
per window and blocks of 1200 bytes, this results in a series of
consecutive transmissions amounting to 256 ·1200 = 307.2kB

excluding overhead. This transmission causes buffer overflows
and thereby packet loss. We found that enabling encryption
acts as an unintended form of congestion control. Due to
reduced throughput (see Figure 4), the buffer does not fill
up. We recommend improving EVA with a proper form of
congestion control but have left this out of scope.

D. Tokens

MEET MET 40K tokens, dat is ongeveer 10MB aan pay-
load.o CLIENT RECEIVE SPEED AUTHORITY VERIFY
SPEED AUTHORITY SIGN SPEED

VII. CONCLUSION & FUTURE WORK

This thesis describes a token-based transaction protocol and
its implementation on the Kotlin-IPv8 protocol stack. The
protocol allows funds to be spent in an offline setting and
guarantees retroactive fraud detection. During the performance
analysis of our prototype we found that Kotlin-IPv8 in its
current state is unable to properly fulfill the requirements for
a European CBDC.

Further improvements to Kotlin-IPv8 are necessary; espe-
cially in the fields of data transfer and cryptography. The
implemented prototype also requires improvements, not least
with regards to anonymity, throughput, and decentralization.
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