
CS4160 - Blockchain Engineering

Introduction to Blockchain
Technology
Can Umut ILERI
TU Delft, IOTA Foundation
2023

1/80

Who is the inventor of blockchains?
The answer depends on how you define blockchain!

First view:
Growing lists of records (blocks) that are securely linked together via

cryptographic hashes.

Second view:
Technology that provides coordination between many parties, when there

is no single trusted party.
A blockchain is a trusted coordination mechanism.

2/80

Overview of the Lecture

3/80

Overview of the Lecture

• Pre-Nakamoto: Blockchain as a Data Structure
• Nakamoto Consensus
• Post-Nakamoto:

First, a bit of background.

4/80

Cryptographic Fundamentals

5/80

Cryptographic Fundamentals

• Hashing
• Asymmetric key encryption
• Digital dignatures

6/80

Hashing

Possible inputs (M) Possible outputs (T)

Cryptographic hash function: An efficiently computable function
H :M → T where |M | >> |T |.

7/80

Hashing
Property 1: Collusion-resistance

Collusion-resistance:

Collisions do exist but it
is very difficult to find
them

Finding two inputs a and b giving the same
output y is infeasible.

8/80

Hashing
Property 2: Hiding

Hiding

Given an output, it is
not feasible to find an
input.

Given y , it is infeasible to find an input a such
that H(a) = y.

9/80

Hashing
Property 3: Puzzle-friendliness

Puzzle-friendliness

Given an output and
only a part of the input,
it is not feasible to find
remaining part of input. a = 0010101101010?101011 y = 11100110

Given y, and all but one bit of its input a, there is
no feasible way to predict the missing bit.

10/80

Asymmetric Key Encryption

11/80

Asymmetric Key Encryption

Charlie cannot
decrypt Alice’s
message.

Charlie can still
encrypt another
message and send

it to Bob.

12/80

Digital Signatures

13/80

The Blockchain Technology

14/80

Timestamping Digital Documents

[Haber and Stornetta, 1991]
• Documents are being digital.
• We need to
I preserve and authenticate primacy of discovery,
I prove that the history is not tampered.

• A naive solution: Trusted party that stores a copy of the document,
together with a timestamp.

• Problem:
I Privacy
I Bandwidth and storage
I Corrupted and lost documents
I Malicious update of the time-stamp

15/80

Improving the Naive Approach
• Document provided with a hash
• Signature by trusted service, which shows:

I the request was processed correctly,
I hash and time stamp is correct.

H(D) timestamp

owner id
Document (D1)

Certificate (C1)

H(D) timestamp

owner id
Document (D2)

Certificate (C2) 16/80

Hash chains

H(D) timestamp

owner id seq. no

Document (D1)

H(C0)

Certificate (C1)

H(D) timestamp

owner id seq. no

Document (D2)

H(C1)

Certificate (C2)

H(D) timestamp

owner id seq. no

Document (D3)

H(C2)

Certificate (C3)

17/80

Hash chains
Is everything perfect? Are all the documents/proofs in the safe hands? -
Problem: single-point of failure.

One solution: Gain more trust.
Another solution: Decentralization of trust!

18/80

State machine replication

Three concerns:
• Disseminating the
command
I Fault-tolerant broadcast

• Committing the command
I Fault-tolerant agreement

• Executing the command
I Deterministic execution

19/80

Bitcoin

20/80

Bitcoin

21/80

Motivation

Concerns on Fiat currency
• Issued by governments.
• Delay between transaction and settlement.
• Financial institutions serving as trusted third parties.
• The cost of mediation increases transaction costs.
• We need a mechanism to make payments over a communications
channel without a trusted party.

Solution:
• A distributed ledger.

22/80

Distributed Ledger

H(T1) timestamp

Transactions (T1)

H(B0)

Block (B1)

H(T2) timestamp

Transactions (T2)

H(B1)

Block (B2)

H(T3) timestamp

Transactions (T3)

H(B2)

Block (B3)

Who will determine the next block?

23/80

Bitcoin Revolution: Nakamoto Consensus

H(T1) timestamp

Transactions (T1)

H(B0) nonce1

Block (B1)

H(T2) timestamp

Transactions (T2)

H(B1) nonce2

Block (B2)

H(T3) timestamp

Transactions (T3)

H(B2) nonce3

Block (B3)

Goal: find a noncet such that H(H(Tt), ts ,H(Bt−1,noncet)) < d
H: hash function d: is the difficulty parameter

24/80

Bitcoin Revolution: Incentives

• The first miner to find such a “magical” hash is rewarded with:
1. The block reward (halves every 210,000 blocks, the coin reward

decreased from 12.5 to 6.25 coins on 12 May 2020. It will decrease from
6.25 to 3.125 coins on May 6, 2024) (https://www.bitcoinblockhalf.com)

2. Sum of transaction fees in the block
(https://billfodl.com/pages/bitcoinfees) To get your transaction
processed quickly you have to outbid other users

• Incentive mechanism
I Transaction makers are incentivized to increase their transaction costs.
I Nodes in the network are incentivized to be the one that finds the nonce.
I Nodes have to use scarce resources to find the nonce.
I https://explorer.btc.com/stats/fee

25/80

https://explorer.btc.com/stats/fee

Bitcoin
Simulatenous Mining
• Bitcoin prevents double-spending during block and transaction
validations.

• What if two miners find the same block at (roughly) the same time?
• Now, different miners will build upon different blocks. Double
spending?

• Selection rule: longest chains wins.

26/80

Bitcoin

• Only 6 blocks or 1 hour is enough to make reversal computationally
impractical.

• Consistency: If no new updates are made to a given data item,
eventually all accesses to that item will return the last updated value.

• Is Bitcoin consistent?

27/80

Bitcoin

Adaptive race conditions:
• A block is expected to be found in 10 minutes.

I If not, the difficulty is adjusted accordingly (after 2016 blocks).
I The more miners are active, the more difficult the mining process

becomes.
I https://explorer.btc.com/stats/diff

• Bitcoin has fixed block sizes of 1MB.
I Higher block size -> more transaction throughput.
I But leads to faster growth of blockchain and resource usage.

28/80

https://explorer.btc.com/stats/diff

Bitcoin
Transaction Costs

https://privacypros.io/tools/bitcoin-fee-estimator/

29/80

https://privacypros.io/tools/bitcoin-fee-estimator/

Bitcoin
Transaction Costs

https://news.bitcoin.com/200000-unconfirmed-transactions-pile-another-crazy-day-bitcoin/

30/80

https://news.bitcoin.com/200000-unconfirmed-transactions-pile-another-crazy-day-bitcoin/

Bitcoin
Network and Nodes

Bitcoin Full Nodes:
• download every block and transaction, and check them against rules:

I validity of each transaction.
I checking double spend.
I signature check, block size check.

• Validated transactions are sent tomempool. https://mempool.space/
• Specialized full nodes:

I Pruned Full Nodes: Given a storage limit, they only store latest blocks.
Can still verify transactions, can download data, cannot upload data.

I Archival Full Nodes:Stores a complete copy of the entire history of the
Bitcoin blockchain from the genesis block. Used for queries.

I Super Nodes:Large number of incoming and outgoing connections. Acts
as a relay station and redistribution point.

31/80

https://mempool.space/

Bitcoin
Network and Nodes

Light Nodes:
• They only download the block headers.
• have a similar role as pruned full nodes.
• use simplified payment verification(SPV) to verify transactions.
• cheaper to run and maintain.

Miners:
• Select attractive transactions from the mempool.
• Compete to be the first to solve the block hash.

32/80

Accounting in Bitcoin: UTXO Model

The UTXO holds a value of 100 BTC and it can only be spent if Alice permits.

33/80

Accounting in Bitcoin: UTXO Model

34/80

Merkle Tree

35/80

Merkle Tree

36/80

Exploring Bitcoin

DEMO
https://www.blockchain.com/explorer

37/80

https://www.blockchain.com/explorer

Extending Blockchain Technology

38/80

Extending Blockchain Technology

• Accounting
• Programmability
• Consensus
• Modularity
• Scalability
• Data structure
• Application

39/80

Accounting

40/80

Account-based accounting

• Represents coins as balances within an account.

41/80

UTXO vs. Account Model
The UTXO model:
• A verificationmodel. Transactions are both results (of a local
calculation) and proofs.

• It is enough to store txs. No need to deal with further with the states.
• TXs processed in parallel because they do not depend on any external
state.

The account model:
• A computationalmodel: Users submit transactions instructing nodes
on what state transitions should look like.

• The network then computes the new state based on the instructions.
• An account can be updated by more than one transactions within the
same block.

• Program-friendly: UTXO’s stateless model would force transactions to
include state information.

42/80

Programmability

43/80

Programmability
Ethereum Smart Contracts

• Smart contract: A collection of code (its functions) and data (its state)
that resides at a specific address.
I Smart contracts have balance, can receive and send assets.
I Not controlled by a user. Instead, they are deployed to the network and

run as programmed.
I User accounts can then interact with a smart contract by submitting

transactions that execute a function defined on the smart contract.
I Smart contracts are public on Ethereum and can be thought of as open

APIs.
• Smart contracts extend the functionality of a simple transaction
execution
I When nodes handle your transaction, you guide them by deployed codes.

• Smart contracts are not self-executing. They have to be triggered by an
on-chain transaction.

44/80

Programmability
Ethereum Smart Contracts

[Liu et al., 2020]
45/80

Programmability
Ethereum Smart Contracts

[Sayeed et al., 2020]
46/80

Programmability
Cardano’s eUTXO Model

Basic UTXO

47/80

Programmability
Cardano’s eUTXO Model

Script Address : H(BinaryOutput(PlutusSC))
Redeemer: User specific arguments
Datum: Arbitrary user data (Can be used as a local script state).

validator(Datum, Redeemer, ScriptContext)→ True, False
validator(LockerInput, UnlockerInput, ScriptContext)→ True, False

48/80

Programmability
Cardano’s eUTXO Model

49/80

Programmability
Cardano’s eUTXO Model

• Predictability:
I If a transaction passes local validation, the user can be almost certain

that the transaction will make it to a new block.
I Same for Plutus scripts: if they pass the local check, fees most likely are

not lost.
• One rule must be followed: Each EUTXO can only be spent only once and
as a whole within a block.

• Advantages over Ethereum Smart Contracts:
I It is possible to check whether a tx will validate in your wallet before you

send it to the chain.
I Much more limited scope. It is easier to understand what the script is

doing what can possibly go wrong

50/80

Programmability
Web Assembly

• A binary instruction format for a stack-based virtual machine.
• Designed as a portable compilation target for programming
languages.

• Enabling deployment on the web for client and server applications.
• General VM, contrary to EVM.
• Supports many languages (Rust, C/C++, C#, etc.).

51/80

Programmability
Move VM
• A new smart contract programming language with an emphasis on
safety and flexibility.

• Writing secure code is very important. If you make a mistake in writing
an application (e.g., a bug), you can easily end up blocking millions of
dollars.

• Solidity is prone to errors.
• Avoid mistakes in the low-level code.
• Focus on how states and transactions are represented. If they are
carefully designed, execution would be deterministic.

• Address some properties of physical assets that make them difficult to
represent digitally.
I Scarcity
I Access control

52/80

Consensus

53/80

Proof of Stake

• Nodes can participate in consensus by staking and running software.
• One node with state is selected as block proposer for a time slot (12
seconds) with respect to
I randomization,
I staking age,
I node’s stake.

• Blocks are notmined, but forged. Block creator takes transaction fees.
• Benefits:

I Less wasteful, environment-friendly.
I Accessible. It does not require expensive equipment for mining.

As more nodes join, the system becomes more decentralized.
I Security: Less attractive 51% attack.

54/80

Ethereum’s Proof of Stake

• A user creates and signs a transaction with their private key,
determines fees and tips and sends to execution client.

• Execution client verifies validity (sufficient assets, correct signature).
• Execution client adds the transaction to its mempool, and gossips it.
• One of the execution clients is the block proposer for the current slot.

I Execute transactions and compute state change.
I Pass it to the consensus client.

• The node broadcasts the beacon block on the consensus layer network.
• Consensus clients re-execute the block and check validity of global
state.

55/80

Permissioned Blockchains

• Hyperledger Fabric
I relies on a backend service (known as the ordering service)

that intermediates the messages between senders and receivers.
I backend service ensures that all receivers will see messages in same

order.
• Ripple

I XRP transactions are performed across a permissioned blockchain.
Behind the blockchain network is a private company that runs a
collection of private computer nodes that validate transactions.

I Some of its partners: Bank of America, American Express, MoneyGram

56/80

Data Structure

57/80

Directed Acyclic Graphs

The Tangle

58/80

Directed Acyclic Graphs

IOTA: Tangle
• There is no single-chain of blocks.
• Each block verifies at least two other blocks.
• Parallel validation of transactions without requiring total ordering.
• No miners and validators→ no transaction fees.
• Conflicts are resolved by
• In the current version, there is a central coordinator which issues
milestone blocks that other nodes trust.

• In IOTA 2.0 will be fully decentralized.
I stake and reputation-based weight function for conflict resolution.

• Tangle visualizer: https://explorer.iota.org/mainnet/visualizer/

59/80

https://explorer.iota.org/mainnet/visualizer/

Directed Acyclic Graphs

Avalanche
• Nodes stake AVA to become a validator.
• Transactions are stored on a DAG.
• For conflicting transactions, nodes ask each other’s opinions.
• Through a decision procedure called Snowball, a transaction is
finalized.

60/80

Modularity

61/80

Modularity

Blockchain Components

Consensus Execution Data availability Application

Bitcoin is amonolithic blockchain that handles all of these components.
Ethereum somehow deals with execution and consensus separately, but it

is still monolithic.

62/80

Scalability Solutions

• Consensus is difficult.
• Consensus is slow.
• Writing data on-chain is expensive.
• Changing the state is expensive.

We can move the execution off-chain and still make use of the security
guarantees of blockchains.

63/80

Off-chain scalability solutions

• Unidirectional payment channels:
I Alice creates a transaction to send some coins to Bob.
I She does not broadcast the transaction but sends it to Bob.
I Bob can broadcast it whenever she wants.
I Alice can create another transaction using the same UTXO.

• Bidirectional payment channels
I Generalization of unidirectional payment channels.

64/80

Off-chain scalability solutions
Lightning network (on Bitcoin)
• Multisig transactions
• Both parties make a deposit into the channel to open a channel.
• They make trade on the channel, bypassing the blockchain.
• They close the channel and retrieve balances.

65/80

Off-chain scalability solutions
Plasma (on Ethereum)
• Make use of smart contracts.
• Data is shared with all users on Plasma.
• Dispute period / Fraud proofs.
• Data availability problem

66/80

Off-chain scalability solutions

Optimistic Rollups
• Coordinator collects user transactions, store and execute them locally
(L2).

• Coordinator periodically submits Merkle tree root of transactions to L1.
• L1 Smart contract accepts commitments optimistically.
• Coordinator submits a compressed for of transaction data on L1.

I They are not executed, but stored.
• Dispute resolution: Fraud proofs

I L1 nodes can replay the transaction on-chain and compare.
I If fraud proof is successful, cancel latest state transitions and slash

sequencer’s stake.
I Everything older than the dispute period is final.

67/80

Off-chain scalability solutions

Validity-proof Rollups
• Succinct zero-knowledge proofs for all state transitions.
• The zk-proof is committed alongside the state hash.
• The L2 commitment is accepted only is validity proof is verified.
• Transactions are stored (not executed) on L1.

Validium
• Zero-knowledge validity proof.
• Data is not stored on-chain.
• A data availability proof is provided with the validity proof.

68/80

Off-chain scalability solutions
Validity-proof Rollups

https://docs.zksync.io/zkevm/#how-scalable-is-a-zk-rollup 69/80

https://docs.zksync.io/zkevm/#how-scalable-is-a-zk-rollup

Data Availability Solutions
Celestia

70/80

Data Availability Solutions

zk Rollup applications provide data availability services:
• MatterLabs: zkSync (Rollup) –> zkPorter (Data availability)
• StarkWare: StarkNet (Rollup) –> Volition (Data availability)
• Polygon: Hermez (Rollup) –> Avail (Data availability)

71/80

Applications

72/80

Applications
DeFi applications running on Ethereum

All codes are public.
73/80

Applications
Name Service

https://ens.domains

74/80

https://ens.domains

Applications
Decentralized Autonomous Organizations

A DAO is a collectively-owned, blockchain-governed organization working
towards a shared mission.
• Work with like-minded folks around the globe without trusting a
benevolent leader to manage the funds or operations.

• Blockchain-based rules baked into the code define how the
organization works and how funds are spent. (No CEO)

75/80

Applications
Decentralized Autonomous Organizations

Join a DAO?
https://ethereum.org/en/community/get-involved/

#decentralized-autonomous-organizations-daos

76/80

https://ethereum.org/en/community/get-involved/#decentralized-autonomous-organizations-daos
https://ethereum.org/en/community/get-involved/#decentralized-autonomous-organizations-daos

Running applications on blockchain

• Transparency
I Open-source.
I Nobody says we cannot tell you what we are doing.
I Everybody publishes as fast as they can.

• Public-verifiability
I In the real world, we trust banks, governments, companies.
I In blockchains everything is publicly verifiable.

•

77/80

Web3

https://blog.cryptostars.is/is-web3-all-hype-2337d1914bc1 78/80

https://blog.cryptostars.is/is-web3-all-hype-2337d1914bc1

Web3

Core ideas of Web3
• Web3 is decentralized: ownership gets distributed amongst its
builders and users.

• Web3 is permissionless: everyone has equal access to participate in
Web3.

• Web3 has native payments: it uses cryptocurrency for spending and
sending money online.

• Web3 is trustless: it operates using incentives and economic
mechanisms.

79/80

References I

Haber, S. and Stornetta, W. S. (1991).
How to time-stamp a digital document.
Journal of Cryptology, 3:99–111.

Liu, C., Gao, J., Li, Y., Wang, H., and Chen, Z. (2020).
Studying gas exceptions in blockchain-based cloud applications.
Journal of Cloud Computing, 9.

Sayeed, S., Marco-Gisbert, H., and Caira, T. (2020).
Smart contract: Attacks and protections.
IEEE Access, PP:1–1.

80/80

	Overview of the Lecture
	Cryptographic Fundamentals
	The Blockchain Technology
	Bitcoin
	Extending Blockchain Technology
	Accounting
	Programmability
	Consensus
	Data Structure
	Modularity
	Applications
	Appendix
	Appendix
	References

