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Abstract—Recent years have seen an increasing interest in
stablecoins from major corporate and governmental parties.
The European Central Bank is investigating the possibility of
introducing its own Central Bank Digital Currency. The desired
features of such a currency are under discussion. One such fea-
ture is offline spending: the ability to use the currency without an
internet connection, like cash. This thesis describes a token-based
transaction prototype and its implementation on the Kotlin-
IPv8 protocol stack. The prototype allows funds to be spent in
an offline setting and provides retroactive fraud detection. The
prototype is not intended for deployment but instead serves as a
trial for building digital currencies on Kotlin-IPv8. The included
performance analysis demonstrates that various facets of Kotlin-
IPv8 perform suboptimally, of which most notably its UDP data
throughput.

I. INTRODUCTION

In recent years, the European Central Bank (ECB) has
been exploring the possibility of realizing its own Central
Bank Digital Currency (CBDC), the ‘digital Euro’. The ECB
has published various reports and resources that outline the
need for such a project (i.e. [1], [2]). Calls for expression of
interest are being published and the ECB aims to complete
its investigation phase by October 2023 [3], [4]. The main
reason for this development is the rise of digital payments
and corresponding decline of cash usage. According to reports
published by De Nederlandsche Bank (DNB), the national
bank of the Netherlands, the share of cash payments dropped
from 56% in 2010 to 21% in 2020 [5], [6]. The Swedish
Riksbank mentions similar trends for Sweden [7].

Euro cash is the only public form of money that is directly
backed by the ECB [2]. Digital payments are not; they are
backed by private parties such as commercial banks. A critical
dependence on these parties can erode the sovereignty of
the Euro. They cannot safeguard reliability comparable to
that of ECB-backed cash. Nevertheless, there is demand for
reliability, especially in times of crisis [8]. In recent history,
there have been several financial crises that caused large-
scale bankruptcies which consequently impacted consumers’
savings (e.g. in 2008). CBDCs can provide reliability and safe-
guard consumers against the effects of large-scale bankruptcy
of commercial payment providers.

Foreign organisations, commercial parties, and cryptocur-
rencies are threatening the influence of central banks. A
report published by the ECB discusses the risk of currency
substitution. Substitution occurs when a new form of money,
unregulated by the ECB, gains major usage in the EU. The
new payment method would likely have to outperform its
competitors, for instance by being cheaper and/or more con-
venient. According to the report, currency substitution could
have a range of negative effects on the ECB’s monetary policy
and even threaten the EU’s independence [1]. Along with the
ECB, other major governmental and commercial parties have
also shown interest in developing a CBDC. Some interested
governmental parties are e.g. the United States government and
the People’s Bank of China [9], [10]. An interested commercial
party is for instance Meta (formerly Facebook), which initiated
Diem1, a hypothesized stablecoin that did not launch due to
legal and regulatory issues.

Due to the potentially far-reaching impact of the introduc-
tion of CBDCs to consumers and the rapid pace with which
central banks are operating, public discourse on the topic has
been increasing. Some regulators are questioning the use case
of CBDCs and their implications on the role of central banks
and consumers’ privacy [11], [12].

To determine the appropriate role for a CBDC in the EU,
and to compete with other payment solutions, the ECB has
launched an extensive exploratory phase. In this exploration,
the ECB has expressed interest for its CBDC to be usable in
an offline environment [1]. This is crucial in case of network
failure or in areas without a reliable internet connection. A
prominent example of currency that is spent offline is cash.

This thesis concerns itself with implementing a simple
transferable digital currency on the Kotlin-IPv82 protocol stack
and doing a performance analysis. In accordance with the
Offline First design principles, the currency can be spent of-
fline and guarantees retroactive fraud detection. It is therefore
resilient against temporary failure of central servers, unlike
many currently deployed systems. This thesis contributes 1) a
software-implemented simple token-based transaction system

1For Diem, refer to https://www.diem.com/en-us/.
2For Kotlin-IPv8 and EVA, refer to https://github.com/Tribler/kotlin-ipv8.
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2) a performance analysis of various bottlenecks in this system,
with a special emphasis on the Kotlin-IPv8 framework and 3)
a slightly optimized version of the EVA2 protocol [13].

II. PROBLEM DESCRIPTION

The main difficulty with implementing offline digital cur-
rencies is solving or mitigating the double spending problem.
Double spending is the action of spending a digital unit of
value more than once, illegitimately. In a digital environment,
data is easily duplicated. Thus, digital currencies must be made
resistant against duplication of data. When transacting parties
can only communicate to those within their physical proximity,
meaning they are offline, fraud prevention becomes difficult.
This is because they cannot consult with others about their
counterparty. For example, common financial systems rely on
banks to verify that counterparties possess enough funds to
make a transaction. When offline, parties cannot contact their
bank, and thus cannot confirm the validity of their transactions.
The double spending problem has thus far not been solved in
an offline setting, only in an online setting.

Many cryptocurrencies (e.g. Bitcoin) mitigate the problem
by utilizing global consensus [14]. This removes the need for a
central authority but does require near-immediate connectivity
to parts of the network. Global consensus disallows offline
transfers and is therefore not the right solution to make offline
spending possible.

Since the first proposed digital currency in 1983 (see Section
III-A), the problem of offline spending has been explored ex-
tensively. Many offline currency schemes in the field are token-
based, as opposed to account-based. Token-based schemes
transfer tokens: monetary units that can be identified with a
serial number. By contrast, account-based schemes perform
monetary transfers by crediting and debiting accounts. The
crucial difference is that currency in token-based schemes
is identifiable, whereas in account-based schemes it is not.
A commonly used analogy is that token-based schemes are
comparable to banknotes, whereas account-based schemes are
comparable to bank deposits. A crucial lesson observed from
the literature and our main prior work (see Section III-B),
is that account-based systems complicate robustness measures
such as safeguarding against double spending [15].

Another major problem is that realizing a proposed digital
currency is a difficult engineering challenge. For instance,
scalability and security need not only be accounted for in the
design of a system but also in its implementation.

III. RELATED WORK

A. Advancements in digital currency

In 1983, Chaum introduced blind signatures in what is
widely accredited as the first paper to describe digital currency
[16]. The paper describes a novel cryptographic primitive, the
blind signature. It allows parties to sign messages without
knowing their contents. The result is that the signing party
cannot relate their own signature to the original message they
signed. With this primitive, the literature’s first digital cash
scheme was described. In this scheme, a monetary authority

guarantees the validity of payments. Due to blind signatures,
the authority cannot identify the recipient of any transaction
it verifies, thereby safeguarding consumers’ privacy. Chaum’s
cash was however non-transferable. Non-transferable e-cash
can be spent only once, after which it must be redeemed by a
trusted authority. The authority returns an equivalent amount
of cash that is spendable again.

In 1989, Okamoto introduced transferable e-cash [17].
Transferable e-cash is more like physical cash; it can be
spent repeatedly, from one user to another. It does not require
a network connection to a monetary authority with every
transaction. In the same paper, divisible e-cash was introduced.
In contrast to physical cash, divisible e-cash can be spent
in smaller denominations than the piece that is owned. An
advantage of divisible e-cash is that exact payments can be
made and change is not required.

In 1995, a modification to blind signatures was proposed
that made them ‘fair’ [18]. Most blind signature schemes
were perfectly unlinkable. Perfect unlinkability means that
no monetary authority can relate withdrawals to payments.
Therefore, these schemes allowed for a variety of crimes to
be undetectable, such as money laundering. With the introduc-
tion of ‘fair’ blind signatures, an additional and independent
authority (such as a judge) would be able to obtain information
that can be used to detect crime.

In 2008, Bitcoin was presented, widely accredited as the first
major cryptocurrency. It solves the double spending problem
probabilistically and without a central authority [14]. Bitcoin’s
value is determined by market forces and is highly volatile.
This is in stark contrast to CBDCs, which are tethered in value
to government-issued money.

B. Eurotoken

We consider the main prior work for this thesis to be the
first Eurotoken prototype by Delft University of Technology
[19]. This digital currency is also implemented on Kotlin-
IPv8. Eurotoken is an account-based system and is non-
transferable by default. Eurotoken opted for a trusted authority
to verify transactions. It is therefore not decentralized. The
advantage of this approach in the context of CBDCs is that
it enables the respective central bank to exert control over
the network. Moreover, it provides a non-deterministic near-
immediate transaction finality.

Based upon Eurotoken and in line with many proposed
digital cash schemes, we also sacrificed decentralization and
opted for a centralized monetary authority. By contrast, our
prototype is token-based instead of account-based and offline
transferable by design.

C. Price Stability

It is fundamental for a European CBDC to be tethered
in value to the Euro. A high price volatility like Bitcoin’s
is undesirable for a medium of exchange [20]. There are
various ways in which the value of an asset can be kept
stable. This topic has gained renewed interest with the rise
of stablecoins—cryptocurrencies that aim to be non-volatile
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with regards to a major non-cryptocurrency or physical asset.
There is an inverse relationship between the potential stability
of stablecoins and how much they are decentralized [21].
The strongest stabilization mechanism is collateralization by
currency or off-chain assets such as gold. By allowing free
trade between a stablecoin and its collateral at a fixed price, ar-
bitrage prevents the stablecoin’s price from fluctuating greatly.
However, off-chain assets are not traded in a decentralized
way and as such there is a trade-off between decentralization
and stability. To the best of our knowledge, no decentralized
and highly stable stablecoins exist. The prototype described in
this thesis makes use of an implied centralized exchange. The
implementation of this or other means of maintaining price
stability is intentionally left out of scope.

IV. DESIGN AND ARCHITECTURE

This thesis implements a centralized CBDC prototype that
allows offline transactions with fixed-value tokens and guar-
antees retroactive fraud detection.

The proposed system requires a trusted monetary authority
that is in charge of token exchange and transaction verification.
We refer to this party as authority and identify them by their
public key. Verification is therefore a centralized operation.
The motivation for this design choice was elaborated upon in
Section III-B.

All system participants apart from the authority are clients.
They, too, are identified by their public key. It is assumed that
clients know the public key of the authority in the network.
Clients can transact tokens to each other and consult the
authority to verify the validity of their tokens. If clients cannot
connect to the authority, for instance during a power outage,
they can continue transacting but defer verification until they
can connect.

To realize retroactive fraud detection, the implemented
system requires authorities to be able to unambiguously re-
construct the sequence of owners of a token. This is done
by providing each token with a linked list of all previous
owners until its last verification. Details of this procedure are
explained further in this section.

A. Token Format

The token protocol is based upon transacting tokens. A
diagram of a token is given in Figure 1. Each token contains:

1) Serial number. An 8-byte unique token identifier.
2) Value. A 1-byte representation of the token’s worth. Like

cash, tokens have a limited number of fixed denomina-
tions. Certain byte values are mapped to certain denom-
inations; the remaining values are considered invalid.

3) Authority public key. A 74-byte public key3 of the
authority that is in charge of the token (the ‘authority’).

3Public keys in Kotlin-IPv8 are 74 bytes long: 10 bytes for a string prefix;
32 bytes for an encryption key; and 32 bytes for a verification key. Only the
latter is required for our prototype. However, Kotlin-IPv8 does not allow these
to be split by design, as parties are identified by the entire 74 bytes.

Fig. 1. Graphical representation of a token. Tokens represent monetary units
of fixed value that store all their previous recipients until they are verified by
an authority.

4) Nonce. A 64-byte pseudo-random nonce used by the
authority to differentiate between differing occasions
where the same token is sent to the same recipient.

5) Recipients. A list of recipient-proof pairs in chronolog-
ical order. This list must contain at least a first pair:

a) First recipient public key. A 74-byte public key3

of the token’s first recipient after creation or vali-
dation.

b) First proof. A 64-byte signature (‘proof’) given by
the authority signing Serial number, Value, Nonce,
and First recipient public key.

All pairs in the list are of the same format and bit-length.
The second pair (if present) contains second recipient
public key and a signature given by first recipient public
key signing first proof and second recipient public key
together. Likewise, all subsequent pairs follow the same
pattern; they contain a signature from the previous public
key in the list, signing the previous proof together with
the next public key. This signature chain corresponds to
the token changing ownership during transactions.

6) Number of recipients. A 2-byte number counting how
many recipients are in recipients. This number is used
to (de)serialize individual tokens from data files.

The initial size of a token when transferred from a monetary
authority to the first recipient adds up to 287 bytes. Each
additional recipient adds 74 + 64 = 138 bytes for its public
key and signature, respectively. Thus, for k > 0 recipients, the
size of a token in bytes is defined as:

size = 287 + (k − 1) · 138 (1)

When a token is transferred to the first recipient, 147 of
its bytes need to be cryptographically verified. The 140 bytes
that do not need to be verified consist of authority public key
(74 bytes), first proof (64 bytes), and number of recipients
(2 bytes). Each additional recipient adds 138 bytes that need
to be verified; 74 for its own public key and 64 for the
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previous proof in the list. For k > 0 recipients, k independent
cryptographic signatures need to be verified, amounting to a
total number of bytes defined as:

bytes = 147 + (k − 1) · 138 (2)

When a token is verified by a monetary authority, its size
is reset to 287 bytes (see Section IV-E). The bit-lengths of the
signatures and public keys were adapted from those used in
Kotlin-IPv8 and are not integral to the protocol’s functioning.

B. Token Minting

When a token is created, its serial number, value, nonce,
authority public key, and recipients are set as specified in
Section IV-A. The authority stores a copy of the entire token
and sends it to the intended client.

C. Client Verification

When a client obtains a token, it verifies it in a 3-step
process. First, the client verifies that the token’s last recipient
(that is, the last public key in Recipients) refers to them.
Second, the client verifies that it knows the token’s authority
public key and that this key created the token’s first proof.
Third, the client verifies the remaining chain of proofs in
recipients. The purpose of the client’s verification process is
merely to ensure that they have received an unambiguous proof
of transfer from their transaction’s counterparty. This proof can
later be used by the relevant authority to prove potential fraud.
A client deciding that a token is valid does not imply that an
authority will decide the same. The client’s verification does
however guarantee that clients victimized by fraud can proof
so eventually.

D. Client Transaction

A token’s initial recipient may choose to send it to another
client. If it does, it must append a new pair to the token’s
recipients that contains the desired recipient’s public key and
a signature combining the token’s last proof together with the
desired recipient’s public key. This is depicted in Figure 1.

E. Authority Verification

The authority’s verification process is started when a client
sends them a token to verify. The verification process contains
6 steps:

1) The authority ensures that the incoming token has at
least 3 recipients in its recipients list. There should be
at least an initial recipient, a second recipient, and the
authority itself as the last recipient. If not, the token is
either invalid or ineligible for verification.

2) The authority ensures that the token’s last recipient is
the client that sent the token in for verification.

3) The authority queries if the token is still valid. The
knowledge that the authority once signed the received
token, which can be derived from the token’s first proof,
says little about the token’s current state. The authority
compares its public key against the token’s authority
public key and queries the token’s serial number to

Fig. 2. The authority’s double spending detection mechanism. In the figure,
recipient B double spent a token, which was detected because proof N+K+1
of the authority was not equal to proof 1 +K + 1 of the incoming token.

ensure that they are the authority that manages the token.
Then it verifies that the token is still in circulation and
not e.g. blacklisted.

4) The authority will, like an honest client, verify the chain
of proofs in the recipients list.

5) The authority will attempt to detect double spending.
It will compare the first proof of the incoming token
to the last proof of its own copy of the token. If these
are identical, double spending might have occurred but
cannot be proven (see Section IV-F) and the authority
will finalize verification. Finalizing verification requires
the authority to update its own copy of the token by
appending all new recipient-proof pairs of the received
token to its recipients. The result is that the authority
owns a copy of the token that contains its entire ver-
ified history, from its initial minting to its last known
recipient.

6) The authority copies the incoming token, empties the
recipients list save for its last entry, and sends the
verified token to the desired recipient. It will also append
the desired recipient to its own recipients.

F. Double Spending Detection

In Section IV-E it is mentioned that the authority updates
the recipients of its own copy of a token upon a valid
verification. To detect double spending, an authority compares
the last proof of its own copy to first proof of an incoming
token. A diagram of this scenario is depicted in Figure 2.
If a token is double spent, then multiple versions of the
token will eventually reach their authority. The first time
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a token reaches their authority, double spending cannot be
detected and the token-copy is updated. Subsequent times, the
authority’s token-copy already has an updated recipients list
and therefore its last proof will not correspond to the double
spent token’s first proof anymore. Thus, double spending must
have occurred if the proofs differ. If the proofs are equal,
double spending might have occurred but cannot be proven.
If a double spent token reaches the authority earlier than its
legally-spent counterpart, the illicit transaction will only be
detected when a conflicting transaction comes in.

When double spending is detected, the authority will search
for the instigator. It will find the received token’s first proof
in the recipients of its token-copy. It will then compare the
recipient-proof pairs of the token-copy with those of the
received token. Comparison starts from the pairs that contain
first proof. All pairs before it have already been verified.
Eventually, it must find two differing pairs, after which all
pairs will be different because proofs are chained to each other.
The first differing pairs are the start of the token’s split history
and proof that double spending was performed by the client
that signed them. The repercussions of implicating a client
with fraud are further discussed in Section IV-I

G. Replay Attack Prevention

The detection mechanism of Section IV-F allows for a
replay attack in an offline environment. If a malicious sender
A were to replay sending the same token to the same receiver
B as before, said receiver would not flag this as malicious be-
havior. If B in turn were to spend this token, upon verification
of the token, B would be flagged as a double spender. When
an authority compares the transaction history of the token, it
cannot distinguish A’s first transaction to B from its second.
Thus B spending the token is the first occurrence that differs
from the authority’s history. As described in Section IV-F, B
is therefore marked as a fraudster.

There exist various solutions for preventing such an attack.
One such solution is to initiate each transaction with the
receiver sending a short handshake. This handshake must
contain a number that is guaranteed or likely to not have been
used in earlier transactions between this sender and receiver.
The sender must then include this number in its transaction. If
the sender attempts to replay an old transaction, the receiver
can verify that the included number is different from the
one specified in the handshake and refuse the transaction. To
prevent the need for storing a set of previously used numbers,
a pseudo-random nonce can be securely generated for each
handshake.

There are, however, multiply solutions for preventing replay
attacks. A suitable implementation depends on the intended
use case of the digital currency and as such has been left out
of scope.

H. Threat Model

In the protocol there exists one centralized authority. All
other parties are clients and all clients are equal. All parties
are identified by their public keys. Clients need only be

online when involved in a transaction or when validating their
tokens. It is assumed that clients transacting with each other
can contact each other directly. All clients must contact the
centralized authority to finalize their transactions. If the author-
ity is unavailable, clients can continue transacting with each
other but transactions will be unverified until they successfully
contact the authority.

A malicious authority can 1) give tokens to clients at will
2) deny clients from verifying transactions and 3) conceal
double spending attempts from other clients. It cannot 1) proof
illegitimate accusations of double spending 2) transact in the
name of its clients or 3) prevent clients from making offline
transactions.

A malicious client can double spend until multiple version
of the same token reach the authority. It cannot 1) spend tokens
that were never transacted to it 2) transact in the name of other
clients or 3) prevent other clients from making transactions.
Note that any client can see all previous recipients of its tokens
until the tokens’ last verification.

I. Anonymity & Fairness

It is expected that fraudsters cannot always be penalized
within the confines of the transaction system, as paying a
corrective fine might not always be proportionate or possible.
Penalizing fraudsters would likely require knowledge of the
person or organization behind a client’s account. This is
detrimental to clients’ privacy and anonymity. Finding a fair
way to correct fraud and penalize fraudsters was intentionally
left out of scope.

Furthermore, the implemented system requires aggregating
a linked list of previous owners of a token, up until the last
verification by an authority. Specifically, recipients of a token
can see all previous recipients of that token until its last
verification. This is also detrimental to privacy and anonymity.
There are digital cash schemes that provide stronger notions
of anonymity. Some schemes protect the identities of previous
recipients and provide unlinkability, such that it is also impos-
sible to relate different payments from the same client [22].
Some schemes provide an even stronger notion of anonymity
where an adversary cannot recognize a token spent between
other clients, even if it has already owned the token [23]. It has
however been proven that an adversary can always recognize
his previously-owned tokens if they are paid back to him [23].

V. IMPLEMENTATION

We prototyped the design described in Section IV. The
prototype is deliberately minimalist; it includes only the basic
facets required to transact currency per Section IV. It was
implemented on the Kotlin-IPv8 protocol stack. The IPv8
stack is typically used for connecting clients in a peer-to-peer
fashion. Clients in IPv8 are identified by their public key and
not by their IP address. Clients perform peer discovery using a
gossip protocol and form communities for application-specific
purposes. These communities are loose-knit and intended to
be flexible and resistant against high churn rates. Connections
are considered too fragile for TCP sessions. As such, IPv8
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relies on UDP and clients connect using UDP hole punching.
Kotlin-IPv8, however, is not intended exclusively for decen-
tralized peer-to-peer communities but also provides generic
communication utilities. Our prototype deploys these utilities
for its purpose of transacting tokens. The specified sizes for
public keys and signatures mentioned in Section IV-A were
adapted from Kotlin-IPv8.

The de facto way of transferring binary files reliably via
Kotlin-IPv8 is by using the EVA protocol [13]. Messages not
sent through EVA provide no delivery guarantees. EVA is an
acknowledgement protocol for UDP that uses acknowledge-
ment windows to guarantee packet delivery and retransmis-
sions. We were confronted with EVA’s limitations with regards
to stability and throughput and thus opted to use our own
(slightly) modified version. Our modified version4:

• Fixes a race condition that caused EVA to fail subsequent
data transfers arbitrarily.

• Uses a faster and more compact encoding of lost packet
numbers: ±97% faster serialization and ±95% faster
deserialization.

• Allows encryption to be disabled.
Nevertheless, in Section VI-C we will demonstrate that we
were unable to solve all problems with EVA that we encoun-
tered.

Furthermore, the implementation provides several scripts
that were used for the performance analysis that will follow
in Section VI.

VI. PERFORMANCE ANALYSIS

We present an analysis of our prototype’s performance. We
performed our measurements between two processes on the
same host machine, to eliminate the fluctuations of network
latency. For a proper frame of reference, we place additional
emphasis on low-level functionality of the underlying Kotlin-
IPv8 framework. Experiments were performed on standard
consumer electronics: a Lenovo Thinkpad L13 with an Intel
i5 CPU operating at 2.11 GHz and 8 GB of DDR4 RAM.

A. Cryptographic Verification

We measured the throughput of cryptographic signing and
verification operations to ascertain performance bounds of
Kotlin-IPv8 and thus the transaction protocol. The core idea
is that by stripping the implementation of all other factors,
the influence of cryptographic operations on an authority’s
throughput can be determined. All operations were performed
with Ed25519 [24] using a Kotlin port of Libsodium5 that
is also used by Kotlin-IPv8. The chosen parameters were
identical to those used in Kotlin-IPv8.

Figure 3 shows the throughput of the cryptographic opera-
tions required to sign and verify tokens in an online setting. Per
Section IV-A, signing a token requires one operation on 147
bytes. Verification requires three operations: the authority’s

4For the modified version of EVA, refer to https://github.com/Tribler/kotlin-
ipv8/pull/71.

5For Lazysodium, see https://github.com/terl/lazysodium-java.

Fig. 3. The benefits of parallelism diminish quickly. Throughput of only
cryptographic signing and verification of tokens.

Fig. 4. Throughput of cryptographic signing and verification collapses for
small data sizes. Operations on tokens are at most 147 bytes, marked by the
red circle.

initial signature; the signature of the first recipient to the
second; and the signature of the second back to the authority.

The figure shows that throughput increases with the number
of CPUs until a certain threshold. This limits scalability
significantly. We suspect the diminishing increase to be due to
resource sharing within Libsodium, although the exact reasons
are unknown. On a single CPU, the token throughput of
signing and verification was only ±38239 tokens per second
(tokens/s) and ±5840 tokens/s, respectively. Per Equation 2,
this corresponds to a data throughput of only 5.62 and 2.47
megabytes per second (MBps).

To ascertain that the results of Figure 3 were not erro-
neous, we examined throughput of cryptographic signing and
verification. Figure 4 shows the throughput of signing and
verification for increasing data sizes on a single thread. Again,
we used Libsodium with ed25519 to mimic Kotlin-IPv8. We
also measured the performance of ed25519 on two other
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implementations, Bouncy Castle6 and I2P7. The figure shows
that larger file sizes are tremendously faster to sign and verify
than smaller, for all implementations. It also shows that, by
comparison, Libsodium has a relatively fast implementation of
ed25519. For files of 147 bytes, signing has a throughput of
±6.05 MBps, corresponding to 41156 tokens/s. For a single
verification operation of 147 bytes, throughput is 2.60 MBps.
Verification requires three operations of 147, 138, and 138
bytes. For simplicity, we assume an upper bound of 147 bytes
per operation. Per Figure 3, the throughput of verification
is ±

2600000
147

3 = 5896 tokens/s. We thereby conclude that the
measurements obtained in Figure 3 were not erroneous.

Figure 5 shows the throughput of cryptographic verification
of an authority for an increasing number of offline recipients.
The case where the number of recipients equals 2 corresponds
to the online setting.

Fig. 5. Throughput of token verification declines for additional recipients.

B. Data Transfer

Figure 6 shows the throughput of data transfers on a range
of different software layers. The majority of these layers
have no practical usage for our prototype. They do, however,
provide valuable insights in its throughput and that of Kotlin-
IPv8. We measured a native pipeline as the upper bound of
throughput on our host machine (±1652.28 MBps). Then, we
measured local UDP traffic (±801.16 MBps). All subsequent
measurements use UDP and were performed on Kotlin, which
executes on the Java Virtual Machine. We first performed a
measurement where we reused one UDP datagram in memory
(±652.16 MBps). Then, we performed the same measure-
ment but recreated datagrams for each transmission (±560.29
MBps). Subsequent measurements were performed on Kotlin-
IPv8 (±30.71 MBps). Figure 6 shows that switching to Kotlin-
IPv8 incurs a significant drop in throughput. For our next
measurements, we enabled Kotlin-IPv8’s encryption feature,
which performs per-packet encryption (±14.99 MB). Finally,

6For Bouncy Castle, see https://github.com/bcgit/bc-java.
7For I2P, see https://github.com/i2p/i2p.i2p.

we measured the throughput of EVA for its most performant
configuration with encryption enabled (±8.25 MBps).

Figure 6 shows that additional software layers decrease
throughput. Most of these layers are necessary and outside the
scope of this thesis, and the respective drops unpreventable.
Within the scope of this thesis are the measurements regarding
Kotlin-IPv8 and EVA. Kotlin-IPv8 incurs the largest percentual
drop of throughput in the figure, ±95%. Applications built on
Kotlin-IPv8 will invariably be limited by this.

Due to further unexpected results, we have detailed EVA
performance in Section VI-C.

Fig. 6. Throughput of various data transfer methods.

C. EVA Acknowledgement Protocol

Figure 7 shows EVA’s throughput and packet loss for
various configurations. EVA’s main configurable parameters
are the number of payload bytes per UDP packet (block
size) and the number of blocks per acknowledgement window
(blocks per window). The upper figures show throughput and
corresponding packet loss of different combinations of these
parameters. There is a positive correlation between throughput
and both block size and blocks per window, save for the last
two measurements of No encryption. From the figures it can
also be observed that all measurements of 256 blocks per
window show subpar throughput when encryption is disabled.

To explain the sudden drop in throughput, Figure 7 also
shows the measurements’ corresponding packet loss. From
the figures it can be observed that packet loss increases as
throughput decreases. Our measurements were performed on
a single host, so external routing devices cannot account for the
anomaly. The fact that none of the encryption measurements
suffer from packet loss indicates that processing speed is
not the bottleneck either; enabling encryption is strictly more
intensive than not. We therefore hypothesized the drop to be
caused by UDP buffers overflowing.

Figure 8 shows that this is indeed the case. We fixed
blocks per window at 256 (corresponding to the slowest
measurements in Figure 7) and repeated our measurements for
varying UDP buffer sizes. The leftmost measurement shows
results for a buffer size of 106k bytes, our initial configuration.
The figure shows that packet loss decreases as buffer size
increases. In turn, there is a positive correlation between buffer
size and throughput. It can also be observed that as packet loss
nears 0%, increasing buffer size has no effect.
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Fig. 7. Throughput and corresponding packet loss of EVA with encryption
enabled (upper) and disabled (lower). Packet loss soars for increasing blocks
per window when encryption is disabled. UDP buffers were fixed at 106496
bytes.

Fig. 8. EVA’s throughput increases and its corresponding packet loss decreases
when UDP buffers are expanded. The number of blocks per window was fixed
at 256, corresponding to the slowest measurement in Figure 7.

From inspection of the source code, we found that Kotlin-
IPv8’s EVA implementation attempts to transmit an entire
window’s worth of data at once. For example, at 256 blocks
per window and blocks of 1200 bytes, this results in a series of
consecutive transmissions amounting to 256 ·1200 = 307.2kB
excluding overhead. This transmission causes buffer overflows
and thereby packet loss. We found that enabling encryption
acts as an unintended form of flow control. Due to reduced
throughput, the buffer does not fill up. We have left improving
EVA with proper flow control out of scope.

D. End-to-end Token Throughput

Table I shows the end-to-end throughput of the prototype
in an online setting, in tokens per second. The measurements
concern specific subtasks that the prototype performs. In
the table, these tasks are displayed sequentially from top to
bottom.

TABLE I
END-TO-END TOKEN THROUGHPUT

Tokens/s MBps
Authority
signs 37663 -

Recipient #1
receives 43523 12.49

Recipient #1
validates 17477 -

Recipient #2
receives 34223 14.54

Recipient #2
validates 8797 -

Authority
receives 23452 13.20

Authority
validates 5143 -

VII. CONCLUSION & FUTURE WORK

This thesis describes a token-based transaction protocol and
its implementation on the Kotlin-IPv8 protocol stack. The
protocol allows funds to be spent in an offline setting and
provides retroactive fraud detection. Many facets of the pro-
tocol require improvement before it can be used as a practical
digital currency. The protocol is not intended for deployment
but instead serves as a trial for building digital currencies on
Kotlin-IPv8. The performance analysis of our prototype shows
various areas where Kotlin-IPv8 can be improved, especially
in the field of data transfer.
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