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I. INTRODUCTION

The rise of machine learning has resulted in an increasing
number of everyday-life intelligent applications. As such,
machine learning has been used in personal assistants [1],
recommendation in social media [2] and music [3], and
cybersecurity [4]. However, accurate machine learning models
require large training datasets [5], [6], which can often be
hard to obtain and store due to recent privacy legislation [7].
Federated learning [8] has become a promising alternative
and widely adopted tool for crowd sourcing computationally
expensive machine learning operations, reportedly having been
used for training numerous industrial machine learning models
[9]–[13]. Federated learning ensures the protection of privacy,
as the user’s data will not leave their device during training.

With federated learning, in contrast to centralized machine
learning, training takes place on the end-users’ personal de-
vices, which are often referred to edge devices or nodes.
The resulting trained models are communicated to a central
server, commonly referred to as the parameter server, which
aggregates these models using some predefined methodology.
By only sharing the end user-trained models with the param-
eter server, the user’s privacy is preserved, while obtaining
comparable performance compared to centralized machine
learning [14]. While there exist attacks in which training data
can be reconstructed based on the gradient of the trained
models [15], [16], defense mechanisms against this attack have
been proposed [17], [18].

However, federated learning suffers from some disadvan-
tages. For instance, the parameter server aggregates the models
of all participating nodes, inducing heavy communication costs
and a potential bottleneck in the learning process affecting
the overall convergence time [19]. Secondly, the scalability
in terms of the amount of nodes heavily varies depending
on the aggregation method. In secure and robust federated
learning aggregation methods, the incorporation of additional
nodes during aggregation may result in significantly increased
computational effort for the parameter server [20]. Thirdly, the
parameter server performing the aggregation poses a single-
point of failure [21]. Disruptions to the parameter server
can cause downtime and hinder the overall model training

process, particularly in architectures where edge devices re-
quire the globally aggregated model before continuing their
training. An upcoming alternative aiming to resolve these
issues is decentralized learning, also commonly referred to
as decentralized federated learning. In decentralized learning,
there exists no dedicated parameter server performing the
aggregation and the edge devices form a distributed network,
e.g. a peer-to-peer network, in which each node individually
performs aggregation on their neighbours’ models (see Fig-
ure 1). While the information available during aggregation
is more limited relative to federated learning, it has been
shown that decentralized learning has the potential to obtain
similar results compared to federated learning [22]. Models
are exchanged between individual devices and aggregated on
individual scale using some predefined aggregation method,
alleviating the communicative bottleneck and single point of
failure issues imposed on federated learning, and paving the
path for boundless scalability.

While decentralized learning solves the scalability chal-
lenges faced in federated learning, it is still vulnerable to
byzantine environments [23]. Since the predefined aggregation
method in decentralized learning does not have access to
all models in the network, aggregation is performed with
less information compared to federated learning, resulting in
relatively less resistance against possible poisoning attacks
[24]. Poisoning attacks are can generally be categorized in
two categories, namely those of targeted poisoning attacks
and untargeted poisoning attacks. Targeted poisoning attacks
focus on achieving a specific goal an adversary aims to achieve
such as the label-flipping attack [25], [26] and the backdoor
attack [27]–[29]. On the other hand, untargeted poisoning
attacks aim to hinder the result of the training process in
some way without any particular goal in mind. The effect of
these attacks can often be amplified through combining them
with the Sybil attack [30], in which an adversary controls a
substantial amount of nodes to increase its influence. As such,
an adversary may deploy the Sybil attack to rapidly spread
their poisoned model through the network. In this work, we
focus exclusively on targeted poisoning attacks amplified by
Sybil attacks in decentralized learning.

Prior work on resilience against poisoning attacks combined
with Sybil attacks in distributed machine learning has mainly
been done in federated learning settings. One popular example
of such work is FoolsGold [31], which aims to increase
Sybil resilience under the assumption that all Sybils will



Fig. 1. Federated learning compared to decentralized learning. Arrows
represent a connection between two nodes and indicates the two connecting
nodes share model updates with eachother.

broadcast similar gradients during each round of training.
By dynamically adapting the aggregation weights of peers’
models based on their similarity with others, experimental
results suggest that FoolsGold has the potential to provide
effective protection against Sybil attacks in small-scale and
simple federated learning settings.

In this work, we experimentally demonstrate FoolsGold’s
inability to scale to an unbounded number of edge devices
in federated learning and inept defensive capabilities against
targeted poisoning attacks in decentralized learning. We sug-
gest an improved version of FoolsGold, named NAME-OF-
ALGORITHM1, which shows significant resilience towards
defending against targeted poisoning attacks whilst enjoying
the boundless scalability offered by decentralized learning.
More specifically, we achieve this by introducing a probabilis-
tic gossiping mechanism for knowledge spreading. Finally, we
empirically evaluate this algorithm on numerous types of Sybil
attacks and show its ability to obtain increased Sybil resilience.

To the best of our knowledge, there exists only a single
other work on defensive algorithms against poisoning attack
in decentralized learning [32]. Moreover, this paper is the first
to study Sybil attacks in decentralized learning. In short, our
contributions are the following:

• We evaluate FoolsGold, a popular Sybil resilience algo-
rithm in federated learning, and assess its compatibility
with decentralized learning in Section III.

• We present NAME-OF-ALGORITHM, a pioneering al-
gorithm for Sybil resilience with boundless scalability in
decentralized learning, in Section VI.

• We perform an empirical evaluation of NAME-OF-
ALGORITHM’s performance in VII

• Maybe: We provide a convergence analysis on NAME-
OF-ALGORITHM in section VIII.

II. BACKGROUND

A. Federated learning

Federated learning was first proposed by Google [8]
as an alternative for training machine learning models on
anonymized user data

1NAME-OF-ALGORITHM stands for

• Explain more in-depth how federated learning works →
formal definitions

• Refer to Figure 1
• Explore some implementations of popular (simple) FL

algorithms.
• FedAVG
• FedSGD

B. Decentralized learning

• Explain more in-depth how decentralized learning works
→ formal definitions?

• Refer to Figure 1
• Explore some implementation of popular (simple) DL

algorithms.

C. Targeted poisoning attacks

• Briefly revisit targeted and untargeted poisoning attacks.
We focus on targeted.

• Provide formal definitions of the label-flipping attack and
the backdoor attack.

D. The Sybil attack

• Formal definition of Sybil attack
• In our context, most Sybil attacks may use botnets to

increase their reachability and network throughput.
• Seuken and Parks on strongly and weakly benificial Sybil

attacks.

III. RELATED WORK

A. FoolsGold

Explain FoolsGold [31] and show two graphs in which
FoolsGold is used in both federated and decentralized settings
(and show that it does not work as well in decentralized
learning if there is no more than a single attack edge to every
honest node).

How our work is different:
• It can be deployed in decentralized learning.
• It suffers less from the computationally expensive ag-

gregation method. According to Foolsgold’s authors, the
cosine similarity function was the most expensive opera-
tion.

Furthermore, we performed an extensive evaluation of Fools-
Gold in both federated learning and decentralized learning.
These are our results...

B. Resilient Averaging Gradient Descent

Resilient Averaging Gradient Descent (RAGD) [32] is a
novel algorithm for mitigating poisoning attacks in decentral-
ized learning.
How our work is different:

• RAGD naively assumes that malicious model updates will
be quite different compared to honest model, but this may
not necessarily be the case for label-flipping attacks or
backdoor attacks.



• RAGD assumes the existence of a static adjacency matrix,
defining the edge weights between any two nodes. It also
assumes that any attack edge has a weight of 0 < ϵ < 1

2 .
• We assume that nodes will not be fully connected.

C. Krum

Distance based

IV. PRELIMINARIES

1) We assume that there exists some incentive for utilizing
Sybils. This may be an upper bound on the maximum
amount of connections any node can have with other
nodes. An alternative may be a communication bottle-
neck, such as network speed, which incentivizes the use
of a botnet as sybils to help distribute the poisoned
model more rapidly.

2) We assume that adversaries perform a Sybil attack
through hijacking other nodes such that they can play
as a man-in-the-middle, thereby

3) maybe we don’t need to send entire models, but just the
cosine similarity between their own model and the other
model?

4) WEAKNESS: as nodes have access to much less in-
formation in decentralized learning, it may incorrectly
classify honest nodes as sybils if they are remotely
similar.

V. THREAT MODEL

VI. DESIGN

• Explain FoolsGold (cannot assume everyone knows it)
• Pseudocode?
• Explain gossiping models → the probabilistic property

occurs two-fold, 1 when selecting a peer to request a
model from and 2 when selecting what model to send
to the requesting peer.

• Add figure
• Include somewhere that our max degree dampens single-

attackers and that gossip mechanism prevents multi-
attackers

VII. EVALUATION

A. Experimental setup

• DAS6 → IPv8 → Gumby
• Attacks:

– Label-flipping attack. from [31], [33]
– backdoor attack. from [31]
– a little is enough? from [33]
– fall of empires? from [33]
– sign-flipping? from [33]

B. Results

VIII. ANALYSIS

IX. DISCUSSION

X. CONCLUSION
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