
FROSTDAO: Collective Ownership of wealth using FROST

Rahim Klabér

April 27, 2023

1



1 Introduction

1.1 TODO REWRITE
The introduction of Bitcoin allowed anyone to send and
receive money anonymously and without government
oversight[CITE]. Subsequent Blockchains introduced the
concept of ”smart-contract”, code that is stored on a
Blockchain and runs depending on certain conditions.
Smart-contracts led to the concept of Decentralized Au-
tonomous Organizations (DAOs). These are leaderless
organizations where the members can collectively deter-
mine what to do. These DAOs use Blockchain smart-
contracts to allow for the collective ownership of wealth.

The behavior of certain smart-contracts can be emu-
lated with cryptography instead of code. Most impor-
tantly, a smart-contract for collective decision-making
can be replaced with threshold cryptography[CITE]. In
this case the members of a DAO would jointly control a
Blockchain account that serves the account of the organi-
zation.

In this paper, we introduce a DAO framework based
on cryptography, instead of Blockchain smart-contracts.
We substitute smart contracts with threshold signatures
to create a DAO framework that is Blockchain agnostic
and does not require the underlying Blockchain to sup-
port smart-contracts.

2 Problem
The goal is to create a DAO framework that can scale to
hundreds or even thousands of members for Blockchains
where DAOs cannot be created using smart-contracts. In
particular, Bitcoin. Our framework should work in a fully
decentralized and peer-2-peer setting where the only par-
ticipants are smartphones and there are no servers. This
is especially challenging given the unreliability of smart-
phone networking.

2



Figure 1: Traditional DAO architecture.

3 Background

3.1 DAO

A Decentralized Autonomous Organization (DAO) is
a collectively-owned, blockchain-governed organiza-
tion[cite]. DAOs are leaderless organizations where deci-
sions must be made through voting on proposals that are
created by its members. Traditionally, DAO consists of
a number of components. First, the DAO smart contract,
which handles proposals and voting. Second, a DAO to-
ken represents a state in the DAO. Third, the DAO trea-
sury contract holds the assets of the DAO. Lastly, various
contracts or applications are governed by the DAO.

The DAO smart contract is responsible for registering
proposals and allowing members to vote. Proposals in-
clude instructions that are executed by the smart contract
if the proposal receives enough votes. Often, creating pro-
posals requires a certain amount of voting power.

The DAO token is used to show membership in the
DAO and represent voting power within the DAO. The
DAO controls the DAO token smart contract, which can
be used to issue more tokens or remove existing tokens
from circulation.

The DAO treasury holds the assets of the DAO. This
can include DAO tokens, but also other tokens on the
Blockchain. The treasury is used to pay members who
contribute to the DAO and is used to pay for other ex-
penses.

A DAO may have control over other smart contracts.

Figure 2: Simplified Bitcoin transaction. Shows inputs with Bit-
coin values being consumed to create new inputs.

This enables the DAO members to control and make
changes to those contracts when they deem it necessary.
For example, AAVE, a blockchain lending platform, is
controlled by a DAO that can adjust the risk parameters
of the lending smart contracts.

DAOs often have a small number of members who are
active and a large number who do not actively participate.
This means that a large portion of power within the DAO
is inactive, which can lead to not enough participation and
proposals failing. A solution to this problem is delegation,
members can delegate their voting power to other mem-
bers who they think are trustworthy. Effectively delegat-
ing temporarily gives someone your voting power.

3.2 Bitcoin

Compared to newer Blockchains like Ethereum, Bitcoin
uses an interesting transaction model. Bitcoin transac-
tions consist of a number of inputs and outputs. Each
input is an output of another transaction.

Outputs have a Bitcoin value attached to them, which
can be used to pay other Bitcoin accounts. Outputs can
be created by ”spending” an input which renders that in-
put unusable anymore. Each input has a small program
that must be satisfied to spend the input. This allows for

3



some interesting constructions. Figure 2 shows a simpli-
fied view of a Bitcoin transaction

As mentioned previously, Bitcoin inputs include a pro-
gram that must be satisfied to spend the input. When at-
tempting to spend an input, the user provides inputs to
satisfy the input program. When doing a normal payment
the input to the program is a signature proving that the
user owns the address that is allowed to spend the input.

The spending rules can allow for more than just sending
payments. One example related to the problem statement
of this paper is requiring an input to be approved by mul-
tiple users to be spent. This would allow a basic DAO to
exist on Bitcoin where the execution of proposals creates
outputs with arbitrary rules. However, this solution only
works for extremely small DAOs as Bitcoin transactions
shave a size limit and Bitcoin fees are dependent on the
size of a transaction. Therefore, even for small DAOs this
solution is not optimal as the fees would be high.

3.3 Threshold Signatures

Threshold signatures Schemes is a method for creating
signatures where multiple users are required to collabo-
rate to create a signature. A Threshold signature scheme
has 2 parameters. The number of participants n and the
threshold t where t ≤ n. Only t participants are required
to create a valid signature.

To create a Threshold signature scheme a private key
must be split up and each member must have a share of
the private key. This can be done by relying on a trusted
party that would generate a private key and split it up for
each of the members. This does not work for peer-2-peer
systems as there is no trusted party. Instead, a distributed
key generation protocol is used, which generates the key
shares in a distributed fashion such that no party learns
the actual private key. Compared to using a trusted dealer,
distributed key generation is much costlier and takes mul-
tiple network rounds.

To create a signature t participants need to sign the
message. The t signed messages can then be combined
to create the final signature.

3.3.1 Flexible Round-Optimized Schnorr Threshold
Signatures (FROST)

FROST is a Threshold signature scheme that is able
to create signatures that are compatible with Bitcoin.
FROST consists of two protocols, one for key generation
and one for signing.

The key generations protocol consists of 2 rounds,
which both require every participant to broadcast a mes-
sage to every other participant. The first round is partic-
ularly problematic as the size of the message depends on
the number of participants.

The signing protocol is much lighter than key genera-
tion. It also consists of two rounds. However, the first
round does not require knowledge of the unsigned data.
Therefore, the output of the first round can be batched,
resulting in a much quicker signing protocol. In the sec-
ond round of signing, each participant signs the data with
their own key share. The signatures are then combined to
create the final signature.

3.4 IPV8
IPV8 is a peer-2-peer networking library. It allows for
the creation of applications that do not require a central
server. One example, is MusicDAO[cite], a Spotify al-
ternative aiming to give a more significant share of the
revenue to music artists.

IPV8 works by keeping a list of peers that are period-
ically checked for liveness. Peers are introduced to new
peers which they can add to their list to keep track of.
IPv8 is particularly useful because it supports hole-punch
and therefore works behind WIFI, where peer-2-peer ap-
plications normally wouldn’t work.

On top of the networking layer, IPV8 has the concept
of Communities. These can be seen as protocols that live
on top of IPV8. Members of a Community can communi-
cate with each other using Community specific messages
which are handled in Community specific ways. For ex-
ample, A Community named Torrent Community could
implement torrent functionality.

4



5



3.5 System Design

6



4 Implementation

4.1 Bitcoin specifics

7



Class / Package Line coverage Lines of code
FrostManager 93% 404
SchnorrAgent 94% 106
FrostCommunity 65% 141
FrostViewModel 0% 156
ui 0% 980

Table 1: Code coverage of the FROSTDAO application.

5 Evaluation

Figure 3: Amount of data in Kilobytes sent during Key genera-
tion and Signing

Figure 4: Duration of Key generation and Signing.

8



6 Conclusion

9


	Introduction
	TODO REWRITE

	Problem
	Background
	DAO
	Bitcoin
	Threshold Signatures
	Flexible Round-Optimized Schnorr Threshold Signatures (FROST)

	IPV8
	System Design 

	Implementation
	Bitcoin specifics

	Evaluation
	Conclusion

