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I. INTRODUCTION

The rise of machine learning has resulted in an increasing
number of everyday-life intelligent applications. As such,
machine learning has been used in personal assistants [1],
recommendation in social media [2] and music [3], and
cybersecurity [4]. However, accurate machine learning models
require large training datasets [5], [6], which can often be
hard to obtain and store due to recent privacy legislation [7].
Federated learning [8] has become a promising alternative
and widely adopted tool for crowd sourcing computationally
expensive machine learning operations, reportedly having been
used for training numerous industrial machine learning models
[9]–[13]. Federated learning ensures the protection of privacy,
as the user’s data will not leave their device during training.

With federated learning, in contrast to centralized machine
learning, training takes place on the end-users’ personal de-
vices, which are often referred to edge devices or nodes.
The resulting trained models are communicated to a central
server, commonly referred to as the parameter server, which
aggregates these models using some predefined methodology.
By only sharing the end user-trained models with the param-
eter server, the user’s privacy is preserved, while obtaining
comparable performance compared to centralized machine
learning [14]. While there exist attacks in which training data
can be reconstructed based on the gradient of the trained
models [15], [16], defense mechanisms against this attack have
been proposed [17], [18].

However, federated learning suffers from some disadvan-
tages. For instance, the parameter server aggregates the models
of all participating nodes, inducing heavy communication costs
and a potential bottleneck in the learning process affecting
the overall convergence time [19]. Secondly, the scalability
in terms of the amount of nodes heavily varies depending
on the aggregation method. In secure and robust federated
learning aggregation methods, the incorporation of additional
nodes during aggregation may result in significantly increased
computational effort for the parameter server [20]. Thirdly, the
parameter server performing the aggregation poses a single-
point of failure [21]. Disruptions to the parameter server

can cause downtime and hinder the overall model training
process, particularly in architectures where nodes require the
globally aggregated model before continuing their training. An
upcoming alternative aiming to resolve these issues is decen-
tralized learning, also commonly referred to as decentralized
federated learning. In decentralized learning, there exists no
dedicated parameter server performing the aggregation and the
nodes form a distributed network, e.g. a peer-to-peer network,
in which each node individually performs aggregation on
their neighbours’ models (see Figure 1). While the infor-
mation available during aggregation is more limited relative
to federated learning, it has been shown that decentralized
learning has the potential to obtain similar results compared
to federated learning [22]. Models are exchanged between
individual devices and aggregated on individual scale using
some predefined aggregation method, alleviating the commu-
nicative bottleneck and single point of failure issues imposed
on federated learning, and paving the path for boundless
scalability.

While decentralized learning solves the scalability chal-
lenges faced in federated learning, it is still vulnerable to
byzantine environments [23]. Since the predefined aggregation
method in decentralized learning does not have access to
all models in the network, aggregation is performed with
less information compared to federated learning, resulting in
relatively less resistance against possible poisoning attacks
[24]. Poisoning attacks are can generally be categorized in
two categories, namely those of targeted poisoning attacks
and untargeted poisoning attacks. Targeted poisoning attacks
focus on achieving a specific goal an adversary aims to achieve
such as the label-flipping attack [25], [26] and the backdoor
attack [27]–[29]. On the other hand, untargeted poisoning
attacks aim to hinder the result of the training process in
some way without any particular goal in mind. The effect of
these attacks can often be amplified through combining them
with the Sybil attack [30], in which an adversary controls a
substantial amount of nodes to increase its influence. As such,
an adversary may deploy the Sybil attack to rapidly spread
their poisoned model through the network. In this work, we
focus exclusively on targeted poisoning attacks amplified by
Sybil attacks in decentralized learning.

Prior work on resilience against poisoning attacks combined
with Sybil attacks in distributed machine learning has mainly
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Figure 1: Federated learning compared to decentralized learn-
ing. Arrows represent a connection between two nodes and
indicates the two connecting nodes share model updates during
each training round.

been done in federated learning settings. One popular example
of such work is FoolsGold [31], which aims to increase
Sybil resilience under the assumption that all Sybils will
broadcast similar gradients during each round of training.
By dynamically adapting the aggregation weights of peers’
models based on their similarity with others, experimental
results suggest that FoolsGold has the potential to provide
effective protection against Sybil attacks in small-scale and
simple federated learning settings.

In this work, we experimentally demonstrate FoolsGold’s
inability to scale to an unbounded number of nodes in feder-
ated learning and inept defensive capabilities against targeted
poisoning attacks in decentralized learning. We suggest an
improved version of FoolsGold, named Sydle1, which shows
significant resilience towards defending against targeted poi-
soning attacks whilst enjoying the boundless scalability offered
by decentralized learning. More specifically, we achieve this
by introducing a probabilistic gossiping mechanism for knowl-
edge spreading. Finally, we empirically evaluate this algorithm
on numerous types of Sybil attacks and show its ability to
obtain increased Sybil resilience.

To the best of our knowledge, there exists only a single
other work on defensive algorithms against poisoning attack
in decentralized learning [32]. Moreover, this paper is the first
to study Sybil attacks in decentralized learning. In short, our
contributions are the following:

• We evaluate FoolsGold, a popular Sybil resilience algo-
rithm in federated learning, and assess its compatibility
with decentralized learning in Section III.

• We present Sydle, a pioneering algorithm for Sybil re-
silience with boundless scalability in decentralized learn-
ing, in Section V.

• We perform an empirical evaluation of Sydle’s perfor-
mance in VI.

• Maybe: We provide a convergence analysis on Sydle in
section VII.

II. BACKGROUND

A. Federated learning

Federated learning was initially proposed by Google [8] as
a means for training machine learning models on real user

1Sydle stands for SYbil resilient Decentralized LEarning.

Figure 2: Todo: caption.
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Figure 3: Sydle compared to a number of other algorithms.

data without compromising users’ privacy. This is achieved
by training the machine learning model on the edge devices,
which contain the real user data. The training proceeds in
synchronous rounds, each consisting of a predefined number
of epochs, during which the trained models are sent to the
parameter server at the end of each round. The role of the
parameter server is to aggregate all trained models into a
global model without the need of any training data. After
the models are aggregated, the global model is communicated
back to the edge devices, after which the next training round
commences. See Figure 1 for a simplified federated learning
network topology. The original paper [8] suggests the usage
of FedAvg, which adopts a weighted average function as the
aggregation function, such that the next global model wt+1 is
calculated as follows:

wt+1 =
∑
i∈N

|Di|
|D|

wt
i (1)

where wt
i is the model of node i in round t, N is the set of

nodes, Di corresponds to node i’s local dataset and D is the
global distributed collection of data, such that D =

⋃
j∈S Dj .

The goal is of the training process is to minimize the global
loss function such that the global model x approaches the
optimal model x∗. More formally, the search for a global
optimal model can approximately be defined as:

w∗ = argmin
w

∑
i∈N

|Di|
|D|

Li(w) (2)

where Li is a node’s loss function, e.g. cross-entropy loss or
negative log likelihood loss, using the node i’s local dataset.
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B. Decentralized learning

Decentralized learning is an upcoming alternative for fed-
erated learning [33]–[36]. In contrast to federated learning,
which relies on a parameter server for aggregating locally
trained models, aggregation in decentralized learning takes
place at a smaller scale and is performed by every participating
node on their own model and those of its neighbours (see
Figure 1) By doing so, numerous issues faced in federated
learning can be resolved; the most notable improvement of
which can be found in terms of scalability and can be
decomposed into three distinct aspects:

1) Communication: In parameter server-centered aggrega-
tion techniques, all participating models are downloaded
and uploaded every training round, forming a commu-
nication bottleneck bounded by the parameter server’s
internet connection. Such bottlenecks are reduced in
decentralized learning to the number of neighbours.

2) Memory: Storing all models in memory during aggre-
gation, may result in substantial memory usage. In
decentralized learning, this constraint poses a diminished
issue, given that the aggregation transpires with a sig-
nificantly reduced number of models.

3) Aggregation: The aggregation function is no longer per-
formed with every model from all participating nodes,
reducing the required computation time of more sophis-
ticated aggregation functions, particularly those that do
not scale linearly with respect to the number of models.

If the prior example of a basic averaging function were
to be applied in decentralized learning, one would obtain the
following aggregation function:

wt+1
i =

1

|Ni|+ 1

∑
j∈{Ni ∪ i}

wt
j (3)

where Ni is the set of all neighbours of node i.
Nodes in decentralized learning may not have access to all

information in the network, causing a decrease in informa-
tiveness. More specifically, convergence speeds may decrease
compared to federated learning [36] and nodes may experience
increased vulnerability to byzantine attacks due to the lack
of global information [23]. However, it has been shown that
decentralized learning can obtain comparable performance
results relative to federated learning and, in some cases, out-
perform federated learning altogether [37], [38]. Furthermore,
multiple defensive strategies focused on decentralized learning
have been proposed recently [31], [32], [39]–[41].

C. Targeted poisoning attacks

Poisoning attacks can be defined as methods in which
an adversary attempts to compromise the integrity of the
global model and can be taxonomized into two categories:
targeted poisoning attacks and untargeted poisoning attacks.
With untargeted poisoning attacks, the adversary aims to
decrease the performance metric of the model without any
particular goal in mind. On the other hand, in the context
of targeted poisoning attacks, the adversary aims to achieve

a predetermined goal by manipulating the global model to
behave in a certain deterministic manner which deviates from
the objectively correct behaviour. We consider two of such
attacks related to the domain of classification: the label-
flipping attack [25], [26] and the backdoor attack [27]–[29].

The label-flipping attack can be deployed as an attempt
to increase the likelihood for two targeted classes to be
misclassified. More specifically, given two target classes t1
and t2, the aim of the label-flipping attack is to manipulate the
model such that some arbitrary sample x ∈ Xt1 belonging to
class t1 is more likely to be classified as class t2 by the global
model and vice versa. A way to achieve this is to explicitly
transform the adversary’s local dataset D to an adversarial
dataset D′ and train the adversarial model on this dataset.
Given two target classes t1 and t2, this transformation can
be defined as:

D′ = {(x, y) ∈ D | y ̸= t1 ∧ y ̸= t2}
∪ {(x, t1) | (x, y) ∈ D, y = t2}
∪ {(x, t2) | (x, y) ∈ D, y = t1}

(4)

The backdoor attack requires a more extensive manipulation
of the training data. The objective of a backdoor attack is
to alter the global model such that any sample containing a
specific predefined pattern is misclassified to a chosen target
class. In the domain of image classification, this adversarial
pattern could for instance correspond to small square or
triangle in the top-left corner of the input image. Given a target
class t and a function f to introduce a hidden pattern to input
samples, the dataset transformation applied on the adversary’s
local dataset D can be defined as:

D′ = {(f(x), t) | (x, y) ∈ D} (5)

D. The Sybil attack

The Sybil attack, first introduced by Douceur [30], is an
adversarial strategy in decentralized environments in which
the attacker exploits the inability of honest nodes to verify the
authenticity of another node’s identity. By effortlessly creating
fake nodes, named Sybils, and strategically connecting these
to nodes in the targeted decentralized network, the attacker
may gain significantly more influence compared to the honest
nodes. We denote the connections between Sybils and honest
nodes as attack edges. A typical example of a scenario in
which the Sybil attack may be deployed is voting [42], [43].
In such a case, an attacker can easily generate sufficient nodes
to outnumber all other real voters.

In this work, we consider the Sybil poisoning attack, in
which an attacker creates fake nodes to spread its malicious
model more rapidly and effectively throughout the network.

III. RELATED WORK

A. FoolsGold

FoolsGold [31] is an algorithm for mitigating Sybil poi-
soning attacks in federated learning settings. It builds on the
assumption that Sybil model updates show a substantially
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higher degree of similarity relative to that of honest model up-
dates. Through the computation of similarity between a node’s
model update history and that of others, and subsequently
mapping this to the model update’s weight in an average-based
aggregation, FoolsGold manages to mitigate Sybil targeted
poisoning attacks as shown in Figure 4.

During aggregation, FoolsGold first computes the pairwise
cosine similarity score of all model update histories. The
model update history of node i in round T is defined as
hT
i =

∑T
t=0 w

t
i . In an effort to decrease the number of false

positives among honest nodes, each score sij is multiplied by
the ratio of node i’s maximum score and node j’s maximum
score in cases where the latter is greater, such that maxv siv

maxv sjv
if maxv siv < maxv sjv. The scores are then aggregated
per node by taking the maximum and subsequently inversed,
such that node i’s aggregated score s′i can be defined as
s′i = 1−maxv siv . As FoolsGold assumes there exists at least
one honest node, the aggregated scores are rescaled such that
the maximum aggregated score equals 1.

The aggregated scores are then transformed to weights for
average-based aggregation through the use of a bounded logit
function. This function can be considered a gradual decision
boundary for determining a node’s honesty based on its
similarity with others. Finally, the weights are normalized and
the aggregated model is computed through weighted average.

A reproduction of FoolsGold’s results can be found in
Figure 4, where the attack rate represents the extent to which
the attack was successful, e.g. the percentage of labels that
are successfully flipped in the label-flipping attack. It becomes
clear that FoolsGold shows significantly higher Sybil resilience
compared to the FedAvg. However, as discussed in Section
II-B, federated learning can be considered unscalable as the
number of participating nodes increases, particularly in view
of the O(n2) pairwise cosine similarity computation required
by FoolsGold. Figure 5 shows the performance of FoolsGold
in a decentralized setting against the performance of our
improved algorithm, Sydle, based upon FoolsGold. It is clear
that FoolsGold’s performance can heavily depend based on the
network topology, whereas Sydle shows comparatively more
Sybil resilience.

B. Resilient Averaging Gradient Descent

TODO Resilient Averaging Gradient Descent (RAGD) [32]
is a novel algorithm for mitigating poisoning attacks in decen-
tralized learning.
How our work is different:

• RAGD naively assumes that malicious model updates will
be quite different compared to honest model, but this may
not necessarily be the case for label-flipping attacks or
backdoor attacks.

• RAGD assumes the existence of a static adjacency matrix,
defining the edge weights between any two nodes. It also
assumes that any attack edge has a weight of 0 < ϵ < 1

2 .
• We assume that nodes will not be fully connected.
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Figure 4: FoolsGold and FedAvg in federated learning setting
using the CIFAR-10 [44] dataset on a LeNet-5 [45] model.
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(b) Network topology 2

Figure 5: FoolsGold and Sydle in decentralized learning using
the FashionMNIST [46] dataset on a single-layer softmax
neural network.
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Figure 6: Pairwise cosine similarity computation time against
the number of nodes, illustrating the O(n2) time complexity
of the pairwise cosine similarity computation.

C. Krum

Krum [47] attempts to improve the general Byzantine re-
silience in distributed machine learning. This approach oper-
ates on the premise that Byzantine model updates are prone
to deviate from the updates produced by honest participants.
More specifically, the aggregation involves computing a score
s(i) for every received model i, which corresponds to the
sum of the squared distance between i and its n − f − 2
nearest distant-wise neighbours, where f corresponds to the
maximum number of Byzantine participants. The model m
with the lowest score, such that m = argmini s(i) , is chosen
as the next model to train on.
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IV. THREAT MODEL AND PRELIMINARIES

A. Adversarial assumptions

Assumption 1. The adversary is only capable of influencing
the learning process through the predefined Decentralized
Learning API.

The adversary’s only method of communicating with other
nodes or influencing the learning process is through the default
Decentralized Learning API to which honest nodes have access
as well. The latter implies that the adversary does not have the
ability to manipulate other nodes’ local models or data.

Assumption 2. Sybil model updates show high similarity
compared to honest model updates.

We assume that the model updates by Sybils exhibit a higher
degree of similarity compared to updates made by honest
participants, as stated by prior work [31].

Assumption 3. The adversary is unrestricted in both the
quantity of Sybil nodes it can create and the selection of honest
nodes it can form attack edges to.

Assumption 4. The creation of Sybils by the adversary does
not increase its adversarial computing capabilities.

Regardless of the number of Sybil entities created by the
adversary, we make the assumption that the computational
capabilities of the adversary remain constant and do not scale
with the number of Sybil entities. The primary rationale behind
this assumption is the limited knowledge of the internal state of
the model between the aggregation and training phases. More
specifically, considering Figure 2, no participating node can
with certainty determine the internal state of other participating
nodes, including the aggregated model before training. As
per Assumption 2, it follows that each Sybil must utilize the
same aggregated model prior to training, thereby implying
equivalence to Assumption 4.

B. Network restrictions

Assumption 5. ∃ e ∈ N such that di ≤ e, ∀i ∈ N , where di
represents the degree of node i.

In order to restrict the impact that any individual node
may exercise on the network, we assume the existence of an
upper bound on the degree of any node. Such bounds may
arise naturally in certain environments, such as peer-to-peer
networks TODO SOURCE. This constraint serves to limit the
potential harm that any one node may cause.

Enforcing an upper bound on the degree of nodes has been
studied before. todo: find existing methods to achieve this.

Assumption 6. Every node has at least one honest neighbour.

C. Adversarial attack strategy

We define the most effective type of attack in similarity-
based aggregation techniques in Decentralized Learning as
the Spread Sybil Poisoning Attacks (SSP attack). That is,
the adversary aims to evade detection by maximizing the
distance between its attack edges while increasing the effect

of the attack by minimizing the distance between any honest
node and the nearest attack edge. The latter part of this
problem resembles the Maximal Covering Location Problem
[48], which is known to be an NP-Hard problem [49].

To determine attack edge positions for SSP attacks, we pro-
pose a simplified approach using the K-medoids unsupervised
clustering algorithm, assigning attack edges to the medoids.
Furthermore, we define a parameter for SSP attacks, ϕ, which
represents the average density of attack edges per node. As
such, if ϕ = 1, we say that every honest node has exactly one
attack edge. For other values of ϕ, each honest node receives
|N | ·⌊ϕ⌋ attack edges, where |N | is the total number of honest
nodes. The remainder, denoted as ϕ mod 1, is distributed
according to the K-medoids clustering algorithm. The resulting
attack edge positions are then grouped and distributed over the
Sybils while upholding Assumption 5.

V. DESIGN OF SYDLE

Our solution, Sydle, attempts to deliver the same perfor-
mance as FoolsGold in terms of accuracy and attack mitiga-
tion, while at the same time enjoying the scalability advantages
offered by decentralized learning. This is achieved by reducing
an adopted version of FoolsGold to a subfunction of our
algorithm. Moreover, we integrate a probabilistic gossiping
mechanism to for knowledge spreading. By doing so, the
FoolsGold subfunction is capable of detecting distant attack
edges from the same adversary.

In short, Sydle has been designed to handle different scenar-
ios of the worst-case attack scenario, as discussed in Section
IV-C. These scenarios are the following:

• ϕ >= 2: Every honest node has at least two attack edges,
whereas a Sybil node cannot form more than one attack
edge to any given node. As a result, the honest node
possesses the ability to gain knowledge of at least two
distinct Sybil nodes. In such a situation, the adopted
FoolsGold subfunction can detect Sybil nodes directly
through its similarity mechanism, making it capable of
mitigating the attack.

• ϵ < ϕ < 2: In the case where at least one node has
fewer than 2 attack edges, it will no longer be capable
of detecting Sybils among its direct neighbours. The
Sybil updates it receives will likely vary from all other
received updates and therefore considered honest as per
Assumption 2. In this case, our gossiping mechanism
acts as a medium for knowledge spreading. The update
history of probabilistically selected nodes are propagated
to neighbours, increasing nearby nodes’ knowledge about
nearby attack edges and TODO FINISH

• ϕ < ϵ: A low value of ϕ will result in sparse and
distant attack edges. In this scenario, it is conceivable
that the probabilistic gossiping mechanism may be unable
to disseminate knowledge to an extent that enables all
nodes with attack edges to detect the presence of Sybils.
This phenomenon may manifest in two ways: firstly, the
probabilistic gossip mechanism disseminates sufficient
knowledge over a large period of time for attacked nodes
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to have theoretical awareness of another distant attack
edge. However, the received gossiped knowledge is likely
to be significantly outdated, rendering the more recent
knowledge from their direct attack edge to have diverged
to such a degree that the Sybil is considered honest as
per Assumption 2. Secondly, the probabilistic gossiping
mechanism may be unable to provide an attacked node
with the required knowledge to recognize an attack
prior to the completion of the training process. In both
aforementioned scenarios, we argue that due to a natural
dampening effect originating from the train-aggregate
loop on each node, depicted in Figure 2, an attack’s effect
will likely result in a negligible and tolerable effect on
the average global model.

A. Adopting FoolsGold

Given that that Sybil updates are likely to closely resemble
eachother, we gain the ability to compare the model updates
received from our neighbours every round and decrease their
influence during aggregation as their similarity to one or
more neighbours grows. Note that nodes may often not have
sufficient information to have a definite conclusion.

• Node’s trust themselves
• include history of more nodes but only consider direct

neighbours in aggregated model
This section assumes the reader is familiar with FoolsGold

[31] (see Section III-A).

B. Probabilistic gossiping mechanism

The aforementioned adopted FoolsGold sub-function re-
quires additional knowledge about its indirect neighbours to
increase its detection rate, as the received model updates from
direct neighbours is not sufficient to detect Sybils if the node
is only connected to a single Sybil. To facilitate the knowledge
spreading, we devised a probabilistic gossiping mechanism.

1) Probabilistic gossiping: First, let us define the method
in which random model update histories are selected to be
propagated to a neighbouring node. In short, Sydle uses a
weighted random selection algorithm to select which node’s
model update history to propagate.

More specifically, let Hi denote the database of model
update histories associated with node i. Hi consists of a list
of tuples, with each tuple of the form (p, h, r, d, f) ∈ Hi,
where p represents the peer from which the model update
history originates, h corresponds to the model update his-
tory, r is the round from which the model update history
originates, d is the distance from node i to node p in the
number of hops, and f is the neighbour of node i from
which this model update history has been received. Note that
node p’s model update history h in round i is defined as
the sum of all model updates originating from node p, i.e.
hi
p = wi

p + hi−1
p , given model update wi

p from node p in
round i. Given current node i and its neighboring node j, let
the filtered database of model update histories H′

i be defined as
H ′

i = {(p, h, r, d, f) | (p, h, r, d, f) ∈ Hi, p /∈ {i, j}∧ f ̸= j}.
This filtered database is used for performing a weighted

random selection of a model update history from node i to
node j.

First, weights are assigned to the entries of the filtered
database of model update histories. These weights directly
correspond to the distance d and are assigned according to
the exponential distribution:

P (d) = λe−λd (6)

where d is the distance in the number of hops between
current node i and the node of which the weight is computed.
λ can be considered a hyperparameter indicating the relevance
of propagating the model update history of distant nodes. The
selection of the exponential distribution is not arbitrary, as
it prioritizes the propagation of the update history of nearby
nodes over that of distant nodes. This approach mitigates
distant attack edges by leveraging the natural dampening effect
described previously. After the weights have been assigned to
filtered dataset of model update histories, a weighted random
selection is performed to select which model update history
to propagate.

A node’s local database of model update histories can be
updated in the following ways:

• direct neighbour update
• haven’t seen before
• is more up-to-date than the history we had previously
If scaling issues occur or training will take very long, we

can consider dropping model update histories
Optimizations possible for future work.
Mention scaling attack somewhere? (Simply scale the model

update 10 times)
Mention synchronous training rounds?
2) Secure and efficient communication: Sydle replaces the

traditional model sharing discussed in Section II-B with a
more sophisticated communication protocol. As the FoolsGold
subfunction requires the model update history, we alter the
communication mechanism to support this.

We assume that honest nodes and sybils both send all their
neighbours the same updated model, but it would be possible
to implement mechanisms to detect this.

gossip model: message consists of 2 parts, own signed
history and other signed history.

1) Nodes train their model and then compute their own
update history.

2) Nodes send their signed history to their neighbours.
3) Neighbours obtain a signed history of their neighbour

and are capable of computing the model update by
comparing the signed history with the signed history
received in the prior round.

4) Neighbours can re-use the signed history by sending it to
their neighbours according to the probabilistic gossiping
mechanism.

As the FoolsGold subfunction requires the model history
as well as the updated model in the aggregation, a traditional
system would require
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Table I: The datasets used in the evaluation of Sydle. TODO
LAYOUT

Dataset Model Learning rate
CIFAR-10 [44] LeNet-5 η = 0.004 [50]
SVHN [51] LeNet-5 η = 0.004 [50]
FashionMNIST [46] Single soft-max layer η = 0.01 [31]
MNIST [52] Single soft-max layer η = 0.01 [31]

Note that we construct messages such that a message mi→j

from node i to j can be decomposed into ⟨h, g⟩, where hi

represents node i’s signed updated model history to include
the latest training round and g is the signed model history

todo: define the history of model updates as the sum of
model updates.

3) Downtime support: Note that Sydle supports nodes
going offline for an arbitrary period. When the offline node
becomes available again, the model update can be computed
by waiting an additional round while directly obtaining the
model history.

C. Informativeness dilemma

Explain that using Sydle introduces convergence delay, as
it is possible to falsly detect positives among the set of honest
neighbours due to high similarity with each other when they
have a similar local dataset. However, our experiment show
that eventually similar performance can be achieved.

VI. EVALUATION

A. Experimental setup

Sydle was implemented in Python3 for experimental evalua-
tion and is online available [?]. We have used the PyTorch [53]
library for the training of machine learning models. As for the
communication between the individual nodes, we leveraged
IPv8 [?], which provides an API for constructing network
overlays in order to simulate P2P networks. Furthermore, we
adopted the Gumby [?] library as the experimental execution
framework, which was specifically designed for sophisticated
experiments with IPv8 involving many nodes. All experiments
were performed on the Distributed ASCI Supercomputer 6
(DAS-6) [54]. Each node in the compute cluster has access
to a dual 16-core CPU, 128 GB RAM and either an A4000
or A5000 GPU.

1) Datasets: The datasets that we used to evaluate can be
found in Table I. These datasets were chosen for a number
of reasons. First of all, MNIST [52] is a commonly used
dataset in the evaluation of machine learning algorithms.
FashionMNIST was developed as a more challenging variant
of MNIST. The choice for SVHN and CIFAR-10 is motivated
by the increased complexity of models required to obtain
acceptable accuracy, which may affect the performance of
Sydle. The usage of complex models in evaluation is often
overlooked in other works TODO SOURCES [31], [39]. Note
that all the datasets used in this experimental evaluation focus
on image classification. We argue that that focusing on image
classification is justifiable as it is known as a well-established
task in machine learning. Furthermore, image classification
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Figure 7: Accuracy and attack rate for the label-flip attack on
different datasets (300 rounds).
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Figure 8: Accuracy and attack rate for the backdoor attack on
different datasets (1600 rounds).

frequently serves as a benchmark for evaluating novel dis-
tributed machine learning algorithms TODO SOURCES [31],
[36], [39], and there exist a variety of widely available datasets
specifically constructed for this task.

All models in Table I are trained using SGD.
2) Data distribution: Todo: discuss Non-IID data distribu-

tions. Argue that we use Dirichlet distribution
• Attacks:

– Label-flipping attack
– backdoor attack

• network topology is random geometric graph (should be
in experimental setup, not here)

• network topology remains static during all experiments.
• table with default experiment parameters?
• the success of the attacker is measured by applying the

dataset transform functions on the test data and compute
the accuracy, we call this the attack rate. Note: we
compute this metric directly after the aggregation step
(see figure 2) and take the average of all nodes. Same for
accuracy.

B. Effect of dataset

Notes for later:
• Figure 7 and 8 have been constructed with the following

parameters;
– Number of honest nodes: 99 for labelflip and 49 for

backdoor.
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– ϕ = 1
– α = 0.1

C. Comparison with other techniques

D. Effect of attack edge density

E. Effect of data distribution

VII. ANALYSIS

TODO: use the very early composed quick analysis to
compose a much larger and more comprehensive theoretical
analysis.

Given that our novel gossip mechanism ensures that models
travel at most s edges and the maximum degree of a node is
d, then the amount of useful attack edges is equal to:

u =
n

1−d(s+1)

1−d

For example, if s = 1 and d = 3, then every attack edge has
to be at least 2 ∗ s+ 1 = 3 hops apart and every attack edge
will spread the malicious model to 1−d(s+1)

1−d = 4 nodes.
However, this comes with a trade-off, as the amount of

models any given node will to calculate the cosine similarity
between grows with 1−d(s+1)

1−d as well. With Sybil attacks,
adversaries typically aim to exploit a certain network property
through creating multiple entity. We say that Sybil attacks are
of no use when the maximum of theoretically useful attack
edges is smaller than the degree, such that u < d. Note that
this implies that nodes will need to keep track of n

d nodes.
Note: when the amount of attack edges exceeds u, there must
be at least one node in the network detecting the Sybil attack,
manifesting sub-optimal results.

However, regarding the analysis performed above, such
strict bounds on a Sybil attack are in practice not required,
as all honest nodes keep training the model after aggregation,
having a fading effect on the label-flipping attack or the
backdoor attack as the distance increases from the sybil node.

VIII. DISCUSSION

Talk about the lack of knowledge in Figure 2.
Adversaries with extensive computation power may well be

able to train numerous models each round, violating assump-
tion 4.

Existing methods of discovering convergence in DL and
stopping as soon as it has been reached to limit the effect of
the backdoor attack?

explain why we can’t see the sybil updates (because we
don’t see the aggregation step)

More research required to observe the effect of adding
random noise to irrelevant weights in the neural network.

IX. CONCLUSION
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Figure 9: Comparison of Sydle against different techniques on ϕ = 1.
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Figure 10: Comparison of Sydle against different techniques on ϕ = 4.
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