
FROSTDAO: Collective Ownership of wealth using FROST

Rahim Klabér

May 15, 2023

Abstract

1 Introduction

In the years leading to the 2008 financial crisis, banks en-
gaged in excessive risk-taking for the goal of profit. They
invested in risky loans using their depositors’ funds and
were bailed out by the government when they failed. Re-
cently, the financial system has once again been put to
the test with the failures of multiple banks. In their sim-
plest form, banks act as a middleman between depositors
and borrowers. They pool the deposits together and give
out loans to other parties while taking a cut of the fee.
More importantly, banks act as gateways to today’s finan-
cial world. Without a bank, a person cannot easily invest,
pay online or get loans. However, how can the banks be
trusted given their history?

Bitcoin emerged as an alternative to the global finan-
cial system. It gave individuals an alternative to banks
and allowed normal people to securely send money to
each other using the Internet. Many thought Bitcoin could
be an alternative to the current financial system. How-
ever, Bitcoin has remained a tool for speculation. Real-
world use is impractical due to high transaction fees, low
throughput, and because it is hard to use correctly by non-
technical individuals.

TODO: I don’t like the bitcoin part :thinking:
Bitcoin is lacking in several areas to become an alter-

native to the financial system. Some of which are:

• high throughput

• cheap payments

• privacy

• collective ownership of wealth

High throughput and cheap payments are actively being
worked on with the development of the Lightning Net-
work. The Lightning Network is a protocol that lives on
top of Bitcoin. It allows for cheap and fast payment by
batching transactions and settling them on Bitcoin at a
later point in time.

There are a number of Bitcoin mixing services to en-
able more privacy. These services mix the funds of differ-
ent users by sending them to newly created wallets.

While collective ownership of wealth on Bitcoin is pos-
sible with current tools, it is impractical due to high fees
and low scalability. Collective ownership would allow for
a group of individuals to truly be their own bank, where
each individual is part owner. Money can be pooled and
invested. This process is transparent and a majority of the
participants need to agree for anything to be done.

In this paper, we contribute to the goal of making Bit-
coin an alternative to the financial system. We describe
and partially implement a critical primitive for the collec-
tive ownership of wealth using Bitcoin. Using this prim-
itive, individuals can create shared Bitcoin accounts with
hundreds of others. We achieve this without any overhead
to transaction size. Our system can be used by anyone and
is compatible with existing Bitcoin tools and services such
as the Lightning Network and various mixing services.

2 Background

2.1 DAO
A Decentralized Autonomous Organization (DAO) is
a collectively-owned, blockchain-governed organiza-
tion[cite]. DAOs are leaderless organizations where deci-

1



Figure 1: Traditional DAO architecture.

sions must be made through voting on proposals that are
created by its members. Traditionally, DAO consists of
a number of components. First, the DAO smart contract,
which handles proposals and voting. Second, a DAO to-
ken represents a state in the DAO. Third, the DAO trea-
sury contract holds the assets of the DAO. Lastly, various
contracts or applications are governed by the DAO.

The DAO smart contract is responsible for registering
proposals and allowing members to vote. Proposals in-
clude instructions that are executed by the smart contract
if the proposal receives enough votes. Often, creating pro-
posals requires a certain amount of voting power.

The DAO token is used to show membership in the
DAO and represent voting power within the DAO. The
DAO controls the DAO token smart contract, which can
be used to issue more tokens or remove existing tokens
from circulation.

The DAO treasury holds the assets of the DAO. This
can include DAO tokens, but also other tokens on the
Blockchain. The treasury is used to pay members who
contribute to the DAO and is used to pay for other ex-
penses.

A DAO may have control over other smart contracts.
This enables the DAO members to control and make
changes to those contracts when they deem it necessary.
For example, AAVE, a blockchain lending platform, is
controlled by a DAO that can adjust the risk parameters
of the lending smart contracts.

DAOs often have a small number of members who are

Figure 2: Simplified Bitcoin transaction. Shows inputs with Bit-
coin values being consumed to create new inputs.

active and a large number who do not actively participate.
This means that a large portion of power within the DAO
is inactive, which can lead to not enough participation and
proposals failing. A solution to this problem is delegation,
members can delegate their voting power to other mem-
bers who they think are trustworthy. Effectively delegat-
ing temporarily gives someone your voting power.

2.2 Bitcoin
Compared to newer Blockchains like Ethereum, Bitcoin
uses an interesting transaction model. Bitcoin transac-
tions consist of a number of inputs and outputs. Each
input is an output of another transaction.

Outputs have a Bitcoin value attached to them, which
can be used to pay other Bitcoin accounts. Outputs can
be created by ”spending” an input which renders that in-
put unusable anymore. Each input has a small program
that must be satisfied to spend the input. This allows for
some interesting constructions. Figure 2 shows a simpli-
fied view of a Bitcoin transaction

As mentioned previously, Bitcoin inputs include a pro-
gram that must be satisfied to spend the input. When at-
tempting to spend an input, the user provides inputs to
satisfy the input program. When doing a normal payment
the input to the program is a signature proving that the

2



user owns the address that is allowed to spend the input.
The spending rules can allow for more than just sending

payments. One example related to the problem statement
of this paper is requiring an input to be approved by mul-
tiple users to be spent. This would allow a basic DAO to
exist on Bitcoin where the execution of proposals creates
outputs with arbitrary rules. However, this solution only
works for extremely small DAOs as Bitcoin transactions
shave a size limit and Bitcoin fees are dependent on the
size of a transaction. Therefore, even for small DAOs this
solution is not optimal as the fees would be high.

2.3 Threshold Signatures
Threshold signatures Schemes is a method for creating
signatures where multiple users are required to collabo-
rate to create a signature. A Threshold signature scheme
has 2 parameters. The number of participants n and the
threshold t where t ≤ n. Only t participants are required
to create a valid signature.

To create a Threshold signature scheme a private key
must be split up and each member must have a share of
the private key. This can be done by relying on a trusted
party that would generate a private key and split it up for
each of the members. This does not work for peer-2-peer
systems as there is no trusted party. Instead, a distributed
key generation protocol is used, which generates the key
shares in a distributed fashion such that no party learns
the actual private key. Compared to using a trusted dealer,
distributed key generation is much costlier and takes mul-
tiple network rounds.

To create a signature t participants need to sign the
message. The t signed messages can then be combined
to create the final signature.

2.3.1 Flexible Round-Optimized Schnorr Threshold
Signatures (FROST)

FROST is a Threshold signature scheme that is able
to create signatures that are compatible with Bitcoin.
FROST consists of two protocols, one for key generation
and one for signing.

The key generations protocol consists of 2 rounds,
which both require every participant to broadcast a mes-
sage to every other participant. The first round is partic-
ularly problematic as the size of the message depends on

the number of participants.
The signing protocol is much lighter than key genera-

tion. It also consists of two rounds. However, the first
round does not require knowledge of the unsigned data.
Therefore, the output of the first round can be batched,
resulting in a much quicker signing protocol. In the sec-
ond round of signing, each participant signs the data with
their own key share. The signatures are then combined to
create the final signature.

2.4 IPV8

IPV8 is a peer-2-peer networking library. It allows for
the creation of applications that do not require a central
server. One example, is MusicDAO[cite], a Spotify al-
ternative aiming to give a more significant share of the
revenue to music artists.

IPV8 works by keeping a list of peers that are period-
ically checked for liveness. Peers are introduced to new
peers which they can add to their list to keep track of.
IPv8 is particularly useful because it supports hole-punch
and therefore works behind WIFI, where peer-2-peer ap-
plications normally wouldn’t work.

On top of the networking layer, IPV8 has the concept
of Communities. These can be seen as protocols that live
on top of IPV8. Members of a Community can communi-
cate with each other using Community specific messages
which are handled in Community specific ways. For ex-
ample, A Community named Torrent Community could
implement torrent functionality.

3 System Architecture

3.1 System Design

4 Implementation

4.1 Bitcoin specifics

5 Evaluation

TODO: some sort of intro?

3



Figure 3: TODO: Remember to rerun. It timed out at around 40
nodes.Amount of data in Kilobytes sent during Key generation
and Signing

Class / Package Line coverage Lines of code
FrostManager 93% 404
SchnorrAgent 94% 106
FrostCommunity 65% 141
FrostViewModel 0% 156
ui 0% 980

Table 1: Code coverage of the FROSTDAO application.

5.1 Experiment Setup

We will run the experiments on a Windows 10 PC with
32GB of RAM and a Ryzen 7 3700x CPU that has 8
cores and 16 threads. We modified the code responsible
for communication and signing to the work in a Desk-
top environment with a Java virtual machine. This in-
cluded compiling the native code to work on Windows.
Our experiments will be run within one application that
is responsible for creating the individual nodes, that will
represent a participant in the DAO. Each node is an IPV8
node that runs the entire IPV8 stack. However, since all
of the nodes are on the same PC network latency is not a

Figure 4: Duration of Key generation and Signing.

factor. We limited the number of nodes in the experiment
to 50, as we ran into problems with more than 50 nodes.
TODO: mention our configuration? So the timeout we
used etc.

In our experiments, we are interested in the perfor-
mance of the FROST algorithm as this is the most ex-
pensive part of our system. We measure the performance
in two ways. First, we measure the time it takes to Key
generation or to create a signature. Note that in the case
of signing, we are doing the 2-round procedure and not
the optimized 1-round version. Second, we measure the
amount of data that is sent when signing. This is impor-
tant as we want the system to be usable on mobile de-
vices. We further investigate by introducing artificial de-
lays to simulate potential network delays and we intro-
duce random packet drop to investigate performance in a
more real-life scenario.

5.2 Experiment results

TODO: maybe we can chec the amount of retries? Fig-
ure 3 shows the amount of data sent during Key generation
and signing. We notice that Key generation scales expo-
nentially in the amount of data sent. This is expected as
the size of messages sent during Key generation depends

4



on the number of participants. While the graph paints a
bad picture, keep in mind that this is the total data sent and
not data sent by one node. This still means that each node
sent and received around 150KB of data. Even this low
amount of data can be problematic as everything is sent
using UDP packets and may therefore be dropped with-
out warning, resulting in even more data being sent. In
contrast to Key generation, the signing protocol requires
significantly less data to be sent. This is expected as each
signing operation requires a constant amount of data per
participant.

Figure 4 shows the duration of the Key generation and
signing protocols. Both Key generation and signing have
an extremely low duration up to 18 nodes, after which the
duration of Key generation increase dramatically. This is
because, at this point, the size of messages sent during
Key generation is no longer small enough such that the
UDP packet is delivered reliably. Attempting to use UDP
packets at this point will result in them getting dropped.
The dramatic increase in duration is due to EVA, IPV8
TFTP protocol for sending larger amounts of data. This
protocol splits the data into chunks and sends each chunk
via UDP while using acknowledgment to make sure that
each chunk is delivered. EVA does not send the data im-
mediately and instead schedules transfers in the future
which results in a large spike in duration.

TODO: havent done this yet
Figure x shows the duration of the Key generation and

signing protocols with varying artificial delays. In the
case of Key generation, we expect the results to be similar
to the results when no artificial latency was introduced.
This is because the overhead of EVA is much more sig-
nificant than the overhead of delays. Additionally, even
though there is a delay, many nodes will send messages
concurrently and therefore the number of nodes does not
influence the increase in duration. The impact on signing
will be more significant, but it will not scale as the number
of nodes grows.

Figure x shows the duration of the Key generation and
signing protocols with varying levels of packet drop. We
expect that the duration of both protocols will be signif-
icantly increased. This is because our message acknowl-
edgment system has a high timeout and will therefore wait
a long time for an acknowledgment. A single packet drop
will result in delays in the order of multiple seconds. The
high timeouts are to accommodate the usage of EVA and

while it can be improved, this would lead to more com-
plex code.

6 Conclusion

5


	Introduction
	Background
	DAO
	Bitcoin
	Threshold Signatures
	Flexible Round-Optimized Schnorr Threshold Signatures (FROST)

	IPV8

	System Architecture
	System Design 

	Implementation
	Bitcoin specifics

	Evaluation
	Experiment Setup
	Experiment results

	Conclusion

