

Towards Sybil Resilience in Decentralized Learning

Thomas Werthenbach

4 July 2023

To obtain the degree of Master of Science in Computer Science

Software Technology Track

To be defended publicly on July 4, 2023

Delft University of Technology

Faculty of Electrical Engineering, Mathematics & Computer Science

Distributed Systems Group

Student number: 4772466

Thesis committee: Dr. ir. J.A. Pouwelse (supervisor)

 Dr. D.M.J. Tax

Towards Sybil Resilience in Decentralized Learning
— MSc. Thesis —

Thomas Werthenbach
Delft University of Technology

Delft, The Netherlands
T.A.K.Werthenbach@student.tudelft.nl

Johan Pouwelse
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—Decentralized learning has recently been emerging
as a promising alternative to federated learning, a privacy-
enforcing machine learning technology. The scalability of feder-
ated learning is limited by the internet connection and memory
capacity of the central parameter server and the complexity of the
aggregation function. Decentralized learning eliminates the need
for a central parameter server by decentralizing the aggregation
process across all participating nodes. Numerous studies have
been conducted on improving the resilience of federated learning
against poisoning and Sybil attacks, whereas the resilience of
decentralized learning remains largely unstudied. This research
gap serves as the main motivator for this study, in which our
objective is to improve the resilience of decentralized learning.

We present SybilWall, an innovative algorithm focused on
increasing the resilience of decentralized learning against tar-
geted Sybil poisoning attacks. By combining a Sybil-resistant
aggregation function based on similarity between Sybils, with
a novel probabilistic gossiping mechanism, we establish a new
benchmark for scalable, Sybil-resilient decentralized learning.

Through comprehensive empirical evaluation, we found that
SybilWall outperforms existing state-of-the-art solutions designed
for federated learning scenarios and is the only algorithm to
obtain consistent accuracy over a range of adversarial strategies.
We also found SybilWall to discourage adversaries from creating
many Sybils, as our evaluations demonstrate a higher success rate
among adversaries employing fewer Sybils. Finally, we suggest
a number of possible improvements to SybilWall and highlight
promising future research directions.

Index Terms—Decentralized applications, Adversarial machine
learning, Federated learning, Decentralized learning, Sybil at-
tack, Poisoning attack

I. INTRODUCTION

The rise of machine learning has resulted in an increasing
number of everyday-life intelligent applications. As such,
machine learning has been used in personal assistants [1],
recommendations on social media [2] and music [3], and
cybersecurity [4]. However, accurate machine learning models
require large training datasets [5], [6], which can often be
difficult to obtain and store due to recent privacy legislation
[7]. Federated learning [8] has become a promising option for
distributed machine learning, having been proposed for the
training of numerous industrial machine learning models [9]–
[13]. Federated learning ensures the protection of privacy, as
the user’s data will not leave their device during training.

With federated learning, in contrast to centralized machine
learning, training takes place on end-users’ personal devices,
which are often referred to as edge devices or nodes. The

resulting trained models are communicated to a central server,
commonly referred to as the parameter server, which aggre-
gates these models using some predefined methodology. By
only sharing the end-user-trained models with the parameter
server, the user’s privacy is preserved, while obtaining compa-
rable performance compared to centralized machine learning
[14]. Although there exist attacks in which training data can
be reconstructed based on the gradient of trained models
[15], [16], defense mechanisms against this attack have been
proposed [17], [18].

However, federated learning suffers from some disadvan-
tages. For example, the parameter server aggregates the models
of all participating nodes, inducing high communication costs
and a potential bottleneck in the learning process, affecting
the overall convergence time [19]. Second, the scalability
of the chosen aggregation function in terms of the number
of nodes may vary greatly. In robust and secure federated
learning aggregation methods, the incorporation of additional
nodes during aggregation can result in a significantly increased
computational effort for the parameter server [20]. Third, the
parameter server performing the aggregation poses a single
point of failure [21], [22]. Disruptions to the parameter server
can cause downtime and hinder the overall model training
process, particularly in architectures where nodes require the
globally aggregated model before proceeding the training.
An upcoming alternative that aims to resolve these issues is
decentralized learning [23]–[26], also commonly referred to
as decentralized federated learning. In decentralized learn-
ing, there exists no dedicated parameter server performing
the aggregation, and the nodes form a distributed network,
e.g., a peer-to-peer network, in which each node individually
performs aggregation using their neighbors’ models (Figure
1). Although the information available during aggregation
is more limited relative to federated learning, decentralized
learning has been shown to have the potential to obtain
similar results compared to federated learning [27]. Models
are exchanged between individual nodes and aggregated on
a smaller scale using some predefined aggregation method,
alleviating the communicative bottleneck and single point of
failure issues imposed on federated learning, and paving the
path for boundless scalability.

Although decentralized learning solves the scalability chal-
lenges faced in federated learning, it is still vulnerable to

1

(a) Federated learning (b) Decentralized learning

Figure 1: Examplary network topologies in federated learning
and decentralized learning.

Byzantine environments [22]. Since the predefined aggregation
method in decentralized learning does not have access to
all models in the network, aggregation is performed with
less information compared to federated learning, resulting in
relatively lower resistance against possible poisoning attacks
[28]. Poisoning attacks can generally be classified in two
categories, namely those of targeted poisoning attacks and
untargeted poisoning attacks. Targeted poisoning attacks focus
on a specific goal that an adversary aims to achieve, such as the
label-flipping attack [29], [30] and the backdoor attack [31]–
[33]. On the other hand, untargeted poisoning attacks aim to
hinder the result of the training process in some way without
any particular goal in mind. The effect of these attacks can
often be amplified by combining them with the Sybil attack
[34], in which an adversary creates a substantial number of
virtual nodes to increase its influence. As such, an adversary
may deploy the Sybil attack to rapidly spread their poisoned
model through the network. In this work, we focus exclusively
on targeted poisoning attacks amplified by Sybil attacks in
decentralized learning.

Prior work on resilience against Sybil poisoning attacks in
distributed machine learning has mainly been done in feder-
ated learning settings. One popular example of such work is
FoolsGold [35], which aims to increase Sybil resilience under
the assumption that all Sybils will broadcast similar gradients
during each round of training. By dynamically adapting the
aggregation weights of peers’ models based on their similarity
with others, experimental results suggest that FoolsGold has
the potential to provide effective protection against Sybil
attacks in small-scale federated learning settings.

In this work, we experimentally demonstrate FoolsGold’s
inability to scale to an unbounded number of nodes in feder-
ated learning and inept defensive capabilities against targeted
poisoning attacks in decentralized learning.

We suggest an improved version of FoolsGold, named
SybilWall, which shows significant resilience towards de-
fending against targeted poisoning attacks while enjoying the
boundless scalability offered by decentralized learning. More
specifically, we achieve this by introducing a probabilistic
gossiping mechanism for data dissemination. We empirically
evaluated SybilWall on numerous types of Sybil attacks and

Figure 2: The general train-aggregate loop executed by all
nodes participating in decentralized learning, highlighting the
difference in work performed by nodes in federated learning
and decentralized learning.

showed its ability to obtain increased Sybil resilience.
To the best of our knowledge, this work is the first to pro-

pose a defensive algorithm against poisoning attacks amplified
by the Sybil attack in decentralized learning. In short, our
contributions are the following:

• We reproduce FoolsGold’s results in federated learning
and demonstrate its unpredictable performance in decen-
tralized learning in Section III.

• We define the Spread Sybil Poisoning attack for effective
Sybil poisoning attacks in decentralized learning and
decompose it into three distinct adversarial scenarios.

• We present SybilWall, a pioneering algorithm for Sybil
poisoning resilience with boundless scalability in decen-
tralized learning, in Section V.

• We performed an empirical evaluation of the performance
of SybilWall in VI on various datasets and against com-
petitive alternatives.

II. BACKGROUND

Federated learning was initially proposed by Google [8] as
a means of training machine learning models on real user data
without compromising user privacy. However, federated learn-
ing is associated with limitations in scalability. Decentralized
learning is a promising alternative as it resolves scalability
limitations through decentralization. Both distributed machine
learning technologies are prone to poisoning attacks, of which
the effects can be amplified by employing the Sybil attack. In
this work, we consider two of these attacks: the label-flipping
attack and the backdoor attack.

A. Federated learning

Federated learning achieves privacy-enforcing distributed
machine learning by training all machine learning models on
the edge devices (nodes) of the participants, which contain
real user data. Training proceeds in synchronous rounds, each
consisting of a predefined number of epochs, during which
the trained models are sent to a central parameter server at
the end of each round. The role of the parameter server is to
aggregate all trained models into a global model without the
need of training data. After aggregation, the parameter server

2

communicates the global model to all nodes, immediately
followed by the start of the next training round. Figure 1a
illustrates a simplified federated learning network topology.
The original federated learning paper [8] suggests the usage
of FedAvg, which adopts a weighted average function as the
aggregation function, such that the next global model wt+1 is
calculated as follows:

wt+1 =
∑
i∈N

|Di|
|D|

wt
i (1)

where wt
i is the model of node i in round t, N is the set of

nodes, Di corresponds to node i’s local dataset and D is the
global distributed collection of data, such that D =

⋃
j∈N Dj .

The goal of the training process is to minimize the global
loss function such that the global model x approaches the
optimal model x∗. More formally, the search for a global
optimal model can approximately be defined as:

w∗ = argmin
w

∑
i∈N

|Di|
|D|

Li(w) (2)

where Li is a node’s loss function, e.g. cross-entropy loss or
negative log likelihood loss, using the node i’s local dataset.

In federated learning, all participating nodes are only con-
nected to the parameter server, such that the network graph G
is defined as a tuple of nodes and undirected edges ⟨N,E⟩,
for which there exists a one-to-one mapping N → E, such
that for parameter server s, ∀n ∈ N, ⟨n, s⟩ ∈ E.

B. Decentralized learning

Decentralized learning is an upcoming alternative to fed-
erated learning [23]–[26]. In contrast to federated learning,
which relies on a parameter server to aggregate locally trained
models, aggregation in decentralized learning takes place on a
smaller scale and is performed by every participating node on
their own model and those of its neighbors (Figures 1b and
2). By doing so, decentralized learning does not suffer from
the scalability limitations encountered in federated learning.
These improvements in scalability can be decomposed into
three distinct aspects:

1) Communication costs: In federated learning, all models
are downloaded and uploaded by the parameter server ev-
ery training round, forming a communication bottleneck
bounded by the parameter server’s internet connection.
Such bottlenecks are reduced in decentralized learning
depending on a node’s number of neighbors.

2) Memory: Storing all models in memory during aggrega-
tion may result in substantial memory usage. In decentral-
ized learning, aggregation likely coincides with a signifi-
cantly reduced number of models compared to federated
learning, thus diminishing memory-related limitations.

3) Aggregation time: The time complexity of the more
sophisticated aggregation functions may not scale linearly
with respect to the number of participating nodes. Due
to the decentralization of the aggregation, the number of
models in each aggregation is greatly reduced.

In contrast to federated learning, the aggregation function
of decentralized learning is generally applied on a node’s own
model and that of its neighbors. For example, a basic average-
based aggregation function in decentralized learning can be
defined as the following function:

wt+1
i =

1

|Ni|+ 1

∑
j∈{Ni ∪ i}

wt
j (3)

where Ni is the set of neighbours of node i. Note the lack
of the local datasets’ size ratio as a weight factor in the
averaging function, caused by the challenging task of obtaining
a trustworthy measure of the size of any node’s dataset without
sharing its local dataset. This complexity of this task is further
increased by to the anonymity of participating nodes and the
lack of a central authority capable of verifying one’s identity.

Furthermore, nodes may not have access to all information
in the network, causing a decrease in informativeness. More
specifically, the convergence rate may be impaired compared
to federated learning [26] and nodes may experience increased
vulnerability to Byzantine attacks due to the lack of global
information [22]. However, decentralized learning has been
shown to obtain comparable performance results compared
to federated learning [27] and may sporadically outperform
federated learning altogether [36], [37].

The network graph G in decentralized learning, in contrast to
federated learning, does not contain a parameter server. Nodes
are also generally not limited to a subset of the set of nodes
N to form a connection, allowing for more diverse network
topologies.

C. Targeted poisoning attacks

A poisoning attack is a type of Byzantine attack, which
encapsulates all methods by which an adversary may attempt
to compromise the integrity of the global model in decen-
tralized learning and federated learning. Poisoning attacks
typically include data poisoning or model poisoning. Data
poisoning involves malicious alteration of the training data
on which a model is trained, while model poisoning entails
adapting the process in which the model is trained to produce
a malicious model [28]. In this work, we only consider data
poisoning. Furthermore, poisoning attacks can be classified
into two categories: targeted poisoning attacks and untargeted
poisoning attacks. With untargeted poisoning attacks, the
adversary aims to decrease the performance metric of the
global model without any particular goal in mind. On the other
hand, targeted poisoning attacks are employed to achieve a
specific goal by manipulating the global model to behave in
a deterministic manner that deviates from objectively correct
behavior. In this paper, we exclusively consider two types of
targeted poisoning attacks: the label-flipping attack [29], [30]
and the backdoor attack [31]–[33].

The label-flipping attack can be deployed as an attempt
to increase the probability of two targeted classes being
misclassified. More specifically, given two target classes t1
and t2, the aim of the label-flipping attack is to manipulate

3

the model such that an arbitrary sample x ∈ Xt1 belonging to
class t1 is more likely to be classified as class t2 by the global
model and vice versa. One logical way of achieving this is to
explicitly transform the adversary’s local dataset D into an
adversarial dataset D′ and train the adversarial model on this
dataset. Given two target classes t1 and t2, this transformation
can be defined as:

D′ = {(x, y) ∈ D | y ̸= t1 ∧ y ̸= t2}
∪ {(x, t1) | (x, y) ∈ D, y = t2}
∪ {(x, t2) | (x, y) ∈ D, y = t1}

(4)

The backdoor attack requires a more sophisticated manipu-
lation of the training data. The objective of a backdoor attack
is to alter the global model such that any sample containing a
specific predefined pattern is misclassified to a chosen target
class. In the domain of image classification, this adversarial
pattern could, for example, correspond to a small square or
triangle in the top left corner of the input image [38]. Given a
target class t and a function f that introduces a hidden pattern
to input samples, the transformation applied on the adversary’s
local dataset D can be defined as:

D′ = {(f(x), t) | (x, y) ∈ D} (5)

D. The Sybil attack

The Sybil attack, first introduced by Douceur [34], is an
adversarial strategy in decentralized environments in which the
attacker exploits the anonymity of nodes, caused the inability
to verify the authenticity of any node’s identity. Through the
effortless creation of fake nodes, named Sybils, and strategical
edges to honest nodes in the targeted decentralized network,
the attacker may gain significantly more influence compared
to honest nodes. We denote the edges between Sybils and
honest nodes as attack edges. A typical example of a scenario
in which the Sybil attack may be deployed is majority voting
[39], [40]. In such a case, an attacker can trivially generate
sufficient nodes to outnumber all honest voters.

Methods for mitigating the Sybil attack through an admis-
sion control system to the decentralized network have been
proposed [41]–[43], but are often not frictionless or are based
on an invite-only system. Adoption of such systems may take
place at a slower rate due to its decreased accessibility and
usability [44], especially considering that decentralized learn-
ing can be deployed as a background task [12], highlighting
the importance of frictionless admission.

A network graph on which a Sybil attack is deployed can
be defined as G = ⟨N ′, E′⟩, such that N ′ = N ∪ S, where S
is the unbounded set of Sybils created by the adversary. Note
that Sybils and honest nodes are indistinguishable from the
typical point of view. The modified set of edges E′ is defined
as E′ = E ∪ES , where ES is the set of attack edges, which
is highly dependent on the strategy of the adversary. Note that
attack edges always consist of at least one Sybil, such that
∀⟨i, j⟩ ∈ ES , i ∈ S ∨ j ∈ S.

In this work, we consider the targeted Sybil poisoning
attack, in which an adversary aims to amplify the effects of
a targeted poisoning attack by creating Sybils. These Sybils
help spread the adversary’s malicious model more rapidly and
effectively throughout the network.

III. RELATED WORK

Numerous studies have been conducted in order to improve
poisoning resilience in a form of distributed machine learning.
This section provides an overview of three defense mecha-
nisms suggested in prior work.

A. FoolsGold

FoolsGold [35] is an algorithm designed to mitigate Sybil
poisoning attacks in federated learning settings. It builds on
the assumption that Sybil model gradients show a substantially
higher degree of similarity relative to that of honest model
gradients. Through the computation of similarity between a
node’s gradient history and that of others, and subsequently
transforming this to the gradient’s weight in an average-based
aggregation, FoolsGold successfully manages to mitigate tar-
geted Sybil poisoning attacks.

During aggregation, FoolsGold first computes the pairwise
cosine similarity score for all gradient histories. The gradient
history of node i in round T is defined as hT

i =
∑T

t=0 g
t
i ,

where gti are the gradients of a model obtained by training the
model on node i in round t. Given that Sybil gradient histories
show a high degree of similarity, the number of false positives
can be reduced by multiplying each similarity score sij by the
ratio of the maximum score of node i’ and the maximum score
of node j’ in the cases where the latter is greater, such that
sij is multiplied by maxv siv

maxv sjv
if maxv siv < maxv sjv.

Subsequently, the scores are aggregated for each node
by taking the inverse of the maximum, such that node i’s
aggregated score s′i can be defined as s′i = 1 − maxv siv .
After which the aggregated scores are rescaled such that the
maximum aggregated score equals 1, as FoolsGold assumes
the existence of at least one honest node. Each node now has a
weight which is close to zero if its gradient history shows high
similarity to another node’s gradient history and vice versa, the
weight is close to 1 if a node’s gradient history shows little
similarity to any other node’s gradient history.

The aggregated scores are then amplified and transformed
through the use of a bounded logit function. This function can
be considered a gradual decision boundary for determining
a node’s benevolence based on its similarity with others.
Finally, the weights are normalized and the aggregated model
is computed by a weighted average.

A reproduction of FoolsGold’s results can be found in
Figure 3, where the attack score represents the extent to
which the attack was successful, e.g., the percentage of labels
that are successfully flipped in the label-flipping attack. It
becomes clear that FoolsGold shows significantly higher Sybil
resilience compared to FedAvg. However, as discussed in
Section II-B, federated learning can be considered unscalable
as the number of participating nodes increases, particularly in

4

0

25

50

75

100

0 200 400 600 800
Round

A
cc

ur
ac

y/
A

tta
ck

 s
co

re
 (

%
) FedAvg accuracy

FedAvg attack score
FoolsGold accuracy
FoolsGold attack score

Figure 3: FoolsGold and FedAvg in federated learning setting
using the CIFAR-10 [46] dataset on a LeNet-5 [45] model.

view of the O(n2) pairwise cosine similarity computation and
the memory capacity required to store these models. Figure
4 demonstrates the O(n2) time complexity of the pairwise
cosine similarity computation on the LeNet-5 model [45]. We
further note that the generation of this figure was restricted
to a maximum memory usage of 16 GB, thereby highlighting
another limitation of a pairwise comparison-based aggregation
function. Furthermore, Figure 5 shows the performance of
FoolsGold in a decentralized setting against the performance
of our improved solution, SybilWall, based on FoolsGold’s
intuitions. When comparing both Figures 5a and 5b it becomes
clear that FoolsGold’s performance heavily depends on the
network topology, while SybilWall demonstrates relatively
higher and more consistent Sybil resilience.

B. Krum

Krum [47] attempts to improve the general Byzantine re-
silience in distributed machine learning. This approach op-
erates on the assumption that Byzantine model gradients are
prone to deviate from the gradients produced by honest nodes.
More specifically, the aggregation involves computing a score
s(w) for every received model w, which corresponds to the
sum of the squared distances between i and its n − f − 2
nearest neighbours, where f corresponds to the maximum
number of Byzantine nodes Krum is designed to protect
against. Finally, the model m with the lowest score, such that
m = argminw s(w), is chosen as the next global model.

C. Resilient Averaging Gradient Descent

Resilient Averaging Gradient Descent (RAGD) [48] uses
distance-based intuitions similar to Krum, but was specifically

0

50

100

150

200

250

0 25000 50000
Nodes

T
im

e
(s

)

Figure 4: Pairwise cosine similarity computation time against
the number of nodes (LeNet-5 [45]).

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y/
A

tta
ck

 s
co

re
 (

%
) FoolsGold accuracy

FoolsGold attack score
SybilWall accuracy
SybilWall attack score

(a) Network topology 1

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y/
A

tta
ck

 s
co

re
 (

%
) FoolsGold accuracy

FoolsGold attack score
SybilWall accuracy
SybilWall attack score

(b) Network topology 2

Figure 5: FoolsGold and SybilWall in decentralized learning
using the FashionMNIST [49] dataset on a single-layer soft-
max neural network.

designed for decentralized learning. By introducing additional
assumptions, it guarantees convergence of an approximately
optimal model in the presence of poisoning attacks. Firstly, it
assumes that all nodes are honest and that only their local
datasets might be compromised, thereby still participating
in aggregation benevolently, but training malicious models.
Second, RAGD assumes the existence of a weighted global
adjacency matrix, corresponding to the network graph. The
weights in this adjacency matrix are considered trust values
and correspond to the influence that nodes have during ag-
gregation. Third, RAGD assumes that the edge weights from
some node i to some attacked neighboring node j is limited by
a predefined global constant ϵ, such that 0 < ϵ < 1

2 , aij < ϵ,
where aij corresponds to the edge weight assigned by node i
to its edge with attacked node j.

A typical round of training in RAGD can be decom-
posed into a number of steps. 1) Nodes attempt to reach a
global consensus on the aggregated model through repeatedly
broadcasting and averaging models aggregated by neighboring
nodes, weighted by the corresponding edge weight. 2) Every
node trains the aggregated model and broadcasts the gradients.
Note that malicious models may be produced by the attacked
nodes during this step. 3) While some value g, which is
initialized to 1, remains larger than 1− ϵ, RAGD selects two
of the received gradients, such that the Euclidean distance
between the two selected gradients gi and gj is maximized, and
eliminates the gradient that has the largest sum of distances
to all other gradients. The edge weight corresponding to the
node that produced the eliminated gradient is subtracted from
the value g. When g ≤ 1 − ϵ, every node computes the
weighted average of the remaining gradients. 4) Finally, the
weighted average of the remaining gradients is applied to the
(pre-training) aggregated model and the next round begins.

IV. THREAT MODEL AND PRELIMINARIES

This section provides an overview of the assumptions and
threat model used throughout this work.

A. Adversarial assumptions

Assumption 1. The adversary can only communicate with
other nodes through the default decentralized learning API.

5

As the adversary can only communicate with other nodes
through the default decentralized learning API, it does not
possess the ability to manipulate other nodes’ local models
or data. We also assume that the decentralized learning API
enforces homogeneous model broadcasting. That is, when
some node i broadcasts its model to its neighbors at the
end of every training round, all of i’s neighbors receive the
same model. In practice, this can be enforced by adopting
existing algorithms [50]. Lastly, we assume that the default
decentralized learning API adopts the use of signatures to
prevent spoofing.

Assumption 2. All used cryptographic primitives are secure.

The signatures used by the decentralized learning API, as
well as any other cryptographic primitives employed through-
out this work, are assumed to be secure.

Assumption 3. The adversary is unrestricted in both the
quantity of Sybil nodes it can create and the selection of honest
nodes it can form attack edges to.

Assumption 4. Sybil models show high similarity compared
to honest models.

Given the context of targeted poisoning attacks, Sybils are
created by an adversary to achieve a specific goal during
decentralized learning. As these Sybils share their training
dataset, their trained models will likely show a high similarity.

In contrast to prior work [35], we assume a high similarity
between the trained models of Sybils, rather than the model
gradients, i.e. the difference between the aggregated intermedi-
ary model and the trained model. Due to the lack of knowledge
of the aggregated intermediary model between the aggregation
and training phases (Figure 2), no node can ascertain the model
gradients of another node in decentralized learning.

Assumption 5. The creation of Sybils by the adversary does
not increase its adversarial computing capabilities.

Following Assumption 4 and the lack of knowledge of
the aggregated intermediary model, we must assume that
each Sybil utilizes the same aggregated intermediary model.
This assumption is enforced through Assumption 5, that is,
the adversary does not have sufficient adversarial computing
capabilities to execute the train-aggregate loop for each Sybil
each round.

B. Network restrictions

Assumption 6. ∃ e ∈ N such that di ≤ e, ∀i ∈ N , where di
represents the degree of node i.

We restrict the impact that any individual node may exercise
on the network, by assuming existence of an upper bound
on the degree of any node. Such bounds may arise naturally
due to internet connection speeds, but may also be detected
through existing algorithms. For example, a network latency-
based avoidance mechanism [51] can be used to discover
multiple edges of a node. Another alternative is to perform

a random walk or a breadth-first search, which are known to
be biased toward high-degree nodes [52].

Assumption 7. Every node has at least one honest neighbour.

This assumption is inherited from prior work [35], as the
cosine similarity function requires a baseline for honest work
for measuring relative similarity. This might be achieved
through an invite-only network with accountability [42].

C. Adversarial strategy

We define an intuitive and effective type of attack in
similarity-based aggregation techniques in decentralized learn-
ing as Spread Sybil Poisoning Attacks (SSP attack). That
is, the adversary aims to avoid detection by maximizing
the distance between its attack edges while increasing the
influence of the attack by minimizing the distance between any
honest node and the nearest attack edge. The latter part of this
problem resembles the Maximal Covering Location Problem
[53], which is known to be an NP-Hard problem [54]. To
determine attack edge positions for SSP attacks, we propose a
heuristic approach using the unsupervised clustering algorithm
K-medoids, assigning attack edges to the medoids.

Furthermore, we define a parameter for SSP attacks, ϕ,
which represents the average density of attack edges per node.
Note that the attack edges are as spread out as possible, such
that ∀ai, aj ∈ A, |ai − aj | ≤ 1, where A represents the
set of the number of attack edges per node. For any value
of ϕ, each honest node receives ⌊ϕ⌋ or ⌈ϕ⌉ attack edges.
Therefore, the total number of attack edges is denoted as
⌈|N | · ϕ⌉. The remainder, defined by ϕ mod 1, is distributed
according to the K-medoids clustering algorithm. The resulting
attack edge positions are then grouped and distributed over the
Sybils while maintaining Assumption 6. We define three attack
scenarios for specific ranges of ϕ. These attack scenarios are
the following:

i. Dense Sybil poisoning attack. ϕ ≥ 2. Every honest node
has at least two attack edges, whereas any distinct Sybil
cannot form more than one attack edge to any given node.
As a result, each honest node is a direct neighbor of at
least two distinct Sybils.

ii. Distributed Sybil poisoning attack. ϵ < ϕ < 2. There
exists at least one node which is connected to fewer than
2 attack edges and will therefore only be connected to at
most one Sybil.

iii. Sparse Sybil poisoning attack. ϕ ≤ ϵ. A low ϕ will
result in sparse and distant attack edges. Any node has
a probability of ϕ of being directly connected to a Sybil.

V. DESIGN OF SYBILWALL

Our solution, SybilWall, attempts to deliver the same perfor-
mance as FoolsGold (federated learning) in terms of accuracy
and attack mitigation, while at the same time enjoying the
scalability advantages offered by decentralized learning. This
is achieved by reducing a modified version of FoolsGold
to a subfunction of SybilWall. Moreover, we integrate a
probabilistic gossiping mechanism for data dissemination. By

6

doing so, FoolsGold becomes able to detect distant attack
edges from the same adversary.

In short, SybilWall was designed to mitigate the three attack
scenarios of the SSP attack strategy, as listed in Section IV-C.
These scenarios are the following:

i. Dense Sybil poisoning attack: The modified version of
FoolsGold can detect Sybil nodes directly through its
similarity mechanism and is thereby capable of mitigating
the attack.

ii. Distributed Sybil poisoning attack: Not all nodes are
capable of detecting Sybils among their direct neighbors
using a similarity metric. Our probabilistic gossiping
mechanism serves as a channel for propagating data
of probabilistically selected nodes to neighbors, thereby
potentially providing a neighbor with vital data required
for detecting Sybils amongst its neighbors.

iii. Sparse Sybil poisoning attack: It is conceivable that the
probabilistic gossiping mechanism may be unable to dis-
seminate knowledge to an extent that allows all attacked
nodes to detect the presence of attack edges. However, we
argue that due to a natural dampening effect originating
from the train-aggregate loop on each node (Figure 2),
attacks will likely have a negligible and tolerable impact.

A. Adopting FoolsGold

FoolsGold [35] (Section III-A) has shown promising re-
sults in federated learning on exploiting the high degree of
similarity between Sybil gradients. Based on this promising
performance and Assumption 4, we modified FoolsGold and
included it within SybilWall. By doing so, we enable the
mitigation of the dense Sybil poisoning attack, as there will
be at least two direct Sybil neighbors producing highly similar
models. Furthermore, FoolsGold also partakes in mitigating
a distributed Sybil poisoning attack with the help of the
probabilistic gossiping mechanism. Our modified version of
FoolsGold differs in two aspects.

Firstly, we modify FoolsGold by always trusting the ag-
gregator. As we assume that a node’s training dataset and
their training function cannot be compromised (Assumption
1), nodes can trust themselves and may therefore exclude
their own work from the similarity function and logit scoring
function. Its own model is reintroduced into the aggregation
with a maximum weight of 1, prior to normalizing the weights.
An additional rationale for this modification is that neighbors
with similar datasets and, therefore, possibly similar models,
should not be penalized during aggregation.

Secondly, FoolsGold is adapted to support the addition of
an arbitrary number of model histories in the cosine similarity
function. The purpose of the gossiping mechanism (Section
V-B) is to spread information about indirect neighbors. By
including this information in the cosine similarity function,
SybilWall potentially gains the ability to detect new Sybils
among its direct neighbors, thus mitigating attacks from that
point onward. Note that only the models of direct neighbors
are considered for aggregation, and the additional information

obtained through gossiping is merely used for judging direct
neighbors.

B. Probabilistic gossiping mechanism

The aforementioned modified version of FoolsGold afore-
mentioned requires the gossiping of information from indirect
neighbors to improve the Sybil detection rate in the case of a
distributed Sybil poisoning attack. This gossiped information
consists of the model history of some node i in round T ,
which is defined as hT

i =
∑T

t=0 w
t
i , where wt

i is a trained
model produced by node i in round t. To facilitate the re-
quired data dissemination, we devised a probabilistic gossiping
mechanism.

1) Probabilistic model selection: First, let us define the
method in which model histories are probabilistically selected
to be propagated to a neighboring node, for which SybilWall
adopts a weighted random selection algorithm.

More specifically, let Hi denote the database of model
histories of node i. Hi consists of a list of tuples, with each
tuple of the form ⟨p, h, r, d, f⟩ ∈ Hi, where p represents
the node associated with the model history, h corresponds
to the model history, r is the identifier of the synchronous
training round from which the model history originates, d
is the distance from node i to node p in the number of
hops the model history has traveled, and f is the neighbor
of node i from which this model history has been received.
Given the current node i and its neighboring node j, let
the filtered database of model histories Hj

i be defined as
Hj

i = {(p, h, r, d, f) | (p, h, r, d, f) ∈ Hi, p /∈ {i, j}∧f ̸= j}.
A weighted random model history is selected from the filtered
database to be gossiped from node i to node j.

To perform the weighted random selection, the entries of the
filtered database of model histories are first assigned weights.
These weights directly correspond to the distance d and are
assigned according to the exponential distribution:

P (d) = λe−λd (6)

where λ can be considered a hyperparameter representing
the relevance of propagating the model history of distant
nodes. The selection of the exponential distribution is not
arbitrary, as it prioritizes the propagation of the model history
of nearby nodes over that of distant nodes. This approach
assumes that the sparse Sybil poisoning attack is mitigated
through a natural dampening effect, thus reducing the utility
of propagating model histories originating from distant nodes.
After the weights have been assigned to the filtered database
of model histories, a weighted random selection is performed
to select which model history is propagated.

A node’s local database of model histories can be updated in
two distinct methods. First, if a node i receives a model history
through gossiping from some other node j, which it has not
seen before, it is added to its local database. Second, if node i
receives a model history from some node k that is more recent
than the prior model history of k known to node i, it is updated
accordingly. Note that the model histories of direct neighbors
are updated every round, as each training round will result

7

in a more recent model history. It is possible that a node’s
local database of model histories may grow to a significant
size over time, resulting in a decrease in performance during
aggregation. In such scenarios, SybilWall supports dropping
outdated model histories to mitigate this occurrence.

2) Secure and efficient communication: SybilWall replaces
the traditional model communication discussed in Section
II-B with a more sophisticated communication protocol. The
previously described probabilistic gossiping mechanism re-
quires model histories to be propagated to neighbors, which
allows for spoofing by malicious nodes if implemented naively.
Such adversarial strategies could be employed to increase the
similarity of some target node with another node, thereby
potentially increasing the utility of the adversary. To mitigate
this vulnerability, we propose an alternative communication
protocol that employs signed histories (secure by Assumption
2).

To enable the use of signatures, the model history and
the corresponding signature need to be constructed on the
originating node and communicated to its neighbors. These
neighbors are now capable of propagating a signed model
history of an indirect neighbor to their neighbors through the
use of the probabilistic gossiping mechanism. However, this
induces additional communication costs as both the trained
model and the signed model history need to be communicated
to neighbors every training round. We resolve these redundant
communication costs by omitting the trained model, as it can
be inferred from the model history through comparison with
the previous model history in the sequence.

More specifically, we alter the message composition such
that a message mi→j from node i to j can be decomposed into
⟨hi, Si(hi), gk, Sk(gk), rk⟩, where hi represents the updated
model history of node i’ signed by its signature function Si

and gk corresponds to the gossiped model history of node k
signed by node k originating from round rk.

3) Downtime tolerance: Due to the adoption of the afore-
mentioned altered decentralized learning communication pro-
tocol, SybilWall tolerates the downtime of the nodes in the
network by setting an upper bound on the waiting time for
each training round. In contrast to a pull-based communication
scheme, where nodes stochastically request a (distant) node’s
model history for execution of the cosine similarity function,
SybilWall’s communication protocol saves bandwidth and sup-
ports arbitrary downtime or the presence of private networks,
resulting in unreachable nodes. Nodes are not responsible
for the propagation of their own model history and therefore
do not need to be reachable for the probabilistic gossiping
mechanism to function properly.

In the case of a node experiencing downtime, the aggre-
gation function will start operating properly again once the
node becomes online and skips an additional training round
for allowing inference of the trained model from two distinct
model histories produced by its neighbor.

Table I: The datasets used in the evaluation of SybilWall.

Dataset Model Learning rate
MNIST [55] Single soft-max layer η = 0.01 [35]
FashionMNIST [49] Single soft-max layer η = 0.01 [35]
CIFAR-10 [46] LeNet-5 [45] η = 0.004 [56]
SVHN [57] LeNet-5 [45] η = 0.004 [56]

Table II: The default hyperparameters used during the evalu-
ation of SybilWall.

Hyperparameter Value
honest nodes 99
Attack edge density ϕ 1
Gossip mechanism parameter λ 0.8
Dirichlet concentration parameter α 0.1
Max node degree d 8
Local epochs 10
Batch size 8

VI. EVALUATION

We evaluate SybilWall by answering the following ques-
tions: (1) How does the complexity of the dataset and the
model affect the performance of SybilWall? (2) How does
SybilWall perform compared to other existing algorithms? (3)
How does the attack density ϕ influence the performance
of SybilWall? (4) What is the effect of the distribution of
data among nodes on the performance of SybilWall? (5) Can
SybilWall be further enhanced by combining it with different
techniques?

A. Experimental setup

SybilWall was implemented in Python3 in the context of
a fully operational decentralized learning system for exper-
imental evaluation and is available online [58]. We have
used the PyTorch [59] library for the training of machine
learning models. Regarding communication between individ-
ual nodes, we leveraged IPv8 [60], which provides an API
for constructing network overlays in order to simulate P2P
networks. Furthermore, we adopted the Gumby library [61] as
the experimental execution framework, which was specifically
designed for sophisticated experiments with IPv8 involving
many nodes. All experiments were performed on the Dis-
tributed ASCI Supercomputer 6 (DAS-6) [62]. Each node in
the compute cluster has access to a dual 16-core CPU, 128
GB RAM, and either an A4000 or A5000 GPU. Furthermore,
all default hyperparameters for the experiments can be found
in Table II. Except where mentioned otherwise, these default
hyperparameters define the configuration of all experiments.

In all experiments, we measure the accuracy of the trained
models by averaging the accuracy of the models of all honest
nodes. Simultaneously, we measure the success rate of the
attacker by averaging the attack score achieved on the models
of all honest nodes. The attack score is defined as the accuracy
that a model obtains on the altered segment of the data
obtained by transforming the test dataset by the data trans-
formation functions defined in equation 4 or 5. Note that both
metrics are measured each round directly after aggregation.

8

0

0.21

0

0

0.03

0

0.76

0

0

0

0.01

0

0

0

0

0.01

0

0.96

0

0.02

0

0

0

0

0

0.66

0.33

0

0

0

0

0.46

0

0

0

0.23

0

0.09

0.22

0

0.32

0

0

0.06

0.42

0

0.09

0.1

0

0

0

0

0

0

0

0.48

0.01

0.1

0.3

0.11

0

0

0.08

0

0

0

0.36

0

0

0.56

0.02

0

0.19

0

0

0.5

0

0

0.28

0

0

0

0

0.01

0.02

0.47

0

0.39

0

0.11

0

0

0.49

0

0.06

0.42

0.02

0

0.01

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9
Dataset label

N
od

e

Figure 6: Example distribution for non-i.i.d. data generated
with the Dirichlet distribution with concentration parameter
α = 0.1 for 10 nodes and a dataset containing 10 labels.

1) Datasets: The datasets used during evaluation can be
found in Table I. These datasets were chosen for a number
of reasons. First of all, MNIST [55] is a widely used dataset
for the evaluation of machine learning algorithms [35], [63]–
[65], serving as an adequate baseline algorithm for SybilWall.
FashionMNIST was developed as a more challenging variant
of MNIST, thus serving as an ideal candidate to demonstrate
the direct correlation between the complexity of classification
tasks and the performance of SybilWall. The choice for SVHN
and CIFAR-10 is motivated by the increased complexity of
the models required to obtain satisfactory accuracy, which
may affect the performance of SybilWall. The use of complex
multilayer models in evaluation is frequently overlooked in
related work or is performed only on a single dataset [35],
[63]–[67]. Moreover, when multilayer models are used, they
are regularly pre-trained and trained solely through transfer
learning [35], [65], [68]. While we recognize that all the
datasets employed in this experimental evaluation focus on
image classification, we argue that focusing on image classifi-
cation is justifiable as it is known as a well-established task in
machine learning. Furthermore, image classification frequently
serves as a benchmark for evaluating novel distributed machine
learning algorithms [26], [35], [63]–[67], and there exists a
variety of widely available datasets constructed specifically
for this task.

The models that are trained using the aforementioned
datasets can also be found in Table I, as well as the corre-
sponding learning rate η. Note that all these models are trained
using stochastic gradient descent (SGD).

2) Data distribution: The aforementioned datasets are de-
signed for centralized machine learning and require to be
distributed among the participating nodes. During our evalua-
tions, we assume that the data is not identically and indepen-
dently distributed (non-i.i.d.), which more closely resembles
real-world data than uniformly distributed data (i.i.d) [69],
[70]. Although some works employ the use of a K-shard
data distribution [8], [65], [71], [72] or simply assign each
node a predefined number of classes of the training data

0

25

50

75

100

0 100 200 300
Round

A
cc

ur
ac

y
(%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300
Round

A
tta

ck
 s

co
re

 (
%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(b) Attack score label-flipping attack

0

25

50

75

100

0 500 1000 1500
Round

A
cc

ur
ac

y
(%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(c) Accuracy backdoor attack

0

25

50

75

100

0 500 1000 1500
Round

A
tta

ck
 s

co
re

 (
%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(d) Attack score backdoor attack

Figure 7: Accuracy and attack score for the label-flipping
attack (300 rounds) and the backdoor attack (1450 rounds)
on different datasets.

[35], [71], [73], we utilize the Dirichlet distribution [74],
which has recently gained more popularity for generating non-
i.i.d. distributions [26], [75], [76]. More specifically, given
the concentration parameter α, we compute for each class
the fraction of data every node possesses, creating seemingly
naturally unfair and irregular data distributions. Lower values
of α result in more non-i.i.d. data. Figure 6 illustrates an
example distribution for a dataset of 10 labels distributed over
10 nodes with a concentration parameter of α = 0.1.

3) Network topology: To generate the necessary network
topologies, defining the relations between nodes, we employed
random geometric graphs. Random geometric graphs are
constructed by randomly placing points, which correspond
to nodes, on a grid. Two nodes are connected by an edge
when the Euclidean distance between the corresponding points
of these nodes is smaller than some predefined constant. To
enforce the upper bound on a node’s degree (Assumption
6), random edges are removed from the random geometric
graph, such that all nodes remain connected through a single
connected component. The locations of the attack edges are
found using the methodology based on K-medoids described
in Section IV-C. The code used to generate these network
topologies can be found in our published code repository
[58]. Furthermore, during our experiments, we assume a static
network topology. That is, no nodes will leave or join the
network during training, including Sybils. Lastly, we employ
the SSP attack (Section IV-C) as the adversarial strategy in the
simulated Sybil attacks, as we hypothesize that more distant
attack edges will result in a lower detection rate, thereby

9

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(d) Attack score backdoor attack

Figure 8: Comparison of SybilWall against different techniques on ϕ = 1. Results generated using the FashionMNIST [49]
dataset.

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

FedAvg
FoolsGold
SybilWall
Krum
Multi−krum
Median

(d) Attack score backdoor attack

Figure 9: Comparison of SybilWall against different techniques on ϕ = 4. Results generated using the FashionMNIST [49]
dataset.

approximating the optimal attack scenario.

B. Effect of dataset

1) Setup: We evaluated the performance of SybilWall on
different datasets, allowing us to observe how SybilWall is
affected by varying the complexity in both the dataset and
the model. This experiment was carried out using the default
parameters listed in Table II and using the datasets, models
and learning rates listed in Table I.

2) Results: Figure 7 demonstrates the effect of varying the
dataset on the trend of accuracy and attack score. We clearly
observe that CIFAR-10, arguably the most challenging dataset
used in this work, obtains a significantly lower accuracy
compared to simpler datasets (Figure 7a), such as MNIST. This
can be explained by the reduced overlap of training samples
over the different output classes of easier datasets, making
individual nodes less likely to counteract their neighbors in a
non-i.i.d. setting.

A noteworthy observation with regard to the attack score
of the label-flipping attack in Figure 7b is that datasets
that require more sophisticated models, such as convolutional
neural networks, are generally more susceptible to the label-
flipping attack compared to simpler models, such as single-
layer neural networks. Due to the smaller number of trainable
weights in simpler models, it likely becomes easier to dis-
tinguish similarities between Sybil model histories of simpler
models compared to more sophisticated models, which may
show more diversity due to the increased number of weights.

Although some fraction of the higher attack score in complex
models can be attributed to the more challenging classification
task, subsequent experiments demonstrate that the attack score
can be significantly reduced under certain conditions (Sections
VI-E and VI-F).

Taking into account the results of the backdoor attack de-
picted in Figures 7c and 7d, it is apparent that all attack scores
demonstrate an increasing trend over a prolonged period of
time. Note the difference in the number of rounds between the
evaluation on the label-flipping attack and the backdoor attack.
This finding suggests that the aggregation technique performed
to obtain a node’s model history does not always provide a
reliable reflection of the node’s intentions. However, the time
period required for the attack score to achieve convergence is
significantly longer than the time required for convergence of
the accuracy for most datasets.

C. Comparison with different techniques
1) Setup: We evaluate the performance of SybilWall rela-

tive to a number of different techniques focused on mitigating
Sybil poisoning attacks or Byzantine attacks in general. These
techniques are the following:

i. FedAvg [8]: naively averages all models. This algorithm
was the first proposed federated learning aggregation al-
gorithm and will serve as a baseline during our evaluation.

ii. FoolsGold [35]: detects Sybils among its neighbors by
assuming that Sybils produce highly similar models. This
algorithm is the main inspiration for SybilWall.

10

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1
φ = 2

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1
φ = 2

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400
Round

A
cc

ur
ac

y
(%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1
φ = 2

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400
Round

A
tta

ck
 s

co
re

 (
%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1
φ = 2

(d) Attack score backdoor attack

Figure 10: Accuracy and attack score for the label-flipping attack and backdoor attack on different attack edge densities. Results
generated using the MNIST [55] dataset.

0

25

50

75

100

0 100 200 300
Round

A
cc

ur
ac

y
(%

)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300
Round

A
tta

ck
 s

co
re

 (
%

)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300
Round

A
cc

ur
ac

y
(%

)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300
Round

A
tta

ck
 s

co
re

 (
%

)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(d) Attack score backdoor attack

Figure 11: Accuracy and attack score for the label-flipping attack and backdoor attack of different data distributions, indicated
by the concentration parameter α of the Dirichlet distribution. Results generated using the CIFAR-10 dataset [46].

iii. Krum [47]: Excludes Byzantine models by filtering for the
model which has the smallest sum of Euclidean distances
to its n− f − 2 closest neighbors.

iv. Multi-krum [47]: Similar to krum. Averages the m models
with the lowest sum of euclidian distances to its n−f−2
closest neighbors.

v. Median [77]: Computes the element-wise median of all
models and thereby excludes outliers.

During this experiment, we alternated the attack edge density
ϕ ∈ {1, 4} and fixed the dataset on FashionMNIST.

2) Results: Figure 8 shows the results of SybilWall com-
pared to different techniques using attack edge density ϕ = 1.
We observe that SybilWall always scores among the best
performing algorithms in terms of accuracy. Especially con-
sidering the label-flipping attack, SybilWall achieves the high-
est accuracy among all evaluated techniques. We also find
that SybilWall successfully mitigates the label-flipping attack,
similarly to some of the other techniques evaluated. In the
backdoor attack, we observe that SybilWall exhibits the same
increasing pattern as in the prior experiment on the effect of
the datasets in Section VI-B; the attack score starts at a low
point and gradually increases as the training progresses.

Figure 9 shows the results of SybilWall compared to differ-
ent techniques using a higher attack edge density ϕ = 4. These
results clearly demonstrate how most aggregation algorithms
succumb under the use of a large-scale Sybil attack. Taking
into account the accuracy of both label-flipping attack and

backdoor attack, we observe that the accuracy of most algo-
rithms increases significantly when employing the backdoor
attack. This phenomenon can be explained by the fact that the
adversary is not actively attempting to decrease the accuracy of
the model, but only tries to insert an activation pattern, which
was highly successful for the algorithms with an increased
accuracy. On the other hand, both FoolsGold and SybilWall
seem to be unaffected by both attacks. Regarding SybilWall,
this is likely caused by the integration of a modified version of
FoolsGold, which was specifically designed to mitigate dense
Sybil poisoning attack.

Considering both the results in Figure 8 and 9, we find that
SybilWall does not outperform all the alternative evaluated
techniques in all scenarios, but it is the only technique to
consistently score among the best. Furthermore, most other
algorithms surprisingly score significantly better under a back-
door attack with a high attack edge density compared to a
lower attack edge density, while the accuracy of SybilWall
remains constant in both scenarios.

D. Effect of attack edge density

1) Setup: We evaluate SybilWall in a number of different
attack edge density configurations. This experiment aims to
demonstrate the effect that an attacker can exercise on the
network by employing a variety of Sybil attack strategies.
MNIST is fixed as the dataset during this experiment and the
attack edge density ϕ is varied within the range ϕ ∈ [0.1, 2].

11

2) Results: Figure 10 illustrates the effect of various attack
edge density values on the label-flipping attack and backdoor
attack. It is apparent that the attack edge density has little
effect on the convergent accuracy (Figures 10a and 10c).
On the other hand, the trend of the attack score shows that
network topologies with lower attack edge densities are more
prone to the label-flipping attack despite the smaller number
of generated Sybils for lower values of ϕ (Figure 10b). This
clearly demonstrates the effect of the gossiping mechanism on
reducing the impact of Sybil poisoning attacks. Strengthening
this observation, the results of the backdoor attack in Figure
10d demonstrate how the attack score decreases as the attack
edge density increases.

E. Effect of data distribution

1) Setup: The method in which the data is distributed over
the nodes might influence the attack score and the accuracy of
the trained models. To explore this effect, we evaluate Sybil-
Wall’s performance under a variety of data distributions. More
specifically, we vary the data distribution between i.i.d. and
non-i.i.d. (Dirchlet-based). For the non-i.i.d. scenario, we vary
the concentration parameter α within the range α ∈ [0.05, 1].
Furthermore, we fixate the dataset on CIFAR-10.

2) Results: Figure 11 shows the effects of different data
distributions on the convergence of the training process. We
observe in both the label-flipping attack and backdoor attack
that the accuracy increases as the data is more uniformly
distributed (Figures 11a and 11c). Furthermore, the attack
score of the label-flipping attack demonstrates how the at-
tacker becomes less successful with more i.i.d. data (Figure
11b). Lastly, the data distribution does not appear to have a
significant effect on the attack score of the backdoor attack,
as no clear trend emerges when varying the data distribution
(Figure 11d).

F. Further enhancing SybilWall

1) Setup: Given the increasing, although impeded, attack
score demonstrated for the backdoor attack in Section VI-B,
we consider several techniques for additional enhancement of
the defensive capabilities of SybilWall. These augmentations
include the following:

i. Median: given the resilience of the Median [77] algorithm
in Section VI-C against attack edge density ϕ = 1, we
implement a combined version of the Median approach
and SybilWall. This is achieved by initially employ-
ing SybilWall to compute a non-normalized aggregation
weight in the range [0, 1], followed by the execution of
the Median algorithm on the 50% highest scoring models.

ii. Weighted median: a variant of the Median-based ap-
proach, in which scores computed by SybilWall are
adopted as weights for a weighted median aggregation.

iii. Krum-filter: based on the suggestion of [35], we combine
SybilWall with Krum, such that the model with the lowest
Krum score receives an aggregation weight of 0.

We integrate these augmentations through chaining the ag-
gregation functions, such that the last step of SybilWall’s

0

25

50

75

100

0 100 200 300
Round

A
cc

ur
ac

y
(%

)

Plain SybilWall
Weigted median
Median
Krum

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300
Round

A
tta

ck
 s

co
re

 (
%

)

Plain SybilWall
Weigted median
Median
Krum

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300
Round

A
cc

ur
ac

y
(%

)

Plain SybilWall
Weigted median
Median
Krum

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300
Round

A
tta

ck
 s

co
re

 (
%

)

Plain SybilWall
Weigted median
Median
Krum

(d) Attack score backdoor attack

Figure 12: Accuracy and attack score of the label-flipping
attack and backdoor attack for different possible enhancements
of SybilWall. Results generated using the SVHN [57] dataset.

aggregation method, a weighted average, is substituted with an
augmentation. We also provide the trends for plain SybilWall
to serve as a baseline. The dataset is fixed to SVHN.

2) Results: Figure 12 illustrates the effect of enhancing
SybilWall with various methodologies. First, we find that plain
SybilWall achieves the highest accuracy overall, but the worst
Sybil resilience. While each of the evaluated methodologies
improves SybilWall’s defensive capabilities, a trade-off occurs
in which accuracy is sacrificed to obtain improved Sybil re-
silience. In particular, the Sybil resilience of the weighted me-
dian is unmatched, but achieves considerably lower accuracy
compared to the alternative methodologies. The Krum-filter-
based approach appears to obtain an accuracy comparable
to plain SybilWall, but it obtains the worst Sybil resilience
of the evaluated enhancements. Arguably, the median-based
methodology shows the most promising results, as it achieves
to consistently limit the attack score to levels comparable to
those of the weighted median methodology, while showing
significant improvement on the obtained accuracy.

VII. DISCUSSION

During the experimental evaluation of SybilWall, we found
that SybilWall obtains a satisfactory accuracy and convergence
rate on 4 widely adopted datasets. Furthermore, the converged
accuracy obtained by SybilWall is similar to that achieved by
the FedAvg algorithm in a federated learning setting (Figures
3 and 7). In addition to obtaining satisfactory accuracy on all
datasets, we also found that SybilWall outperforms alternative
algorithms both in obtained accuracy and attack score, as

12

it was the only evaluated algorithm that consistently scored
among the best algorithms in all scenarios. SybilWall thereby
arguably exhibits the overall strongest resilience to Sybil
poisoning attacks and possesses the attributes to be considered
state of the art. Although the attack score of the backdoor
attack shows a rising trend when employing SybilWall, we
note that the rate at which this occurs is significantly reduced,
allowing honest nodes to stop the training process once the
accuracy has converged, thus limiting the success of potential
adversaries.

We argue that the aforementioned rising trend demonstrated
by the attack score of the backdoor attack mainly originates
from the lack of knowledge of the aggregated intermediary
model induced by the train-aggregate loop depicted in Fig-
ure 2. This lack of knowledge prohibits nodes to ascertain
the aggregated intermediary model of another node, thereby
complicating the extraction of model gradients. Similarly to
prior work [35], summing a model’s gradients, rather than
the model itself, would arguably improve the representation
of a node’s history. Such an approach would provide a more
accurate representation of a node’s intentions, as the model
history would directly correspond with a node’s training data,
thus more accurately representing the direction in which a
node aims to contribute to the aggregated model. Eventually,
this improvement might lead to the omission of Assumption 5.
Adversaries with extensive computational capabilities violat-
ing this assumption, such as click farms [78], may well be able
to train numerous malicious models within one training round,
thus possibly violating Assumption 4. This highlights another
motivator for adopting the use of the sum of model gradients
as a node’s history. However, obtaining a node’s post-training
gradients is a non-trivial task in the setting of decentralized
learning, as there exists no method of validating the aggregated
intermediary model, which was trained to generate the gradi-
ents, without sharing the corresponding training data. As an
example, a Sybil could claim to start training on an arbitrary
model mr, resulting in seemingly diverse training gradients
g, such that the sum of these is equal to the malicious model
ms = mr+g, where ms is highly similar to the trained model
of other Sybils. An adversary could trivially manipulate the
sums of gradients of its Sybils to make their work seem more
diverse. This drawback is absent in federated learning, as the
aggregated intermediary model is equal for all nodes every
round and was created by a central authority (Figures 1 and
2).

To obtain the model gradients, nodes require the ability to
ascertain the aggregated intermediary model of their neigh-
bors. RAGD [48] (Section III-C) achieves this by reaching a
global consensus on the aggregated intermediary model. By
repeatedly averaging the model with that of neighbors, nodes
converge to a globally coherent model under a number of
assumptions. However, we argue that these assumptions do
not realistically reflect a deployed decentralized setting and are
therefore not applicable to this work. We leave the required
analysis for a robust method for ascertaining the aggregated
intermediary model for future work.

During the evaluation of the effect of the number of Sybils
on the attack score in Section VI-D, we found that decreasing
the number of Sybils increases the attack score. This implies
that we eliminated the need to amplify a poisoning attack
with the Sybil attack, as employing Sybils would result in
a lower attack score. However, reducing the Sybil poison-
ing attack to a simple poisoning attack, which cannot be
deflected by SybilWall, requires the integration of alternative
poisoning attack mitigation algorithms. During evaluation, we
considered further enhancing SybilWall with a number of
such alternative algorithms through chained aggregation in
Section VI-F. Although all enhancements demonstrated an
increased resilience to Sybil poisoning, they sacrifice in terms
of accuracy. Considering that accuracy is often the primary
goal in machine learning [79], the use of such enhancements
is likely not justifiable in most applications. We leave further
enhancing SybilWall with a poisoning attack mitigation algo-
rithm for increased resilience against single attackers, without
compromising accuracy, as a possible research direction for
future work.

Furthermore, adversaries may employ a strategy to generate
more diverse Sybil model histories. By introducing random
noise to the irrelevant weights of the model [35], adversaries
may be able to significantly increase the diversity among
Sybil model histories, resulting in a violation of Assumption
4. Additionally, it may be possible to generate sufficient
diversity between Sybils to form multiple attack edges to the
same honest node. More research is required to accurately
filter exclusively relevant weights, which could be achieved
through a number of approaches, such as layer-wise relevance
propagation [80], weight magnitude filtering [81], or empirical
weight importance [82].

VIII. CONCLUSION

We have presented SybilWall, a pioneering algorithm in the
mitigation of Sybil poisoning attacks in decentralized learning.
Building on the popular federated learning Sybil poisoning
mitigation algorithm, FoolsGold [35], we exploit the in-
creased similarity between the models produced by Sybils over
that of honest nodes. We proposed a probabilistic gossiping
mechanism to facilitate data dissemination. The disseminated
data aids in the mitigation of a poisoning attack amplified
by distributing Sybils over the decentralized network. We
found that SybilWall achieves satisfactory performance on
four widely adopted datasets and obtains similar accuracy
to federated learning. Furthermore, SybilWall was compared
with a number of alternative algorithms and was found to
be the only algorithm to consistently score among the best
in all the evaluated scenarios, thus arguably outperforming
all the alternative evaluated algorithms. Although SybilWall
does not fully mitigate targeted poisoning attacks in the form
of a backdoor attack, it manages to greatly decrease the
convergence rate of the attacker’s success. This enables honest
nodes to complete the training process prior to the attack
having substantial impact.

13

We proposed a number of promising future research di-
rections, such as further improving SybilWall to successfully
mitigate single attackers, or exploring potential improvements
to mitigate the backdoor attack by adopting the usage of
summed model gradients in the similarity metric.

REFERENCES

[1] E. V. Polyakov, M. S. Mazhanov, A. Y. Rolich, L. S. Voskov, M. V.
Kachalova, and S. V. Polyakov, “Investigation and development of
the intelligent voice assistant for the internet of things using machine
learning,” in 2018 Moscow Workshop on Electronic and Networking
Technologies (MWENT), 2018, pp. 1–5.

[2] B. T.K., C. S. R. Annavarapu, and A. Bablani, “Machine
learning algorithms for social media analysis: A survey,” Computer
Science Review, vol. 40, p. 100395, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000356

[3] X. Wang and Y. Wang, “Improving content-based and hybrid music
recommendation using deep learning,” in Proceedings of the 22nd ACM
International Conference on Multimedia, ser. MM ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 627–636.
[Online]. Available: https://doi.org/10.1145/2647868.2654940

[4] S. A. Salloum, M. Alshurideh, A. Elnagar, and K. Shaalan, “Machine
learning and deep learning techniques for cybersecurity: A review,”
in Proceedings of the International Conference on Artificial Intelli-
gence and Computer Vision (AICV2020), A.-E. Hassanien, A. T. Azar,
T. Gaber, D. Oliva, and F. M. Tolba, Eds. Cham: Springer International
Publishing, 2020, pp. 50–57.

[5] J. Prusa, T. M. Khoshgoftaar, and N. Seliya, “The effect of dataset size
on training tweet sentiment classifiers,” in 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), 2015, pp.
96–102.

[6] J. Hestness, S. Narang, N. Ardalani, G. F. Diamos, H. Jun,
H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep
learning scaling is predictable, empirically,” CoRR, vol. abs/1712.00409,
2017. [Online]. Available: http://arxiv.org/abs/1712.00409

[7] A. Goldsteen, G. Ezov, R. Shmelkin, M. Moffie, and A. Farkash, “Data
minimization for gdpr compliance in machine learning models,” AI and
Ethics, pp. 1–15, 2021.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[9] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision for au-
tonomous vehicles: Problems, datasets and state of the art,” Foundations
and Trends® in Computer Graphics and Vision, vol. 12, no. 1–3, pp.
1–308, 2020.

[10] P. Navarro, C. Fernández, R. Borraz, and D. Alonso, “A machine
learning approach to pedestrian detection for autonomous vehicles
using high-definition 3d range data,” Sensors, vol. 17, no. 12, p. 18,
Dec 2016. [Online]. Available: http://dx.doi.org/10.3390/s17010018

[11] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” CoRR, vol. abs/1811.03604, 2018. [Online]. Available:
http://arxiv.org/abs/1811.03604

[12] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong,
D. Ramage, and F. Beaufays, “Applied federated learning: Improving
google keyboard query suggestions,” CoRR, vol. abs/1812.02903, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02903

[13] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated
learning of out-of-vocabulary words,” CoRR, vol. abs/1903.10635,
2019. [Online]. Available: http://arxiv.org/abs/1903.10635

[14] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36,
2020.

[15] L. Lyu and C. Chen, “A novel attribute reconstruction attack
in federated learning,” CoRR, vol. abs/2108.06910, 2021. [Online].
Available: https://arxiv.org/abs/2108.06910

[16] H. Yang, M. Ge, K. Xiang, and J. Li, “Using highly compressed
gradients in federated learning for data reconstruction attacks,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 818–
830, 2023.

[17] H. S. Sikandar, H. Waheed, S. Tahir, S. U. R. Malik, and
W. Rafique, “A detailed survey on federated learning attacks and
defenses,” Electronics, vol. 12, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2079-9292/12/2/260

[18] P. Qiu, X. Zhang, S. Ji, Y. Pu, and T. Wang, “All you need is hashing:
Defending against data reconstruction attack in vertical federated
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2212.00325

[19] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-
efficient algorithm for federated learning,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 3973–3983. [Online]. Available:
https://proceedings.mlr.press/v119/hamer20a.html

[20] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving
federated learning,” CoRR, vol. abs/2009.11248, 2020. [Online].
Available: https://arxiv.org/abs/2009.11248

[21] Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving blockchain-
based federated learning for traffic flow prediction,” Future Generation
Computer Systems, vol. 117, pp. 328–337, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X2033065X

[22] J. Hou, F. Wang, C. Wei, H. Huang, Y. Hu, and N. Gui, “Credibil-
ity assessment based byzantine-resilient decentralized learning,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–12, 2022.

[23] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” CoRR, vol. abs/1908.07782, 2019.
[Online]. Available: http://arxiv.org/abs/1908.07782

[24] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized
learning works: An empirical comparison of gossip learning
and federated learning,” Journal of Parallel and Distributed
Computing, vol. 148, pp. 109–124, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731520303890

[25] Z. Tang, S. Shi, B. Li, and X. Chu, “Gossipfl: A decentralized federated
learning framework with sparsified and adaptive communication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 3, pp.
909–922, 2023.

[26] M. de Vos, A. Dhasade, A.-M. Kermarrec, E. Lavoie, and J. Pouwelse,
“Modest: Bridging the gap between federated and decentralized learning
with decentralized sampling,” 2023.

[27] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized
learning works: An empirical comparison of gossip learning
and federated learning,” Journal of Parallel and Distributed
Computing, vol. 148, pp. 109–124, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731520303890

[28] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Computer Security – ESORICS
2020, L. Chen, N. Li, K. Liang, and S. Schneider, Eds. Cham: Springer
International Publishing, 2020, pp. 480–501.

[29] N. M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“Defending against the label-flipping attack in federated learning,”
2022. [Online]. Available: https://arxiv.org/abs/2207.01982

[30] D. Li, W. E. Wong, W. Wang, Y. Yao, and M. Chau, “Detection and
mitigation of label-flipping attacks in federated learning systems with
kpca and k-means,” in 2021 8th International Conference on Dependable
Systems and Their Applications (DSA), 2021, pp. 551–559.

[31] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, S. Chiappa and R. Calandra,
Eds., vol. 108. PMLR, 26–28 Aug 2020, pp. 2938–2948. [Online].
Available: https://proceedings.mlr.press/v108/bagdasaryan20a.html

[32] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you
really backdoor federated learning?” CoRR, vol. abs/1911.07963, 2019.
[Online]. Available: http://arxiv.org/abs/1911.07963

[33] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks
in federated learning,” CoRR, vol. abs/2011.01767, 2020. [Online].
Available: https://arxiv.org/abs/2011.01767

[34] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 251–260.

14

[35] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating sybils
in federated learning poisoning,” CoRR, vol. abs/1808.04866, 2018.
[Online]. Available: http://arxiv.org/abs/1808.04866

[36] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentral-
ized alternative to federated learning,” in Distributed Applications and
Interoperable Systems, J. Pereira and L. Ricci, Eds. Cham: Springer
International Publishing, 2019, pp. 74–90.

[37] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” CoRR, vol. abs/1905.06731, 2019. [Online]. Available:
http://arxiv.org/abs/1905.06731

[38] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks
in federated learning,” CoRR, vol. abs/2011.01767, 2020. [Online].
Available: https://arxiv.org/abs/2011.01767

[39] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions
to the sybil attack,” University of Massachusetts Amherst, Amherst, MA,
vol. 7, p. 224, 2006.

[40] D. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting.” in NSDI, vol. 9, no. 1, 2009, pp. 15–28.

[41] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta, “Limiting sybil
attacks in structured p2p networks,” in IEEE INFOCOM 2007 - 26th
IEEE International Conference on Computer Communications, 2007,
pp. 2596–2600.

[42] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, J. Walter,
J. Huang, and Z. M. Mao, “Innocent by association: Early recognition
of legitimate users,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 353–364.
[Online]. Available: https://doi.org/10.1145/2382196.2382235

[43] F. Lesueur, L. Mé, and V. V. T. Tong, “A sybil-resistant admission control
coupling sybilguard with distributed certification,” in 2008 IEEE 17th
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2008, pp. 105–110.

[44] M. Moradi and M. Keyvanpour, “Captcha and its alter-
natives: A review,” Security and Communication Networks,
vol. 8, no. 12, pp. 2135–2156, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1157

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[46] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[47] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[48] Y. Mao, D. Data, S. Diggavi, and P. Tabuada, “Decentralized learning
robust to data poisoning attacks,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), 2022, pp. 6788–6793.

[49] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms.
Https://github.com/zalandoresearch/fashion-mnist. [Online]. Available:
https://github.com/zalandoresearch/fashion-mnist

[50] M. de Vos and J. Pouwelse, “Contrib: Maintaining fairness
in decentralized big tech alternatives by accounting work,”
Computer Networks, vol. 192, p. 108081, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128621001705

[51] Q. Stokkink, C. U. Ileri, D. Epema, and J. Pouwelse,
“Web3 sybil avoidance using network latency,” Computer
Networks, vol. 227, p. 109701, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128623001469

[52] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking
in facebook: A case study of unbiased sampling of osns,” in 2010
Proceedings IEEE INFOCOM, 2010, pp. 1–9.

[53] R. Church and C. ReVelle, “The maximal covering location problem,”
in Papers of the regional science association, vol. 32, no. 1. Springer-
Verlag Berlin/Heidelberg, 1974, pp. 101–118.

[54] N. Megiddo, E. Zemel, and S. L. Hakimi, “The maximum
coverage location problem,” SIAM Journal on Algebraic Discrete
Methods, vol. 4, no. 2, pp. 253–261, 1983. [Online]. Available:
https://doi.org/10.1137/0604028

[55] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[56] C. Thapa, M. A. P. Chamikara, and S. Camtepe, “Splitfed: When
federated learning meets split learning,” CoRR, vol. abs/2004.12088,
2020. [Online]. Available: https://arxiv.org/abs/2004.12088

[57] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsupervised
feature learning,” in NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011. [Online]. Available:
http://ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[58] T. Werthenbach, “Sybil-resilient-decentralized-learning,”
https://github.com/ThomasWerthenbach/Sybil-Resilient-Decentralized-
Learning, 2023.

[59] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[60] Tribler, “Python implementation of tribler’s ipv8 p2p-networking layer,”
https://github.com/Tribler/py-ipv8, 2023.

[61] ——, “Experiment runner framework for ipv8 and tribler,”
https://github.com/Tribler/gumby, 2022.

[62] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A medium-scale distributed system for
computer science research: Infrastructure for the long term,” Computer,
vol. 49, no. 05, pp. 54–63, may 2016.

[63] C. Pappas, D. Chatzopoulos, S. Lalis, and M. Vavalis, “Ipls: A frame-
work for decentralized federated learning,” in 2021 IFIP Networking
Conference (IFIP Networking), 2021, pp. 1–6.

[64] S. Alqahtani and M. Demirbas, “Performance analysis and comparison
of distributed machine learning systems,” CoRR, vol. abs/1909.02061,
2019. [Online]. Available: http://arxiv.org/abs/1909.02061

[65] J. Verbraeken, M. de Vos, and J. Pouwelse, “Bristle:
Decentralized federated learning in byzantine, non-i.i.d. environ-
ments,” CoRR, vol. abs/2110.11006, 2021. [Online]. Available:
https://arxiv.org/abs/2110.11006

[66] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with
unreliable communications,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, no. 3, pp. 487–500, 2022.

[67] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” CoRR, vol. abs/1908.07782, 2019.
[Online]. Available: http://arxiv.org/abs/1908.07782

[68] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[69] T.-C. Chiu, Y.-Y. Shih, A.-C. Pang, C.-S. Wang, W. Weng, and C.-T.
Chou, “Semisupervised distributed learning with non-iid data for aiot
service platform,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9266–9277, 2020.

[70] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID
data quagmire of decentralized machine learning,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 4387–4398. [Online]. Available:
https://proceedings.mlr.press/v119/hsieh20a.html

[71] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018. [Online].
Available: http://arxiv.org/abs/1806.00582

[72] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data), 2020, pp. 15–24.

[73] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-iid data,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1–9.

[74] G. L. Dirichlet, “Über die reduction der positiven quadratischen formen
mit drei unbestimmten ganzen zahlen.” Journal für die reine und
angewandte Mathematik (Crelles Journal), vol. 1850, no. 40, pp. 209–
227, 1850. [Online]. Available: https://doi.org/10.1515/crll.1850.40.209

15

[75] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, “Feddc: Federated
learning with non-iid data via local drift decoupling and correction,”
2022.

[76] X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang,
and Z. Zhang, “Fedproc: Prototypical contrastive federated
learning on non-iid data,” Future Generation Computer
Systems, vol. 143, pp. 93–104, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23000262

[77] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett,
“Byzantine-robust distributed learning: Towards optimal statistical
rates,” CoRR, vol. abs/1803.01498, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01498

[78] E. Drott, “Fake streams, listening bots, and click farms: Counterfeiting
attention in the streaming music economy,” American Music, vol. 38,
no. 2, pp. 153–175, 2020.

[79] S. Kaur and S. Jindal, “A survey on machine learning algorithms,” Int J
Innovative Res Adv Eng (IJIRAE), vol. 3, no. 11, pp. 2349–2763, 2016.

[80] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PLOS
ONE, vol. 10, no. 7, pp. 1–46, 07 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0130140

[81] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,” in Advances
in Neural Information Processing Systems, D. Touretzky, Ed., vol. 1.
Morgan-Kaufmann, 1988.

[82] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

16

