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Introduction

▪ Recent AI developments

▪ Training requires large datasets

▪ Privacy law prohibit mass user data 
collection.

▪ How does one perform machine learning
on comprehensive datasets while
respecting privacy rights?
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Federated learning

▪ Training performed on end-user devices

▪ Real user data

▪ Centralized model aggregator

▪ Privacy-enforcing

▪ Synchronous training rounds
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User devices

Central parameter server



Federated learning training round

1. Train on local data

2. Send gradients to central parameter server

3. Server aggregates

4. Send model to edge devices

5. Repeat
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User devices

Central parameter server



Federated learning
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Federated learning

Advantages

▪ Privacy-enforcing

▪ Real-user data

Drawbacks

▪ Scalability

▪ Single point of failure



Federated learning vs decentralized learning
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Federated learning Decentralized learning

Drawbacks

▪ Scalability

▪ Single point of failure

Advantages

▪ Privacy-enforcing

▪ Real-user data

Advantages

▪ Privacy-enforcing

▪ Real-user data

▪ Boundless scalability

▪ No single point of failure

Drawbacks

▪ Limited context



Decentralized learning

▪ Decentralized

▪ Improved scalability

▪ Communication costs

▪ Memory capacity

▪ Aggregation time

▪ Performance similar to federated learning [1]

▪ Limited aggregation context
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[1] I. Hegedus, G. Danner, and M. Jelasity, "Decentralized learning works: An empirical comparison of gossip learning and federated learning," Journal of Parallel and 
Distributed Computing, vol. 148, pp. 109–124, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0743731520303890



Decentralized learning training loop

1. Train on local data

2. Send to neighbors

3. Aggregate

4. Repeat
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Federated learning vs decentralized learning
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Poisoning attack

Targeted poisoning attack

▪ Label-flipping

▪ Backdoor

Untargeted poisoning attack

▪ A little is enough [1]

▪ Static optimization attack [2]
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[1]  G. Baruch, M. Baruch, and Y. Goldberg, “A Little Is Enough: Circumventing Defenses For Distributed Learning,” in Advances in Neural Information Processing Systems, 2019, vol. 32. 
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf
[2]  M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks to byzantine-robust federated learning,” in Proceedings of the 29th USENIX Conference on Security Symposium, 
2020, pp. 1623–1640. 
[3]  S. Udeshi, S. Peng, G. Woo, L. Loh, L. Rawshan, and S. Chattopadhyay, Model Agnostic Defence against Backdoor Attacks in Machine Learning. 2022.



Sybil attack

▪ Adversary creates fake identities (Sybils)

▪ Adversary increases its influence in the network

▪ Benign nodes cannot distinguish between benign and Sybil

▪ Amplifies poisoning attack
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Problem statement

▪ Federated learning does not scale

▪ Federated learning has a single point of failure

▪ Unstudied Sybil poisoning resilience of decentralized learning

▪ Contributions:

▪ Demonstration of inscalability of federated learning

▪ Effective adversarial strategy

▪ SybilWall

▪ Empirical evaluation

July 4th, 2023



▪

Related work



FoolsGold

▪ Primary inspiration for SybilWall

▪ Designed for federated learning

▪ High similarity between Sybils

▪ Low similarity between honest nodes

▪ Assign lower weight to similar models
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From [1]

[1] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating Sybils in Federated Learning Poisoning,” CoRR, vol. abs/1808.04866, 2018, [Online]. Available: http://arxiv.org/abs/1808.04866



FoolsGold

▪ Input for aggregation in round 𝑇 for every node 𝑖 ∈ 𝑁:

▪ Model gradient: ∆𝑤𝑖
𝑇

▪ Model gradient history: σ𝑡=0
𝑇 ∆𝑤𝑖

𝑡
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FoolsGold
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Federated learning

Decentralized learning

Network topology 1:
SybilWall compared to FoolsGold

Network topology 2:
SybilWall compared to FoolsGold

FoolsGold compared to FedAvg Aggregation time against number of nodes



▪

SybilWall



SybilWall architecture
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SybilWall architecture
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1. Aggregation function

▪ FoolsGold-inspired

▪ 2 improvements:

▪ Support for gossiped model histories

▪ Nodes trust themselves
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1. Aggregation function

▪ Uses model history rather than model gradient history
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1. Aggregation function

▪ Input for aggregation in round 𝑇 for every neighbouring node 𝑖 ∈ 𝑁:

▪ Model: 𝑤𝑖
𝑇

▪ Model history: σ𝑡=0
𝑇 𝑤𝑖

𝑡
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2. Probabilistic gossiping mechanism

▪ In each round, every node transmits:

▪ Its own trained model

▪ A probabilistically selected model history from its local database (gossip)

▪ The gossiped model is selected using a weighted random selection

▪ The weights correspond to the exponential distribution, where the distance
to the originating node serves as the parameter 𝑑

𝑃(𝑑) = 𝜆𝑒−𝜆𝑑
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3. Message composition

▪ Omit trained model, as it can be inferred from subsequent model histories

▪ Messages are composed of:

▪ ℎ𝑖: model history of sender 𝑖

▪ 𝑔𝑘: gossiped model history of distant node 𝑘

▪ 𝑟𝑖: round number from which model history ℎ𝑖 originates

▪ 𝑟𝑘: round number from which gossiped model history 𝑔𝑘 originates

▪ Each message component is signed by the corresponding node

▪ Downtime and unreachability support
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SybilWall
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Experimental setup

▪ Python-based IPv8 implementation

▪ 100 nodes simulation on DAS-6

▪ 4 datasets

▪ Dirichlet-based data distribution
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Dataset Model Learning rate

MNIST Single soft-max layer 𝜂 = 0.01

FashionMNIST Single soft-max layer 𝜂 = 0.01

SVHN LeNet-5 𝜂 = 0.004

CIFAR-10 LeNet-5 𝜂 = 0.004

Evaluated datasets

Example Dirichlet distribution



Experimental setup

▪ Network topology

▪ Random geometric graphs

▪ Evaluation metrics

▪ Accuracy: percentage of correctly classified samples of the original dataset

▪ Attack score: percentage of correctly classified samples of the maliciously
altered segment of the dataset
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SSP Attack

▪ Adversarial strategy

▪ Average attack edge density 𝜙
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▪  

Effect of dataset

We evaluated SybilWall on 
numerous datasets:

• MNIST

• FashionMNIST

• SVHN

• CIFAR-10

Attack edge density: 𝜙 = 1

▪  
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Results

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor



▪  

Comparison with existing
techniques (1/2)

We compare SybilWall with 
existing techniques:

• FedAvg

• FoolsGold

• Krum

• Multi-Krum

• Median

Dataset: FashionMNIST

Attack edge density: 𝜙 ∈ {1, 4}

▪  
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Results: 𝜙 = 1

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor



▪  

Comparison with existing
techniques (2/2)

We compare SybilWall with 
existing techniques:

• FedAvg

• FoolsGold

• Krum

• Multi-Krum

• Median

Dataset: FashionMNIST

Attack edge density: 𝜙 ∈ {1, 4}

▪  
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Results: 𝜙 = 4

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor



▪  

Effect of attack edge
density

We evaluate SybilWall’s defensive 
capabilities against various attack 
edge densities:

• 𝜙 = 0.1

• 𝜙 = 0.25

• 𝜙 = 0.5

• 𝜙 = 1

• 𝜙 = 1.5

• 𝜙 = 2

Dataset: MNIST

▪  

July 4th, 2023

Results

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor



▪  

Effect of data 
distribution

We evaluate SybilWall’s
peformance on numerous data 
distributions:

• 𝛼 = 0.1

• 𝛼 = 0.25

• 𝛼 = 0.5

• 𝛼 = 1

• 𝛼 = 1.5

• IID

Dataset: CIFAR-10

Attack edge density: 𝜙 = 1

▪  
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Results

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor



Further enhancing SybilWall

▪ SybilWall does not fully mitigate backdoor attacks for low values of 𝜙

▪ We further enhance SybilWall by replacing the weighted average with:

▪ Weighted median

▪ Median

▪ Krum-based filter
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▪  

Further enhancing
SybilWall

We evaluate possible 
enhancements of SybilWall:

• Weighted median

• Median

• Krum-based filter

Dataset: SVHN

Attack edge density: 𝜙 = 1

▪  
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Results

Accuracy label-flipping Attack score label-flipping

Attack score backdoorAccuracy backdoor
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Conclusion

▪ SybilWall

▪ Aggregation function

▪ Probabilistic gossiping mechanism

▪ Satisfactory performance on 4 datasets

▪ Stronger Sybil resilience over other defensive algorithms

▪ Mitigates the label-flipping attack

▪ Slows down the backdoor attack
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Future work
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▪ Further enhancement of SybilWall

▪ Filtering for relevant weights during aggregation

▪ Improving SybilWall’s resilience against backdoor attacks

▪ e.g. employing gradient history rather than model history



Thank you for your attention
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