
FROSTDAO: Collective Ownership of wealth using FROST

Rahim Klabér

June 27, 2023

Abstract

Say that banks are bad? Present the system: it is decen-
tralized, transparent, open-source, does not rely on any
central party. Mention expirement results and say that it
is practical for the values we tested?

1 Introduction

In the years leading to the 2008 financial crisis, banks en-
gaged in excessive risk-taking for the goal of profit. They
invested in risky loans using their depositors’ funds and
were bailed out by the government when they failed. Re-
cently, the financial system has once again been put to
the test with the failures of multiple banks. In their sim-
plest form, banks act as a middleman between depositors
and borrowers. They pool the deposits together and give
out loans to other parties while taking a cut of the fee.
More importantly, banks act as gateways to today’s finan-
cial world. Without a bank, a person cannot easily invest,
pay online or get loans.

Bitcoin emerged as an alternative to the global finan-
cial system. It gave individuals an alternative to banks
and allowed anyone to securely send money to each other
using the Internet. Some thought Bitcoin could be an al-
ternative to the current financial system [1]. However,
Bitcoin has largely remained a tool for speculation [2].
Real-world use is impractical due to high transaction fees,
low throughput, and because it is hard to use correctly by
non-technical individuals [3].

Bitcoin is lacking in several areas to become an alter-
native to the financial system. Some of which are:

• high throughput

• cheap payments

• privacy

• collective ownership of wealth

High throughput and cheap payments are actively being
worked on with the development of the Lightning Net-
work [4]. The Lightning Network is a protocol that lives
on top of Bitcoin. It allows for cheap and fast payment
by batching transactions and settling them on Bitcoin at a
later point in time.

There are a number of Bitcoin mixing services that in-
crease the privacy of Bitcoin [5]–[7]. These services mix
the funds of different users by sending them to newly cre-
ated wallets.

While collective ownership of wealth on Bitcoin is pos-
sible with current tools, it is impractical due to high fees
and low scalability [8]. Collective ownership would al-
low for a group of individuals to truly be their own bank,
where each individual is part owner. Money can be pooled
and invested. This process is transparent and a majority of
the participants need to agree for any action to be taken.

In this paper, we contribute to the goal of making Bit-
coin an alternative to the financial system. We describe
and partially implement a critical primitive for the collec-
tive ownership of wealth using Bitcoin. Using this prim-
itive, individuals can create shared Bitcoin accounts with
hundreds of others. We achieve this without any overhead
to transaction size. Our system can be used by anyone and
is compatible with existing Bitcoin tools and services such
as the Lightning Network and various mixing services.

1



2 Problem Description
The internet has revolutionized the way individuals col-
laborate and work towards a common goal, even across
borders. However, despite this, there remains a significant
challenge when it comes to the collective management of
wealth. Establishing a company or making joint invest-
ments can be complicated and cumbersome, particularly
when the individuals involved are from different coun-
tries. Existing financial services do not address this issue,
highlighting the need for a novel solution.

The open question is whether banks and other finan-
cial institutions can be replaced by a fully decentralized
and transparent system, allowing for the democratic col-
lective management of wealth and collective investment.
The challenge is constructing the system in a way such
that anyone, regardless of their background, can partici-
pate and without having to rely on any central actor.

3 System Design
We aim to solve the problem by creating a peer-2-peer
leaderless decentralized system. This system will allow
groups of individuals to form decentralized autonomous
organizations (DAOs) [9] that enable them to collectively
and democratically manage their wealth. The key prin-
ciple guiding our approach is decentralization, ensuring
that every aspect of the system operates without reliance
on any central authority or intermediary.

Our architecture includes the following four compo-
nents: Decentralized communication, Blockchain, a gov-
ernance mechanism, and identity.

3.1 Decentralized Communication
To support our goal of decentralization, we will use a
peer-2-peer network for communication. Each partic-
ipant will communicate with another directly, to pre-
vent reliance on any central actor. We rely on the
IPV8[10] library for communication. IPV8 allows for
the construction of fully peer-2-peer networks through so-
called Communities. These are P2P networks that contain
application-specific functionality. Additionally, IPV8 em-
ploys hole-punching [11], which allow devices to com-
municate, even if they done have a dedicated public IP

address.

3.2 Blockchain

Our architecture uses Blockchain technology as the mech-
anism to store and send money. Blockchain technology
enables anyone to send and receive money over the In-
ternet. Blockchain transactions are tamper-proof and can
be verified by anyone. Therefore Blockchain technology
supports our goal of decentralization, permissionlessness,
and transparency. We use Bitcoin as our Blockchain.
In our system, each group of participants jointly con-
trols a Bitcoin account. We use the FROST threshold-
signature scheme [12] to enable collective wealth man-
agement without using complex smart contracts. In the-
ory, any Blockchain can be used with our system as
long as it supports threshold signatures. Using threshold
signatures together with Bitcoin allows the transactions
to be much smaller and allows the system to be much
more scalable compared to the traditional way that multi-
signature Bitcoin transactions are created [13]. In addi-
tion, using threshold signatures means that no one can de-
termine if an account is controlled by multiple individuals
just by looking at the account and its transactions [13].

3.3 Governance

We build our governance module on top of IPV8’s net-
working. Every action taken by the organization is demo-
cratically decided by its members. The governance mod-
ule is simple and consists of a few messages for requesting
membership and for creating proposals.

Requesting membership is done by broadcasting a re-
quest to all members of the organization. The prospective
member then waits until they receive enough responses
such that the joining procedure can be started. Becoming
a member is unique in that it requires all other members to
agree and participate in the process. This is because any-
time the group is expanded, a new key must be generated,
which requires all members. Figure 1 shows the layout of
a Bitcoin transaction that is submitted when a new mem-
ber joins. This transaction transfers funds from the old
organization account to the newly created one. The trans-
action may also include an input from the new member if
an entrance fee is required.

2



Figure 1: Bitcoin transaction for joining an organization when
an entrance fee is needed.

Creating a proposal entails constructing a Bitcoin trans-
action that can be signed by the organization. This trans-
action can be as simple as making a payment or something
more complex like opening a lightning channel[cite]. In
contrast to accepting a new member, only a majority of
members are needed to accept a proposal.

In both cases, the prospective member is responsible
for signaling the start of the procedure when enough
members respond. This is not decentralized. However,
in this case, it does not matter, as it is the proposer whose
proposal would fail otherwise. Additionally, it results in
a less complex system, as otherwise, every participant
would have to broadcast to every other participant that
they are ready to start.

3.4 Identity

We use IPV8’s identity mechanism to identify members
in an organization. The identities are used to verify a
member during the various procedures. Depending on if
the organization is entirely anonymous or not, the iden-
tity mechanism may or may not be enough. In the latter
case, the organization could be taken over with a Sybil at-
tack[14]. To prevent this, a Self-Sovereign Identity mech-
anism could be used[15]. Using Self-Sovereign Identity,
a participant could identify themselves without giving out
privileged information.

Figure 2: Android application home screen. The screen shows
various details of the DAO, such as the balance and amount of
members

4 Implementation
We have created an Android application that partially im-
plements our design. Users can join a DAO, create a pro-
posal, and vote on proposals. The code is open-source
and publicly available on Github[cite]. Figure 2, Figure 3,
Figure 4 and Figure 5 show the various screens in the ap-
plication.

4.1 Collective wealth
The Android application contains a personal wallet and
the DAO wallet. The personal wallet is only used for
testing purposes. We use the BitcoinJ open-source li-
brary [16] for Bitcoin support. We use BitcoinJ to track
the inputs and outputs of the DAO wallet, so that any par-
ticipant can easily create a proposal. BitcoinJ stores its
data in an SQLite database.

To support threshold signatures, we used an audited
open-source RUST library[cite]. We created a wrapper

3



Figure 3: TODO: placeholder

around this library and then exposed the wrapper to An-
droid via Java’s native interface [17]. After the key gen-
eration procedure, each participant receives a key share,
which is stored in a database for persistence. The Bit-
coin address created from the threshold key is a Taproot
address [18], which is the Bitcoin upgrade that enabled
efficient threshold signatures on Bitcoin.

The Android application currently only supports Bit-
coin transactions with one input, as Bitcoin transactions
require signatures for each Bitcoin Input used in a trans-
action. Additionally, only simple payment transactions

Class / Package Line coverage Lines of code
FrostManager 93% 404
SchnorrAgent 94% 106
FrostCommunity 65% 141
FrostViewModel 0% 156
ui 0% 980

Table 1: Code coverage of the FROSTDAO application.

Figure 4: TODO: placeholder

are supported.

4.2 Joining an Organization

After clicking the join button, The application will send
a join request message and wait for a response. If a re-
sponse is received within the timeout duration, the join-
ing procedure will start. Otherwise, the application state
is reset. Once the process is complete, it will be possible
to view details of the DAO account, create proposals, and
reject or accept proposals. In contrast to our design, ac-
cepting an entrance fee is not implemented and migrating
funds from the old DAO account is not implemented.

4.3 Creating a Proposal

The Android application currently only supports creating
proposals to send funds from the DAO account to another
account. A user must input the destination and the Bit-
coin amount to create a proposal. Internally, a new Bit-
coin transaction is created to represent the proposal. Once

4



Figure 5: TODO: placeholder

created, the proposal is broadcast to the organization and
the proposer waits for enough participants. Once enough
participants respond, the signing procedure will start, af-
ter which the signature is added to the transaction, and the
transaction is submitted to the Bitcoin network. Figure 6
describes this process.

4.4 Quality Assurance

We used both unit and integration tests to ensure the code
is bug-free and the code coverage is shown in Table 1.
The core of the application, which consists of FrostMan-
ager, SchnorrAgent, and FrostCommunity, has been ex-
tensively tested. However, harder-to-test code, like the UI
and Bitcoin code is not well-tested.

We used unit tests to make sure that our code has no
major flaws. we used unit tests to test key generation,
signing, and pre- and post-conditions. Integration tests
were used to test what we tested in unit tests but without a
mocked communication. The integration tests discovered
many bugs that were caused by race conditions. We fixed

Figure 6: Sequence diagram of the signing procedure. The dia-
gram shows the procedure with two participants.

many of the bugs, but some still occasionally occur. These
bugs rarely occur and we are not sure if IPV8 or our code
is the cause of these bugs.

We also manually tested the Android application to test
the entire application, and in particular the Bitcoin inte-
gration. To do this, we created our own private Bitcoin
network that enabled us to create our own fake Bitcoins
and mine blocks instantly. We used two mobile devices
for this.

4.5 Challenges, move to evaluation?

Developing any distributed system is challenging, espe-
cially fully peer-2-peer systems. During development, we
encountered numerous problems and challenges. This in-

5



cludes challenges relating to communication, Bitcoin, and
reliability.

As previously mentioned, we used IPV8 for commu-
nication. IPV8 relies on UDP under the hood, which is
not reliable. To address this, we added acknowledgments
and timeouts on top of IPV8. This works, but the chal-
lenge lies in determining the correct timeout duration and
amount of retransmissions, which especially matter for
unreliable networking.

The size of some messages during key generation scale
with the number of participants. If we want the UDP
packets to not be dropped, we need to limit their size
to around 1400 Bytes [19], which some messages do not
fit into. Therefore, we use IPV8’s EVA[footnote] proto-
col, which splits up data into multiple packets, to send the
messages. EVA periodically executes scheduled transfers,
which increases the latency of sending messages. Addi-
tionally, EVA transfers have a high failure rate.

The DAO system relies on being able to send messages
to all members of a DAO. However, IPV8 is not meant to
create fully connected peer-2-peer networks. Each peer
in a community will keep track of a number of peers
by sending periodic pings. This is not a problem in
smaller networks (30 members), but it becomes a prob-
lem in larger networks. This can be somewhat mitigated
by changing IPV8’s configuration.

The signing process requires that every participant has
an up-to-date view of the Bitcoin network. However, It
often happened that some participants lagged behind. Due
to this, the signing process sometimes failed.

5 Evaluation
In this section, we evaluate the performance of our system
by running multiple experiments.

5.1 Experiment Setup
We ran the experiments on a Windows 10 PC with 32GB
of RAM and a Ryzen 7 3700x CPU that has 8 cores and 16
threads. We modified the code responsible for communi-
cation and signing to the work in a Desktop environment
with a Java virtual machine. This included compiling the
native code to work on Windows. Our experiments were
run in one application that was responsible for creating

Figure 7: Amount of data in Kilobytes sent during key genera-
tion and Signing

the individual nodes, that each represent a participant in
the DAO. Each node is an IPV8 node that runs the entire
IPV8 stack. However, since all of the nodes are on the
same PC, network latency is not a factor. We limited the
number of nodes in the experiments to 50, as we ran into
problems with more than 50 nodes. We modified the de-
fault IPV8 maxPeer configuration to allow each peer to
connect directly to all other peers. Each experiment was
run multiple times.

In our experiments, we are interested in the perfor-
mance of the signing and key generation protocols, as
these are the most expensive parts of our system. We mea-
sured the performance in two ways. First, we measured
the time it takes to do key generation and to create a sig-
nature. Note that in the case of signing, we are doing the
2-round procedure and not the optimized 1-round version.
Second, we measured the amount of data that is sent when
running key generation and signing. This is important as
we want the system to be usable on mobile devices. We
further investigate by introducing artificial delays to sim-
ulate potential network delays and we introduce random
packet drop to investigate performance in a more real-life
scenario.

6



Figure 8: Duration of the key generation running on top of the
IPV8 stack.

5.2 Experiment results
Figure 7 shows the amount of data sent during key gen-
eration and signing. We notice that the amount of data
sent during key generation scales exponentially. This is
expected as the size of messages sent during key gener-
ation depends on the number of participants. While the
graph paints a bad picture, keep in mind that this is the to-
tal data sent and not only the data sent by one node. This
still means each node sent and received around 150KB of
data. Even this low amount of data can be problematic
as everything is sent using UDP packets and may there-
fore be dropped without warning, resulting in even more
data being sent. In contrast to Key generation, the signing
protocol requires significantly less data to be sent. This
is expected as each signing operation requires a constant
amount of data per participant.

Figure 8 shows the duration of the key generation pro-
tocol. Up to 18 nodes, the procedure has a low duration
that increases a small amount when the number of nodes
is increased. After 18 nodes, the duration and variability
increase dramatically. At this point, the size of messages
sent during key generation is no longer small enough such
that the UDP packets are delivered reliably. Attempting
to use UDP packets at this point will result in them get-
ting dropped. The dramatic increase in duration is due to
EVA, IPV8 TFTP protocol for sending larger amounts of
data. This protocol splits the data into chunks, sends each

Figure 9: Duration of the signing protocol running on top of the
IPV8 stack.

chunk via UDP, and uses acknowledgments to ensure that
each chunk is delivered. EVA does not send the data im-
mediately and instead schedules transfers in the future,
which results in a large spike in duration. The large vari-
ability is due to the EVA protocol failing and needing to
retransmit data and due to the protocol’s scheduler. The
signing protocol, shown in Figure 9, is much quicker than
key generation, as the messages all fit inside UDP pack-
ets. In practice, Signing will scale much better since only
a majority of the organization needs to participate. Thus,
in an organization with 50 members, only 26 need to par-
ticipate.

Figure 10 shows the duration of the key generation pro-
tocol with an artificial delay of 100 milliseconds and Fig-
ure 11 shows the average duration of the various protocols
with varying delays. The artificial delay adds a constant
duration to the signing and key generation protocols up
to 18 nodes. After 18 nodes, the increase in duration for
signing stays similar. However, the minimum duration for
key generation increased by a large amount, likely due to
EVA. In both cases, the range of durations is similar. But
the delays have increased the duration on average.

TODO: havent done this yet
Figure x shows the duration of the Key generation and

signing protocols with varying levels of packet drop. We
expect that the duration of both protocols will be signif-
icantly increased. This is because our message acknowl-

7



Figure 10: Duration of the key generation protocol running on
top of the IPV8 stack with a delay of 100 milliseconds.

edgment system has a high timeout and will therefore wait
a long time for an acknowledgment. A single packet drop
will result in delays in the order of multiple seconds. The
high timeouts are to accommodate the usage of EVA and
while it can be improved, this would lead to more com-
plex code.

6 Discussion
Our results show that FROSTDAO is practical for the or-
ganization sizes we tested. While key generation can take
up to 30 seconds, this is not a large duration, when we
consider that key generation is only done when a new
member joins. On the other hand, signing is extremely
quick.

Different latencies do not change the duration of the
protocols by much. This is likely because many of the
messages are sent concurrently, and thus a larger latency
will not affect much.

The large amounts of data sent during duration key gen-
eration is concerning, especially with how it seems to
scale. This, in addition to IPV8’s overhead, is what is
holding us back.

Figure 11: TODO: Add more delays? Average Duration of the
key generation and signing protocols with various delays.

7 Conclusion

References
[1] S. Lo and J. C. Wang, “Bitcoin as money?,” 2014.

[2] K. Hong, “Bitcoin as an alternative investment ve-
hicle,” Information Technology and Management,
vol. 18, pp. 265–275, 2017.

[3] A. W. Baur, J. Bühler, M. Bick, and C. S. Bonor-
den, “Cryptocurrencies as a disruption? empirical
findings on user adoption and future potential of
bitcoin and co,” in Open and Big Data Manage-
ment and Innovation, M. Janssen, M. Mäntymäki,
J. Hidders, et al., Eds., Cham: Springer Interna-
tional Publishing, 2015, pp. 63–80, ISBN: 978-3-
319-25013-7.

[4] J. Poon and T. Dryja, The bitcoin lightning net-
work: Scalable off-chain instant payments, 2016.

[5] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2p
mixing and unlinkable bitcoin transactions,” Cryp-
tology ePrint Archive, 2016.

[6] L. Valenta and B. Rowan, “Blindcoin: Blinded, ac-
countable mixes for bitcoin,” in Financial Cryptog-
raphy and Data Security: FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San

8



Juan, Puerto Rico, January 30, 2015, Revised Se-
lected Papers, Springer, 2015, pp. 112–126.

[7] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A.
Kroll, and E. W. Felten, “Mixcoin: Anonymity
for bitcoin with accountable mixes,” in Financial
Cryptography and Data Security: 18th Interna-
tional Conference, FC 2014, Christ Church, Bar-
bados, March 3-7, 2014, Revised Selected Papers
18, Springer, 2014, pp. 486–504.

[8] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-
Arribas, and J. Herrera-Joancomartı, “Analysis of
the bitcoin utxo set,” in Financial Cryptography
and Data Security: FC 2018 International Work-
shops, BITCOIN, VOTING, and WTSC, Nieuw-
poort, Curaçao, March 2, 2018, Revised Selected
Papers 22, Springer, 2019, pp. 78–91.

[9] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang,
and F.-Y. Wang, “Decentralized autonomous orga-
nizations: Concept, model, and applications,” IEEE
Transactions on Computational Social Systems,
vol. 6, no. 5, pp. 870–878, 2019.

[10] M. Skála, “Technology stack for decentralized mo-
bile services,” 2020.

[11] G. Halkes and J. Pouwelse, “Udp nat and firewall
puncturing in the wild,” in 10th IFIP Network-
ing Conference (NETWORKING), Springer, 2011,
pp. 1–12.

[12] C. Komlo and I. Goldberg, “Frost: Flexible round-
optimized schnorr threshold signatures,” in Se-
lected Areas in Cryptography: 27th International
Conference, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020, Revised Selected Papers 27,
Springer, 2021, pp. 34–65.

[13] S. Goldfeder, R. Gennaro, H. Kalodner, et al., “Se-
curing bitcoin wallets via a new dsa/ecdsa thresh-
old signature scheme,” in et al. 2015.

[14] J. R. Douceur, “The sybil attack,” in Peer-to-Peer
Systems, P. Druschel, F. Kaashoek, and A. Row-
stron, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 251–260, ISBN: 978-3-540-
45748-0.

[15] A. Mühle, A. Grüner, T. Gayvoronskaya, and C.
Meinel, “A survey on essential components of a
self-sovereign identity,” Computer Science Review,
vol. 30, pp. 80–86, 2018.

[16] P. Xiao, “Java programming for blockchain appli-
cations,” in Practical Java Programming for IoT,
AI, and Blockchain. 2019, pp. 347–388. DOI: 10 .
1002/9781119560050.ch10.

[17] S. Liang, The Java native interface: programmer’s
guide and specification. Addison-Wesley Profes-
sional, 1999.

[18] P. Wuille, J. Nick, and A. Towns, “Taproot: Seg-
wit version 1 spending rules,” Bitcoin Improvement
Proposal, vol. 341, 2020.

[19] C. Kaufman, R. Perlman, and B. Sommerfeld,
“Dos protection for udp-based protocols,” in Pro-
ceedings of the 10th ACM Conference on Com-
puter and Communications Security, ser. CCS ’03,
Washington D.C., USA: Association for Comput-
ing Machinery, 2003, pp. 2–7, ISBN: 1581137389.
DOI: 10.1145/948109.948113. [Online]. Available:
https://doi.org/10.1145/948109.948113.

9

https://doi.org/10.1002/9781119560050.ch10
https://doi.org/10.1002/9781119560050.ch10
https://doi.org/10.1145/948109.948113
https://doi.org/10.1145/948109.948113

	Introduction
	Problem Description
	System Design
	Decentralized Communication
	Blockchain
	Governance
	Identity

	Implementation
	Collective wealth
	Joining an Organization
	Creating a Proposal
	Quality Assurance
	Challenges, move to evaluation?

	Evaluation
	Experiment Setup
	Experiment results

	Discussion
	Conclusion

