
FROSTDAO: Collective Ownership of wealth using FROST

Rahim Klabér

July 10, 2023

Abstract

The internet has revolutionized how individuals collabo-
rate and work towards a common goal. Individuals from
different countries can form informal organizations. The
individuals can be thought of as owners of the organiza-
tion. Thus, they should have a say in managing the funds.
However, the organizations’ informality makes using banks
challenging. This thesis presents a peer-2-peer system on
top of Bitcoin and threshold signatures, allowing for col-
lective wealth management. The system allows anyone to
create Bitcoin wallets jointly controlled by a group using
a threshold-signature scheme. The system is implemented
as an Android application and relies on no central party,
allowing the system to be used by anyone worldwide. Our
expirements show that our system is practical for real-world
use. Joining an organization in the system and creating a
transaction to spend funds can be done in under a minute.

1 Introduction

In their simplest form, banks act as a middleman between
depositors and borrowers. They pool the deposits together
and give out personal and corporate loans taking profit by
charging a fee. In the years leading to the 2008 financial cri-
sis, banks invested in excessively risky loans using depos-
itors’ funds, requiring government bailouts [1]. Recently,
the financial system has once again been put to the test with
the failures of multiple banks [2]. Banks act as gateways
to today’s financial world. Without a bank, a person cannot
easily invest, pay online or get loans. Nevertheless, these
bailouts have shown that bankers may recklessly act in the
disinterest of their customers for profit.

Bitcoin presents itself as an alternative to the global fi-
nancial system [3]. It gave individuals an alternative to
banks by allowing anyone to transact on the Internet se-
curely. With Bitcoin, no banks can invest your money into
risky products. Some thought Bitcoin could be an alter-
native to the current financial system [4]. However, Bitcoin
has primarily remained a tool for speculation [5]. High fees,
low scalability, and a lack of user-friendly applications hin-
der Bitcoin use [6].

Collective wealth management would allow a group of
individuals to manage the group’s funds collectively. Each
individual has an equal say in how the funds are used. Col-
lective wealth management is a crucial first step to an al-
ternative financial system. Such a system would allow a
group of individuals to be their own bank, where each indi-
vidual is part owner. Collective wealth management allows
money to be pooled and invested. This process is trans-
parent and a majority of the participants need to agree for
any action to be taken. The idea is similar to Decentralized
Autonomous Organizations (DAOs) on other Blockchains,
like Ethereum [7], [8]. DAOs are Blockchain-based organi-
zations operating autonomously without central control by
using smart contracts. While collective ownership of Bit-
coins is possible, it is impractical due to high fees and low
scalability [9].

In this thesis, we contribute to the goal of making Bit-
coin an alternative to the financial system. We describe
and partially implement a critical primitive for the collec-
tive ownership of wealth. Using this primitive, individuals
can create shared Bitcoin accounts with hundreds of oth-
ers. Anyone can use our system, which is compatible with
existing Bitcoin tools and services.

Specifically, this thesis makes the following contribu-
tions:

• Collective wealth - We designed a system allowing for
the collective ownership of Bitcoins and implemented
it as an Android application.

• Performance analysis - We analyze the scalability of
our system using various experiments. As part of this,
we uncovered performance issues with IPv8’s EVA
protocol.

2 Problem Description
The internet has revolutionized how individuals collaborate
and work towards a common goal [10], [11]. Individuals
working together over the internet form informal organi-
zations. One example is Wikipedia, a free encyclopedia
with thousands of contributors [12]. The contributors can
be considered owners of the organization, as without them,

1



the organization would not exist anymore. As such, the con-
tributors should have a say in managing the organization’s
funds. However, Collectively managing wealth in such or-
ganizations is challenging. Traditionally, a company would
be established, allowing for the creation of a business bank
account. However, Establishing a company can be compli-
cated and cumbersome, particularly when the individuals
involved are from different countries. Additionally, contrib-
utors can easily join or leave the organization. Companies
are incompatible with this idea as there is high overhead
when joining or leaving a company. Existing financial ser-
vices do not address these issues, highlighting the need for
a novel solution.

People are already familiar with banks. Therefore, in or-
der to be a viable option, any solution to the problem must
be competitive with banks. In particular, easy-of-use is es-
sential, as anyone should be able to use the solution. Rely-
ing on a central actor could result in access being withheld
from certain people or certain countries. Thus, the solution
should not rely on any central actor. The solution should be
scalable, as an organization might have hundreds or even
thousands of members.

One potential solution is Decentralized Autonomous
Organizations (DAOs) on smart contract enabled
Blockchains [8]. DAOs use smart contracts to enable
groups of users to control an account. There are various
mature DAO tools available. However, DAOs have a
tendency to centralize power in a small group [13]. In
addition, smart contracts are complex, which has resulted
in many hacks [14].

3 System Design
We aim to solve the problem by creating a peer-2-peer, lead-
erless, and decentralized system. This system will allow
groups of individuals to form organizations similar to De-
centralized Autonomous Organizations (DAOs) [8] that en-
able them to collectively and democratically manage their
wealth.

3.1 Bitcoin threshold signatures
The cornerstone of our system is the combination of Bit-
coin and the FROST threshold signature scheme [15]. Bit-
coin allows anyone to send and receive money over the In-
ternet. Bitcoin is decentralized and has tamper-proof and
verifiable transactions, allowing anyone to use it without
relying on a central party. In our system, each group of
participants jointly controls a Bitcoin account that requires
a majority to spend funds. We use the FROST threshold-
signature scheme [15] to enable collective wealth manage-
ment without using complex smart contracts. A threshold-
signature scheme allows t members of a group of size n,

Figure 1: Bitcoin transaction for joining an organization when an
entrance fee is needed.

where t ≤ n, to create a signature jointly. Compared to tra-
ditional collective management on Bitcoin [16], threshold
signatures can scale to hundreds of participants. In addition,
Bitcoin accounts that use threshold signatures are indistin-
guishable from standard accounts, allowing our design to
be compatible with existing tools.

Threshold signatures have a significant drawback. Join-
ing or leaving a group requires every participant to be on-
line. A single participant could temporarily halt the joining
process by choosing not to participate. To counteract this, a
maximum inactivity duration can be specified, after which
the offending member is kicked.

3.2 Decentralized Communication

To support our goal of decentralization, the system uses
a peer-2-peer network for communication. Each partici-
pant will communicate with another directly to prevent re-
liance on any central actor. We rely on the IPv8 library
for communication [17]. IPv8 allows for the construction
of fully peer-2-peer networks through so-called Communi-
ties. Communities are peer-2-peer networks that contain
application-specific functionality. Additionally, IPv8 em-
ploys hole-punching, which allows devices to communi-
cate, even if they do not have a dedicated public IP ad-
dress [18].

3.3 Governance

Our governance module sits on top of IPv8’s networking
and enables democratic decision-making for every action
taken by the group. The module is responsible for two
things: handling join requests and handling proposals. Join
requests allow individuals to request membership, while
proposals enable members to suggest actions for the group
to take.

Adding a new member to the group involves creating a
new Bitcoin threshold account and transferring funds from
the old account to the new account. The process has four
messages, depicted in Figure 3. It consists of the following

2



steps:

1. The new member creates and broadcasts a request to
join the group with the join request message.

2. The group members receive the request and send back
responses with their votes using the join request re-
sponse message. The message contains a Boolean
value that represents agreement or disagreement. The
message also contains the number of individuals in the
group, which decides how many messages to wait for.

3. The new member waits until they receive agreements
from all group members. Otherwise, the process stops.

4. The new member starts the FROST key generation
process by broadcasting a key gen commitment mes-
sage.

5. Each participant broadcasts a key gen commitment
message after receiving the key gen commitment mes-
sage from the new member.

6. Each participant sends a key share message to every
participant after receiving key gen commitment mes-
sages from all participants. Each key share is unique.

7. The key share messages received are combined into a
key. The key is a cryptographic key that can be used
together with the keys of other participants to spend
funds from the Bitcoin account.

8. Once the key generation is done, a Bitcoin transaction
is created to migrate funds from the old Bitcoin ac-
count to the new one. The transaction may also con-
tain an entrance fee from the new member if required.
The transaction is described in Figure 1

Proposals are Bitcoin transactions that the group can sub-
mit. Proposals allow the group to vote on which actions to
take. The process has four messages, depicted in Figure 2.
This process has the following steps:

1. A member creates a proposal and broadcasts it to the
other members using a sign request message. The mes-
sage contains the proposed Bitcoin transaction.

2. The other group members respond with their votes us-
ing a sign request response message. The message
contains a Boolean value representing the vote.

3. The proposer waits for agreements from a majority of
the group before starting the signing procedure. The
process is canceled if not enough members respond
with agreements during the timeout duration.

4. The proposer starts the signing process by broadcast-
ing a preprocess message. The message will contain
the total number of participants, so all participants
know how many messages to wait for.

5. After receiving the preprocess message, the other
participants will also broadcast preprocess messages.
This time without the number of participants.

6. Each participant creates a signature and sends a sig-
nature share message to the proposer after receiving
preprocess messages from every participant.

7. The final signature is created by combining the signa-
ture shares, and the transaction is completed by adding
the signature. Afterward, the transaction is submitted
to the Bitcoin network. Each Bitcoin input requires a
signature. Thus, the signing process may need to run
in parallel depending on how many inputs there are.

Figure 4 describes the process with 2 participants.

Message Identifier Bitcoin transactionsign request

8 bytes variable size. atleast 90 bytes

sign request response

8 bytes

message Identifier accept

1 bytes

message Identifier preprocess datapreprocess

8 bytes 66 bytes

amount of members
in group

32 bytes

message Identifier signature sharesignature share

8 bytes 32 bytes

Figure 2: Breakdown of the signing protocol messages. Dashed
borders represent a field that is not always required.

message Identifier requester identifierjoin request

8 bytes 20 bytes

message Identifier acceptjoin request response

8 bytes 1 bytes

amount of members
in group

32 bytes

message Identifier commitmentkey gen commitment

8 bytes 94 bytes + 33 per participant

message Identifier key sharekey gen share

8 bytes 32 bytes

Figure 3: Breakdown of the key generation protocol messages.
Dashed borders represent a field that is not always required.

In both processes, the member proposing is responsi-
ble for signaling the start of the procedure. This signifi-
cantly improves performance, as otherwise, each participant
would need to broadcast readiness individually.

3



Broadcast created proposal

Send preprocess message

Send signature share

Combine signature shares

Add signature to transaction
and submit

Send request response

Send preprocess message

Send signature share

loop Wait for
 enough
 responses The preprocess

handles things like
nonces.

loop Wait for
 preprocess
 messages

loop Wait for
 preprocess
 messages

FROST

Figure 4: Sequence diagram of the signing procedure. The dia-
gram shows the procedure with two participants.

3.4 Identity

IPv8’s identity mechanism is used to identify participants
in the system. The identities are cryptographic keys, allow-
ing participants to prove their identity by signing a mes-
sage. The identity mechanism may be insufficient depend-
ing on whether the organization has anonymous members.
In this case, the organization could be overtaken by a Sybil
attack[19]. To prevent this, a Self-Sovereign Identity mech-
anism could be used[20]. Using Self-Sovereign Identity,
participants could identify themselves without giving out
privileged information.

Class / Package Line coverage Lines of code
FrostManager 93% 404
SchnorrAgent 94% 106
FrostCommunity 65% 141
FrostViewModel 0% 156
ui 0% 980

Table 1: Code coverage of the FROSTDAO application.

Figure 5: Android application home screen. The screen shows
various details of the DAO, such as the balance and amount of
members

4 Implementation
We have created an Android application that partially im-
plements our design. Users can join a group, create a pro-
posal, and vote on proposals. The application is open-
source and publicly available on GitHub1. Figure 5, Fig-
ure 6, Figure 7 and Figure 8 show the various screens in the
application.

4.1 Collective wealth

The Android application contains a personal wallet and the
group wallet. The personal wallet is only used for testing
purposes. We use the BitcoinJ open-source library [21] for
Bitcoin support. BitcoinJ tracks the Bitcoins in the group
wallet to allow participants to create proposals easily. Bit-
coinJ stores its data in an SQLite database.

To support threshold signatures, we used an audited
open-source Rust library [22]. We created a wrapper around
this library and then exposed the wrapper to Android via
Java’s native interface [23]. After the key generation proce-
dure, each participant receives a key share. The key share is
stored in a database for persistence.

Bitcoin inputs represent spendable Bitcoin. One or mul-
tiple inputs must be spent to create a transaction. The An-

1https://github.com/rahimklaber/trustchain-superapp/tree/frost dao/
frostdao

4

https://github.com/rahimklaber/trustchain-superapp/tree/frost_dao/frostdao
https://github.com/rahimklaber/trustchain-superapp/tree/frost_dao/frostdao


Figure 6: TODO: placeholder

droid application only supports Bitcoin transactions with
one input, as Bitcoin transactions require signatures for
each input used in a transaction. Additionally, only pay-
ment transactions are supported.

4.2 Joining an Organization

After clicking the join button on the screen depicted in Fig-
ure 5, The application will send a join request message and
waits for responses. The joining procedure starts if enough
responses are received within the timeout duration. Once
the process is complete, it will be possible to view details
of the group account, create proposals, and reject or accept
proposals. In contrast to our design, accepting an entrance
fee and migrating funds from the old account are not imple-
mented.

4.3 Creating a Proposal

To create a proposal, A user must input the destination
and the amount on the screen shown in Figure 7. Inter-
nally, a new Bitcoin transaction is created as part of the
proposal. The proposal is then broadcast to the organiza-
tion. Members of the organization can accept or decline
the proposal on the screen shown in Figure 8. The sign-
ing procedure will start once enough participants respond
with agreements. After the signing is done, the signature is
added to the transaction, and the transaction is submitted to
the Bitcoin network.

Figure 7: TODO: placeholder

4.4 Quality Assurance
We used unit and integration tests to ensure the code is bug-
free and the code coverage is shown in Table 1. The core
of the application, which consists of FrostManager, Schnor-
rAgent, and FrostCommunity, has been extensively tested.
However, harder-to-test code, like the UI and Bitcoin code,
is not well-tested.

We used unit tests to ensure our code had no significant
flaws. Specifically, we tested key generation and signing
while mocking communication. Integration tests were used
to test key generation and signing without mocked commu-
nication. The integration tests discovered many bugs that
were caused by race conditions. We fixed many of the bugs,
but some still occasionally occur. The bugs rarely occur and
we are unsure if IPv8 or our code is responsible for the bugs.

We also manually tested the Android application to test
the entire application, particularly the Bitcoin integration.
To do this, we created our own private Bitcoin network, en-
abling us to create fake Bitcoins and instantly confirm trans-
actions. We used two mobile devices for this.

4.5 Challenges
Developing any distributed system is challenging, espe-
cially fully peer-2-peer systems. During development, we
encountered numerous problems and challenges. This in-
cludes challenges relating to communication, Bitcoin, and
reliability.

IPv8 relies on UDP under the hood, which is not reliable.

5



Figure 8: TODO: placeholder

To address this, we added acknowledgments and timeouts
on top of IPV8. Determining the correct timeout duration
and the amount of retransmission is challenging, especially
for unreliable networking.

The size of the key commitment message (see Figure 3)
during key generation scale with the number of participants.
If we want the UDP packets not to be dropped, we need to
limit their size to around 1400 Bytes [24], which some mes-
sages do not fit into. Therefore, we use IPv8’s EVA proto-
col, which splits data into multiple packets. Using EVA to
send messages results in high latency. Additionally, EVA
transfers have a high failure rate.

The system relies on being able to send messages to all
members. However, IPv8 is not meant to create fully con-
nected peer-2-peer networks. Each peer in a community
will keep track of some peers by sending periodic pings.
This is not a problem in smaller networks (30 members) but
becomes a problem in larger networks. This can be some-
what mitigated by changing IPv8’s configuration.

The signing process requires that every participant has
an up-to-date view of the Bitcoin network. However, It of-
ten happened that some participants lagged behind. This
resulted in the process failing.

5 Evaluation

In this section, we evaluate the performance of our system
by running multiple experiments.

5.1 Experiment Setup
We ran the experiments on a Windows 10 PC with 32GB
of RAM and a Ryzen 7 3700x CPU with 8 cores and 16
threads. We modified the code responsible for communica-
tion and signing to the work in a Desktop environment with
a Java virtual machine. This included compiling the native
code to work on Windows. Our experiments were run in
one application that created individual nodes that represent
a member of an organization. Each node is an IPv8 node
that runs the entire IPv8 stack. However, since all nodes are
on the same PC, network latency is not a factor. We lim-
ited the number of nodes in the experiments to 50, as we
ran into problems with more than 50 nodes. We modified
the default IPv8 maxPeer configuration to allow each peer
to connect directly to all other peers. Each experiment was
run multiple times.

In our experiments, we are interested in the performance
of the signing and key generation protocols, as these are
the most expensive parts of our system. We measured the
performance in two ways. First, we measured the time to
do key generation and create a signature. Second, we mea-
sured the amount of data sent when running key generation
and signing. This is important as we want the system to
be usable on mobile devices. We further investigate by in-
troducing artificial delays to simulate potential network de-
lays, and we introduce random packet drops to investigate
performance in a more real-life scenario.

Figure 9: Amount of data in Kilobytes sent during key generation
and Signing

5.2 Experiment results
Figure 9 shows the amount of data sent during key gen-
eration and signing. The amount of data sent during key
generation scales exponentially-. This is expected as the
size of messages sent during key generation depends on the
number of participants. When running key generation with

6



50 nodes, each node sent and received around 150KB of
data. Even this low amount of data can be problematic as
everything is sent using UDP packets and may therefore be
dropped without warning, resulting in even more data be-
ing sent. In contrast to key generation, the signing protocol
requires significantly less data to be sent. This is expected
as each signing operation requires constant data per partic-
ipant.

Figure 10 shows the duration of the key generation pro-
tocol. Up to 16 nodes, the procedure has a low duration
that increases a small amount when the number of nodes
increases. After 16 nodes, the duration and variability in-
crease dramatically. At this point, the size of messages sent
during key generation is no longer small enough such that
the UDP packets are delivered reliably. The dramatic in-
crease in duration is due to EVA, IPV8 TFTP protocol for
sending larger amounts of data. This protocol splits the data
into chunks, sends each chunk via UDP, and uses acknowl-
edgments to ensure that each chunk is delivered. EVA does
not send the data immediately and instead schedules trans-
fers in the future, which results in a large spike in duration.
The large variability is due to the EVA protocol failing and
needing to retransmit data and due to the protocol’s sched-
uler. The signing protocol, shown in Figure 11, is much
quicker than key generation, as the messages all fit inside
UDP packets. In practice, Signing will scale much better
since only a majority of the organization needs to partici-
pate. Thus, in an organization with 50 members, only 26
need to participate.

Figure 10: Duration of the key generation running on the IPV8
stack.

TODO: talk about he investigation
Figure 12 shows the duration of the key generation pro-

tocol with an artificial delay of 100 milliseconds and Fig-
ure 13 shows the average duration of the various protocols
with varying delays. The artificial delay adds a constant du-
ration to the signing and key generation protocols up to 16

Figure 11: Duration of the signing protocol running on the IPV8
stack.

Figure 12: Duration of the key generation protocol running on top
of the IPV8 stack with a delay of 100 milliseconds.

nodes. After 16 nodes, the increase in duration for signing
stays similar. However, the minimum duration for key gen-
eration increased by a large amount, likely due to EVA. In
both cases, the range of durations is similar. But the delays
have increased the duration on average.

TODO: havent done this yet

Figure x shows the duration of the Key generation and
signing protocols with varying levels of packet drop. We
expect that the duration of both protocols will be signifi-
cantly increased. This is because our message acknowledg-
ment system has a high timeout and will therefore wait a
long time for an acknowledgment. A single packet drop
will result in delays in the order of multiple seconds. The
high timeouts are to accommodate the usage of EVA and
while it can be improved, this would lead to more complex
code.

7



Figure 13: TODO: Add more delays? Average Duration of the key
generation and signing protocols with various delays.

6 Conclusion
In this thesis, we designed a system allowing a group of
people to manage their wealth collectively using Bitcoin.
Our Android application uses a peer-2-peer network and
does not rely on any central party, allowing the application
to be used by anyone. The Android application uses thresh-
old signatures, allowing individuals to jointly control a Bit-
coin account without relying on complex smart contracts.
Our expirements show that this technique is practical. Both
key generation and signing take less than a minute for less
than 50 participants. Our expirements also show that key
generation performance can be improved by a significant
amount, as the performance is being limited by IPv8.

References
[1] V. V. Acharya and M. Richardson, “Causes of

the financial crisis,” Critical Review, vol. 21,
no. 2-3, pp. 195–210, 2009. DOI: 10 . 1080 /
08913810902952903. eprint: https : / / doi . org /
10.1080/08913810902952903. [Online]. Available:
https://doi.org/10.1080/08913810902952903.

[2] P. K. Ozili, “Causes and consequences of the 2023
banking crisis,” Available at SSRN 4407221, 2023.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system,” Decentralized business review, 2008.

[4] S. Lo and J. C. Wang, “Bitcoin as money?,” 2014.

[5] K. Hong, “Bitcoin as an alternative investment ve-
hicle,” Information Technology and Management,
vol. 18, pp. 265–275, 2017.

[6] D. Khan, L. T. Jung, and M. A. Hashmani, “Sys-
tematic literature review of challenges in blockchain
scalability,” Applied Sciences, vol. 11, no. 20,
p. 9372, 2021.

[7] G. Wood et al., “Ethereum: A secure decentralised
generalised transaction ledger,” Ethereum project
yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[8] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang,
and F.-Y. Wang, “Decentralized autonomous orga-
nizations: Concept, model, and applications,” IEEE
Transactions on Computational Social Systems,
vol. 6, no. 5, pp. 870–878, 2019.

[9] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-
Arribas, and J. Herrera-Joancomartı, “Analysis of
the bitcoin utxo set,” in Financial Cryptography
and Data Security: FC 2018 International Work-
shops, BITCOIN, VOTING, and WTSC, Nieuwpoort,
Curaçao, March 2, 2018, Revised Selected Papers
22, Springer, 2019, pp. 78–91.

[10] S. Faraj, S. L. Jarvenpaa, and A. Majchrzak, “Knowl-
edge collaboration in online communities,” Orga-
nization Science, vol. 22, no. 5, pp. 1224–1239,
2011, ISSN: 10477039, 15265455. [Online]. Avail-
able: http://www.jstor.org/stable/41303115 (visited
on 07/06/2023).

[11] R. Kouzes, J. Myers, and W. Wulf, “Collaboratories:
Doing science on the internet,” Computer, vol. 29,
no. 8, pp. 40–46, 1996. DOI: 10.1109/2.532044.

[12] D. M. Wilkinson and B. A. Huberman, “Cooperation
and quality in wikipedia,” in Proceedings of the 2007
international symposium on Wikis, 2007, pp. 157–
164.

[13] R. Fritsch, M. Müller, and R. Wattenhofer, “Analyz-
ing voting power in decentralized governance: Who
controls daos?” arXiv preprint arXiv:2204.01176,
2022.

[14] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-
Mundt, D. Harz, and W. J. Knottenbelt, “Sok:
Decentralized finance (defi),” arXiv preprint
arXiv:2101.08778, 2021.

[15] C. Komlo and I. Goldberg, “Frost: Flexible round-
optimized schnorr threshold signatures,” in Selected
Areas in Cryptography: 27th International Confer-
ence, Halifax, NS, Canada (Virtual Event), October
21-23, 2020, Revised Selected Papers 27, Springer,
2021, pp. 34–65.

[16] S. Goldfeder, R. Gennaro, H. Kalodner, et al., “Se-
curing bitcoin wallets via a new dsa/ecdsa threshold
signature scheme,” in et al. 2015.

[17] M. Skála, “Technology stack for decentralized mo-
bile services,” 2020.

8

https://doi.org/10.1080/08913810902952903
https://doi.org/10.1080/08913810902952903
https://doi.org/10.1080/08913810902952903
https://doi.org/10.1080/08913810902952903
https://doi.org/10.1080/08913810902952903
http://www.jstor.org/stable/41303115
https://doi.org/10.1109/2.532044


[18] G. Halkes and J. Pouwelse, “Udp nat and firewall
puncturing in the wild,” in 10th IFIP Networking
Conference (NETWORKING), Springer, 2011, pp. 1–
12.

[19] J. R. Douceur, “The sybil attack,” in Peer-to-Peer
Systems, P. Druschel, F. Kaashoek, and A. Rowstron,
Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 251–260, ISBN: 978-3-540-45748-0.

[20] A. Mühle, A. Grüner, T. Gayvoronskaya, and C.
Meinel, “A survey on essential components of a
self-sovereign identity,” Computer Science Review,
vol. 30, pp. 80–86, 2018.

[21] P. Xiao, “Java programming for blockchain applica-
tions,” in Practical Java Programming for IoT, AI,
and Blockchain. 2019, pp. 347–388. DOI: 10.1002/
9781119560050.ch10.

[22] L. Parker, Modular frost. [Online]. Available: https://
github.com/serai-dex/serai/tree/develop/crypto/frost
(visited on 07/06/2023).

[23] S. Liang, The Java native interface: programmer’s
guide and specification. Addison-Wesley Profes-
sional, 1999.

[24] C. Kaufman, R. Perlman, and B. Sommerfeld, “Dos
protection for udp-based protocols,” in Proceedings
of the 10th ACM Conference on Computer and
Communications Security, ser. CCS ’03, Washington
D.C., USA: Association for Computing Machinery,
2003, pp. 2–7, ISBN: 1581137389. DOI: 10 . 1145 /
948109.948113. [Online]. Available: https://doi.org/
10.1145/948109.948113.

9

https://doi.org/10.1002/9781119560050.ch10
https://doi.org/10.1002/9781119560050.ch10
https://github.com/serai-dex/serai/tree/develop/crypto/frost
https://github.com/serai-dex/serai/tree/develop/crypto/frost
https://doi.org/10.1145/948109.948113
https://doi.org/10.1145/948109.948113
https://doi.org/10.1145/948109.948113
https://doi.org/10.1145/948109.948113

	Introduction
	Problem Description
	System Design
	Bitcoin threshold signatures
	Decentralized Communication
	Governance
	Identity

	Implementation
	Collective wealth
	Joining an Organization
	Creating a Proposal
	Quality Assurance
	Challenges

	Evaluation
	Experiment Setup
	Experiment results

	Conclusion

