
Augmenting LLMs with
Knowledge

A survey on hallucination prevention
— student project —

Konstantinos Andriopoulos
Delft University of Technology

Delft, The Netherlands
A.Konstantinos@student.tudelft.nl

Johan Pouwelse
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—Large pre-trained language models have demon-
strated their proficiency in storing factual knowledge within their
parameters and achieving remarkable results when fine-tuned
for downstream natural language processing tasks. Nonetheless,
their capacity to access and manipulate knowledge with precision
remains constrained, resulting in performance disparities on
knowledge-intensive tasks when compared to task-specific ar-
chitectures. Additionally, the challenges of providing provenance
for model decisions and maintaining up-to-date world knowledge
persist as open research frontiers. To address these limitations,
the integration of pre-trained models with differentiable access
mechanisms to explicit non-parametric memory emerges as
a promising solution. This survey delves into the realm of
language models (LMs) augmented with the ability to tap into
external knowledge sources, including external knowledge bases
and search engines. While adhering to the standard objective
of predicting missing tokens, these augmented LMs leverage
diverse, possibly non-parametric external modules to augment
their contextual processing capabilities, departing from the con-
ventional language modeling paradigm. Through an exploration
of current advancements in augmenting large language models
with knowledge, this work concludes that this emerging research
direction holds the potential to address prevalent issues in
traditional LMs, such as hallucinations, un-grounded responses,
and scalability challenges.

I. INTRODUCTION

Large Language Models (LLMs) have brought about re-
markable advancements in Natural Language Processing
(NLP) and are now integral to various widely-used prod-
ucts, including Copilot [1], Google’s search engine, and
more recently, Chat-GPT, a chatbot built upon GPT3 [2].
These models, characterized by their memorization capabilities
as well as their compositional prowess, have demonstrated
unprecedented performance in tasks ranging from language
understanding to text generation, paving the way for more
sophisticated human-computer interactions.

However, LLMs are not without their limitations. They
often produce seemingly plausible yet incorrect predictions, a
phenomenon known as hallucinations [3], leading to avoidable
errors in various contexts. Furthermore, many of the ground-

breaking capabilities of LLMs appear to scale with the model’s
size in terms of trainable parameters. While recent efforts
have produced smaller LLMs with retained capabilities [4], the
practicality of training and maintaining large models remains
a challenge, with continual learning for such models posing
an ongoing research question [5].

These limitations are rooted in a fundamental issue with
LLMs: they are primarily trained for statistical language
modeling, relying on a single parametric model and a rel-
atively limited context, typically the preceding ”n” tokens.
Despite advancements in hardware and software, most models
still employ relatively small context sizes compared to the
expansive context required for accurate language modeling in
all scenarios. Consequently, achieving the necessary scale to
store the knowledge beyond the immediate context has become
a necessity.

In response, a growing research trend has emerged, mov-
ing away from the traditional statistical language modeling
paradigm. One approach addresses the limited context size of
LLMs by enhancing its relevance through the incorporation
of information extracted from external documents [6] [7]. By
equipping language models with modules that retrieve relevant
documents from databases based on the context, it becomes
possible to replicate certain capabilities of larger LLMs while
using fewer parameters [8] [9].

Moreover, in this evolving landscape, pioneering models
[10] [11] that leverage structured knowledge stand out. These
models leverage knowledge graphs along with a corpus of sup-
porting documents, which can be jointly processed by Graph
Convolutional Neural Networks (CNNs). By harnessing graph-
based representations, these structured-knowledge augmented
models excel in generating precise responses to open-domain
questions. This innovative use of structured knowledge marks
a significant advancement in enhancing language models,
demonstrating the diverse strategies researchers are adopting
to address the limitations of contemporary LLMs.

It is worth noting that such approaches transform the

1

resulting models into a non-parametric ones, as they can now
effectively query external data sources.

Another strategy involves enabling LLMs to leverage ex-
ternal tools [12], such as search engines [13] [14] [12],
allowing them to augment the current context with crucial
missing information not contained within the model’s weights.
Although most of these efforts aim to address individual
shortcomings of LLMs, it is evident that a more comprehensive
integration of knowledge tools has the potential to significantly
enhance the capabilities of these models.

In light of these recent developments in NLP, there is a
pressing need for a comprehensive taxonomy of augmented
language models and clear definitions of the technical termi-
nology used, which sometimes carry varying interpretations
and intentions.

II. BACKGROUND

As we delve into the intricacies of augmenting Large
Language Models (LLMs) with external knowledge, it is
imperative to establish a foundational understanding of the
key concepts that underpin this transformative field. Knowl-
edge augmentation strategies, such as harnessing knowledge
graphs, employing beam search techniques, leveraging triple-
store databases, and integrating sequence-to-sequence models,
form the bedrock upon which advanced language models now
stand. In this section, we embark on a comprehensive explo-
ration of these pivotal concepts, unraveling their significance,
methodologies, and interconnectedness. By elucidating these
fundamental building blocks, we pave the way for a profound
understanding of how contemporary LLMs harness external
knowledge to achieve unprecedented linguistic feats.

A. Generative Language Models

Generative language models are trained to produce new text,
given an input sequence of tokens. They are able to perform
this by learning the statistical relationships between words and
phrases in a large corpus of text. When given a prompt, a
generative model will try to produce text that is consistent
with the statistical patterns it has learned.

Some of the most popular generative models in natural
language processing include autoregressive models [15], vari-
ational autoencoders (VAEs) [16] and Generative adversarial
networks (GANs) [17]. In this literature survey, we will
mostly explore Transformers, autoregressive models, along
with another type of generative language models, sequence-
to-sequence models.

B. Autoregressive Models

An autoregressive model [15] is a type of neural network
used for generating sequences of data, where each element in
the sequence is predicted one at a time based on the previously
generated elements. In other words, the model generates data
by conditioning its predictions on the data it has generated
so far. Autoregressive models are typically used for tasks like
text generation, time series forecasting, and speech synthesis.

One of the most well-known autoregressive models in NLP
is the GPT (Generative Pre-trained Transformer) series, such
as GPT-2 [18] and GPT-3 [2]. These models generate text
by predicting the next word in a sentence based on the
preceding words. They use self-attention [19] mechanisms to
capture dependencies between words at different positions in
the sequence, making them capable of generating coherent and
contextually relevant text.

C. Sequence-to-sequence Models
A sequence-to-sequence (seq2seq) model [20] predicts the

probability of a token being the next token in a given sequence
of words.

It consists of an encoder and a decoder. The encoder reads
the input sequence, one step at a time and produces a fixed-
dimensional vector representation of the entire sequence. This
vector is called a context vector and it is a representation of all
the meaningful information of the input sequence. The context
vector is then passed to the decoder, which generates an output
sequence.

Sequence-to-sequence models are typically trained using
a maximum likelihood objective, which means that they are
trained to produce the output sequence that is most likely to
follow the input sequence. In summary, seq2seq models are de-
signed for tasks involving the transformation of one sequence
into another, often with different lengths and structures. They
are typically applied to tasks such as: machine translation,
text summarization, and question-answering, where the rela-
tionship between the input and output sequences is not purely
linear or where the lengths of input and output sequences can
vary significantly.

From this point and onwards, we will refer to sequence-to-
sequence models as just seq2seq.

D. Transformers
The Transformer architecture [19] marked a groundbreak-

ing advancement in the field of NLP. Since its inception,
Transformers have become the backbone of various state-of-
the-art language models, underpinning many of the recent
developments in the realm of augmented language models.

At its core, the Transformer architecture revolutionized
sequence-to-sequence modeling through the introduction of
the attention mechanism. Unlike earlier recurrent neural net-
works (RNNs) [21] [22] and convolutional neural networks
(CNNs) [23], Transformers rely on self-attention mechanisms
to capture dependencies between elements in a sequence,
making them highly parallelizable and efficient for processing
long-range dependencies.

The architecture consists of two main components: the
encoder and the decoder. The encoder processes the input
sequence, while the decoder generates the output sequence.
Each component comprises multiple layers, with each layer
containing a multi-head self-attention mechanism and feed-
forward neural networks. These self-attention mechanisms
enable Transformers to capture contextual information effi-
ciently, making them ideal for tasks that involve understanding
and generating sequences of data.

2

In the context of language modeling, Transformers can
be adapted to function as decoder-only models. In decoder-
only Transformers, the encoder component, which is used for
encoding input sequences, is removed. These models retain
the core Transformer architecture but focus exclusively on
generating sequences of tokens, making them particularly
suitable for autoregressive language modeling tasks.

Decoder-only Transformers operate in an autoregressive
manner. They generate sequences one token at a time, with
each token’s prediction conditioned on the previously gen-
erated tokens. This autoregressive approach allows them to
produce coherent and contextually relevant text. Decoder-only
Transformers have been instrumental in various text generation
tasks, including machine translation, text summarization, and
text completion.

Since the introduction of the Transformer architecture, nu-
merous variants and extensions have emerged, each tailored
to address specific challenges in NLP. These variants include
models such as BERT (Bidirectional Encoder Representations
from Transformers) [24], GPT (Generative Pre-trained Trans-
former) [18] [2], and T5 (Text-to-Text Transfer Transformer)
[25], among others. Many of these models have laid the
foundation for augmenting language models with external
knowledge, a topic of great interest in recent NLP research.

E. Beam Search
Beam Search is a heuristic search algorithm that explores

a graph, G, by expanding only the K (beam width) most
promising nodes at each step. Beam Search simulates the
behavior of Breadth-First Search. More specifically, it uses
BFS to create a search tree. At each level of the tree, it checks
all the successors of the current level and keeps only the top
K ones, while pruning the others. The process repeats until
K leaves are found. Beam search will return the leaf that
maximizes some given score function.

In the context of NLP, when using a generative model, Beam
Search is utilized to find the sequence y = (y1, ..., yn) that is
most likely to come after an input sequence x. In mathematic
notation, the probability to maximize is:

p(y|x) = p(yn|x, y1...n−1) · p(y1...n− 1|x)
= p(yn|x, y1...n−1) · p(yn−1|x, y1...n−2) · ... · p(y1|x)

(1)

Instead of choosing only the output token with the highest
probability each time, beam search chooses the top K tokens
with the highest probability and explores the generated se-
quences recursively until we reach an < EOS > (end-of-
sequence) token. Then, it returns sequence y (out of the K
sequences) that maximizes p(y|x).

In the following sections, we will explore some concepts
that are pivotal to the understanding of state-of-the-art aug-
mentation of LLMs.

F. Text Corpus
A text corpus, D is a set of documents: d1, ..., d|D| where

each document is a sequence of words: di = (w1, ..., w|di|).

Specifically, in the context of this paper, a document is essen-
tially a sentence, and an article is a collection of documents.

As we will see later on in this survey, text corpora are
considered an unstructured knowledge base and are usually
organized in vector databases.

G. Vector Database

In a vector database, a document can correspond to one vec-
tor or many vectors, depending on the specific implementation
of the database. A single vector captures the overall meaning
of the document. This is often done by averaging the vectors of
the words in the document. In other cases, a document may
be represented by a vector for each word in the document.
This is often done when it is important to be able to track the
individual words in the document.

When a language model retrieves information from a vector
database, it essentially has access to knowledge that is not
stored in its parameters (weights). Therefore, a vector database
is a form of non-parametric memory for LLMs.

H. Dense Vector Index

Indexing in a vector database is the process of organizing the
vectors in the database in a way that makes it efficient to search
for and retrieve similar vectors (vectors with a high inner
product). This is accomplished by creating a data structure
that maps each vector to a set of other vectors that are similar
to it.

Maximum Inner Product Search (MIPS) is a specific type
of vector search that aims to find the vector in the database
with the highest inner product with a given query vector. MIPS
is used in a variety of applications, such as recommendation
systems, machine learning, and image retrieval.

FAISS [26] is a popular open-source library for efficient
similarity search and clustering of dense vectors. FAISS
contains a variety of algorithms for MIPS, as well as other
types of vector search. FAISS is used by many companies and
organizations, including Google, Facebook, and Microsoft.

I. Triplestore Knowledge Bases

A Triplestore knowledge base is a database that consists of
subject-predicate-object triples. An example of such a triple is:
(Subject: Albert Einstein, Predicate: was born in, Object: Ulm,
Germany). Triples are a great form of representing factual
knowledge because they capture the nature of the relationship
between a subject and an object and can be easily processed
by LLMs. One can visualize this knowledge base as a graph
whose vertices are the various subjects and objects (entities)
and the predicates are the edges between these entities.

Each edge has a type (e.g: ”was born in”) that describes the
kind of the relation between the connected entities. Triplestore
knowledge bases with more than one types of relations are
called heterogeneous.

Triplestores are an excellent example of what we call
structured knowledge bases. They can be merged with un-
structured knowledge bases through a set of entity links:
(v, dp), connecting entity v with a word at position p, in
document d.

3

J. Graph Convolutional Networks

Graph convolutional networks (GCNs) are a type of neural
network that can be used to learn representations of nodes
in a structured knowledge base, such as a graph. GCNs are
particularly well-suited for node classification tasks, where the
goal is to predict the label of each node in the graph (e.g:
whether the node contains an answer to a given question or
not).

GCNs work by iteratively aggregating information from the
neighbors of each node. At each layer, the GCN collects the
embeddings of all of a node’s neighbors, averages them, and
then applies a linear transformation and a nonlinear activation
function. The output of this layer is then used as the input to
the next layer.

The more layers the GCN has, the more multi-hop reasoning
the model will be able to perform, because it will gather
information from more far away neighbors. This makes GCNs
well-suited for tasks where the labels of nodes depend on the
labels of their neighbors, such as social network analysis and
fraud detection.

Here is a high-level overview of how a GCN works for node
classification:

1) Initialize the embeddings of all nodes in the graph.
2) For each node in the graph:

a) Collect the embeddings of all of the node’s neighbors.
b) Average the embeddings of the node’s neighbors.
c) Apply a linear transformation and a nonlinear activa-

tion function to the average embedding.
d) The output of this function is the new embedding for

the node.
3) Repeat step 2 for a fixed number of layers.
4) The final embedding of each node is used as the input to

a classifier to predict the node’s label.

K. Relational Graph Convolutional Networks

One problem that arises when the knowledge-base graph
heterogeneous is that, in that case, we want to take into
consideration the type of relation that a node has with its
neighbors before we average their embeddings.

A relational GCN [27] is similar to a regular GCN, but it
uses a separate matrix for each type of relation. Therefore,
when using a relational GCN, we aggregate the embeddings
from all neighbors with a specific relation and we pass the
averaged embedding into a separate CNN layer for each
relation.

III. KNOWLEDGE BASE AUGMENTED GENERATION

Language models have the ability to store knowledge in
their parameters. Alternatively, knowledge in the form of
natural language can be offloaded completely from the LM by
retrieving from an external knowledge base. Memory augmen-
tation strategies help the language model to avoid producing
non-factual information as well as reducing the number of
parameters required to achieve comparable performance to
significantly larger LMs. Based on their structure, knowledge

Fig. 1: Overview of knowledge augmentation of language
models from the paper by Izacard et al. [7]. The input query
(light yellow), along with a number of retrieved relevant
documents (light blue), passes through the generative seq2seq
model to produce an output response.

bases can be either unstructured (text-based) or structured
(graph-based). In this literature survey, we are going to explore
work from both worlds.

A. Retrieval-Augmented Generation (RAG)

RAG [6] uses both parametric and non-parametric memory
to generate more accurate and informative responses to an
input query.

Specifically, the RAG architecture entails:

• a generator: a BART-large [28] sequence-to-sequence
language model, pre-trained on a massive dataset of text
and code (parametric memory).

• a knowledge base: a dense vector index of the Wikipedia
database (non-parametric memory). All documents in the
knowledge base are also encoded as vectors using a
BERTBASE [24] document encoder, BERTd.

• a retriever: a component that is responsible for retrieving
the documents of the knowledge base that are most rele-
vant to the input query. It follows the DPR (dense passage
retrieval) architecture [29] and it consists of a document
encoder, BERTd and a query encoder, BERTq . The
retriever
– calculates the embedding of the input query, using the

BERTq encoder.
– conducts Maximum Inner Product Search (MIPS) in

the indexed knowledge base to find the K most similar
documents to the input query

According to the authors of RAG, training and fine-tuning
the parameters of the BERTd encoder is extremely com-
putationally expensive, and not very effective accuracy-wise.
Specifically, if they were to train the parameters of BERTd,
then for each training iteration, the embeddings of each
document in the BERTBASE knowledge base would have
to be updated as well, so that they are in-sync with the new
BERTd encoder.

4

Therefore, they use a completely pre-trained BERTd en-
coder, and during the fine-tuning stage, they only fine-tune
the parameters of the query encoder BERTq .

One interesting aspect of RAG is how it implements the
fusion of knowledge from all retrieved documents to produce
a final response. In both proposed versions of RAG, RAG-
token and RAG-sequence, fusion is performed right after the
decoder.

Specifically, RAG-token:
• for each retrieved document z, calculates the probability

for each token yi in the vocabulary to be the next token
in the sequence:

pθ(yi|x, z, y1:i−1) (2)

• sums the probabilities over all retrieved documents
(marginalization):

p
′

θ(yi|x, y1:i−1) =
∑
z

pη(z|x) · pθ(yi|x, z, y1:i−1) (3)

• runs Beam Search to find the K most likely next tokens
• chooses the token, yi with the highest transition proba-

bility
The RAG-sequence model is quite easier to grasp. It takes

into account only one retrieved document per sequence that
it generates. Specifically, for each retrieved document, it con-
ducts Beam Search to generate K sequences. Then, it simply
returns the sequence with the highest probability.

B. REALM [30]

REALM was the first method that managed to pre-train
jointly the retriever and the generator. The authors of REALM
propose three stages of training for the given architecture:

• initialization
• pre-training
• fine-tuning
One significant challenge that REALM faced was the fact

that, at the beginning of training, the query and document
encoders, Embedinput and Embeddoc respectively contain
completely random parameters. Hence, the retrieved docu-
ments, z, will likely be unrelated to the input query, x. As a
result, the Generator learns to ignore the retrieved documents.
Once this occurs, during training, the Retriever no longer
receives a meaningful gradient and cannot improve, creating
a vicious cycle that does not result in an accurate end model.

To avoid this cold-start problem, the authors warm-start
(initialization) the Retriever (Embedinput + Embeddoc) using
a training objective known as the Inverse Cloze Task (ICT)
[31] where, given a sentence, the model is trained to retrieve
the document where that sentence came from.

In the case of the Generator, the authors warm-start it with
BERT pre-training [24] and they use the uncased BERT-base
model (12 layers, 768 hidden units, 12 attention heads).

After the initialization stage, the REALM proposes an unsu-
pervised pre-training method. During the pre-training iteration,
REALM:

1) randomly selects sentences from the text corpus and
masks specific tokens from each sentence

2) receives a masked query, q, as input. An example of that
query would be: ”The [MASK] at the top of the pyramid”

3) outputs its token prediction (correct answer is ”pyramid-
ion”)

4) back-propagates through the parameters, θ of the the
retriever pθ(z|x), and ϕ, of the generator pϕ(z|x) (joint
pre-training of the models).

During pre-training, both the Embeddoc and the
Embedinput components of the Retriever are updated.
Because the parameters of Embeddoc are updated during
pre-training, in order for the document embeddings in the
Wikipedia knowledge base to stay in-sync with the updated
Retriever, after each back-propagation step, REALM needs
to:

1) re-compute the document embeddings
2) re-calculate the document index (in order to perform

MIPS)
This is a computationally expensive task, especially for

really large databases, such as Wikipedia. Therefore, REALM
was designed such that the embedding updates happen every
100 back-propagation steps, as an asynchronous process.

The supervised fine-tuning method that the authors used
in order to evaluate REALM on Open-domain Question An-
swering (Open-QA) goes as follows: 1. they collect question-
answer tuples, such as: (”What’s the angle of an equilateral
triangle”, ”60 degrees”). 4. REALM receives the question as
input. 5. it outputs its prediction. 6. similar to the pre-training
phase, REALM back-propagates through the parameters of the
the retriever pθ(z|x), and ϕ, of the generator pϕ(z|x), but
this time Embeddoc stays untouched. Therefore, fine-tuning
is much less computationally expensive.

C. Fusion in Decoder (FiD)
FiD [7] employs a similar but quite simpler idea to RAG.

Their main difference, however, lies in the way they perform
the fusion of the retrieved knowledge.

Similar to RAG, in FiD, we have two main models:
• the retriever which has access to a BERTBASE where

documents are represented as dense vectors and retrieves
the most relevant documents by running Maximum Inner
Product Search (MIPS) using the FAISS library [26]

• the generator which is a sequence-to-sequence model
that receives the input query concatenated with a retrieved
passage and is trained to produce an answer. For their
experiments, they used a pre-trained T5 [25] seq2seq
model.

In FiD, fusion of the knowledge in the retrieved documents
is performed right before the decoder. Specifically, similar to
RAG, they concatenate the input query with each retrieved
passage and they separately feed each concatenation to the
encoder (in parallel). However, after that, all the produced
encoded vectors are concatenated together (fusion) and are
passed a single-vector input to the decoder, which performs
attention across all retrieved documents (cross-attention).

5

Fig. 2: Overview of the Fusion-in-Decoder (FiD) [7] technique. The input question gets concatenated with each relevant passage
and all concatenations get encoded in parallel. The embeddings that are produced are concatenated together (fusion) and are
passed as input to the decoder.

D. Atlas

Atlas [9] is essentially the next generation of RAG and
FiD, but it specializes in few-shot learning tasks. Atlas builds
upon REALM [30] and proposes jointly pre-training both the
retriever and the generator model, unlike RAG which uses pre-
trained models and jointly trains them only during the fine-
tuning stage.

When performing a task, from question answering to gen-
erating Wikipedia articles, Atlas starts by retrieving the top-k
relevant documents from a large corpus of text. Then, these
documents are fed to the language model, along with the query,
which in turn generates the output. Both the retriever and the
language model are based on pre-trained transformer networks.

Atlas, similar to FiD, follows the retriever-generator archi-
tecture:

• the retriever is based on the Contriever model [32] which
entails a BERTq and a BERTd encoder and returns the
K most relevant documents based on their similarity with
the query.

• the generator uses a T5 seq2seq model [25] and applies
the FiD technique that processes each document sepa-
rately in the encoder and concatenates the embeddings
before they enter the decoder.

Atlas, in contrast with RAG, trains both BERTq and
BERTd (not only BERTq). Hence, the BERTq embeddings
for each document in the knowledge base need to be regularly
updated so that they are in-sync with the updated BERTd

encoder. This is a computationally expensive task.

E. RETRO

The creators of RETRO [8] managed to implement an aug-
mented language model at an unprecedented scale. This work’s
breakthrough is that it managed to pre-train and augment
a relatively small Transformer model (25×fewer parameters
than GPT-3 [2]) with a database that is 2 trillion tokens large
(103×larger than similar retrieval-augmented LLMs).

As we saw in previous work, such as RAG, REALM
and Atlas, one main difficulty of augmenting LLMs with
external knowledge-bases is that training the Retriever can
be computationally expensive, because while the document
encoder becomes better, the embeddings for each passage in
the database need to be recomputed.

In this paper, they completely bypassed that challenge by
using a frozen BERT retriever [24] which contains a pre-

trained document encoder. Hence, in RETRO they calculate
the document embeddings once, in the beginning, and do
not update them again. As a result, the main bottleneck
that accessing the external database entails is to retrieve the
K most-relevant documents to the input query, which they
implemented using the SCaNN library [33]. This is a task of
sub-linear complexity, which means that we can query their 2
trillion token database in 10ms.

One main difference of RETRO with previous work is that
in RETRO they don’t retrieve single documents (sentences),
but chunks (a retrieved sentence along with the following
sentence). This enables the generator model to acquire more
context around the retrieved information and produce more
accurate answers.

Here is an overview of how RETRO produces an answer to
an input query, q:

1) it splits the input query into chunks of 4 tokens
2) For each chunk, cq of q, RETRO:

a) calculates the embedding of the chunk
b) finds the 2 nearest neighbors (most relevant documents)

in its knowledge base
c) encodes cq through the encoder
d) encodes the 2 nearest neighbors through the encoder
e) interleaves the encodings of the nearest neighbors

with the query-chunk embeddings to perform cross-
attention. Neighbors of the first chunk only affect the
last token of the first chunk and the first tokens of the
second chunk.

Through this technique, RETRO manages to perform atten-
tion in complexity that is linear to the number of retrieved
passages.

F. GRAFT-Net

GRAFT-Net [10] is a novel model designed for enhancing
Question Answering (QA) in scenarios where there is a
structured, graph-like knowledge base (triplestore) along with
a substantial text corpus. GRAFT-Net leverages advancements
in graph representation learning to extract answers by cre-
ating question-specific sub-graphs containing both text and
knowledge-base entities and relations.

Results in a range of benchmarks demonstrate that GRAFT-
Net exhibits competitive performance compared to state-of-
the-art methods when tested on either structured knowledge
bases or text corpora in isolation.

6

Graft-Net consists of the following stages:

1) the question sub-graph (Gq) retrieval stage: This is a
characteristic of early fusion, the process of combining
information from the triplestore knowledge-base and text
early in the model, i.e., before a graph neural network is
used.

2) the answer selection stage, where GRAFT-Net use a
Graph Convolutional Network (GCN) variant [34] [35]
[27] to do binary classification (answer, not-answer) on
the nodes of Gq .

The question sub-graph Gq essentially is a copy of the entire
knowledge-base graph, in which the nodes and edges that are
irrelevant to a given question, q, are pruned. In addition, the
question sub-graph contains text documents as well, but only
the ones that are likely to contain the answer to question q.

The retrieval of the question sub-graph, Gq happens in two
parallel pipelines:

1) Knowledge Base Retrieval
2) Text Retrieval

During the knowledge base retrieval, a sub-graph of the
triplestore knowledge base is retrieved. Specifically, GRAFT-
Net:

1) retrieves a set of seed entities, Sq, that are relevant to the
question q

2) runs the Personalized PageRank (PPR) method [36]
around these seeds to identify other entities which might
be an answer to the question. During PPR, we assign
weights to edges around the seed entities. Each edge
weight is essentially the cosine similarity between:
• the question vector, v(q): average of all word vectors

in the question
• the relation vector, v(r): average of all word vectors in

the relation corresponding to that edge
3) retains the top E entities v1, ..., vE by PPR score, along

with any edges between them, and adds them to the
question sub-graph, Gq

During the text retrieval phase, GRAFT-Net retrieves doc-
uments (sentences) relevant to the question , q, from the
Wikipedia database. The text retrieval phase entails the steps
that are described below. GRAFT-Net:

1) retrieves the top 5 most relevant Wikipedia articles (col-
lection of documents), by using a weighted bag-of-words
model [37].

2) populates a Lucene index [38] (facilitates data search in
a large corpus of text) with sentences from these articles,
and retrieves the top ranking ones: d1, ..., dD.

The final question graph Gq consists of:

• Vq: all retrieved entities and documents
• Eq: all relations between the retrieved entities and all

entity links between entities and documents

Because the vertices of the graphs can be either entities or
documents, the graph is considered: heterogeneous.

G. PullNet [11]

PullNet builds upon the advancements made by GRAFT-Net
and uses the text corpus to supplement information extracted
from the triplestore knowledge base in order to answer multi-
hop questions. The subjects and objects in the triples contain
links to relevant documents in the text corpus and PullNet uses
these links to produce more factually-based answers.

Like GRAFT-Net, PullNet has an initial phase where it
retrieves a question sub-graph Gq . However, PullNet learns
how to construct the sub-graph, rather than using an ad-hoc
subgraph-building strategy. More specifically, PullNet relies on
a small set of retrieval operations, each of which expands a
graph node by retrieving new information from the knowledge
base or the corpus. It learns when and where to apply these
“pull” operations with another graph CNN classifier. The
“pull” classifier is weakly supervised, using question-answer
pairs.

The end result is a learned iterative process for sub-graph
construction, which begins with a small sub-graph containing
only the question text and the entities which it contains, and
gradually expands the sub-graph to contain information from
the knowledge base and corpus that are likely to be useful.
The process is especially effective for multi-hop questions.

IV. SEARCH-ENGINE AUGMENTED GENERATION

Augmenting large language models with search engines
represents the next step in the evolution of AI-driven natural
language processing. Search engines empower models with
a gateway to an expansive universe of knowledge that far
surpasses what external knowledge bases can access. By
harnessing the prowess of search engines, these models gain
the ability to tap into the vast and ever-expanding repository
of information on the World Wide Web. This dynamic access
not only provides a wealth of information but also ensures
that text generation remains current and up-to-date with the
latest developments, a feat that external knowledge bases often
struggle to achieve as they require continuous updates.

However, it is crucial to acknowledge that this newfound
access to the open web through search engines carries potential
risks. The information landscape of the internet is diverse, en-
compassing both valuable knowledge and, regrettably, harmful
or malicious content. When integrated with augmented large
language models, there exists the possibility of inadvertently
exposing the model to inappropriate or unsafe content. This
introduces concerns regarding the reliability and safety of
the generated responses, as the model may unintentionally
incorporate harmful information into its outputs.

As we will see in the following sections, the use of search
engine-based queries has the benefit that these queries are
inherently designed to be understood by humans, enhancing
both the interpretability of the model’s responses and its po-
tential for continuous improvement through direct annotation
or feedback. However, to harness the immense potential of
this symbiotic fusion of AI-driven language models and the
vast knowledge landscape facilitated by search engines, it is
imperative to develop robust safeguards and mechanisms to

7

mitigate the risks associated with accessing potentially harmful
or malicious content. This will ensure that the augmentation of
language models with search engines not only broadens their
horizons but also maintains the integrity and safety of their
outputs, ushering in a new era of responsible and informed
natural language understanding and interaction.

A. Internet Augmented Dialogue Generation (IADG)

Previously described FAISS-based approaches, such as
RAG (III-A) and FiD (III-C), can take advantage of many
existing methods developed for QA and dialogue tasks, as we
saw, but have several disadvantages. First, they may be difficult
to update to real-time web documents. On top of that, there
may be a limit to the number of documents that can be stored
in local FAISS deployments. Finally, such methods will not
take advantage of the high quality ranking that has been finely
tuned in Internet Search engines over decades of use. Thus,
the authors of this paper by Facebook AI Research consider
using Internet search engines directly for knowledge retrieval.

IADG [13] consists of two main components:
• a search query generator: an encoder-decoder Trans-

former that takes in the dialogue context as input, and
generates a search query. This is given to the black-box
search engine API, and N documents are returned.

• a FiD-style generator: an encoder-decoder model that en-
codes each document individually (along with the dialog
context), concatenates the embeddings before they enter
the encoder, and finally generates the next response.

Each of these components can be trained separately, given
supervised data for both tasks. The query generator requires:
(context, search query) pairs, and the response generator
requires: (context, response) pairs.

The search engine is a black box in this system (similar
to LaMDA), and could potentially be swapped out for any
method. In IADG, they use the Bing Search API [39] for their
experiments to generate a list of URLs for each query. Then,
they use these URLs as keys to find their page content.

B. SeeKeR

SeeKeR [14] (Search-engine → Knowledge → Response)
introduces an innovative approach that employs a single lan-
guage model to tackle three distinct modular tasks consecu-
tively: searching for information, generating knowledge, and
crafting a final response. In this research endeavor, SeeKeR
explores a modular framework that builds upon the founda-
tions of IADG [13] while amalgamating the most effective
elements from various existing solutions.

The SeeKeR model adheres to the foundational architecture
of the standard transformer [19], but it distinguishes itself by
employing the same model in a modular fashion, iteratively
for multiple tasks. Within each module, the encoder (or de-
coder) incorporates distinct special tokens to signal the specific
module being activated. The output generated by each module
is subsequently fed into the next one, along with the original
context. SeeKeR comprises a trio of specialized modules, each
dedicated to unique functionalities, namely:

• Search module: generates a search query from the en-
coded input context. Subsequently, this query is chan-
neled into the Bing Web Search API [39], initiating a
retrieval process that yields the 5 most relevant documents
as outcomes.

• Knowledge module: utilizes the encoded input context
and a pool of retrieved documents to generate meaningful
responses. This response comprises one or more pertinent
phrases or sentences extracted directly from the retrieved
documents. Notably, the FiD [7] method is employed to
encode both the context and the documents.

• Response module: operates on the encoded input context
merged with the knowledge response and crafts a coher-
ent and contextually relevant continuation to the input.

It is essential to highlight that the knowledge module
essentially involves a ”copy” mechanism, as it does not entail
the creation of new tokens; rather, its complexity lies in the
precise selection of the relevant knowledge to replicate.

The authors of SeeKeR consider the GPT2 transformer [18]
as a base model, and fine-tune it to become a SeeKeR model.
Therefore, they did not perform any pre-training of their own
in this case. For their experiments, they considered medium,
large and XL (345M, 762M and 1.5B parameters) models.

C. LaMDA

In this paper by Google, the authors of LaMDA [12] manage
to augment a language generation model with what they call
a Toolset (TS), a black-box external knowledge source. The
Toolset consists of:

1) a calculator
2) a translator
3) an information retrieval system (similar to a search en-

gine)
The TS takes a single string as input and outputs a list of

one or more strings. Each tool in TS expects a string and
returns a list of strings. For example, the information retrieval
system can receive “How old is Rafael Nadal?” as input, and
output [“Rafael Nadal / Age / 35”].

The information retrieval system is also capable of returning
snippets of content from the open web, with their correspond-
ing URLs. The TS tries an input string on all of its tools, and
produces a final output list of strings by concatenating the
output lists from every tool in the following order: calculator,
translator, and information retrieval system. A tool will return
an empty list of results if it can’t parse the input (e.g., the
calculator cannot parse “How old is Rafael Nadal?”), and
therefore does not contribute to the final output list.

It is essential to note that only little information is given on
how the information retrieval system works, in the LaMDA
paper, apart from the fact that it entails a database, but also
can provide web snippets along with their URLs.

LaMDA entails two main sub-models that follow the
decoder-only Transformer architecture:

1) LaMDA-Base: A regular generative model that is pre-
trained on a large dataset. LaMDA-Base is the first model

8

to receive a query from the user. It then generates a re-
sponse that is checked and refined by LaMDA-Research.

2) LaMDA-Research: A generative model that usually re-
ceives the output of LaMDA-Base as input and is fine-
tuned to choose the recipient of its output (the TS or the
user). In general, LaMDA-Research queries the TS in a
loop, until it has sufficient information to generate a final
response to the user.

V. LIMITATIONS AND DISCUSSION

Augmented large language models grapple with a set of
recurring challenges. These issues encompass occasional in-
consistencies, contradictions, factual inaccuracies, potential
repetition, and a limited depth of reasoning, among others [40]
[41].

Furthermore, concerns emerge regarding the generation of
content imbued with toxic language and bias, especially in
specific contexts and topics [42] [43]. Another noteworthy
concern is the influence of internet-sourced documents on
model outputs, potentially leading to the retrieval of undesir-
able content. Many research experiments lean on externally
developed search engines, offering advantages in terms of
optimization and reliability. However, building one’s retrieval
system, as is often the case in question-answering (QA) and
language modeling (LM) research, necessitates starting from
scratch.

While search engines are adept at crawling and indexing
the latest news and documents, this process demands signifi-
cant engineering effort and is vital for various applications.
Conversely, methods in the literature using their retrieval
setups often rely on fixed document databases, which become
outdated over time. Additionally, search engines are designed
for human interaction, using natural language queries with
limited context. In contrast, machine-generated queries, as
exemplified by models like RAG [6], can potentially encode
more context or adopt vector-encoded queries, albeit at the cost
of human interpretability. A benefit of search engine-based
queries is their human readability, offering both interpretability
and the potential for improvement through direct annotation
or feedback.

Language models employing augmentation address the chal-
lenge of hallucination but do not guarantee factual grounding.
Instances of conflicting retrievals can lead to mixed responses.
To enhance reliability, the introduction of trust mechanisms,
assigning different weights to retrievals, is a potential avenue.
Another concern is the generation of generic responses that
may overlook the incorporated knowledge.

In this survey, we have highlighted these common chal-
lenges and limitations faced by augmented large language
models, shedding light on the evolving landscape of language
generation and the pressing need for innovative solutions.

VI. CONCLUSION

In this literature survey, we have explored a multitude of
works in which Language Models (LMs) have been enriched
with external knowledge, enabling them to generate more

contextually grounded and up-to-date responses. Throughout
these studies, LMs have demonstrated their capacity to en-
hance context by incorporating relevant information, thereby
fostering the production of informative answers to various
questions. This augmentation often involves the integration
of non-parametric modules, marking a departure from the
conventional language modeling paradigm and categorizing
these models as augmented language models.

However, it is essential to acknowledge certain limitations
within this paradigm shift. While LMs augmented with ex-
ternal knowledge exhibit reduced hallucination, they do not
offer an ironclad guarantee of factual grounding. Instances
arise where conflicting retrievals result in mixed answers,
underscoring the need for continued refinement in this domain.
Moreover, the limited exploration of the interplay between
reasoning augmentation and knowledge integration in current
research highlights a promising avenue for future endeavors.

As we reflect on the landscape of augmented language
models, it becomes evident that this field holds immense
promise and excitement. It represents a vital step towards
ushering in the next generation of deep learning systems
that can engage in complex and meaningful human-machine
interactions while minimizing the parameter footprint. The
journey towards fully realizing the potential of augmented
LMs is ongoing, with opportunities for further innovation and
investigation awaiting those who seek to shape the future of
this dynamic field.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[3] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston,
“Neural text generation with unlikelihood training,” 2019.

[4] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark,
T. Hennigan, E. Noland, K. Millican, G. van den Driessche, B. Damoc,
A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and
L. Sifre, “Training compute-optimal large language models,” 2022.

[5] T. Scialom, T. Chakrabarty, and S. Muresan, “Fine-tuned language
models are continual learners,” 2022.

[6] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[7] G. Izacard and E. Grave, “Leveraging passage retrieval with generative
models for open domain question answering,” 2021.

[8] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Mil-
lican, G. van den Driessche, J.-B. Lespiau, B. Damoc, A. Clark,
D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang,
L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving,

9

Year ALM Source of Knowledge Retriever Generator
2018 GRAFT-Net Graph + Text Personalized PageRank + DrQA GCNN
2019 PullNet Graph + Text Pull GCNN
2020 RAG Text BERT seq2seq
2020 REALM Text BERT seq2seq
2021 FiD Text BERT seq2seq
2021 IADG Internet seq2seq + Search Engine Encoder-Decoder Transformer
2022 LaMDA Internet Black Box Information Retrieval System Decoder-only Transformer
2022 Atlas Text Contriever seq2seq
2022 RETRO Text BERT Encoder-Decoder Transformer
2022 SeeKeR Text Encoder-Decoder Transformer Encoder-Decoder Transformer

TABLE I: Overview of mentioned augmented language model (ALM) architectures

O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre,
“Improving language models by retrieving from trillions of tokens,”
2022.

[9] G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick,
J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Atlas: Few-shot
learning with retrieval augmented language models,” 2022.

[10] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and
W. Cohen, “Open domain question answering using early fusion of
knowledge bases and text,” in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct.-Nov. 2018,
pp. 4231–4242. [Online]. Available: https://aclanthology.org/D18-1455

[11] H. Sun, T. Bedrax-Weiss, and W. W. Cohen, “Pullnet: Open domain
question answering with iterative retrieval on knowledge bases and text,”
2019.

[12] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng,
A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin,
D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou,
C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man,
K. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke,
J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson,
K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar,
A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein,
R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. Chi, and Q. Le,
“Lamda: Language models for dialog applications,” 2022.

[13] M. Komeili, K. Shuster, and J. Weston, “Internet-augmented dialogue
generation,” 2021.

[14] K. Shuster, M. Komeili, L. Adolphs, S. Roller, A. Szlam, and J. We-
ston, “Language models that seek for knowledge: Modular search and
generation for dialogue and prompt completion,” 2022.

[15] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic
language model,” in Advances in Neural Information Processing
Systems, T. Leen, T. Dietterich, and V. Tresp, Eds., vol. 13. MIT
Press, 2000. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf

[16] D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning,
vol. 12, no. 4, pp. 307–392, 2019. [Online]. Available: https:
//doi.org/10.1561%2F2200000056

[17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.

[20] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[21] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal
representations by error propagation,” 1985.

[22] M. I. Jordan, “Serial order: A parallel distributed processing approach,”
in Advances in psychology. Elsevier, 1997, vol. 121, pp. 471–495.

[23] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel, “Handwritten digit recognition with a back-propagation
network,” Advances in neural information processing systems, vol. 2,
1989.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[25] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” 2020.

[26] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2021.

[27] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The Semantic Web: 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15.
Springer, 2018, pp. 593–607.

[28] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” 2019.

[29] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen,
and W. tau Yih, “Dense passage retrieval for open-domain question
answering,” 2020.

[30] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “Realm:
Retrieval-augmented language model pre-training,” 2020.

[31] K. Lee, M.-W. Chang, and K. Toutanova, “Latent retrieval for weakly
supervised open domain question answering,” 2019.

[32] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin,
and E. Grave, “Unsupervised dense information retrieval with contrastive
learning,” 2022.

[33] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and
S. Kumar, “Accelerating large-scale inference with anisotropic vector
quantization,” 2020.

[34] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

[35] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2017.

[36] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the
11th International Conference on World Wide Web, ser. WWW ’02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
517–526. [Online]. Available: https://doi.org/10.1145/511446.511513

[37] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to
answer open-domain questions,” 2017.

[38] A. S. Foundation. (2011) Apache lucene - scoring. Letzter Zugriff: 20.
Oktober 2011. [Online]. Available: http://lucene.apache.org/java/3 4 0/
scoring.html

[39] Microsoft, “Bing web search api,” 2023. [Online]. Available:
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

[40] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu,
M. Ott, K. Shuster, E. M. Smith, Y.-L. Boureau, and J. Weston, “Recipes
for building an open-domain chatbot,” 2020.

[41] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” 2022.

[42] J. Xu, D. Ju, M. Li, Y.-L. Boureau, J. Weston, and E. Dinan, “Recipes
for safety in open-domain chatbots,” 2021.

[43] E. Dinan, A. Fan, A. Williams, J. Urbanek, D. Kiela, and
J. Weston, “Queens are powerful too: Mitigating gender bias
in dialogue generation,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online:

10

https://aclanthology.org/D18-1455
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://doi.org/10.1561%2F2200000056
https://doi.org/10.1561%2F2200000056
https://doi.org/10.1145/511446.511513
http://lucene.apache.org/java/3_4_0/scoring.html
http://lucene.apache.org/java/3_4_0/scoring.html
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

Association for Computational Linguistics, Nov. 2020, pp. 8173–8188.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.656

11

https://aclanthology.org/2020.emnlp-main.656

	Introduction
	Background
	Generative Language Models
	Autoregressive Models
	Sequence-to-sequence Models
	Transformers
	Beam Search
	Text Corpus
	Vector Database
	Dense Vector Index
	Triplestore Knowledge Bases
	Graph Convolutional Networks
	Relational Graph Convolutional Networks

	Knowledge Base Augmented Generation
	Retrieval-Augmented Generation (RAG)
	REALM realm
	Fusion in Decoder (FiD)
	Atlas
	RETRO
	GRAFT-Net
	PullNet pullnet

	Search-Engine Augmented Generation
	Internet Augmented Dialogue Generation (IADG)
	SeeKeR
	LaMDA

	Limitations and Discussion
	Conclusion
	References

