
Public keys: 53 years of evolution survey

Andrei Titu

January 9, 2024

Abstract

Embraced by both small enterprises and
large corporations alike, public key in-
frastructure (PKI) serves as a cyberse-
curity technique for verifying, validating,
and safeguarding digital information. Au-
thentication, validation, and authoriza-
tion of identities play a pivotal role in
the realm of cybersecurity for all types of
organizations. Originally stemming from
the British intelligence community in the
early 1970s, employing PKI for authenti-
cation and encryption has been in prac-
tical use within commercial contexts for
more than two decades. However, choos-
ing or designing the suitable PKI remains
an unsolved problem as there simply isn’t
a one-fits-all solution. One must inquire
whether there exists a one-fits-most solu-
tion nevertheless.

1 Introduction

The implications of public key cryptography ex-
tend far beyond individual transactions or secure
email exchanges. Its integration into the fabric
of digital infrastructure has ushered in transfor-
mative shifts in the realms of e-commerce, secure
communication protocols, and the very structure
of our digital identities. It underpins the secu-
rity and authenticity of websites we visit daily,
safeguarding our personal information from prying
eyes. Public key infrastructure (PKI), which man-
ages the creation, distribution, and revocation of
digital certificates, has emerged as a crucial com-
ponent of digital trust. Moreover, public key cryp-
tography plays a pivotal role in the development
of blockchain technology, enabling the creation of
decentralized, tamper-proof ledgers underpinning
cryptocurrencies and smart contracts.

The literature survey presented in this es-
say will offer a panoramic view of the academic,
technological, and practical landscape surround-
ing public key cryptography and its integration
into digital infrastructure. By synthesizing key in-
sights, trends, and debates, this paper aims to pro-
vide a comprehensive understanding of the current

state of knowledge in this dynamic field. Addi-
tionally, this reading will delve into the challenges
and open questions, as well as the latest develop-
ments and future prospects, highlighting the ever-
evolving nature of public key cryptography in a
world where secure communication and data pro-
tection have become indispensable.

2 Background

Before diving deeper into security solutions it
is important to understand the actual problems
which need solving and define a lens through which
alternatives will be looked at. This lens is an eval-
uation model which will start from the require-
ments which need to be fulfilled, will look into
the extent to which these requirements are ful-
filled and the incurred costs for achieving these
levels. Most readers will be interested to optimise
the balance between increasing the level of guar-
antees for certain requirements while keeping the
cost within some boundaries. In order to system-
atically introduce this analytic view, the current
section will present a very brief history of the space
and introduce the required security concepts.

2.1 History

The history of cryptography is a long and fascinat-
ing journey, starting well before the Enigma ma-
chine and continuing to the present day. Here’s a
chronological overview of some key developments
in the history of cryptography:

World War I: Both sides in World War I used
various cryptographic techniques to protect their
communications. Notably, the Germans used the
ADFGVX cipher, which was broken by the French.

Enigma Machine (20th century): Developed by
the Germans during World War II, the Enigma
machine was a complex electromechanical cipher
machine. Allied codebreakers, including British
mathematician Alan Turing, successfully cracked
the Enigma code, a significant turning point in
the war.

1



Public Key Cryptography (1970s): It was pub-
licly thought that Merkle, Hellman and Diffie
were the first people to develop public key cryp-
tography until 1997, when the British Government
declassified work done in the early 1970s by James
Ellis, Clifford Cox and Malcolm Williamson. El-
lis, Cox and Williamson had come up with the
first public-key encryption scheme between 1969
and 1973, but their work was classified for two
decades. It was conducted under the Government
Communication Headquarters (GCHQ), a UK in-
telligence agency. Their discovery was actually
the RSA algorithm, so Diffie, Hellman and Merkle
were still the first to develop the Diffie-Hellman
key exchange, but no longer the first inventors of
public-key cryptography. This laid the foundation
for modern encryption methods like ECC.

Data Encryption Standard (DES): In the 1970s,
the U.S. National Institute of Standards and Tech-
nology (NIST) introduced the Data Encryption
Standard, a widely used symmetric-key encryp-
tion algorithm.

Rise of Internet Cryptography: With the growth
of the internet, encryption became crucial for
securing online communications. Protocols like
SSL/TLS and cryptographic algorithms like RSA
and AES were developed to ensure data security
online.

Advanced Encryption Standard (AES): AES be-
came the successor to DES and is widely used for
encrypting data today.

Elliptic Curve Cryptography (ECC): ECC is a
popular asymmetric encryption technique used in
modern cryptographic systems. It offers strong
security with smaller key sizes.

Quantum Cryptography: As quantum computing
technology advances, quantum-resistant cryptog-
raphy is becoming an area of active research to
protect against potential threats posed by quan-
tum computers to existing encryption methods.

Blockchain and Cryptocurrencies: Technologies
like blockchain and cryptocurrencies such as Bit-
coin rely heavily on cryptographic principles to
provide security and enable decentralized transac-
tions.

Post-Quantum Cryptography: Researchers are
actively working on post-quantum cryptographic
algorithms that can withstand the potential threat

of quantum computers. NIST is leading standard-
ization efforts in this area.

2.2 Public Key Cryptography
(PKC)

Public key cryptography, also known as asymmet-
ric cryptography, is a cryptographic system that
uses a pair of keys: a public key and a private key,
to secure digital communication and data. Each
key in the pair has a specific role:

Public Key: This key is intended to be shared
openly and is used for encryption. Anyone
can use the public key to encrypt a message
or data, but only the holder of the corre-
sponding private key can decrypt it. Pub-
lic keys are used for confidentiality and data
protection.

Private Key: The private key is kept secret and
known only to the owner. It is used for
decryption and digital signature generation.
When someone receives an encrypted mes-
sage or digital signature created with the
public key, they use their private key to de-
crypt it or verify the signature’s authenticity.

Real world problems which are currently solved
with PKC: symmetric key exchange, secure com-
munication, SSL/TLS connections, S/MIME en-
crypted email, secret management, access control,
secure data storage, code signing, document shar-
ing, enforcing regulations and compliance, secure
remote access (via SSH keys), Bitcoin etc.

2.3 Security requirements

Nowadays, in the case of most projects the security
requirements which need to be fulfilled stem out of
five root concepts: authentication, integrity, con-
fidentiality, non-repudiation and, in some cases,
authorization.

Confidentiality: Confidentiality ensures that in-
formation remains private between the par-
ties for which its exposure was intended.
Systems leverage both public (asymmetric)
and secret (symmetric) cryptography for
confidentiality. While public key cryptogra-
phy is less efficient for large data, it is suit-
able for encrypting small data objects, such
as symmetric encryption keys. Secret key
cryptography is often used in PKIs for bulk
data encryption, providing actual confiden-
tiality.

2



Integrity: This concept ensures that data can-
not be corrupted or modified, and the in-
tegrity of transactions remains intact. For
this task, PKIs use public key cryptography
along with hashing algorithms (e.g., SHA-1
or MD5). For example, a Message Authen-
tication Code (MAC) can be generated us-
ing secret key cryptography in a PKI envi-
ronment. However, using symmetric crypto-
graphic systems for integrity in a PKI may
not scale well, so public key cryptography,
combined with hashing, is typically more ef-
ficient.

Authentication: Authentication involves verify-
ing the identities of entities using public key
certificates and digital signatures. As a re-
sult, plain PKC can’t guarantee the authen-
ticity of a sender after a certain extent, but
PKIs excel at it.

Non-Repudiation: This concept ensures that
data cannot be denied or transactions dis-
avowed. It is achieved through digital sig-
natures in public key cryptography. Non-
repudiation is a crucial security service in
e-commerce, legal, and contractual negotia-
tions. It is a by-product of using public key
cryptography. When data is cryptographi-
cally signed with a private key, anyone with
the corresponding public key can verify that
only the key’s owner could have signed the
data. This underscores the importance of se-
curely protecting private keys used for digi-
tal signatures.

Public key cryptography ensures all of the above to
some degree, but by itself is vulnerable to a range
of attacks, particularly with regard to authentic-
ity. The hard question is: how can someone know
for sure that the public key they are encrypting
their precious data with really belongs to the in-
tended receiver? For gaining insights into what a
secure system needs to watch out for, some studied
adversarial models will be reviewed.

2.4 Adversarial models

Equally notable is the existence and perpetual de-
velopment of attack models looking to exploit in-
sufficient guarantees in one of the 5 concepts from
above.

Confidentiality

Eavesdropping: Attackers intercept and
monitor data transmission, attempting

to decrypt or gain access to sensitive
information.

Brute Force Attacks: Attackers attempt
to break encryption by trying all pos-
sible decryption keys, particularly with
symmetric encryption.

Integrity

Data Tampering: Attackers modify data
during transmission, potentially alter-
ing the content of messages, docu-
ments, or transactions.

Replay Attacks: Attackers capture legit-
imate data and replay it, causing ac-
tions to be performed multiple times,
potentially leading to unauthorized op-
erations.

Authentication:

Man-in-the-Middle (MitM) Attacks:
Attackers intercept communication be-
tween two parties, potentially alter-
ing or eavesdropping on the messages,
while both parties believe they are se-
curely communicating with each other.
This is usually the most encountered
and feared attack when it comes to
large ecosystems with a lot of commu-
nicating actors.

To guarantee the authenticity of a public
key, the traditional PKC uses a certifi-
cate that is a digitally signed statement
binding an entity and his public key.
Since the amount of keys to manage
and operations to perform seem to mul-
tiply, here is where the need for some
designated architecture come in. This
architecture is what’s been refferred to
as public key infrastructure.

Identity Theft: Attackers impersonate a
legitimate entity by stealing or compro-
mising private keys, allowing them to
masquerade as the entity.

Non-repudiation:

Key Compromise: If a private key is com-
promised, an attacker may falsely sign
data, leading to non-repudiation fail-
ures.

3



Forgery: Attackers may create counterfeit
digital signatures or manipulate dig-
ital signatures, leading to false non-
repudiation claims.

2.5 Required Infrastructure

A few suplimentary measures can go a long way
in raising security guarantees in each of the afore-
mentioned security services. A few of these mea-
sures are: digital certificates, multi-factor authen-
tication (MFA), role-based access control, audit-
ing, security information and event management
(SIEM), zero trust security model, intrusion de-
tection and prevention systems (IDPS), vulnera-
bility scanning etc. All these various endeavours
will require infrastructure so they can exist. On
the other hand, the clear need for public key in-
frastructure supporting certificates is considered
the main difficulty in the deployment and man-
agement of traditional PKC.

However, it is important to understand that a
such infrastructure is not by itself an authentica-
tion, authorization, auditing, privacy, or integrity
mechanism. Rather, a it is mearly an enabling fac-
tor that supports these various business and tech-
nical needs. For example, a PKI does not infer
trust by itself, but requires the establishment of a
trust base, on which the PKI can rely. This re-
quirement means that the basis of trust must be
established on a personal, business, or other level,
before it can be accepted by the PKI. The prob-
lem of firstly authenticating a entity will remain a
hard one, and must be tackled in isolation. This
problem will not make the subject of this paper.

2.6 Adoption bottlenecks

In addition to the problems defined above, several
other requirements are generally involved in de-
ciding whether a solution is worth using. These
extra requirements can be considered the reasons
why no standard solution exists, and why mass
adoption is halted.

Usability:
Secret management:

3 Traditional PKI

A PKI enables the establishment of a trust hier-
archy. This is one of the primary principles of a
PKI. In Internet-based e-commerce, formal trust
mechanisms must exist to provide risk manage-
ment controls. The concept of trust, relative to
a PKI, can be explained by the role of the CA.

In the Internet environment, entities unknown to
each other do not have sufficient trust established
between them to perform business, contractual, le-
gal, or other types of transactions. The implemen-
tation of a PKI using a CA provides this trust.

A Public Key Infrastructure (PKI) is a com-
prehensive system of hardware, software, policies,
standards, and practices that work together to
provide a framework for secure communications
and authentication. It is used to manage digital
keys and certificates. PKIs are commonly used for
tasks like securing email communications, estab-
lishing secure connections over the internet (e.g.,
SSL/TLS), and for digital signatures. Here are the
key components of a PKI:

Certificate Authority (CA):

Root CAs are the highest-level CAs in the hi-
erarchy. It issues and signs intermediate CAs’ cer-
tificates. Intermediate CA: These CAs are sub-
ordinate to the root CA and issue certificates to
end entities. They can also sign other intermedi-
ate CA certificates. End Entities: These are the
users, devices, or servers that require certificates
issued by the PKI to authenticate themselves or
secure communications.

Digital Certificates: Certificates bind a public
key to the entity’s identity. They include infor-
mation such as the public key, the entity’s name,
the digital signature of the issuing CA, and the
certificate’s expiration date.

Public and Private Key Pairs: End entities
generate and keep private keys secure. Public keys
are shared widely and included in certificates.

Registration Authority (RA): The RA verifies
the identity of entities before they are issued a
certificate. It acts as an interface between the end
entity and the CA.

Certificate Repository: A secure location for
storing issued certificates, making them available
for validation and lookup.

Certificate Revocation Lists (CRLs): Lists of
certificates that have been revoked by the CA be-
fore their expiration date. Clients and applications
can use CRLs to check the status of certificates.

Certificate Policy and Practice Statements
(CP/CPS): These documents outline the PKI’s
operational and security practices, including how
certificates are issued, managed, and revoked.

Key Management System: A system for se-
curely generating, storing, and managing crypto-
graphic keys. It should ensure the security of pri-
vate keys.

Security Protocols and Standards: The PKI
should adhere to industry-standard security pro-
tocols and standards, such as X.509 for certifi-
cate formats, TLS for secure communications, and

4



OCSP for real-time certificate status checks.

Secure Hardware: The CA’s private key should
be stored securely, often in hardware security mod-
ules (HSMs), to protect against theft or tamper-
ing.

Auditing and Monitoring: Regular monitoring
of the PKI infrastructure to detect and respond to
security incidents or anomalies.

Backup and Recovery: Procedures for backup
and recovery of CA keys and data in case of hard-
ware failure or disaster.

Cross-Certification: When operating in a dis-
tributed environment, PKIs may need to es-
tablish trust with external PKIs through cross-
certification.

Compliance and Legal Requirements: Compli-
ance with relevant laws and regulations, includ-
ing data protection and privacy laws, may be re-
quired. Additionally, adherence to any industry-
specific standards or requirements is essential.

User Education and Training: Training and ed-
ucation programs for users to understand how to
use certificates and secure communication chan-
nels.

Scalability and Redundancy: The PKI should
be designed to scale as the organization grows, and
it should incorporate redundancy for high avail-
ability.

Lifecycle Management: This involves the man-
agement of certificate lifecycles, including is-
suance, renewal, and revocation.

Secure Communication: All communication
within the PKI should be secure, including the
transmission of certificates, CRLs, and certificate
revocation information.

Policy Enforcement: Ensure that policies re-
garding certificate issuance, usage, and revocation
are consistently enforced.

Diffie-Hellman, RSA or elliptic curves algo-
rithms such as Ed25519 are generally used for gen-
erating public key pairs, and X.509 is the de-facto
standard for building certificates.

How does a clerk in Denmark determine if a
driver’s license, temporary or otherwise, is legit-
imate if it was issued in Japan? How do they
determine if they should trust the credentials pre-
sented? What mechanism do they use to make
that determination? How did the original author-
ity, which issues the credentials, determine the
identity of the requestor? Do you trust the orig-
inal authority to perform its identification tests
properly? These are all fundamental issues that a
PKI must contend with.

4 Decentralized PKI

The issues and limitations of centralized Public
Key Infrastructures (PKIs), such as those relying
on Certificate Authorities (CAs), stem from their
dependence on a central trusted entity. Within
this framework, individuals do not have the au-
tonomy to choose their online identity; instead, it
is determined by trusted third parties, including
CAs, which can be either private entities or gov-
ernmental bodies.

This vulnerability poses a significant problem
as it creates opportunities for attackers to execute
Man-in-the-Middle (MITM) attacks. Currently,
there are approximately 3,675 trusted CAs glob-
ally, making them attractive targets for cybercrim-
inals. Each of these entities possesses the capabil-
ity to establish alternative identities on behalf of
users.

Various forms of MITM attacks, such as ARP
spoofing, IP spoofing, DNS spoofing, HTTPS
spoofing, and Man in the Browser (MITB), have
been identified. Incidents have demonstrated that
excessive reliance on CAs increases the risk of
MITM attacks.

In practical terms, attackers can deceive CAs
into believing they are someone else or compro-
mise the CA to obtain a rogue certificate. The
2011 DigiNotar incident is an example where
fraudulent certificates were issued due to an at-
tack on the Dutch certificate authority company.

Another incident in 2017 involved hackers gain-
ing control of a Brazilian bank’s DNS server and
manipulating a CA into issuing a valid certificate
to them.

The Internet Engineering Task Force (IETF),
responsible for Web PKI, has acknowledged the
existing problems in a memo. Additionally, a
group of researchers, including Vitalik Buterin, as-
sociated with Rebooting the Web of Trust, has
outlined weaknesses in the current Web PKI im-
plementation. Both highlight the need for address-
ing the challenges posed by the outdated PKI de-
sign.

The outdated nature of centralized PKI sys-
tems introduces significant security risks, as a
single point of failure could compromise any en-
crypted online communication. These systems
struggle to adapt to the dynamic digital land-
scape, emphasizing the urgent need for a more ro-
bust and decentralized approach to PKIs in the
modern world.

4.1 Web of Trust

The Web of Trust (WoT) serves as an alterna-
tive to the centralized Certificate Authority (CA)

5



model. The concept of WoT was first introduced
together with Pretty Good Privacy (PGP), an
encryption program developed by Phil Zimmer-
mann, which is a decentralized trust system that
was created when blockchain didn’t exist. Unlike
the CA model, WoT operates without designated
certificate authorities. In WoT, any system user
has the ability to sign the public key certificates
of other users, and the design encourages multiple
signatures on keys. In the event that a signer is
compromised and their key is revoked, the impact
on the trust network remains constrained. PGP,
as an example of a WoT model, relies on trustwor-
thy users who mutually sign each other, managing
private and public key rings.

Each user has the option to select their pre-
ferred set of trusted users. Rather than relying on
a central authority universally trusted by every-
one, users validate and endorse each other’s keys,
forming a network of individual public keys where
each connection is represented by a signature. The
collection of all keys known to a key owner is com-
monly known as a Key Ring.

Let’s consider a scenario where Alice is friends
with Bob. In this trust network, Alice signs Bob’s
public key. If someone receives Bob’s certificate,
they can see that Alice vouches for its authentic-
ity. Say Carol wants to send a message to Bob
but doesn’t know whether Bob’s public key that
they received is truly Bob’s. However, Carol sees
that Alice signed Bob’s key, so now the question
becomes: can Carol know for sure Alice’s key is
truly Alice’s. Recursively this process is repeated
until Carol finds someone who they actually trust.
This is nice because suddenly, each 2 parties can
implement their own way of initial authentication
and requirements for establishing trust. Unfortu-
nately, there is another dimension to this whole
process which doesn’t simplify the trust inference:
how good is Alice at determining Bob’s authen-
ticity? What if Alice didn’t actually perform any
checks before signing Bob’s key and now they en-
danger everyone who trusts them? This can be
solved by associating degrees of trust to each party
by each party, representing how likely a certain
node is to vouch truly. These approaches have
generally worked in practice but guaranteeing real
correctness and preserving privacy while doing so
remains a limitation which modern block-chain
approaches promise to solve through algorithmic
consensus and smart contracts.

4.2 Self-sovereign identity

Self-sovereign identity (SSI) is a concept in iden-
tity management and digital identity that empow-
ers individuals with control over their own iden-

tity information. In that sense it can be viewed
as an extension of WoT. The fundamental idea
is to shift the control and ownership of identity
from governments or corporations, to the individ-
uals themselves. To put it more specifically SSI is
concerned with:

User Control: Individuals have complete con-
trol over their personal information, including
identity attributes, credentials, and other relevant
data.

Decentralization: SSI systems often leverage
decentralized technologies, such as distributed
ledger technology. This helps enhance security,
privacy, and resilience compared to using CAs.

Portability: SSI allows users to carry their dig-
ital identity with them across various contexts and
services. Users can choose when and with whom
they share specific pieces of information.

Interoperability: SSI systems aim for interop-
erability, allowing different platforms and services
to recognize and accept the same set of credentials
or identity information.

Verifiability: The information stored in a self-
sovereign identity system is cryptographically se-
cure and can be independently verified by third
parties without revealing the actual data.

Consent-based Sharing: Users must provide
explicit consent before sharing any part of their
identity information. This aligns with the princi-
ple of user consent and privacy.

The goal of self-sovereign identity is to em-
power individuals, enhance privacy, and provide
a more user-centric, secure, and flexible approach
to identity management in the digital realm. Var-
ious SSI projects and standards, including W3C’s
Verifiable Credentials and Decentralized Identi-
fiers (DIDs), aim to establish a framework for im-
plementing self-sovereign identity solutions. The
following section will look at a couple of imple-
mentations of SSI.

4.3 Blockchain-enabled DPKI

Decentralized PKI approaches employ block-chain
technology to disperse a CA’s responsibility across
a network. Block-chain steps into the shoes of
the traditional trusted third parties or better said,
in a DPKI system leveraging blockchain tech-
nology, third parties take on roles such as min-
ers or validators. Trust is established and pre-
served through consensus protocols such as Proof-
of-Work or Proof-of-stake. What is essentially
happening is that instead of relying on certificates
emitted by a CA to map identities to public keys,
this mapping is kept up-to-date on a distributed
ledger, which is globally accessible and transpar-
ent. No identity to key mapping would appear on

6



the ledger unless it passed the checks defined by
an algorithmic consensus mechanism. Revocation
or other key management operations are ensured
by smart contracts.

For example, EBSI (European Blockchain Ser-
vices Infrastructure) is used for verifying institu-
tional accreditaions by storing the public keys of
issuers and verifiers, as well as the ones of indi-
vidual looking to get accredited, using data struc-
tures called DIDs. Verifiable credentials (VCs) are
issued by issuers, who sign the claims and send
them to the individual to be stored in an encr-
pyted wallet. The individual sends the document
to a verifier who checks that the claims were signed
by the issuer and grants the individual with the re-
quested resource. All identity checks are done via
the globally trusted EBSI block-chain. The World
WideWeb Consortium (W3C) has developed stan-
dards such as the Decentralized Identifier (DID)
specification and the Verifiable Credentials Data
Model (VC Data Model) that provide a common
framework for implementing DIDs and verifiable
credentials.

5 NoPKI

Many would argue that the deployment of any
sort of additional resources or infrastructure con-
stitutes the primary adoption bottleneck. Several
algorithms have been designed with the goal of
minimizing the amount of involved parties, or the
required software and hardware.

5.1 Identity-based PKC

Identity-Based Encryption (IBE) is a type of
public-key cryptography in which a user’s identity
information, such as an email address, username
or UID, is used as a public key. In traditional
public-key cryptography, users obtain public keys
from a centralized authority or a public key infras-
tructure, whereas with IBE the sender itself can
derive the public key of the receiver using said re-
ceiver’s unique identifier.

Identity information is used to generate the
public key, and the corresponding private key is
generated by a trusted third party (TTP) known
as the ”Private Key Generator” (PKG). The PKG
is responsible for generating private keys corre-
sponding to the public keys, as well as distribut-
ing them through a secure channel. In the context
of IBE the PKG TTP is a necessary component,
as the security guarantees of the generated private
keys are stemming from a master key (private key)
owned only by the PKG. Anyone can encrypt a
message using the recipient’s identity-based pub-

lic key. The encrypted message can only be de-
crypted by the intended recipient, who possesses
the corresponding private key generated by the
PKG. When a user needs their private key, they
must contact the PKG, which verifies the user’s
identity and then provides the private key. Re-
trieving the private key usually only has to happen
once, unless key rotation is required.

Some advantages of IBE are:

Simplified Key Management: Since public keys
are derived from user identities, there’s no need for
a separate PKI to manage and distribute public
keys.

Flexibility: Users can use their existing identi-
ties (such as email addresses) as public keys, mak-
ing it convenient for identity-based access control.

Rotation: If a user’s private key is compro-
mised or needs to be revoked, the PKG can recom-
pute a new private key associated with the user’s
identity.

However, there are also challenges and con-
cerns with IBE:

The inherent Key Escrow problem: the re-
liance on a trusted central authority (the PKG)
that knows everyone’s private keys causes the en-
tire system to have one single point of failure.

and potential security risks associated with key
extraction processes. A secure communication
channel is still necessary for distributing private
keys.

Key rotation can also be challenging due to
the inherent nature of the system and its reliance
on users’ identities as public keys. In traditional
public key cryptography, key revocation is rela-
tively straightforward – if a user’s private key is
compromised or needs to be revoked, the corre-
sponding public key certificate can be added to
a Certificate Revocation List (CRL), and relying
parties can check this list to determine if a key
is still valid. In ID-PKC, there is no direct map-
ping from a user’s identity to a fixed public key.
The public key is dynamically generated based on
the user’s identity and some system parameters.
This lack of a fixed public key makes it challeng-
ing to maintain a centralized revocation list that
associates specific public keys with users.

ID-PKC systems may be susceptible to offline
attacks, where an attacker attempts to derive a
user’s private key from previously collected infor-
mation, even after the key has been revoked. This
is particularly challenging when users’ identities
are tied to long-lived attributes (e.g., email ad-
dresses).

7



5.2 Certificate-less PKC

Certificate-less Public Key Cryptography (CL-
PKC) is a cryptographic paradigm that aims to
combine the simplicity of identity-based cryptog-
raphy with the security benefits of traditional
public key cryptography to resolve with inherent
key escrow problem. In CL-PKC, users’ public
keys are derived from their identities, but unlike
identity-based cryptography, the generation of pri-
vate keys involves collaboration between the user
and a trusted third party called the Key Genera-
tion Center (KGC).

Users contribute a secret to the process of gen-
erating their full private key. This user-specific
secret, combined with the partial private key from
the KGC, is used to compute the full private key,
while it’s also being used to derive the public key
in combination to some user identifying informa-
tion. In this way, the public keys still need to be
retrieved by a sender, similarly to how it’s done
when using traditional PKI, but certificates are
no longer required to bind the public key to the
user.

Similarly to the PKG, the KGC generates and
holds a master key that allows it to compute par-
tial private keys for users. However, this master
key alone is insufficient to compute the full private
key. This is how this solution addresses the key es-
crow concern. Also, if the partial private keys or,
alternatively, user’s secrets get leaked, this is still
not sufficient information to derive the full pri-
vate key with ease. CL-PKC removes the extra
work for establishing secure communication chan-
nels between end users and the TTP.

However, reference has proved that a
certificate-less cryptographic system exists iff an
identity-based cryptographic system exists, deem-
ing the two approaches equivalent, in terms of
security guarantees, under the assumption that
the CL-PKC implementation is based on Boneh-
Franklin identity-based encryption.

A disadvantage that certificate-less cryptogra-
phy doesn’t overcome is the hardship in revoking
and rotating a public key pair to the users.

5.3 Certificate-based PKC

The concept of certificate-based Public Key Cryp-
tography (CB-PKC) was introduced to tackle the
challenge of public key revocation. In this model, a
certificate serves a dual purpose, functioning both
as a partial private key and a traditional pub-
lic key certificate. When Bob wishes to decrypt
a ciphertext sent by Alice, he requires both his
private key and an updated certificate from the
Certificate Authority (CA). As a result, partici-

pants in a certificate-based PKC system do not
need to acquire real-time information about the
status of certificates. This approach simplifies the
issue of public key revocation, eliminating the ne-
cessity for infrastructures such as Certificate Revo-
cation Lists (CRL) [13] and Online Certificate Sta-
tus Protocol (OCSP) [14]. In a certificate-based
PKC system, challenges like private key escrow
are nonexistent because the CA remains unaware
of users’ private keys. Furthermore, there is no
problem of secret key distribution since the CA’s
certificate does not require confidentiality.

In certificate-based encryption, the TTP com-
ponent is represented by a CA who owns the gen-
eration of the master key and the deterministic
algorithm that takes uses as input a user’s id, a
time period t, the user’s public key and the mas-
ter key, to return the user id’s certificate for the
time period t. A certificate is given to a user id by
the CA not necessarily through a secure channel,
since the certificate doesn’t contain any sensitive
information. As the CA only deals with partial
private keys and the user is responsible for gener-
ating their own public-key pair, the key escrow of
the user’s private key is not inherent.

Again, this method was proven equivalent with
the other 2 presented models, and it’s still classi-
fied as an identity-based method.

6 Password Authentication

Passwords have been the most adopted authen-
tication method due to usability and ease of un-
derstanding how knowledge of a secret value can
prove ones identity. However classic password au-
thentication has several drawbacks including sus-
ceptibility to knowledge leaking through phishing,
or insecure communication channels. The fact
that a user instead of an algorithm is responsi-
ble for coming up with the authentication token,
makes it insecure to find out through brute-force
attacks on dictionary attacks. Also, managing
passwords is usually left to the user’s latitude and
bad habits such as having a multi-purpose pass-
word or storing it insecurely with the purpose of
not forgetting it are more spread out than us-
ing password manager solutions. This section will
look at improved password-based authentication
methods that aim to conserve usability while ele-
vating security guarantees.

6.1 PAKE protocols

Password-Authenticated Key Exchange (PAKE)
protocols are cryptographic protocols designed to
allow two parties to establish a shared secret

8



(a cryptographic key) over an insecure network
based on the knowledge of a password. The pri-
mary goal of PAKE protocols is to provide secure
key exchange even if an attacker is eavesdropping
on the communication. PAKE protocols have a
range of applications, including secure authenti-
cation and key establishment for secure communi-
cation. The parties involved (usually a client and
a server) share a common password, which serves
as the basis for authentication. Unlike traditional
password-based authentication, PAKE protocols
ensure that the actual password is not transmit-
ted over the network. PAKE protocols often in-
corporate zero-knowledge proofs. Zero-knowledge
proofs allow one party to prove knowledge of a se-
cret (the password) to another party without re-
vealing the actual secret. This ensures that even
if the communication is intercepted, the password
remains confidential. Once the parties have com-
pleted the authentication process, they derive a
shared secret from the knowledge of the password.
This shared secret can then be used as a basis
for deriving cryptographic keys for secure commu-
nication. PAKE protocols involve secure compu-
tations that enable both parties to contribute to
the generation of a shared secret without directly
revealing sensitive information. Common crypto-
graphic primitives such as commitment schemes
and hash functions are used to achieve secure
computation, depending on the actual implemen-
tation (SPEKE, SRP, OPAQUE, J-PAKE etc).
These protocols are designed to resist offline dic-
tionary attacks, where an attacker tries to guess
the password by repeatedly attempting authenti-
cation. Even if an attacker intercepts the commu-
nication between the parties, they should not be
able to derive the user’s password or the shared
secret with ease.

7 Passkeys

Passkeys are believed to represent the future of
safeguarding account security and protecting our
sensitive data, and their presence is undeniable.
Google is currently working on Android 14 and
APIs that will enable people to create and use
passkeys inside Chrome and any other app that
has added passkey support. Passkeys make it eas-
ier for everyone to use passwordless authentica-
tion across all of their devices. Perhaps more
importantly, they’re backed by influential tech-
nology companies including Apple, Google, Mi-
crosoft. By championing passkeys together, this
group can raise awareness and, by extension, over-
all adoption around the world.

7.1 Passwordless and FIDO Al-
liance

The FIDO Alliance, or Fast Identity Online Al-
liance, is a global organization focused on devel-
oping open standards for strong, passwordless au-
thentication. The alliance was founded in 2012
by several major technology companies with the
aim of addressing the weaknesses and vulnerabil-
ities associated with traditional password-based
authentication methods. FIDO is now formed of
some of the largest technology companies in the
world including Apple, Google, and Microsoft.

The primary goal of the FIDO Alliance is to
create a more secure and user-friendly authenti-
cation framework that reduces reliance on pass-
words and provides a simpler, yet stronger, means
of verifying user identities. FIDO standards en-
able interoperability between various devices and
technologies, promoting widespread adoption.

Numerous authenticator specifications have
been defined by FIDO, including U2F, UAF, and
CTAP. Universal 2nd Factor (U2F) stands out
as one of the early specifications for WebAuthn
authenticators, known for its straightforward im-
plementation. However, development has shifted
towards the Client To Authenticator Protocol
(CTAP2), with the ”2” in CTAP2 denoting its ver-
sion, positioning it as a successor to U2F. Passkeys
leverage an API called WebAuthn, or Web Au-
thentication. The API was jointly developed by
the FIDO Alliance, and the World Wide Web Con-
sortium (W3C), a community that works together
to develop new standards and guidelines for the
web.

7.2 WebAuthn

WebAuthn, short for Web Authentication, is an
API empowering website developers to facilitate
a passwordless login experience on their websites
and applications. This crucial software serves as
the link between these platforms and the user’s se-
lected authenticator, and stays at the core of the
”passkey” buzzword. It is developed by the World
Wide Web Consortium (W3C) and the FIDO Al-
liance. The primary goal of WebAuthn is to pro-
vide a standardized way for websites to support
strong authentication mechanisms.

The specification defines 2 participants: au-
thenticators and relying parties.

Authenticators come in two primary forms:
Roaming authenticators: These are independent
devices designed for portability, such as hardware
security keys that can be easily carried.
Platform authenticators: These are integrated

9



into existing devices, like PCs or phones, stream-
lining the authentication process for users.

Whereas a relying party can be any back-end
application which is responsible for keeping track
of users’ identities.

A WebAuthn Authenticator generates and
stores a public key credential upon the request
of a WebAuthn Relying Party, contingent on user
consent. Subsequently, access to the public key
credential is restricted to origins associated with
that specific Relying Party. This limitation is en-
forced collaboratively by compliant User Agents
and authenticators. Furthermore, privacy is up-
held across Relying Parties, preventing them from
detecting any properties or the existence of cre-
dentials scoped to other Relying Parties.

Relying Parties utilize the Web Authentication
API in two distinct yet interrelated procedures in-
volving a user. The first is Registration, where a
public key credential is established on an authen-
ticator and scoped to a Relying Party associated
with the user’s current account (which may al-
ready exist or be created at this time). The second
is Authentication, during which the Relying Party
receives an Authentication Assertion confirming
the user’s presence and consent for the previously
registered public key credential. Functionally, the
Web Authentication API incorporates a PublicK-
eyCredential, extending the Credential Manage-
ment API [CREDENTIAL-MANAGEMENT-1],
along with infrastructure enabling the use of these
credentials through navigator.credentials.create()
for Registration and navigator.credentials.get() for
Authentication.

In a broader context, compliant authentica-
tors safeguard public key credentials and collab-
orate with user agents to implement the Web Au-
thentication API. Such authenticators can be im-
plemented in software running on (a) a general-
purpose computing device, (b) an on-device Secure
Execution Environment, Trusted Platform Mod-
ule (TPM), or a Secure Element (SE), or (c) off-
device. Authenticators implemented on-device are
referred to as platform authenticators, while those
implemented off-device (roaming authenticators)
can be accessed through transports like Universal
Serial Bus (USB), Bluetooth Low Energy (BLE),
or Near Field Communications (NFC).

Key features and concepts of WebAuthn in-
clude:

Replay attack resistance: WebAuthn is de-
signed to be resistant to replay attacks. Even if
a user unknowingly authenticates on a malicious
website, the attacker won’t be able to use the cap-
tured credentials elsewhere. This means that one
user will have a separate set of passkeys for each

relying party it communicates with.

Public Key Cryptography: WebAuthn relies
on public-key cryptography for authentication. In-
stead of sharing secret information (like a pass-
word), the user’s device generates a public-private
key pair. The private key remains on the device,
and the public key is registered with the online
service.

Cross-Browser Compatibility: WebAuthn is
designed to work across different web browsers and
platforms, providing a consistent and interopera-
ble authentication experience.

Privacy Considerations: WebAuthn is de-
signed with privacy in mind. It minimizes the
amount of information exchanged during authen-
tication and allows users to control what informa-
tion is shared.

This is what the standard entails: Imagine
that a user visits a website that supports passkeys.
First, the user creates an account and opts to se-
cure it with a passkey instead of a traditional pass-
word. The website’s server shares some informa-
tion about the website and asks the user to con-
firm their authenticator. This could be the user’s
phone, tablet, PC, or a password manager that
adheres to the WebAuthn standard. A passkey,
comprising a public and private key pair, is then
generated for that specific website. This process
occurs locally, on the user’s device. The public key
is sent to the website’s server for storage where it’s
mapped to this user’s unique id, while the private
key remains securely stored in the user’s authen-
ticator. The user never even gets to see or in-
teract with their private key, as the authenticator
abstracts all the heavy lifting away. All the user
needs to do is to provide their fingerprint (or any
form of biometric authentication the device sup-
ports) or device password, when prompted for it.

The next time the user signs in, the website
will create a “challenge,” similar to a puzzle. The
user’s authenticator will “sign” the challenge using
the private key, then send the completed “signa-
ture” to the website. Finally, the website uses its
copy of the user’s public key to verify the signa-
ture’s authenticity. And that’s it! The user has
signed in using their unique passkey.

WebAuthn has a history dating back to 2016,
with the publication of the WebAuthn Level
1 standard as a W3C recommendation occur-
ring three years later. Many web browsers, in-
cluding Chrome, and various hardware security
keys (roaming authenticators) already support the
API.

Despite this, the standard has not yet reached
widespread adoption. The majority of individuals
still rely on traditional usernames and passwords

10



Authentication Solution Can Johhny encrypt Single point of failure Self sovereign Deployable Rotation
(Traditional) PKI X X X X V
WoT (PGP) X V V V X
Blockchain-based X V V X V
Identity-based X X X V X
PAKE V V X V V
Passkeys V V X V V

Table 1: Solution evaluation table.

for their online accounts, and only a few websites
currently offer a passwordless login experience.

To address this, major technology companies
are collaborating on a solution known as passkeys,
utilizing the WebAuthn standard. Passkeys pro-
vide a seamless and secure sign-in experience
using existing devices (platform authenticators).
While WebAuthn is already in use, passkeys have
the potential to significantly increase its expo-

sure and adoption due to their convenience, user-
friendliness, and enhanced security features.

7.3 Benefits

8 Evaluation

9 Conclusion

References

11


	Introduction
	Background
	History
	Public Key Cryptography (PKC)
	Security requirements
	Adversarial models
	Required Infrastructure
	Adoption bottlenecks

	Traditional PKI
	Decentralized PKI
	Web of Trust
	Self-sovereign identity
	Blockchain-enabled DPKI

	NoPKI
	Identity-based PKC
	Certificate-less PKC
	Certificate-based PKC

	Password Authentication
	PAKE protocols

	Passkeys
	Passwordless and FIDO Alliance
	WebAuthn
	Benefits

	Evaluation
	Conclusion

