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ABSTRACT 
An agent’s trust decision strategy consists of the agent’s policies 
for making trust-related decisions, such as who to trust, how 
trustworthy to be, what reputations to believe, and when to tell 
truthful reputations.  In reputation exchange networks, learning 
trust decision strategies is complex, compared to non-reputation-
communicating systems.  When potential partners may exchange 
reputation information about an agent, the agent’s interactions 
with one partner are no longer independent from interactions with 
another; partners may tell each other about their experiences with 
the agent, influencing future behavior.  This research enumerates 
the types of decisions an agent faces in reputation exchange 
networks, explains the interdependencies between these decisions, 
and correlates rewards to each decision.  Experimental results 
using the Agent Reputation and Trust (ART) Testbed demonstrate 
the success of strategy-learning agents over agents employing 
naive strategies. The variation in performance of reputation-based 
learning vs. experience-based learning over different opponents 
illustrates the need to dynamically determine when to utilize 
reputations vs. experience in making trust decisions.   

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Intelligent Agents, Multiagent Systems 

General Terms 
Algorithms, Experimentation. 

Keywords 
Trust, Reputation, Multi-Agent Systems, ART Testbed. 

1. Introduction 
When an agent does not have the resources to accomplish its 
goals alone, it may seek needed resources from other agents in a 

multi-agent system.  These resources are acquired through 
transactions, which expose at least one party to risk, since a 
transaction partner might not follow through on the (implicitly or 
explicitly) agreed upon contract, either by choice or inability.  An 
agent can protect itself against this risk of transaction failure by 
learning estimates of partner trustworthiness. 

Learning trust from transaction experiences [5, 12, 16] is 
advantageous when agents have opportunities for numerous 
repeated interactions.  When the outcome of interactions are 
observable, transaction experiences provide a trust-strategy-
learning agent with trustworthiness feedback that is certain.  
Unfortunately, basing trust on transaction experiences means risk 
exposure is unavoidable; interactions must take place while 
partners’ trustworthiness characteristics are being learned [7]. 

Reputation exchange is useful for quickly learning trustworthiness 
characteristics of other agents [14].  Adapted from [8], a 
reputation is a (not necessarily truthful) communication from one 
agent to another about the sender’s trust in a third subject-agent.  
A multi-agent system whose communication protocols permit the 
exchange of reputations [11, 17, 18, 20, 21] is advantageous in 
systems with large populations and sparse transactions.  Further, 
reputation exchange reduces an agent’s risk exposure; an agent 
risks only the price of reputations it purchases, rather than the 
value of resources exchanged in a potential transaction.  Agents 
entering a multi-agent system can quickly learn trust models by 
requesting reputations from more knowledgeable agents.   

An agent’s trust decision strategy consists of the agent’s policies 
for making trust-related decisions with the aim of achieving 
greatest benefit.  The simplest trust decision strategy, in systems 
without reputation exchange, encompasses decisions regarding 
both 1) who to trust (to minimize risk of failed transactions), and 
2) how trustworthy to be (to exploit others).  But the advantage of 
agents communicating reputation information adds another 
dimension to an agent’s trust decision strategy; in reputation 
exchange networks, an agent must make additional decisions 
regarding 1) which reputations to believe (to better choose who to 
trust) and 2) how truthful to be in communicating reputations to 
others (to manipulate what others think about who to trust). 

Reinforcement learning has been successfully applied to simple 
trust decision strategies for deciding who to trust—and how 
trustworthy to be—in agent transactions [3, 13].  This research 
seeks to apply similar techniques to help agents learn more 
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comprehensive trust decision strategies required in networks of 
agents exchanging reputation information.  However, in 
reputation exchange networks, the complexity of the learning 
problem increases dramatically, compared to systems in which 
agents do not communicate reputation information.  The agent 
must make more trust-related decisions, regarding not only who to 
trust and how trustworthy to be, but also regarding which 
reputation information to believe and how truthful to be when 
communicating reputations to others.  Compounding the problem, 
the effects of these decisions may not be immediately observable, 
since the agent cannot easily gauge the nature and extent of 
reputation exchange occurring among its potential partners.  
Further, when potential partners may exchange reputation 
information about an agent, the agent’s interactions with one 
partner are no longer independent from interactions with another; 
partners may tell each other about experiences with the agent, 
influencing how each behaves with the agent in the future.   

Toward the goal of enabling agents to learn comprehensive trust 
decision strategies in reputation exchange networks, this research 
first enumerates the types of decisions an agent faces in systems 
with reputation exchange.  Next, using the Agent Reputation and 
Trust (ART) Testbed [10] as a case study, the interdependencies 
between these decisions are explained.  This research employs a 
learning approach for each decision; by establishing assumptions 
to ease interdependencies, rewards are correlated to each decision 
type.  Experimental results demonstrate the success of strategy-
learning agents over agents employing naive strategies.  The 
variation in performance of reputation-based learning vs. 
experience-based learning over different opponents illustrates 
why agents must be able to dynamically determine when to utilize 
reputations vs. experience in making trust decisions.   

2. Trust Decision Strategies 
A trust decision strategy describes an agent’s choices regarding 
four trust-related decision types, defined according to agent role 
(trustee or truster) and transaction (fundamental or reputation), as 
shown in Figure 1.  Fundamental transactions are the basic 
transactions driving the need for trust modeling in the multi-agent 
system.  Reputation transactions are distinct from fundamental 
transactions because the outcome of reputation transactions 
directly impacts decisions regarding fundamental transactions 
(this impact is shown later).  An agent’s trust-based decisions are: 

1) Should I trust?  For each potential fundamental 
transaction, the agent must decide whether to participate in—
and expose itself to the risk of— the transaction. 
2) How trustworthy should I be?  For each agreed upon 
fundamental transaction, the agent must identify the degree 
to which cheating or honesty yields the greatest benefit.  
3) Should I believe this reputation?  For each potential 
reputation transaction, the agent must decide whether to 

 
Figure 1. Trust decision types by transaction and agent role. 

conduct the transaction, then use the reputation to determine 
whether it should trust regarding fundamental transactions. 
4) How accurate should the reputation I tell be?  For each 
agreed upon reputation transaction, the agent must identify 
its level of truthfulness in communicating a reputation.  The 
agent can only control the accuracy of reputations it 
communicates to the extent of its own trust model accuracy.  

How the agent makes these decisions depends, in part, on the 
characteristics of the transaction.  If the transaction protocol calls 
for sequential action between the two partners (for example, 
payment then delivery), the first partner to act serves as truster, 
and the second as trustee.  If the transaction protocol dictates 
simultaneous action, both partners concurrently act as both trustee 
and truster.  Future decisions are also impacted by the 
observability of a transactions outcome.  For example, if an agent 
receives a payment as the transaction outcome, most likely it can 
tell if the payment is satisfactory.  However, an agent may be 
unable to tell whether a reputation transaction is successful (the 
received reputation is accurate) if it has little knowledge about the 
trustworthiness of the reputation’s subject agent. 

2.1 The Complexity of Learning Trust 
Decision Strategies 
This research proposes a method by which agents can learn trust 
decision strategies using a q-learning technique.  Q-learning  [15]  
is a well-known tool for learning best decision-making strategies 
by associating actions with expected rewards.  Several researchers 
[3, 4, 9, 13, 19] have employed reinforcement learning techniques 
to discover strategies for trust decisions.  However, these trust 
decisions only relate to fundamental transactions, as in the 
Prisoner’s Dilemma [2].  Learning trust decision strategies in 
reputation-transaction systems is significantly more difficult, 
since in these systems, fundamental transaction decisions are not 
independent from each other and from reputation transaction 
decisions.  An agent’s fundamental transactions with one partner 
may influence its fundamental transactions with another, if its two 
partners are able to communicate reputation information.  
Learning an agent’s trust decision strategy is also complex 
because multiple decisions can affect common results.  For 
example, falsely spreading negative reputations about a 
trustworthy partner might cause other agents to trust the lying 
agent while isolating the falsely accused agent.  Similarly, falsely 
spreading positive reputations about untrustworthy partners might 
hurt those agents receiving the reputations, thus improving the 
standing of the lying agent.  Or, an agent might perform truthfully 
in hopes of receiving better treatment from partner agents, yet 
truthful behavior might benefit the agent’s partners too much. 

Considering the interdependent nature of these trust-related 
decisions, an agent attempting to learn the best combination of 
decisions faces a complexity problem.  When making decisions 
about “should I trust?” an agent faces ( )2aeΟ  decision 

combinations from which to choose, assuming that choosing to 
trust is a binary decision, a represents the number of agents in the 
system, and e represents the number of possible transaction 
categories for which agents might have different expertise.  When 
deciding “how trustworthy should I be?” an agent has np decision 
combinations, where n describes a number of possible, discrete 
degrees of fundamental-transaction trustworthiness and p 
describes the number of fundamental transaction requests 
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Agent 
Role 

Fundamental Reputation 

How trustworthy 
should I be? 

Should I trust? 

How accurate 
should the 

reputation be? 

Should I believe    
this reputation? 

Transaction



received from other agents.  Since p can be as large as (a-1)e, the 
complexity of this decision is ( )aenΟ .   

When deciding “should I believe this reputation?” an agent faces 

( )2

2a eΟ decisions, assuming that choosing to believe a 

reputation is a binary decision, a (signifying the number of agents 
in the system) represents the number of reputation providers and 
the number of subject agents about whom reputations may be 
provided, and e (the number of possible transaction expertise 
categories) represents the number of categories for which each 
subject agent’s trustworthiness can be questioned.  When deciding 
“should I tell an accurate reputation?” an agent has mq decision 
combinations, where m describes a number of possible, discrete 
degrees of reputation-transaction trustworthiness and q describes 
the number of reputation transaction requests received from other 
agents.  Since q can be as large as (a-1)ae, the complexity of this 

decision is ( )2a emΟ .   

Each decision of a given type is interdependent, but further, each 
decision type is interdependent.  Therefore, in a given discrete 
timestep, in which an agent has the opportunity to interact with 
each other agent, as both truster and trustee, for both fundamental 
and reputation transactions, the agent’s trust decision strategy has 

a complexity of ( )2 2

2ae a e ae a en m+Ο .  It is not feasible for an 

agent to learn its trust decision strategy without introducing some 
assumptions to relax interdependencies between decisions.  The 
following section demonstrates how an agent can introduce these 
assumptions yet still learn a useful trust decision strategy. 

3. Case Study: The ART Testbed 
The Agent Reputation and Trust (ART) Testbed [1] is used as a 
case study for learning trust decision strategies.  A brief overview 
of the ART Testbed game is described here.  Readers are referred 
to [10] for more detail; all ART Testbed notation described here is 
consistent with that reference. 

In the ART Testbed’s artwork appraisal domain, agents act as 
appraisers who are hired by clients to deliver appraisals about 
paintings, each for a fixed client fee f.  Agents compete for 
clients, who are assigned based on agents’ past appraisal 
accuracy.  In attempting to produce accurate appraisals, appraiser 
agents may purchase opinions (valuations of the painting by other 
agents) for a fixed fee, cp.  Opinion providers choose an amount, 
cg, to pay (to the system) to generate an opinion, symbolizing the 
effort to perform a valuation; the amount cg corresponds to the 
accuracy of the generated opinion.  Appraiser agents may also 
purchase reputations (for a fixed fee cr) from each other to help 
assess the trustworthiness of opinion providers.  Agents compete 
to achieve the highest bank balance.   

Designed as a tool for experimentation and competition, the ART 
Testbed has earned the attention of numerous researchers in the 
international trust research community.  The Testbed design 
allows variation of agent strategies and game parameters for easy 
experimentation, as well as competition against and experiment 
replication by other researchers.  Transactions are conducted 
sequentially, permitting the separate examination of truster and 
trustee decisions.  Opinion purchases correlate to fundamental 

transactions, the outcomes of which (opinion accuracy) are 
observable at the end of each timestep, when true painting values 
are revealed.  The outcomes of reputation purchases are not 
observable, though reputation receivers may estimate the 
accuracy of the reputations they receive against previously built 
trust models.  Most importantly, the game’s complexity illustrates 
the interdependencies of trust-related decisions.     

The four trust-related decisions translate to the ART Testbed 
domain as shown in Figure 2.  As an Opinion Requester, an agent 
must decide which opinions to purchase.  As an Opinion Provider, 
an agent must decide how much payment, cg, to invest in the 
opinions it communicates. As a Reputation Requester, an agent 
must decide which reputations to purchase.  As a Reputation 
Provider, an agent must decide how truthful to be, compared to its 
own trust models, when communicating reputations. 

 
Figure 2. Trust decision types in the ART Testbed domain. 

Several assumptions are made to the ART Testbed game to 
remove details unnecessary to this research purpose.  First, agent 
transaction protocols are simplified: Opinion Providers do not 
communicate opinion certainties, and Opinion and Reputation 
Providers always satisfy requests, though provided opinions and 
reputations may be untruthful.  Further, agents do not generate 
opinions for their own clients, and they weight all received 
opinions equally when calculating their final appraisals.  To 
eliminate non-agent-controlled variances in opinion accuracy, all 
agents are assigned the same expertise levels for all painting eras 
(fundamental transaction types). 

3.1 Identifying Decision Interdependencies 
Figure 3 shows a diagram of interdependencies between the ART 
Testbed’s four trust-related decisions (darkened diamonds in the 
figure) and resulting observable feedback (costs and earnings, 
darkened boxes in the figure), enumerated here: 

1) Opinion Requester: The Opinion Requester’s decision 
regarding which opinions to purchase determines its opinion 
costs and the accuracy of its resulting final appraisals, which, 
in turn, impact its client revenue.   
2) Opinion Provider: The Opinion Provider’s decision 
regarding the accuracy of appraisals to provide determines 
its opinion order costs (cg).  This decision also affects 
Opinion Requesters’ accuracy of final appraisals and client 
revenue.  Since appraiser agents compete for client revenue, 
effects on Opinion Requesters’ client revenue also impact the 
client revenue of Opinion Providers.  Finally, the Opinion 
Provider’s opinion accuracy influences the number of future 
requests from Opinion Requesters, which determines the 
Opinion Provider’s future opinion revenue. 
3) Reputation Requester: The Reputation Requester’s 
decision regarding which reputations to purchase impacts its 
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own reputation costs, as well as its ability to determine 
which opinions to request, which (as mentioned for the 
Opinion Requester’s role) impacts both the Reputation 
Requester’s opinion costs and client revenue. 
4) Reputation Provider: The Reputation Provider’s decision 
regarding the accuracy of reputations to provide influences 
the Reputation Requesters’ ability to determine which 
opinions to request, which affects the Reputation 
Requester’s, and ultimately the Reputation Provider’s, client 
revenue.  Also, the Reputation Provider’s reputation 
accuracy influences the number of future requests from 
Reputation Requesters, which determines the Reputation 
Provider’s future reputation revenue.  

Multiple decisions, over all four agent roles, influence multiple 
feedback elements, making the correlation of specific decisions to 
their resulting rewards difficult.  The following section introduces 
dependency-eliminating assumptions and proposes methods for 
calculating rewards associated with each decision. 

3.2 Trust Decision Rewards 
To conduct q-learning for each trust-related decision, a reward 
must be assigned to each decision.  Since decisions are 
interdependent, and observable costs and revenues are aggregated, 
two assumptions are presented to ease these interdependencies 
and divide observable earnings into per-decision rewards: 

Assumption 1: Individual decisions of a single decision type 
are assumed independent of each other (i.e. all of an agent’s 
opinion-requesting decisions are independent of each other, 
regardless of opinion provider or era).   
Assumption 2: Client revenue is only influenced by the 
Opinion Requesting decision (thus agents’ client revenues 
are independent of each other). 

3.2.1 Opinion Requester Rewards 
The Opinion Requester’s choice regarding the purchase of a 
single opinion is binary: either request or not request the opinion.  
The choice to not request an opinion is assumed to yield a reward 
of zero, but calculating a reward (QOR(true)) associated with 

choosing to request an opinion is more complicated.  Utilizing the 
assumptions above, a reward associated with each choice to 
request an opinion can be estimated by attributing a portion of the 
Opinion Requester’s resulting client revenue first to each 
computed appraisal, then to each opinion composing that 
appraisal.  First, the total client revenue, vtotal, attributed to all 
client appraisals, is calculated as the number of Opinion 
Requester’s clients in the next timestep, nc, times the earned, per-
client fee, f: 

total cv n f= . 

Next, the estimated client revenue portion, vc, attributed to a 
single appraisal, for client c, is calculated as: 

*

*

1

1
c

i

p
c total

i C p

v v
ε

ε∈

 
 
 

=  
  
      

∑
, 

where C represents the set of the Opinion Requester’s client 
appraisals and *

cpε  represents the normalized error of the client’s 

painting appraisal, *
cp , from the painting’s true value, tc:  

*

*

c

c c
p

c

p t
t

ε
−

= . 

An estimated client revenue portion, vc,a, is attributed to each 
opinion (by opinion provider a for client c’s painting):  

,
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Figure 3. Trust decision interdependencies in the ART Testbed domain. 



where A represents the set of Opinion Providers for painting c and 

,c apε  represents the normalized error of a single opinion, pc,a, 

from the painting’s true value, tc: 

,

,
c a

c a c
p

c

p t
t

ε
−

= . 

Finally, the reward, wOR,c,a, associated with requesting the opinion 
from Opinion Provider a about client c’s painting is calculated as 
the estimated client revenue portion, vc,a, minus the cost, cp, of 
requesting the opinion: 

, , ,OR c a c a pw v c= − . 

This reward is averaged for all requested opinions from a given 
Opinion Provider a and era e, to which paintings c belong. 

3.2.2 Opinion Provider Rewards 
The Opinion Provider must choose the accuracy of the opinion it 
provides to an Opinion Requester.  More precisely, the Opinion 
Provider must choose the amount, cg, to pay to generate an 
opinion, where cg is related to opinion accuracy.  First, it is 
assumed that the Opinion Provider makes the same opinion 
accuracy decision for all opinion requests from the same Opinion 
Requester about paintings from the same era.  Thus, using the 
independence assumptions, the reward, , ,OP a ew , associated with 
choosing an amount, cg, to pay to generate an opinion, is 
calculated as: 

( ), , , , , ,OP a e p a e p g a ew n c c= − , 

Where np,a,e represents the number of opinion requests received in 
the next timestep from agent a about paintings from era e, cp 
represents the per-opinion cost received for providing opinions, 
and cg,a,e represents the chosen amount paid to generate each 
opinion for requester a about paintings from era e. 

3.2.3 Reputation Provider Rewards 
The Reputation Provider must choose the accuracy of the 
reputation it provides to a Reputation Requester.  For this 
research, it is assumed that all agents have a mutual understanding 
that reputation values correspond to q-values (QOR(true)) for 
deciding in the affirmative to request opinions.  Since the ART 
Testbed only permits the exchange of reputations as values 
between zero and one, q-values are converted from a scale 
between -f-cp (the assumed worst-case penalty for requesting an 
opinion) and f-cp (the assumed best-case reward for requesting an 
opinion).  Therefore, the conversion from QOR,s,e(true) (the 
Reputation Provider’s actual q-value for requesting opinions from 
opinion provider (subject-agent) s for expertise era e) to rs,e (the 
scaled, believed reputation about s for e) is given by: 

( ), ,
, 2

OR s e p
s e

Q true f c
r

f
+ +

= . 

Reputation accuracy is parameterized using the δ variable to 
describe the relationship between the Reputation Provider’s 
believed reputation, rs,e, and the actual reputation, *

, ,a s er , it 

provides to Reputation Requester a.  Intuitively, δa,s,e represents 

the percent difference between the believed reputation rs,e and the 
limits of permissible reputation values, where negative δ values 
imply pessimistic reputations and positive δ values imply 
optimistic reputations.  Formally, *

, ,a s er is calculated as: 

. 

Using the independence assumptions, the reward, , , ,RP a s ew , 
associated with providing a reputation whose accuracy correlates 
to δa,s,e is given by: 

, , , , , , RP a s e r s a e rw n c= , 

where cr is the fixed reputation purchase cost and nr,s,a,e is the 
number of reputations requested in the next timestep by a about s 
for era e.  Since the maximum possible value of nr,s,a,e is 1 (in a 
single timestep, a Reputation Requester can only request one 
reputation from a given provider about a given subject-agent and 
expertise era), an nr,s,a,e value of zero or one is recorded in each 
timestep for a chosen δ value, until the timestep in which a new 
reputation provider decision must be made for the given requester, 
subject-agent, and era. 

3.2.4 Reputation Requester Rewards 
The Reputation Requester’s decision to purchase reputations is 
binary.  As in the case of the opinion-requesting decision, the 
reward of not requesting a reputation is assumed to be zero.  The 
reward associated with requesting a reputation is based on the 
indirect benefit of making savvy opinion requests based on 
quality reputations, and is estimated as follows.  The error of a 
reputation, *

', ,a s er
ε , is estimated by averaging the error between the 

reputation and computed rewards for requested opinions in Ce (the 
set of opinions whose paintings belong to this reputation’s era e): 

*
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*
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e
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C
ε ∈

−
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where a’ represents the provider of the reputation about opinion 
provider (subject-agent) s. 

An estimated client revenue portion, vr,a’,s,e, is attributed to each 
reputation (by reputation provider a’ about subject-agent s and era 
e) in this way: a portion of the client revenue (wOR,c,s, attributed to 
requesting an opinion c) is attributed to each requested reputation 
according to the reputation’s estimated error (A’ is the set of 
reputation providers about s for e).  These client revenue portions 
are averaged over all opinions whose paintings belong to era e:  
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The reward, wRR,a’,s,e, attributed to requesting a given reputation is 
simply its calculated client revenue portion minus its cost: 

, ', , , ', ,RR a s e r a s e rw v c= − . 

The Reputation Requester must make a second decision which 
brings to light a significant problem [6]: how should reputation 
information influence the agent’s existing experience-based trust 
model (the Opinion Requester’s QOR(true) values)?  Since a 
Reputation Requester purchases reputations for the purposes of 
making better opinion requesting decisions, an agent in the 
reputation requesting role should be jointly considered in the 
opinion requesting role.  This research employs a weighting 
parameter λ to perform a weighted average between aggregated 
reputations and the existing QOR,s,e(true) value.  When λ is 0, no 
weight is given to reputations, and opinion request decisions are 
made using only previous experience according to Section 3.2.1.  
Conversely, when λ is 1, the Opinion Requester’s QOR(true) 
values are given no weight, instead, the Opinion Requester makes 
opinion requests based on an average of q-values received as 
reputations.  Reputation request rewards are multiplied by λ since 
reputations are only responsible for λ fraction of the opinion 
requesting decision.  Note that when an agent serves as a 
Reputation Provider, it provides reputations from its experience-
based QOR(true) values, excluding any reputations it may have 
received. 

4. Experiments 
Once rewards are associated with each trust-related decision as in 
Section 3.2, q-learning is performed.  Experiments are conducted 
to compare the resulting trust-strategy-learning technique against 
several standard strategies. 

4.1 Experimental Setup 
The ART Testbed parameters [10] for these experiments include 
client fee (f) of 100, opinion cost (cp) of 10, and reputation cost 
(cr) of 1.  The accuracy of generated opinions is governed by the 
parameters s* (related to appraiser expertise, the standard 
deviation of opinion error distribution) and α (determines the 
impact of the opinion-generating cost, cg).  For these experiments, 
s* equals 0.1 for all agents regarding all eras, and α is set to 5.0.  
In each experiment, the simulation assigns client paintings from 
three eras.  The parameter q, which determines the influence of 
previous client shares on current client shares, equals 0.5.  Agents 
are permitted to select cg values in one-unit increments between 
zero and ten (since ten is the opinion purchase price cp, 
investments larger than that amount are impractical). 

Table 1 displays the seven strategy variations compared.  The 
Naïve-Honest strategy requests opinions from all other agents in 
the system and provides very accurate opinions, investing cg = 10 
to generate each opinion.  This strategy is naïve in that reputations 
are not utilized, therefore none are requested, and default, 
optimistic reputations of 1.0 are provided to requesters.  The 
Naïve-Cheating strategy is similar to the Naïve-Honest strategy 
except that it provides very inaccurate opinions (investing cg = 0 
in the opinions it provides) and pessimistic reputations (0.0).  The 
Op-Learning-Honest strategy learns opinion requesting decisions 
from experience (Section 3.2.1) and opinion providing decisions 
as in Section 3.2.2, while requesting reputations from all agents 
and providing truthful reputations.  The Op-Learning-Cheating 

strategy behaves similarly to Op-Learning-Honest, but 
consistently provides pessimistic reputations of 0.0.  The Random 
strategy randomly makes decisions for each of the four decision 
types.  The two Learning strategies demonstrate the learning 
techniques described in this paper, one with a λ value of 0.0 
(learning opinion requesting decisions based on experience only), 
and the other using λ of 1.0 (learning opinion requesting decisions 
based on reputations only).  All Learning agents employ the same 
q-learning parameters for each learned decision: learning rate of 
0.5, discount factor of 0.0, and temperature, or degree of 
exploration, of 0.5. 

Table 1. Agent strategies. 

Strategy 
Name 

Opinion 
Req. 

Opinio
n Prov. 

Reputatio
n Req. 

Reputatio
n Prov. 

Naïve Honest request       
from all 

accurate    
(cg=10) none 1.0          

(δ = 1) 
Naïve 

Cheating 
request       
from all 

inacc.      
(cg=0) none 0            

(δ = -1) 
Op-Learning 

Honest 
learn by 

experience learn request       
from all 

truthful       
(δ = 0) 

Op-Learning 
Cheating 

learn by 
experience learn request       

from all 
0            

(δ = -1) 

Random random random random random 
Learning       
(λ = 0) 

learn by 
experience learn learn learn 

Learning       
(λ = 1) 

learn from 
reputation

s 
learn learn learn 

 

In each of ten experiments, a single Learning agent (λ=0 or λ=1) 
competes against five agents, all of a single strategy: Naïve-
Honest, Naïve-Cheating, Op-Learning-Honest, Op-Learning-
Cheating, or Random.  Each experiment of six agents is run for 
ten thousand timesteps (for three independent runs) to 
demonstrate strategy convergence.  Each agent’s performance is 
gauged in terms of converged, per-timestep earnings.  

4.2 Experimental Results 
Results from all ten experiments are shown in Figure 4.  In each 
experiment, per-timestep earnings for each agent converged 
within approximately the first one hundred timesteps.  In all cases, 
the Learning agent’s five opponents (all of like strategy) achieved 
per-timestep earnings which were statistically similar to each 
other; these earnings were averaged to arrive at the opponent’s 
average per-timestep earnings (white bars) shown in Figure 4.  
The opponents’ earnings are compared against the Learning 
agent’s earnings (black bars).  All differences between Learning 
agents and their opponents are statistically significant (α = 0.1). 

In the first pair of experiments, a Learning agent (λ=0 or λ=1) 
competes in a system with five Naïve-Honest agents.  The 
Learning agent increases its bank balance at nearly twice the rate 
of each Naïve-Honest agent.  Because the Learning agent 
purchases fewer reputations when λ=0 than when λ=1, the λ=0 
agent achieves slightly higher per-timestep earnings than the λ=1 
case, and its opponents’ earnings are slightly lower (failing to 
utilize reputations does not penalize the Learning agent, because 
its opponents are honest).  The Learning agent’s behavior 
converges to always requesting opinions from the Naïve-Honest 
agents, while investing little in the opinions it provides and, in the 
λ=0 case, rarely requesting reputations. 
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Figure 4. Average, per-timestep earnings for learning 
strategies (λ=0 and λ=1) versus opponents.   

In the second pair of experiments, a Learning agent (λ=0 or λ=1) 
competes against five Naïve-Cheating agents.  The Learning 
agent with λ=0 maintains per-timestep earnings slightly less than 
those of the Naïve-Cheating agents.  The Learning agent with λ=1 
maintains much higher earnings than the Naïve-Cheating agents; 
it makes use of its opponents’ pessimistic reputations, an accurate 
reflection of the opponents’ tendency to cheat.   

The third pair of experiments demonstrate that the Learning agent 
achieves higher earnings than its five Random strategy opponents 
in both the λ=0 and λ=1 cases.  The λ=1 Learning agent achieves 
higher per-timestep earnings than the λ=0 agent, but Random 
agents’ earnings are the same between the two cases.  The 
Learning agent succeeds by employing a mixed strategy for each 
of its four decision types. 

The fourth pair of experiments compares the Learning agent 
against five Opinion-Learning-Honest agents.  In both cases (λ=0 
and λ=1), the Learning agent maintains greater earnings than its 
opponents.  All agents learn to always request opinions and to 
provide opinions with accuracy that is both beneficial to 
competitors (to ensure repeated transactions) yet not too costly to 
generate.  Because their opponents naively always request 
reputations, the Learning agents provide randomly-accurate 

reputations.  As in the Naïve-Honest experiments, the Learning 
agent yields higher earnings when λ=0 than when λ=1 because 
the agent purchases fewer reputations in the λ=0 case.  

In the last pair of experiments, the Learning agent competes 
against five Opinion-Learning-Cheating agents.  When λ=1, the 
Learning agent earns lower earnings than its opponents, because it 
is misled by its opponents’ inaccurate reputations.  When λ=0, the 
Learning agent achieves earnings higher than its opponents, 
relying on the experience-based learning, rather than reputations, 
to decide which opinions to purchase.   

The experiments demonstrate that in only two cases (Learning 
λ=0 vs. Naïve-Cheating and Learning λ=1 vs. Op-Learning 
Cheating), the Learning agent earns less than its opponents.  
However, in both cases, adjusting the λ value (to λ=1 against 
Naïve-Cheating and to λ=0 against Op-Learning Cheating) allows 
the Learning agent to outperform its opponents.  Further, 
generalizations can be made about when certain λ values are 
beneficial: learning from experience (λ=0) achieves higher 
earnings when opponents tend to be trustworthy, while learning 
from reputations (λ=1) is beneficial when reputations accurately 
reflect opponent trustworthiness.   

5. Conclusions 
Experimental results demonstrate that learning trust decision 
strategies, either from experience or reputations, yields higher 
earnings than several static strategies in the ART Testbed domain  
Further, the variation in earnings of reputation-based learning 
(λ=1) vs. experience-based learning (λ=0) over different 
opponents demonstrates successful agents must be able to 
dynamically determine when to utilize reputations vs. experience 
in making trust decisions.   

This research yields a domain independent contribution by 
enumerating decisions—and their resulting complexity—that 
make up a trust decision strategy (who to trust, how trustworthy 
to be, what reputations to believe, and how truthful to be in telling 
reputations).  Other contributions of this work are adaptable to 
various types of problems in which trust must be evaluated and 
reputations may be exchanged.  The work identifies 
interdependencies (which exist since potential partners can 
influence each other by exchanging reputations about an agent)    
between those decisions.  By introducing assumptions to ease 
these interdependencies, rewards are attributed to each decision to 
facilitate reinforcement learning of trust decision strategies.  
Reward allocation can be adapted to other domains by adjusting 
transaction costs and earnings associated with domain-introduced 
interdependencies. 

Approaching the complexity of learning trust decision strategies 
requires the introduction of numerous assumptions.  However, 
these assumptions pave the way for future investigation, which 
will seek to relax the independence assumptions of Section 3.2 to 
improve the overall rewards a learning agent achieves.  The 
authors plan to use learning techniques to help an agent learn the 
best λ, the degree of reliance on experience- versus reputation-
based trust, relative to each opinion-requesting decision.  The 
performance of the strategy-learning techniques described in this 
research requires further analysis against more advanced 
opponent agents with dynamic strategies.  Also, more agent 
combinations must be tested—including agent self-play—since 



trust strategies may yield different results as the composition of 
the system (strategies and numbers of opponents) change.  Since, 
at the time of writing, the ART Testbed is still awaiting its first 
competition, sophisticated strategies have yet to be uncovered for 
comparison.  However, the experiments conducted in this research 
will serve as a benchmark for future progress.   
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