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Consensus in blockchains
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Summary
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Liveness
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Block 20 Block 21 Block 22 Block 23

All transactions are eventually processed.



Safety: Case 1 
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Safety: Case 2
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From consensus to 

agreement
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Network 

▪ A distributed system runs on top of a graph: 

▪ A vertex hosts a process that can do local computations

▪ An edge is a communication channel where processes can send and receive messages 

(generally bidirectional) 

▪ Synchrony model: synchronous, partially-synchronous, or asynchronous (more on that later)

▪ The network is often assumed to be connected sufficiently often

▪ Any two processes can eventually communicate

▪ Messages can be lost, delayed or tampered with

N.B.: we generally use node, process and host indistinctively

𝑝0 𝑝1

𝑝2

𝑝3



Nodes
▪ The system consists of honest nodes and of a limited proportion of faulty nodes. 

▪ Correct nodes always follow a specified protocol 

▪ Byzantine nodes can deviate arbitrarily from a protocol

▪ due to hardware or software faults 

▪ or because of a malicious adversary

▪ Consensus algorithms sometimes assume that nodes might crash

▪ In consensus algorithms, we often focus on: 

▪ Omission faults: not sending a message 

▪ Equivocation: sending conflicting messages to different nodes 
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Elementary fault classes
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Basic Concepts and Taxonomy of Dependable and Secure Computing. 

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004



Tree representation of fault classes
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Basic Concepts and Taxonomy of Dependable and Secure Computing. 

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004



Malicious faults
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Basic Concepts and Taxonomy of Dependable and Secure Computing. 

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004



Cryptographic assumptions

• Consensus algorithms have first been designed assuming authenticated links

• i.e., a message received on a link has been sent by its announced sender

• does not make assumption on the computational power of an adversary

• Hardest settings: more complicated and less efficient solutions

• We consider that processes have access to:

• An asymmetric encryption scheme

• A signature scheme

• A hash function

13



From permissioned to permissionless, and back

Permissioned

▪ Closed membership

▪ Deterministic finality

▪ Requires attacking 33%

▪ High performance, but low scalability

14

Permissionless

▪ Open membership

▪ High transparency

▪ Requires attacking 51%

▪ Probabilistic finality

▪ Low performance, but high scalability

The first consensus algorithms were permissioned: a fix group of nodes run a protocol.   



Hyperledger

▪ Lead by IBM, supported by > 300 organizations

▪ Five major projects

▪ Fabric – PBFT

▪ Burrow

▪ Sawtooth

▪ Indy

▪ Iroha - BChain



Formal definition of consensus

▪ A distributed computing abstraction with two functions: propose(v) and decide()

▪ Each process has an initial value that it proposes from some set V. 

▪ All correct processes must decide a single value.

▪ Termination: every correct process eventually decides some value

▪ Validity: If a process decides v, then v was proposed by some process. 

▪ Integrity: No process decides twice. 

▪ Agreement: No two correct processes decide differently. 

16

Termination and Agreement are the 

difficult ones



The FLP Impossibility

▪ Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. 
"Impossibility of distributed consensus with one faulty process." Journal 
of the ACM (JACM) 32.2 (1985): 374-382.

▪ Fundamental result: there is no deterministic algorithm for solving
consensus in asynchronous networks with at least one process that might
crash.

▪ Algorithms have to circumvent this impossibility. How? 

1. Assume that the network will be synchronous at some point

2. Use randomized algorithms



Understanding FLP

▪ Solving consensus becomes difficult when the network has periods of 
asynchrony, or when processes are Byzantine A

▪ Blockchains have to deal with both! 
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Seminal consensus algorithms
▪ Synchronous network and crash faults:

▪ Trivial solution

▪ Synchronous network and Byzantine faults: 

▪ Lamport’s OM and SM protocols: N > f, 𝑂(𝑁𝑓+1) messages, f+1 latency

▪ Asynchronous network and Byzantine faults: 

▪ Ben-Or’s randomized protocol: N > 3f+1, 𝑂(𝑛2. 2𝑁) messages, 𝑂(2𝑁) latency

▪ Those protocols are very heavy. In practice, permissioned blockchains assume a 
partially synchronous model: 

▪ Maintain safety during asynchrony: N > 3f+1

▪ Ensure liveness during synchrony

22
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L1 L2

v1

…

…

OM(f)

OM(f-1)

…

…

here Li decides on its own v’1

as a lieutenant of L1

vi

Li

v2
vn-1

Li receives vi immediately 
from the commander

Ln-1

Ln-1LiL2

Global message pattern 
in the system

degree in this tree is reduced by 1
in every next level

OM: Byz. Agreement in the Unauthenticated and Sync. Model
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Randomized Byzantine agreement
r=1; decided:=false
do forever

broadcast(N,r,v)
await (n-f) messages of the form (N,r,*)
if (>(n+f)/2 messages (N,r,w), w=0,1) then /* enough support for a */

broadcast(P,r,w) /* specific proposal 0 or 1 */
else broadcast(P,r,?) /* otherwise no proposal (don’t know) */
if decided then STOP
else await (n-f) messages of the form (P,r,*)
if (>f messages (P,r,w), w=0,1) then

v:=w
if (>3f messages (P,r,w)) then

decide(w)
decided:=true

else v:=random(0,1)
r:=r+1

notification phase

proposal 
phase

decision 
phase

notification 
phase
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Number of replicas in the asynchronous model

Not all replies might arrive in a bounded amount of time

– Worst case: (N-f) values

Among those replies, f might be incorrect (Byzantine)

– Worst case: (N-f) – f equal answers

To be convinced that those answers are the right ones, we need 

(N-f)-f > f.

f Byzantine

N replicas

ByzantineCorrect Missing replies

N

𝑁 ≥ 3𝑓 + 1

N-f 

N-2f f
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Q: Byzantine Quorum size

Decide that an object can only have value V 
upon receiving Q equal answers. 

What value is possible for Q?

There must be at least Q correct replicas 
(liveness):  

𝑄 ≤ 𝑁 − 𝑓

Any two sets of Q+ replicas must intersect in at 
least 1 correct replica (safety): 

2𝑄 − (𝑓 + 1) ≥ 𝑁

QQ
f 

𝑄 ≥
𝑁 + 𝑓 + 1

2

f Q



Agreement

▪ One node starts with a binary value. Each of the remaining nodes decide a binary value. 

▪ Termination: every correct process eventually decides a value

▪ Validity: If the source is correct, then all correct processes agree on the value it proposed.

▪ Agreement: All correct processes agree on the same value

▪ Integrity: No correct process decides twice.

N.B.: 

▪ If the source is faulty, the correct processes can agree on any value. 

▪ It is irrelevant on what value a faulty process decides. 

▪ This problem is also called Terminating Reliable Broadcast. 
27

The consensus abstraction assumes that all processes propose a value. 

In practice, blockchains implement agreement, a variant of consensus. 



Equivalence between consensus and agreement
▪ Assume that we can solve agreement. 

▪ For consensus, each node proposes a value

▪ We run an agreement protocol for each node to agree on the value it proposed

▪ We can chose the majority outcome to all agree on a value (consensus) 

▪ Assume that we can solve consensus: 

▪ For agreement, one node N broadcasts a value. 

▪ Nodes can wait a limited amount of time, and propose the value they have received from N 
to each other (or a default value otherwise)

▪ Using consensus, we can all agree on the same final value (agreement). 

28
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From agreement to State 

Machine Replication

2

9



From agreement to State Machine Replication

▪ With agreement, nodes can agree on a single (binary) value 

▪ We need more to build a distributed ledger: 

▪ Interaction with clients 

▪ Need to agree on a sequence of values and on their order  

▪ State Machine Replication is the abstraction that provides this functionality

30
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State Machine Replication (1/2)

• Fault-free centralized operation

o a single server maintains a state machine 

(e.g., a data store)

o clients issue requests to the server 

(e.g., reading and writing)

o the server serializes and executes the requests

• In the face of faults or poor performance

o replicate the server: State Machine Replication (SMR)

o have the replicas execute the same client requests in the same order

o so servers have to achieve consensus on the log of client requests
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State Machine Replication (2/2)
• Potential types of failures:

– stopping / pausing processors

– malicious (due to explicit attacks or hardware/software errors)

• Models are usually assumed to be asynchronous 

– sometimes weaker timing assumptions

– may lead to livelock

• Four seminal algorithms:

– Paxos (crash-recover faults)

– Raft (crash-recover faults)

– PBFT (Byzantine faults)

– Zyzzyva (Byzantine faults) 
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From Consistent to Reliable Broadcast

Validity: If a correct process p 

broadcasts m then all correct processes 

eventually deliver m.

No duplication: Every correct process 

delivers a message at most once. 

Integrity: If a correct process delivers m 

with sender p, then m was broadcast by 

p. 

Consistency: If a correct process 

delivers m and another correct process 

delivers m’ then m=m’. 

Totality: If m is delivered by a correct 
process, then all correct processes 
eventually deliver m.  

Consistent

Reliable

𝑝0

𝑝1

𝑝2

𝑝3

Send Echo

(2f+1) Readys

✓

✓

✓

✓

Ready

Q Echos ou (f+1) Readys

With consistent broadcast, a 
Byzantine sender might 
cause only a subset of 

correct processes to deliver.
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Reliable broadcast (𝑁 ≥ 3𝑓 + 1) 𝑝0

𝑝1

𝑝2

𝑝3

Send Echo

(2f+1) Readys

✓

✓

✓

✓

Ready

Q Echos ou (f+1) Readys

Ready 
amplication
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Proof of totality

• If a correct party has r-delivered m, it has received a 

READY message with m from 2t+1 distinct parties.

• Therefore, at least t + 1 correct parties have sent a 

READY message with m, which will be received by all 

correct parties and cause them to send a READY 

message as well. 

• Because n − t ≥ 2t + 1, all correct parties eventually 

receive enough READY messages to terminate.
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Total order broadcast: reliable broadcast + total order

Validity: If a correct process p broadcasts m then all correct processes 
eventually deliver m.

No duplication: Every correct process delivers a message at most 
once. 

Integrity: If a correct process delivers m with sender p, then m was 
broadcast by p. 

Agreement: If a message m is delivered by some correct process, then 
m is eventually delivered by all correct process. 

Total order: Suppose that p and q are two correct processes that 
deliver m1 and m2. If p delivers m1 before m2, then q delivers m1 
before m2. 
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TOB Broadcast is equivalent to Consensus

• Total-order Byzantine broadcast is also equivalent to Byzantine 

consensus.
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PBFT (1/5): assumptions

• Handle Byzantine node failures of replicas

• Adversary cannot break collision-resistant hashes, encryption, signatures

• Clients may also be faulty

• Use message digests and signatures 

• Provide safety: linearizability (does not depend on synchrony) 

• Provide liveness: assume weak synchrony: 

- message delays grow at most linearly with time

- system is synchronous for periods of time 
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PBFT (2/5): views and data

• At every moment, there is a view

– one replica is the primary

– the other replicas are backups

– view number v has primary p = v mod n (predetermined)

– when the primary supposedly fails, change view

• Replica data structures
– state machine

– view number

– message log

– checkpoints 
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PBFT (3/5): similarities

• Algorithm structure

– agreement protocol

– checkpoint protocol

– view-change protocol

• Checkpoints

– maintain history

– stable checkpoints: truncate history
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PBFT (4/5): differences
• PBFT: 

– achieves consensus on request order with a 3-phase protocol among

replicas

– “a correct server only emits replies that are stable”

• Speculative protocols (Zyzzyva, and others):

– faster speculative execution with larger burden on the clients

– “a correct client only acts on replies that are stable”
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PBFT (1/8): outline

1. Client sends request to the primary (with logical time stamp)

2. Primary assigns sequence number and broadcasts request to backups

3. Replicas execute the request and reply to the client

4. Client waits for f+1 replies with the same result

…

Primary (of view v)client

backups

request

(request,v,n)replies
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PBFT (2/8): normal operation
• Normal operation = primary does not fail

• Three-phase protocol (three types of messages):

– pre-prepare + prepare phases: totally order requests in the same view

– prepare + commit phases: totally order requests across views

• All three types of messages contain a view number and a request number

sender(s):          client primary     backups   replicas    replicas
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PBFT (3/8): accepting a pre-prepare
• A backup accepts a pre-prepare message if:

– it is in the same view

– it has not accepted a pre-prepare with the same view and sequence number

• It then enters the prepare phase and broadcasts a prepare message

• The predicate prepared(m,v,n,i) is true if replica i has entered into its 
message log:

– the request

– the corresponding pre-prepare message

– 2f corresponding prepare message from other backups (Byz quorum)

• Assertion: if prepared(m,v,n,i) is true for a correct replica i, then
prepared(m’,v,n,j) is false for any m≠m’ and any correct j

unique request in same view with same sequence number across replicas
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PBFT (4/8): commit
• When prepared(m,v,n,i) is true, replica i broadcasts a commit message

• Predicate committed(m,v,n) is true if prepared(m,v,n,i) is true in 
at least f+1 correct replicas

• Predicate committed-local(m,v,n,i) is true if prepared(m,v,n,i) is true and 
replica i has accepted 2f+1 commit messages (then it executes the request)

• Assertion: if committed-local(m,v,n,i) is true in some correct replica i,
then committed(m,v,n) is true

• Consequences:

– correct replicas agree on the sequence numbers of requests even if they
commit locally in different views

– a request that commits locally at a correct replica, does so in at least
f+1 correct replicas (any Byz. quorum intersects with this set)
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PBFT (5/8): checkpoints
• Checkpoint:

– state after the execution of a fixed multiple of K requests

• Stable checkpoint: 

– a checkpoint with a “proof”

• Replicas broadcast checkpoint messages with the sequence number of the 
last request represented in the checkpoint plus the digest of the state

• Proof of correctness of a checkpoint: 

– 2f+1 matching checkpoint messages

• Upon a checkpoint becoming stable, discard history:

– discard previous checkpoints and checkpoint messages

– discard all messages related to earlier requests
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PBFT (6/8): overview of view change

• If a client does not receive f+1 identical replies soon enough, 

it broadcasts its request to all replicas

• A replica then

– re-sends its reply to the client, if it has already processed the request

– otherwise it sends the request to the primary

• If the primary then does not broadcast the request to the backups, 

it is suspected of failure by the replicas

• The backups then initiate a view change

• The new view is announced by the new primary 
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PBFT (7/8): view change
• When in view v the timer of a backup expires, it broadcasts a 

view-change message with parameters:

– the new view number v+1

– the sequence number n of the last stable checkpoint s it knows

– a set of 2f+1 checkpoint messages proving the correctness of s

– for every request prepared at the backup with request number higher than 
n, the corresponding pre-prepare message and 2f prepare messages
(“the message log after the last stable checkpoint”)

s (n)

stable checkpoints            potentially unstable checkpoints
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PBFT (8/8): new view
• When the primary of view v+1 receives 2f view-change messages, 

it broadcasts a new-view message with parameters:

– the new view number v+1

– the set of view-change messages it has received

– a set of pre-prepare messages derived from the view-change messages 
received to cause requests that may be missing at some replicas to be 
executed

• The primary then enters view v+1  

• When a backup receives a new-view message, it catches up:

– it derives from the pre-prepare messages in it and from its own 
message log on which of these messages it still has to act

– it may have to retrieve requests or checkpoints from other replicas



Optimizing PBFT

▪ Use MAC instead of signatures

▪ Batch requests 

▪ Use weighted voting (PoS?)

▪ Etc.

▪ But the message pattern is what is really limiting performance. 



Wheat [Sousa and Bessani, SRDS 2015] 

▪ 𝑁 = 3𝑓 + 1 + ∆ : number of nodes 

▪ 𝑁𝑣 = σ𝑉𝑖 = 3𝐹𝑣 + 1 : sum of all the votes, 𝐹𝑣 votes can be discarded

▪ 𝑄𝑣 = 2𝐹𝑣 + 1: quorum weight

▪ Binary weight distribution: either 𝑉𝑚𝑎𝑥 (for 𝑢 fast nodes) or 𝑉𝑚𝑖𝑛

▪ 𝑁𝑣 = uVmax + N − u Vmin

▪ 𝐹𝑣 = (∆ + 𝑓)𝑉𝑚𝑖𝑛 = 𝑓𝑉𝑚𝑎𝑥

▪ 𝑉𝑚𝑎𝑥 =
∆+𝑓

𝑓
𝑉𝑚𝑖𝑛

▪ With 𝑉𝑚𝑖𝑛 = 1, 𝐹𝑣 = ∆ + 𝑓 , 𝑉𝑚𝑎𝑥 =
∆+𝑓

𝑓
=

∆

𝑓
+ 1, and 𝑢 = 2𝑓

▪ A minimal quorum needs 2𝑓 + 1 votes and more than 𝑄𝑣 weight.
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Some nodes have a better network than others: let them 

accelerate the decision process. 



Performance of PBFT

▪ 𝑁 ≥ 3𝑓 + 1

▪ 3 network latencies to commit a message

▪ 𝑂 𝑁2 message complexity

▪ View-change is expensive: 𝑂 𝑁2 messages

▪ Limited scalability with the number of nodes

▪ Large number of messages = limited throughput



HotStuff: Pipelining 

▪ Linear communication pattern

▪ Rotating leader: no view change required

▪ Network latency: from 3 to 8

▪ Higher throughput

▪ Pipelining

53



Mir-BFT: Multi-leader

▪ Requests are affected to buckets

54



HoneyBadgerBFT
[Miller et al., CCS 2016]

• Implements total order using Asynchronous Common Subset (ACS) 
[Ben-Or et al., PODC 1994; Cachin et al., CRYPTO 2001]

• Implements ACS, in turn, 
using Reliable broadcast 
(RBC) and asynchronous 
binary Byzantine 
agreement (ABA)



Asynchronous Common Subset (ACS)

• The goal
• Every node proposes some transactions

• Agree on the superset of all the proposed transactions



Asynchronous Common Subset (ACS)

• RBC: Reliable broadcast
• Every node proposes some transactions 

• Randomly from the transaction pool

• ABA
• Agreement on the proposed transactions by each node

• N parallel ABAs



Other scalability techniques

• Hierarchical consensus
• Steward, by Amir, Yair, et al. "Scaling byzantine fault-tolerant replication 

towide area networks." DSN. IEEE, 2006.

• My Infocom 2024 paper

• Partitions/Sharding
• Eyrie/Volery

• Bezerra, Carlos Eduardo, Fernando Pedone, and Robbert Van Renesse. 
"Scalable state-machine replication." DSN. IEEE, 2014.

• Trusted components 
• Require 2f+1 instead of 3f+1 replicas, and less communication phases 

• Damysus, Eurosys 2022. 



Why hybrid blockchains?

• Permissionless
• Open network (anyone can join)
• Server scalability (large number of servers)
• Bad performance (poor client scalability, long latency)

• Permissioned
• Relatively closed network (need to know the identities of all the nodes)
• Good performance (large number of concurrent clients, low latency)
• Poor server scalability

• Hybrid blockchains
• Combine both and enjoy the benefits of both
• But it is challenging!



Hierarchy vs partition-based SMR

• Number of nodes that are involved
• Hierarchy: all the nodes still need to learn the results

• Partition: only those nodes that are involved in the relevant partitions

• Total order of requests
• Hierarchy: yes and straightforward

• Partition: only order those requests that might create conflicts…

• Bottleneck
• Hierarchy: group communication

• Partition: operations that involve multiple partitions



An overview

Phase 1: Membership Management Phase 2: Group Consensus Phase 3: Global Order/Validation Phase 4: Global Stabilization

Client
Requests

View change in 
permissioned 
blockchains

PoW in 
permissionless 

blockchains

1

2

4

3

1

3
5

6

[Validate?]

Collect  
votes from
validators 

validators

Broadcast the final order

v0
v1
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