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Chapter 1

Introduction

1.1 Need for Self-Sovereign Identity

Hardly anyone can live without having their identity. Identity is the one that defines

who we are, something which helps describe the uniqueness of anyone. In modern

society, identity is commonly related to social security cards, driver’s licenses,

and other state-issued credentials. Centralized controlled by the government is the

definition among these elements.

Along with the rise of digital age, identity also redefines itself. Identity in the di-

gital world is split into multiple domains. Our Facebook identity does not correlate

directly to our Twitter identity or to most other domains. Identities are scattered,

vary from one Internet domain to another. Even though this kind of identity is not

exactly similar like the previous definition (centrally controlled by a single party

/ government), it is still almost identical in a way that users are locked in to an

authority who can deny their identity or even confirm a false identity. This phe-

nomena ignites a problem where users are not in control of their identity.

This issue gives a chance for a new concept called self-sovereign identity (SSI)

to arise. Self-sovereign identity is a decentralized identity concept which capable

of authenticating statements, without any central organization, point-of-failure or

possibility of data tracking [1]. Self-sovereign identity will be able to give users

full control over their identity. In a simple words, users can store their identity data

on their devices, and decide whether to give access to anyone who is willing to use

it or not. In addition, there will be no need for a centralized storage since each user

database is distributed among themselves. A high possibility to get this concept

popular is also present with the introduction of the European Union General Data

Protection Regulation [2].

Johan Pouwelse and Martijn de Vos in [1] proposed a SSI design where the user

data are encrypted and never leave the device/domain. Any operation which re-

quire the data, such as authentication, will require homomorphic encryption on the

encrypted data. This encrypted data should be securely protected and the domain

should be trustworthy. Simply put, security is the main thing on this implementa-
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tion.

Since security is important, on designing a system that deal with sensitive in-

formations, one need to ensure that the system is able to protect the information

and property from unauthorized entity without sacrificing the system’s functional-

ity. The study dedicated to protect information from unauthorized access, loss or

damage is called information security [3].

In information security, one way to protect an information is by using cryp-

tographic techniques. A cryptographic technique commonly consist of a crypto-

graphic algorithm and a key. On designing a cryptographic algorithm, one should

follow Shannon’s Maxim which says one should design systems under the assump-

tion that the enemy will immediately gain complete knowledge with the design [4].

In another word, on a secure cryptographic technique, the only thing which need to

be kept secret is the key. The algorithm itself is supposed to be publicly available

without affecting the system security. This principle should also be implemented

in designing self-sovereign identity. The encrypted data in the device should be

protected by a key, verified by a secure authentication scheme.

The most common way to stored the key is by using a non volatile memory

(NVM). NVM is a type of computer memory that keep intact its information even

after turned off. An example of product which implement this approach is the

debit card. It uses its chip to store information. Unfortunately, this NVM is prone

to physical attack. Since the key is permanently stored in the memory, an attacker

can use some technique to clone the memory, such as microprobing [5]. Attacker

may also use a side channel information to retrieve any information about the key.

There are numerous other techniques on this kind of attack. This attack can be even

worse if someone that knows the system design is involved. Due to this problem,

more secure, tamper-evident, tamper-proof solutions need to be presented.

1.2 Rise of PUF as a Security Solution

In 2001, Physical Unclonable Function (PUF) comes in handy as an inexpens-

ive and yet effective security solution to overcome the mentioned problem above

by a different way of generating and processing secret keys in security hardware.

It was introduced by Pappu [6]. Unlike cryptographic algorithm security which

usually rely on hard-to-solve mathematical problem, PUF ideas stems from using

hardware features designed to utilize the physical random nanoscale disarray phe-

nomena [7]. This disarray phenomena can be used as a derivation of keys without

having to keep any security-critical information explicitly. This physical random-

ness is unclonable, even by the original manufacturer due to manufacturing pro-

cess variations. Furthermore, since the secrets can only be produced when the PUF

device is turned on, active manipulation of circuit structure will cause dysfunction

of challenge-response mechanism and destroy the secret.

Related to self-sovereign identity concept, [1] present an idea to use PUF and

biometric-based authentication to securely protect the data in the self-sovereign
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identity. Figure 1.1 shows the detailed technology stack in their trust creation pro-

posal on how to build trust in the blockchain era.

Figure 1.1: Detailed technology portfolio for trust creation in the blockchain age

[1]. As shown in the bottom of this figure, Physical Unclonable Functions and

biometric-based authentication are utilized to secure the self-sovereign identity.

An example of PUF type is SRAM PUF. SRAM, stands for static random-access

memory, is a type of semiconductor memory that uses bistable latching circuitry

(flip-flop) to store each bit. When a static RAM (SRAM) is turned on, the memory

cells have an undefined state [8]. Since the initialized bits of SRAM is random,

these bits are a good candidate for PUF. The value of these bits itself is determined

by the SRAM cell which consists of two cross-coupled inverters along with two

access transistors. This concept was firstly introduced by Guajardo [9]. In order

for SRAM to be used as a cryptographic security key, SRAM PUFs need to have

certain characteristics such as the key generated by every SRAM should be reliable

and unique. Reliable means the generated key should always be consistent, while

unique refers to there should be no correlation between one device or another.

Unfortunately, SRAM PUF is also problematic since it contains noise in its bit

value. Many proposed solution has emerged, but it seems that its availability is

still limited, expensive or only exclusive for some companies. SRAM PUF also

consider as a weak PUF, which means that it has limited challenge-response pairs.

Due to limited challenge-response pairs, it is argued as unsuitable for authentica-

tion scheme, only appropriate for key generation or random number generator [7].

1.3 Problem Statement

As mentioned above, SRAM PUF still has some problems that need to solve. A

future where anyone can have their own SRAM PUF without having to buy from

specific company is a wonderful possibility. If everyone can just buy an SRAM

from the market and use it on top of an open system, this will revolutionize the

security industry. This objective describes the motivation for this thesis.

The goal of this thesis is to build an open system where anyone can use their

own SRAM as a PUF solution and provide a secure key storage and data protec-
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tion function. The system will include a SRAM’s stable bits analyzer, test system

to check the SRAM’s quality as a PUF, and a scheme of key storage and authentic-

ation as the main purpose of PUF itself.

As an attempt to reach this goal, several steps are expected to be done:

1. Get multiple type of SRAM available in the market

2. Investigate the characteristic of each SRAM

3. Investigate and choose the embedded platform where the system will be

build

4. Design a system which able to determine the stable bits of SRAM automat-

ically

5. Search and analyze existing secure key storage and data protection methods

using SRAM PUF

6. Propose a system to enable secure PUF key storage and data protection using

off-the-shelf SRAM

7. Construct the complete software, which contained the error correcting code

8. Evaluate the solution by experimenting on SRAM and conducting perform-

ance analysis

9. Explore possible improvements on the system for a future research

1.4 Contributions

This thesis provides the following contributions:

1. Analysis of time difference, voltage difference and neighbor values on the

stability of SRAMs 23LC1024 and CY62256NLL

2. Result comparisons between two methods on looking for stable bits: data re-

manence and neighbor stability analysis on SRAMs 23LC1024 and CY62256NLL

3. A system to enable strong PUF authentication and key storage scheme using

SRAM

1.5 Outlines
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Chapter 2

Introduction to Security

2.1 Secure System Necessity

How valuable is our data? How much would company for accessing those in-

formation? These questions might be silly but if we consider that there are many

companies which thrived using our data (e.g. Facebook, Twitter, and Uber), we

should reconsider how much should we value our data. I know these data if we

value each element might not worth much, most will worth significant when these

data is combined together to bring a more insight information. But what about

the sensitive data which its value can worth millions of dollars, such as the bitcoin

key? In [10], the highest bitcoin address is worth 1.4B US$ and there are 513,562

addresses which has value more than 10000 US$. Due to their high values, these

data, the key to these addresses, must be protected.

Before going further, we should understand first what kind of attacks possibly

affecting these data. Similar like in the physical world, in the digital world, ad-

versaries’ intention can be either mischievious, non-malicious or accidental. Some

example of mischievious activities are stealing information and modifying the data.

Accidental can happen due to human error. These three types of adversaries’ in-

tention can lead to a significant number of attacks and threats.

Now, two questions are arised. Is there are a way that guarantee 100% of these

data protection? Is there any bullet-proof secure system? Unfortunately, there is no

such thing as a 100% secure system. Fortunately, there are ways to design a system

to be as secure as possible in a limited scope, usually defined as secure ’from who’

and ’from what’. According to [11], computer security is ”the protection of the

items you value, called the assets of a computer or a computer system.” In the

scope of data mentioned before, the assets are the bitcoin keys and addresses.

To help defining a secure system, common security requirements are mentioned.

According to [12], there are four elements on common security, which are:

• Confidentiality: a piece of information should be accesible only to an au-

thorized users. For example, an encrypted data can only be decrypted by the

secret key owner.
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• Authentication: assurance of the sender of a message, date of origin, data

content, time sent, data information, etc. are correctly identified.

• Integrity: any assets can only be modified by an authorized subjects. For

example, data should be keep intact during transmission

• Non-repudiation: a subject should be prevented from denying previous ac-

tions. For example, a sender cannot deny the data which it sent.

2.2 Cryptography

One way to achieve these four security requirements is by using cryptography. In

traditional definition, cryptography can be defined as the art of writing or solving

codes [13]. But this definition is inaccurate to use nowadays because instead of

depending on creativity and personal skill when constructing or breaking codes,

the modern cryptography focus their definition using science and mathematics.

According to [14], modern cryptography can be defined as ”the scientific study

of techniques for securing digital information, transactions, and distributed com-

putations.” The algorithm which use cryptography as their main point is called

cryptographic algorithm.

Since the birth of cryptography, its main concerned is usually related on se-

curing communication which can be achieved by constructing ciphers to provide

secret communication between parties involved. The construction of ciphers to en-

sure only authorized parties also can be called as encryption schemes. There are

two types of cryptographic algorithm, symmetric and asymmetric algorithm. Sym-

metric, also known as private key encryption or private key cryptography, requires

the same key for encryption and decryption. Meanwhile in asymmetric algorithm

(can be referred as public key encryption or public key cryptography), there are

two keys utilized; private key and public key. Public key is utilized for encryption

and private key is used for decryption. One of the main advantage of symmetric en-

cryption over asymmetric encryption is it requires less computational power which

make it suitable to use in embedded devices. Further explanation on symmetric

encryption algorithm will be provided in the next chapter.
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Chapter 3

Related Work

3.1 PUF

A physical unclonable function is an entity that utilize manufacturing variability

to produce a device-specific output. The idea to build PUF arise from the fact that

even though the mask and manufacturing process is the same among different ICs,

each IC is actually slightly different due to normal manufacturing variability [7].

PUFs leverage this variability to derive secret information that is unique to the chip.

This secret can be refer as a silicon biometric. In addition, due to the manufactur-

ing variability that defines the secret, one cannot manufacture two identical chips,

even with full knowledge of the chips design. PUF architectures exploit manufac-

turing variability in multiple ways. For example, one can utilize the effect of gate

delay, the power-on state of SRAM, threshold voltages, and many other physical

characteristics to derive the secret.

Due to this feature, PUFs are a promising innovative primitive that are used for

authentication and secret key storage without the requirement of secure hardware.

Currently, the best practice for providing a secure memory or authentication source

in such a mobile system is to place a secret key in a nonvolatile electrically erasable

programmable read-only memory (EEPROM) or battery- backed static random-

access memory (SRAM) and use hardware cryptographic operations such as digital

signatures or encryption.

There are two main parts of PUF, physical part and operational part. Physical

part refers to a physical system that is very difficult to clone due to uncontrollable

process variations during manufacturing. Operational part means a set of chal-

lenges (PUF input) Ci has to be available to which the system responds with a set

of sufficiently different responses (PUF output) Ri. This combination of challenge

and response is called challenge-response-pair (CRP).

Ri < −PUF (Ci) (3.1)

The common application on using PUF usually requires two phases; the first

phase is called enrollment and the second one is usually referred as verification.
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In enrollment, a number of CRPs are gathered from a PUF and then stored. In veri-

fication phase, a challenge from the stored CRPs is given to the PUF. Afterwards,

the PUF response from this challenge is compared with the corresponding response

from the database. The response is considered to be valid if there’s a CRP from the

stored CRPs related to these challenge and response.

According to [7], to be qualified as PUF, a device should fulfilled several char-

acteristics below :

• Reliable: A response to the same challenge should be able to be reproduced

over time and over various range of conditions.

• Unpredictable: A response to a challenge on a PUF device should be un-

related to a response to another challenge from the same device or the same

challenge from different device.

• Unclonable: Challenge-response pairs mapping of a device should be unique

and cannot be duplicate.

• Physically Unbreakable: Any physical attempts to maliciously modify the

device will result in malfunction or permanent damage.

3.1.1 PUFs Classification

Based on the number CRPs, PUFs can be divided into two categories:

• Strong PUFs

Strong PUFs can be identified by having large number of CRPs. Strong

PUFs typically used for authentication.

• Weak PUFs

Contrary to strong PUFs, weak PUFs only have a small number of CRPs.

Weak PUFs commonly used for key storage.

Beside number of CRPs, PUFs can also categorized based on their physical

design. There are two major category, extrinsic and intrinsic.

Extrinsic means that it need extra hardware added to the PUF component. There

are two subcategories in extrinsic PUFs, non electronic and analog electronic PUFs.

Some example in non electronic PUFs are optical PUF, paper PUF, CD PUF, RF-

DNA PUF, magnetic PUF, and acoustic PUF. Some design instances in analog

electronic PUFs are VT PUF, power distribution PUF, coating PUF, and LC PUF.

In intrinsic, the PUF component has to be available naturally during the man-

ufacturing process. In addition, PUF and the measurement equipment should be

fully integrated in intrinsic PUF. There are two subcategories in intrinsic PUFs,

delay based and memory based PUFs. An example of delay based PUF is arbiter

PUF. The main principle of arbiter PUF is to introduce a digital race condition

on two paths on a chip and have an arbiter circuit to decide which one won the

race. As in memory based PUFs, some examples of this design are SRAM PUF,
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butterfly PUF and latch PUF. SRAM PUF utilized the random physical mismatch

in the cell caused by manufacturing variability determines the power up behavior

(can be zero, one, or no preference). Butterfly PUF use the effect of cross coupling

between two transparent data latches. Using the clear functionalities of the latches,

an unstable state can be introduced after which the circuit converges back to one of

the two stable states. In latch PUF, the concept is based on using two NOR gates

which are cross coupled. These gates will converge to a stable state depending on

the internal mismatch between the electronic components.

3.1.2 Hamming Distances as an Identification Helper

As explained before, PUF main purpose is dedicated for identification, shown by

having a device specific output. In PUF, hamming distance is commonly use as

a way to help defining this idea. Hamming distance itself is the number of posi-

tions at which the corresponding symbols are different on two equal length strings.

There are two types of hamming distance utilized, intra-chip and inter-chip ham-

ming distance. Inter-chip hamming distance is the distance between two responses

resulting from applying a challenge once to two different PUFs device. Intra-chip

hamming distance refers to difference between the two responses resulting from

applying a challenge twice to a PUF device [15]. To ease the identification pur-

pose, fractional hamming distance is also introduced. Fractional hamming distance

is the number of differences between two strings divided by the length of the bit

strings. In ideal PUFs, the intra-chip fractional hamming distance (HDintra) is 0%

and inter-chip fractional hamming distance (HDinter) is 50%. Due to noises, nor-

mally PUF devices has HDintra ≤ 10% and HDinter 50%. The identification goal

will not be achieved if there is an overlap between HDintra and HDinter [16]. Over-

lap will happen if the HDintra is too large and HDinter is too small, e.g. HDintra is

35% and HDinter is 30%.

3.1.3 Helper Data Algorithms and Fuzzy Extractor

There are two issues if PUF raw responses is used as a key in cryptographic prim-

itive. First, both weak and strong PUFs rely on analog physical properties of the

fabricated circuit to derive secret information. Naturally, these analog properties

have noise and variability associated with them. This can be a problem due sensit-

ivity of cryptographic functions on noises of their inputs. Another issue is the PUF

raw responses usually are not uniformly distributed, which makes it an unqualified

as a cryptographically secure key. These two issues can be solved using Helper

Data Algorithm (HDA). One can also referred Helper Data Algorithm as fuzzy

extractor since both are capable of converting noisy information into keys usable

for any cryptographic application [17] [18].

Fuzzy extractor solves both issues mentioned above by using two phases, in-

formation reconciliation and privacy amplification. In information reconcili-

ation phase, possible bit errors are corrected to form a robust bit string [19]. In-
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formation reconciliation is tightly related to error correction. In fact, a procedure to

do information reconciliation based on error-correcting codes is called code-offset

technique [18]. Using code-offset technique, one should be able to reconstruct a bit

string w from a noisy version w’ as long as the Hamming distance between wand w’

is limited to t. The second phase, privacy amplification, is a process to evolve this

robust bit string into a full entropy key. Privacy amplification, also can be called as

randomness extraction [20], can be done by utilizing two-way hash function.

Beside these two phases, fuzzy extractor also consists of two procedures, Gen
and Rep. Gen, stands for generation, is a probabilistic procedure which
outputs an ”extracted” string / key (secret) R and a string (public) helper

data P on input fuzzy data w. Rep, stands for reproduction, is a determ-
inistic function capable of recovering secret key R from the string helper

data P and any vector w′ as long as the Hamming distance between wand
w’ is limited to t. In [21], Taniguchi et. al illustrated the generation and
reproduction procedure of fuzzy extractor on PUF which shown on Figure
3.1.

Figure 3.1: Two procedures inside fuzzy extractor; generation and reproduction

[21]

3.1.4 Error Correcting Codes

To handle noises occurred inside a PUF, error-correcting codes (ECC) is
employed. Error-correcting codes are a class of schemes for encoding mes-
sages in an attempt to enable message recovery when there is noise intro-
duced in the sending or receiving of the message. ECC can be divided into
two subcategory, hard-decision and soft-decision. Hard-decision operates
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on fixed set of possible values (usually 0 or 1 in a binary code), while the
inputs to a soft-decision decoder may take on a whole range of values in-
between (usually refers to float value).

There are some well-known ECC, such as in hard-decision code, Reed-
Solomon code and BCH code; while in soft-decision, Viterbi code and turbo
code. Soft-decision code has an advantage over hard-decision code where
it can process extra information which indicates the reliability of each input
data point and used to form better estimates of the original data. But it has
drawback where one should provide a probability function on the data (on
SRAM, a probability function on each cell should be provided) to enable
a good decoding result. This is a problem if applied on this thesis goal
where the system should work on any SRAM off-the-market. Calculating
the probability on each SRAM cell will take an extra step, over complicate
the system and the procedure on using the constructed system. Thus, the
hard-decision code is preferred.

One of the popular hard-decision error correcting code is BCH codes.
BCH, stands for BoseChaudhuriHocquenghem, codes are a family of cyc-
lic error correcting codes which constructed using polynomials over a finite
field and work in binary field. BCH codes are a very flexible set of codes
in that within certain bounds there is a great amount of choice in code para-
meters and are relatively efficient in message length and error correction.
The code parameters are as follows:

• q: The number of symbols used (e.g., in binary field, q = 2)

• m: The power to which to raise q to generate a Galois Field for the
construction of the code.

• d: The minimum Hamming distance between distinct codewords.

These parameters lead to several derived parameters which are standard
parameters of linear codes:

• n: The block length of the code; for our special case, n = q ∗m1

• t: The number of errors that can be corrected, d ≥ 2t+ 1

• k: The number of message bits in a codeword, k ≥ n−mt

Both BCH codes and Reed-Solomon codes have the capability to cor-
rect multiple errors. Reed-Solomon codes is also a flexible ECC and have
similar parameters as BCH codes, e.g. n, k, d. Unlike BCH codes, Reed-
Solomon codes can work in both binary and non-binary fields. Reed-Solomon
codes also perform better in correcting burst errors while BCH codes are
better in fixing random errors. BCH codes has an advantage where it re-
quires less computing resource when working on same parameter compared
to Reed-Solomon codes.
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3.2 SRAM PUF

The SRAM PUF was first proposed by Guajardo and Holcomb in 2007.
SRAM PUF use existing SRAM blocks to generate chip-specific data. Nor-
mally, when using SRAM to store data, a positive feedback is given to force
the cell into one of the two states (a ’1’ or a ’0’) available. Once it is
there, the cell will be stable and prevented from transitioning out of this
state accidentally. To use it as a PUF, SRAM is turned on and its cell values
are retrieved to generate a unique chip-specific output. After powering-up
the circuit, the cells stabilize at a state which is defined by the mismatches
between the involved transistors. Thus, each SRAM cell provides one bit of
output data.

As mentioned in the beginning of this chapter, during enrollment, challenge-
response pairs are gathered. In SRAM PUF, there are two type of chal-
lenges that can be applied to the system. The challenge can be either the
whole SRAM memory or specific addresses. If a set of addresses is given
as challenge, an address in there can refer to an address of a byte, a bit, or a
sequence of bytes or bits.

3.2.1 SRAM Cell

SRAM uses its SRAM cells to store the binary information. The most com-
mon SRAM design is six-transistor (6-T) CMOS SRAM, shown in Figure
3.2. This design utilizes the concept of cross-coupled inverters, construc-
ted by two inverters, each established by two transistors; inverter 1 by Q2
and Q6, inverter 2 by Q1 and Q5. Using this design means the input of an
inverter is the output of the other and vice-versa, which also indicates that
the output of one inverter is exactly the opposite of the other inverter [15].
Transistors Q3 and Q4 refers as the access transistors, are used as the entry
gate to the cell every time a read or write operation will be performed. The
bitline (BL), the compliment bitline (BLB) and the wordline (WL) are util-
ized to access the cell. In addition, an SRAM cell will lost its state shortly
after power down [22].

During manufacturing, there are small differences between each SRAM
cell due to process variation which lead to a mismatch in the cell [23]. This
mismatch also means that the two inverters will always conduct distinctly.
Since this mismatch determines the value of the power-up state of an SRAM
cell, the power-up state of a cell will be biased towards 0 or 1 depends
on the mismatch value. The mismatch itself does not disturb the normal
storage functionality of SRAM cell. Based on this bias, SRAM cells can be
classified into three categories as shown below:

1. Non-skewed cell
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Figure 3.2: A 6-T CMOS SRAM cell [15]

A non-skewed cell has no preference during its start up due to the
impact of process variations does not cause any mismatch between
the two inverters. This cell produces bit randomly either a ’0’ or ’1’
at its output, depending upon the noise present in the system.

2. Partially-skewed cell
A partially-skewed cell has a small mismatch between the inverters
which lead to a preference over value ’0’ or ’1’ but the cell can flip its
value upon variation in external parameters.

3. Fully-skewed cell
A fully-skewed cell is a heavily mismatched SRAM cell in a way that
the cell inclined towards value ’1’ or ’0’ and has a resistance against
external influence / noises.

3.2.2 Problem: Noise

Similar like most electronic components, SRAM PUF is also affected by
external influence which lead to noises. These noises will flip unstable bits
inside the SRAM PUF. Below are some factors presenting noises:

• Voltage
The noise introduced by voltage is called power supply noise [24].
This noise is related to changes in the delay characteristics of the
gate. The changes will occur when there are switchings in the circuit
after the device is turned on which increase dynamic power and cause
voltage drop on power lines and voltage increase on ground lines.

• Temperature
Temperature variation can be introduced by the surroundings or voltage
variation. The preference of a cell inside SRAM has a high probability
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to be affected by temperature. Temperature affects more than voltage
on bit flipping.

• Crosstalk
Crosstalk occurs when a signal transmitted on one circuit creates an
undesired effect in another circuit. Crosstalk happens due to tight gap
between the SRAM cell (tiny interconnect spacing and width). This
event becomes more popular due to wider use of smaller geometries
and faster operating speeds. crosstalk is a major contributor to signal
integrity problems in modern designs [24].

• Aging
Aging is related to changes in the silicon after usage for a long time
[25]. There are three main effects related to aging of a circuit; time
dependent dielectric breakdown (TDDB), bias temperature instability
(BTI) and hot carrier injection (HCI). TDDB is associated to the cre-
ation of a conduction path through the gate transistor structure which
causes an increase in power consumption and the circuit delay [26].
BTI causes a degradation of the transistor threshold voltage [27]. HCI
generates a change in the transistor threshold voltage [28]. HCI is
caused by a high current in the transistor channel injecting charges
into the gate oxide during the switching.

3.2.3 Bit Selection Algorithm

Since bit responses are used as the primary input for SRAM PUF, one of the
major steps on using SRAM PUF if location of bits is used as the challenge
is looking for stable bits. Stable bits itself refers to fully skewed cells ex-
plained before. Even though the error correction code is present to correct
the noise of bit responses, it also has limitation on how many bits it can cor-
rect. Since not every SRAM cell is stable, one should take a special caution
on deciding which SRAM cell is gonna be the bits to use as PUF input.

Choosing the most stable bits is important to ensure that the PUF result
is always the same throughout its lifetime. In here, we use two known
algorithm to search for stable bits.

Neighbor Analysis

The first algorithm is use the rank of total stable neighbors [29]. The cells
that are most stable across environmental conditions are surrounded by
more stable cells during enrollment. A stable cell surrounded by more stable
cells has a tendency to become more stable because its neighboring cells are
likely to experience similar aging stress and operating conditions. The more
stable neighbor cells it has, the higher weight it gets. After determining the
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weight of each cell, a heuristic algorithm that greedily chooses cells for the
PUF ID/key with weight greater than a threshold is used.

Before the algorithm is performed, one should collect lots data of SRAM
cells value first. The data should be retrieved in various condition, for ex-
ample different voltages, temperatures, and time differences between en-
rollment. Afterwards, we use Temporal majority voting (TMV) to calculate
all stable bits in SRAM. Last, the neighbor analysis algorithm is performed
to get the most stable bits in SRAM.

Data Remanence

Another bits selection algorithm is by using data remanence of SRAM cell
[30]. This approach requires only two remanence tests: writing 1 (or 0) to
the entire array and momentarily shutting down the power until a few cells
flip. The cells that are easily flipped are the most robust cells when written
with the opposite data. Strong 1’s are bits that are flipped fast after 0 is
written to its location. On the contrary, if 1 is written to a bit location and
the bit flipped fast, it means that the bit is a strong 0.

3.3 Key Generation using SRAM PUF

In this section, there are two scheme for key generation produced by Hy-
unho Kang et. al. Both constructions were built on 2014. The first construc-
tion, shown in Figure 3.3, is utilizing random number generator (RNG).
This design was perfected in the second design shown in Figure 3.4. In the
second design, random number generator was removed to make the con-
struction more simple without affecting the security. The block length (n)
of the error correcting code in these schemes is 255.

3.4 HMAC

HMAC, stands for hashed message authentication code.

3.5 Symmetric Encryption

As mentioned in the previous chapter, symmetric encryption, requires the
same key for encryption and decryption. According to [14], symmetric
encryption consists of three algorithms which are:

• Gen: key-generation algorithm

• Enc: encryption algorithm
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Figure 3.3: Implementation diagram using fuzzy extractor (N = 255) [31]

Figure 3.4: Implementation diagram for efficient fuzzy extractor based on the syn-

drome (N = 255) [32]
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• Dec: decryption algorithm

To illustrate this better, an example using two parties, Alice and Bob are
given. Before using the encryption or decryption algorithm, both parties
will agree on a shared secret key k. This phase can be referred as Gen. Af-
terwards, Alice can use the encryption algorithm (Enc) Ek using the shared
secret key k on a message m which will generates a ciphertext c. This pro-
cedure can be noted as c = Ek(m). Bob can read the message by using
the decryption algorithm ((Dec)) Deck using the same shared secret key k.
Decryption will result in the plaintext message m. This can be noted as
m = Dk(c).

There are many examples of symmetric encryption algorithms, such as
RC2, DES, 3DES, RC6, Blowfish, and AES. AES algorithm will be ex-
plained below.

AES

AES, stands for The Advanced Encryption Standard, is a specification for
the encryption of electronic data established by the U.S. National Institute
of Standards and Technology (NIST) in 2001.It also known by its original
name Rijndael.
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Chapter 4

SRAM PUF Open Problems

Since firstly introduced by Guajardo and Holcomb in 2007, there have been
many innovations in SRAM PUF field. A simple patent search using pat-
ents.google.com with query ’sram; puf’ results in 546 results [33]. Num-
ber of articles in scholar.google.com also exhibit a high occurences, shown
2,120 articles (citations and patents are not included) [34]. Even though
these facts indicates a promising future for this concept, one also should
notice that current state-of-the-art in this field mostly consists of one-off
prototypes and specific proprietary implementations. To get an SRAM PUF
product from the market, one has to order a specific request from a com-
pany. For example, Intrinsic ID, one of the main leader in SRAM PUF
technology, has a software only solution which will be able to generate
unique keys and identities for nearly all microcontrollers without need for
security-dedicated silicon [35]. Even though this solution exists and seems
easy to use, unfortunately they don’t say specifically how much will it cost
to use this solution. They also has another solution for SRAM PUF which
is focused on hardware IP (and supporting software/firmware) to enable
designers to implement PUFs on their design. This solution has a high pos-
sibility to obstruct a small company or a single user to use their solution
since usually this type of product are intended to use with expensive con-
tract. Similar like the software-only solution they offer, they also don’t put
the explicit price to use this product. An example of product that use this
solution is FPGA Microsemi Polarfire [36].

The SRAM PUF field lacks a Arduino, Linux, or GCC type of open refer-
ence implementation. A quick lookup in Github, there’s no extensive open
source project related to SRAM PUF there. There are projects correspond-
ing to PUF concepts, but most of them also only delve into simulation. The
communities seems to haven’t establish a wide agreement on a which ap-
proach yields the strongest security properties.

Based on these facts, the author believes the next challenge for this field is
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to discover a common approach. Furthermore the field needs to move bey-
ond isolated single-person projects and single-company approaches towards
a mature and sharing ecosystem. The field SRAM PUF requires a single im-
plementation which is continuously improved upon for many years to come
and is supported by the majority of the academic and commercial parties.
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Chapter 5

Design of Data Protection Scheme

5.1 Use Case, Assumptions and Requirements

As mentioned in the first chapter, a subset of this thesis goal is to provide
a secure key storage and data protection function using SRAM PUF. To
focus the thesis approach, the field of both functions are decided to be only
available offline. Accessing the SRAM PUF requires the user to have the
device next to his/her side. In order to achieve this goal, first, a set of
requirements need to be define first. Below are the requirements defined:

1. Software-only construction
There should be no major hardware modification or hardware design
to implement the project

2. Patent/license free
Any dependent component inside the design should be in public do-
main.

3. Open-source and collaboration oriented
If there’s a reliable open source project which can be a foundation for
this thesis project, insted of building our own software, it is preferred
to use that project. This will significantly reduced the time consumed
on constructing the whole project. Using other project source code
can also increased the collaboration atmosphere. In addition, this re-
quirement may help this project to be known by others since they
might introduced our project as one of the project that use their code.

4. Key-length security level
The goal on key-length security level is 256-bits. The concept con-
structed should be able to use this level and the project’s security
should be uncompromised even though the key-length is only 256-
bits.
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5. Off-the-shelf SRAM
The SRAM involved in the thesis should be easily available in the
market and cost insignificant.

6. Affordable
The total hardware required to produce the system should be inex-
pensive.

7. Reproducible
Anyone should be able to reproduce this thesis experiment with no
significant effort.

5.2 Data Protection and Key Storage Scheme

Figure 5.1 shows the scheme to protect user’s data. To prevent unauthor-
ized person accessing the data with a stolen PUF, an idea from multi factor
authentication is utilized. Instead of just depending on the PUF device to
access the key, a combination of PUF device and user knowledge is presen-
ted. User knowledge used here is username and password. Username is
utilized to protect helper data and the challenge. The challenge used here
is the location of stable bits. The challenge needs to be kept secure be-
cause if the challenge is not protected, the attacker would easily know the
stable bits used on key generation. Actually if an attacker can never ac-
cessed the SRAM directly, a publicly available stable bit locations will not
affect the security, but since the construction is modeled using a plug and
play SRAM where anyone can easily access it, the challenge need to be
encrypted. Also, if attacker also know the helper data, the generated key
would be easily identified. Both the challenge and the helper data is en-
crypted using symmetric encryption. User’s password is combined with the
PUF generated key to generate a stronger key using HMAC. The HMAC
function proposed to use is HMAC-SHA256. The final key can be used to
encrypt and decrypt user data. The symmetric encryption algorithm used is
AES. If the data is switched to user’s key to be stored, the data protection
scheme proposed here can be also referred as key storage scheme.
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Figure 5.1: Scheme for Data Protection
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Chapter 6

Implementation and Results

This chapter contains explanation on experiment setup and results.

6.1 BCH Codes as Error Correcting Codes

As mentioned in the previous chapter, BCH codes are a flexible ECC shown
by multiple parameter available. The only fixed parameter is q since the
problem is in binary form (q = 2). The source code for BCH as ECC
is a modified version of Robert Morelos-Zaragoza’s version which can be
retrieved at [37]. This code is selected because it can support m ranging
from 2-20 which mean the length of the code than can be corrected ranging
from 2 until 1048575. One should be careful on deciding the parameter that
will be used, for example, larger m or n means a bigger memory needed.
These parameter should be determined with several considerations, such as,
the inner hamming distance of SRAMs and memory available on Arduino
Mega 2560.

On deciding the value m, a further look on the memory required during
the error correction computation need to be done. Inside the bch code from
[37], the decoding method requires the largest memory compared to other
procedures. There are six parameters that depends on m which are elp, d, l,
ulu, s, and err. Table 6.1 shows the required memory given the m value.

Since SRAM in Arduino only has 8k bytes capacity, the chosen m is 6
(requires 4553 bytes, around 55% of total SRAM available in Arduino).
This parameter will result in possible n between 32 and 63. n is chosen to
be 63 to maximize the length code that can be encoded. The combination
of m = 6 and n = 63 results in various k and t that can be chosen. The
combination of all parameter possible is shown on 6.2.

To maximize the error correction capability, k = 7 and t = 15 is chosen.
All these parameter combination will enable error correction capability 23.8%
of the data length. To summarize, here are the chosen parameters:
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Table 6.1: Memory required (bytes) given the value of m

m Bytes Required m Bytes Required

2 53 12 16805897

3 129 13 67166217

4 377 14 268550153

5 1257 15 1073971209

6 4553 16 4295426057

7 17289 17 17180786697

8 67337 18 68721311753

9 265737 19 274881576969

10 1055753 20 1099518967817

11 4208649

Table 6.2: BCH parameter for m = 6 and n = 63

k t

57 1

51 2

45 3

39 4

36 5

30 6

24 7

18 10

16 11

10 13

7 15
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• n: 63

• k: 7

• d: 31

• t: 15

6.2 Key Generation Scheme

As shown in previous chapter, the data protection scheme requires the PUF
to generate the key which will be use to generate the final key. The key
generation scheme used in this project is a modified version of Figure 3.4
proposed in [32]. Instead of using n = 255, the scheme used in this project
will choose n = 63. The parameter n, k, t, d is similar with the parameter
chosen in previous section, BCH error correcting code. Figure 6.1 illus-
trates the mentioned scheme. Using this scheme, to generate 256 bits of
key, requires 37 blocks of this scheme, which lead to 2331 bits required. 37
blocks is calculated from 256/7=36.57, rounded-up resulting in 37. 7 comes
from the key generated from 63 bits of data using this scheme. Since one
block needs 63 bits of data, 37 blocks requires 37*63=2331.

Figure 6.1: Scheme for key generation. n = 63, k = 6, t = 15, d = 31
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6.3 Randomize the stable bits to generate the key

In previous chapter, it is mentioned that the location of the bit will be the
challenge given to PUF. Before giving the location of stable bits as the chal-
lenge, these locations’ order inside the list will be randomized. Similar with
the explanation on previous chapter, the challenge (locations of stable bits)
will be encrypted using AES.

6.4 Chosen SRAM

In an attempt to achieve the thesis goals, the first step is looking for SRAM.
There are numerous SRAM types available in the market. To Main require-
ments on the SRAM are easy to get (a simple google search should show
some e-commerce websites to buy from), can be bought in small quant-
ity (≤ 5 pieces), stand-alone component (available without buying extra
component, e.g. not embedded in an FPGA), inexpensive (cost less than
5), reasonable memory size (≥ 64kb). These criteria are chosen due to
some product only sold to a company or someone that willing to buy in a
big quantity or has to be custom made. There are two SRAM types pur-
chased and tested here; Microchip 23LC 1024 and Cypress CY62256NLL.
On each SRAM, there are several experiment performed to determine if
these SRAMs are a suitable candidate for PUF, such as calculating HDintra

and HDinter given the whole memory value as the challenge.

6.4.1 Microchip 23LC1024

The Microchip Technology Inc. 23A1024/23LC1024 is a 1024 Kbit Serial
SRAM device. This SRAM is really popular shown by many references
available online and several github repository intended just to access this
SRAM. The reason of its popularity can be traced to its cheap price, small
size and easy to use feature. The price is ranging from 1.5-3.5. This device
has eight pins which contribute significantly on its small footprint. It is easy
to use because it provides SPI connection which simplified the communic-
ation, and has three modes available; SPI (Serial Peripheral Interface), SDI
(Serial Dual Interface) and SQI (Serial Quad Interface). Its voltage range
also quite large, ranging from 2.5-5.5V. Figure 6.2 shows the Microchip
23LC1024.

There are ten Microchip 23LC1024 SRAMs that were available during
experiment. To check whether this SRAM is a justifiable candidate for PUF,
several testing are performed. First, the number of 1’s and 0’s in memory
after a start is calculated. Unfortunately, the average distribution of 1’s and
0’s are not similar, 1’s occupy 70% and 0’s fill the remaining 30%.
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Figure 6.2: SRAM 23LC1024

Second, HDintra and HDinter are calculated on both chips. The calcula-
tion are done using twenty data of chip memory values on each chip which
retrieved on room temperature, 5V input and 10 seconds interval between
each enrollment. From these chips, the average HDintra is 5.75% and the
average HDinter is 42.54%.

Third, the effect of voltage variation on the HDintra and HDinter are also
evaluated. The calculation are done using chip memory values on each chip
which retrieved on room temperature and 10 seconds interval between each
enrollment. The voltage range is between 2.5V and 5V with 0.1V increase
on a step. On each step, there are three data enrolled. Using these data,
voltage variation results in an average HDintra 5.14% and an average HDinter

38.98%.

Figure 6.3: HDintra of ten SRAM Microchip 23LC1024. The left is HDintra with

constant voltage, the right one is tested based on the voltage variation

6.4.2 Cypress CY62256NLL

The Cypress CY62256NLL is a 256k bit SRAM device. Even though this
device is less popular than Microchip 23LC1024, it’s still widely used. One
of the reason is because this device has an automatic power-down feature,
reducing the power consumption by 99.9 percent when deselected. Un-
like 23LC1024, CY62256NLL doesn’t have a SPI connection which com-
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plicate the communication. To communicate, one should utilize its twenty
eight pins available. Since it has many pins, it also participate on its sig-
nificantly larger size compared to 23LC1024. This device is developed us-
ing 90nm. Its voltage range is ranging from 4.5V-5.5V. Figure 6.4 shows
Cypress CY62256NLL.

Figure 6.4: SRAM CY62256NLL

There are five Cypress CY62256NLL SRAMs that were available during
experiment. To check whether this SRAM is a justifiable candidate for PUF,
several testing are performed. First, the number of 1’s and 0’s in an initializ-
ation is counted. Fortunately, unlike the 23LC1024, the average distribution
of 1’s and 0’s are similar, both occupy 50% of total bits available.

Next, HDintra and HDinter are calculated on both chips. The calculation are
done using twenty data of chip memory values on each chip which retrieved
on room temperature, 5V input and 10 seconds interval between each en-
rollment. From these chips, the average HDintra is 4.94% and the average
HDinter is 39.18%.

Last, the effect of voltage variation on the HDintra and HDinter are also
evaluated. The calculation are done using chip memory values on each chip
which retrieved on room temperature and 10 seconds interval between each
enrollment. The voltage range is between 4.5V and 5V with 0.1V increase
on each step. On each step, there are ten data enrolled. The average HDinter

on voltage variation is 38.75%, while HDintra is 3.55%. Figure 6.5 shows
the HDintra between the constant and the variated voltage.

From these data, it can be seen that the voltage variation has little effect on
the HDintra and HDinter. This fact shows that SRAM Microchip 23LC1024
and Cypress CY62256NLL can be good candidates for SRAM PUF. Even
though such fact exists, one should also pay attention that there’s no testing
on temperature and aging variation. To ensure whether this SRAM is indeed
a good candidate, further experiment on the effect of temperature and aging
should be conducted.
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Figure 6.5: HDintra of five SRAM Cypress CY62256NLL. The left is HDintra with

constant voltage, the right one is tested based on the voltage variation

6.5 Arduino Mega 2560 as the Embedded Platform

After deciding the SRAMs, the next step is choosing the platform on where
the system will be build. There are two major candidates, Arduino and
Raspberry Pi. Both are chosen due to its popularity, availability (easy to
get), and various types available. High popularity means the debugging
process can be done fast and many references are available online to help
the system development. Availability is important because this thesis goal
should be easily used by anyone. Low availability will reduce significantly
reusability of this project and user’s interest. Various types available is a
good option for system flexibility. For example, if a user want to develop a
more complex system on top of this thesis’ system or desire to use a more
complex error correcting codes, he/she can choose a platform with higher
computing capability.

Beside those three factors, another feature to choose Raspberry Pi and
Arduino is their GPIO. GPIO availability will enable easy communication
between the SRAM and the platform.

Compared to Arduino, Raspberry Pi offers a higher computing capability
and relatively easier development. This is because Raspberry Pi is basically
a mini linux computer. One can develop using C, C++, Python, etc. Us-
ing high-level language will fasten the project development. Unfortunately,
Raspberry Pi requires a longer start up time compared to Arduino. It also
requires higher electricity power. If one want to use the developed project
in embedded area, this two factor is a major trade off.

Due the above consideration, Arduino is chosen. Even though one has
to construct the system in C++, this can be a good thing since one can
maximize the computing capability easily.

There are various Arduino type available in the market. The chosen Ar-
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duino type is Arduino Mega 2560. It is selected because it offers larger
memory capability compared to other types, such as 256k bytes of Flash
memory, 8k bytes SRAM, and 4k byte EEPROM. Besides, it also has 54
digital I/O pins and 16 analog I/O pins which ease the communication to
SRAM CY62256NLL (has 28 pins).

Figure 6.6: Schematic to connect Arduino Mega 2560 with SRAM Microchip

23LC1024

.

.

6.6 Automated PUF Profiling System

To increase the experiment’s efficiency, an automated PUF profiling system
are constructed. The system consists of a PC, act as a master, and an Ardu-
ino connected to an external SRAM which act as a slave. A custom protocol
was designed to communicate between them. It is specifically designed to
be generic and usable for all types of PUF profiling measurements. The
software on Arduino side waits for measurement commands sent by PC on
the serial link after booting. The designed protocol are dedicated for voltage
control, read bytes, write bytes, and memory disable/enable. The system
also supported parallel profiling which significantly increase the effectivity.
Figure 6.8 shows the setup to profile four SRAMs Cypress CY62256NLL
concurrently using four Arduino.

.
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Figure 6.7: Schematic to connect Arduino Mega 2560 with SRAM Cypress

CY62256NLL

Figure 6.8: Automated PUF profiling setup
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6.7 Algorithm to Look for Stable Bits

In this section, the test on stable bits produced by two algorithm are shown.
The test was done only on a single chip of each SRAM type, one 23L1024
and one CY62256NLL.

6.7.1 Neighbour Stability Analysis

To use this algorithm, first, data of SRAM bits value from various condition
(voltages and time difference between enrollment). Afterwards, the bits
which remained stable on those enrollments are located. Then, the rank
of remained stable bits are calculated. Last, n bits with highest rank can
be used according to the necessity. The higher the rank, the more stable
that bit should be. The window size used to calculate the rank is 16 (eight
neighbors in each side).

23LC1024

There are 500 data of SRAM bits value used for this chip. The voltage
variation is from 2.5V - 5.0V. The time difference between enrollment is
ranging from 5 seconds until 1 hour. SRAM 23LC1024 itself has capacity
1048576 bits. After doing the calculation from those five hundred data,
there are 413374 remaining stable bits.

Figure 6.9: Remaining stable bits count according to their rank in SRAM Micro-

chip 23LC1024

From those remaining stable bits, the rank of each bits are calculated. The
frequency of bits rank is shown in Figure 6.9. As shown in this figure, there
is no bit that has rank 14, 15 and 16. The highest one is only rank 13 with
total 172 bits.

Using the bit location as the challenge, the HDinter is 49.76%.
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CY62256NLL

Unlike 23LC1024, there are only 109 enrollments done in CY62256NLL.
The reason of this decision will be explained in the next section. SRAM
CY62256NLL is able to store 262144 bits in its memory. The remained
stable bits after 109 enrollments are 84870 bits (32,37%).

The result of the calculation is shown on Figure 6.10. Unfortunately, after
the calculation there is no bit that show score 16 (has eight stable neighbor
bits on each side). There are two bits that has score 15, 9 bits with score 14,
18 bits with score 13. The highest score count is achieved by score 5 with
total count 16502.

Figure 6.10: Remaining stable bits count according to their rank in SRAM Cypress

CY62256NLL
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6.7.2 Data Remanence Approach

The result of data remanence analysis on both SRAMs are shown below.

23LC1024

On SRAM 23LC1024, the data remanence analysis is done on time variance
between 0-1.0 second. The result can be seen on Figure 6.11. In this figure,
it is shown that SRAM 23LC1024 will reach the randomized point if it’s
turn off for 0.7 second.

Figure 6.11: Remanence Graph of 23LC1024. Left is remanence 0 and right is

remanence 1

CY62256NLL

On SRAM CY62256NLL, the data remanence analysis is done on time vari-
ance between 0-1.95 seconds. The result can be seen on Figure 6.11. In this
figure, it is shown that SRAM CY62256NLL will reach the randomized
point if it’s turn off for 0.7 second.

6.7.3 Stability Test on ”Stable Bits”

In this section, test results on the effect of time interval and voltage on
”stable bits” using both algorithm on each SRAM are shown. The effect
of aging and temperature is not tested due to limitation on time and equip-
ment. For the effect of time interval testing, the enrollment was done on
16 days with one day gap between enrollment. Voltage effect testing was
done on voltage ranging from 4.5-5V. The test are done on 4662 bits which
is twice the length of the bits required to generate 256 bits key when using
scheme shown on Figure 6.1. The result of time interval testing on SRAM
Microchip 23LC1024 is shown on Figure 6.13, while Figure 6.14 displays
the result for SRAM Cypress 62256NLL.
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Figure 6.12: Remanence Graph of CY62256NLL. Left is remanence 0 and right is

remanence 1

Figure 6.13: Time interval testing results on SRAM Microchip 23LC1024. Left

figure is the testing result on stable bits generated using neighbor analysis, while

the right one is tested on data remanence generated stable bits. Index A on x-axis

refers to enrollment on day 1, B on day 2, etc. Index A-B refers to fractional

hamming distance between enrollment on day 1 and day 2.
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Figure 6.14: Time interval testing results on SRAM Cypress CY62256NLL. Left

figure is the testing result on stable bits generated using neighbor analysis, while

the right one is tested on data remanence generated stable bits. Index A on x-axis

refers to enrollment on day 1, B on day 2, etc. Index A-B refers to fractional

hamming distance between enrollment on day 1 and day 2.

Neighbor Stability Analysis

• Microchip 23LC1024
To get 4662 bits, there are four ranks included; rank 13 with 172 bits,
rank 12 with 778, rank 11 with 3092 bits, and 620 bits of rank 10.

During testing on variated voltage and time interval, the stable bits
generated using neighbor stability analysis show a poor performance
by having maximum 2389 bits changing (51.24%). The maximum
difference is produced when the difference between enrollment is 8
days.

• Cypress CY62256NLL
To get 4662 bits, there are eight ranks included; rank 15 with 2 bits,
rank 14 with 9, rank 13 with 18 bits, 99 bits of rank 12, 289 bits of
rank 11, 890 bits of rank 10, rank 9 - 2438 bits, and rank 8 - 917 bits.

Under the voltage and time interval variation, the stable bits generated
using neighbor stability analysis show reliability by having maximum
68 changing bits (1.49%) when time interval between enrollment is a
day.

Data Remanence Approach

• Microchip 23LC1024
To get 4662 bits, strong 1’s are generated using time interval only
0.185 second, while strong 0’s are calculated when 0.27 second. The
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difference between time interval during generation of strong 1’s and
strong 0’s is because the number of 1’s that flipped fast are more com-
pared 0’s. This also related to the 0’s and 1’s distribution during nor-
mal initialization (0’s count for 30% and 1’s filled 70%).

Similar like previous algorithm, the stability of bits produced by using
this algorithm is not good. The worst change is happen when 8 days
is used as time interval between testing, showing as many as 2328 bits
(49.93%).

• Cypress CY62256NLL
Unlike SRAM 23LC1024, time interval on enrolling strong 1’s and
0’s on CY62256NLL is not different. Both are enrolled using time
interval 0.28 seconds to get 4662 stable bits.

During the voltage and time interval variation, the stable bits produced
by using algorithm also shows a promising result. It only account for
maximum 73 bits difference (1.56%).

Stability Test Conclusion

Based on these results, SRAM Cypress CY62256NLL is shown to be a
more reliable SRAM candidate for PUF than SRAM Microchip 23LC1024.
Data remanence also proven to be a better algorithm than neighbor analysis.

6.8 Evaluation
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

TODO CONCLUSIONS

7.2 Future Work

TODO FUTURE WORK
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