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1
INTRODUCTION

In the field of distributed systems new uprising applications appear such as cryptocur-
rencies and multiplayer gaming where computers are required to work together fast and
without interruption. A distributed system is a system where computers work together
and coordinate with each other by passing messages to each other. In recent years new
advancements in the research on cryptocurrencies have shown new promising applica-
tions such as identity systems and online contracts. The applications make use of the
internet, a international network between computers. On top of the internet an over-
lay is build called a peer-to-peer (P2P) network that connects computers on the internet
together by introducing and connecting them to each other in a smart way. The comput-
ers in these P2P networks are called peers or nodes and there is no central element in the
P2P networks that connects computers to each other. Instead computers are introduced
to each other based on some pre-defined criteria. If the communication between the
nodes are efficient in the P2P network, all the applications that make use of the P2P net-
work called P2P applications can benefit from these efficiency’s. In this thesis work we
try to improve the efficiency between nodes in a P2P network to let all P2P applications
benefit by improving the response time of nodes between each other. The response time
between two nodes in a P2P network is called the latency between these two nodes.

1.1. THE IMPORTANCE OF LATENCY
Almost all systems have some requirements for latency, web applications, voice com-
munication applications and multiplayer gaming applications all have latency require-
ments. In recent years latency requirements have increased with new applications such
as trading in cryptocurrencies and systems that feature anonymous communication. We
will discuss the latency requirements for some of these applications in further detail to
show that a low latency between nodes in a P2P network can benefit these applications.
[1]
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LATENCY IN TRADING

A good example of an application where low latency communication is important is the
trading in cryptocurrencies. Low latency communication means communication with
a low response time. In the past 30 years, trading on the internet has become faster.
The time it takes to process a trade has gone from minutes to seconds to milliseconds.
"Low Latency" would be under 10 milliseconds and "Ultra-Low Latency" as under one
millisecond . It is estimated that 50% of trades in the U.S. are done in high frequency
trading with an "Ultra-low latency". Thus, low latency is a major differentiation factor for
exchange firms. Some firms state that a 1 millisecond advantage can save an exchange
firm 100 million U.S. dollars. [2] An individual trader has the following advantages when
trading in a system with low latency: [3]

1. Better decision making: A trader makes trading decisions based on the informa-
tion the trader has from the market. Other traders send the prices and quantities
they offer as orders to other traders. Let’s say these traders maintain these orders
in an order-book. If these orders arrive later, the individual trader is limited in it’s
trading decision making.

2. Competitive advantage towards other traders: When an individual trader can trade
relatively faster than another trader due to low latency it has a competitive advan-
tage. Let’s say a price differentiation takes place, a price suddenly becomes lower.
A trader with a relatively lower latency can act on it earlier than it’s competitors
and take advantage of the lower price before a price correction takes place.

3. Lower latency traders are served with a higher priority. Offering a lower price gives
a trader always a higher priority as other traders would buy a product with a lower
price faster. However, when the price is the same. The offer that arrives first is
served. A trader with a high latency needs to lower its price in order to get a higher
priority. If the high latency trader does not lower its price it is simply not served.
Also, offers at the same price level with a higher priority have less adverse selection.
[4] [5]

LATENCY IN ANONYMIZATION TECHNIQUES

Anonymization techniques require data to go through different nodes to make it hard
to link the sender and receiver of a message. In one of the early anonymization tech-
niques called mixes by Chaum developed in 1981 latency was a big problem. Messages
are batched at nodes and a new batch is send forward at a node when n message are
received giving a large delay between sending and receiving a single message. [6] In the
TOR anonymization technique a solution to the latency problem is provided by forward-
ing messages in real time between mixes at the cost of the quality of the privacy. With
TOR anonymization sender and receiver can be linked when all messages are sniffed in
the global passive attack. [7] Because anonymization requires multiple nodes to which
data travels a high latency between these nodes is unacceptable for a good working pro-
tocol. Figure 1.1 shows an overview of the anonymization in Tribler.
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Figure 1.1: Anonymization techniques used in Tribler. There are three layers of the TOR protocol that make
anonymous communication between peers.

LATENCY IN PARALLEL ALGORITHMS

In parallel algorithms one of the primary bottlenecks is the communication latency. The
primary reason for this is the large amount of communication between nodes required
in these algorithms. Only small amounts of computation work is done between commu-
nication events but the overall amount of communication is large. Parallel algorithms
are used in a wide range of applications in for instance data mining and knowledge dis-
covery. [8] [9]

1.2. LOW LATENCY OVERLAY
A new P2P overlay needs to be constructed to create an overlay in such a way that peers
connect to other peers such that the latency between these peers is low. Peers to which a
peer has a low latency with are called the low latency peers of that peer. The new overlay
is called the low-latency overlay. In most existing P2P overlays a peer discovery mech-
anism is set up where peers introduce peers to each other based on some pre-defined
set of rules. The introduced peers toward a peer are called the neighbours of that peer.
The introduction mechanism allows the system to remain decentralized, e.a. the system
is without a central authority that connects peers. In the new low latency overlay, peers
should introduce low latency peers to other peers. This mechanism is called low latency
introduction. A peer has to analyze and estimate what would be the low latency peers
for another peer in the P2P network to provide low latency introductions

The central idea in this thesis is to estimate latency’s between peers in a P2P network
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Figure 1.2: Location space of with peers representing dots in the space. The distance between peers estimates
the latency.

to make low latency introduction possible. There are already existing latency estimation
algorithms available that estimate latency’s between computers in a network based on
latency measurements. In 2002 Zhang et al. [10] proposed the GNP system for estimat-
ing latency’s on the internet based on real measured latency data. In the paper each peer
has it’s own coordinates in a space. The latency between peers can be estimated by tak-
ing the euclidean distance between coordinates in the space. To show this general idea,
Figure 1.2 shows a coordinate graph of the earth. Each dot represents a peer. The dis-
tance between two dots estimates the latency between these two peers. The challenge
is to determine the coordinates of the nodes in the space such that the latency’s are cor-
rectly estimated when calculating the euclidean distance between two coordinates in
the space. Determining the coordinates can be computationally expensive and need to
be done well in order to achieve a high level of accuracy in estimating latency’s. Since
2002 other latency estimation algorithms were proposed for computationally efficient
and accurate latency estimation on the internet resulting in more than fifteen years of
research. These algorithms are discussed in a later chapter.

1.3. RESEARCH QUESTIONS
In this thesis work we focus on creating a latency overlay that is computational efficient
and provides peers with low latency neighbours. The low latency overlay will be imple-
mented in a real world P2P network. The following research question is answered:

How to create a computational efficient low-latency overlay that decreases the latency
between connected peers in the P2P network?

To answer this question, a number of sub-questions are formulated:

1) Which methods to estimate latency’s on the internet have been introduced in the
past?
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2) How to create a scalable latency estimation algorithm that can be run in a real
world P2P network?

3) What is the computational performance and accuracy of the new low latency over-
lay?





2
RELATED WORK

In the past 15 years several methods have been proposed to estimate latency’s between
computers on the internet. These methods could be used in combination with current
P2P technology to create the low latency overlay. This chapter describes Tribler as a state
of the art P2P system that is used as a basis for the low latency overlay in section 2.1.
Section 2.2 and 2.3 describe the latency estimation algorithms developed so far and the
optimization functions that are used by the latency estimation algorithms. At last are
some previously designed overlay systems described. 2.4

2.1. TRIBLER
The current state of the art peer-to-peer systems include social phenomena such as
friendship and the existence of communities of users with similar tastes or interests. Tri-
bler is such a social-based P2P system and is an extension on BitTorrent. The social phe-
nomena are exploited in content discovery, content recommendation and downloading
to increase usability and performance. The Vision and Mission of Tribler is the following:

"Push the boundaries of self-organising systems, robust reputation systems and craft
collaborative systems with millions of active participants under continuous attack from
spammers and other adversarial entities."

Since its founding 10 to 15 scientists and engineers have been working on it full-time
and added various new features. As of December 2014 Tribler has a build-in version of
a Tor-like anonymity system. It gives superior protection than a VPN, but no protection
against resourceful spying agencies. A reputation system is also included that gives in-
centives for users to upload files instead of just downloading them from the network. A
screenshot of Tribler is given in figure 2.1.

DISPERSY OVERLAY

Tribler is built upon Dispersy, the current internet overlay in Tribler. It is designed to
send messages around in groups of peers in a decentralized P2P network. The groups of
peers in the network are grouped together in communities where each community has

7
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Figure 2.1: A screenshot of the Tribler application. [11]

its own purpose and design requirements. There are communities developed for P2P
file sharing, TOR anonymity tunnels and market exchanges. Dispersy not only enables
communities to exchange messages between peers in the network but also automati-
cally connects peers to other peers in the network. There is a peer discovery mechanism
that automatically introduces peers to other peers and makes connections to newly in-
troduced peers by puncturing their firewall.

2.2. OPTIMIZATION FUNCTIONS
Optimization functions are often part of the latency estimation algorithms and need to
be discussed first before latency estimation algorithms can be fully understood. In this
paragraph we discuss the Simplex Downhill algorithm and the L-BFGS-B optimization
algorithm as two important algorithms used in the overlay. The optimization functions
are algorithms that minimize an objective function in an efficient way.

SIMPLEX DOWNHILL ALGORITHM

The most used optimization function in the literature is the simplex downhill algorithm.
It is an applied numerical method used to find the minimum or maximum of an objec-
tive function with a multidimensional input space. It is applied to optimization prob-
lems for which derivatives of the objective function are not known. When optimizing an
objective function with a n dimensional input space it maintains a set of n+1 test points
where each test point reflects an input variable plus one extra test point. The algorithm
takes several steps in which it measures the behaviour of the objective function when
test points are changed and updates the test points in such a way that they give a better
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Figure 2.2: Part 1 and 2 of GNP algorithm. The left picture shows the first step of the GNP algorithm with
landmark computation. The right picture shows ordinary host computation with ordinary hosts positioning
themselves next to landmarks. [10]

solution for the objective function. When the objective function is converged towards a
minimum the algorithm quits. For each test point is in each step decided whether in-
creasing or decreasing the test point would give a better result for the objective function.
If increasing a test point gives a better result of the objective function the test point is
increased, if decreasing gives a better result the test point is decreased. Eventually the
objective function is minimized and changing the test points does not give better results.
When that happens the algorithm quits. [12]

L-BFGS-B
The Broyden-Fletcher-Goldfarb Algorithm (BFGS) is an optimization method that tries
to improve on simple optimization functions such as the simplex downhill algorithm
with various mathematical tricks. The basis of the algorithm is similar to other optimiza-
tion techniques in that it tries to optimize a set of test test points. Because derivatives
of the input space are not available the algorithm tries to estimate the inverse Hessian
matrix to make decisions on how to improve the test points for the objective function.
The L-BFGS algorithm is particularly suited for problems with large amount of input
variables. For instance more than 1000 variables. [13] [14]

2.3. LATENCY ESTIMATION ALGORITHMS
The latency estimation algorithms that are described in this section are coordinate-based
latency estimation algorithms. Each host is represented by a position with coordinates
in a space. The distance between the hosts in the space represents the two-directional
estimated latency between these two hosts. Once the coordinates of the hosts in the
space are determined the latency between two arbitrary hosts can be quickly estimated
by taking the euclidean distance between the two positions that represents the hosts in
the space.

GNP ALGORITHM

The first algorithm published is the GNP latency estimation algorithm published in 2002
and consists of two steps. In the first step a subset of landmarks L from all the hosts
H are chosen as landmarks for points of reference. The landmarks of step 1 enable fast
host position calculation in step 2 of the algorithm. Figure 2.2 shows the two steps of the
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GNP algorithm in a figure. There are normally around 20 landmarks. The coordinates
are found by minimizing the difference between the real measured latency’s between
the landmarks and the computed distances between the landmarks. The minimization
is done with the simplex downhill algorithm.

In the second step the coordinates of the ordinary hosts that are not landmarks are
determined. This is again done with a minimization of an objective function. The objec-
tive function is the sum of the differences between the measured and estimated latency
from an ordinary host to all landmarks. With the simplex downhill minimization algo-
rithm the objective function is minimized. Because the number of landmarks is low the
position of an ordinary host is determined with relatively low computation.

With a low number of landmarks the computation time is only linearly dependent on
the number of hosts H . However, with a large number of landmarks the algorithm be-
comes computationally expensive. There is a squared relationship between the amount
of computation in the first step and the number of landmarks. In the second step there is
only a linear relationship between the number of ordinary hosts and computation time.
It is likely that with more landmarks the algorithm becomes more accurate but takes
more time to compute. Therefore a trade-off between the number of landmarks and ac-
curacy has to be made. In most applications of the GNP algorithm the number of land-
marks is low and only around 20 landmarks and thus the computation time of the first
step can be marginalized. [10]

NPS ALGORITHM

The NPS latency estimation algorithm is shortly published after the GNP algorithm in
2004 and improves it by decentralizing it. In the NPS system, hosts can serve as reference
points to other hosts to define its base. This makes landmarks much less critical and
landmarks become less of a bottleneck to the system. The GNP algorithm calculates
node positioning with a centralized component. In GNP, if an ordinary host wants to
calculate its position, it has to probe all landmarks. This makes the landmark nodes and
their network access links a bottleneck to the system. If one landmark or the connection
towards a landmark fails, the system can hardly recover.

In NPS the minimization function of the GNP algorithm is expanded such that each
node computes its own coordinates. This makes the computation of landmarks linearly
at each node. The newly calculated position is shared with other nodes and after 1 sec-
ond of waiting the term is minimized again. The steps repeat until convergence is met
which is achieved if after 3 consecutive iterations a landmark position has not moved by
more than one millisecond in the euclidean space. The approach can embed 20 land-
marks starting from their origin positions in approximately one minute and the resulting
positions are just as accurate as the centralized approach. [15]

VIVALDI ALGORITHM

Vivaldi is also published shortly after the GNP algorithm in 2004 and it conceptually dif-
fers from GNP in that it places a spring between each pair of nodes with a a rest length
equal to the measured latency between the nodes. It is a variant to the GNP algorithm in
that it also tries to minimize an error function to find good coordinates for nodes. Every
pair of nodes exert a force on both nodes. The force of the first node has the direction
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Figure 2.3: The node placement chosen by Vivaldi for the King data set (a) in two dimensions, (b) in three
dimensions, (c) with height vectors projected on the x y plane, and (d) with height vectors rotated to show the
heights. [16]

towards the second node and vice verse. The strength of the node is equal to the dis-
placement of the spring from rest. The net force on a single node is the sum of all forces
from other nodes.

In the simple decentralized Vivaldi algorithm each node participating in Vivaldi sim-
ulates its own movements in the spring system. Each node maintains its own coordi-
nates, starting at the origin. When the algorithms starts, the node communicates with
its other nodes to obtain the coordinates of other nodes and measure the latency to other
nodes.

Each time the node communicates with another node, it moves it self in the direc-
tion of only that node’s spring for a short amount of time δ, reducing only the error to-
wards that particular node. Nodes continually communicate with other nodes so that
the positions eventually converge to a low error. Figure 2.3 shows an example of node
placements based on the King dataset.

Because the algorithm updates itself at every communication it has a bias to more
recent samples or nodes that contacted a lot. A countermeasure to this bias would be
to maintain a list of more recent samples and favor older samples and samples of nodes
that aren’t contacted frequently.

Choosing a right δ value is difficult. Large δ value inclines large steps are used in
each epoch of the algorithm, but the result is often oscillation and convergence does not
happen. Small δ values can lead to convergence but slow.

In order to obtain fast convergence and avoidance of oscillation Vivaldi varies δ de-
pending on how certain the node is about its coordinates. Large δ values will help the
node quickly go to a position with low error, while small δ values allows it to refine itself.
The change in δ setting in Vivaldi also takes into account the error of the opposing node.
When the error of the opposing node is high, the node should not get a lot of weight and
thus δ should be lower. With this approach, there is quick convergence, low oscillation
and nodes with high error have a lower weight. [16]
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Figure 2.4: The figure on the left shows the cumulative distribution of the distance between consoles. The
figure on the right shows the latency’s measured for each distance between two nodes in miles. Both figures
are from the experiments performed on the data from Xbox game consoles by Leet al al, 2008 [18]

PIC
The Practical Internet Coordinates for Distance Estimation (PIC) is another variant on
the GNP algorithm published in 2004 that provides a decentralized solution that scales
well and does not rely on centralized infrastructure nodes. Any node in the system can
act as a landmark if the coordinates are already calculated. PIC addresses the problem
that peers can choose to obstruct the system by for instance sending wrong information
or manipulating its own coordinates.

Each new entering node to the system determines the latency to a set of landmarks.
The entering node also obtains the coordinates of each landmark. The new node then
computes its coordinate by minimizing the error between the measured distances and
computed distances between the new entering node and the landmarks. The authors
of the paper experimented with several target error functions to minimize, the one that
performed the best was the sum of the squares of the relative errors.

In the PIC algorithm three different strategies have been tested to choose a subset
of landmarks out of all nodes. The PIC algorithm with different strategies were tested in
different environments with a variable amount of routers. The result tells us that choos-
ing some peers close and some peers randomly gives the best performance of the PIC
algorithm in a decentralized setting.

To make PIC more secure a triangle inequality test is introduced. For most of the
node triplets on the Internet, the triangle inequality holds. If an attacker lies about its
coordinates or its distance to a joining node the attacker is likely to violate triangle in-
equality. The security test may also be useful when dealing with congested network links.
When a link is temporarily congested, it will make the distance between the nodes in the
link large and create a triangle violation. Nodes that require links that have congestion
will thus be treated as an attacking node and ignored. [17]

LATENCY ESTIMATION WITH GEO-LOCATION

Lee et al tried to do latency estimation with geolocation data in a publication in 2008.
Geolocation data is location data from the earth that is mapped towards IP addresses.
The location data was retrieved from Xbox live game session information for Halo 3. The
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Figure 2.5: The correlation between the distance and latency. The latency data is the median of the data from
the Halo 3 players database. The distance data is from MaxMind’s IP-to-geo database. There is a clear linear
relation between the distance and the median. The slope of the line is 0.0269 ms/mile and the explained
variance is 97,6% (R2 = 0.976).

data set covers over 126 million latency measurements over 5.6 million IP addresses.
Using the commercial MaxMind GeoIP City database from June 2007, the authors were
able to provide the latitude and longitude for over 98% of these IP addresses.

It is hypothesized that the geographic distance between two consoles has a strong
correlation with their measured latency. The great-circle distance algorithm is used to
calculate the distances between two consoles at a different geolocation. The distance
between nodes varies between 0 and 12000 miles. Figure 2.4 shows a cumulative dis-
tribution function for the distance between nodes. About 14% of the console pairs tra-
versed over 5000 miles. We have enough samples to examine the correlation between
distance and delay.

In the right graph of figure 2.4 the relation between the distance and delay is shown.
We see a very strong correlation between the geographic distance and the minimum
latency measured between two consoles. Above this minimum there is a lot of noise.
The geography of IP addresses is a useful predictor for filtering out pairs of IP addresses
that are too far apart to have such a low latency. [18]

HTRAE LATENCY ESTIMATION SYSTEM

Htrae is a latency prediction method published by Microsoft in 2012 merging both net-
work coordinate systems (NCS) and earth geo-location approaches. It is one of the most
advanced latency estimation algorithms so far. The way this works is by geographic boot-
strapping, initializing NCS coordinates in such a way that they correspond to the loca-
tions of the nodes in actual space. With better initial positions, Internet latency’s can be
better predicted.

Figure 2.5 shows the correlation between the distance in miles and latency’s. The
median is taken at each distance and a linear relation can be seen from figure x. The
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least-squares fit line is also drawn in the figure. The explained variance percentage is
97,6% which is high, so there is a strong linear relation.

When a new machine enters the system the Htrae algorithm works as follows. At
first, the IP-address is looked up in the commercial MaxMind’s IP-to-geo database. This
gives an initial geo-location for the NCS. A Vivaldi-like algorithm is then used where a
node moves in the direction of the forces that pull on the new node by nearby coordi-
nates. The Vivaldi algorithm is adapted to use spherical coordinates instead of a linear
euclidean space to better model the spherical shape of the earth. An uncertainty model
is also added that is used to calculate how strong a force to apply when updating coordi-
nates: the greater a moving node’s uncertainty, the stronger a force will be. Uncertainty
is defined as the difference between the observed and calculated latency’s.

The Htrae system implements additional things to improve the algorithm such as
Triangle Inequality Violation (TIV) avoidance and autonomous systems correction. Tri-
angle Inequality Violations (TIVs) have an impact on the performance of neighbour se-
lection in P2P systems. A TIV exist if a node A is close to a node B and the node B is
close to node C , but node C is very far away from node A. These TIVs make it hard for
latency estimation algorithms to properly estimate latency’s because it makes it hard to
model peers as coordinates in a geometric space. TIVs exist because of routing policies
and the structure of the internet that are not going to change. Thus TIVs will remain in
the future. Various studies have reported Triangle Inequality Violations (TIV) in the in-
ternet delay space. For instance, when taking two peers in real-world data-sets as many
as 40% of these peer pairs have a shorter routing path trough an alternative peer instead
of the internet. Next to asymmetric routing is common where the upstream and down-
stream capacities of a link are not equal. [19] When updating a nodes coordinate, Htrae
will skip the coordinate update if the measured latency exceeds the predicted latency by
some number δ to remove TIVs. A big difference in the estimated latency and predicted
latency is usually caused by inefficient routing between two nodes. Inefficient routing
causes a large delay between two nodes compared to the sum of delays via a more effi-
cient route. [20]

2.4. INTERNET OVERLAYS
In this section we describe two internet overlays as examples of systems that are build
on top of the internet and try to improve themselves with low latency’s. The literature
provides theoretically concepts but publications with implemented applications are lim-
ited.

DHASH++
DHash++ is a distributed hash table (DHT) overlay that provides low-latency network
storage. A DHT is a hash table in a distributed environment which makes the hash ta-
ble very scalable because multiple distributed nodes work together. DHash++ uses the
chord lookup algorithm to help it find data and is optimized for low latency. In order to
make the requester contact low latency nodes DHash++ uses the Vivaldi latency estima-
tion algorithm. Vivaldi is a similar algorithm to the GNP algorithm and uses coordinates
to estimate latency’s. However Vivaldi is a distributed algorithm where GNP can only be
used locally. Whenever DHash++ nodes communicate with each other they exchange
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coordinates. By this way a requesting node can predict the latency toward other nodes
without having to communicate with them first. [21]

BINNING: TOPOLOGY AWARE OVERLAY CONSTRUCTION

Binning uses topological information about the relationship in nodes to make better
routing policies and reduce latency in overlay networks. Nodes are grouped together
in bins. The latency is reduced by putting nodes that are relatively close to each other
in the same bin. The binning strategy is simple, scalable and completely distributed.
However, the scheme requires a set of well-known landmark machines spread across the
internet. An application node connects to these landmarks and measures its latency and
selects a bin based on its measurements. The latency’s measured are divided into mul-
tiple levels that order the latency measurements. The ordering of the different levels to
each landmark determines the bin of the node. The method described reduces the la-
tency and performance in network overlay construction but results not in a completely
decentralized system because landmarks are being used. [22]





3
PROBLEM DESCRIPTION

The main problem that is faced when creating the low-latency overlay in a real world P2P
network is to make efficient latency estimation algorithms. Each peer in the low-latency
overlay should be able to estimate the latency’s between other peers such that the peers
in the overlay can give introductions with low latency peers toward each other. Next to
that, the low latency overlay should not be able to be taken down easily and be able to
function if though some nodes might go down. At last, the low latency overlay should be
resilient against certain attacks like the eclipse attack and Sybil attack.

3.1. PERFORMANCE OF LATENCY ESTIMATION ALGORITHMS
The first requirement of the low latency overlay is that with a large number of peers N in
the P2P network the latency estimation algorithms should still be computationally and
memory efficient. If the algorithm computation takes too long, the computation can
block a node in the P2P network. The node is then waiting for the algorithm computation
to finish and does not respond on communication. When this happens, the latency of
a random peer toward the blocking node increases and this cannot happen in the low
latency overlay. Thus computational efficiency becomes a very important requirement
for the system.

The algorithms should next to computationally efficient also be memory efficient
and efficient in bandwidth usage. As peers collect latency’s that are measured by other
peers the number of latency’s stored in memory and send over the internet can become
large. If all peers maintain all the latency information they ever received and share all
their latency information to other peers the memory usage is N 2 where N is the number
of peers in the network. The algorithms developed so far require that such amounts of
latency information is stored. For instance, the GNP algorithm requires N 2 of measured
latency’s for a network with N peers.

The algorithm in the overlay should be able to deal with these large amount of mea-
sured latency’s because in normal P2P networks the number of peers in the network can
become millions. A choice has to be made in the algorithm about what latency’s to send
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to other peers to lower bandwidth consumption and what latency’s to store in a peers
memory to lower memory usage. The drop in latency information implies an informa-
tion loss that could decrease the performance of the latency estimation algorithms. In
the next chapters we will further evaluate the design choice and we will evaluate the ef-
fect of the information loss in the experimental section.

3.2. PEER DISCOVERY
A second requirement is that peers should be able to communicate with each other even
though some peers are behind a NAT box. In the next paragraph is explained what a NAT
box is. The communication is enabled in a peer discovery mechanism where peers are
introduced to each other. It is impossible for the peer discovery mechanism to have a
central authority as this will imply a central point that can be taken down and therefore
let the whole system collapse. With a central authority in the overlay the system will
become harder to maintain, could easily become the bottleneck of the performance of
the system and would give some extra security threats. The code of the central authority
would become different from the other peers and would require separate updating and
monitoring which would increase the cost of maintenance of the entire system signifi-
cantly. With no central authority the overlay can only be shut down if the entire internet
is shutdown.

Figure 3.1: Network Address Translation (NAT). The NAT box has two IP, port combinations. (i p4, por t4 is
available on the local network and i p5, por t5 is available on the internet.

NAT BOXES

Many computers lack a direct internet connection and are forced to take the initiative
in communication. Computers on the internet are 64% of times connected to a NAT
box in a local network that connects the computers in the local network to the inter-
net. Figure 3.1 gives an overview of such a local network with a NAT box. A peer in a
local network cannot be directly messaged by peers on the internet because the NAT box
blocks incoming communication. Network Address Translation (NAT) is designed for
the client-server model and not for a P2P network. 64% of the computers connected to
the internet do Network Address Translation (NAT) to hide the IP and port combination
of computers from a local network to the internet. [23] In figure 3.1 are the IP addresses



3.3. SECURITY REQUIREMENTS

3

19

and ports of the local peers 1,2 and 3 hidden from the peer on the internet with the NAT
box. The NAT box has two IP addresses. One is available for the local network and one
for the internet. The peer on the internet only communicates with the NAT box with the
address available for the internet and the NAT box translates the IP, port combination
to an IP, port combination of a peer from the local network. The peer on the internet
cannot distinguish between the three local peers if it wants to address one of the local
peers and send messages to it. Therefore the peers in the local network always have to
act as clients and initiate the connection. The NAT box identifies and remembers the
peer that initiated the connection and makes the translation for the peer on the internet
when a response is given to the NAT box. The peer on the internet can never initiate a
connection and is forced in the server-role. [24] [25]

3.3. SECURITY REQUIREMENTS
SYBIL ATTACK

In the Sybil attack an adversary creates multiple pseudonym peers in the P2P network
that flood or spam the network with false information. It is hard to solve the sybil at-
tack in a decentralized P2P network because there is no central authority that can verify
the identity of peers and distinguish between pseudonym peers and non-pseudonym
peers. An adversary is able to take peers down with Distributed Denial of Service [DDoS]
attacks by pseudonym peers. For instance, if an adversary wants to take down a tar-
get peer it could send a lot of peer introduction requests to a target peer with multiple
pseudonyms. The target peer would be unable to respond to all introduction requests
send by the pseudonyms and will be completely occupied with handling the requests
from the pseudonyms. When this happens the target peer is taken down because it is
unable to respond to messages received from normal non-pseudonym peers and is also
unable to send messages toward other non-pseudonym peers. is able to subvert features
of the P2P network such as a reputation system that maintains a reputation of peers. [26]

With multiple pseudonym peers an adversary could also manipulate certain features
of a P2P application like for instance the reputation system of P2P networks. By letting
pseudonyms collude with each other, the pseudonyms could gain a false high reputa-
tion. In a lot of P2P applications reputation systems are important to let the application
function well. For instance, P2P file sharing applications make use of reputation sys-
tems to incentivize peers to not only use the P2P application but also contribute to the
P2P network by sharing files with other peers. In P2P file sharing applications the repu-
tation of a peer is often defined as the amount of data shared with other peers. Another
example is the TrustChain online currency that also uses a reputation system to incen-
tivize contribution to the application. If the reputation of a peer is low the peer will be
denied service. [27] [28]

ECLIPSE ATTACK

Eclipse attacks have large implications on P2P networks. In the eclipse attack an attacker
can gain partly or complete control over the data that is received by a victim node. This
is achieved by manipulating the candidate lists of the victim and its neighbours. When
selecting a node it is important to take into consideration that attacker nodes might be-
come part of the candidate list. If the colluding attackers control a large part of the neigh-
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bourhood of a victim node they can "eclipse" victims by dropping or rerouting messages
that attempt to reach them. In the case of complete control over the neighbours of a vic-
tim peer (all neighbours are colluding attackers) the attackers gain full control over all
the traffic toward the victim. [29]

The eclipse attack is a very powerful and generic attack. We will provide several ex-
amples in the world of cryptocurrencies where eclipse attacks are used and have direct
financial consequences. In most cryptocurrency systems a decentralized blockchain is
used where transactions of the cryptocurrency are stored. Eclipse attacks are a powerful
building block for the following attacks on cryptocurrencies.

1) Engineering block races A block race occurs in a block-chain when two miners
discover blocks at the same time. One of these miners receives mining rewards for that
block and his block will become part of the block-chain while the other miner will be
ignored and create an "orphan" block. Attackers can forge block races by holding back
mined blocks that are mined by eclipsed miners. Once a non-eclipsed miner discovers
a competing block the block mined by the eclipse miner is released later resulting in an
orphan block for the eclipsed miner.

2) Splitting mining power By eclipsing a large part of the miners from the rest of the
network, the 51 % mining attack becomes easier. The attacker gains control over 51 % of
the mining power in the network which allows to create a separate block-chain (Further
details). To make the reduction in mining power from eclipsed miners less detectable,
miners could be eclipsed gradually or intermittently. Figure 3.2 shows a network where
eclipsed nodes split the network in two. This split could be used to launch the 51 %
attack.

Figure 3.2: Separating a network with the Eclipse attack

3) Selfish mining The attacker can decide to eclipse certain miners to make sure that
other miners that are controlled by the attacker get more mining power. This is realized
by blocking all discovered blocks by eclipsed miners. Later in time the attacker increases
the mining power its own miners by only giving a limited view on the block-chain to
eclipsed miners obstructing the mining of eclipsed miners even more. The fraction of
nodes used to eclipse other miners is denoted as a and the fraction of nodes that is used
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for honest mining is denoted as b. When more miners are eclipsed a is increased and b
is decreased. However, with high a mining becomes easier for the fraction b of honest
miners left.

4) 0-confirmation double spend In a 0-confirmation transaction the attacker exploit
systems where a merchant gives a confirmation of the transaction to a customer before
the transaction is verified by the block-chain. This happens sometimes in systems where
it is inappropriate to wait 5-10 minutes before a transaction in a block gets confirmed.
For instance in the retail service system BitPay or in gambling sites like Betcoin. The
coins spend by the customer to the merchant is double spend by the attacker. The at-
tacker first eclipses the merchant. When the merchant wants to confirm transaction T as
payment for the goods of the customer, the attacker double spends the bit-coins in the
network with transaction T ′ but sends an confirmation of T to the merchant. Because
the merchant is eclipsed he can never tell the network about T . When the attacker is
the customer he can rewire the money back to himself with T ′ and thus not pay for the
goods. This attack has happened in a real world situation.

5) N-confirmation double spend In a system with an N-confirmation transaction the
attacker can also double spend coins from a merchant with an N-confirmation double-
spending attack. In an N-confirmation transaction the merchant only releases goods
after the transaction is confirmed in a block of depth N - 1 in the block-chain. The attack
requires that not only the merchant is eclipsed, but also a certain fraction of miners.
The attacker receives a transaction T from the eclipsed merchant and send T only to
the eclipsed miners. The eclipsed miners incorporate T into their view of the block-
chain V ′. The confirmation of T from the eclipsed miners is send to the merchant who
releases the goods to the attacker. After this has happened, the block-chain view V of
the non-eclipsed miners is send toward the merchant and the eclipsed miners. Next, the
block-chain view V ′ containing T is orphaned, and the attacker acquired goods without
paying. [30]





4
OVERLAY DESIGN

In this chapter we will focus on how the low latency overlay is designed. First the la-
tency estimation algorithms are described that estimate latency’s between peers to en-
able good introductions. A good introduction is a introduction of a peer with a low la-
tency toward the peer receiving the introduction. Incremental algorithms are used to
make the latency estimation algorithms computationally and memory efficient. In the
first section a description of incremental algorithms and the latency estimation algo-
rithms is given. In the second section is described how the low latency overlay is de-
signed into Tribler. The low latency overlay measures and obtains latency information
from peers and saves this information memory efficient. The measured latency infor-
mation is used by the latency estimation algorithms to give good introductions. At last is
discussed how the introductions are given in the low latency overlay.

4.1. LATENCY ESTIMATION ALGORITHMS
We focus on online incremental algorithms to predict the latency’s to get a computation-
ally and memory efficient solution. A schematic view of an online incremental algorithm
is given in figure 4.1. An online incremental algorithm does not require the total input
of all the measured latency’s at once but instead the input is given over time. At each
new time point when new input is given to the algorithm a new intermediate solution is
immediately calculated. The new information updates the solution in such a way that
when new information is fed to the algorithm the algorithm will eventually converge to
a final solution. Calculating a new solution when new information added is called a step
in the incremental algorithm and should not require much computational power. [31]
[32]

The 5 latency estimation algorithms are explained in the following paragraphs. Each
algorithm is given a unique name to distinguish it later in the experiment Chapter. Us-
ing incremental algorithms gives a computational benefit, but chopping the computa-
tion into pieces could give a worse accuracy of the latency estimation algorithms. The
incremental algorithm chops the problem into pieces that are easy to compute and do
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Figure 4.1: Overview of an online incremental algorithm. At each step a new input event e is added to the
algorithm. A small computation with O(a) complexity is used to calculate a new solution s. The new solution
is used in the next step of the algorithm.

not block the processor of a peer. This is very important because if a peer blocks due to
large computations, Tribler will wait for the processor to finish its computation. When
waiting Tribler cannot respond to or send messages and thus will the latency between
peers increase. Incremental algorithms give an accuracy cost because there is incom-
plete information because future latency measurements cannot be taken into account
in a normal step. To mitigate the accuracy cost of this information loss the relation be-
tween past added and newly added information has to be analyzed. The latency estima-
tion algorithm could look back at information added in a past step at a normal step to
increase accuracy. To what extent computation time should be spend by the algorithms
at looking to information that was added in the past to increase the accuracy is explored
in the experimental chapter. The incremental algorithms that look back in the past are
called RepeatStructured and RepeatTIV.

NAIVE ALGORITHM

The first algorithm is a naive coordinate-based algorithm where an error function is min-
imized that is equal to the difference between the estimated latency’s based on coordi-
nates in a geometric space and real measured latency’s. It assumes that there are N hosts
in the system and it further assumes that hosts H are coordinates in a 2 dimensional ge-
ometric space S. Every host Hn ∈ H has its own coordinate C S

n in S. Because S is geomet-
ric the distance function between two host coordinates d(C S

1 ,C S
2 ) is easily calculated by

taking the euclidean distance between the two hosts H1, H2. The error function requires
that latency’s are measured and collected by hosts. The resulting crawled latency’s give
the measured distance between two hosts. The function md(H1, H2) is equal to the mea-
sured latency between hosts H1 ∈ H and H2 ∈ H .

The following minimization function is calculated to compute the coordinates of
nodes:
fob j (C S

1 , ...,C S
N ) = ∑

Ci ,C j ∈{C1,...,CN },Hi ,H j ∈{H1,...,HN }|i> j
= ε(d(C S

1 ,C S
2 ),md(H1, H2)

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2
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The minimization function used is BFGS. This algorithms allows to minimize to the
error function with less minimization steps while remaining a good performance of min-
imization. The reason this algorithm is chosen is explained in the experimental section.
BFGS can vary in the number of function calls it requires. With more function calls the
BFGS might have a better minimization performance, but the computation becomes
more expensive. The complexity of BFGS is O(m ∗ er r or ) where m is the number of
error function calls and er r or is the complexity of the error function.

The complexity of the error function is O(N 2). Because the number of error function
calls is negligible the total complexity of the algorithm is O(N 2). Tribler is not able to dis-
tinguish between landmark and non-landmark nodes as in the GNP algorithm. There-
fore, no computational efficiency’s based on central components such as in the GNP al-
gorithm can be applied. Because every pair of coordinates and their representing Hosts
are added in the sum function the complexity of one sum function is O(N 2). There is
a squared relationship between the number of peers N and the efficiency of the algo-
rithm. With large N the algorithm can become too computationally expensive. In large
P2P networks, N can easily become around 100000 nodes. In the experimental section
we explore how fast with increasing N the naive algorithm becomes computationally too
expensive.

SIMPLE INCREMENTAL ALGORITHM

The simple incremental algorithm only updates the coordinates of new entered peers
Pnew to the neighbourhood. In the experimental section we call this algorithm "Inc". It
is similar to the Naive Algorithm in that there is also a 2 dimensional geometric space S
where every host Hn ∈ H has its own coordinate C S

n ∈C . In the text hosts are sometimes
called peers, they have the same meaning. The distance functions are also md(Hz , Hb)
for the measured latency between two hosts a and b and d(C S

a ,C S
n ) for the euclidean dis-

tance between the two coordinates representing hosts a and b. In all other incremental
algorithms described in this section these assumptions apply. The way the coordinates
are calculated is however different in each algorithm.

In the simple incremental algorithm "Inc", only the coordinates C S
a of each peer in

Pnew is updated by minimizing its error function. Peers measure the latency’s toward
their neighbours and remember the latency’s measured toward past neighbours. A sub-
set L from the crawled latency’s is taken that are all the latency’s between peer a and the
neighbours and past neighbours of a. For each latency l ∈ L there are two peers p1 and
p2 which are the peers where the latency l is measured between. The collection of all
these peers minus peer a we call Psub with coordinates Csub . Because the latency’s in L
are all the latency’s measured between peer a and its neighbours and past neighbours,
Csub are therefore all the coordinates of neighbours and past neighbours of peer a. For
each of the peers pn ∈ Psub the coordinate C S

n ∈ Csub is retrieved or created. Whenever
there is a new unknown peer pn ∈ Psub which has not yet have coordinates in Csub its
initial coordinates C S

n ∈C are created randomly by taking two draws from a uniform dis-
tribution function from 0 to 1. All coordinates that are created in the past by the peer
who executes the algorithm are called C . After that the coordinate C S

a ∈ C of the new
entering peer a is calculated by minimizing the following function:

Incob j (C S
a ) = ∑

C S
i ∈Csub

ε(d(C S
a ,C S

i ),md(Ha , Hi ))
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where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The minimization is done with the BFGS algorithm like as in the naive algorithm. The
complexity of one minimization function call is O(|L|) where |L| is the size of the num-
ber of latency’s measured by one peer. |L| becomes larger as time progresses as peers
have had more neighbours and thus more latency’s measured towards neighbours. The
minimization function is called for each peer in Pnew for one step of the "Inc" algorithm.
However, the size of Pnew is negligible so the total complexity of one step in the "Inc"
algorithm is O(|L|).

INCREMENTAL ALGORITHM WITH R RANDOM REPEAT

The Incremental algorithm with R random repeat extends the "Inc" algorithm by also
updating the coordinates of other peers than the new entering peers Pnew . We call this
algorithm in other section "RandomRepeat". In each step after the "Inc" algorithm is
run, R random coordinates (C S

1 ,C S
2 ,C j ...S ,C S

R ) ∈C . are updated with a similar minimiza-
tion function as the minimization C S

a in the "Inc" algorithm. All coordinates that are
created in the past by the peer who executes the algorithm are called C . The minimiza-
tion function that is called for each of the R randomly chosen coordinates is equal to the
minimization function of "Inc". The "RandomRepeat" extension is:

for each C S
j ∈ (C S

1 ,C S
2 ,C j ...S ,C S

R ) do

Incob j (C S
j ) = ∑

C S
i ∈C S

jsub

ε(d(C S
j ,C S

i ),md(H j , Hi ))

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The subset of coordinates C S
jsub

is calculated in the same way as in the "Inc" algorithm

by taking a subset of latency’s L j from the crawled latency’s. L j is equal to all the latency’s
between peer H j ∈ H and the neighbours and past neighbours of peer H j ∈ H .

The total number of times the minimization function is called is R + 1 times. The
function is called R times extra for the extension and once called for the "Inc" algorithm.
The complexity of the algorithm is thus O((R+1)∗|L|). In the experimental section we will
test with various numbers of R to see its impact on the computation time and accuracy.
It will be most likely that a larger R will increase the accuracy but lower the computation
time. A good design choice for R will depend on the results of these experiments.

INCREMENTAL ALGORITHM WITH R FIXED REPEAT

With a random repeat of node updates some nodes are updated more frequently than
others. A structured repeat of coordinate updates of other nodes is implemented to fur-
ther improve the accuracy of the R random repeat algorithm. We call this algorithm
"RepeatStructured" later in this document. The structured repeat ensures that all coor-
dinates C are updated once before the same node is updated again. In this way no nodes
are left behind in updating and no nodes are updated more frequently than other nodes.
The "Repeat" algorithm is implemented by numbering each coordinate of C . When C
increases the new coordinates are given a new number incrementally. So the first coor-
dinate that was put in C is given the number 1, the second the number 2 and so on. Each
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time the "Repeat" algorithm is executed, a new subset of R nodes of C is selected for
updating. Thus the first time the coordinates with a number smaller than R are selected
from C , the second time the coordinates with a number between R and 2R are selected
etc. If after n times nR > |C |, the selection starts again from the beginning at the low
numbers of C . The complexity of this algorithm is the same as the R random repeat ver-
sion because again the coordinates of R nodes are updated with the same minimization
function. Thus the complexity is O((R +1)∗|L|).

INCREMENTAL ALGORITHM WITH R FIXED REPEAT AND TRIANGLE INEQUALITY VIOLATION

PREVENTION

The Incremental Algorithm with R fixed repeat and Triangle Inequality Violation (TIV)
Prevention is an extension on the "RepeatStructured" algorithm. In further sections we
call this algorithm "RepeatTIV". The problem of Triangle Inequality Violations is solved
by ignoring peers who are estimated to contribute to a TIV. Ignoring means that the co-
ordinates and latency’s towards these peers are ignored in the minimization functions of
both the "Inc" part of the algorithm and the "Repeat" part of the algorithm. To estimate
what latency’s contributed to TIV’s the "prediction error" is calculated for every latency
that is measured in the past by the peer executing the algorithm. The prediction error is
equal to the euclidean distance between the coordinates of the peer pair in the latency
divided by the latency. So for every latency l ∈ L and peer pair H1, H2 of l the following
prediction error is calculated:

pr edi ct i on_er r or = d(C S
1 ,C S

2 )
md(H1,H2)

The three latency’s with the largest prediction error are ignored and not used in min-
imization calculations. The sorting of the latency’s according to prediction error has as
complexity O(Llog (L)). The total complexity of the algorithm becomes O(L2 ∗ l og (L)∗
R).

4.2. IMPLEMENTATION INTO TRIBLER
In this section is described how the low latency overlay is implemented into Tribler. First
is described how the peer discovery mechanism work. Next is described how the low
latency overlay obtains latency information. At last is described how the low latency
overlay introduces peers to other peers. The goal of the low latency overlay is to give low
latency peer introductions to other peers. A low latency peer introduction is an introduc-
tion of a peer A to another peer B such that the latency between peer A and peer B is low.
In order to achieve this the latency between peer A and peer B has to be estimated with
one of the latency estimation algorithms described in the previous paragraph. The la-
tency estimation algorithm requires measured latency’s between peers that are obtained
by the overlay. The low latency overlay is build on top of dispersy and Tribler. The over-
lay consists of 1200 lines of code and can be downloaded open source from Github from
https://github.com/basvijzendoorn/tribler/. Two test suits are written to test the code
development, one for unit-tests and one for integration tests. The unit-tests have a test
coverage of 68% and the integration tests have a test coverage of 70%.
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PEER DISCOVERY AND NAT PUNCTURING

To explain what changes to the peer discovery are made to implement the low latency
overlay the design of the current peer discovery mechanism of dispersy is first explained.
In the current implementation of the peer discovery mechanism a peer introduction re-
quest and response mechanism is build. This mechanism requests another peer for an
introduction and the other peer gives a response. The result is a list of peers that each
peer maintains called the candidate list or neighbourhood of a peer. The peers in the
candidate list are called the neighbours of a peer. A peer can always exchange data be-
tween two peers in the candidate list. The communication between two peers in the
candidate list are always symmetrical. This means both peer A and peer B can send
messages toward and receive messages from each other. If peer A has peer B in its can-
didate list then peer B also has peer A in its candidate list. The symmetrical property
implies that both peers A and B assume the role of client and server in the P2P network
and therefore the NAT firewall of one of the peers has to be punctured. This happens
also in the peer discovery mechanism.

There are four phases in the current peer discovery mechanism. These four phases
represent one step in the walk toward peers. Multiple steps are called a walk toward
peers. By walking toward new peers each peer discovers a set of peers called its neigh-
bourhood. The four phases are also shown in an overview in figure 4.2.

1. peer A chooses a peer B from its neighbourhood and it sends to peer B an introduction-
request;
2. peer B chooses a peer C from its neighbourhood to introduce to peer A and sends peer
A an introduction-response containing the address of peer C; peer A will add the address
of node C to its neighbourhood.
3. peer B sends to peer C a puncture-request containing the address of peer A;
4. peer C sends peer A a puncture message to puncture a hole in its own NAT.

Figure 4.2: Overview of peer discovery in Tribler

The NAT puncturing mechanism is integrated in the peer discovery mechanism and
works by sending puncture messages to other peers to puncture a hole in the NAT of the
sender. In the third step of a peer discovery step peer B asks peer C to puncture a hole in
its NAT for peer A. Peer C does this by sending a message toward peer A and therefore
opening a port in its own firewall such that peer A can send a response. The two-way
communication is complete if peer C sends another message to peer A to puncture a
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hole in the NAT of peer C to enable peer A to send messages to peer C . Because both
peer C and peer A send messages that punctured their NAT firewall the peers can com-
municate with each other without having to worry about the NAT firewalls.

NODE SELECTION

To prevent against eclipse attacks a node selection policy for nodes is implemented by
dispersy to send an introduction request to. The candidate list is divided into 4 cate-
gories and Nodes are selected with pre-defined rules from these categories. The cate-
gories are:

I) Trusted nodes
II) Nodes we have successfully contacted in the past
III) Nodes who have contacted us in the past, either through.

a) Nodes that have sent an introduction-request; or
b) Nodes that have been introduced to another node.

Nodes are divided into the 4 categories according to the phases of the peer discovery
mechanism. After a connection request is send from node A toward a node B , the node
B is put into category IIIb of node A. If node B sends back a connection response and
the connection is successful node B is moved from category IIIb to category II of node A.
When an introduction-request is received the node that send the introduction-request
is put in Category IIIa. Thus when node B receives the introduction-request from node
A, node A is put into category IIIa of node B . The trusted nodes category consists of a
special list of pre-defined nodes.

When selecting a node to send an introduction request to in a step, a choice is made
from the 4 categories with pre-defined probabilities. The trusted node category I is cho-
sen with a probability of 1%, category II is chosen 49.5% of times and category IIIa and
IIIb are both chosen 24.75% of times. After a category is chosen, the node with the most
recent interactions is selected from the selected category. Because some firewalls close
inactive connections after a certain timeout the node with the most recent interactions
is chosen. A closed connection is useless as then both nodes cannot communicate with
each other anymore. [24] [25]

Dividing the nodes into the categories as described above has a dampening effect
on an eclipse attack. If the attacker tries to perform an eclipse attack by introducing
adversary nodes to a target node, the adversary nodes are only added to category III and
not to category II. Because category II has a 49,5% selection probability when selecting
a node for a step the adversary nodes will not always be selected. The node selection
policy only mitigates an eclipse attack, it is still possible to do an eclipse attack with a lot
of resources. To give extra protection the trusted node group is added. Whenever a node
selects the trusted node group with a probability of 1% the candidate list is completely
reset and all adversary nodes in the candidate list are automatically removed.

4.2.1. OBTAINING LATENCY INFORMATION
In this section are the mechanisms explained to measure and obtain latency information
between peers. There are two mechanisms in the low latency overlay to obtain latency
information: the ping-pong mechanism and the crawling mechanism. The ping-pong
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mechanism has a double purpose. The first and most important purpose is to measure
the latency’s toward peers in the neighbourhood. The second purpose is to share previ-
ously measured latency’s with other peers at the same time when latency’s are measured.
The crawling mechanism is an extra feature added to the overlay to quickly share latency
information between peers. In contrast to the ping-pong mechanism is the crawling
mechanism bandwidth inefficient. Therefore is the crawling mechanism not enabled by
default in the low latency overlay.

PING-PONG MECHANISM

The latency between peers is measured with a ping-pong mechanism and previously
measured latency’s are also shared to other peers with the ping-pong mechanism. The
ping-pong mechanism is started every PING TIME INTERVAL seconds by every peer in
the P2P network. By default the value of the PING TIME INTERVAL is set to 2 second
to frequently update the latency information between peers and to let the ping-pong
mechanism do not consume too much bandwidth. It is important to frequently update
the latency information between a peer and its neighbours for two reasons. At first, the
latency to newly entered peers in the neighbourhood should quickly be measured to use
this information in the incremental latency estimation algorithm. Secondly, the latency
between peers can change over time. Nonetheless, the latency information cannot be
updated too frequently because this will increase the bandwidth cost and processing
time of the low latency overlay too much.

When the ping mechanism is activated every peer sends all peers in its candidate
list a ping message. The peers who receive the ping message return a pong message.
The time between send and return is measured to obtain the latency between two peers.
The time when the ping message was send is stored by the peer to compare later with
the return time of the pong response message. Upon arrival of the pong message the
difference between the send and return time is calculated to obtain the latency toward
the neighbour.

The ping message contains the IP and port of the peer sending the ping message, the
time and 10 previously measured latency’s added to the message. The payload format
for the ping message is shown in figure 4.3. The low latency overlay always sends a new
batch of 10 previously measured latency’s toward the other peer that have not been send
before. With a ping time interval of 2 seconds 50 measured latency’s are send toward
the other peer in 10 seconds with 5 ping messages. When all measured latency’s are
already send toward the peer the ping-pong mechanism will repetitively send measured
latency’s. All the measured latency’s are maintained in a list by every peer. The ping-pong
mechanism will first send the first 10 measured latency’s, then the second 10 messages
etc. When all measured latency’s are send the ping-pong mechanism will start again
from the beginning and send the first 10 measured latency’s, followed by the second 10
measured latency’s etc.

After receiving a ping message a pong response is given to the IP and port combi-
nation received from the ping message payload. The pong payload contains the IP and
port of the peer that received the ping message and is given a response and contains the
same time as received in the ping message. Figure 4.4 shows the payload format of the
pong message.
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Figure 4.3: Ping payload.

Figure 4.4: Pong payload.

To make the low latency overlay memory efficient, only the top 100 latency’s from one
peer toward the top 100 closest peers send by ping messages are stored at every peer. The
top 100 closest peers are the 100 peers that have the lowest latency to the peer receiving
the ping messages. These 100 peers are estimated by the latency estimation algorithm.
The low latency overlay has a low latency bias and thus only the latency’s that are close
to a peer are important and only the lowest latency’s are remembered.

CRAWLING LATENCY INFORMATION

By default the crawling mechanism is not active on every peer to collect measured la-
tency’s from other peers that were collected with ping and pong messages. Every CRAWL
TIME INTERVAL seconds a crawl request is send by each peer to every peer in its candi-
date list. The standard CRAWL TIME INTERVAL is 15 seconds. Each peer that receives a
crawl request message forwards this message to other peers and send its latency’s back
toward the requesting peer with a latency response message. By forwarding the latency
request message more peers are reached that send back latency information.

When a peer returns latency information as a reply to a latency request message it
sends this latency information back to the peer who send the request. When the request
message was forwarded the latency response message is also forwarded back to the peer
who send the request until the original crawler is reached. As peers can only contact
other peers in their candidate list the forwarding construction is necessary. Peers cannot
directly send back the latency information to the initiator of the crawl because there is
no reliable connection between these peers and the crawl initiator. A reliable connection
cannot be set up because the NAT firewall should first be punctured with peer discovery.
An overview of the forwarding mechanism is shown in figure 4.5. In a later paragraph we
will explain how the forwarding mechanism is programmed.

An overview of the latency request payload is shown in figure 4.6. The IP address and
port of the peer requesting the crawl is stored in the message. The hop count variable
denotes how many times the message has been forwarded. The peer that sends the first
crawl message sets the hop variable to 0. The relay list contains a list of unique variables
that is used by the response latency message to know to which peer the latency response
should be forwarded back. The hop variable is increased each time the message is for-
warded. If the hop count exceeds the MAXIMUM HOP COUNT variable the message is
not forwarded anymore.

The latency response message payload is shown in figure 4.7. The IP address and
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Figure 4.5: The left figure shows what happens when P1 sends a crawl request. The crawl request is forwarded
to its neighbours P2, P3 and P4. These neighbours forward the crawl request to their neighbours to reach a
maximum number of neighbours. In the right figure the latency response message is shown. All peers send
back their latency information to the peer from who they received the crawl request message. These peers
forward the latency response message back until the original crawler P1 is reached. In the example P5, P6 and
P7 send their latency information to P2 who forwards the latency information to P1.

Figure 4.6: Overview of crawl request message.

port contain the address of the peer giving the latency response message. The relay list is
used by the mechanism to forward latency response messages back toward the peer that
originally send the crawler request. The latency’s in the payload are all the latency’s that
are send backward toward the original crawler. The latency’s are stored in a dictionary
with the two addresses of one latency as key and the latency between these two addresses
as the answer to that key. The dictionary is serialized to a string to easily transfer them
in the payload.

Figure 4.7: Overview of latency response message.
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THE FORWARDING MECHANISM

We will further explain how the forwarding mechanism is implemented. Crawl messages
are forwarded by peers to reach more peers that can return latency’s. The returned la-
tency’s are send back to the original requester with the same route as the requests were
send but then backward. Both the crawl request message and latency response message
contain a relay list that is used in the forwarding mechanism.

In the first part of the mechanism the crawl request messages are forwarded to other
peers as can be shown in figure 4.8. Each time the message is forwarded a unique r el ay_i d
is created by the peer and is added to the relay list. When a peer receives a crawl request
message the address of the sender is saved in the r el ay dictionary that is maintained by
the peer. The last r el ay_i d on the relay list in the message is used as a key in the r el ay s
dictionary. With the r el ay_i d as key the peer can know to which address the latency
response has to be send back in the second part. The unique r el ay_i d is created using
the global time variable in dispersy plus the address of the peer creating the unique id.
The global time variable is a lamport clock used for message ordering inside a dispersy
community. With global time each message used in the community can be uniquely
identified with in combination with the member who send the message and the com-
munity itself. The combination of global time and address thus gives a unique identity
variable. The r el ay_i d has to be unique to make the response always arrive at the right
peer. If r el ay_i d is not unique the key in the r el ay dictionary might be overwritten and
the response message could arrive at another peer.

Figure 4.8: Schematic scheme of peer forwarding. In each communication line the r el ay_l i st is given. Each
peer adds a new relay id to the r el ay_l i st . When a peer receives a message the r el ay s dictionary is updated
with the last added r el ay_i d as key and the peer who send the message as result. The hop count is also
increased at each forward.

In the second part of the mechanism the latency responses are send backward to the
peer that initiated the crawl. An overview of this mechanism is shown in figure 4.9. At
each arrival of a latency response message the last r el ay_i d of the r el ay_l i st in the
message is popped of the list and used as a key in the r el ay dictionary. As can be shown
in figure 4.9 the key gives the address back of the next peer in the forwarding chain to
eventually end at the crawl initiator. The dictionary key is also deleted as the latency
response is forwarded back and the key is of no more use. By deleting the dictionary key
the crawl mechanism stays memory efficient.

Sometimes the peer to which the latency response has to forwarded back is no more
in the candidate list of a peer. In that case the latency response simply cannot be for-
warded anymore and the crawl initiator will never retrieve the latency’s. But, as the la-
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Figure 4.9: Schematic scheme of peer forwarding mechanism upon return. When the hop count exceeds the
hop count limit the latency’s are returned. The peer pops the last r el ay_i d from the r el ay_l i st and uses this
id to lookup the peer to backward the latency’s to in the r el ay s dictionary.

tency crawler is activated in an interval the crawl initiator will eventually maybe retrieve
the latency’s of the peer that left the candidate list.

4.2.2. LOW LATENCY OVERLAY

A few changes are made in the peer discovery mechanism to enable low latency intro-
ductions. At first the peer introduction mechanism is changed. In the second phase of a
step the introduction peer C is chosen from the neighbourhood of peer B to introduce to
peer A. In the new low latency overlay the introduction peer is chosen in such a way that
the latency between peer A and the introduced peer C is low. Peer B knows what peers
have a low latency with peer A by using the results of the latency estimation algorithm.
Peer B can simply calculate the distances between peers to peer A in the map that was
constructed by the latency estimation algorithm to estimate all the latency’s between
peer A and other peers in the network. When the new overlay introduces always the
peer with the lowest latency toward peer A the same peer could be introduced multiple
times in different steps. This effect is called hammering of introduction peers. This can
happen when the latency estimation algorithm gives the same results in two different
steps. To avoid the hammering effect the new overlay chooses randomly one peer of the
top n peers with the lowest estimated latency toward peer A to introduce to peer A. The
default value for n is 8 and this value is chosen to give some variation in peer introduc-
tions to peer A but to also still introduce only peers with a low estimated latency towards
peer A.

Secondly, the incremental latency estimation algorithm is run in the background of
the peer discovery mechanism to update the results of the latency estimation algorithm
continually. A new step in the latency estimation incremental algorithm is run every
m seconds. The time interval m is chosen to be 3 seconds by default to update the la-
tency estimation frequently but also to give the low latency overlay enough time to walk
to other peers and obtain new latency information from other peers. For the "Repeat-
Structured" and "RepeatTIV" algorithms the repetitive updating of previously calculated
coordinates is also run in the background to save computational time. Every 1 second a
previously calculated coordinate is updated by the latency estimation algorithm. Newly
introduced peers Pnew are remembered by the low latency overlay to use them as new
input to the incremental algorithm. Dispersy takes a step with normal walking times ev-
ery 5 seconds. This means every 5 seconds a new peer gets introduced and a new peer is
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added to Pnew . Nonetheless, the incremental algorithm can only benefit from the newly
introduced peer if first latency information is obtained from that peer. Thus, the low la-
tency overlay is designed that the incremental algorithm only uses the peers from Pnew

as input after latency information is obtained from Pnew . The latency information of a
newly introduced peer of Pnew can be obtained with the ping-pong mechanism or the
crawler after introduction. In the default setting in the low latency overlay latency infor-
mation is obtained every second with the ping-pong mechanism from every peer in the
neighbourhood. This means that in the worst case the latency information of peers of
Pnew is obtained one second after introduction.

At last the peer discovery mechanism is changed to prefer to take steps toward low
latency peers. In the first phase of a step peer A chooses a peer from its candidate list to
send an introduction to according to the node selection policy described above. In the
new low latency overlay a combination of the old mechanism and a new mechanism that
prefers low latency peers is build. In 50% of node selections the old mechanism is used
and in the other 50% of node selections a peer with a low latency toward the selecting
peer is chosen. When the overlay always selects the peer that has the lowest latency
toward the selecting peer the hammering effect occurs. To prevent the hammering effect
the selecting peer chooses randomly a peer from the top n peers with the lowest latency
toward peer A.





5
EXPERIMENTS

In this chapter we describe the experiments that have been done to test the low latency
overlay. We will first describe the performance metrics for the experiment. After that
a description of a local experiment is given to test the performance of the different al-
gorithms quickly with complete information. Next a description is given of two exper-
iments in a decentralized Tribler setting with a P2P network consisting of 30 and 500
nodes to test the algorithms in a real world P2P network.

In all experiments, latency’s are not measured in real time but are extracted from the
King Dataset. The King Dataset is a latency data-set with latency’s measured between
computers in the real world. By using the King data-set the experiments use data in-
put from the real world and thus are the results of the experiment applicable to the real
world. The King Dataset is a NxN matrix with latency’s measured between a set of 1740
DNS servers. [33]. The entry on row n and column m contains the latency measurement
from DNS server n to m. This latency measurement is different of the latency measured
the other way around from DNS server m to n. This latency measurement is represented
by the entry of row m and column n. Because the algorithms described in the previous
chapter assume that there is a single latency between two peers in the P2P network the
latency of DNS server n towards DNS server m and the latency of DNS server m towards
DNS server n are averaged and used for both latency measurements. In the experiments
each node in the P2P network is given a unique ID. Whenever a node wants to lookup
the latency measurement between two nodes with ID a and b it instead retrieves the la-
tency measurement between DNS Server a and DNS Server b in the King Dataset. This
provides the node with measured latency’s from the real world.

5.1. PERFORMANCE METRICS

COMPUTATION TIME

The computation time performance metric measures how much time Tribler is blocked
and computing something. It is an important performance metric because when a Tri-
bler instance is blocked it cannot respond to communication and this increases the la-
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tency of that Tribler instance. The computation time performance metric is calculated
by taking the maximum amount of time a Tribler instance is computing something con-
secutively computation time of each incremental step of the incremental algorithm. This
computation time can easily be calculated by taking the time difference of the time be-
fore and after the computation. When the computation of one incremental step is fur-
ther spread in some algorithms like for instance in the Repeated algorithm each compu-
tational part that requires a separate calculation also blocks the Tribler instance and is
counted as part of the computation time metric.

RELATIVE ERROR

The relative error metric measures how well an estimated latency matches the corre-
sponding measured latency in the latency estimation algorithms. It measures the overall
estimation performance of the algorithm. We will explain the relative error in a mathe-
matical formula. In all latency estimation algorithms proposed in the previous chapter
the latency estimation between two peers a and b in the P2P network is equal to the
euclidean distance between two points in a geometric space. We call this distance the
estimated distance or estimated latency. The measured latency is equal to the real world
latency measurement between two DNS servers who represent peer a and peer b in the
King data-set. For each estimated latency that can be calculated by the latency estima-
tion algorithm between two peers a and b in the P2P network the relative error is defined
as follows:

r el ati ve_er r or = |est i matedl atenc y−measur edl atenc y |
mi n(est i matedl atenc y,measur edl atenc y)

A value of zero implies a perfect prediction as then the estimated latency and mea-
sured latency are equal and a value of one would imply that the estimated latency is
larger by a factor of two.

RANKING ACCURACY

The ranking accuracy measures the quality of the latency estimation algorithms by com-
paring the lowest estimated latency’s of the latency estimation algorithms with the low-
est real measured latency’s from the king data-set. Because the ranking accuracy mea-
sures how well the lowest latency’s are estimated it is a good metric to evaluate the selec-
tive performance of the latency estimation algorithm. In other words, how good can the
latency estimation algorithm make predictions on what peers have a low latency toward
another peer. The ranking accuracy can be calculated at any point in time. The way this
is done is as follows. Suppose we have a network with a set of P peers in the network.
The latency estimation algorithm is run on every peer and can only estimate latency’s
between a limited set of peers Ba from the perspective of a peer a ∈ P . The set of peers
Ba are all the peers that were introduced before the run of the algorithm to peer a ∈ P .
The set of peers Ba becomes larger over time as more peers are introduced to peer a ∈ P .
For each peer a ∈ P the set of peer Ba is retrieved and the latency’s toward all peers in
Ba are estimated with the latency estimation algorithm and sorted in an ascending list of
estimated latency’s Ea . The list of estimated latency’s Ea is a list of tuples (p,e) where p is
the peer toward the latency is estimated from peer a and e is the estimated latency from
peer a to peer p. The tuples in Ea are sorted in ascending order by the estimated latency
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e in each tuple element (p,e). For the same peers in Ba the measured latency’s of the
king data-set are also sorted in a list Ka with a tuple structure (p,m) where p is the peer
toward the latency is measured from peer a and m is the measured latency from peer
a to peer p. From both sorted lists Ea and Ka we only compare the top 10% of lowest
latency’s in the list because we are only interested in the accuracy of the lowest latency’s.
Thus only the top 10% of the tuples of Ea and Ka with the lowest latency are saved to the
lists E10a and K 10a and the other 90% of tuples are deleted. The local ranking accuracy
of peer a is defined as the percentage of peers that is both in the tuples of the lists E10a

and K 10a . We call the peers in E10a the top 10% lowest estimated peers of peer a and
we call the peers in K 10a the top 10% lowest measured peers of peer a. The local rank-
ing accuracy is thus what percentage of peers is both in the top 10% of lowest estimated
peers and in the top 10% of lowest measured peers of peer a. The ranking accuracy of
the whole network is the average of the local ranking accuracy’s for every peer a ∈ P .

QUALITY OF INTRODUCTIONS

The quality of introductions metric measures how low the latency toward an introduced
peer is compared to other possible introduced peers. The calculation of the metric is
explained with an example calculation of an introduction. In the example peer a intro-
duces a peer b to peer c and the metric is calculated by peer c where peer a,b and c are
random peers in the P2P network. At first the row in the king data-set that contains all
the latency’s toward peer c is sorted by the latency in ascending order. The position of
the latency that corresponds to the latency from peer b to peer c in the sorted list is equal
to the quality of introductions metric.

TOP 10 LOWEST LATENCY PEERS

The top 10 lowest latency peers metric measures how well a peer knows the top 10 of
peers with the lowest latency toward itself in the P2P network. To explain how the metric
is calculated an example is given of how to calculate the metric for a random peer a in
the P2P network. The top 10 lowest latency peers of peer a are the 10 peers in the P2P
network with the lowest latency toward peer a. These peers can be calculated from the
king data-set. Each row in the king data-set contains the latency’s from one peer to all
other peers in the P2P network. By sorting the row that contains all the latency’s toward
peer a the top 10 lowest latency peers toward peer a in the P2P network are calculated.
Peer a also maintains a list of all the latency’s it has ever measured. The metric is the
percentage of peers that is both in the top 10 lowest latency’s ever measured by peer a
and in the top 10 of lowest latency’s toward peer a in the P2P network.

5.2. CENTRAL VALIDATION EXPERIMENT WITH COMPLETE IN-
FORMATION

The 4 algorithms described in chapter 5 have been implemented and are validated in
this experiment in a central setting with complete information. The algorithms were
run on a computer with a dual core 2.8 GHz processor. The experiment tries to mimic
the peer discovery mechanism by incrementally adding peers to the network. In the
beginning of the experiment there are 0 peers in the network. Every time a new peer is
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Figure 5.1: Graph of the computation time metric for latency estimation algorithms in a centralized setting.
The x-axis are the number of peers that enter the system.

of the relative error metric for latency estimation algorithms in a centralized setting.
The x-axis are the number of peers that enter the system.
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Figure 5.2: Graph of the ranking accuracy metric for latency estimation algorithms in a centralized setting. The
x-axis are the number of peers that enter the system..

added to the network an incremental step of the algorithm is taken and the new peer is
given complete information over all the latency’s toward all other peers in the system.
After every incremental step the computation time, ranking accuracy and relative error
performance metrics are calculated. The computation time is the time to compute one
incremental step and the ranking accuracy and relative error are measured of the whole
P2P network.

The results of the computation time of the 4 algorithms can be seen in the graph of
figure 5.1. The computation time of the naive algorithm grows exponentially, while the
computation time of the other algorithms grow linearly larger as the number of peers en-
tering the network increases. The computation times of the RepeatTIV and RepeatStruc-
tured algorithm eventually become larger than 0.5 seconds after 1000 peers are added
to the network. Such a large computation time becomes problematic in networks with
a large number of peers. For instance, in networks with millions of peers the Repeat-
Structured and RepeatTIV algorithm will block the application for a significant amount
of time such that the latency toward a computing peer increases. This seems not to be
a problem with the Inc algorithm because the linear growth of that algorithm is smaller.
After 1000 incremental steps the computation time of the Inc algorithm is still smaller
than 0.1 seconds. This suggests there will be less problems when scaling the Inc algo-
rithm to larger networks with millions of peers.

The ranking accuracy and relative error performance results of the 4 algorithms are
shown in the graphs of figures 5.1 and 5.2. When looking at the ranking accuracy and
relative error performance metrics the RepeatTIV and RepeatStructured have the best
performance and the Inc algorithm has the worst performance. The performance of the
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Figure 5.3: The figure shows the computation time metric in a decentralized experiment with 30 nodes. The
x-axis is the elapsed time of the experiment. The dots represent the average computation time over every peer
for each different algorithm at a certain point in time. The bar at every dot represents the size of the variance
relative to the mean.

naive algorithm fluctuates between the Inc algorithm and the RepeatTIV and Repeat-
Structured algorithms. The Inc, RepeatStructured and RepeatTIV algorithms appear to
have a warm up period when the first peers enter the network and the performance met-
rics converge to a constant value as the number of peers entering the network increases.
The repetitive updating of already calculated coordinates in the RepeatTIV and Repeat-
Structured algorithms seems to be beneficial because the RepeatTIV and RepeatStruc-
tured algorithms converge faster and have a better overall performance in both perfor-
mance metrics compared to the Inc algorithm. The overall performance of the repetitive
updating algorithms is better because when the algorithms are converged the Inc algo-
rithm has a ranking accuracy between 40% and 50% and a relative error around "0.35".
The RepeatTIV and RepeatStructured algorithms have a higher performance with a rank-
ing accuracy between 50% and 60% and a lower relative error around "0.30".

5.3. DECENTRAL VALIDATION EXPERIMENT WITH INCOMPLETE

INFORMATION
The goal of the experiments is to validate the correct implementation of the low latency
overlay in a decentralized setting with incomplete information. In each experiment one
of the low latency estimation algorithms are validated. Only the "Inc", "RepeatStruc-
tured" and "RepeatTIV" algorithms are validated because the "Naive" algorithm was not
computationally efficient enough in the centralized experiment. The decentralized ex-
periments are run by the Distributed ASCI 5 supercomputer (DAS5). Multiple Tribler
instances with the low latency overlay are run on the DAS5 and managed by the Gumby
software in each experiment. Gumby allows to calculate and collect the data of the per-
formance metrics. Because the goal is to only validate the correct implementation of
the low latency overlay the experiments are run for a short period of 5 minutes. Every
10 seconds the performance metrics "Computation time", "Relative error", "Ranking ac-
curacy" and the average latency towards peers in the neighbourhood are measured by
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Figure 5.4: The figure shows the ranking accuracy metric calculated every 10 seconds in a decentralized ex-
periment with 30 nodes. The dots represents the average ranking accuracy over every peer for each different
algorithm at a certain point in time. The bar at every dot represents the size of the variance relative to the
mean.

Figure 5.5: The figure shows the ranking accuracy metric calculated every 10 seconds in a decentralized exper-
iment with 30 nodes. The dots represents the average relative error over every peer for each different algorithm
at a certain point in time. The bar at every dot represents the size of the variance relative to the mean.
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Figure 5.6: The figure shows the computation time metric in a decentralized experiment with 500 nodes. The
x-axis is the elapsed time of the experiment. The dots represent the average computation time over every peer
for each different algorithm at a certain point in time. The bar at every dot represents the size of the variance
relative to the mean.

the low latency overlay. The resulting graphs of the performance metrics are shown in
Figures 5.3, 5.4 and 5.5. [34]

The computation time performance metric of all algorithms is better than expected
because all computation times are below 0,06 seconds. The computation time of the
"RepeatTIV" and "RepeatStructured" algorithms are higher than the "Inc" algorithm be-
cause these algorithms recalculate the geo-location of past calculated peers. The "Re-
peatTIV" algorithm has a bit higher computation than the "Inc" algorithm because some
extra computation is used to remove triangle inequality violations. In the beginning of
the process the computation time for the Repeated and TIV algorithm is lower. When
time passes more latency’s are collected and the computation of the coordinates be-
comes a bit more computationally intensive.

When looking at the performance metrics the "RepeatTIV" algorithm seems to per-
form the best, followed by the "RepeatStructured" algorithm and at last the "Inc" algo-
rithm. The relative error of all latency estimation algorithms decrease but are unable to
converge in 5 minutes. The relative error of the "Inc" algorithm decreases slower com-
pared to the the "RepeatedStructured" and "RepeatTIV" algorithm. The "RepeatTIV"
and "RepeatStructured" algorithm have around the same progression in reduction of
the relative error. After 5 minutes the ranking accuracy of the "RepeatTIV" and "Repeat-
Structured" algorithm is around 25% while the ranking accuracy of the "Inc" algorithm
is around 18%. Past calculated geo-locations are updated in the "RepeatTIV" and "Re-
peatStructured" latency estimation algorithms which explains the better performance.

5.4. ACCURACY EXPERIMENT WITH INCOMPLETE INFORMATION
The goal of the experiment is to measure the performance of the latency estimation al-
gorithms in a setting with incomplete information. The same measurement methods as
with the validation experiment in decentralized setting are used. The experiment is exe-
cuted over a period 12000 seconds which are 3 hours and 20 minutes. The graphs of the
performance metrics and computation time are shown in Figures 5.6, 5.7 and 5.8.
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Figure 5.7: The figure shows the ranking accuracy metric calculated every 10 seconds in a decentralized ex-
periment with 500 nodes. The dots represents the average ranking accuracy over every peer for each different
algorithm at a certain point in time. The bar at every dot represents the size of the variance relative to the
mean.

Figure 5.8: The figure shows the ranking accuracy metric calculated every 10 seconds in a decentralized experi-
ment with 500 nodes. The dots represents the average relative error over every peer for each different algorithm
at a certain point in time. The bar at every dot represents the size of the variance relative to the mean.
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All algorithms show good results for computation time, with all computation times
below 0.1 seconds. The "Inc" algorithm unexpectedly has a larger computation time
than the "RepeatStructured" and "RepeatTIV" algorithm. An explanation for this differ-
ence could be that the coordinates representing the peers are already at a relatively good
position in the "RepeatStructured" and "RepeatTIV" algorithm and require not so much
change. Therefore the average computation time is lower in the "RepeatStructured" and
"RepeatTIV" compared to the "Inc" algorithm. Eventually the computation time of all
algorithm converges to an average value around 0.03 seconds and also the computation
time of the "Inc" algorithm eventually converges to the same average value of the "Re-
peatStructured" and "RepeatTIV" algorithm.

The accuracy performance metrics give good results for the latency estimation algo-
rithms but the convergence time is slow. All the algorithms converge to a value of around
0.45 for the relative error after 12000 seconds with a bit faster convergence for the "Re-
peatTIV" and "RepeatStructured" algorithm compared to the "Inc" algorithm. In 12000
seconds 2400 steps are taken by the peer discovery mechanism and the 500 nodes in the
P2P network are visited multiple times. The latency estimation algorithms seem to react
bad to incomplete information. In the first 100 steps taken by the peer discovery mech-
anism the relative error and ranking accuracy do not improve and remain at the same
level for all algorithms. After 15 minutes the relative error starts to decrease and even-
tually converges. There are two explanations for the bad convergence. The first is that
the latency estimation algorithms have to have more information on measured latency’s
before coordinate positions can be updated adequately to decrease the relative error.
The second is that the latency estimation algorithms need more computation time to
update all the measured latency’s. This seems unlikely because there should be enough
computation time available in 100 steps of the peer discovery mechanism.

The results for the ranking accuracy also show that the latency estimation algorithm
give good results with a bad convergence time. Throughout the experiment the "Repeat-
TIV" and "RepeatStructured" have around the same ranking accuracy and the "Repeat-
TIV" algorithm only performs a little bit better for the ranking accuracy as time elapses in
the experiment. Eventually the ranking accuracy of the "RepeatTIV" and "RepeatStruc-
tured" algorithm converges to a value of around 45% and the variance of the ranking
accuracy for all the algorithms increases with time. Compared to the "RepeatTIV" and
"RepeatStructured" algorithm the "Inc" algorithm has a worse performance but a good
enough performance to let the ranking accuracy of the "Inc" algorithm eventually con-
verge to an average value of 40%. At the start of the experiment the geo-locations of
peers are randomly assigned which explain the large fluctuation in the performance at
the start of the experiment. When comparing the converged ranking accuracy perfor-
mance with the converged values of the centralized experiment the ranking accuracy
performs around 10% worse. Most likely this is the result of the incomplete information
in the decentralized experiment compared to the centralized implementation. In the
decentralized experiment not all the measured latency’s between peers are immediately
available for the latency estimation algorithms.
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Figure 5.9: The figure shows the quality of introductions metric of the 10 new entering peers in the bootstrap
experiment for the Inc, RepeatTIV and RepeatStructured algorithms. The x-axis shows the time in seconds.
The dots represent the average quality of introductions metric. The bar at every dot represents the size of the
variance of the quality of introductions metric relative to the mean.

Figure 5.10: The figure shows the top 10 lowest latency peers metric of the 10 new entering peers in the boot-
strap experiment for the Inc, RepeatTIV and RepeatStructured algorithms. The x-axis shows the time in sec-
onds. The dots represent the average of the top 10 lowest latency peers metric. The bar at every dot represents
the size of the variance of top 10 lowest latency peers metric relative to the mean.
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Figure 5.11: The figure shows the total upload and download for the 10 new entering peers in the bootstrap
experiment. The x-axis shows the time in seconds. The dots represent the average total upload and the bar
represents the size of the variance of the total upload relative to the mean. The solid line represents the upload
and the dotted line represents the download.

5.5. BOOTSTRAP EXPERIMENT
The goal of the bootstrap experiment is to measure how well the low latency overlay re-
acts to new entering peers in the P2P network. It is expected that the 10 added nodes
quickly know their top 10 latency peers and should receive high quality introductions
quickly. In the experiment the low latency overlay is executed on 500 nodes for 133 min-
utes and 20 seconds (8000 seconds). In the first 116 minutes and 40 seconds (7000 sec-
onds) 490 nodes are run normally with the low latency overlay. After the 7000 seconds
have elapsed 10 nodes are added to the network that run the low latency overlay called
the new entering peers. In this experiment only the performance of the 10 nodes that
were added after 7000 seconds is measured. As shown in the previous experiment with
500 nodes the accuracy of the latency estimation algorithm after 7000 seconds is high
and converged. This means the 490 nodes in the P2P network estimate latency’s toward
each other with high quality and these estimation can be used by the 10 new entering
peers.

After 375 seconds the quality of introductions converges to a mean value of 100 for
every algorithm. Figure 5.9 shows the quality of introductions for the new entering peers.
There is no difference in introduction quality with different latency estimation algo-
rithms. In the beginning of the experiment the quality of introductions is averaged 250,
half the number of peers in the P2P network, indicating a random introduction of peers.

It takes 1000 seconds for 10 peers to find 64% of their top-10 low-latency peers. Fig-
ure 5.10 shows the correctness of the top 10 lowest latency peers for the 10 new entering
peers. The correctness increases as time progresses. After 500 seconds most algorithms
got 50% of their top 10 lowest latency peers correct and after a few steps some new en-
tering peers already know some of their top 10 lowest latency peers.

The results of the experiment are worse than expected. It takes more time than ex-
pected before the new entering peers receive high quality introductions and before the
new entering peers know their top 10 lowest latency peers. With limited knowledge on
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latency’s toward new entering peers the latency estimation algorithm of other peers can-
not estimate latency’s correctly. Whenever a new entering peer enters the P2P network
it has not yet measured any latency toward another peer. Therefore it is impossible for
the other 490 peers to calculate the geo-location of the new entering peer in the begin-
ning of the experiment with high accuracy. The latency estimation algorithm can only
guess where the geo-location of the new entering peer is. As more latency’s are mea-
sured between the new entering peers and other peers in the P2P network the latency
estimation algorithm can calculate the geo-location of the new entering peer with higher
accuracy. New latency’s are measured immediately after a new peer is discovered by the
new entering peers. It requires 75 latency measurements and peer discoveries before the
introduction quality converges because after 375 seconds 75 peers are discovered.

The bandwidth usage of the new entering peers is low as expected. Figure 5.11 shows
the bandwidth usage in bytes for the 10 new entering peers in the bootstrap experiment.
The upload and download speed are throughout the experiment about the same and
show a linear growth with a slower growth in the beginning of the experiment. The
slower growth in the beginning is normal because when the peers just entered no la-
tency’s are yet measured and less than 10 latency’s are send in the ping message and
thus is the message size smaller. After 1000 seconds the total byte usage is around 24000
Kbyte, 12000 Kbyte total upload and 12000 total Kbyte download. 1 KByte is assumed
to be 1024 bytes. The average upload and download speed throughout the experiment
is 12 KByte. The expected bandwidth usage is the addition of the byte cost of the ping-
pong mechanism and the peer discovery mechanism. Every 2 seconds ping messages
are send to each peer in the neighbourhood. The neighbourhood consists of 35 peers on
average and one ping message is around 350 bytes. After 1000 seconds the byte cost of
the ping message is around 350*35*(1000/2) = 6125000 bytes = 5981.44 KByte. The other
6 KByte is most likely used by the pong message and the peer discovery mechanism. The
total byte usage to converge towards high quality introductions is around 9000 KByte per
peer because convergence is reached after about 375 seconds. In those 375 seconds 188
ping and pong messages are send by the peers and 75 peer steps are taken in the peer
discovery mechanism.
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FUTURE WORK

Finding better algorithms to solve the convergence problems and provide latency esti-
mation with higher accuracy should have the highest priority for future work. The la-
tency estimation algorithms need to be of high quality to let the low-latency overlay fully
rely on them. The current low-latency overlay takes a long time to converge and when
new peers enter the P2P network the overlay does not provide them with low latency
peers fast. On the positive side does the low-latency overlay converge at some point and
are incremental algorithms used with a low computation cost. Algorithms that handle
lack of information well and Triangle inequality violations (TIVs) could be further in-
vestigated to improve the accuracy because the algorithm that tried to counter triangle
inequality violations worked the best.

Experiments with the low latency overlay on large networks should be done to test
and develop a low latency overlay suitable for large networks. It takes several days for a
peer to get 100000 different neighbours to measure the latency with. When such large
number of latency’s have been measured the algorithm should still be computationally
and memory efficient. It should be tested whether the latency estimation algorithms
converge towards a result with high accuracy in a large P2P network. The algorithm
should also be able to handle large latency inputs with more than 100000 latency’s at
each step of the incremental algorithm. One incremental step should be executed com-
putationally efficient. If the computation at one step of the incremental algorithm is
too much Tribler could block other processes and therefore increase the latency of the
network.

Research on algorithms that deal with lack of information and how to counter Tri-
angle Inequality Violations (TIVs) can further improve the accuracy and convergence of
the latency estimation algorithms. The experiments so far have shown that algorithms
with TIV prevention and algorithms that repeat past calculated coordinates are useful.
Accuracy of latency estimation algorithms is affected a lot by lack of latency informa-
tion. The more latency’s are measured the better the algorithms performs. The lack of
information is especially important in the decentralized Tribler setting because peers
only measure latency’s toward neighbours and cannot measure latency’s to other peers.
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An algorithm could be created that handles lack of information more efficiently or more
latency information could be gained via other ways with for instance ICMP messages.
Other possibilities to detect TIVs and prevent them could be further investigated to im-
prove the accuracy of the overlay.



7
CONCLUSION

Building a low latency overlay to give low latency connections between peers is a hard
problem. To make good decisions on what peer to introduce to another peer the latency’s
between two arbitrary peers in the P2P network have to be estimated. Finding good al-
gorithms that estimate latency’s between peers computationally and memory efficient
is hard. The current state of the art latency estimation algorithms provide enough accu-
racy to build a low latency overlay but lack the accuracy to quickly provide new entering
peers with low latency peers. Incremental algorithms are used to divide the computa-
tion over time but methods that use more computational power create a more accurate
latency overlay. These methods require a very frequent updating of previously estimated
latency’s. It is beneficial to counter peers who cause Triangle Inequality Violations (TIVs)
in the latency estimation algorithm because algorithms that deal with TIVs perform bet-
ter and have a better accuracy. The low latency connections between peers has various
benefits to various applications. It provides faster trading and faster onion routing.

Low latency peers cannot be introduced to other peers if there is no peer discovery
mechanism that traverses the NAT boxes which enable peers to connect to the internet.
A NAT traversal mechanism is required because most computers used by peers are not
directly connected to the internet but behind a NAT box in a local network. In the overlay
NAT boxes are punctured by previously discovered peers to enable good connections
between peers.

Eclipse attacks are a very generic attack and powerful attack on the low latency over-
lay and is countered in the design of the overlay. The peer discovery mechanism adds
randomness in its choices of peer selection to prevent against the eclipse attack. If the
new low latency overlay does not have countermeasures against the eclipse attack, nodes
could be controlled by adversaries or nodes could receive false information about other
peers or about things from a P2P application. This gives very powerful attacks on cryp-
tocurrency applications with direct financial consequences and thus are eclipse attack
prevention methods important.
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