
Open Source Secure Data Protection and Key

Storage Scheme Utilizing Off-The-Shelf SRAM

Component, Software-Based SRAM PUF and

Multifactor Authentication

Ade Setyawan Sajim





Open Source Secure Data Protection and Key

Storage Scheme Utilizing Off-The-Shelf SRAM

Component, Software-Based SRAM PUF and

Multifactor Authentication

Master’s Thesis in MSc Computer Engineering

Parallel and Distributed Systems group

Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Ade Setyawan Sajim

20th April 2018



Author
Ade Setyawan Sajim

Title
Open Source Secure Data Protection and Key Storage Scheme Utilizing Off-

The-Shelf SRAM Component, Software-Based SRAM PUF and Multifactor Au-

thentication

MSc presentation

9th May 2018

Graduation Committee
Dr. Ir. Johan Pouwelse Delft University of Technology

Dr. Ir. Stephan Wong Delft University of Technology

Haji Akhundov, MSc Delft University of Technology



Abstract

SRAM PUF has a potential to become the main player in hardware security. Un-

fortunately, the currently available solution is usually locked to specific entities.

Here, we initiate an open source project to develop software-based SRAM PUF

technology using off-the-shelf SRAM. We also present a testing result on two off-

the-shelf SRAMs as SRAM PUF candidates; Microchip 23LC1024 and Cypress

CY62256NLL. Both are tested on the distribution of 0’s and 1’s in their cells, intra

hamming distance, inter hamming distance, and the effect of voltage variation and

time interval between enrollment. Testing on two bit-selection algorithms (data

remanence analysis and neighbor analysis) are also performed. Based on the test-

ing results, we introduce a PUF enrollment scheme using data remanence analysis

as the bit selection algorithm which will locate the location of the stable bits and

SRAM Cypress CY62256NLL as the off-the-shelf SRAM. In addition, an idea to

create a strong PUF using SRAM is also proposed here. Using a collection of

bits as a challenge, the stable bits are permutated among themselves to create a

challenge which has a tremendous number of possibilities. Furthermore, we also

present a secure data protection and key storage scheme using SRAM PUF. The

proposed scheme is influenced by multi-factor authentication. Using a combina-

tion of a PUF-generated key and user’s password, a derived key is produced and

utilized as the final key to protect user’s data or/and user’s key.



iv



Preface

TODO MOTIVATION FOR RESEARCH TOPIC

TODO ACKNOWLEDGEMENTS

Ade Setyawan Sajim

Delft, The Netherlands

20th April 2018

v



vi



Contents

Preface v

1 Introduction 1

1.1 Need for Self-Sovereign Identity . . . . . . . . . . . . . . . . . . 1

1.2 Rise of PUF as a Security Solution . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 7

2.1 Security Requirements and Cryptography . . . . . . . . . . . . . 7

2.2 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Key Derivation Function . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Multi-factor Authentication . . . . . . . . . . . . . . . . . . . . . 10

2.5 PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 PUFs Classification . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Hamming Distances as an Identification Helper . . . . . . 12

2.5.3 Helper Data Algorithms and Fuzzy Extractor . . . . . . . 13

2.5.4 Error Correcting Codes . . . . . . . . . . . . . . . . . . . 14

2.6 SRAM PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 SRAM Cell . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Problem: Noise . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Bit Selection Algorithm . . . . . . . . . . . . . . . . . . 18

2.7 PUF Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Key Generation using SRAM PUF . . . . . . . . . . . . . 19

2.7.2 Secret Key Binding based on Fuzzy Commitment Scheme 20

2.7.3 Secure Key Storage using Optical PUF and Coating PUF . 21

3 Proposed System 23

3.1 Use Case, Assumptions and Requirements . . . . . . . . . . . . . 23

3.2 Arduino Mega 2560 as the Embedded Platform . . . . . . . . . . 24

3.3 BCH Codes as Error Correcting Codes . . . . . . . . . . . . . . . 25

3.4 Data Protection and Key Storage Scheme . . . . . . . . . . . . . 27

vii



3.5 Key Generation Scheme . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Bits Locations as the PUF Challenge - Leads to Strong PUF . . . 29

3.7 Security Analysis of The Proposed Scheme . . . . . . . . . . . . 30

4 Implementation, Experiments and Results 33

4.1 Chosen SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Microchip 23LC1024 . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Cypress CY62256NLL . . . . . . . . . . . . . . . . . . . 34

4.2 Automated PUF Profiling System . . . . . . . . . . . . . . . . . 34

4.3 Testing on Selected SRAMs . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Microchip 23LC1024 . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Cypress CY62256NLL . . . . . . . . . . . . . . . . . . . 37

4.4 Experiments on Bit Selection Algorithms . . . . . . . . . . . . . 38

4.4.1 Neighbour Stability Analysis . . . . . . . . . . . . . . . . 38

4.4.2 Data Remanence Approach . . . . . . . . . . . . . . . . . 40

4.4.3 Stability Test on Stable Bits . . . . . . . . . . . . . . . . 40

4.5 Testing on A Set of Bit Locations as A Challenge . . . . . . . . . 47

4.6 Complete Enrollment Scheme . . . . . . . . . . . . . . . . . . . 48

4.7 Testing on Secure Data Protection and Key Storage Scheme . . . . 49

4.8 Concluding Experiment with Cybercurrency . . . . . . . . . . . . 53

5 Conclusions and Future Work 65

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



Chapter 1

Introduction

1.1 Need for Self-Sovereign Identity

Hardly anyone can live without having their identity. Identity is the one that defines

who we are, something which helps to describe the uniqueness of everyone. Iden-

tity’s role in our daily life is unquestionable. Society requires identity systems

to enable identity-requiring transactions at scale, allowing procedures that require

the formal asking and answering of identity queries in place, allowing millions

of transactions to occur. In modern society, identity is commonly related to so-

cial security cards, driver’s licenses, and other state-issued credentials. Centralized

controlled by the government is the definition of these elements.

Along with the rise of the digital age, identity also redefines itself. Identity in

the digital world, can be referred as digital identity, is split into multiple domains.

Our Facebook identity does not correlate directly to our Twitter identity or to most

other domains. Digital identities are scattered, vary from one Internet domain to

another. Scattered identities which locked to multiple entities leads to a problem

where users are helpless in front of an authority who can deny their identity or even

confirm a false identity. This phenomenon ignites a problem where users are not

in control of their identity. There’s no clear construction and agreement on how

to build the digital identity which usable across platforms. This is an unfortunate

thing since lack of digital identity also limits the development and delivery of ef-

ficient, secure, digital-based economy and society [1]. The failure to solved the

digital identity problem issue even looks a bit strange since we already have public

key cryptography since 1984, introduced by Chaum [2], which enable secure com-

munication between parties without the hassle of key distribution problem and also

provide valid digital signatures. Using public key cryptography, anyone who wants

to send any message to a recipient needs to encrypt their message using the recip-

ient’s public key. Afterwards, the recipient can read the message after decrypting

the received message using its private key.

To fix the scattered identity issue, a solution was proposed: one should be able

to store their encrypted data in their own devices or in their own preferred service.

1



To use the data, a service has to ask the data owner for the private key which will

be used to decrypt the data. Using this concept, everyone has to keep their secret

keys secure and solely in their possession. A centralized storage of private keys is

out of question since it will be a honeypot for cyber attacks. Simply put, keeping

secret keys secure is the cardinal problem to solve here.

All problems mentioned above leads to a thinking, identity and secure key stor-

age need to be solved in a decentralized manner. In 2012, a new concept called

self-sovereign identity (SSI) arise [3]. Self-sovereign identity is a decentralized

identity concept which capable of authenticating statements, without any central

organization, point-of-failure or any possibility of data tracking [4]. Self-sovereign

identity will be able to give users full control over their identity. In simple words,

users can store their identity data on their devices, and decide whether to give ac-

cess to anyone who is willing to use it or not. In addition, there will be no need for

a centralized storage since each user database is distributed among themselves. A

high possibility to get this concept popular is also present with the introduction of

the European Union General Data Protection Regulation [5].

Johan Pouwelse and Martijn de Vos in [4] proposed an SSI design which fo-

cused on data protection. Data protection itself is related to securing data against

unauthorized access [6]. Their proposal is described by a concept where the user

data are encrypted and never leave the device/domain. Any operation which re-

quires the data, such as authentication, will require symmetric encryption on the

encrypted data. This encrypted data should be securely protected and the domain

should be trustworthy. In addition, the key used to encrypt and decrypt data should

be kept securely.

The most common way to store the key is by using a non volatile memory

(NVM). NVM is a type of computer memory that keep intact its information even

after turned off. An example of a product which implements this approach is the

debit card. It uses its chip to store information. Unfortunately, this NVM is prone

to physical attack. Since the key is permanently stored in the memory, an attacker

can use some technique to clone the memory, such as microprobing [7]. An at-

tacker may also use a side channel information to retrieve any information about

the key. There are numerous other techniques for this kind of attack. This at-

tack can be even worse if someone that knows the system design is involved. Due

to this problem, more secure, tamper-evident, tamper-proof solutions need to be

presented.

1.2 Rise of PUF as a Security Solution

In 2001, Physical Unclonable Function (PUF) comes in handy as an inexpensive

and yet effective security solution to overcome the mentioned problem above by

a different way of generating and processing secret keys in security hardware. It

was introduced by Pappu [8]. Unlike cryptographic algorithm security which usu-

ally relies on a hard-to-solve mathematical problem, PUF idea stems from using

2



hardware features designed to utilize the physical random nanoscale disarray phe-

nomena [9]. These disarray phenomena can be used as a derivation of keys without

having to keep any security-critical information explicitly. This physical random-

ness is unclonable, even by the original manufacturer due to manufacturing pro-

cess variations. Furthermore, since the secrets can only be produced when the PUF

device is turned on, active manipulation of circuit structure will cause dysfunction

of challenge-response mechanism and destroy the secret.

Related to self-sovereign identity concept, [4] present an idea to use PUF and

biometric-based authentication to securely protect the data in the self-sovereign

identity. Figure 1.1 shows the detailed technology stack in their trust creation pro-

posal on how to build trust in the blockchain era.

Figure 1.1: Detailed technology portfolio for trust creation in the blockchain age

[4]. As shown in the bottom of this figure, Physical Unclonable Functions and

biometric-based authentication are utilized to secure the self-sovereign identity.

An example of PUF type is SRAM PUF. SRAM, stands for static random-access

memory, is a type of semiconductor memory that uses bistable latching circuitry

(flip-flop) to store each bit. When a static RAM (SRAM) is turned on, the memory

cells have undefined states [10]. The initialized values on the memory cells are also

random and unique to each SRAM. Based on these properties, SRAM is considered

as a reasonable candidate for PUF. The value of these bits itself is determined

by the SRAM cell which consists of two cross-coupled inverters along with two

access transistors. This concept was first introduced by Guajardo [11]. In order

for SRAM to be used as a cryptographic security key, SRAM PUFs need to have

certain characteristics such as the key generated by every SRAM should be reliable

and unique. Reliable means the generated key should always be consistent, while

unique refers to there should be no correlation between one device or another.

3



Unfortunately, SRAM PUF is also problematic since it contains noise in its bit

value. To handle the noise, error correction code is usually utilized.

1.3 Problem Statement

Since introduced by Guajardo and Holcomb in 2007, there have been many in-

novations in SRAM PUF field. A simple patent search using patents.google.com

with query ’sram; puf’ results in 546 results [12]. The number of articles in sch

olar.google.com also exhibit a high occurrences, shown 2,120 articles (citations

and patents are not included) [13]. Even though these facts indicate a promising

future for this concept, one also should notice that current state-of-the-art in this

field mostly consists of one-off prototypes or specific proprietary implementations.

To get an SRAM PUF product from the market, one has to order a specific request

from a company. For example, Intrinsic-ID, one of the main leaders in SRAM PUF

technology, has a software-based solution which able to generate unique keys and

identities for nearly all microcontrollers without a need for security-dedicated sil-

icon [14]. Even though this solution exists and seems easy to use, unfortunately,

they don’t say specifically how much will it cost to use this solution. They also

have another solution for SRAM PUF which is focused on hardware IP (and sup-

porting software/firmware) to enable designers to implement PUFs within their

design. This solution has a high possibility to obstruct a small company or a single

user to use their solution since usually this type of product are intended to use with

an expensive contract. Similar to the software-based solution they offer, they also

don’t put the explicit price to use this product. An example of a product that uses

this solution is FPGA Microsemi Polarfire [15].

The SRAM PUF field lacks an Arduino, Linux, or GCC type of open reference

implementation. A quick lookup in Github shows that there’s no extensive open

source project related to SRAM PUF there. There are projects corresponding to

PUF concepts, but most of them also only delve into a simulation. The communit-

ies seem to haven’t established a wide agreement on which approach yields the

strongest security properties.

An additional issue that we would like to address is SRAM PUF’s application.

As mentioned in Chapter 1, the importance of securing key and user’s data is get-

ting higher, especially with the introduction of self-sovereign identity. There are

already many SRAM PUF applications published, but sadly, there isn’t any ex-

ample working project that tries to integrate SRAM PUF in self-sovereign identity

concept. Most PUF applications are designed for authentication [16] [17] [18] [19]

[20] [21] and generating cryptographic keys [18] [22].

Based on these facts, we believe the next challenge for this field is to discover a

common approach. The field needs to move beyond isolated single-person projects

and single-company approaches towards a mature and sharing ecosystem. The

field SRAM PUF requires a single implementation which is continuously improved

upon for many years to come and is supported by the majority of the academic and

4



commercial parties. Furthermore, we also try to initiate an attempt of integration

between PUF and self-sovereign identity by providing a scheme to protect user’s

data and key. This project will be useful in the process of self-sovereign identity

development.

To understand our intention in this thesis better, this thesis’ problem statement

is presented here. The problem statement of this thesis is:

How to develop an open source secure data protection and key stor-

age scheme using off-the-shelf SRAM component and software-based

SRAM PUF technology?

Derived from the problem statement, there are two goals defined in this thesis.

The first goal is to devise a secure data protection and key storage scheme based

on SRAM PUF technology. The data and the key protected by the scheme has to

be safe even though the PUF device is lost. Moreover, the scheme should work us-

ing off-the-shelf SRAM. This sub-goal leads us to another question, can we build

SRAM PUF using off-the-shelf SRAM? If it is possible, what characteristics need

to be fulfilled by off-the-shelf SRAM to be eligible as a PUF candidate? In ad-

dition, the constructed SRAM PUF has to work without any hardware design, or

in other words, software-based construction. The data protection and key stor-

age functions inside the scheme will be helpful in addressing the problem of self-

sovereign identity and keeping the secret key. The next goal is to create a sharing

ecosystem for the evolution of our data protection and key storage scheme. The

ecosystem should be easily accessed and understood to encourage the academics

and commercial parties to use and develop the ecosystem together. The easiest step

to achieve this goal is by making our thesis as an open source project.

1.4 Contributions

In our work, we strongly believe in open source idea and communities involvement

when developing a system. Combined with the problems and potential of SRAM

PUF mentioned before, this thesis generates several additions into the state of the

art of SRAM PUF knowledge. This thesis’ contributions are explained below:

• An open project for software-based SRAM PUF using off-the-shelf SRAM

and Arduino. This is the first open project on software-based SRAM PUF.

This software-based SRAM PUF project consists of Arduino codes and py-

thon codes and can be found on a Github repository [23]. It provides the

enrollment and reconstruction mechanism which can be utilized to develop

other applications. The enrollment stage will generate the helper data and

the challenge which stored on a microSD connected to Arduino. The re-

construction part can generate a PUF-generated key based on the challenge

and the helper data. The selected off-the-shelf SRAM in this scheme is

Cypress CY62256NLL. We also tested another type of SRAM called Mi-

crochip 23LC1024 but it shows an insufficient result to be eligible as a PUF

5



candidate. The enrollment stage also requires a bit selection algorithm called

data remanence analysis. In the experiment part, there is another bit selec-

tion algorithm tested named neighbor analysis. This method is not selected

due to worse result than data remanence analysis.

• A scheme to enable secure data protection and key storage using off-the-

shelf SRAM and software-based SRAM PUF. This scheme is influenced by

multi-factor authentication. Using a combination of the PUF-generated key

and user’s password, a derived key is produced and utilized as the final key

to protecting user’s data or/and user’s key.

• A concept to devise a strong PUF using SRAM PUF. Normally, SRAM

PUF is considered a weak PUF due to the limitation of possible challenge-

response pairs. We propose to use a set of bit locations as the challenge since

when using this concept, the number of possible pairs is the permutation of

total bit locations over the required number of bit locations. The total pos-

sible CRPs using this concept is a significant large number which may lead

to a strong PUF definition.

1.5 Outlines

After explaining a brief review of SRAM’s potentials and problems, problem state-

ment and our contributions in this chapter, Chapter 2 continues with an overview of

security, cryptography, symmetric encryption, key derivation function and multi-

factor authentication. Explanations of PUF and SRAM PUF are also presented in

that chapter. Chapter 3 describes our proposed SRAM PUF development system,

our idea on how to create strong PUF using SRAM PUF, and a scheme to enable

secure data protection and key storage using SRAM PUF. Chapter 4 shows our

implementation, experiments and results. Last chapter, Chapter 5, summarizes this

thesis and also gives our view on possible improvements on this project.

6



Chapter 2

Related Work

This chapter examines some background theory related to security, cryptography,

and PUF. A brief review of security is presented, followed by explanations on

symmetric cryptography, key derivation function and multi-factor authentication.

Then, theories related to PUF and SRAM PUF are described, continued by a short

evaluation on how to generate a key using SRAM PUF.

2.1 Security Requirements and Cryptography

A perfect and 100% secure system is the holy grail of all computing system. Unfor-

tunately, such thing doesn’t exist. The best way to achieve that goal is by designing

a system to be as secure as possible in a limited scope. To help defining a secure

system, common security requirements are mentioned. According to [24], there

are four elements on common security, which are:

• Confidentiality: a piece of information should be accessible only to an au-

thorized user. For example, an encrypted data can only be decrypted by the

secret key owner.

• Authentication: assurance of the sender of a message, date of origin, data

content, time sent, data information, etc. are correctly identified.

• Integrity: any assets can only be modified by authorized subjects. For ex-

ample, data should be kept intact during transmission

• Non-repudiation: a subject should be prevented from denying previous ac-

tions. For example, a sender cannot deny the data which it sent.

One way to achieve these four security requirements is by using cryptography.

In traditional definition, cryptography can be defined as the art of writing or solv-

ing codes [25]. But this definition is inaccurate to use nowadays because instead

of depending on creativity and personal skill when constructing or breaking codes,

the modern cryptography focuses their definition using science and mathematics.

7



According to [26], modern cryptography can be defined as ”the scientific study

of techniques for securing digital information, transactions, and distributed com-

putations.” The algorithm which uses cryptography as their main point is called

cryptographic algorithm.

Since the birth of cryptography, its main concerned is usually related to securing

communication which can be achieved by constructing ciphers to provide secret

communication between parties involved. The construction of ciphers to ensure

only authorized parties also can be called as encryption schemes. There are two

types of cryptographic algorithm; symmetric and asymmetric algorithm. Symmet-

ric, also known as private key encryption or private key cryptography, requires the

same key for encryption and decryption. Meanwhile, in the asymmetric algorithm

(can be referred as public key encryption or public key cryptography), there are two

keys utilized; private key and public key. A public key is utilized for encryption

and a private key is used for decryption. One of the main advantages of symmet-

ric encryption over asymmetric encryption is it requires less computational power

which makes it suitable to use in embedded devices.

2.2 Symmetric Encryption

According to [26], symmetric encryption consists of three algorithms which are:

• Gen: key-generation algorithm

• Enc: encryption algorithm

• Dec: decryption algorithm

To illustrate this better, an example using two parties, Alice and Bob are given.

Before using the encryption or decryption algorithm, both parties will agree on

a shared secret key k. This phase can be referred as Gen. Afterwards, Alice

can use the encryption algorithm (Enc) Ek using the shared secret key k on

a message m which will generates a ciphertext c. This procedure can be

noted as c = Ek(m). Bob can read the message by using the decryption

algorithm ((Dec)) Deck using the same shared secret key k. Decryption will

result in the plaintext message m. This can be noted as m = Dk(c).
There are many examples of symmetric encryption algorithms, such as

RC2, DES, 3DES, RC6, Blowfish, and AES. AES algorithm will be ex-

plained below.

AES

AES, stands for Advanced Encryption Standard, is an encryption algorithm

based on a substitution-permutation network and established by the U.S.

National Institute of Standards and Technology (NIST) in 2001. The block

size inside AES has a size of 128 bits, while the key size can be either 128,

8



192, or 256 bits. The key size itself describes the number of rounds which

convert the plaintext into the ciphertext. If 128-bit key is used, there are

10 rounds utilized. 192-bit key lead to 12 rounds, while 14 rounds is used

when 256-bit key is applied.

There are four major parts inside AES; KeyExpansions, InitialRound,

Rounds and FinalRound. In KeyExpansions, the round keys are generated

using Rijndael’s key schedulebased on the AES key. Inside a normal round,

there are four stages required to do; SubBytes, ShiftRows, MixColumns, and

AddRoundKey. SubBytes refers to a non-linear substitution procedure using

a lookup table. ShiftRows means an act of shifting cyclically the last three

rows of the state. MixColumns contains a mixing activity on the columns of

the state. AddRoundKey involves a fusing process of each byte of the state

with a block of the round key utilizing bitwise xor operation. The differ-

ence between InitialRound, Rounds, and FinalRound is InitialRound only

contain AddRoundKey, FinalRound does not has MixColumns inside, and

Rounds just filled with those four stages.

An encryption can be done by following all these four parts. To convert

ciphertext into the original plaintext, it’s only required to apply a set of

reverse rounds using the same encryption key.

2.3 Key Derivation Function

Besides the encryption algorithm, a key derivation function (KDF) is one

of the most utilized components of cryptographic applications. Its import-

ance is due to its ability to convert a stable secret, usually contain sufficient

amount of randomness but non-uniformly distributed, Z into one or more

cryptographically strong secret keys k ǫ 0, 1K . Cryptographically strong

itself refers to indistinguishability by reasonable computation from a ran-

dom uniform string with similar length [27]. KDF can also be referred as a

strong extractor.

A popular example of KDF is a keyed cryptographic hash function. The

difference between keyed cryptographic hash function and a normal hash

function is a keyed hash function requires an additional salt as an input (be-

sides the key to derived). There are three requirements need to be fulfilled

as a secure cryptographic hash function; preimage resistant, second preim-

age resistant, and collision resistant. Preimage resistant means it should be

hard to find a message with a given hash value. In second preimage resist-

ant, if one message is provided, it should be hard to find another message

with the same hash value. Last, collision resistant refers to difficultness to

find two messages with the same hash value.

9



2.4 Multi-factor Authentication

As mentioned in Section 2.1, authentication refers to assuring any piece

of information is correctly identified. Authentication can be done using

any of these elements/factors; knowledge (a piece of information which

only known by the user, e.g. password), possession (any object which

only owned by the user, e.g. RFID card), or inherence (something which

uniquely describe the user, e.g. fingerprint). If two or more elements are

combined together for authentication, this leads to multi-factor authentic-

ation. To understand the security level among all possible combinations,

Figure 2.1 is provided. The highest possible security level is when these

three factors are combined together.

Figure 2.1: Authentication systems security levels: (1) knowledge; (2) possession;

(3) knowledge + inherence; (4) inherence; (5) possession + inherence; (6) know-

ledge + inherence; (7) knowledge + possesion + inherence [28].

2.5 PUF

A physical unclonable function is an entity that utilizes manufacturing vari-

ability to produce a device-specific output. The idea to build PUF arise

from the fact that even though the mask and manufacturing process is the

same among different ICs, each IC is actually slightly different due to nor-

mal manufacturing variability [9]. PUFs leverage this variability to derive

secret information that is unique to the chip. This secret can be referred as

a silicon biometric. In addition, due to the manufacturing variability that

defines the secret, one cannot manufacture two identical chips, even with

full knowledge of the chips design. PUF architectures exploit manufactur-

ing variability in multiple ways. For example, one can utilize the effect of

gate delay, the power-on state of SRAM, threshold voltages, and many other

physical characteristics to derive the secret.

Due to this feature, PUFs are a promising innovative primitive that is used

for authentication and secret key storage without the requirement of secure

hardware. Currently, the best practice for providing a secure memory or

10



authentication source in such a mobile system is to place a secret key in

a nonvolatile electrically erasable programmable read-only memory (EE-

PROM) or battery-backed static random-access memory (SRAM) and use

hardware cryptographic operations such as digital signatures or encryption.

There are two main parts of PUF, physical part, and operational part.

Physical part refers to a physical system that is very difficult to clone due

to uncontrollable process variations during manufacturing. Operational part

means a set of challenges (PUF input) Ci has to be available to which the

system responds with a set of sufficiently different responses (PUF out-

put) Ri. This combination of challenge and response is called challenge-

response-pair (CRP).

Ri < −PUF (Ci) (2.1)

The common application on using PUF usually requires two phases; the

first phase is called enrollment and the second one is usually referred as

validation. In enrollment, a number of CRPs are gathered from a PUF

and then stored. In validation phase, a challenge from the stored CRPs

is given to the PUF. Afterwards, the PUF response from this challenge is

compared with the corresponding response from the database. The response

is considered to be valid if there’s a CRP from the stored CRPs related to

this challenge and response. The validation phase can also be referred as

reproduction phase since this phase involves a reconstruction of a response

given a challenge.

According to [9], to be qualified as PUF, a device should fulfill several

characteristics below :

• Reliable: A response to the same challenge should be able to be re-

produced over time and over a various range of conditions.

• Unpredictable: A response to a challenge on a PUF device should be

unrelated to a response to another challenge from the same device or

the same challenge from a different device.

• Unclonable: Challenge-response pairs mapping of a device should be

unique and cannot be duplicated.

• Physically Unbreakable: Any physical attempts to maliciously modify

the device will result in malfunction or permanent damage.

2.5.1 PUFs Classification

Based on the number CRPs, PUFs can be divided into two categories [29]:

• Strong PUFs

Strong PUFs can be identified by having a large number of CRPs.

Strong PUFs typically used for authentication.

11



• Weak PUFs

Contrary to strong PUFs, weak PUFs only have a small number of

CRPs. Weak PUFs commonly used for key storage.

Besides the number of CRPs, PUFs can also be categorized based on their

physical design. There are two major categories, extrinsic and intrinsic.

Extrinsic means that it needs extra hardware added to the PUF compon-

ent. The extra hardware is required to access the PUF component. There are

two subcategories of extrinsic PUFs, non-electronic and analog electronic

PUFs. Some examples in non-electronic PUFs are optical PUF, paper PUF,

CD PUF, RF-DNA PUF, magnetic PUF, and acoustic PUF. Some design

instances in analog electronic PUFs are VT PUF, power distribution PUF,

coating PUF, and LC PUF.

In intrinsic, the PUF component has to be available naturally during the

manufacturing process. In addition, PUF and the measurement equipment

should be fully integrated with intrinsic PUF. There are two subcategories

in intrinsic PUFs, delay based and memory based PUFs. An example of

delay based PUF is arbiter PUF. The main principle of arbiter PUF is by

presenting a race condition on two different routes on a chip where the

winner will be decided by an arbiter circuit [30]. As in memory based PUFs,

some examples of this design are SRAM PUF, butterfly PUF and latch PUF.

SRAM PUF utilized the random physical mismatch in the cell introduced

by manufacturing variability which controls the power-up behavior (can be

zero, one, or no preference) [30]. Butterfly PUF use the effect of cross

coupling between two transparent data latches. Using the functionalities of

the latches, an unsteady condition can be initiated after which the circuit

resolves back to one of the two stable states [30]. In latch PUF, the concept

is based on using two NOR gates which are cross-coupled. These gates will

lead to a stable condition depending on the internal discrepancy between

the electronic components.

2.5.2 Hamming Distances as an Identification Helper

As explained before, PUF main purpose is dedicated for identification, shown

by having a device-specific output. In PUF, hamming distance is commonly

used as a way to help defining this idea. Hamming distance itself is the

number of positions at which the corresponding symbols are different on

two equal length strings [31]. There are two types of hamming distance

utilized, intra-chip and inter-chip hamming distance. Inter-chip hamming

distance is the distance between two responses resulting from giving a sim-

ilar challenge to two distinct PUF devices [30]. Intra-chip hamming dis-

tance refers to the difference between the two responses resulting from ap-

plying a challenge twice to a PUF device [32]. To ease the identification

12



purpose, fractional hamming distance is also introduced. Fractional ham-

ming distance is the number of differences between two strings divided by

the length of the bit strings. In ideal PUFs, the intra-chip fractional ham-

ming distance (HDintra) is 0% and inter-chip fractional hamming distance

(HDinter) is 50%. Due to noises, normally PUF devices has HDintra ≤ 10%

and HDinter 50%. The identification goal will not be achieved if there is an

overlap between HDintra and HDinter [33]. Overlap will happen if the HDintra

is too large and HDinter is too small, e.g. HDintra is 35% and HDinter is 30%.

2.5.3 Helper Data Algorithms and Fuzzy Extractor

There are two issues if PUF raw responses are used as a key in cryptographic

primitive. First, both weak and strong PUFs rely on analog physical prop-

erties of the fabricated circuit to derive secret information. Naturally, these

analog properties have noise and variability associated with them. This can

be a problem due to sensitivity of cryptographic functions on noises of their

inputs. Another issue is the PUF raw responses usually are not uniformly

distributed, which makes it an unqualified as a cryptographically secure key.

These two issues can be solved using Helper Data Algorithm (HDA). One

can also refer Helper Data Algorithm as fuzzy extractor since both are cap-

able of converting noisy information into keys usable for any cryptographic

application [34] [35].

Fuzzy extractor solves both issues mentioned above by using two phases,

information reconciliation and privacy amplification. In information re-

conciliation phase, possible bit errors are corrected to form a robust bit

string [36]. Information reconciliation is tightly related to error correc-

tion. In fact, a procedure to do information reconciliation based on error-

correcting codes is called code-offset technique [35]. Using code-offset

technique, one should be able to reconstruct a bit string w from a noisy ver-

sion w’ as long as the Hamming distance between wand w’ is limited to t.

The second phase, privacy amplification, is a process to evolve this robust

bit string into a full entropy key. Privacy amplification, also can be called

as randomness extraction [37], can be done by utilizing two-way hash func-

tion.

Beside these two phases, fuzzy extractor also consists of two proced-

ures, Gen and Rep. Gen, stands for generation, is a probabilistic procedure

which outputs an ”extracted” string / key (secret) R and a string (public)

helper data P on input fuzzy data w. Rep, stands for reproduction, is a

deterministic function capable of recovering secret key R from the string

helper data P and any vector w′ as long as the Hamming distance between

wand w’ is limited to t. In [38], Taniguchi et. al illustrated the generation

and reproduction procedure of fuzzy extractor on PUF which is shown in

Figure 2.2.

13



Figure 2.2: Two procedures inside fuzzy extractor; generation and reproduction

[38].

2.5.4 Error Correcting Codes

To handle noises occurred inside a PUF, error-correcting codes (ECC) is

employed. Error-correcting codes are a class of schemes for encoding mes-

sages in an attempt to enable message recovery when there is noise intro-

duced in the sending or receiving of the message. ECC can be divided into

two subcategories, hard-decision and soft-decision. Hard-decision works

on a predetermined set of values (usually 0 or 1 in a binary code), while a

soft-decision decoder may take inputs on a span of values in-between (usu-

ally refers to float value).

There are some well-known ECC, such as in hard-decision code, Reed-

Solomon code and BCH code; while in soft-decision, Viterbi code and turbo

code. Soft-decision code has an advantage over hard-decision code where

it can process extra information which indicates the reliability of each input

data point and used to form better estimates of the original data. But it has

drawback where one should provide a probability function on the data (on

SRAM, a probability function on each cell should be provided) to enable

a good decoding result. This is a problem if applied on this thesis goal

where the system should work on any SRAM off-the-market. Calculating

the probability on each SRAM cell will take an extra step, overcomplicate

the system and the procedure on using the constructed system. Thus, the

hard-decision code is preferred.

One of the popular hard-decision error correcting code is BCH codes.

BCH, stands for BoseChaudhuriHocquenghem, codes are a family of cyc-

lic error correcting codes which constructed using polynomials over a finite

field and work in a binary field. BCH codes are a very flexible set of codes

in that within certain bounds there is a great amount of choice in code para-

14



meters and are relatively efficient in message length and error correction.

The code parameters are as follows:

• q: The number of symbols used (e.g., in binary field, q = 2)

• m: The power to which to raise q to generate a Galois Field for the

construction of the code.

• d: The minimum Hamming distance between distinct codewords.

These parameters lead to several derived parameters which are standard

parameters of linear codes:

• n: The block length of the code; for our special case, n = q ∗m1

• t: The number of errors that can be corrected, d ≥ 2t+ 1

• k: The number of message bits in a codeword, k ≥ n−mt

Both BCH codes and Reed-Solomon codes have the capability to cor-

rect multiple errors. Reed-Solomon codes are also a flexible ECC and

have similar parameters as BCH codes, e.g. n, k, d. Unlike BCH codes,

Reed-Solomon codes can work in both binary and non-binary fields. Reed-

Solomon codes also perform better in correcting burst errors while BCH

codes are better at fixing random errors. BCH codes have an advantage

where it requires less computing resource when working on the same para-

meter compared to Reed-Solomon codes.

2.6 SRAM PUF

SRAM PUF was first proposed by Guajardo and Holcomb in 2007. SRAM

PUF uses existing SRAM blocks to generate chip-specific data. Normally,

when using SRAM to store data, a positive feedback is given to force the

cell into one of the two states (a ’1’ or a ’0’) available. Once it is there,

the cell will be stable and prevented from transitioning out of this state

accidentally. To use it as a PUF, SRAM is turned on and its cell values

are retrieved to generate a unique chip-specific output. After powering-up

the circuit, the cells stabilize at a state which is defined by the mismatches

between the involved transistors. Thus, each SRAM cell provides one bit

of output data. To be eligible as a PUF component, an SRAM has to have

stable outputs which means any noise has to have little effect on its start-up

behavior. In addition, the distribution of 1’s and 0’s in the SRAM values

ideally has to be equal (around 50:50) to ensure there is sufficient amount

of randomness exist in the SRAM [39].

15



As mentioned at the beginning of this chapter, during enrollment, challenge-

response pairs are gathered. In SRAM PUF, there are two types of chal-

lenges that can be applied to the system. The challenge can be either the

whole SRAM memory or specific addresses. If a set of addresses is given

as a challenge, an address in there can refer to an address of a byte, a bit, or

a sequence of bytes or bits.

2.6.1 SRAM Cell

SRAM uses its SRAM cells to store the binary information. The most com-

mon SRAM design is six-transistor (6-T) CMOS SRAM, shown in Figure

2.3. This design utilizes the concept of cross-coupled inverters, construc-

ted by two inverters, each established by two transistors; inverter 1 by Q2

and Q6, inverter 2 by Q1 and Q5. Using this design means the input of an

inverter is the output of the other and vice-versa, which also indicates that

the output of one inverter is exactly the opposite of the other inverter [32].

Transistors Q3 and Q4, referred as the access transistors, are used as the

entry gate to the cell every time a read or write operation will be performed.

The bitline (BL), the compliment bitline (BLB) and the wordline (WL) are

employed as an entry to the cell. In addition, an SRAM cell will lose its

state shortly after power down [40].

Figure 2.3: A 6-T CMOS SRAM cell [32].

During manufacturing, there are small differences between each SRAM

cell due to process variation which leads to a mismatch in the cell [41]. This

mismatch also means that the two inverters will always conduct distinctly.

Since this mismatch determines the value of the power-up state of an SRAM

cell, the power-up state of a cell will be biased towards 0 or 1 depends

on the mismatch value. The mismatch itself does not disturb the normal

storage functionality of SRAM cell. Based on this bias, SRAM cells can be

classified into three categories as shown below:

16



1. Non-skewed cell

A non-skewed cell has no preference during its startup due to the im-

pact of process variations does not cause any mismatch between the

two inverters. This cell generates bit arbitrarily depending upon the

noise introduced in the system.

2. Partially-skewed cell

A partially-skewed cell has a small mismatch between the inverters

which lead to a preference over value ’0’ or ’1’ but the cell can flip its

value upon variation in external parameters.

3. Fully-skewed cell

A fully-skewed cell is a heavily mismatched SRAM cell in a way that

the cell inclined towards value ’1’ or ’0’ and has a resistance against

external influence/noises.

2.6.2 Problem: Noise

Similar to most electronic components, SRAM PUF is also affected by any

external influence which leads to noises. These noises will flip unstable bits

inside the SRAM PUF. Below are some factors presenting noises:

• Voltage

The noise introduced by voltage is called power supply noise [42].

This noise is related to changes in the delay characteristics of the gate.

The changes will occur when there are switchings in the circuit after

the device is turned on which increase dynamic power and cause a

voltage drop on power lines and voltage increase on ground lines.

• Temperature

Temperature variation can be introduced by the surroundings or voltage

variation. The preference of a cell inside SRAM has a high probability

to be affected by temperature. Temperature affects more than voltage

on bit flipping.

• Crosstalk

Crosstalk appears when a signal transmitted on a circuit introduces

unwanted side effects in another circuit. Crosstalk happens due to

a tight gap between the SRAM cell (tiny interconnect spacing and

width). This event becomes more popular due to wider use of faster-

operating speeds and smaller geometries (advancement in nanometer

technologies) which lead to higher density. Crosstalk is a major con-

tributor to signal integrity problems in modern designs [42]. In ad-

dition, higher density in SRAM also influences how environments

17



affect SRAM performance (more prone to voltage and temperature

difference) [43].

• Aging

Aging is related to changes in the silicon after usage for a long time

[44]. There are three main effects related to the aging of a circuit;

time-dependent dielectric breakdown (TDDB), bias temperature in-

stability (BTI) and hot carrier injection (HCI) [45]. TDDB is associ-

ated with the creation of a conduction path through the gate transistor

structure which causes an increase in power consumption and the cir-

cuit delay [46]. BTI causes a degradation of the transistor threshold

voltage [47]. HCI generates a change in the transistor threshold voltage

[48]. HCI is caused by a high current in the transistor channel inject-

ing charges into the gate oxide during the switching.

2.6.3 Bit Selection Algorithm

Since bit responses are used as the primary input for SRAM PUF, one of

the major steps on using SRAM PUF if locations of bits is used as the

challenge is looking for stable bits. Stable bits itself refers to fully skewed

cells explained before. Even though the error correction code is present to

correct the noise of bit responses, it also has a limitation on how many bits it

can correct. Since not every SRAM cell is stable, one should take a special

caution on deciding which SRAM cell is gonna be the bits to use as PUF

input.

Choosing the most stable bits is important to ensure that the PUF result

is always the same throughout its lifetime. In here, we use two known

algorithms to search for stable bits.

Neighbor Analysis

The first algorithm is using the rank of total stable neighbors [49]. They ar-

gue that the cells which are most stable across environmental conditions are

surrounded by more stable cells during enrollment. A stable cell surroun-

ded by more stable cells has a tendency to become more stable because its

neighboring cells are likely to experience similar aging stress and operating

conditions. In this algorithm, all the stable cells are given weight according

to the number of stable bits surrounding it. The more stable neighbor cells

it has, the higher weight it gets. For example, if a cell is not stable, it is

given zero as its score. If it is stable, at least it will get score one. If it only

has one stable neighbor on each left and right side, it will get score two as

result of an addition of one from being a stable cell and one from having

a stable neighbor on both sides. To get score three, it needs to be stable

and has two stable neighbors on left and right sides. After determining the

18



weight of each cell, a heuristic algorithm that greedily chooses cells for the

PUF ID/key with weight greater than a threshold is used.

Before the algorithm is performed, one should collect lots of SRAM cells

value first. The data should be retrieved in various condition, for example,

different voltages, temperatures, and time differences between enrollment.

Afterwards, using the data gathered, the location of all stable bits in SRAM

need to be located. A stable bit has to has the same value in all enrollment.

Last, the neighbor analysis algorithm is performed to get the most stable

bits in SRAM.

Data Remanence Approach

Another bit selection algorithm is by using data remanence of SRAM cell

[50]. There are only two remanence tests involved in this approach: first,

writing a value (1 or 0) to the whole memory and second, briefly turning off

the power until a few cells flip. The most robust cells are the cells which

effortlessly flipped when written with the opposite data. Strong 1’s are bits

that are flipped fast after 0 is written to its location. On the contrary, if

1 is written to a bit location and the bit flipped fast, it means that the bit

is a strong 0. When using this approach, one should carefully determine

the temporal power down time. On one hand, if the temporal power down

period is too little, then the data will stay in the previously written state.

On the other hand, if the temporal power down time is too lengthy, then the

data written in the array will shattered and the SRAM values will go back

to its uninitialized state.

A significant advantage using this algorithm compared to the previous

one is a much shorter time required to locate stable bits. Using neighbor

analysis, there are many SRAM values need to be gathered first which might

take hours or days. Locating stable bits from hundreds of data probably also

take time as well. If data remanence approach is utilized, there is no need

to gather many data. One only need to determine the temporal power down

required to get strong bits required. Since usually the temporal down period

required is less than 0.5 seconds, this analysis only takes less than one or

two minutes.

2.7 PUF Applications

2.7.1 Key Generation using SRAM PUF

In this section, there are two schemes for key generation presented. Both

constructions were built by Hyunho Kang et. al. in 2014. The first con-

struction, shown in Figure 2.4, utilizes random number generator (RNG).

This design was perfected in the second design shown in Figure 2.5. In the

19



second design, random number generator was removed to make the con-

struction more efficient without affecting the security. The block length (n)

of the error correcting code in these schemes is 255.

Figure 2.4: Implementation diagram using fuzzy extractor (N = 255) [51].

Figure 2.5: Implementation diagram for efficient fuzzy extractor based on the syn-

drome (N = 255) [52].

2.7.2 Secret Key Binding based on Fuzzy Commitment Scheme

Fuzzy commitment was originally introduced by Juels and Wattenberg in

1999 [53]. Figure 2.6 shows the flow of this scheme. To securely bind the

20



secret, the secret key SK needs to be chosen first. Afterwards, the secret

key is encoded into a binary codeword CN . Then, the helper data MN is

generated by masking (xor-ing) the codeword with the PUF value XN . To

reconstruct the secret, a noisy version of the codeword C̃N need be calcu-

lated by masking the helper data with the noisy version of PUF observation

Y N . The secret ŜK can be regenerated by decoding the C̃N .

Figure 2.6: Fuzzy commitment scheme [54].

2.7.3 Secure Key Storage using Optical PUF and Coating PUF

In [55], Skoric et. al. present a secure key storage scheme using two ex-

trinsic PUFs; coating PUF and optical PUF. Coating PUF technology is

built upon on-chip capacitive quantifications of arbitrary dielectric charac-

teristics of a covering layer which located on top of an IC [56]. Optical PUF

itself consists of a 3-D physical structure containing randomly distributed

light-scattering particles that produces a speckle pattern (response) when

irradiated with a laser beam [55]. This speckle pattern can be considered as

the unique fingerprint of the struc- ture. Both PUFs are also considered a

strong PUF (has a large CRPs), but optical PUF is considered to be superior

than coating PUF due to a much higher number of CRPs and more entropy

per response.

In their scheme, to securely store the key, they proposed to store the long-

term key in encrypted form. To access the long-term key, a short-term key

extracted from the PUF is required.

21



22



Chapter 3

Proposed System

This chapter contains our proposed system to achieved our goals which ex-

plained in Chapter 1. First, use cases, assumptions and requirements on our

system are presented. The chapter continues with reasonings on our chosen

embedded platform, Arduino. Then, the selected error correcting code used

in the system is explained. Afterwards, we present our data protection and

key storage scheme and also our way to generate key using SRAM PUF.

Last, our idea to use bits locations as a PUF challenge is shown.

3.1 Use Case, Assumptions and Requirements

As mentioned in the first chapter, a subset of this thesis goal is to provide

a secure data protection and key storage scheme using SRAM PUF. This

thesis goal describes the use case of our proposed system. In addition,

several assumptions are also made to focus the thesis approach. First, the

field of both functions are decided to be only available offline. Access-

ing the SRAM PUF requires the user to have the device next to his/her side.

Second, an attacker cannot access the SRAM directly. An attacker may gain

the knowledge of the helper data and challenge used in the PUF concept.

Last, there is no analysis and/or solution against physical attacks, e.g side

channel attacks, in our secure data and key storage scheme. The scheme is

designed to be secure against theoretical attacks.

We also have define a set of requirements related to our system. Below

are the requirements defined:

1. Software-based construction

There should be no major hardware modification or hardware design

to implement the project.

2. Patent/license free

Any dependent component of the design should be in public domain.

23



3. Open-source and collaboration oriented

If there’s a reliable open source project which can be a foundation for

this thesis project, instead of building our own software, it is preferred

to use that project. This will significantly reduce the time consumed

on constructing the whole project. Using other project source code

can also increase the collaboration atmosphere. In addition, this re-

quirement may help this project to be known by others since they

might introduce our project as one of the projects that uses their code.

4. Key-length security level

The goal on the key-length security level is 256-bits. The concept

constructed should be able to use this level and the project’s security

should be uncompromised even though the key-length is only 256-

bits.

5. Off-the-shelf SRAM

The SRAM involved in the thesis should be easily available in the

market and cost insignificant.

6. Affordable

The total hardware required to produce the system should be inex-

pensive.

7. Reproducible

Anyone should be able to reproduce this thesis experiment with no

significant effort.

3.2 Arduino Mega 2560 as the Embedded Platform

One of the important details of our system is choosing the platform on

where the system will be built. There are two major candidates, Arduino

and Raspberry Pi. Both are chosen due to its popularity, availability (easy

to get), and various types available. High popularity means the debugging

process can be done fast and many references are available online to help

the system development. Availability is important because this thesis goal

should be easily used by anyone. Low availability will reduce significantly

reusability of this project and user’s interest. Various types available is a

good option for system flexibility. For example, if a user wants to develop

a more complex system on top of this thesis’ system or desire to use a more

complex error correcting codes, he/she can choose a platform with higher

computing capability. Besides those three factors, another feature which

lead on selecting Raspberry Pi and Arduino is their GPIO. GPIO availabil-

ity will enable easy communication between the SRAM and the embedded

platform.

24



Compared to Arduino, Raspberry Pi offers a higher computing capability

and relatively easier development. This is because Raspberry Pi is basic-

ally a mini Linux computer. One can develop a software using C, C++,

Python, etc. in Raspberry Pi which may fasten the project development, es-

pecially for a developer who already familiar with a specific programming

language. Unfortunately, Raspberry Pi requires a longer startup time com-

pared to Arduino. It also requires higher electrical power. If one wants to

use the developed project in the embedded area, this two factor is a major

trade-off.

Due to the above consideration, Arduino is chosen. Even though one has

to construct the system in C++, this can be a positive thing since one can

maximize the computing capability easily.

There are various Arduino types available on the market. The chosen

Arduino type is Arduino Mega 2560. It is selected because it offers larger

memory capability compared to other types, such as 256k bytes of Flash

memory, 8k bytes internal SRAM, and 4k byte EEPROM. Besides, it also

has 54 digital I/O pins and 16 analog I/O pins which ease the communica-

tion to external SRAM.

3.3 BCH Codes as Error Correcting Codes

As mentioned in the previous chapter, BCH codes are flexible Error Correct-

ing Codes (ECC) shown by multiple parameters available. The only fixed

parameter is q since the problem is in binary form (q = 2). The source code

for BCH codes utilized in our construction is a modified version of Robert

Morelos-Zaragoza’s version which can be retrieved at [57]. This code is

selected because it can support m ranging from 2-20 which mean the length

of the code that can be corrected ranging from 2 until 1048575. When

using BCH codes, one should be careful on deciding the parameters that

will be used, for example, larger m or n means a bigger memory needed.

These parameters should be determined with several considerations, such as

the inner hamming distance of SRAMs and memory available on Arduino

Mega 2560.

On deciding the value m, a further look on the memory required during

the error correction computation need to be done. Inside the bch codes

from [57], the decoding method requires the largest memory compared to

other procedures. There are six parameters that depend on m which are elp,

d, l, ulu, s, and err. Table 3.1 shows the required memory given the m

value.

Since the internal SRAM in Arduino only has 8k bytes capacity, the

chosen m is 6 (requires 4553 bytes, around 55% of total SRAM available

in Arduino). This parameter will result in possible n between 32 and 63. n

25



Table 3.1: Memory required (bytes) given the value of m.

m Bytes Required m Bytes Required

2 53 12 16805897

3 129 13 67166217

4 377 14 268550153

5 1257 15 1073971209

6 4553 16 4295426057

7 17289 17 17180786697

8 67337 18 68721311753

9 265737 19 274881576969

10 1055753 20 1099518967817

11 4208649

is chosen to be 63 to maximize the length code that can be encoded. The

combination of m = 6 and n = 63 results in various k and t that can be

chosen. The combination of all parameter possible is shown on 3.2.

Table 3.2: BCH parameter for m = 6 and n = 63.

k t

57 1

51 2

45 3

39 4

36 5

30 6

24 7

18 10

16 11

10 13

7 15

To maximize the error correction capability, k = 7 and t = 15 is chosen.

All these parameter combination will enable error correction capability 23.8%

of the data length. To summarize, here are the chosen parameters:

• n: 63

• k: 7

• d: 31

• t: 15

26



3.4 Data Protection and Key Storage Scheme

Figure 3.1 shows the scheme to protect user’s data and key. On an attempt

to protect the user’s data and key, our proposal is divided into three major

parts, first is generate the final key, and the rest is using the final key either to

encrypt or decrypt data. To prevent unauthorized person accessing the data

with a stolen PUF, an idea from multi-factor authentication is utilized. In-

stead of just depending on the PUF device to access the key, a combination

of PUF device and user knowledge is presented. User knowledge that used

here is password. User’s password is combined with the PUF-generated key

to generate a final key using HMAC. The input message to the HMAC is the

user’s password and the input key to the HMAC is the PUF-generated key.

The HMAC function proposed to use is HMAC-SHA3 with key length 256

bits. The final key can be used to encrypt and decrypt user data. To decrypt

and encrypt the data, a symmetric encryption algorithm is preferred over

the asymmetric one. The symmetric encryption algorithm used is AES with

key length 256 bits. If the data is switched to user’s key, the data protection

scheme proposed here can be also referred as key storage scheme.

3.5 Key Generation Scheme

As shown in the previous section, the data protection and key storage scheme

requires the PUF to generate the key which will be used to generate the final

key. The key generation scheme used in this project is a modified version

of Figure 2.5 proposed in [52]. Instead of using n = 255, the scheme used

in this project will choose n = 63. The parameter n, k, t, d is similar to

the parameter chosen in the previous section, BCH error correcting code.

Figure 3.2 illustrates the mentioned scheme. Using this scheme, to gen-

erate a key with length 256-bits requires 37 blocks of this scheme, which

lead to 2331 bits required. 37 blocks are calculated from 256÷ 7 = 36.57,

rounded-up resulting in 37. 7 comes from the key generated from 63 bits of

data using this scheme. Since one block needs 63 bits of data, 37 blocks re-

quire 37× 63 = 2331 bits. In addition, if you look further into the scheme,

there is an entropy loss as many as 7 bits every 63 bits input during the gen-

eration of helper data. Due to this entropy loss, this scheme can only correct

errors on maximum 8 bits instead of 15 bits. Based on this reason, to en-

sure the key generation scheme always produced the same key, the SRAM

component used as root-of-trust has to have maximum error rate (shown by

HDintra) 12.7% (calculated from 8÷ 63× 100%).

27



Figure 3.1: Scheme for secure data protection and key storage. There are three

stages in here; generate the final key, encrypt using the final key and decrypt also

using the final key.

28



Figure 3.2: Scheme for key generation. n = 63, k = 7, t = 15, d = 31.

3.6 Bits Locations as the PUF Challenge - Leads to Strong

PUF

An example of a well known PUF construction which claimed to be res-

istant against brute force attack is Stanzione and Iannaccone’s work [58].

They mentioned that their PUF construction is resistant to 1025-trials brute

force attack. Inspired by their work, we imagine having a stronger construc-

tion. We envision an SRAM PUF which has total challenge-response pairs

possibilities more than the number of atoms on earth which predicted to be

at least 1049 [59]. To achieve this goal, we come up with an idea to use a

set of bits locations as a PUF challenge. Below are the reasons why this

decision is taken:

1. Stable bits tend to be scattered all around SRAM memory.

2. If there’s a burst error on a bit location inside the challenge, this error

will not affect many locations in a challenge since this burst error may

only lead to a single location. If a location related to multiple bits is

used as the challenge, a burst error will affect many bits generated.

For example, if locations of bytes are used as the challenge, a burst

error might lead to 8 bits errors in the response generated.

29



3. There are huge possibilities of challenge-response pairs. The number

of possibilities is calculated from the permutation of the required bits

and the available bits using Equation 3.1.

P (n, r) =
n!

(n− r)!
(3.1)

As an illustration, if the number of bits required to generate/reconstruct the

key is 2331 bits (the length of the bits required to generate 256-bits key

when using scheme shown in Figure 3.2), then a set of 2331 bits locations

is required as an input (a challenge) to PUF device. And if the SRAM has a

total capacity of 65536 bits, using Equation 3.1 explained before, there are

P (65536, 2331) = 65536!
(65536−2331)!

≈ 1011209 possible combinations. The total

possible CRPs is even much higher compared to the total possibilities of the

number of bits required (2256 ≈ 5.02×10701) or the number of possible keys

(2256 ≈ 1.16× 1077). Due to these large possibilities of challenge-response

pairs, this idea will lead to a strong PUF (as mentioned in section 2.5.1, a

strong PUF can be identified by having a large number of CRPs).

Using this concept, before generating the challenge, the location of stable

bits needs to be identified first. The location of stable bits can be detected

by using bit selection algorithm mentioned in section 2.6.3. After the loc-

ation of stable bits is identified, during the generation of a challenge, the

locations’ order inside the challenge will be randomized.

3.7 Security Analysis of The Proposed Scheme

As mentioned in Section 3.1, our scheme is designed to be secure against

theoretical attacks. There are three elements in our scheme as the main

parts on ensuring the scheme’s security against such attacks; encryption

using AES-256, key derivation function using HMAC SHA3-256, and the

PUF-generated key. Based on these components, the attack scenarios are

presented below:

• The simplest way of attacking the scheme is by applying a cryptana-

lysis directly to the ciphertext produced by the scheme. If success-

ful, this attempt will result in known final key used in the scheme

and the plaintext. In this way, the attacker has to break the security

level of AES-256. If brute-force attack is applied to AES-256, the at-

tacker has to try all possibilities of 2256 keys which roughly equals to

1.157920892373163 × 1077. Even if one can try ten thousand keys

every second, the total time needed to try all combinations is still

3.67×1065 years (longer than the age of the universe which is 14×109

years old). The attacker may also apply key-recovery attack using a

30



technique called biclique attack [60]. Even though this technique is

the best-known attack on AES-256, this technique still requires time

complexity of 2254.27 and data complexity of 240.

• Another attempt that may be taken by the attacker is by stealing the

PUF device. Even though the attacker has the PUF device, he still

cannot access the encrypted data directly since he has to guess the

PUF owner’s password. If PUF owner’s password entropy is high

enough, the chance for attacker to successfully gain the access to the

encrypted data is small since he basically has to break the security

level of HMAC SHA3-256 (which requires at least min(2k, 2n) time

complexity, where k is the key size and n is the hash output size. [61]).

• The attacker may also try accessing the encrypted data by doing a

social engineering to gain the information of PUF owner’s password,

then guess the PUF-generated key to get the final key which used

to encrypt the data. To successfully predict the PUF generated key,

it is also a hard work. For example, if one want to brute force all

possible input combinations to the PUF key generation scheme, there

are 22331 ≈ 5.02 × 10701 possible combinations. It is actually easier

to just try all possible combinations of the PUF-generated key which

has 256-bits in length. Even though such fact, the number is not small

either. There are still as many as 2256 keys which roughly equals to

1.157920892373163× 1077 possibilities.

Based on these reasonings, we believe our proposed data protection and

key storage scheme is secure. The only possible way for an attacker to gain

information from the encrypted data is by having both PUF device and PUF

owner’s password.

31



32



Chapter 4

Implementation, Experiments

and Results

After describing our proposed system as an attempt to achieve this thesis’

goals in the previous chapter, this chapter continues with an explanation of

several experiment setups and results. This chapter starts by a presenta-

tion on two chosen SRAMs that used in experiments; Microchip 23LC1024

and Cypress CY62256NLL. Afterwards, the testing results on two bit selec-

tion algorithms (neighbor analysis and data remanence approach) and the

stable bits produced by these algorithms are displayed. The chapter contin-

ues with examination on our proposed PUF challenge and a presentation

on our complete enrollment scheme. Next, testing on the designed secure

data protection and key storage scheme is shown. Experiment outcomes on

storing bitcoin private key will conclude this chapter.

4.1 Chosen SRAMs

The first step to do in this thesis implementation is looking for SRAM com-

ponents to be the root-of-trust in our SRAM PUF project. There are nu-

merous SRAM types available in the market. The main requirements on

the SRAM are easy to get (a simple google search should show some e-

commerce websites to buy from), can be bought in small quantity (≤ 5

pieces), stand-alone component (available without buying extra component,

e.g. not embedded in an FPGA), inexpensive (cost less than e5), reason-

able memory size (≥ 64kb). These criteria are chosen due to some product

only sold to a company or an entity that willing to buy in a big quantity or

has to be custom made. There are two SRAM types purchased and tested

here; Microchip 23LC 1024 and Cypress CY62256NLL.

33



4.1.1 Microchip 23LC1024

The Microchip Technology Inc. 23A1024/23LC1024 is a 1024 Kbit Serial

SRAM device. This SRAM is very popular shown by many references

available online and several GitHub repositories intended just to access this

SRAM. The reason of its popularity can be traced to its cheap price, small

size, and easy-to-use. The price is ranging from e1.5-3.5. This device

has eight pins which contribute significantly to its small footprint (it has

dimension of 9.271 x 6.35 x 3.302 mm). It is easy to use because it provides

SPI connection which simplified the communication, and has three modes

available; SPI (Serial Peripheral Interface), SDI (Serial Dual Interface) and

SQI (Serial Quad Interface). Its voltage range also quite large, ranging from

2.5-5.5V. Figure 4.1 shows the Microchip 23LC1024.

Figure 4.1: SRAM Microchip 23LC1024 [62].

4.1.2 Cypress CY62256NLL

The Cypress CY62256NLL is a 256k bit SRAM device. Even though this

device is less popular than Microchip 23LC1024, it’s still widely used. One

of the reason is that this device has an automatic power-down feature, re-

ducing the power consumption by 99.9 percent when deselected. Unlike

Microchip 23LC1024, Cypress CY62256NLL doesn’t have an SPI connec-

tion which complicates the communication. To communicate, one should

utilize its twenty-eight pins available. Since it has many pins, this con-

tributes to its significantly larger size compared to Microchip 23LC1024.

Specifically, its size is 37.592 13.97 4.953 mm and produced using 90nm

technology. Its voltage range is ranging from 4.5V-5.5V. Figure 4.2 shows

Cypress CY62256NLL.

4.2 Automated PUF Profiling System

To increase the experiment’s efficiency, an automated PUF profiling sys-

tem is constructed. The system consists of a PC, act as a master, and an

Arduino connected to an external SRAM which acts as a slave. A cus-

tom protocol was designed to communicate between them. It is specifically

34



Figure 4.2: SRAM Cypress CY62256NLL [63].

designed to be generic and usable for all types of PUF profiling measure-

ments. The software on Arduino side waits for measurement commands

sent by PC on the serial link after booting. The designed protocol is ded-

icated for read bytes, write bytes, and SRAM disable/enable. The system

also supported parallel profiling which significantly increases the effectiv-

ity. Figure 4.3 shows the setup and the schematic to profile four SRAMs

Cypress CY62256NLL concurrently using four Arduino.

Figure 4.3: Automated PUF profiling setup using a PC and four Arduino. Left

picture shows the actual setup, while the right picture displays the schematic of

such setup.

4.3 Testing on Selected SRAMs

As mentioned in Chapter 2, to be qualified as a PUF candidate, an SRAM

has to be stable in various conditions. This means if it is given various

power input or used in varied temperatures or utilized for a long time, the

initialized SRAM values has to remain similar or only has little changes.

Under any condition, there should be no overlap between HDintra and HDinter.

Moreover, the SRAM has to have a sufficient amount of randomness, shown

by having equal distributions between 1’s 0’s on its values. To ensure

35



the quality of these two SRAMs, there are several experiments performed

on each SRAM, such as calculating HDintra and HDinter given the whole

memory value as the challenge and also the distribution of 1’s and 0’s in-

side SRAM memory.

4.3.1 Microchip 23LC1024

There are ten SRAMs Microchip 23LC1024 that were available during the

experiment. To check whether this SRAM is a justifiable candidate for PUF,

several testings are performed. First, the number of 1’s and 0’s in memory

after a start is calculated. Unfortunately, the average distribution of 1’s and

0’s are not similar, 1’s occupy 70% and 0’s fill the remaining 30%. Second,

HDintra and HDinter are calculated on these chips. The calculation is done

using twenty data of chip memory values on each chip which retrieved at

room temperature, 5V input and 10 seconds interval between retrieval at-

tempts. From these chips, the average HDintra is 6.18% and the average

HDinter is 42.54%. Third, the effect of voltage variation on the HDintra and

HDinter are also evaluated. The calculation is done using memory values

on each chip which retrieved on room temperature and 10 seconds interval

between retrieval attempts. The voltage range is between 2.5V and 5V with

0.5V increase on a step. On each step, there are three data retrieved. Us-

ing these data, voltage variation results in an average HDintra 8.21% and an

average HDinter 42.59%.

Figure 4.4: HDintra of ten SRAMs Microchip 23LC1024. The left is HDintra with

constant voltage, the right one is tested based on the voltage variation.

Based on these experiments, SRAM Microchip 23LC1024 shows ques-

tionable results. First, the distribution of 1’s and 0’s inside the SRAM is

not balanced. Second, a voltage variation shows that it significantly affects

the HDintra. Fortunately, there is no overlap between HDintra and HDinter.

Even though these outcomes make us doubtful on this SRAM quality as an

36



SRAM PUF candidate, we decided to continue using this SRAM in further

experiments. Hopefully, when we locate the stable bits inside the SRAM,

the experiments done on the stable bits will show a better result than this

result.

4.3.2 Cypress CY62256NLL

There are five Cypress CY62256NLL SRAMs that were available during

experiment. Similar like on previous SRAM, several testing are performed

to check whether this SRAM is a justifiable candidate for PUF. First, the

number of 1’s and 0’s in an initialization is counted. Fortunately, unlike the

23LC1024, the average distribution of 1’s and 0’s are similar, both occupy

50% of total bits available. Next, HDintra and HDinter are calculated on both

chips. The calculation is done using twenty data of chip memory values on

each chip which retrieved at room temperature, 5V input and 10 seconds

interval between retrieval attempts. From these chips, the average HDintra is

4.85% and the average HDinter is 39.28%. Last, the effect of voltage vari-

ation on the HDintra and HDinter are also evaluated. The calculation is done

using chip memory values on each chip which retrieved on room temperat-

ure and 10 seconds interval between retrieval attempts. The voltage range is

between 4.5V and 5V with 0.1V increase on each step. On each step, there

are ten data enrolled. The average HDinter on voltage variation is 38.59%,

while HDintra is 3.58%. Figure 4.5 shows the HDintra between the constant

and the variated voltage.

Figure 4.5: HDintra of five SRAMs Cypress CY62256NLL. The left is HDintra with

constant voltage, the right one is tested based on the voltage variation.

The results shown above indicate that SRAM Cypress CY62256NLL is

a qualified candidate for SRAM PUF. A well distributed 0’s and 1’s inside

SRAM memory, voltage variation has little effect on HDintra and HDinter,

37



and no overlap between HDintra and HDinter lead us to continue using this

SRAM on further experiments.

4.4 Experiments on Bit Selection Algorithms

In this section, the test on stable bits produced by two algorithms, neighbor

stability and data remanence analysis, is shown. The test was done on a

single chip of each SRAM type. The explanation of both algorithms can be

found on section 2.6.3.

4.4.1 Neighbour Stability Analysis

To use this algorithm, first, data of SRAM bits value from various condi-

tion (voltages and time difference between data retrieval attempts) need to

gathered. Afterwards, the bits which remained stable on all data retrieved

are located. Then, the rank of remained stable bits are calculated. Last, n

bits with highest rank can be used according to the necessity. The higher

the rank, the more stable that bit should be.

Microchip 23LC1024

As input for the algorithm, there are 500 data of SRAM bits value used for

this chip. The voltage variation is randomized between 2.5V - 5.0V. The

time difference between data retrieval attempts is ranging from 5 seconds

until 1 hour. SRAM Microchip 23LC1024 itself has capacity 1048576 bits.

After doing the calculation from those five hundred data, there are 413374

remaining stable bits. From those remaining stable bits, the rank of each

bit is calculated. The frequency of bits rank is shown in Figure 4.6. As

shown in this figure, the total bits with rank more than 5 is insignificant,

only showing 493 bits. Bits with rank more or equal to six is merged into a

single bar because the frequency among those rank is usually only a single

digit.

Cypress CY62256NLL

Similar like with SRAM Microchip 23LC1024, there are 500 memory val-

ues retrieved in SRAM Cypress CY62256NLL. SRAM Cypress CY62256NLL

is able to store 262144 bits in its memory. The remained stable bits after

500 data retrieval are 102708 bits (39,18%). The result of the calculation

is shown on Figure 4.7. Compared to Microchip 23LC1024, this SRAM

shows more promising result since there are many bits with ranks more than

seven. Even to get two thousand bits, the lowest rank that can be included

is twelve.

38



Figure 4.6: Remaining stable bits count according to their rank in SRAM Micro-

chip 23LC1024.

Figure 4.7: Remaining stable bits count according to their rank in SRAM Cypress

CY62256NLL.

39



4.4.2 Data Remanence Approach

The result of data remanence analysis on both SRAMs is shown below.

Microchip 23LC1024

On SRAM Microchip 23LC1024, the data remanence analysis is done on

time variance between 0-1.0 second. The result can be seen on Figure 4.8.

In this figure, it is shown that SRAM Microchip 23LC1024 will reach the

uninitialized point if it is temporarily turn off for 0.7 seconds.

Figure 4.8: Remanence Graph of SRAM Microchip 23LC1024. Left is reman-

ence 0 and right is remanence 1. SRAM Cypress CY62256NLL will reach the

uninitialized point if it is temporarily shut down for 0.7 second.

Cypress CY62256NLL

On SRAM Cypress CY62256NLL, the data remanence analysis is done on

time variance between 0-10 seconds. The result can be seen on Figure 4.8.

In this figure, it is shown that SRAM Cypress CY62256NLL will reach the

uninitialized point if it is temporarily shut down for 5.0 second.

4.4.3 Stability Test on Stable Bits

In this section, test results on the effect of time interval and voltage on stable

bits using both algorithms on each SRAM are shown. The effect of aging

and temperature is not tested due to a limitation on time and equipment.

For the effect of time interval testing, the enrollment was done on 16 days

with one day gap between enrollment. Voltage effect testing was done on

voltage ranging from 4.5V-5V for SRAM Cypress CY62256NLL and 2.5V-

5V for SRAM Microchip 23LC1024. The test is done on 4662 bits which

is twice the length of the bits required to generate 256 bits key when using

scheme shown in Figure 3.2. The result of time interval testing on SRAM

40



Figure 4.9: Remanence Graph of CY62256NLL. Left is remanence 0 and right is

remanence 1. SRAM Cypress CY62256NLL will reach the uninitialized point if it

is temporarily shut down for 5.0 second.

Microchip 23LC1024 is shown on Figure 4.10, while Figure 4.12 displays

the result for SRAM Cypress CY62256NLL.

Microchip 23LC1024

• Neighbor Stability Analysis

To get 4662 bits, there are three categories included; rank similar or

higher than 6 with 493 bits, rank 5 with 669 bits, and rank 4 with 3500

bits. During testing on variated voltage and time interval, the stable

bits generated using neighbor stability analysis show a poor perform-

ance by having maximum 2389 bits changing (HDintra 51.24%) which

also produces an overlap between HDintra and HDinter. The maximum

difference is produced when the difference between enrollment is 8

days.

• Data Remanence Approach

To get 4662 bits, strong 1’s are generated using power down period of

0.185 seconds, while strong 0’s are calculated when 0.27 seconds are

used as the power down period. The difference between power down

period during generation of strong 1’s and strong 0’s is because the

number of 1’s that flipped fast are more compared to 0’s. This is also

related to the 0’s and 1’s distribution during normal initialization (0’s

count for 30% and 1’s filled 70%). Similar to the previous algorithm,

the stability of bits produced by using this algorithm is also not good.

The worst change happens when 8 days is used as the time interval

between testing, showing as many as 2328 bits (HDintra 49.93%) and

also introduce an overlap between HDintra and HDinter.

41



Figure 4.10: Time interval testing results on SRAM Microchip 23LC1024. Top

figure is the testing result on stable bits generated using neighbor analysis, while

the bottom one is tested on data remanence generated stable bits. Index A on x-

axis refers to enrollment on day 1, B on day 2, etc. Index A-B refers to fractional

hamming distance between enrollment on day 1 and day 2.

42



Figure 4.11: Voltage variation testing results on SRAM Microchip 23LC1024. Top

figure is the testing result on stable bits generated using neighbor analysis, while

the bottom one is tested on stable bits produced by data remanence analysis. In-

dex on x-axis refers to two different voltages, e.g. 2.5-5.0 means the fractional

hamming distance between enrollment on voltage 2.5V and voltage 5.0V.

43



Figure 4.12: Time interval testing results on SRAM Cypress CY62256NLL. Top

figure is the testing result on stable bits generated using neighbor analysis, while

the bottom one is tested on data remanence generated stable bits. Index A on x-

axis refers to enrollment on day 1, B on day 2, etc. Index A-B refers to fractional

hamming distance between enrollment on day 1 and day 2.

44



Figure 4.13: Voltage variation testing results on SRAM Cypress CY62256NLL.

Top figure is the testing result on stable bits generated using neighbor analysis,

while the bottom one is tested on stable bits produced by data remanence analysis.

Index on x-axis refers to two different voltages, e.g. 4.5-4.6 means the fractional

hamming distance between enrollment on voltage 4.5V and voltage 4.6V.

45



Cypress CY62256NLL

• Neighbor Stability Analysis

To get 4662 bits, there are six categories included; rank similar or

higher than 16 with 712 bits, rank 15 with 350 bits, rank 14 with

502 bits, 726 bits of rank 13, 1104 bits of rank 12, and 1268 bits of

rank 11. Under the voltage and time interval variation, the stable bits

generated using neighbor stability analysis show decent reliability by

having maximum 197 changing bits (HDintra 4.23%) when the data is

gathered on voltage 4.8V and 5V.

• Data Remanence Approach

Unlike SRAM 23LC1024, power down period when enrolling strong

1’s and 0’s on CY62256NLL is not different. To get 4662 stable bits,

both are enrolled using power down period 0.34 seconds. During the

voltage and time interval variation, the stable bits produced by using

algorithm also shows a promising result. It only accounts for max-

imum 73 bits difference (HDintra 1.56%).

Stability Test Conclusion

Based on these results, SRAM Cypress CY62256NLL is shown to be a re-

liable SRAM candidate for PUF due to its well distribution of 1’s 0’s inside

its memory and small variance when tested on various voltage and time

interval between enrollment, especially the stable bits produced by data re-

manence analysis which has HDintra less than 2% on any testing. If Cypress

CY62256NLL is used as the root-of-trust to produce PUF-generated key,

the key is ensured to always have the same value since the key generation

scheme can tolerate up to 12.7% while the error rate of stable bits of Cypress

CY62256NLL produced by data remanence algorithm is always less than

2%. Sadly, the other SRAM, SRAM Microchip 23LC1024, has displayed

a poor performance to be eligible as a PUF candidate. Unbalanced 1’s and

0’s distribution and large HDintra when the stable bits are tested (larger than

the maximum error capability of the key generation scheme, and even in-

troduces an overlap between HDintra and HDinter) are two main reasons why

this SRAM is not recommended to use as a PUF candidate.

These different results between two types of SRAMs lead us to a think-

ing that the SRAM size and the technology used in SRAM manufacturing

affects a lot of SRAM quality as a PUF candidate. For example, Cypress

CY62256NLL has significantly larger size than Microchip 23LC1024 (a

rough approximation results in 13.38 times larger). Cypress CY62256NLL

also has a smaller capacity (256k) than Microchip 23LC1024 (1024k). In

addition, Cypress CY62256NLL is produced using quite old technology

(90nm) while Microchip 23LC1024 has a higher chance to be produced us-

46



ing a newer technology since it has a much smaller size but larger memory

size than Cypress CY62256NLL (there is no information on manufactur-

ing technology used in the production on their websites and the Microchip

23LC1024 manual descriptions). From these explanations, we can conclude

that Cypress CY62256NLL has less density than Microchip 23LC1024.

These reasons lead us to a confirmation of density effects explained in Sec-

tion 2.6.2 which says the more dense an SRAM, the more environments

affect the performance of the SRAM. But does it mean that SRAM PUF

cannot be produced using an SRAM with a high density? This seems un-

true due to some SRAM PUF references mentioned a newer technology in

their PUF constructions, e.g. Cortez et. al. in [64] use SRAMs which pro-

duced using 32nm and 45nm (sadly, there is no information on the type and

manufacturer of their tested SRAMs). Furthermore, since every company

always has their own way of dealing with noises introduced by high density

level, we cannot conclude that high density level always lead to low quality

of an SRAM as a PUF candidate. Now, this lead to another questions, what

is the main criteria if an off-the-shelf SRAM is going to be used a PUF can-

didate? Should we trust specific company such as Cypress and mistrust an-

other company like Microchip? Or do we need to look into specific product

to determine whether an SRAM is suitable for a PUF component? Should

we always prefer SRAMs with less density? We suggest the communities

and the academicians to study this thing further.

Another conclusion that can be retrieved is that data remanence analysis

is also proven to be a better bit selection algorithm than neighbor analysis.

This also confirms the claim by Muqing et. al. [50]. Futhermore, based on

this outcome, further testing shown below are only done on SRAM Cypress

CY62256NLL and the stable bits used are generated using the data reman-

ence algorithm.

4.5 Testing on A Set of Bit Locations as A Challenge

In this section, the testing results on our proposed PUF challenge is presen-

ted. As mentioned in the previous chapter, a set of bit locations is selected as

the PUF challenge in our application. The test was done on SRAM Cypress

CY62256NLL. Cypress CY62256NLL itself has a capacity to store 262144

bits. The number of bits required in a challenge is 2331 bits (the length

of the bits required to generate 256 bits key when using scheme shown in

Figure 3.2). Using Equation 3.1 explained in previous chapter, there are

P (262144, 2331) = 262144!
(262144−2331)!

≈ 1012626 possible combinations. Using

this large number of possibilities, once again we emphasize that this con-

struction can be a proper strong PUF construction using SRAM PUF.

The selected test to test this challenge is by calculating the HDinter among

47



five SRAMs. Figure 4.14 shows the result of this experiment. As shown

in that figure, the HDinter is ranging between 35.26% until 46.93%, with

average 42.08%. This result shows that the difference between each SRAM

when using a set of location as a challenge is sufficient to distinguish an

SRAM from another.

Figure 4.14: HDinter among five SRAMs Cypress CY62256NLL.

4.6 Complete Enrollment Scheme

Based on the experiment results shown before, we construct a complete

enrollment scheme. The enrollment scheme has a goal to create challenge

and helper data which will be used in our proposed secure data protection

and key storage scheme (further explanation is available on Section 3.4).

Our complete enrollment scheme is shown in Figure 4.15. We also present

Figure 4.16 to show how to connect an Arduino Mega 2560, an SRAM

Cypress CY62256NLL and a microSD.

The enrollment scheme starts by locating stable bits using bit selection al-

gorithm. The chosen bit selection algorithm is data remanence analysis due

to its better result and shorter time needed compared to neighbor analysis.

Using this algorithm, we detect the position of 4662 stable bits. Afterwards,

these stable bits are shuffled to form a set of 2331 bits locations which will

be used as the PUF challenge. The process continues with creating the

48



helper data based on the PUF challenge. The enrollment scheme ends with

storing the helper data and the PUF challenge to a microSD.

Figure 4.15: Complete enrollment setup.

4.7 Testing on Secure Data Protection and Key Storage

Scheme

To check the validity of the proposed data protection and key storage scheme,

several testings are performed. First, the final key generated using HMAC

SHA3 is checked. Afterwards, the result of the encryption and decryption

using the final key is also tested. Last, the time required in the scheme

is also measured. During the time measurement, the stage is divided into

multiple stages to ease the analysis.

To check the validity of the final key, a comparison between the generated

final key and an online HMAC SHA3 calculator [65] is performed. As a

reminder, the key for HMAC function is the PUF generated key and the

message input for the HMAC is the user’s password. Below is the testing

result:

49



Figure 4.16: An illustration on how to connect an Arduino Mega 2560 with an

SRAM Cypress CY62256NLL and a micro SD.

50



• PUF generated key: d20f5656bf436516cd0f3d2e734851dc537df518

97484128ccae67ee1310f69b

– user’s password: 70617373776f7264

final key: 084536fcb3135af89e1e32d423156511f13e52246acaa

591b1d4115666727814

valid: yes

– user’s password: 6b6f6e746f6c6b61626568

final key: 1d1e467224d72c81ede61fcd5d1ac10535f3ebafa6e9f

0d5086e6086a30787c7

valid: yes

– user’s password: 71776572747975696f706173646667686a6b6c

7a786376626e6d

final key: dda21605fc56b55659cffdf57f5453a9e380aa7bd78fe5

2b7dc64ff4515ff4a0

valid: yes

• PUF generated key: 35e2f312bd28a36a359eb1a1e37f212d17da41a5

b17cb2c642f5fd8e42bbd4f0

– user’s password: 70617373776f7264

final key: c2892f1b1d52d59549591d410a40527b265b91d444d

2032f28ce7374f7246152

valid: yes

– user’s password: 6b6f6e746f6c6b61626568

final key: ec85915ae65f3e5141128a520327c4d5cd3119cb6769f

ddd948d3061dfb6fed9

valid: yes

– user’s password: 71776572747975696f706173646667686a6b6c

7a786376626e6d

final key: da9e28f76754dcd4946c1343a3dd8550338d98e46d3a

11e09f903204044ac9c7

valid: yes

After checking the validity of the final key, a testing on encryption and

decryption using the final key is performed. The input data on this testing

is users key. To check the validity of the ciphertext, an online encryption

calculator [66] is utilized. The ciphertext result of the encryption process

will be used as the input for the decryption test. If the decryption result is

similar with the users key, then both encryption and decryption process in

this scheme is valid.

• user’s key: 6a656d6275746a656d62756a656d6275

51



– final key: 084536fcb3135af89e1e32d423156511f13e52246acaa

591b1d4115666727814

ciphertext: 874cd8b8010f29f0a52eb564f1306119

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

– final key: 1d1e467224d72c81ede61fcd5d1ac10535f3ebafa6e9f

0d5086e6086a30787c7

ciphertext: c258a267ea58d04e0795e661000b9e4f

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

– final key: dda21605fc56b55659cffdf57f5453a9e380aa7bd78fe5

2b7dc64ff4515ff4a0

ciphertext: 64586f93c32e0498a46e906dc85b726a

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

– final key: c2892f1b1d52d59549591d410a40527b265b91d444d

2032f28ce7374f7246152

ciphertext: f7a0c1bfdbe1d12af85ca5c3933bc29d

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

– final key: ec85915ae65f3e5141128a520327c4d5cd3119cb6769f

ddd948d3061dfb6fed9

ciphertext: b91b1d3031b3da73a6c1afe516d85b8b

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

– final key: da9e28f76754dcd4946c1343a3dd8550338d98e46d3a

11e09f903204044ac9c7

ciphertext: 1f78480b2687b7b7faba210985600372

ciphertext validity: yes

decryption result: 6a656d6275746a656d62756a656d6275

decryption validity: yes

Measurement of time required in this scheme is also done. During the

measurement, the scheme is divided into eight stages. Stage one is on the

initialization of the libraries required to access SRAM Cypress CY62256

and microSD. Stage two is when the challenge and the helper data are

loaded from micro SD. The third one is calculated when reconstructing the

52



PUF key. Next stage is during the derivation of the final key (derived from

user’s password and PUF-generated key). Stage five and stage six refers to

the processes of encryption and saving ciphertext to microSD. Stage seven

and stage eight refers to the procedure of reading ciphertext from microSD

and the decryption process (reconstructing the bitcoin key). The measure-

ment result can be seen on Table 4.1. It can be seen that the longest time

required is when loading the challenge and the helper data from the mi-

croSD (stage 2), followed by the initialization stage (stage 1). Due to this

significant time required, a further optimization on accessing data from mi-

croSD is suggested.

Table 4.1: Time measurement of the secure data protection and key storage scheme

in ms.
No Stage 1 Stage 2 Stage 3 Stage 4

1 1022.66 2205.25 978.15 33.57

2 1022.65 2205.24 974.39 33.57

3 1022.63 2205.25 981.27 33.57

Average 1022.65 2205.25 977.94 33.57

No Stage 5 Stage 6 Stage 7 Stage 8

1 0.84 39.96 13.02 1.72

2 0.85 39.88 13.02 1.71

3 0.84 39.78 13.01 1.72

Average 0.84 39.87 13.02 1.71

4.8 Concluding Experiment with Cybercurrency

As the final experiment of this thesis, we present a demo of storing a private

key of a cybercurrency. We believes this proves the usefulness and viab-

ility of this work for realistic use-cases. The chosen cybercurrency in this

demo is Bitcoin. In Bitcoin, the private key has a length of 256-bit or 32

bytes [67]. The experiments starts by performing an enrollment on an Ar-

duino board with an SRAM Cypress CY62256NLL and a microSD con-

nected to it, resulting in challenge and helper data which store in the mi-

croSD. Using the produced challenge and helper data, user creates a final

key which derived from the PUF-generated key and user’s password. The

final key is utilized to encrypt a bitcoin key, then the ciphertext is stored in

microSD. Afterwards, the Arduino is turned off. Later, the microSD and the

SRAM are transferred to another Arduino board. The new Arduino board

is powered on, then it is used to reconstruct the final key by inputing the

correct user’s password. Finally, the reconstructed final key is applied to

the ciphertext which is loaded from the microSD. The bitcoin key storing

53



experiment is considered successful if the result of decryption is the same

as the bitcoin key. Moreover, we also shows that the bitcoin key will not be

reconstructed successfully if user’s password is incorrect or the SRAM is

not similar with the one that use to encrypt the bitcoin key.

This experiment was done on five SRAMs Cypress CY62256NLL which

can be identified by having index ’A’, ’B’, ’C’, ’D’, and E. The result of

this experiment is shown on Figure 4.17 until Figure 4.36. These figures

show that the stored / secured bitcoin key can only be reconstructed using

a correct user’s password and the exact SRAM that used during the storing

(encryption) stage. If the SRAM is not similar with the one used for the

encryption stage or the input password is inaccurate, the bitcoin key cannot

be reconstructed to the actual one. Figure ?? shows the encryption of bitcoin

key ’testpasswordtest’ using user’s password ’testtest’ and SRAM Cypress

CY62256NLL. Based on these result, we believe that the constructed data

protection and key storage scheme is secure and successfully built.

Figure 4.17: Screenshot of the bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’A’. User’s password is ’1234’ and the

bitcoin key (user’s key) is ’1234567890123456’.

54



Figure 4.18: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’1234567890123456’ is previously secured by using SRAM

Cypress CY62256NLL ’A’ and user’s password ’1234’. The bitcoin key can be

reconstructed because user’s password is correct.

Figure 4.19: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’1234567890123456’ is previously secured by using SRAM

Cypress CY62256NLL ’A’ and user’s password ’1234’. The bitcoin key cannot be

reconstructed because user’s password is wrong.

55



Figure 4.20: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’1234567890123456’ is previously secured by using SRAM

Cypress CY62256NLL ’A’ and user’s password ’1234’. The bitcoin key cannot be

reconstructed because the SRAM utilized for the decryption is SRAM Cypress

CY62256NLL ’D’.

Figure 4.21: Screenshot of the bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’B’. User’s password is ’testpassword’

and the bitcoin key (user’s key) is ’testpasswordtest’.

56



Figure 4.22: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’B’ and user’s password ’testpassword’. The bitcoin key

can be reconstructed because user’s password is correct.

Figure 4.23: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’B’ and user’s password ’testpassword’. The bitcoin key

cannot be reconstructed because user’s password is wrong.

57



Figure 4.24: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’B’ and user’s password ’testpassword’. The bitcoin key

cannot be reconstructed because the SRAM utilized for the decryption is SRAM

Cypress CY62256NLL ’A’.

Figure 4.25: Screenshot of the bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’C’. User’s password is ’password’ and

the bitcoin key (user’s key) is ’testpasswordtest’.

58



Figure 4.26: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’C’ and user’s password ’password’. The bitcoin key can

be reconstructed because user’s password is correct.

Figure 4.27: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’C’ and user’s password ’password’. The bitcoin key can-

not be reconstructed because user’s password is wrong.

59



Figure 4.28: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’C’ and user’s password ’password’. The bitcoin key

cannot be reconstructed because the SRAM utilized for the decryption is SRAM

Cypress CY62256NLL ’D’.

Figure 4.29: Screenshot of the bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’D’. User’s password is ’qwertyuiop’

and the bitcoin key (user’s key) is ’hahahahalalalala’.

60



Figure 4.30: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’hahahahalalalala’ is previously secured by using SRAM

Cypress CY62256NLL ’D’ and user’s password ’qwertyuiop’. The bitcoin key

can be reconstructed because user’s password is correct.

Figure 4.31: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’hahahahalalalala’ is previously secured by using SRAM

Cypress CY62256NLL ’D’ and user’s password ’qwertyuiop’. The bitcoin key

cannot be reconstructed because user’s password is wrong.

61



Figure 4.32: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’hahahahalalalala’ is previously secured by using SRAM

Cypress CY62256NLL ’D’ and user’s password ’qwertyuiop’. The bitcoin key

cannot be reconstructed because the SRAM utilized for the decryption is SRAM

Cypress CY62256NLL ’B’.

Figure 4.33: Screenshot of the bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’E’. User’s password is ’testtest’ and

the bitcoin key (user’s key) is ’testpasswordtest’.

62



Figure 4.34: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’E’ and user’s password ’testtest’. The bitcoin key can be

reconstructed because user’s password is correct.

Figure 4.35: Screenshot of the bitcoin key storing experiment during decryp-

tion stage. The bitcoin ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’E’ and user’s password ’testtest’. The bitcoin key ’test-

passwordtest’ cannot be reconstructed because user’s password is incorrect.

63



Figure 4.36: Screenshot of the bitcoin key storing experiment during decryption

stage. The bitcoin key ’testpasswordtest’ is previously secured by using SRAM

Cypress CY62256NLL ’E’ and user’s password ’testtest’. The bitcoin key cannot

be reconstructed because the SRAM utilized for the decryption is SRAM Cypress

CY62256NLL ’C’.

64



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis starts by showing the potential of using SRAM PUF as a secure

way to protect our key and data. Embraced with a bright prospect, it is

unfortunate that the development of PUF in the real world seems to lack

of public involvement. The currently available solution is usually locked to

specific entities, such as companies or universities. There is no open source

project available for tech enthusiast to embrace this amazing technology.

Here, we initiate an open source project to develop software-based SRAM

PUF technology using off-the-shelf SRAM. Moreover, the answer to the

problem statement is summarized in few paragraphs below.

To answer the question whether we can build an SRAM PUF using off-

the-shelf SRAM, we present testing results on two off-the-shelf SRAMs as

SRAM PUF candidates; Microchip 23LC1024 and Cypress CY62256NLL.

Both are tested on the distribution of 0’s and 1’s in their cells, intra hamming

distance, inter hamming distance, and the effect of voltage variation and

time interval between enrollment. Testing on two bit-selection algorithms

(data remanence analysis and neighbor analysis) are also performed on both

SRAMs. The testing results show that Cypress CY62256NLL is a qualified

PUF candidate due to well distributed of 1’s and 0’s inside its memory and

the stability of its stable bits produced by data remanence analysis against

voltage variation and time variation between interval. This means that

SRAM PUF is indeed can be built using off-the-shelf SRAM component.

Sadly, SRAM Microchip 23LC1024 has displayed a poor performance to be

eligible as a PUF candidate due to unbalanced 1’s and 0’s distribution and

large HDintra when the stable bits are tested. We believe a factor that makes

Cypress CY62256NLL performs better than Microchip 23LC1024 is its less

density level. Unfortunately, we cannot a hundred percent sure that high-

density level always makes an off-the-shelf SRAM performs poorly as a

65



PUF candidate due to some SRAM PUF references mentioned a newer tech-

nology in their PUF constructions, e.g. Cortez et. al. in [64] use SRAMs

which produced using 32nm and 45nm. Another reason is that every com-

pany always has their own way of dealing with noises introduced by high-

density level, thus opening a possibility that maybe SRAM produced from

a specific company is better than the other. We suggest the communities

and academicians to study this problem further. These experiments also

confirm the claim by Muqing et. al. in [50] which says data remanence

analysis is a better bit selection algorithm than neighbor analysis. After-

ward, based on the testing results, we introduce a PUF enrollment scheme

using data remanence analysis as the bit selection algorithm which will loc-

ate the location of the stable bits and SRAM Cypress CY62256NLL as the

off-the-shelf SRAM component.

In addition, an idea to create a strong PUF using SRAM is also proposed

here. Using a collection of bits as a challenge, the stable bits are permutated

among themselves to create a challenge which has a tremendous number of

possibilities. Due to the large CRPs, we believe this concept can be an

approach to be a strong PUF even though only using SRAM PUF.

Furthermore, we also introduce a secure data protection and key storage

scheme using SRAM PUF. The proposed scheme is influenced by multi-

factor authentication. Using a combination of a PUF-generated key and

user’s password, a derived key is produced and utilized as the final key

to protect user’s data or/and user’s key. Unlike the automated enrollment

system, this scheme only consists of an Arduino source code. Evaluation of

this scheme time and code size are also presented.

5.2 Future Work

In this section, two major parts on possible future work are presented. The

first part is about possible experiments to do on off-the-shelf SRAMs and

the next part is related to possible developments on our secure data protec-

tion and key storage scheme. Explanations of these two will be provided

below.

Possible Experiments on Off-The-Shelf SRAMs

In this thesis, the SRAM testing is only done on the effect of time inter-

val between enrollment and voltage variation. We believe another testing

on temperature and aging is required to ensure whether SRAM Cypress

CY62256NLL is indeed a capable candidate for SRAM PUF. The capabil-

ity to test on temperature and the aging effect is suggested to be included

as an addition of our automated enrollment system. In addition, we also

encouraged others to test other types of SRAMs to enrich the knowledge

66



of possible off-the-shelf SRAM as a PUF candidate and to check if a high-

density level always leads to a poor performance for an SRAM to be a PUF

candidate. Doing testing on other types of SRAMs can also confirm whether

a product from specific is qualified as a PUF root-of-trust or not.

Improvement on Secure Data Protection and Key Storage Scheme

As mentioned in Section 4.7, during the time measurement of our proposed

key storage scheme, two procedures which spend significant time is the

reading challenge from microSD and the initialization stages. We suggest

to further optimize these stages to give a better and faster performance.

This thesis only presents an idea to secure user’s data using symmet-

ric encryption. To see similar application but using asymmetric encryption

concept, one should look further to the thesis done by Akhundov [68]. He

presents a public key infrastructure (PKI) concept using the PUF-generated

key as the root of trust. A possible integration between our work and his

work is combining our ’final’ key into his construction as a root of trust.

Moreover, our secure data protection and key storage scheme is only de-

signed to work offline. We believe by making it works in an online scenario

will lead to more usable applications in real life. The first step we suggest

on evolving it to be an online scheme is by providing the Arduino with an

internet connection and by storing the helper data and the challenge in the

cloud infrastructure. This step will reduce the necessity for the Arduino

to always connected to a microSD. To reconstruct the PUF-generated key,

Arduino will just have to get the challenge and the helper data from the

cloud. We also advise to do extensive security analysis if it is decided to

work online since the risks in an online environment are numerous.

In addition, our idea of using user’s password and the PUF-generated key

is not the highest level of security in multi-factor authentication. As men-

tioned in Section 2.4, the most secure multi-factor authentication can be

achieved when all three factors are combined together; knowledge, posses-

sion, and inherence. Since there are only two factors utilize (knowledge

and possession) in this thesis’ proposed secure data protection and key stor-

age scheme, an addition of inherence factor when generating the final key

can increase the security level. As mentioned in Section 1.2, biometric-

based authentication and PUF are utilized to secure self-sovereign identity

in Pouwelse and de Vos’s proposed technology stack during trust creation

in blockchain era. A further read on their article mentioned that there is a

working prototype of fingerprint authentication using a smartphone camera.

Since that project and our work share the same principle, open source and

open ecosystem, we suggest integrating this fingerprint authentication into

our proposed scheme to enable an even higher level of security.

67



68



Bibliography

[1] World economic forum - a blueprint for digital identity.

http://www3.weforum.org/docs/WEF A Blueprint for

Digital Identity.pdf. [Online; accessed 16-March-2018].

[2] G R Blakley and David Chaum, editors. Proceedings of CRYPTO

84 on Advances in Cryptology, New York, NY, USA, 1985. Springer-

Verlag New York, Inc.

[3] What is ”sovereign source authority”? — the moxy tongue.

http://http://www.moxytongue.com/2012/02/

what-is-sovereign-source-authority.html. [On-

line; accessed 19-February-2018].

[4] Johan Pouwelse, Andr De Kok, Joost Fleuren, Peter Hoogendoorn,

Raynor Vliegendhart, and Martijn De Vos. Laws for creating trust in

the blockchain age. European Property Law Journal, 6(3), Dec 2017.

[5] Eur-lex - 32016r0679 - en. http://eur-lex.europa.eu/

legal-content/EN/TXT/?uri=celex%3A32016R0679.

[Online; accessed 06-March-2018].

[6] Data privacy vs. data protection. https://blog.ipswitch.com/

data-privacy-vs-data-protection. [Online; accessed 16-

March-2018].

[7] Sergei Skorobogatov. Physical attacks and tamper resistance. Intro-

duction to Hardware Security and Trust, page 143173, Aug 2011.

[8] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld.

Physical one-way functions. Science, 297(5589):2026–2030, 2002.

[9] C. H. Chang, Y. Zheng, and L. Zhang. A retrospective and a look

forward: Fifteen years of physical unclonable function advancement.

IEEE Circuits and Systems Magazine, 17(3):32–62, thirdquarter 2017.

[10] Pim Tuyls. ”Security with Noisy Data: On Private Biometrics, Secure

Key Storage and Anti-Counterfeiting”. Springer, 2010.

69

http://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
http://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
http://http://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
http://http://www.moxytongue.com/2012/02/what-is-sovereign-source-authority.html
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://blog.ipswitch.com/data-privacy-vs-data-protection
https://blog.ipswitch.com/data-privacy-vs-data-protection


[11] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim

Tuyls. Fpga intrinsic pufs and their use for ip protection. Crypto-

graphic Hardware and Embedded Systems - CHES 2007 Lecture Notes

in Computer Science, page 6380.

[12] Google patents. https://patents.google.com/?q=sram&

q=puf&oq=srampuf. [Online; accessed 06-March-2018].

[13] Google scholar. https://scholar.google.nl/scholar?as

vis=1&q=srampuf&hl=en&as sdt=1,5. [Online; accessed 06-

March-2018].

[14] Broadkey - intrinsic id — iot security. https://www.

intrinsic-id.com/products/broadkey/. [Online; ac-

cessed 06-March-2018].

[15] Polarfire evaluation kit. https://www.microsemi.com/

products/fpga-soc/design-resources/dev-kits/

polarfire/polarfire-eval-kit. [Online; accessed

06-March-2018].

[16] Pim Tuyls and Boris Škorić. Strong Authentication with Physical Un-

clonable Functions, pages 133–148. Springer Berlin Heidelberg, Ber-

lin, Heidelberg, 2007.

[17] Jeroen Delvaux, Roel Peeters, Dawu Gu, and Ingrid Verbauwhede. A

survey on lightweight entity authentication with strong pufs. ACM

Comput. Surv., 48(2):26:1–26:42, October 2015.

[18] G. Edward Suh and Srinivas Devadas. Physical unclonable functions

for device authentication and secret key generation. In Proceedings

of the 44th Annual Design Automation Conference, DAC ’07, pages

9–14, New York, NY, USA, 2007. ACM.

[19] Keith B. Frikken, Marina Blanton, and Mikhail J. Atallah. Robust

authentication using physically unclonable functions. In Pierangela

Samarati, Moti Yung, Fabio Martinelli, and Claudio A. Ardagna, ed-

itors, Information Security, pages 262–277, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[20] Heike Busch, Stefan Katzenbeisser, and Paul Baecher. Puf-based au-

thentication protocols – revisited. In Heung Youl Youm and Moti

Yung, editors, Information Security Applications, pages 296–308, Ber-

lin, Heidelberg, 2009. Springer Berlin Heidelberg.

70

https://patents.google.com/?q=sram&q=puf&oq=sram puf
https://patents.google.com/?q=sram&q=puf&oq=sram puf
https://scholar.google.nl/scholar?as_vis=1&q=sram puf&hl=en&as_sdt=1,5
https://scholar.google.nl/scholar?as_vis=1&q=sram puf&hl=en&as_sdt=1,5
https://www.intrinsic-id.com/products/broadkey/
https://www.intrinsic-id.com/products/broadkey/
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire/polarfire-eval-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire/polarfire-eval-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire/polarfire-eval-kit


[21] Amanda C. Davi Resende, Karina Mochetti, and Diego F. Aranha.

Puf-based mutual multifactor entity and transaction authentication for

secure banking. In Tim Güneysu, Gregor Leander, and Amir Moradi,

editors, Lightweight Cryptography for Security and Privacy, pages

77–96, Cham, 2016. Springer International Publishing.

[22] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. Pufky:

A fully functional puf-based cryptographic key generator. In Em-

manuel Prouff and Patrick Schaumont, editors, Cryptographic Hard-

ware and Embedded Systems – CHES 2012, pages 302–319, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[23] Strong software based physical unclonable func-

tion. https://github.com/Tribler/

strong-software-based-Physical-Unclonable-Function.

[Online; accessed 15-April-2018].

[24] H. X. Mel and Doris Baker. Cryptography decrypted. Addison-

Wesley, 2003.

[25] C. Soanes and A. Stevenson. Concise Oxford English Dictionary.

Concise Oxford English Dictionary. Oxford University Press, 2008.

[26] Jonathan Katz and Yehuda Lindell. Introduction to Modern Crypto-

graphy, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[27] Hugo Krawczyk. Cryptographic extraction and key derivation: The

hkdf scheme. In Tal Rabin, editor, Advances in Cryptology – CRYPTO

2010, pages 631–648, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg.

[28] Chiara Galdi, Michele Nappi, Jean-Luc Dugelay, and Yong Yu. Ex-

ploring new authentication protocols for sensitive data protection on

smartphones. IEEE Communications Magazine, 56:136–142, 2018.

[29] Sudheendra Srivathsa, Sudheendra K. Srivathsa, and Wayne P. Bur-

leson. Secure and energy efficient physical unclonable functions.

2017.

[30] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Func-

tions: A Study on the State of the Art and Future Research Directions,

pages 3–37. 10 2010.

[31] Hamming distance — practice problems — hackerearth.

https://www.hackerearth.com/problem/algorithm/

hamming-distance-1/. [Online; accessed 10-Jan-2018].

71

https://github.com/Tribler/strong-software-based-Physical-Unclonable-Function
https://github.com/Tribler/strong-software-based-Physical-Unclonable-Function
https://www.hackerearth.com/problem/algorithm/hamming-distance-1/
https://www.hackerearth.com/problem/algorithm/hamming-distance-1/


[32] M. Cortez, A. Dargar, S. Hamdioui, and G. J. Schrijen. Modeling sram

start-up behavior for physical unclonable functions. In 2012 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), pages 1–6, Oct 2012.

[33] A. Maiti and P. Schaumont. The impact of aging on a physical un-

clonable function. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 22(9):1854–1864, Sept 2014.

[34] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid

Shokrollahi, and Pim Tuyls. Efficient helper data key extractor on fp-

gas. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic

Hardware and Embedded Systems – CHES 2008, pages 181–197, Ber-

lin, Heidelberg, 2008. Springer Berlin Heidelberg.

[35] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors:

How to generate strong keys from biometrics and other noisy data. In

Christian Cachin and Jan L. Camenisch, editors, Advances in Crypto-

logy - EUROCRYPT 2004, pages 523–540, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

[36] R. Maes, P. Tuyls, and I. Verbauwhede. A soft decision helper data

algorithm for sram pufs. In 2009 IEEE International Symposium on

Information Theory, pages 2101–2105, June 2009.

[37] Renato Renner and Stefan Wolf. Simple and tight bounds for inform-

ation reconciliation and privacy amplification. In Bimal Roy, editor,

Advances in Cryptology - ASIACRYPT 2005, pages 199–216, Berlin,

Heidelberg, 2005. Springer Berlin Heidelberg.

[38] M. Taniguchi, M. Shiozaki, H. Kubo, and T. Fujino. A stable key

generation from puf responses with a fuzzy extractor for cryptographic

authentications. In 2013 IEEE 2nd Global Conference on Consumer

Electronics (GCCE), pages 525–527, Oct 2013.

[39] A. Garg and T. T. Kim. Design of sram puf with improved uniform-

ity and reliability utilizing device aging effect. In 2014 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), pages 1941–1944,

June 2014.

[40] Roel Maes. Physically Unclonable Functions Constructions, Proper-

ties and Applications. Springer Berlin, 2016.

[41] Apurva Dargar. Modeling sram start-up behavior for physical unclon-

able functions. MSc thesis, Delft University of Technology, 2011.

72



[42] Xiaoxiao Wang and Mohammad Tehranipoor. Novel physical unclon-

able function with process and environmental variations. 2010 Design,

Automation & Test in Europe Conference & Exhibition (DATE 2010),

2010.

[43] Mohamed H. Abu-Rahma and Mohab Anis. Variability in Nanometer

Technologies and Impact on SRAM, pages 5–47. Springer New York,

New York, NY, 2013.

[44] Vikram G Rao and Hamid Mahmoodi. Analysis of reliability of

flip-flops under transistor aging effects in nano-scale cmos techno-

logy. 2011 IEEE 29th International Conference on Computer Design

(ICCD), 2011.

[45] Elie Maricau and Georges Gielen. CMOS Reliability Overview, pages

15–35. Springer New York, New York, NY, 2013.

[46] B. Kaczer, R. Degraeve, M. Rasras, K. van de Mieroop, P. J. Roussel,

and G. Groeseneken. Impact of MOSFET gate oxide breakdown on

digital circuit operation and reliability. IEEE Transactions on Electron

Devices, 49:500–506, March 2002.

[47] B. C. Paul, Kunhyuk Kang, H. Kufluoglu, M. A. Alam, and K. Roy.

Temporal performance degradation under nbti: Estimation and design

for improved reliability of nanoscale circuits. In Proceedings of the

Design Automation Test in Europe Conference, volume 1, pages 1–6,

March 2006.

[48] P. Magnone, F. Crupi, N. Wils, R. Jain, H. Tuinhout, P. Andricciola,

G. Giusi, and C. Fiegna. Impact of hot carriers on nmosfet variability

in 45- and 65-nm cmos technologies. IEEE Transactions on Electron

Devices, 58(8):2347–2353, Aug 2011.

[49] Kan Xiao, Md. Tauhidur Rahman, Domenic Forte, Yu Huang, Mei

Su, and Mohammad Tehranipoor. Bit selection algorithm suitable for

high-volume production of sram-puf. 2014 IEEE International Sym-

posium on Hardware-Oriented Security and Trust (HOST), 2014.

[50] Muqing Liu, Chen Zhou, Qianying Tang, Keshab K. Parhi, and

Chris H. Kim. A data remanence based approach to generate 100sram

physical unclonable function. 2017 IEEE/ACM International Sym-

posium on Low Power Electronics and Design (ISLPED), 2017.

[51] Hyunho Kang, Yohei Hori, Toshihiro Katashita, Manabu Hagiwara,

and Keiichi Iwamura. Performance analysis for puf data using fuzzy

extractor. In Young-Sik Jeong, Young-Ho Park, Ching-Hsien (Robert)

73



Hsu, and James J. (Jong Hyuk) Park, editors, Ubiquitous Information

Technologies and Applications, pages 277–284, Berlin, Heidelberg,

2014. Springer Berlin Heidelberg.

[52] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura. Cryp-

tographic key generation from puf data using efficient fuzzy extract-

ors. In 16th International Conference on Advanced Communication

Technology, pages 23–26, Feb 2014.

[53] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In

Proceedings of the 6th ACM Conference on Computer and Communic-

ations Security, CCS ’99, pages 28–36, New York, NY, USA, 1999.

ACM.

[54] L. Kusters, T. Ignatenko, F. M. J. Willems, R. Maes, E. van der Sluis,

and G. Selimis. Security of helper data schemes for sram-puf in mul-

tiple enrollment scenarios. In 2017 IEEE International Symposium on

Information Theory (ISIT), pages 1803–1807, June 2017.

[55] Boris Skoric, Geert-Jan Schrijen, Pim Tuyls, Tanya Ignatenko, and

Frans Willems. Secure Key Storage with PUFs, pages 269–292.

Springer London, London, 2007.

[56] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven, Nynke

Verhaegh, and Rob Wolters. Read-proof hardware from protective

coatings. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic

Hardware and Embedded Systems - CHES 2006, pages 369–383, Ber-

lin, Heidelberg, 2006. Springer Berlin Heidelberg.

[57] The error correcting codes (ecc) page. http://www.eccpage.

com. [Online; accessed 09-November-2017].

[58] S Stanzione and Giuseppe Iannaccone. Silicon physical unclonable

function resistant to a 1025-trial brute force attack in 90 nm cmos.

pages 116 – 117, 07 2009.

[59] Fermilab — science — inquiring minds — questions about phys-

ics. http://www.fnal.gov/pub/science/inquiring/

questions/atoms.html. [Online; accessed 10-April-2018].

[60] Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis

of aes. In Ernest Foo and Douglas Stebila, editors, Information Se-

curity and Privacy, pages 39–56, Cham, 2015. Springer International

Publishing.

74

http://www.eccpage.com
http://www.eccpage.com
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html


[61] Donghoon Chang. Security evaluation report on sha-224, sha-

512/224, sha-512/256, and the six sha-3 functions. http://www.

cryptrec.go.jp/estimation/techrep id2403 2.pdf,

March 2015. [Online; accessed 15-April-2018].

[62] 23lc1024 - memory - microcontrollers and processors. http://

www.microchip.com/wwwproducts/en/23LC1024. [Online;

accessed 15-Dec-2017].

[63] Cy62256nll-70pxc. http://www.cypress.com/part/

cy62256nll-70pxc. [Online; accessed 15-Dec-2017].

[64] M. Cortez, S. Hamdioui, and R. Ishihara. Design dependent sram puf

robustness analysis. In 2015 16th Latin-American Test Symposium

(LATS), pages 1–6, March 2015.

[65] Hmac generator online hash encryption. https://www.liavaag.

org/English/SHA-Generator/HMAC/. [Online; accessed 26-

March-2018].

[66] Cryptomathic - aes calculator. http://extranet.

cryptomathic.com/aescalc/index. [Online; accessed

27-March-2018].

[67] Private key - bitcoin wiki. https://en.bitcoin.it/wiki/

Private key. [Online; accessed 12-April-2018].

[68] Haji Akhundov. Design & development of public-key based authen-

tication architecture for iot devices using puf. MSc thesis, Delft Uni-

versity of Technology, 2017.

75

http://www.cryptrec.go.jp/estimation/techrep_id2403_2.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2403_2.pdf
http://www.microchip.com/wwwproducts/en/23LC1024
http://www.microchip.com/wwwproducts/en/23LC1024
http://www.cypress.com/part/cy62256nll-70pxc
http://www.cypress.com/part/cy62256nll-70pxc
https://www.liavaag.org/English/SHA-Generator/HMAC/
https://www.liavaag.org/English/SHA-Generator/HMAC/
http://extranet.cryptomathic.com/aescalc/index
http://extranet.cryptomathic.com/aescalc/index
https://en.bitcoin.it/wiki/Private_key
https://en.bitcoin.it/wiki/Private_key

	Preface
	Introduction
	Need for Self-Sovereign Identity
	Rise of PUF as a Security Solution
	Problem Statement
	Contributions
	Outlines

	Related Work
	Security Requirements and Cryptography
	Symmetric Encryption
	Key Derivation Function
	Multi-factor Authentication
	PUF
	PUFs Classification
	Hamming Distances as an Identification Helper
	Helper Data Algorithms and Fuzzy Extractor
	Error Correcting Codes

	SRAM PUF
	SRAM Cell
	Problem: Noise
	Bit Selection Algorithm

	PUF Applications
	Key Generation using SRAM PUF
	Secret Key Binding based on Fuzzy Commitment Scheme
	Secure Key Storage using Optical PUF and Coating PUF


	Proposed System
	Use Case, Assumptions and Requirements
	Arduino Mega 2560 as the Embedded Platform
	BCH Codes as Error Correcting Codes
	Data Protection and Key Storage Scheme
	Key Generation Scheme
	Bits Locations as the PUF Challenge - Leads to Strong PUF
	Security Analysis of The Proposed Scheme

	Implementation, Experiments and Results
	Chosen SRAMs
	Microchip 23LC1024
	Cypress CY62256NLL

	Automated PUF Profiling System
	Testing on Selected SRAMs
	Microchip 23LC1024
	Cypress CY62256NLL

	Experiments on Bit Selection Algorithms
	Neighbour Stability Analysis
	Data Remanence Approach
	Stability Test on Stable Bits

	Testing on A Set of Bit Locations as A Challenge
	Complete Enrollment Scheme
	Testing on Secure Data Protection and Key Storage Scheme
	Concluding Experiment with Cybercurrency

	Conclusions and Future Work
	Conclusions
	Future Work


