
Limit order
placement
optimization
with Deep

Reinforcement
Learning

Learning from patterns in raw historical
cryptocurrency market data

by

Marc B. Juchli
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 19, 2018 at 09:00 AM.

Student number: 4634845
Project duration: November 1, 2017 – July 19, 2018
Thesis committee: Prof. dr. M. Loog, TU Delft, supervisor

Dr. J. Pouwelse, TU Delft, co-supervisor
Prof. dr. ir. M.J.T. Reinders, TU Delft

This thesis is confidential and cannot be made public until July 31, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

Financial institutions buy or sell assets based on various reasons and such high-level trading strategies often-
times define the purpose of their business. Regardless of their trading strategy, the invariable outcome is the
decision to buy or sell assets.

This work aims to make a step towards answering the non-trivial question on how to optimize a buy or
sell of an asset on a stock exchange with the use of reinforcement learning techniques. Particularly:

How can one design a reinforcement learning environment and construct features, which are
derived from a limit order book, in order to optimize on the non-trivial problem of limit order
placement, and what are the limitations thereof?

We study event data from a crypto-currency exchange of our choice and build a framework that allows to sim-
ulate and understand the outcome of order placement in this market. We then try to overcome the exploita-
tion of other participants in the market by building an intelligent trader that follows a placement strategy
which aims to execute orders to a favourable price. Multiple reinforcement learning approaches are devel-
oped that consider various types of features, derived from the financial data set. To investigate the perfor-
mance and analyze the behaviour of these approaches we further develop reinforcement learning environ-
ments on top of the aforementioned framework which simulate the processes: order placement and market
making as an extension of the former.

Our findings show...

iii





Preface

Preface. . .

Marc B. Juchli
Delft, January 2013

v





Contents

1 Introduction 1
1.1 Context and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Order Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Match Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Trade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Order execution and placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Time series forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Advantages of end-to-end learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.4 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.5 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.6 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 RelatedWork 15
3.1 Execution/Placement behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Supervised Learning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Reinforcement Learning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Data curation 19
4.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Order book generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Understanding the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Importance of order prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Importance of order volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Volume of orders and trades over time on the market price . . . . . . . . . . . . . . . . 23

4.3.4 Impact of traded price and volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Feature construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Feature: price and size of historical orders . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.2 Feature: price and size of historical trades . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



viii Contents

5 Experimental Setup 31
5.1 Order Placement Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Overview of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.4 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.5 Reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Market making Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Q-Learning agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Deep Q-Network agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Analysis and discussion 37
6.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 An empirical investigation of the reinforcement learning environment . . . . . . . . . . . . . . 38

6.2.1 Order placement behaviour on data set I. . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 Order placement behaviour on data set II . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Q-Learning without market variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Deep Q-Network on execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Deep Q-Network on market making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Deep Q-Network with event flow data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion and FutureWork 47
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49



1
Introduction

Financial institutions make decisions on whether to buy or sell assets based on various reasons, includ-
ing: customer requests, fundamental analysis[3], technical analysis[13], top-down investing[12], bottom-up
investing[1] and many more. The high-level trading strategies oftentimes define how the institution posi-
tions itself in the financial markets and, if existent, towards its customers. Regardless of the high-level trading
strategy that is being applied, the invariable outcome is the decision to buy or sell assets. This work aims to
make a step towards answering the non-trivial question on how one can optimize a buy or sell of an asset
on a stock exchange with the use of reinforcement learning techniques. The following sections will elaborate
this problem briefly and state the research objectives of this work. We then list the contributions made to the
research communities throughout this work, followed by a brief overview of the structure of this report.

1.1. Context and Problem Statement

We are concerned about the way assets, specifically securities (exchange traded assets), are traded at stock
exchanges. There is little consensus as to when corporate stock was first traded; some argue that the ex-
change, in the form as we know it today, dates as far back as 1531, when the East Indian Company stock was
traded in Antwerp[11]. Modern financial markets such as the London Stock exchange (LSE), the New York
Stock Exchange (NYSE) but also the numerous crypto-currency exchanges which appeared suddenly in the
last few year, all rely on the same very same principles as back then. They allow participant (so-called traders)
to buy or sell a given amount of a security to, respectively for, a certain price. When in the late ’90s the reg-
ulatories started to let traders reach into the market using electronic communications networks (ECNs), a
new era arose [30]. Since then, high frequency trading (HFT) and sophisticated algorithmic trading makes up
a substantial and ever increasing part of the participants of the electronic markets. Their servers are often-
times co-located with the exchanges and specialized computer networks have been constructed to provide
millisecond advantage for arbitraging trades between the exchanges. Ever since, traders without such equip-
ment and techniques feel that they are at a disadvantage in such an environment. [30] While anything else
than trading trough electronic channels would be unthinkable of today, a certain gap between trading com-
panies and investors without fibre access to the exchanges or supporting algorithms still exists. As a result,
traders are forced to take an initial loss into account when buying or selling securities – and might not even
be aware of it. In order to understand why that might be the case, we have to grasp a basic understanding of
a so-called order book and how securities are bought at an exchange.

1



2 1. Introduction

Figure 1.1: Order book snapshot: https://www.bitfinex.com/t/BTC:USD

Figure 1.1 shows a snapshot taken at some time t from the trading pair Bitcoin (BTC) versus US dollar
(USD) taken at the Bitfinex1 cryptocurrency exchange. The order book shows two sides, the parties who are
willing to buy on the left and the parties who are willing to sell on the right. The columns indicate the number
of buyers and sellers (count) who are willing to buy, respectively sell, a certain amount for a given price. The
column total is the cumulative sum of the amount, or volume, on each side. The two sides are separated by
the spread. In this particular case, the current best bid price at which someone is willing to buy, is $14,910.00
and the best ask-price at which someone is willing to sell, is $14,930.00. Therefore, the spread is currently
$20.00 wide.

Suppose we want to buy 1.0 BTC. Two possible ways to do so are:

1. Buy i shares (1.0) right away for $14,930.00 from a seller. We submit a market order.

2. State a price for which we are willing to to buy i shares (1.0) at price p, for example at $14,910.00, and
wait until someone is willing to sell for this price. We submit a limit order.

Both types of orders come with their advantages and disadvantages. A market order ensures that we will
be able to acquire the stated amount of shares immediately for $14’930.00, provided that no one else is ahead
of us or the seller cancels his/her listing. In this case we are automatically willing to pay for the next available
best price. However, we do pay a premium compared to the limit order since ask prices are listed higher than
bid prices and the more shares one wants to buy, the more sellers we have to contact and buy their offerings
to an increased price. With a limit order the exchange guarantees that we will pay $14’910.00 or less. That
is, when a seller is willing to sell for the stated price or less, the exchange would match the offerings of both
parties. However, this comes with the risk that we will never be able to buy if nobody is going to sell at the
mentioned price, which will force us to buy the demanded shares at a later point in time. As the price of a
share evolves over time, we might get lucky and be able to buy for a cheaper price than at the time of the
initial attempt. The other scenario is that the price did not develop in our favour such that we have to buy for
a higher price later on, thus we pay a so-called opportunity cost. A third order type, the cancel order allows a
trader to cancel his/her previously posted limit or market order at any given point in time.

With the brief understanding of how traders can interact with the exchange, we specify the problem of
Order placement as follows. Order placement determines the price at which a trades places its order. Opti-
mizing order plaement tries to minimize the opportunity cost ideally aims to achieve a more favourable price
to pay (respectively receive) than what is currently offered at the market price. Literature (According to Guo
et. al. [19]) therefore specifies a time scale of ten to hundred seconds within which a trader has to complete
his task to either buy or sell the shares. A time scale less than ten seconds refers to high frequncy trading and
above 100 seconds is konwn as the process of order execution. Thus, we define order placement opimization:
at which price p should one attempt to buy or sell i shares within a time horizon H of 100 seconds? As we
shall see, optimizing the placement is not as trivial as one would think, even though the concept of the order

1https://www.bitfinex.com



1.2. Research objectives 3

book and the three order types a trader can choose from is admittedly simple. There are various properties
that evolve from a limit order book and the participants in the market over time, which can interfere with
the intention of buying and selling drastically. Furthermore, since the foundation of electronic trading net-
works and algorithmic trading, the amount and sophistication of other market participants is ever increasing
whereas everyone aims for their advantage over others.

The fact that reinforcement learning learns by maximizing rewards, makes this technique unarguably
suitable to work within this context. As a result, a reinforcement learner should be able to foresee on how
to place orders according to the given market condition and therefore protect an investor form paying the
aforementioned premium to other participants in the market.

1.2. Research objectives
This work extends on the findings of Kearns et. al. [29] who have studied the behaviour of order placement
and order execution and further developed a reinforcement learning strategy in order to proceed optimiza-
tion. Their work has pre-processed and applied features, which were derived from order book data, to a rein-
forcement learning algorithm which is similar to Q-Learning. Our works aims to do similar research, whereas
the crypto-currency domain is chosen, instead of traditional stocks. In addition, rather than constructing
features by hand we make an attempt to benefit from hidden patterns in raw market data by using deep re-
inforcement learning techniques. We therefore investigate the behaviour of order placement in a historical
USD/BTC market and try to find properties which may be beneficial for optimization purposes. Given this
knowledge we should build a reinforcement learner that can act as an intelligent trader and places limit orders
with the incentive to buy or sell asset to a favourable price. We make use of an end-to-end learning process
with which the agent improves based on the outcome of the placed orders and ultimately learns a strategy
that allows to buy and sell shares at favourable prices. However, in order to simulate and understand the out-
come of order placement and more importantly allow interaction with a reinforcement learning agent, we are
required to build a framework. The framework should provide capabilities to collect and process market data
in order to reproduce a historical order book that serves as a data source. We further demand the framework
to provide the functionality of a match engine which emulates the functionality of a stock exchange that can
match orders and determine the resulted price paid (respectively received) according to the historical order
book. Given the capabilities of the framework, a reinforcement learning environment should be built which
allows agents to act as an intelligent traders. The agents will place limit orders with the incentive to learn
how to buy or sell asset to a favourable price by choosing limit order prices accordingly. However, the agents
demand features which contribute to the learning of how to place its orders accordingly. Therefore, we have
to reason about what kind of features can be derived from an order book and if there are any patterns that
can be detected, such that the extracted information could contribute to the learning process. In addition,
while the previously mentioned work from Kearns et al. had success in using pre-processed market data as
features, we believe that raw market data in combination with deep reinforcement learning can be equally
successfull. Hence why our ambition is to determine if deep reinforcement learning is perhaps an even more
suitable choice in order to deal with unexpected market situations. Finally, the main objective of this research
can be formulated in one sentence:

How should one design a reinforcement learning environment and construct features, which are
derived from a limit order book, in order to optimize on the non-trivial problem of limit order
placement?

Clearly, included in the study are the limitations of the setting that we considered here.

1.3. Contributions
This thesis makes use of concepts from various research communities in order to work on the above men-
tioned objectives. The particular contributions made throughout the project are:

• Information retrieval techniques are applied in order to collect and process financial data sets. We
analyze the data and find patterns which might be beneficial for the process of limit order placement
optimization. Feature sets are then constructed which incorporate the found patterns and allow deep
reinforcement learning agents to learn an order placement strategy.

• We study how to translate the problem of limit order placement into a reinforcement learning con-
text. With the use of software engineering techniques we then build an environment which simulates



4 1. Introduction

a rudimentary stock exchange and allows an agent to optimize on the given problem. Therefore we
make use of the OpenAI Gym2 library and contribute our work to the community to proceed further
investigations.

• Investigations of reinforcement learning agents applied to the process of order placement (and the
closely related process known as market making) will unveil the capabilities of deep reinforcement
learning on a continuously changing state space derived from a multivariate time series. Under these
circumstances we determine the possible benefits and limitations of deep reinforcement learning,
when applied to noisy environments.

1.4. Document structure
In Chapter 2 we first provide background information to the reader concerning the components of a stock
exchange and the fundamentals of the closely related time series. We further make the reader familiar with
(Deep) Reinforcement Learning. In Chapter 3 we elaborate on the behaviour of order execution followed by
approaches of both statistical and machine learning nature. Chapter 4 explains the process of data collection
and its preparation which was done prior its use in the following chapters. Namely, Chapter 5 explains the ex-
perimental setup of the Reinforcement Learning environments, the agents and the features being processed
and used. In Chapter 6 we then analyze the data and proceed execution placement with various techniques,
including the reasoning of our findings. Finally, Chapter 7 formulates a conclusion of our findings and states
a future research direction.

2https://github.com/openai/gym



2
Preliminaries

In this chapter we provide background information in order to understand the previous work done in this
field that is introduced in Chapter 3. We will further rely on the knowledge provided in this chapter when de-
scribing the data collection an processing in Chapter 4 as well as when constructing the experimental setup
in Chapter 5. We rely on the reader to be patient while reading this chapter as the interplay between the
introduced components may not be immediately obvious be will become clear later in the report when the
components come to use. At first, the concept of the previously introduced order book is described in greater
detail, as this serves as the data structure for the collected historical data. Subsequently, a simplified match
engine is described with which we will emulate a local broker that can match orders given the historical order
book. An introduction to the properties of a time series is then introduced as the order book underlies its
principles. Furthermore, reinforcement learning is introduced, whereas we declare the differences to other
machine learning techniques, followed by a detailed explanation of all its components. Finally, deep rein-
forcement learning is introduced as an extension to the previously described reinforcement learning princi-
ples.

2.1. Order Book
Traders post orders in a limit order book in order to state their intention to buy (respectively sell) a given
asset, as described in Section 1.1). Orders listed in the limit order book implicitly provide so called liquidity
to the market as other traders can consume these offerings by posting an order with the equivalent price to
sell (respectively buy) the asset.

This section introduces the most popular order types with which a trader can post their offerings into a
limit order book. We will learn with which type a trader can ensure to provide liquidity to the market and
benefit from lower fees and with which type the trader can state the wish to immediately buy or sell assets
and implicitly take liquidity from the market. Furthermore, the characteristics an historical order book that
is filled with orders from traders is explained as this will come handy when the match engine is explained in
the following section.

2.1.1. Orders
As indicated by the name, an order is an order to buy or sell a stock. There are various types of orders which
determine how the order that is placed should be executed by the exchange. In this section we provide in-
formation about the two most common types, namely the limit order and the market order, We define the
indication on whether to buy or sell as the Order Side,

Or der Si de = {Buy,Sel l } (2.1)

Before we define the order types in greater detail, we conclude what is said above and define the Order as,

Or der = {Or derLi mi t ,Or derM ar ket } (2.2)

5



6 2. Preliminaries

Limit order
A limit order implies the attempt to buy or sell a stock at a specific price or better,

Or derLi mi t = (si de, quanti t y, pr i ceLi mi t ) (2.3)

, where si de ∈Or der Si de, quanti t y ∈R+ and pr i ceLi mi t ∈R+.

A buy limit order can only be executed at the limit price or lower, and a sell limit order can only be executed
at the limit price or higher [9]. More precisely, in case of a buy order and if the best price on the opposing
side of the book becomes lower or equals (respectively higher or equals, in case of a sell order), the broker will
match those two orders, resulting in a trade. The disadvantage of this order type is that there is no guarantee
whether the order gets executed. In case no order on the opposing side appears, the order remains (possibly
forever) unexecuted.

Market order
A market order implies the attempt to buy or sell a stock at the current market price, expressing the desire to
buy (respectively sell) for the best available price. Therefore,

Or derM ar ket = (si de, quanti t y) (2.4)

, where si de ∈Or der Si de and quanti t y ∈R+.

The advantage of a market order is that as long as there are willing buyers and sellers, the execution of the
order is almost always guaranteed. [10] The disadvantage is the price you pay when your order is executed.
Market orders are executed by starting from the best price of the opposing side, then traversing down the
book as liquidity is consumed. Hence, market orders tend to become expensive, especially for large orders.

2.1.2. Characteristics
Figure 1.1 shows a real world example of a limit order book; in this case the snapshot was taken from a known
crypto-currency exchange. Being precise, this is the state of an order book at some time t and shows the
current offerings (in form of limit orders, see 2.1.1) from participants at this moment in time (we neglect the
possibility that the state might have been changed during the data sending process). Hence, we refer to it as
an order book state (OS). We refer to the order book (OB) that is used in this project as a recorded history of
order book states.

OB =OS1, ...OSn (2.5)

As we can see, every such state holds entries on the buyer and seller side which change in their price and
amount. To each such row, which can be formed by participants who submitted limit orders of some amount
at the same price level, we refer to as order book entry (OEsl ) of the side s at level l .

OEsl = (count , pr i ce, amount ) (2.6)

, whereas count ∈N, pr i ce ∈R+ and amount ∈R+. As a result, the order book state is a sequence containing
order book entries for each side (buy and sell) and a time stamp t s of the state,

OS = (t s,OEb1 , ...,OEbn ,OEs1 , ...,OEsn ) (2.7)



2.2. Match Engine 7

Figure 2.1: Figure taken from [6]. Simplified limit order book and provides understanding of some characteristics.

Figure 2.1 illustrates a simplified order book, from which we can derived definitions. The limit level specifies
the position of an order book entry within the side of an order book state and the so-called market depth cor-
responds to how deep in the order book buyers and sellers have listed offerings. A deep order book therefore
indicates a large range of limit levels. The term volume can relate to the total volume traded over a given time
horizon, or can indicate the sum of amounts of what is currently offered to a certain price. Considering the
sides of the order book, a bid refers to a price on the buyer side and the best bid represents the highest price
for which someone is willing to buy a given asset. The best bid appears as the first order book entry on the
buyer side, closest to the spread. Contrarily, an ask refers to a price on the seller side and the best ask repre-
sents the lowest price for which someone is willing to sell a given asset. The best ask appears as the first order
book entry on the seller side, closest to the spread. Consequently, the market price is the average between the
best bid and best ask price and the spread indicates the difference between the best bid and best ask.

The most recent price on which a buyer and seller agreed upon to trade a security is known as quote. In an
order driven market, liquidity is a synonym for the ease of trading. Liquidity stands for the amount provided
by parties of the opposing side and is what effectively enables one to buy and sell securities. That is achieved
by submitting limit orders which are not immediately executed. A so called market maker provides liquidity
to the market by posting limit orders which are not immediately executed. In return, the market maker pays
less fees than a market taker, the so-called maker fee. Contrarily, the market taker takes liquidity out of the
market by posting either market orders or limit orders which immediately execute. As this is not beneficial to
the exchange, the market taker pays a slightly increased rate of fees, known as taker fee.

2.2. Match Engine
The matching engine is the component which responsible for the process of matching buy and sell orders at
a stock exchange, such as NASDAQ or NYSE as examples of traditional stock exchanges; or Bitfinex, Bittrex,
Coinbase as examples of crypto-currency exchanges. In order to determine the outcome of an order, the
trader would typically submit the order to an exchange and either trade on the live market or get access to
a test environment, which can be, if existent, still costly. Consequently, the order is processed at the current
market and there is no option to process it on a historical data set in order to determine outcome, had the
order been posted at some time t in the past. For the aforementioned reasons, a local match engine is being
developed that allows to evaluate the outcome of order placement on a historical order book data set, free of
charge. The local match engine is a key element of the order placement optimization process that ultimately
a reinforcement learner will proceed. The outcome of matched orders will directly affect the reward received
by an agent with which it will try to improve its capabilities.

This section first give the definition of a trade as a result of two matching orders. Subsequently, the time
horizon as an addition to the previously introduced order types (Section 2.1.1) is presented with which we can
describe the interface of the match engine that will be used throughout the learning process. Finally the rules
of the implementation of the local match engine is provided which explain the mechanics of the matching
process.



8 2. Preliminaries

2.2.1. Trade
In order to understand the purpose of the matching process, which is described in more detail below, we first
have to define what a trade is. A trade results when the orders (Eq. 2.2) from two parties with opposing order
side (Eq. 2.1) agree on an amount and price to trade their shares. That is,

Tr ade = (t s, si de, t y pe, quanti t y, pr i ce) (2.8)

, where t s is the time-stamp when the participants agreed on the exchange of the products, si de ∈Or der Si de,
t y pe ∈Or der T y pe, quanti t y ∈R+ and pr i ce ∈R+.

2.2.2. Interface
This match engine enables the simulation and evaluation of order placement without the need to consult an
electronic trading network. Alongside the order that is sent to the match engine (directly or via an electronic
trading network), the user can specify a time horizon H indicating how long the order should stay active. The
two most commonly used timing mechanisms are:

Good Till Time (GTT): The order stays in the order book until a specified amount of time is consumed.
(Some implementations declare the same idea as Good Till Date whereas a date and time is provided
which specifies until when the order is valid.)

Good-Til-Canceled (GTC): The order stays in the order book until the user submits a cancellation.

Hence, the match engine exposes an interface that represents a function match which takes any type of an
Order (Section 2.1.1) and the time horizon H and returns a sequence of trade (Eq. 2.8). That is,

match : Or der ×H → Tr ades (2.9)

, whereas |Tr ades| ∈N. The order is filled if the sum of the traded quantity is equal to the amount stated in
the submitted order, partially-filled if the traded quantity is > 0 but not filled and not filled otherwise.

The matching process behaves different, depending on the submitted order type, and is explained in the fol-
lowing paragraph.

2.2.3. Rules
The rules presented below are, compared to match engines used in electronic trading networks, are rather
primitive, yet correct within the subset of its capability. The rules used by the order matching engine are
mainly derived and simplified from [5]:

1. Limit orders (defined in Section 2.1.1) may be partially filled or not filled at all in case of absence of
parties on the opposing side.

2. Market orders (defined in Section 2.1.1) will execute immediately when an opposite order exists in the
market.

3. Market orders may be partially filled, at different prices, depending on liquidity in the opposing side of
the book.

4. Limit orders are attempted to be matched from the given point in time forward, or in case of a Good
Till Time (GTT) for as long as specified.

2.2.4. Limitations
Since the match engine used in this project is a rudimentary implementation for the purpose of simulating
and analyzing order execution and placement, it features only a subset a conventional match engine used by
electronic trading networks. That said, the following limitations have to be taken into consideration:

Participants: first and foremost, the match engine is used locally where no other participants are interacting
during its use. In order to be able to approximate the most likely outcome, historical data serves as a
simulation of participants acting in the market. While this is valuable real world data, unfortunately



2.3. Order execution and placement 9

it does not cover 1) the possibility of hidden participants entering or 2) leaving the market upon plac-
ing an order from our side. Participants who would enter the market would likely be in our favour as
they would act as potential buyers and sellers and therefore provide liquidity. Participants who leave
the market would introduce a slight disadvantage as there would be less liquidity. Since both parties
are absent, we consider our implementation as a good approximation without a major advantage or
disadvantage.

Ordering this match engine is restricted to simulate the matching of only one order from one participant
at a time. Hence, any type of ordered processing of incoming orders (typically solved with a queuing
system) is not supported. However, this functionality is also not required for our purposes.

Timing inaccuracy: occurs when submitting an order with a time horizon (see Section 2.2.2). The fact that
we rely on historical data and the time stamps of the orders submitted from participants in the past is a
limitation when submitting an order over a certain period of time (GTT). It can occur that at the end of
the period the order would have some time t left (e.g. a few seconds) but the next following order book
state is nearer to the future than t would allow. We therefore have to abort the matching process early.

2.3. Order execution and placement
Given the understanding of the order book and the match engine, it is obvious that a trader has a variety of
options on how to approach a market and fulfill his duties to buy (respectively sell) shares. Conceptually, the
process a trader proceeds involves the following two steps: order execution and order placement, whereas the
latter is the main subject of this thesis.

Many useful definitions which highlight the difficulties related to the order execution domain were stated
by Lim et al. [22] and Guo et al. [19]. Most importantly, order execution concerns about optimally slicing
big orders into smaller ones in order to minimize the price impact, that is, moving the price up by executing
large buy orders (respectively down for sell orders) at once. By splitting up a big order into smaller pieces and
spreading the execution over an enlarged time horizon, the impact cost can be lessened. Typically on a daily
or weekly basis. Contrarily, order placement concerns about optimally placing orders within ten to hundred
seconds. Placing hereby refers to the setting of the limit level for a limit order as described in Section 2.1.1.
The aim is to minimize the opportunity cost which arises when the price moves against our favour.

Literature[19, 29] suggests to use the volume weighted average price (VWAP) as a measure of the return of
order placement and order execution. That is,

pv w ap =
∑

vp ∗p

V
(2.10)

, whereas p is the price paid for vp shares and V represents the total volume of shares.

2.4. Time series
According to the efficient market hypothesis[24], the price of an asset reflects all the information available
to the market participants at any give time. Given the vast information flow, the natural consequence is that
the price of such an asset changes over time. As we have seen in the previous Section ??, the price of an asset
is determined by actions proceeded by traders. Therefore, the financial markets and particularly the order
book are best described over time, namely as a time series. More precisely, the definition of a time series is
an ordered sequence of values of a variable at equally spaced time intervals [4]. The nature of time series
data originated the applications generally known as Time Series Analysis and Time Series Forecasting. Both
of which play an important role throughout this project, and therefore a brief background is provided in this
section.

2.4.1. Time series analysis
The analysis of data observed at different points in time leads to problems in statistical modelling and infer-
ence. More specifically, the correlation of adjacent points in time can restrict the applicability of conventional
statistical methods which traditionally depend on the assumption that these adjacent observations are inde-
pendent and identically distributed. A systematic approach by which one attempts to answer the mathemat-
ical and statistical questions posed by these time correlations is commonly referred to as time series analysis.
Therefore, mathematical models are developed with the primary objective to provide plausible descriptions



10 2. Preliminaries

for sample data. [32]

Some of the time series behaviours, which will be presented within this body of work, may hint that a sort
of regularity exist over time. We refer the notion of regularity using a concept called stationarity, as intro-
duced in [32].

A strictly stationary time series is one for which the probabilistic behavior of every collection of values
xt1 , xt2 , ..., xtk is identical to that of the time shifted set xt1+h , xt2+h , ..., xtk+h for all time shifts h = 0,±1,±2, ...

A weakly stationary time series, xt , is a finite variance process such that

• the mean value function µt is constant and does not depend on time t , and

• the autocovariance function γ(s, t ), depends on s and t only through their difference |s − t |.

Whereas µt is defined as

µt = E(xt ) =
∫ ∞

−∞
x ft (x)d x (2.11)

with ft being the marginal density function [32]. And γ(s, t ) is defined as

γ(s, t ) = cov(xs , xt ) = E[(xs −µs )(xt −µt )] (2.12)

for all time points s and t .

Henceforth, we will use the term stationary to mean weakly stationary; if a process is stationary in the strict
sense, we will use the term strictly stationary.

2.4.2. Time series forecasting
In statistics, prediction is a part of statistical inference. Providing a means of the transfer of knowledge about
a sample of a population to the whole population, and to other related populations is one description of
statistics. However, this is not necessarily equivalent to the process of predicting over time. This process,
instead, is known as forecasting and describes the transfer of information across, often to very specific point
in, time [14]. Hence the problem is defined in [21] as: forecasting future values X t+h where h > 0 of a weakly
stationary process X t from the known values Xs where s ≤ t . The integer h is called lead time or forecasting
horizon, whereas h stands for horizon.

Forecasting methods can be classified, according to [16], into three types: Judgemental forecasts produce
projections based on intuition, inside knowledge, and any other relevant information. Univariate methods
forecast depends on present or past values of the time series on which the forecast is projected. Finally, mul-
tivariate methods forecast depends on one or more additional time series variables or multivariate models.

Over the course of this work, we make use of univariate- and multivariate methods.

2.5. Reinforcement Learning
This section first aims to describe what Reinforcement Learning is and highlights its differences to other
machine learning paradigms. We briefly reason why this particular technique might be an appropriate choice
for the task of optimizing order placement. Then, a basic understanding about Markov Decision Processes is
provided, after which we explain the interaction between the Reinforcement Learning components, followed
by a description of their properties.



2.5. Reinforcement Learning 11

2.5.1. Advantages of end-to-end learning

Figure 2.2: Categorization of machine learning techniques

Reinforcement Learning is a specific learning approach in the Machine Learning (see Figure 2.2) field and
aims to solve problems which involve sequential decision making. Therefore, when a decision made in a
system affects the future decisions and eventually its outcome, the aim is to learn the optimal sequence of
decisions with reinforcement learning.

Figure 2.3: Reinforcement learning end-to-end learning pipeline

For optimizing order placement in limit order books, statistical approaches have long been the preferred
choice. While statistics emphasizes inference of a process, machine learning on the other hand emphasizes
the prediction of the future with respect to some variable. Machine learning paradigms, such as supervised
learning, rely on an algorithm that learns by presenting a specific situation provided with the right action to
do. From there, the algorithm tries to generalize the model.

Contrarily, in reinforcement learning there is no supervision and instead an agent learns by maximizing
rewards. The feedback retrieved while proceeding a task with a sequence of actions might be delayed over
several time steps and hence the agent might spend some time exploring until it finally reaches the goal and
can updates its strategy accordingly. This process can be regarded as end-to-end learning and is illustrated
in Figure 2.3. In abstract terms, the agent makes an observation of its environment and estimates a state for
which it models and predicts the action to be taken. Once the action was executed, the agent receives a reward
and will take this into consideration during during the prediction phases in the future. The beauty of which
is that an arbitrarily complex process can be regarded as a black box as long as it can take an input from the
learner to do its job and responds how well the task was executed. In our context this implies that we would
model the order placement process pipeline whereas the learner improves upon the outcome of the submit-
ted orders. In addition, for reinforcement learning problems, the data is not independent and identically
distributed (I.I.D). The agent might in fact, while exploring, miss out on some important parts to learn the
optimal behaviour. Hence, time is crucial as the agent must explore as many parts of the environment to be
able to take the appropriate actions. [8]

Example: Since we are working with financial systems, let us assume we want to buy and sell stocks on a
stock exchange. In reinforcement learning terms, the trader is represented as an agent and the exchange is
the environment. The details of the environment do not have to be known as it is rather regarded as a black-
box. The agents purpose is to observe the state of the environment: say for example the current price of a
stock. The agent then makes estimates about the situation of the observed state and decides which action to
take next – buy or sell. The action is then send to the environment which determines whether this was a good
or bad choice, for example whether we made a profit or a loss.

2.5.2. Markov Decision Process (MDP)
A process such as the one sketched above, can be formalized as a Markov Decision Process. An MDP is a
5-tuple (S, A,P,R,γ) where:

1. S is the finite set of possible states st ∈ S at some time step.



12 2. Preliminaries

2. A(st ) is the set of actions available in the state at time step t , that is at ∈ A(st ), whereas A =⋃
st∈S A(st )

3. p(st+1|st , at ) is the state transition model that describes how the environment state changes, depend-
ing on the action a and the current state st .

4. p(rt+1|st , at ) is the reward model that describes the immediate reward value that the agent receives
from the environment after performing an action in the current state st .

5. γ ∈ [0,1] is the discount factor which determines the importance of the future rewards.

2.5.3. Interaction

Figure 2.4: Figure taken from [8]: interaction between a reinforcement learning agent and environment. Illustrating the action taken by
the client being in some state which results in some reward and a new state.

A reinforcement learning problem is commonly defined with the help of two main components: Environ-
ment and Agent.

With the interfaces provided above (Section 2.5.2), we can define an interaction process between an agent
and environment by assuming discrete time steps: t = 0,1,2, ...

1. The agent observes a state st ∈ S

2. and produces an action at time step t : at ∈ A(st )

3. which leads to a reward rt+1 ∈ R and the next state st+1

During this process, and as the agent aims to maximize its future reward, the agent consults a policy, which
dictates which action to take given a particular state.

Policy
A policy is a function that can be either deterministic or stochastic. The distribution π(a|s) is used for a
stochastic policy and a mapping function π(s) : S → A is used for a deterministic policy, whereas S is the set
of possible states and A is the set of possible actions.

The stochastic policy at time step t : πt is a mapping from state to action probabilities as a result of the agents
experience, and therefore, πt (a|s) is the probability that at = a when st = s.

Reward
The goal is that the agent learns how to select actions such that it maximizes its future reward when submit-
ting them to the environment. We rely on the standard assumption that future rewards are discounted by a
factor ofγper time-step in the sense that the total discounted reward accounts to r1+γ∗r2+γ2∗r3+γ3∗r4+...)
Hence we define the future discounted return at time t as

Rt =
T∑

i=t
γi−t∗ri (2.13)

, where T is the length of the episode (which can be infinity if there is no maximum length for the episode).
The discounting factor has two obligations: it prevents the total reward from going to infinity (since 0 ≤ γ≤ 1),
and it allows to control the preference of the agent between immediate rewards and potentially received
reward in the future. [7]



2.5. Reinforcement Learning 13

Value Functions
When the transition function of an MPD is not available, model-free reinforcement learning allows the agent
to simply rely on some trial-and-error experience for action selection in order to learn an optimal policy.
Therefore, the value of a state s indicates how good or bad a state is for the agent to be in, measured by the
expected total reward for an agent starting from this state. Hence we introduce the value function, which
depends on the policy the agent chooses its actions from:

V π(s) = E[Rt ] = E[
T∑

i=1
γi−1ri ] ∀s ∈ S (2.14)

Among all value functions there is an optimal value function which has higher values for all states

V ∗(s) = max
π

V π(s) ∀s ∈ S (2.15)

Furthermore, the optimal policy π∗ can be derived as

π∗ = argmax
π

V π(s) ∀s ∈ S (2.16)

In addition to the value of a state with respect to the expected total reward to be achieved, we might also be
interested in a value which determines the value of being an a certain state s and taking a certain action a. To
get there we first introduce the Q function, which takes a state-action pair and returns a real value:

Q : S × A →R (2.17)

Finally, the optimal action-value function (or optimal Q function) Q∗(s, a) as the maximum expected return
achievable after seeing some state s and then taking some action a. That is,

Q∗(s, a) = max
π
E[Rt |st = s, at = a,π] (2.18)

with the policy π mapping the states to either actions or distributions over actions.

The relationship between the optimal value function and the optimal action-value function is, as already
hinted by their names, easily obtained as

V ∗(s) = max
a

Q∗(s, a) ∀s ∈ S (2.19)

and thus the optimal policy for state s can be derived by choosing the action a that gives maximum value

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S (2.20)

2.5.4. Environment
There are two types of environments:

Deterministic environment: implies that both the sate transition model and reward model are deterministic
functions. In this setup, if the agent in a given state st repeats a given action a, the result will always be
the same next state st+1 and reward rt .

Stochastic environment: implies that there is an uncertainty about the outcome of taking an action a in
state st as the next state st+1 and received reward rt might not be the same for each time.

Deterministic environments are, in general, easier to solve as the agent learns to improve the policy without
uncertainties in the MDP.



14 2. Preliminaries

2.5.5. Agent
The goal of the agent is to solve the MDP by finding the optimal policy, which means finding the sequence of
action that lead to maximize the total received reward. However, there are various approaches to so, which
are commonly categorized (see [7]) as follows.

A value based agent starts off with a random value function and then finds a new (improved) value func-
tion in an iterative process, until reaching the optimal value function (Eq. 2.15). As shown in Eq. 2.14 one
can easily derive the optimal policy from the optimal value function. A policy based agent starts off with a
random policy, then finds the value function of that policy and derives a new (improved) policy based on the
previous value function, until finding the optimal policy (Eq. 2.20). Each policy is guaranteed to be a strict
improvement over the previous one (unless it is already optimal). As stated in Eq. 2.16, given a policy, one can
derive the value function. The actor-critic agent is a combination of a value-based and policy-based agent.
Both, the policy and the reward from each state will be stored. Model-based agents attempt to approximate
the environment using a model. It then suggests the best possible behaviour.

2.5.6. Deep Reinforcement Learning
From [2] goes: “Reinforcement learning can be naturally integrated with artificial neural networks to obtain
high-quality generalization”. The term generalization refers to the action-value function (Eq. 2.18) and the
fact that this value is estimated for each state separately–which becomes totally impractical in for large state
spaces that can occur in real world scenarios. Deep reinforcement learning generally stands for approximat-
ing the value function, the policy, or the model of reinforcement learning via a neural network. As is preferred
in reinforcement learning, neural network approximates a function as a non-linear function. Therefore, the
estimate of the approximation is a local optimum, which is not always desirable. In our particular case, we
use deep reinforcement learning in order to approximate the action-value function (Eq. 2.18). Therefore we
represent the action-value function with weights ω as,

Q(s, a;ω) ≈Q∗(s, a) (2.21)

Given a state s, the neural network outputs n linear output units (corresponding to n actions), as shown in
Figure 2.5. The agent will then choose the action with the maximum q-value.

Figure 2.5: Neural network outputs q-values

In terms of the previously described reinforcement end-to-end learning pipeline, the use of a function ap-
proximator simplifies this process. We can omit the state estimation step and instead rely on raw features
[26], as illustrated in Figure 2.6:

Figure 2.6: Deep Reinforcement learning end-to-end learning pipeline



3
Related Work

The literature for the order placement problem is, relative to the execution problem, sparse (confirmed by
Guo et al. [19]). In this Chapter we provide an overview of the related work, upon which this project is built
on or insight was taken from. We first give insight into an empirical study about the general behavior of
order placements, which serves as a conceptual basis for this project. Subsequently, a statistical approach is
presented to provide contrast to the following overview of previous machine learning approaches. The latter
serve as a guideline on how to model the reinforcement learning process of this thesis.

3.1. Execution/Placement behaviour
Kearns et al. [28] determine which limit order price results in the most advantageous execution price. At first,
the expected execution price is investigated with respect to the placement of the limit order. Based on this
analysis the standard deviation of the resulted prices will uncover the risk that comes along with limit order
placement. Finally, by combining the previous two results, an efficient pricing frontier can be drawn which
highlights the trade-off between risk and returns.

Regarding the definition stated in Section 2.3, their research is to be categorized in between order exe-
cution and placement. No splitting of orders is being done, however, a time horizon of several hours was
chosen, resulting in an evaluation of order placement with an extended time horizon.

Figure 3.1: Taken from [28] and illustrates the pricing strategy that produces the most favorable expected execution price.

Figure 3.1 shows on the y-axis the return as the weighted average price paid of the expected execution
price while acquiring 10,000 shares of MSFT within one hour. The x-axis represents the limit level reaching
from -$50 to +$100. As it is evident from the figure, the most favorable expected execution price occurs when
setting the limit price close to the price of the spread, yet on the buyer side with a price approximately $10
lower than what is currently offered. The return becomes worse when placing orders more deep in the order
book (meaning offering a lower price) as the orders then to not get filled within an hours and instead the
inventory has to be bought with a market order at the end of the period. Likewise, the return can be expected
to be lower when placing the order higher in the order book (e.g. deeper in the opposing side of the book,

15



16 3. Related Work

meaning one is willing to pay more). This is due to the fact that the order is being filled instantly by paying a
premium.

Figure 3.2: Taken from [28] and illustrates the uncertainty of the expected execution price.

Risk is being defined as the standard deviation of the returns and is illustrated on the y-axis in Figure 3.2.
This is an important aspect to be considered throughout our project as it unveils to danger that comes along
with placing limit orders on less favourable limit levels. Evidently, orders which are placed deep in either of
the sides of the book are less likely to be executed and come with a higher uncertainty around the final price.

Figure 3.3: Taken from [28] and illustrates the trade-off between risk and return indicated with the efficient pricing frontier.

Lastly, both techniques were combined and result in an efficient pricing frontier (based on the efficient
frontier initially formulated by Harry Markowitz in 1952 [25]). Therefore, Figure 3.3 shows the trade-off be-
tween the risk (x-axis) and return (y-axis). In this example, the point of minimum risk is at (8,18) and the
point of maximum returns at (29,9). With this technique a trader, or in our case a reinforcement learning
agent, can decide upon an execution strategy by choosing how much risk and return he is willing to take, and
then translate the coordinates back into the corresponding limit level.

3.2. Statistical approach
Profound work in a statistical context has been done by Chaiyakorn Yingsaeree in his dissertation [35]. A
framework is proposed for making order placement decisions based on the trade-off between the profit
gained from favorable execution prices and the risk of non-execution. An execution probability model was
developed which estimates the expected payoff (e.g. return) and its variance ( =⇒ risk) while placing orders
at a certain limit level, followed by the application of mean variance optimization to balance the trade-off.
The framework was not able to beat the best static strategy in all evaluated cases, however, the improvement
gained when it could beat the best static strategy was very significant. This gives us hope that where the sta-
tistical approach has its limitations, the reinforcement learning approach presented in this work may be able
to understand the market data to a greater extent and avoid the shortcomings of the former.

We provide an overview of the framework without specific application, as this would exceed the scope of this



3.3. Supervised Learning approach 17

overview.

The strategy is to buy x shares in time T , whereas the trader is left with the following options:

1. Do nothing.

2. Submit market order at t = 0 for price pM
0

3. Submit market order at t = T for price pM
T

4. Submit limit order for price pL . If the order is not filled either a market order follows or no action is
taken (depending on the use case).

A function UE (p) defines the payoff in case of an execution at a price p, and a function UN E (p) defines the
cost if the order is not executed at the end of the period with market price p. Consequently, the payoff the
trader will receive from submitting a limit buy order at price level L is defined as,

U (pL) =
{

UE (p), if order is executed.

UN E (pM
T ), if not executed.

(3.1)

The expected price is compounded of the probability that the limit order at price pL will be executed before
the end of the period together with the distribution of the asset price at the end of the period,

E[U (pL)] = PE (pL) U (pL)+ [1−PE (pL)]
∫ ∞

−∞
UN E (p) fpT

M |pL (p)d p (3.2)

, whereas PE (pL) is the probability that the limit order at price pL will be executed before the end of the pe-
riod, and fpT

M |pL (.) is the probability density function of the asset price at the end of the period.

Similarly, the variance was drawn as V [U (pL)] followed by a mean variance optimization step which intro-
duced the utility function,

UO(pL) = E[U (pL)]−λV [U (pL)] (3.3)

, whereas λ serves as a risk factor. That is, when λ= 0 the trader is concerned about the profit only, and when
λ= 1 the trader is equally concerned about profit and risk and missed opportunities. As a result, the trade-off
between profit and risk is defined as,

p̂ = argmax
pL

UO(pL) (3.4)

3.3. Supervised Learning approach
Fletcher et al. [17] investigates order books to find patterns which can be exploited with the aim of forecast-
ing movement of bid and ask prices at time t +∆t . Although this is not directly applied to optimize order
placement, the prediction can certainly be used as the limit price to be set while placing an order.

SVM classification techniques with different kernels along with two Multiple Kernel Learning (MKL) tech-
niques, SimpleMKL, were used. It is a multi-class setup with three labels, A: P Bi d

t+∆t > P Ask
t , B: P Ask

t+∆t < P Bi d
t and

C: P Bi d
t+∆t < P Ask

t ,P Ask
t+∆t > P Bi d

t . The feature used is the volume at time t at each of the price levels of the order
book on both sides as a vector Vt . A set of features was constructed that contains volumes from the current
time t and previous time step t −1.

With a time delta (∆t ) of 100 seconds, an accuracy of 51% was achieved. A shorter time delta results in sig-
nificantly better performance, however, this is mostly due to the fact of accurate zero movement prediction.
An increased time delta results in significantly worse prediction accuracy.

3.4. Reinforcement Learning approach
A large-scale empirical application of reinforcement learning to optimize trade execution is presented by
Kearns et al. [29]. Although the title of their research suggests otherwise, according to our definition in Section
2.3, their work is related to order placement with a larger time horizon H (2 minutes and 8 minutes). Hence,
their research objective is defined as:



18 3. Related Work

The goal is to sell (respectively, buy) V shares of a given stock within a fixed time period (or hori-
zon) H, in a manner that maximizes the revenue received (respectively, minimizes the capital
spent).

They built a reinforcement learning based on 1.5 years of millisecond time-scale limit order data from NAS-
DAQ. The investigation included three stocks: AMZN, NVDA, and QCOM; each with an inventory I of 5000
shares. The achieved relative improvement over a submit-and-leave strategy ranges from 27.16% to 35.50%.
An additional improvement of 12.85% was achieved by considering the following market variables: Spread,
Immediate Cost, Signed Volume.

The architecture developed is as follows. States are represented by a vector x ∈ X and correspond to the ob-
servation state, whereas the partially observable environment is then treated to be fully observable. Actions
(a ∈ A) represent the limit price relative to the current ask price, ask −a. That is, action a = 0 is the ask price,
a < 0 is a limit price deep in the book and a > 0 is a limit order on the opposing side of the book. The reward
represent the VWAP (Eq. 2.10) of the executed order relative to the bid-ask mid price ((ask +bi d)/2). In case
the order was not filled completely at the end of the time horizon H, then a market order follows. The cho-
sen algorithm is a slightly adapted version of the Q-Learning algorithm was developed by the authors which
explores the state space inductively. Starting from t = T...0 the algorithm explores the inventories i = 0...I .
For each such step, all possible actions in this state are evaluated, leading to the most rewarding strategy for
t = 0.



4
Data curation

In the crypto-currency domain, real-time price data is, for most exchanges, freely available. Historical data is
oftentimes limited with respect to how far back into past the data is being provided. However, continuously
recording real-time data results in a complete historical data set from the time when recording was started
and provides the desired data set for this research. A historical limit order book consisting of states which
store every bid and ask posted by traders is commonly referred to as a complete order book. The process to
accumulate the data and build the order book is illustrated in a high level pipeline in Figure 4.1 below. Raw
event data is collected from an exchange (Bittrex in our case) and processed in order to form a historical limit
order book.

Figure 4.1: Data collection pipeline

In this chapter we explain the details of the collection process process and subsequently how a historical
order book can be formed thereof, such that it can serve as the historical data source for the match engine. A
sample period of the collected data set is then being investigated in order to find find and visualize properties
of the market situation and behaviour of the market participants. The goal of the investigation is to find
hypotheses which state why certain occurrences might be beneficial to consider for the purpose of limit order
placement. Thus, the findings serve as the basis for the feature engineering process which determines the
input for the learner. Therefore, as a last section of this chapter, we engineer features which cover the stated
hypotheses. As a result, the features serve as the observed state that is to be evaluated by the reinforcement
learning agents described in Chapter 5.

4.1. Collection
There are various ways in order to build a copy of a historical limit order book. However, the only way to
rebuild a complete order book is by processing market events, that is, every market update for a given ticker
(trading pair, in our case USD/BTC). There are three common types of events, all of which are initiated by a
market participant (trader): order created, order cancelled or order filled in case a market order crosses the
spread and initiates a trade.

Our exchange of choice for collecting data is Bittrex1 as the exchange provides a SignalR2 (a library that
abstracts HTTP and WebSocket) interface from which one can extract all status updates (events) from the
market. More specifically, an event in this either a buy- or sell order, or a fill (e.g. trade). Thus, we subscribe
to https://socket.bittrex.com/signalr and filter the data field M for updateExchangeState. The data
type of the message contains the name of the trading pair and a nonce to identify the unique status update in
up-counting order. That is,

St atusUpd ate = {name,nonce,buy1, ...buyn , sel l1, ...sel ln , f i l l1, ... f i l ln} (4.1)

1https://bittrex.com/
2https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

19



20 4. Data curation

, whereas buy ∈ Or derLi mi t , sel l ∈ Or derLi mi t (see Eq. 2.3) and f i l l ∈ Tr ade (see Eq. 2.8). With that said,
the orders hold an additional field t y pe ∈ {0,1,2} which specifies whether it was a create, cancel or change in
the order.

As is evident, multiple events can be sent within one status update message. We segment the status up-
date into separate events with the same nonce, whereas each event expresses either a limit order of side bid
or ask or a filled order resulting in a trade,

Event = {name,nonce, t y pe, i sTr ade, tr ade, i sBi d ,or der } (4.2)

, whereas i sTr ade ∈ {0,1} and i sBi d ∈ {0,1} indicating whether the update contains an order or a trade.
Consequently, or der ∈Or derLi mi t and tr ade ∈ Tr ade.

4.2. Order book generation
The next step is to transform the collected events into an order book structure. By chronologically iterating
over the processed events (Eq. 4.2), we create a new order book state (Eq. 2.7) for each such event that has a
consecutive time stamp. During this iterative process we follow the rules below, which ensure that the correct
order book entries remain in future order book states. Given the observed event, we act according to the type
of the event:

Order created: order book entry is added to the current state.

Order cancelled: the amount of shares of the cancelled order is subtracted from the entry in the current state
with the corresponding price level.

Order filled: the amount of the shares which were traded is subtracted from the entry in the current state
with the corresponding price level.

As a result, a list of order book states is formed which represent a historical order book (Eq. 2.5). We acknowl-
edge that a list representation is by no means the most performing implementation of an order book, but for
our purposes it is sufficient.



4.3. Understanding the data set 21

4.3. Understanding the data set
We take a random period of the recorded data set, representing ~10 minutes worth of event data, and try to
extract essential information from either raw events or the generated order book. We first obtain an insight
into the market situation with regards to some of the properties mentioned in Section 2.1.2 and understand
how market participants place orders. Our aim is then to find patterns of how market participants behave and
how this may affect the market. Subsequently, we formulate hypotheses which concern why certain properties
might be beneficial for the order placement process. Being aware that the following observations are taken
from a random sample of a historical data set, the intention is to make a suggestion which properties might
be worth to consider in the feature engineering process. This is by no means a guarantee that the same
observations are true for any order book.

Figure 4.2 below shows the price movement of the sample period, indicating a movement from $10’100 to
$10’030 and back within 10 minutes.

Figure 4.2: Price movement of sample data set

4.3.1. Importance of order prices

(a) Best bid and best ask (b) Deepest bid and deepest ask

Figure 4.3: USD/BTC price and bid/ask positions



22 4. Data curation

Next we show the same price movement (cyan) but with the best bid (yellow) and ask (violet) (Figure 4.3a)
and the deepest level of bid and ask (Figure 4.3b). It is evident that the best bid and ask are close to the price
before and after the price dip, meaning the spread is narrow. During the dip, the spread widens and is at times
as large as $25.

Hypothesis: participants post offerings close to the spread when the price is stable and start offering with a
certain threshold from the spread during a price fall or rise.

The orders placed on the deepest level on the buyer and seller side undergo a very interesting change. Im-
mediately before the the price dip, ask prices start to fluctuate as some participants cancel their listings and
possibly others (trader cannot be associated as this is hidden information). On the contrary, bid prices re-
main much more stable. Likewise, during the fall and rise of the price, the ask price starts to increase on the
deepest level of the seller side. This phenomenon is at first at a first glimpse unexpected as one would expect
the sell offers to be lowered as the price falls. Knowing that the price rises shortly after, it becomes more ev-
ident that some sellers ambition was to allure buyers by threatening with higher sell listings. The ask prices
return to the level before the dip as soon as the price starts rising again.

Hypothesis: sellers allure buyers with higher listings during a price fall.

4.3.2. Importance of order volume
It was shown that market participants position their offerings at different price levels as the asset price is
moving due to trading. The second variable in posting orders is the volume and we aim to determine whether
or not this is a factor which is affected during the previously introduced price movement.

(a) All events (b) Trades only

(c) Create order only (d) Cancel orders only

Figure 4.4: Bid / Ask volume imbalance

Figure 4.4 shows the (im-)balance of the volumes of bid and ask orders segmented as follows. Figure 4.4a
shows the ratio of bids and asks of all events, including trades, creations and cancellations. Figure 4.4b show
the ratio of trades being initiated by either a bid or ask order. Figure 4.4c demonstrates the ratio of created



4.3. Understanding the data set 23

orders and Figure 4.4d cancellation orders, again distinguishing between bid and ask. It is evident that, even
though the price moved significantly within the recorded time range, the entirety of the orders is well bal-
anced between trades or orders on the bid side and the ask side. For trades however, clearly more shares were
sold than bought. It is then evident that the market participants reacted on the sale of the asset by not only
creating but also cancelling more buy than sell orders. We take the last statement as an indication that the
market participants may have responded to the price dip by cancelling their current buy orders and posting
them deeper in the book (out of fear that the price might fall even further). Interestingly, even though the
price rose after the dip, not as much volume was used on creations and cancellations of orders on the seller
side.

Hypothesis: imbalance of bids and asks of event types indicates future behaviour of participants.

4.3.3. Volume of orders and trades over time on the market price
So far, the volume was investigated as a sum of events over time. In order to understand the behaviour of the
participants in greater detail, a volume map shall provide better insight into the single events occurred over
time.

Figure 4.5 shows the volume map of the orders which were created over the time span of the data set.
Hence, the x-axis represents the time stamp and the y-axis is the volume of the placed order. For visibility
reasons and since the majority of the orders have a small volume and fewer have large volume, the y-axis fol-
lows a log-scale. Participants cannot be assigned to such an order, as the trader id is non-public information.
However, as we will see, one can determine some participants according to their behaviour.

Figure 4.5: Volume map of created bid (cyan) and ask (yellow) orders.

What might not be obvious due to the log scaling is the fact that most of the orders were placed with
volume between >0 and <0.5 and significantly less with larger volume. Only a few orders had a volume greater
than 10 BTC, meaning that most of the participants either are willing to buy and sell only small quantities or
split their orders to minimize the market impact.

From a horizontal perspective, one can detect some orders of both sides, bids and asks, being listed with
the same time interval. Particularly evident is such a behaviour at the volume just below 100. This is likely
one or multiple bots posting orders with the same volume and perhaps at a different price level. Examples of



24 4. Data curation

this behaviour is marked with a red-dashed horizontal box. A similar behaviour can be seen from a vertical
perspective where one or more traders post orders at different price levels, with the same price segmentation.
This is market with a red-dashed vertical box. Furthermore, a very distinctive pattern is when a trader posts
orders within a short period of time but changing volume. This might be evidence of someone splitting a
larger order into small pieces and is marked with an orange-dashed circle. Some refer to such a behaviour as
buy-wall (sell-wall in case of an ask orders) and surprisingly, this behaviour appeared the most when before
and during the price started rising again (compare time stamps from Figure 4.2). Last but not least, examples
of areas dominated by one particular order side (buy or sell) is marked with a purple box.

Figure 4.6: Volume map of cancelled bid (cyan) and ask (yellow) orders.

It is to be expected that at least for some of the orders, which did not result in a trade, a cancellation
followed. Figure 4.6 therefore shows the cancel orders posted by traders over time.

Continuous cancellations become especially evident at volume levels just below 100 and 10−1, correlating
with the continuous create orders appeared at the same price level above. Hence, there is likely a trader
following some strategy. A cancellation of one of the created buy-walls is particularly evident at the same
time stamp and with equal volumes as previously discovered. Hence, making it more even more likely that
the wall was created and cancelled by a single trader.



4.3. Understanding the data set 25

Figure 4.7: Volume map of trades initiated by a bid (cyan) or ask (yellow) order crossing the spread.

So far only posted limit orders or their cancellation where observed. Not all of those limit orders might
have executed and resulted into a trade as there is always a market order required, initiated by one of the
two parties involved in a trade. Figure 4.7 therefore illustrates the volume map of the actual trades occurred
within this sample time range of the data set.

Immediately evident are the trades transacted with volume 10−3, with oftentimes identical time interval.
Additionally, an intensive series of consecutive sales occurred at the time when the price dipped. After the
dip, such sales are not present anymore. Furthermore, intensive and immediate purchases are visible with
various volume at some distinctive time stamps before and during the price fall. We remember that there
was one spike towards a higher price during the dip, and the time stamp of which correlates strongly to the
purchases visible in this figure.

Various behavioural patterns have been observed by investigating events initiated by market participants
over time. For some, their impact on the market price is immediately obvious, for others it is hard to interpret
by hand. However, an attempt to find correlation between the behaviour of the events and the resulted trades
with the application of learning techniques seems promising.

Hypothesis: patterns arising from posted volume in events determines future short-term trading behaviour
which can be exploited in favour of order placement.

4.3.4. Impact of traded price and volume

The price levels and volume of events over time was investigated for each type in the previous subsections.
Patterns were found and a hypothesis was stated which encourages the various offerings of volume of an
order to be an indicator of future behaviour of market participants, which eventually influences the market
price and implicitly determines optimal order placement. The next logical step is to investigate the sum of
traded volume at a given point in time (as shown in Figure 4.7) in combination with the price the asset was
traded for.



26 4. Data curation

Figure 4.8: Relation of trade volume to price movement.

Figure 4.8 illustrates the volumes of trades on both bid and ask side, which resulted in a buy or sell at a
certain price. The volume of these trades are illustrated as bubbles according to their size (e.g. traded volume)
and price. As is known, a buy appears when one crosses the spread towards the sellers side (ask) and a sell
appears when crossing towards the buyer side (bid). One can clearly see how buys are listed on the best ask
price level and sells are listed on the best buy price level. Before and during the dip sells appear consecutively,
followed by a series of buy orders with low volume, which caused the short spike. Interestingly, a rather large
trade caused by a bid appeared shortly before the price started rising again. Even though sellers confronted
the market in the middle of the price rise, participants continued buying shortly after with approximately
equal volume. Concluding this observation it is evident that few trades with small volume caused a certain
noise in the overall trend. Multiple consecutive trades initiated one side or a single large the like, however, led
the market price to move for substantially longer period of time.

Hypothesis: consecutive small or one large trade give an impulse that drives the market price up or down.

4.4. Feature construction
The previous section demonstrated certain trading behaviours of the market participants in an order driven
market, which ultimately determines the evolution of the limit order book. Hypotheses were laid out which
give reasons to believe that the outcome in terms of a change in the order book constellation and price de-
velopment can be related to aforementioned trading behaviour. Consequently this implies that orders can
be placed and filled at limit levels which result in a favourable price. Therefore, the following subsections will
introduce features that are derived from the previously collected (Section 4.1) and processed (Section 4.2)
data and cover the assumptions stated in Section 4.3. Instead of hand-engineer features such as shown in
[17, 20, 29], the aim of this project is to learn the knowledge directly from raw inputs, similar to what has been
proven to be a successful method in the gaming sector[26] and was recently applied to the trading context[23].

4.4.1. Feature: price and size of historical orders
The order book was defined in Eq. 2.5 and generated in Section 4.2 serves as the first feature. More precisely
for each sample at time t , we use n order book entries (Eq.2.6) of m of the order book states (Eq. 2.7) with



4.4. Feature construction 27

time stamp t s ≤ t . Therefore, as shown in Eq. 4.3, sbi d ask ∈R+m×2×2n is the state observed by a reinforcement
learning agent. The order book states are ordered such that m is the closest to t . The n order book entries are
closest to the spread whereas only the price bp (respectively ap) and size bs (respectively as) are considered.

sbi d ask =





bp11 bs11

bp12 bs12
...

...
bp1n bs1n

ap11 as11

ap12 as12
...

...
ap1n as1n





bp21 bs21

bp22 bs22
...

...
bp2n bs2n

ap21 as21

ap22 as22
...

...
ap2n as2n


· · ·



bpm1 bsm1

bpm2 bsm2
...

...
bpmn bsmn

apm1 asm1

apm2 asm2
...

...
apmn asmn




(4.3)

Considering that the state will be observed by a deep learning agent, which makes use of a neural net-
work, scaling of inputs will contribute to a faster learning process. We therefore further apply normalization
the the prices (bp, ap) with respect to the best ask price for each state, that is api 1. Equivalently we normal-
ize the sizes (bs, as) with respect to the size provided at the best ask asi 1. While this method does not scale
the values of prices and sizes within a predefined range, the values sill decrease significantly. Furthermore,
empirical observations show that the minimum and maximum of prices within a single order book state do
not differ more than 2%, which determines the approximate scaling boundary.

This feature incorporates some of the previously stated hypotheses and therefore enables the learner to de-
termine whether the statements were valid or not. Particularly, the feature includes historical order prices
(hypothesis 4.3.1) their volume (hypothesis 4.3.2 and partly 4.3.3).

Might be unnecessary according to our talk.

The question remains how large the window of m order books states and the number of limit levels n
should be chosen. The following observation provides an intuition about the parameters, however, this by no
means aims to make an estimate how well the agent may perform under the consideration a certain param-
eter setup.

In order to reason about the impact of n limit levels, we take the average of 100 evaluations whereas we
take 1000 random order book states for which we measure the Shannon entropy[31] for a range of 40 limit
levels (maximum of what goes from collection) on the bid and ask side, applied to price and size. The entropy
therefore serves as an indicator of how much information can be gained for each limit level, derived from the
their change in price and size for each state.

(a) Entropy of order prices (b) Entropy of order sizes

Figure 4.9: Entropy measured for 40 limit levels

It is noticeable that the entropy remains high regarding the prices for for limit levels 0-30 on both, bid and
ask side, as shown in Figure 4.9a. The price becomes slightly more constant for limit levels > 30. The entropy



28 4. Data curation

for order sizes, as shown in Figure 4.9b, drop after 20 limit levels, which indicates that the accumulated order
size deep in the book is more constant. We therefore suggest to consider at least 30 limit levels of the bid-ask
feature.

(a) Correlation of order prices (b) Correlation of order sizes

Figure 4.10: Correlation measured for 100 order book states

After having a brief understanding of how limit levels n affect order prices and sizes, we try to make a
statement about how order book states are related to the most recent state. More precisely, we determine the
correlation of the order prices and sizes from the previous m states to the most recent order book state. We
take the average of 100 evaluations whereas we take a single order book state at time t and a sequence of 100
previous order book states for each of which we measure the Shannon entropy[31] to the state at t , whereas
n = 40 (maximum). As can be seen in Figure 4.10a, the correlation of the price positions drop rapidly, however
the effective change is not significant, indicating that the price changes are noticeable but overall do not differ
much. Order book states which lay more than 40 states in the past are slightly less correlated to the current
state. The correlation of order sizes, as shown in Figure 4.10b drops more rapid and to a much greater extent
than the order prices. This indicates that traders choose a broad range of order sizes. As a result, a window
size of order book states m greater than 40 states is suggested to benefit from price differences within the
feature.

4.4.2. Feature: price and size of historical trades
The previously worked out a feature provides information to the learner in order to reason about the hypothe-
ses which are derived from order placed and cancelled. In order to reason about whether or not trade events
can serve as appropriate input for a learner to optimize order placement, we construct a feature that covers
the hypotheses 4.3.4 and partially 4.3.3 as follows. A Tr ade (Eq. 2.8) carries an order side os, a quantity q and
a price p. Similar to the previous feature, we take n trades into consideration which occurred within a time
window m, measured by the time stamps t s of the trades. Since the feature is generated at some time t when
an order should be placed, the time stamp of the historical orders must satisfy t s ≤ t .

A straightforward approach would be to construct the feature str ade as,

str ade =


p1 q1 os1

p2 q2 os2
...

...
...

pn qn osn

 ∀ p, q,os, t s ∈ Tr ade (4.4)

, whereas t sn − t s1 ≤ m. However, trades do not occur in fixed time intervals and therefore causes the length
of the vector to vary. We therefore accumulate the prices and sizes of the trades with equal order side over a
fixed amount of time (in seconds) ∆s. That is,

Tr ade ′ = (t s′,os′,
t s+∆s∑
i=t s

pi ,
t s+∆s∑
i=t s

qi ) ∀ p, q,os ∈ {Tr ade | os = os′} (4.5)



4.5. Conclusion 29

As a result we can redefine the feature str ade , that is used by the learner as observation state, as,

str ade =


p1 q1 os1

p2 q2 os2
...

...
...

pn qn osn

 ∀ p, q,os, t s ∈ Tr ade ′ (4.6)

, whereas t sn − t s1 ≤ m ∧ t si ≥ t si−1 +∆s.

As a result we constructed a feature vector of length n = m
∆s that contains information about the price and

quantity of historical trades.

4.5. Conclusion
Event data was collected from a crypto-currency exchange and a limit order book was reconstructed thereof.
The limit order book serves as the historical data set and source for the match engine in order to simulate
order placement. Subsequently the price chart as the result of the generated order book was shown and an
investigation of the underlying event data was proceeded. Patterns were found which give insight in how
market participants positioned their offerings with respect to price and size. It was shown that the price
movement was likely due to (1) an imbalance in bid and ask orders; (2) a distinctive way of posting or can-
celling orders; and (3) consecutive or impulsive trades. These findings were incorporated within the feature
engineering process, which resulted in two features that can be used by the reinforcement learning agents.





5
Experimental Setup

Knowledge about the components and techniques required for optimizing order placement was provided in
Chapter 2, and previous approaches were introduced in Chapter 3. The process of collecting historical event
data and the construction of a limit order book was explained in Chapter 4. The data was investigated and
hypotheses were stated as a guideline for a future learning process. However, in order to apply reinforcement
learning, an environment has to be developed which is flexible enough to allow investigation regarding dif-
ferent types of features and learning algorithms that are incorporated in an agent. The correctness of such an
environment is critical as it emulates a stock exchange and therefore determines how orders would have been
transacted in the past. If the implementation varies from the one used in exchanges, or does not cover certain
edge cases, the matching of placed orders would differ significantly from the one in a production setup.

This chapter aims to build an environment that emulates a subset of the capabilities of a real world ex-
change in order to determine how limit orders would have been processed, had they been placed at a given
point in time in the past. Therefore, the setup of the environment is described at first and explains how the
required components work in combination such that a learner can simulate order placement. Additionally,
an extension of this environment is provided to simulate simultaneous order placement on both sides of the
book. This process is commonly referred to as market making. Finally, two implementations of reinforce-
ment learning agents are provided. A Q-Learning agent will serve as the learner when no market variables are
provided and a Deep Q-Network agent is developed to handle complex features.

5.1. Order Placement Environment

The reinforcement learning environment (see Section 2.5.4) that emulates order placement on historical mar-
ket data is introduced in this section and enables an agent to buy or sell V shares within a time horizon H .
Therefore, the previously described components (introduced in Chapter 2) come into play. The main idea
of its working is that, the agent observes a state st (so-called observation state) at some time t and responds
with an action at that indicates at which position to place the order in the order book, relative to the current
market price. The task of the environment is then to evaluate the outcome of the placed order and report to
the agent accordingly with a reward rt+1 and the next state st+1. Subsequently, the order is cancelled such
that the agent can submit a new action for the remaining shares to be bought or sold.

OpenAI Gym [15] is an open source toolkit for reinforcement learning. The interfaces of this toolkit were
used in order to follow their standards while building this environment. The advantage of which is that any
OpenAI Gym compatible agent and bench-marking tools can make use of this environment.

31



32 5. Experimental Setup

5.1.1. Overview of components

Figure 5.1: Overview of reinforcement learning order placement environment.

Figure 5.1 shows the inner workings of the order placement environment. An epoch is initialized with the
reset function, which clears the internal state of the environment. The internal state consists of the remain-
ing shares the agent has to buy or sell, denoted by the inventory i , the time step t the agent has left to do so
and the previous order. The agent explores the environment using the step function with which it sends the
action to execute. The first component to react upon receiving the action is the order handling component,
which determines whether the agent is currently trying to fill an order, that is when the agent has started
an epoch, or a new order needs to be created, that is when the agent starts an epoch. In either case, a new
order is created and the price is set according to the received action. Subsequently, the order is forwarded
to the match engine, which tries to execute the order within the historical data set, namely the order book.
The order and the possible resulted trades evolved during the matching process are then forwarded to the
evaluation component. Since it can take multiple steps for the agent to fill an order, the remaining inventory
and the consumed time of the order is updated and stored in the memory. Additionally, the index of the last
visited order book state is stored such that in a next step the match engine will proceed the matching where
it stopped last. In case no trades resulted during the matching process, only the consumed time is subtracted
from the order. Otherwise, the sum of the size of the trades is subtracted from the order’s inventory. Subse-
quently, the evaluation component calculates the reward based on the previously resulted trades. Finally, the
reward, the next observation state and whether or not the order is completely filled (e.g. the epoch is done) is
finally forwarded to the agent. Additionally, if the order is not completely filled after the last step taken by the
agent, a market order follows in order to get to the final state.

5.1.2. Configuration parameters
For the environment to be flexible, such that agents can place orders in various settings, a total of four config-
uration parameter have to be defined: order side (OS), time horizon (H), time step length (∆t ) and feature type
(F). The order side OS (previously defined in Eq. 2.1) specifies whether the orders, which are created within
the environment, are intended to be buy or sell orders.

Figure 5.2: Segmented time horizon H with remaining time t .

The time horizon H defines the amount of time given in order fill an order. The default time horizon is
100 seconds for reasons described in Section 2.3, which reflects the Good-Till-Time (see 2.1.2) of the order.
As illustrated in Figure 5.2, the time horizon is segmented into discrete time steps t and therefore limits the



5.1. Order Placement Environment 33

number of steps an agent can take within one epoch. Each step is of the same length ∆t , which is for illus-
tration purposes set to 10 seconds. We pick T as the maximum value of t , indicating that the entire amount
of time is remaining, whereas t = 0 states that the time horizon is consumed. Consequently, within a single
epoch, the GTT of the order is being adjusted to ∆t for each step, still resulting in a total GTT of H . Lastly, the
feature type F determines the state observed by the agent, which represents one of the features described in
Section 4.4.

5.1.3. State
Unlike in most traditional reinforcement learning environments, each step taken by the agent leads to a com-
plete change of the state space. Consider a chess board environment, where the state space is the board
equipped with figures. After every move taken by the agent, the state space would look exactly the same,
except of the figures moved with that step. The epoch would continue until the agent either wins or looses
the game and the state space would be reset to the very same setup for each epoch. In the order placement
environment however, it is, as if, for each step not only one or two figures of the chess board change their
position, but almost all of them. And a reset of the environment will result in an ever changing setup of the
figures on the chessboard. The reason for this is that the chessboard is in our case the order book that under-
lies a time series which evolves over time. More precisely, the state space S is defined as a sequence of order
book states from which an agent can observe an observation state O at some point in time. The final state is
reached when the entire inventory was bought or sold, that is i = 0–Checkmate!.

There are two general types of variables that can be used in order to create an observation state: private
variables and market variables [29]. For private variables, the size of the state space depends on the V shares
that have to be bought or sold and the given time horizon H , resulting in a state s ∈ R2. Market variables
can be any information derived from the order book at a given moment in time. Therefore the specified fea-
ture set (see Section 4.4 below) defines the dimension of the state the agent observes. Consequently, market
variables increase the state space drastically, due to (1) the initialization of the environment using a random
order book state and (2) the dimensionality of the feature set. Hence, for each step taken by the agent, the
order book states are likely to be different and thus the state the agent observes changes equally.

5.1.4. Action
A discrete action space A is a vector (ami n , ..., amax ) that represents a range of relative limit levels an agent
can choose from in order to place an order. That is, how deep (ami n) and how high (amax ) the order can be
placed in the book. The action a ∈ A is an offset relative to the market price pmT before the order was placed
(at time step t = T ). Negative limit levels indicate the listing deep in the book and positive listings relate to
the level in the opposing side of the book. Hence, the price of the order placement p at some time step t is
pt = pmT +ai ∗∆a, whereas ∆a is the step size of an action. An illustration of this concept is given in Figure
5.3.

Figure 5.3: Actions represent an offset relative to the order price at which to place the order in some order book state OSi at some time
step t .

By default the action step size∆a = $0.10. For example, with |A| = 5 that is (pmT −0.2, pmT −0.1, pmT , pmT +
0.1, pmT +0.2). The action space is configurable and the default implementation is of size |A| = 101, indicating
that ami n =−50 and amax=50 result in an order price p = pmT −$5 and p = pmT +$5 respectively.



34 5. Experimental Setup

5.1.5. Reward
As described in Section 2.3, the volume weighted average price (see Eq. 2.10 serves as a measure of the return
of order placement. Consequently, the reward is defined as the difference of the market price before the
order was placed pmT and the volume weighted average price paid or received after the order has been filled.
Hence, for buying assets the reward is defined as r = pmT −pv w ap and for selling assets r = pv w ap −pmT . In
case no trades resulted during the matching process, the reward is r = 0, indicating that no direct negative
reward is provided. Reasons for this are that in case the order could not be matched over the course of the
time horizon, when t = 0, a market order follows which will likely produces trades with a worse price than the
market price before the placement has started. Given the definition of the discounted return (Eq. 2.13) we
calculate Rt =∑t0

t ′=t γ
t ′−t ∗ rt ′ , where t0 is the time step at which the agent has its time horizon for the ongoing

order fully consumed.

5.2. Market making Environment
TODO

5.3. Q-Learning agent
The agent described in this section is generally known as Q-Learning[34]. In this work, Q-Learning serves to
(1) optimize order placement by using private variables only and (2) to have a measure of comparison while
evaluating possible advantages of featuring raw market data by using a Deep Q-Network agent (see Section
5.4 below), which is an extension of the Q-Learning agent.

The name Q-Learning refers to the application of the previously presented Q-function (Eq. 2.17). More specif-
ically, it relies on the action-value function (Eq. 2.18) that obeys an important identity known as the Bellman
equation. The intuition is that: if the optimal value action-value Q∗(s′, a′) of the state s′ at the next time step
t +1 was known for all possible actions a′, the optimal strategy is to select the action a′ which maximizes the
expected value of r +γ∗Q∗(s′, a′),

Q∗(s, a) = E[r +γmax
a′ Q∗(s′, a′)] ∀s ∈ s, a ∈ A (5.1)

, whereas 0 ≤ γ ≤ 1 is the discount rate which determines how mach future rewards are worth, compared
to the value of immediate rewards. The aim of the iterative value approach is to estimate the action-value
function by using the Bellman equation as an iterative update,

Qi+1(s, a) = E[r +γmax
a′ Qi (s′, a′)] (5.2)

Value iteration algorithms then converge to the optimal action-value function Qi →Q∗ as i →∞. [33]

Q-Learning makes use of the aforementioned Bellman equation (Eq. 5.1) that undergoes an iterative up-
date. The algorithm has proven to be an efficient and effective choice to solve problems in a discrete state
space. Limitations of this approach are known when the agent is applied to large or continuous state spaces
[18]. This becomes more apparent when considering the presented algorithm above. The iterative update of
the action-value function Q(s, a) (defined in Eq. 2.18 and used in Eq. 5.1) is exposed to the size of the state
s and action a, and thus if s is chosen too large, the optimal policy π∗(s) (defined in Eq. 2.20) will likely not
converge. As a result, the features derived in Chapter 4 are not applicable for this agent.

However, private variables of the environment, as described in Section 5.1.3, respect the aforementioned
limitations. As a result, the observation the Q-Learning agent will receive from the environment is defined by
the discrete inventory unit i and time step t , that is, s = (i , t ).

Figure 5.4: Inventory of V segmented shares with a remaining inventory i .



5.4. Deep Q-Network agent 35

However, fractions of shares and time which evolve during the matching process would result in a vastly
large state space. Therefore, similar to the discrete time steps which are described above, the V shares are
divided into discrete inventory units i of size∆i , as illustrated in Figure 5.4. The inventory units approximate
the order size in order for our policy to distinguish between when creating an order. We pick I as the max-
imum value of i , indicating that the entire inventory remains to be filled. The order is considered as filled
when i = 0, meaning that no inventory is left. Given the inventory units and the time steps, the state space
remains s ∈ R2 but becomes much smaller in its size, namely I × H . In the default setup a segmentation of
0.01 BTC steps is applied. For example, if the initial inventory is 1.0 BTC and the order is partially filled with
0.015 BTC during an epoch, the remaining inventory is 0.99 BTC (instead of 0.985) for the next step the agent
will take.

Algorithm 1 Q-Learning algorithm

1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: for t=0...T do
4: for i=0...I do
5: s = (i , t )
6: Choose a from s using π derived from Q (ε-greedy)
7: Take action a, observe r, s′
8: Q(s, a) ←Q(s, a)+α[r +γmaxa′ Q(s′, a′)−Q(s, a)]
9: s ← s′

Finall, Algorithm 1 describes the Q-Learning algorithm used in this work. An adaption was made to a
conventional Q-Learning algorithm[33] regarding the steps the agents will proceed, and therefore follows the
same concept as presented in [29]. The agent solves the order placement problem inductively, starting off the
episode at state s = (i ,0), when t = 0. This has the benefit that the environment enforces a market order (see
Section 5.1.5) at the beginning of an epoch, for all inventory units i and therefore provides immediate reward
to the agent. The agent then increments i and t independently and the previously seen reward will serve as
the future reward as the agent increases i and t . As a result, for each epoch, the agent takes I ∗T steps.

Apart from that, the algorithm follows the standard procedure. The Q function is updated given the state
s and action a. Therefore, the existent estimate of the action-value function is subtracted from the value of
the action that is estimated to return the maximum future reward. In addition, a learning rateα is introduced
that states to which extent new information should override previously learned information, with weighting
0 ≤ α ≤ 1. Eventually, the agent completes the episode and at this point, every combination of t and i has
been visited by the agent. Hence, the agent has learned each discrete step i and t in the process of buying or
selling V within the time horizon H .

5.4. Deep Q-Network agent
The second agent, which is presented in this section, is known as Deep Q-Network (mnih2015human) [27].
DQN is a deep reinforcement learning method that combines reinforcement learning with a class of artificial
neural network known as deep neural networks.

describe NN

Similar to the Q-Learning approach described above, the Q-values should obey the Bellman equation 5.1.
The neural network treats the right-hand side, with weights ω, as a target, that is, r +γmaxa′ Q∗(s′, a′,ω). We
then minimize the mean squared error (MSE) by stochastic gradient descent,

L = (r +γmax
a′ Q∗(s′, a′,ω′)−Q(s, a,ω))2 (5.3)

Whereas the optimal q-value converges for the Q-Learning approach that uses a look-up table, the use of a
non-linear function approximator can cause the convergence due to (1) correlation between samples and (2)
non-stationary targets.

In order to remove correlations we use experience replay with which we build a data set D from the agent’s
own experience. Therefore we store the agent’s experience et = (st , at ,rt , st+1) at each time-step t in the data
set, such that D t = e1, ...,et . During learning process, Q-learning updates on samples (or mini-batches) of
these experience (s, a,r, s′) ∼U (D) which are drawn uniformly at random from the pool of stored samples in



36 5. Experimental Setup

D . Hence, we prevent the learner from developing a pattern from the sequential nature of the experiences the
agent observes throughout one epoch. In our case this might be the case during a significant rise or fall of the
market price. In addition, experience replay stores rare experiences for much longer such that the agent can
learn these more often. That is for example when massive subsequent buy order led to a noticeable change
in the order book.

In order to deal with non-stationarity, the target network parameters δ′ are only updated with δ every C
steps and otherwise unchanged between individual updates.



6
Analysis and discussion

In the previous Chapter we have built a reinforcement learning environment with the use of the components
which were described earlier in Chapter 2. The environment allows to simulate order placement on a histori-
cal order book that was described in Chapter 4. Furthermore, two agents were introduced, a Q-Learner which
learns on private variables and a Deep Q-Network which learns on market variables.

The aim of this chapter is to run simulations and observe whether or not reinforcement learning is indeed
capable of optimizing the placement of limit orders. Throughout this chapter we make use of real world order
books as well artificially created order books, whereas the latter allow to define distinctive price trends and
eliminate the noise present in real market data. We first present the data sets chosen for this analysis. Before
evaluating the learners, we investigate the reinforcement learning environment empirically by simulating an
agent that places buy and sell orders at a range of limit levels. This will provide knowledge of how well we
should expect the reinforcement learners to perform. Subsequently we make an attempt to build a strategy
based on the private variables only, with the use of the Q-Learner. This gives insight of the performance of a
naive reinforcement learner and serves as a benchmark for the following simulations proceeded in which we
consider market variables. While applying market variables to the DQN agent we make use of both features,
price and size of historical order as well as the price and size of historical trades, separately. In doing this, we
determine the capabilities and limitations not only by evaluating the received rewards but also by looking at
the submitted actions of the agent. Since we are interested in the general ability for reinforcement learning
to learn how to place orders, potential maker or taker fees are neglected in this setup.

6.1. Data sets

We have selected two ∼30 minute samples of historical order book recordings with which we proceed experi-
ments in this chapter. Thereby we have consciously chosen one sample (I) order book with downwards trend
(bid/ask mid-price) and the other sample (II) with an upwards trend, as shown in Figure 6.1. The sample
in Figure 6.1a consists of 1132 order book states with a duration of 1681.8 seconds, resulting in 0.67 states
per second. The sample in Figure 6.1b consists of 1469 order book states with a duration of 1746.0 seconds,
resulting in 0.84 states per second, indicating that there was slightly more pressure in terms of orders placed
and cancelled in this data set.

37



38 6. Analysis and discussion

(a) 30 minute downwards trend (b) 30 minute upwards trend

Figure 6.1: Bid/ask mid-price of 30 minute order book recordings.

Reasons for choosing two very distinguishable data sets include to determine the ability of the learners to
react on a variety of market situations. As explained in the following section, the expected return of a learner
for buying and selling assets heavily depends on the market price movement and therefore the situations
become very different for the data sets in use.

When reinforcement learning is applied, the data sets are split with ratio 2 : 1, resulting in a training set of
∼20 minutes and a test set of ∼10 minutes.

6.2. An empirical investigation of the reinforcement learning environment
This section serves to investigate the relationship between the limit order placement and the received reward,
within a fixed time horizon. The demonstrated methods are based on the related work described in Section
3.1 and provide the ability to empirically evaluate the reinforcement learning environment (Chapter 5) by
simulating the behaviour of an agent that buys and sells shares at every possible limit level and records the
received rewards (e.g. immediate returns). The return is denoted by the difference between the market price
prior the order placement and the volume weighted average price (VWAP) paid, respectively received, as
stated in Eq. 5.1.5. As a result we gain understanding of the behaviour of order placement within a given
historical market and set a baseline for the reinforcement learners to come.

We recapitulate that according to [28, 35] there are three obvious trading strategies in order to determine
the execution price of an order (considering limit and market order types only):

1. Submit a market order tor the entire amount immediately.

2. Wait until the end of the time period and then go to the market with the entire amount.

3. Submit a limit order at the beginning of the time period; then submitting a market order for the remain-
der of shares (if any) at the end of the interval.

Having a total time horizon of 100 seconds available, the last approach is of interested in this analysis. How-
ever, we investigate the behaviour on progressive increasing time horizons, starting from 10 seconds up to 100
seconds, as this demonstrates the discrete time steps to be taken by a learner. By doing so, the expected re-
turn is observed by the average return of placing (e.g. cross-validating) 100 orders of size 1.0 BTC at a random
point in the given data set. The price of the orders are determined by a range of 201 limit levels (−100...100)
with step size $0.10, resulting in orders priced in the range of pm −10 . . . pm +10, whereas pm is the market
price before the order was placed.

6.2.1. Order placement behaviour on data set I
For the data set I, where the market undergoes a downwards trend, the intuition is as follows: We expect
buy orders to result in better returns when placing deep in the order book, meaning with a highly negative
limit level. Since the price tends to fall, the assumption is that an agent is able to buy for a lower price once
time has passed. Therefore, the longer the time horizon, the lower the limit level can be chosen in order to
still be able to execute the full amount of shares. Contrarily, we expect sell orders to provide better returns
when the agent crosses the spread with a positive limit level. The assumption is that in a falling market it



6.2. An empirical investigation of the reinforcement learning environment 39

is unlikely that market participants are willing to buy for higher prices and therefore the agent must place
sell orders higher in the book in order to sell immediately. Otherwise, the longer the time horizon, the less
return an agent would retrieve as the market order after the order has not been filled becomes costly. We
proceed this investigation within our reinforcement learning environment as shown Figure 6.2. Therefore,
time horizons of 10, 30, 60 and 100 seconds (y-axis) and limit levels reaching from -100 to +100 (x-axis) were
chosen. The time horizons determine the various situations an agent is confronted while proceeding steps
within an epoch. The limit levels are chosen broadly in order to retrieve understanding about the outcome of
a variety of possible actions.

With a time horizon of only 10 seconds left, the expected behaviour is, however, proven wrong. For buy
orders, shown in Figure 6.2a, the returns suggest to place the orders close to the spread, but still on the oppos-
ing side, at a limit level of ∼+5. The spike at limit level ∼-5 indicates that the overall best return was provided
at this level, however it comes with the risk that the orders fails to execute, indicated by the downwards spike
also close to level ∼-5. For selling within 10 seconds, as shown in Figure 6.3b, the best return is given when
crossing the spread with a positive limit level of ∼+50. The spike at limit level ∼-70 is likely caused by one of
the orders during the cross-validation process, that was able to execute and therefore contributed to greater
return.

With an increased time horizon of a total of 30 seconds, as shown in Figures 6.2c and 6.2d, the expected
behaviour becomes more evident. Positive returns can be achieved by posting buy orders deep in the order
book, whereas there is not much variance between the negative limit levels itself. Therefore, we can expect
that in the given market situation the agent was able to execute the order partially at very low limit levels and
for the unexecuted part a market order followed which ultimately averaged the price to be similar as when
the agent placed the order initially at a price which is only slightly below the spread. This is confirmed by
the fact that the most dense range of positive returns is indeed around the limit levels just below the spread.
Crossing the spread causes increasingly lower returns, the more positive the limit level is chosen. That is a
result of agents willingness to immediately buy for an increasing price by using market orders. The opposite
effect occurs while selling assets. Market orders higher in the book result in result in better returns than limit
orders deep in the book. Interestingly, orders which were placed very deep in the book, at limit level ∼-50 and
below, are rewarded better than the ones close to the spread. This is most likely a consequence of a minority
of orders which were partially filled at this level during the cross-validation process.

With time horizons of 60 and 100 seconds the expected behaviour of the orders is clearly given. Buy
orders as shown in Figures 6.2e and 6.2g, best best off when placed very deep in the order book. However,
when placed too deep, at level -100, the return is slightly less as a result of unexecuted orders which had to be
filled with market orders once the time was consumed. In addition, positive limit levels become stable since
there are more sellers in the market with the extended time horizon and therefore very high placed orders
have the same effect as limit orders posted only slightly above the spread. The same applies to sell orders
which are placed very deep in the book, as shown in Figures 6.3f and 6.3h. Placing orders very deep in the
book have the same effect as when placing the order just below the spread, that is, there are no traders willing
to buy at such a high price and therefore market orders follow once the time has passed.



40 6. Analysis and discussion

(a) Returns of buy orders within 10 seconds (b) Returns of sell orders within 10 seconds

(c) Returns of buy orders within 30 seconds (d) Returns of sell orders within 30 seconds

(e) Returns of buy orders within 60 seconds (f) Returns of sell orders 60 seconds

(g) Returns of buy orders 100 seconds (h) Returns of sell orders 100 seconds

Figure 6.2: Returns of buy and sell orders executed within 10, 30, 60 and 100 seconds on data set I.



6.2. An empirical investigation of the reinforcement learning environment 41

6.2.2. Order placement behaviour on data set II
For the data set II, which contains an upwards trend, the intuition is the opposite as during the investigation
of data set I. Namely, we expect buy orders to result in better returns when immediately filled, that is when the
agent crosses the spread and places the order high in the book. The assumption is that as time passes and the
market price rises, other traders become less willing to sell for the market price or lower. Therefore, the longer
the time horizon given to the agent, the more critical it becomes to execute immediately, as otherwise shares
would have to be bought to an increased market price. Likewise, better returns of sell orders are expected
when placed deep in the book, meaning to be sold at a higher price. The assumption is that as the price rises,
market participants become more likely to buy assets for higher prices. Hence, the longer the time horizon,
the deeper the agent should place a limit sell order in the book, as this will likely not require a following
market order due to (partially) unexecuted shares. We investigate these assumptions by proceeding the same
experiment as in the previous section, as shown in Figure 6.3, whereas time horizons of 10, 30, 60 and 100
seconds (y-axis) and limit levels reaching from -100 to +100 (x-axis) were chosen

The returns of buy orders with a time horizon of 10 seconds, as shown in Figure 6.3a, correlate with the
above stated assumptions. That is, highest returns are achieved when crossing the spread and although limit
levels in the range of 1-50 tend to perform the same, the wises choice for the agent would be to choose the
one closest to the spread as it comes with the least risk of paying a premium. With the same time horizon, the
sell orders placed contradict the assumptions, as shown in Figure 6.3b. Here the agent is rewarded the most
when choosing a price for the order at market price, as indicated by the limit level 0, that is on the spread.
A highly negative limit level causes to receive approximately $3.00 less than when placing at the suggested
market price.

With 30 seconds left to buy 1.0 BTC, in Figure 6.3c, the orders placed above the spread become stable
for any such limit level, much more so than in the previous investigation with the data set I. This is likely
due to the higher order pressure of the data set II, as described in Section 6.1. Hence, there are more market
participants willing to sell. The return curve that indicates sell orders placed by an agent, shown in Figure
6.3d, shifts towards a more evenly distributed returns compare to when only 10 seconds were left. Therefore,
limit orders tend to become more rewarding and an agent might benefit from a slight increase in price within
the given time horizon.

Even more so, this pattern becomes evident when a time horizon of 60 and 100 seconds were given, as
shown in Figures 6.3f and 6.3h respectively. With the increased time horizon the assumptions stated in the
beginning of this section are confirmed by shown that the agent, when trying to sell shares, should place
orders indeed deep in the order book. When time passes and the market price rises, market participants are
willing to buy for an increasing price and an agent is able to sell all assets for such an increased price without
the need of a following market order. Contrarily, if the agent decides to offer to sell the assets for a decreasing
price, as indicated by the higher limit levels above the spread, the less reward would be given. More precisely,
for a time horizon of 100 seconds, the agent would receive up to $7.00 less when choosing to cross the spread
with a limit level of +100 compared to some negative limit level. Figures 6.3e and 6.3g which show the result
of an agent that tries to buy assets within the increased time horizon, the behaviour is clear. That is, during an
uprising market, the damage can be minimized by crossing the spread and buying immediately. The advice
stated before remains, that is, the agent should choose a price a few steps ($0.10) above the market price as
there is enough liquidity in the market to buy the demanded number of assets.



42 6. Analysis and discussion

(a) Returns of buy orders within 10 seconds (b) Returns of sell orders within 10 seconds

(c) Returns of buy orders within 30 seconds (d) Returns of sell orders within 30 seconds

(e) Returns of buy orders within 60 seconds (f) Returns of sell orders 60 seconds

(g) Returns of buy orders 100 seconds (h) Returns of sell orders 100 seconds

Figure 6.3: Returns of buy and sell orders executed within 10, 30, 60 and 100 seconds on data set II.



6.3. Q-Learning without market variables 43

6.3. Q-Learning without market variables
The previous section provided knowledge about the possibilities of the agent when placing buy and sell or-
ders using the reinforcement learning environment and with the underlying data set I and II. The expected
behaviour for each limit level has been observed under two significantly different market situations. For each
such observation, a fixed time horizon was chosen for which an order was residing in the order book, fol-
lowed by a market order in case the order has not been filled completely. It has been shown that during an
upwards trend, market participants are willing to buy and sell shares for higher prices and contrarily, during
a downwards trend for lower prices. However, it has been observed that an agent would therefore indeed be
able to, if limit orders were placed accordingly, minimize the price to pay, respectively maximize the price for
which to receive, the assets.

This section aims to investigate whether or not a Q-Learning agent, as described in Chapter 5 (Section
5.3), can reproduce the optimal achieved results shown in the previous section. Therefore the agent is al-
lowed to cancel its order after every 10 seconds and place a new order with the remaining inventory, until the
time horizon is fully consumed. For both data sets (I and II) an independent learning experiment is being
proceeded, whereas the agent is supposed to either buy or sell shares. For each such experiment, the training
is limited to 5000 epochs and 1000 orders are being back-tested on the test set. The Q-Learning agent is set
up as follows: the learning rate α= 0.1 is chosen small due to extensive amounts of steps the agent will make
throughout the epochs. The discount factor γ = 0.7 is chosen slightly in favour of immediate rewards in the
hope to prevent the agent from running out of time which would result in a following market order. Initially,
the exploration constant ε is set to 0.1 but then multiplied by an epsilon decay factor for each step taken by
the agent, such that ε=∼ 0.8 once training is completed. This allows the agent first to explore the action space
and then exploit on the learned optimal actions to take.

As a result of this setup, four observations were made and for each of which the training and testing results
are stated below. During training, the mean rewards given and average action chosen for each epoch are
recorded. Using the training model, a backtest is run on the test data sets, whereas the agent executes orders
and chooses the learned optimal action to take. The result of which is shown as the average reward received
while doing so. The difference to the occurring costs of a market order then serves as the guideline of how
well the algorithm performs.



44 6. Analysis and discussion

(a) Mean rewards per epoch (buy) (b) Mean actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean actions per epoch (sell)

Figure 6.4: Mean rewards and actions for buying and selling on training data set I.

Figure 6.4 shows the experiment proceeded on data set I. The average received reward during the training
where the agents task was to buy 1.0 BTC within 100 seconds is shown in Figure 6.4a. Over the course of
5000 epochs, the agent was able to improve the mean reward slightly, by ∼0.5. Reasons for this is the change
in chosen actions as illustrated in Figure 6.4b. The agent started off with an average action of ∼-3 which is
a result of the low epsilon parameter that makes the agent choose actions randomly. Actions where then
adapted to the more negative side of the order book, such that after ∼1500 epochs the agent choose actions
as low as -20 and then adjusted and stagnated at ∼-15. The backtest, during which 1000 orders were executed
on the test data set, resulted in an average reward of -1.17–that is worse than the average reward received
on the training close to the end of the training. The cost of a market order on the test data set is -0.05 such
that the strategy of the agent results in additional costs of $-1.12 when buying 1.0 BTC. Comparing the found
results to the empirical analysis proceeded on the same data set, as shown in Figure 6.2, provides means
for interpretation: Considering the backtest results and the highly negative average action the agent chooses
towards the end of the training indicates that the order was oftentimes not able to be filled within the time
horizon and a market order was followed.

The rewards received for the agents tasks to sell the assets are much more volatile, as shown in Figure
6.4c, and no clear improvement can be seen. Consequently, there was no significant adjustment made by the
agent regarding the chosen actions, as indicated in Figure 6.4d. The agent started off at limit level 0 and after
some exploration concluded to keep choosing actions at the same level as it started off. The backtest resulted
in an average reward of -21.34 achieved by the agent. The reward received for placing market orders on the
test set account to a negative reward of -27.70. Hence, the agent is able to save $6.36 when selling 1.0 BTC.



6.3. Q-Learning without market variables 45

(a) Mean rewards per epoch (buy) (b) Mean actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean actions per epoch (sell)

Figure 6.5: Mean rewards and actions for buying and selling on training data set II.

Figure 6.5 shows the experiment proceeded on data set II. The average received reward while training to
buy the asset is shown in Figure 6.5a. Throughout the epochs, the agent was able to improve the mean reward
like with the previous data by roughly 0.5. Even though the trend of this data set is the opposite, the change
in chosen actions correlates to the previous findings and is illustrated in Figure 6.5b. The backtest on the test
data set (of data set II), resulted in an average reward of -1.04 – again worse than the average reward received
on the training set. A market order on this test data accounts to an average reward of -1.06, indicating that
the agent is saving $0.02 when buying 1.0 BTC. When taking the empirical analysis proceeded on this data set
into consideration, as shown in Figure 6.3, the received rewards indicate that the agent again failed to execute
orders with the placed limit orders and oftentimes market orders followed.

Similar to the order placed on data set I, the rewards received for the agents tasks to sell the assets are
much more volatile when it comes to selling, as shown in Figure 6.4c. No improvement can be seen from
the rewards during the training as no significant adjustment was made by the agent regarding the chosen
actions, as indicated in Figure 6.5d. The backtest resulted in an average reward of -4.74 achieved by the
agent, whereas market orders result to an average reward of -1.72. Hence, the agent causes to pay a premium
of $3.02 for selling 1.0 BTC.

Agent
Market
Order

Buy (I) -1.17 -0.05
Sell (I) -21.34 -27.70
Buy (II) -1.04 -1.06
Sell (II) -4.74 -1.72

Table 6.1: Summary of rewards for the Q-Learning agent and market orders.

The findings of this section are summarized in Table 6.1. We conclude that the Q-Learning agent was not



46 6. Analysis and discussion

able to place buy and sell orders in a way which would result in a price better than the current market price.
Oftentimes, a market order which would cause an immediate buy or sell would even be the better choice.
Clearly, this is due to the fact that the agent was not able to find the most suitable actions. Furthermore, in
order to investigate whether or not these results were a result of the agent aiming for too much immediate
reward, the same experiment was proceeded with γ = 0.3. However, no improvement could be made and
instead the agent achieved similar results while requiring more epochs in order to converge to the same mean
of actions.

In this section we have only investigated the mean of the actions chosen throughout an epoch, which
gave enough proofs that the chosen actions resulted mostly in market orders. In the following section, where
the DQN agent is being investigated, we plan to investigate the chosen sequence of actions within one epoch
in order to gain even better understanding about the decision process of the agent.

6.4. Deep Q-Network on execution
6.5. Deep Q-Network on market making
6.6. Deep Q-Network with event flow data



7
Conclusion and Future Work

7.1. Conclusion
simulation of historical order matching

model parameters

7.2. Future Work

47





Bibliography

[1] Bottom-up investing. URL https://www.investopedia.com/terms/b/bottomupinvesting.asp.
[Online; accessed April 30, 2018].

[2] Cs 294: Deep reinforcement learning. URL http://rll.berkeley.edu/deeprlcourse/. [Online;
accessed April 30, 2018].

[3] Fundamental analysis. URL https://www.investopedia.com/terms/f/fundamentalanalysis.
asp. [Online; accessed April 30, 2018].

[4] Introduction to time series analysis. URL https://www.itl.nist.gov/div898/handbook/pmc/
section4/pmc4.htm. [Online; accessed April 30, 2018].

[5] Matching algorithms. URL https://www.cmegroup.com/confluence/display/EPICSANDBOX/
Matching+Algorithms. [Online; accessed April 30, 2018].

[6] Enrique martinez miranda. URL https://nms.kcl.ac.uk/rll/enrique-miranda/index.html.
[Online; accessed April 30, 2018].

[7] Deep reinforcement learning demysitifed (episode 2), . URL https:
//medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\
-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa. [Online; accessed
April 30, 2018].

[8] Reinforcement learning demystified, . URL https://towardsdatascience.com/
reinforcement-learning-demystified-36c39c11ec14. [Online; accessed April 30, 2018].

[9] Limit orders, . URL https://www.sec.gov/fast-answers/answerslimithtm.html. [Online; ac-
cessed April 30, 2018].

[10] Market order, . URL https://www.investor.gov/additional-resources/general-resources/
glossary/market-order. [Online; accessed April 30, 2018].

[11] Stock exchange history. URL https://www.investopedia.com/articles/07/
stock-exchange-history.asp. [Online; accessed April 30, 2018].

[12] Top-down investing. URL https://www.investopedia.com/terms/t/topdowninvesting.asp.
[Online; accessed April 30, 2018].

[13] Technical analysis. URL https://www.investopedia.com/terms/f/technicalanalysis.asp. [On-
line; accessed April 30, 2018].

[14] Time series. URL https://en.wikipedia.org/wiki/Time_series. [Online; accessed April 30, 2018].

[15] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[16] Chris Chatfield. Time-series forecasting. CRC Press, 2000.

[17] Tristan Fletcher, Zakria Hussain, and John Shawe-Taylor. Multiple kernel learning on the limit order
book. In Proceedings of the First Workshop on Applications of Pattern Analysis, pages 167–174, 2010.

[18] Chris Gaskett et al. Q-learning for robot control. 2002.

[19] Xin Guo, Adrien de Larrard, and Zhao Ruan. Optimal placement in a limit order book. Preprint, 2013.

[20] Ted Hwang, Samuel Norris, Hang Su, Zhaoming Wu, and Yiding Zhao. Deep reinforcement learning for
pairs trading.

49

https://www.investopedia.com/terms/b/bottomupinvesting.asp
http://rll.berkeley.edu/deeprlcourse/
https://www.investopedia.com/terms/f/fundamentalanalysis.asp
https://www.investopedia.com/terms/f/fundamentalanalysis.asp
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Matching+Algorithms
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Matching+Algorithms
https://nms.kcl.ac.uk/rll/enrique-miranda/index.html
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://towardsdatascience.com/reinforcement-learning-demystified-36c39c11ec14
https://towardsdatascience.com/reinforcement-learning-demystified-36c39c11ec14
https://www.sec.gov/fast-answers/answerslimithtm.html
https://www.investor.gov/additional-resources/general-resources/glossary/market-order
https://www.investor.gov/additional-resources/general-resources/glossary/market-order
https://www.investopedia.com/articles/07/stock-exchange-history.asp
https://www.investopedia.com/articles/07/stock-exchange-history.asp
https://www.investopedia.com/terms/t/topdowninvesting.asp
https://www.investopedia.com/terms/f/technicalanalysis.asp
https://en.wikipedia.org/wiki/Time_series


50 Bibliography

[21] Kiyosi Itô. Encyclopedic dictionary of mathematics, volume 1. MIT press, 1993.

[22] Marcus Lim and Richard J Coggins. Optimal trade execution: an evolutionary approach. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on, volume 2, pages 1045–1052. IEEE, 2005.

[23] David W Lu. Agent inspired trading using recurrent reinforcement learning and lstm neural networks.
arXiv preprint arXiv:1707.07338, 2017.

[24] Burton G Malkiel. Efficient market hypothesis. In Finance, pages 127–134. Springer, 1989.

[25] Harry Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[28] Yuriy Nevmyvaka, Michael Kearns, M Papandreou, and Katia Sycara. Electronic trading in order-driven
markets: efficient execution. In E-Commerce Technology, 2005. CEC 2005. Seventh IEEE International
Conference on, pages 190–197. IEEE, 2005.

[29] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade execution.
In Proceedings of the 23rd international conference on Machine learning, pages 673–680. ACM, 2006.

[30] Scott Patterson. Dark pools: The rise of AI trading machines and the looming threat to Wall Street. Ran-
dom House, 2012.

[31] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Comput-
ing and Communications Review, 5(1):3–55, 2001.

[32] Robert H Shumway and David S Stoffer. Time series analysis and its applications. Studies In Informatics
And Control, 9(4):375–376, 2000.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[34] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[35] Chaiyakorn Yingsaeree. Algorithmic trading: Model of execution probability and order placement strat-
egy. PhD thesis, UCL (University College London), 2012.


	Introduction
	Context and Problem Statement
	Research objectives
	Contributions
	Document structure

	Preliminaries
	Order Book
	Orders
	Characteristics

	Match Engine
	Trade
	Interface
	Rules
	Limitations

	Order execution and placement
	Time series
	Time series analysis
	Time series forecasting

	Reinforcement Learning
	Advantages of end-to-end learning
	Markov Decision Process (MDP)
	Interaction
	Environment
	Agent
	Deep Reinforcement Learning


	Related Work
	Execution/Placement behaviour
	Statistical approach
	Supervised Learning approach
	Reinforcement Learning approach

	Data curation
	Collection
	Order book generation
	Understanding the data set
	Importance of order prices
	Importance of order volume
	Volume of orders and trades over time on the market price
	Impact of traded price and volume

	Feature construction
	Feature: price and size of historical orders
	Feature: price and size of historical trades

	Conclusion

	Experimental Setup
	Order Placement Environment
	Overview of components
	Configuration parameters
	State
	Action
	Reward

	Market making Environment
	Q-Learning agent
	Deep Q-Network agent

	Analysis and discussion
	Data sets
	An empirical investigation of the reinforcement learning environment
	Order placement behaviour on data set I
	Order placement behaviour on data set II

	Q-Learning without market variables
	Deep Q-Network on execution
	Deep Q-Network on market making
	Deep Q-Network with event flow data

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

