
Protecting privacy by
mirroring nature

T.S. Jaspers Focks

W. Nguyen

H. van Veltom

V. Wigmore

Protecting privacy by mirroring nature

by

T.S. Jaspers Focks
W. Nguyen

H. van Veltom
V. Wigmore

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be presented publicly on Monday July 4, 2018.

Project duration: April 23, 2018 – June 25, 2018
Thesis committee: H. Wang TU Delft, Bachelor Project Coordinator

Dr. Ir. J. Pouwelse TU Delft, coach
M. de Vos Tribler, client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Preface

iv

Abstract

vi

Contents

1 Introduction 1

2 Prior work 4
2.1 Cloudomate . 4

2.1.1 Gateways . 6
2.1.2 Electrum . 6
2.1.3 Positives and negatives of Cloudomate . 6

2.2 Tribler . 7
2.2.1 Running as an exit node for Tribler . 7
2.2.2 The Tribler Marketplace . 8
2.2.3 Matchmakers . 9

2.3 PlebNet . 9
2.3.1 Purpose of PlebNet . 9
2.3.2 Choosing and installing offspring . 10
2.3.3 Original state . 11

3 Requirements analysis 12
3.1 Must haves . 12
3.2 Should haves . 13
3.3 Could haves . 13
3.4 Won’t haves . 14

4 System architecture 15
4.1 Old Architecture . 15
4.2 New Architecture . 16

4.2.1 Lower level architecture . 18

5 Improving PlebNet 19
5.1 Initialisation . 19

5.1.1 Packaging . 19
5.1.2 Wallet creation . 20

5.2 Trading . 20
5.3 Acquiring new VPS . 21

5.3.1 Purchasing . 21
5.3.2 Identities . 21
5.3.3 Modifying DNA for the new child . 22

5.4 Cloning . 22
5.4.1 approach new vps . 22

5.5 Monitoring . 23
5.5.1 Legacy communication . 23
5.5.2 IRC . 23
5.5.3 Git issues . 25

5.6 Additional . 26
5.6.1 VPN . 26

vii

6 Cloudomate 27
6.1 fixing random user generation . 27
6.2 fixing the VPS providers . 27

6.2.1 unfixable providers . 27
6.2.2 fixed and new providers . 28

6.3 Dynamically sending VPS options to PlebNet . 29
6.4 Adding end-to-end testing support . 30

7 Quality assurance 31
7.1 Unit testing . 31

7.1.1 Testing Cloudomate . 31
7.1.2 Testing PlebNet . 31

7.2 End-to-end testing . 33
7.2.1 Proxmox . 34
7.2.2 Bitpay testnet . 34
7.2.3 Web API . 34

7.3 Maintainability . 34
7.3.1 SIG . 34

8 Conclusions 37
8.1 Conclusions . 37
8.2 Ethical Considerations . 38
8.3 Discussion . 39
8.4 Further work . 39

Appendix A Class Diagram 42

Appendix B SIG feedback week 5 43

Appendix C Project Description 44

viii

CHAPTER 1

Introduction

In recent years, privacy on the Internet is becoming a more and more concerning issue. Governmental
agencies are more frequently asking ISPs for data about their customers. And even without permission
they are still allowed to gather data due to the introduction of several new laws. [1] Because they
are able to look at our data, we are vulnerable to the potential abuse of it. Furthermore, sharing
information and content is being threatened by events such as the repeal of Net Neutrality rules [2]
in the United States and Europe’s new Article 13 [3].
Article 13 claims to protect digital content by mandating that all content uploaded to the internet
to be monitored and filtered by machines. When the content is recognised by the filter as copyright
infringing, the content is deleted and the uploader or hoster of said content may be held liable for
these infringements. While this seems at first glance to be a reasonable reshape of the copyright law,
the worrying aspect of this development is that digital content that fall under Fair Use will most
likely be prohibited by Article 13. Briefly, a Fair Use is the act of using copyrighted material in a
way that is transformative, the copyrighted material is often used for the purpose of commentary and
criticism or parody [4]. For example, Youtube videos that are created for the purpose of reviewing
movies or music generally fall under fair use. With Article 13, sharing links to websites or articles,
using images for academic purposes or quoting articles will become next to impossible.
These laws put the power of the internet in the hands of internet service providers (ISPs) and cor-
porations, restricting many forms of freedom on the internet. This could result in thoughts, opinions
and information being censored and monitored on the internet.
As the future for digital content sharing is looking bleak, the need for alternative ways of sharing
content is increasing. Since the early days of the internet, peer-to-peer (P2P) sharing services have
been the ’underground’ way of sharing content over the internet. In P2P networks, computers are
connected to each other without a central node. This way, there is no point through which all data
flows. Whenever a node in such a network goes offline, the other nodes can still provide the requested
data as they have it too. Because of this, P2P networks are resilient. However, with current P2P
networks privacy is nonexistent as it is clear from who to whom data is flowing.
To protect one’s anonymity, virtual private networks (VPNs) can be used. VPNs provide a way
to encrypt internet traffic between the client and the internet by routing all the traffic through a
VPN server. However, VPN providers have different logging policies, and may reveal the client’s
identity when asked by the government. Another way of protecting one’s anonymity is by using The
Onion Router (Tor). Tor works by routing the client’s internet traffic through a number of randomly
selected nodes/computers in the Tor network. The path chosen to route traffic is referred to as a relay
circuit. These relay circuits can change after some amount of time and the link between two nodes
are encrypted (with the exception of the exit node). The more relay nodes the client has to ’hop’
through, the more secure the connection.
The final node is referred to as an exit node, these node connect the client to the server or in the case of
Fig. 1.1, Alice to Jane. The traffic between an exit node and the server is not encrypted (apart from
HTTPS). Because the traffic is relayed through other nodes and eventually through the exit node, the
connection seems to be coming from the exit node, instead of the client. This implementation makes
it very difficult to decipher the source and destination of a message. All nodes are (assumingly) run
by volunteers. While there are a great number of relay nodes, the amount of exit nodes is limited
Fig. 1.2. This is because the activity of Tor users appear to originate from the exit node, this also

1

Figure 1.1: A simplified overview of how Tor works. Source: https://www.eff.org/document/2013-10-
04-guard-iat-tor

includes illegal activity. For a robust network, the amount of exit nodes need to be high. The most
well-known implementation of the Tor protocol is the Tor browser.

Figure 1.2: The number of relay servers reported by The Tor Project, the number of exit nodes are
low in comparison to other relay nodes due to the increased risk.

With the goal of anonymous decentralised file-sharing in mind, Tribler[5] was developed, an open
source P2P file sharing program developed as a research project at Delft University of Technology.
Tribler combines the Bittorrent protocol and a Tor-like network and thus, implements proxy layers to
add privacy for both the downloader and the uploader. With a single proxy layer there is still a risk
of the proxy being corrupt and listening to the data sent. For this reason, Tribler has three proxy
layers between the user and the rest of the P2P network, similar to a Tor network.
For the user to be connected to the Tribler network, an exit node is needed. Such a node is the
connection between the user and the anonymous Tribler network. Because this node is publicly

2

visible, it damages the privacy of the person functioning as an exit node. Because of this, there is a
lack of exit nodes in the Tribler network as not many people are willing to function as an exit node.
This project focuses on a network of autonomous self replicating exit nodes. Buying VPSes and using
them as an exit node would create such a network, but this requires money as these VPSes have to
be bought. The system to be implemented earns Tribler tokens by functioning as an exit node, these
tokens have a theoretical value as they give the owner certain benefits within Tribler. The obtained
tokens are then to be sold for Bitcoin with which VPSes can be bought.

3

CHAPTER 2

Prior work

This chapter is about the work done in previous projects as well as explaining the concepts of how a
network of autonomous self replicating exit nodes should function. At the beginning of the project,
we were given access to the latest version of the botnet and thus the first step of the project was to
understand the working and to asses the functionality of the existing system as well as the dependencies
of the botnet namely the Bitcoin wallet library Electrum[6] and Tribler.
But first, a short summary of how the botnet started. The concept of an autonomous self-maintaining
network started with the development of TENNET[7] by the first bachelor group. After this, a second
bachelor group[8] started over from scratch, using the experience of the first group and developed
two modules called PlebNet and Cloudomate. After the second bachelor group finished working on
PlebNet and Cloudomate, a group of master students [?] continued working on Cloudomate.
Cloudomate was implemented to select a VPS provider from a selection of providers who accept
Bitcoin, register an account at that provider, and buy a server with the given account. PlebNet was
responsible for installing Tribler, setting itself up as an exit node, earn money, activating Cloudomate
and ultimately installing itself again on the newly acquired servers.
This brings the number of components in PlebNet down to three: Cloudomate, Tribler and Electrum.
Both Cloudomate and Tribler will be explained in this chapter after which the working of PlebNet
will be explained. As Electrum is just an implementation of an Bitcoin wallet we do not consider it
a key component and will not be explained in full detail in this chapter.

Figure 2.1: The different components that PlebNet uses.

2.1 Cloudomate

As mentioned in the intro Cloudomate is a program that is used to automate the selecting and buy-
ing of VPS servers as well as VPN protection. It allows users to buy VPS/VPN services through
the commandline as well as allowing programs such as PlebNet to buy servers. The main usage of
Cloudomate for PlebNet is buying VPS servers. Cloudomate provides a list of options where PlebNet
can choose from PlebNet selects one option and provides the funding. Cloudomate buys the VPS

4

server and gives it to PlebNet. PlebNet than uses the VPS server to install and create a new agent.

Currently Cloudomate only offers the option to buy VPS servers. A VPS server works by having
multiple accounts on the same server. However each of these accounts gets a dedicated portion of the
resources. These resources being things such as memory, bandwidth etc. PlebNet needs relatively lit-
tle resources to be able to run so VPS is an affordable option and because of the guaranteed resources
sharing the server with other uses is not a problem for PlebNet. While it would be possible for Cloudo-
mate to buy other types of servers these being dedicated hosting and shared hosting these weren’t
implemented for the following reasons. dedicated hosting servers are servers where one account gets
access to the entire server without having to share the resources with other users. This is great how-
ever dedicated hosting is much more expensive than VPS servers and because PlebNet doesn’t need
many resources dedicated hosting does not offer an improvement over VPS. Shared hosting is similar
to VPS in the sense that multiple users have to share the same server unlike VPS shared hosting offers
no guarantee of resources to any of the accounts. This means that the resources of the bought server
could be taken by other accounts meaning that PlebNet would not be able to run and earn tokens. So
for that reason despite overall being cheaper than VPS server shared hosting was not implemented in
Cloudomate. There are six VPS providers implemented currently in Cloudomate these providers are:
Linevast, CCIHosting, BlueAngelHost, UndergroundPrivate, PulseServer and CrownCloud

A secondary use of Cloudomate besides buying VPS servers is buying VPN protection. These VPNs
would be used to hide the IP address of the server when it is being run as exit node for PlebNet. This
is useful because many VPS provider don’t allow there servers to be used to distribute copyrighted
content. And if a VPS provider monitors its servers traffic which many do they will see that PlebNet
is using their server to run as exit node for Tribler. And this could lead to the provider banning
the server. A way to prevent this from happening is by buying a VPN through Cloudomate and
let PlebNet use that VPN to hide its traffic. Currently only one VPN provider called AzireVPN is
implemented in Cloudomate.

Cloudomate works by crawling the webpages of VPS and VPN providers for options and filling out the
HTML forms on the purchase page. There are some problems with this approach the main concern is
that providers may change their page layouts, resulting in non-functionality of Cloudomate and there-
fore PlebNet. However currently it is the only way because no provider is offering an alternative way
to buy. They could offer an alternative for example an API that could be used to buy server
however it is unlikely this would happen because this API would allow possible harmful bots from
purchasing their services. So currently this is the only way Cloudomate is able to buy a VPS/VPN
service in an automated way.

Currently when Cloudomate buys a VPS server it only leases it for a month. This is the shortest period
the majority of VPS providers allow a server to be leased for. Cloudomate does not offer a way to lease
servers for longer then a month nor does it allow for a lease to be extended. This inability to extent
a lease is not a problem for PlebNet. Because for PlebNet there is little difference between an agent
extending its own server’s lease and an agent buying a new server where a new PlebNet agent can run.

When Cloudomate buys a VPS/VPN service it has to fill in user information. This user information
can either be real and entered by the user but Cloudomate can also randomly generate a user identity.
The VPS providers that are offered by Cloudomate are shown in Fig. 2.2. The options that are
purchasable from these providers can be queried and shown in Fig. 2.3 the image shows the options
for CCIHosting.

5

Figure 2.2: VPS providers

Figure 2.3: CCIHosting’s options

2.1.1 Gateways

When ordering a VPS the transaction has to go through a payment gateway. A payment gateway
is an application that providers use too authorise credit card or direct payments with the provider a
famous example of a gateway would be paypal. Cloudomate is only able to make transactions with
Bitcoin so it exclusively interacts with bitcoin gateway of the providers. The different gateways used
by each provider were: Bitpay this gateway is used by Linevast, BlueAngelHost and CrownCloud.
CCIHosting works with the Coinbase gateway in Clouodmate however they currently use the Coin-
payments gateway. Similarly UndergroundPrivate is implemented in Cloudomate as working with
Blockchainv2 gateway however they changed this to the Spectrocoin gateway. And while PulseServer
is implemented as working with Coinbase in Cloudomate during the research phase of this project they
stopped accepting Bitcoin payments all together. Fortunately later in the project they reimplemented
a Bitcoin gateway however this wasn’t coinbase anymore but Coinpayments.

2.1.2 Electrum

Electrum is the Bitcoin wallet that was used in Cloudomate to purchase VPS/VPNs. The version
that was used was 2.8.3, which was a Python 2.7 version. Because Tribler, PlebNet and Cloudomate
were written in Python 2.7, upgrading Electrum was not possible. Electrum 2.8.3 was fortunately
fully functional and is being used in this iteration of PlebNet as well. The way the system currently
works when PlebNet uses Cloudomate is that PlebNet and Cloudomate both have their own Electrum
wallet and Cloudomate only has access to its own wallet. So if PlebNet wants to buy a server it first
has to make a transaction from its wallet to the Cloudomate wallet before being able to buy a VPS
server.

2.1.3 Positives and negatives of Cloudomate

Now that a general overview of the workings of Cloudomate have been given now the positive and
negative aspects of Cloudomate will be discussed. Because this project is about making PlebNet work
with Cloudomate the positive and negative aspects are viewed from that perspective. The usability
of Cloudomate as a stand alone program is therfore not considered.

6

Positives of Cloudomate

While PlebNet and Cloudomate have both been created by the same development Cloudomate has
been developed on further by more teams. This has resulted in a very good quality of the code. Most
of the code has been commented and a good read.me has been provided this meant that it is easy for
developer teams to understand the inner workings of Cloudomate. Cloudomate also offers six VPS
provider options which is sufficient for PlebNet to use. And Cloudomate now offers VPN providers
and these could be implemented to hide the Plebnet agent’s traffic.

Negatives of Cloudomate

There are unfortunately some negatives to the current Iteration of Cloudomate. These are threefold.
The first negative is that when Cloudomate was further developed on by other teams the interaction
with PlebNet was lost and now PlebNet is unable to interact with Cloudomate correctly. The second
negative is that while Cloudomate provides many provider all but one of them still work this one
being BlueAngelHost. This problem happened because many providers have decided to change their
websites, gateways, etc. Having only one working provider results in a vulnerability for PlebNet
because if BlueAngelHost decided to change their system Cloudomate would not be able to buy VPS
servers anymore. The final problem is the random user generation. There is an error in Cloudomate
that while the user generation itself is succesful the resulting data is not saved. This means that when
Plebnet buys a VPS server through Cloudomate, Cloudomate will generate random user data and use
that to buy the server. However the problem is that this random user data also contains the root
password and username which is needed to access the VPS server. And because Cloudomate does
not save this data it means that Cloudomate will buy the server but will not have the information
necessary to gain access to the server.

2.2 Tribler

This section is about our initial research on Tribler. Tribler is one of the key components of PlebNet,
the most important parts within Tribler for our project will be discussed here. As mentioned before,
Tribler is the P2P file sharing program developed at Delft University of Technology. For this project,
we used an experimental version of Tribler which has access to the still in development Marketplace
module. The components discussed are the exit node service for Tribler and the Tribler Marketplace.

2.2.1 Running as an exit node for Tribler

The ultimate goal of the agent is to generate money as an agent needs money to buy new servers and
install a copy of itself onto them. The only way an agent can earn this money is by providing specific
services for Tribler. Tribler rewards people who run as an exit node by giving them MB tokens. These
tokens are a currency within Tribler and should give people benefits in the future, such as faster
download speed, they can have a value and can thus be sold for money. Earned tokens can be traded
on the Tribler Marketplace which will be discussed in the following section.
Before and agent can start earning tokens in Tribler, Tribler itself has to be installed. When installing
Tribler on Linux operating systems the user has to install all needed dependencies in order for Tribler
to work correctly. The second part is ensuring that the agent can run Tribler while functioning as an
exit node. This is done by setting the value of the option tunnel community exitnode enabled to
True. After this, Tribler is running as an exit node and MBs are being earned. The amount of MBs
indicate the amount of trust a user has and is calculated by: MBgiven −MBtaken. Where MBgiven

stands for the amount of data distributed across the network in megabyte and MBtaken stands for
the amount of data collected from the network in megabyte. These values can be seen in Fig. 2.4 as
they are represented in Tribler.

7

Figure 2.4: Amount of MBs given to and taken from the Tribler community.

2.2.2 The Tribler Marketplace

In order for the agent to be able to buy new servers, tokens (MB) acquired need to be sold for
Bitcoins. In Tribler, an experimental version of a market was implemented, allowing users to sell their
earned MBs for Bitcoins or buy MBs with Bitcoin. The market could also be tested using Testnet
Bitcoins (TBTC), which offers a way to easily test transactions. For now, these are the only currencies
supported in Tribler.
There are two ways for an user to buy and sell MBs on the market. Either via the graphical user
interface in Tribler or via the web API . Both use a system in which bids and asks can be made.
Bids are for buying currency while specifying the volume to buy and the price per unit to pay. Asks
are for selling currency while specifying the volume to sell and the price per unit to recieve. When
Tribler is running, the web API is located at http://localhost:8085. The web API contains much
more information, but for the purpose of this section, only the market API will be discussed. The
commands necessary for the agent to successfully interact with the marketplace to sell its tokens are
as follows:

curl -X PUT http://localhost:8085/market/bids --data "price=P &quantity=Q

&price type=PT &quantity type=QT"

curl -X PUT http://localhost:8085/market/asks --data "price=P &quantity=Q

&price type=PT &quantity type=QT"

These PUT requests let the agent make a bid or ask. The price, quantity, price type and quantity type
are to be filled in with the desired values. In the current implementation of Tribler, all bids and asks
have to matched, meaning that a buyer cannot give a seller more for his currency than that he asked
for. An bid on Bitcoin for MB has to be matched with an ask for Bitcoin with MB and not with an
bid on MB with Bitcoin and vice versa.

curl -X GET http://localhost:8085/market/bids

curl -X GET http://localhost:8085/market/asks

These GET requests pull all bids and asks on the market. All bids and asks are also visible within
Tribler as can be seen in Fig. 2.5. With these tools the agent is successfully able to interact with
the Tribler marketplace so that it can sell its tokens for Bitcoins to buy new VPSes.

8

Figure 2.5: Asks and bids on the Tribler Marketplace.

2.2.3 Matchmakers

In order to place bids or asks and to receive updates about the market, special type of peers are
needed. These peers are called matchmakers and are the entrance point to the Tribler Marketplace.
Each user of Tribler has its own list of matchmakers and they form the network that is the market.
When initiating Tribler, it takes various amounts of time in order for the user to be connected to
at least one matchmaker, we experienced it to be ranging from a couple of seconds to around fifteen
minutes.

curl -X GET http://localhost:8085/market/matchmakers

With the above written GET request, the agent is able to verify if it has any matchmakers. This is
needed as the agent would otherwise get stuck waiting for verification that an ask has been created,
meaning that the agent would not continue with his routine of buying and installing servers.

2.3 PlebNet

In the previous sections the key dependencies of PlebNet have been discussed. With these modules
PlebNet is able to function as intended. This section will explain in detail how PlebNet functions as
well as explain the state of the project as we received it.

2.3.1 Purpose of PlebNet

In order for PlebNet to be a successful network of autonomous self replicating exit nodes PlebNet is
responsible for the deployment of as many Tribler exit nodes as possible with on the long-term a stable
expanding network of independent agents. The definition of a stable network is that the deployment
rate of new agents is larger each iteration, meaning at least one VPS per month per agent should be
bought and installed. The steps necessary in order to achieve this are as follows:

• Install Tribler and run as exit node

• Earn money via Tribler

• Use Cloudomate in order to buy VPSes

• Installation of the child server

• Repeat this cycle

PlebNet’s source code has two main functions which can be called, setup and check. At the start of
the cycle, the setup function is called once initiating all configuration files and creating the Electrum
wallet. After this, the check function is called systematically every couple of minutes. This function

9

is responsible for checking if Tribler is running, checking if the agent has enough credits to buy a new
server, checking if a server has been bought and is ready to install, and ultimately installing a new
instance of PlebNet on the new server and let it run the setup and check functions. An overview of
this behaviour is provided in the communication diagram in Fig. 2.6.

Figure 2.6: Communication diagram of PlebNet

2.3.2 Choosing and installing offspring

As Cloudomate offers PlebNet multiple VPS providers to choose from, PlebNet has to make a smart
decision on which server to buy. In the current version of PlebNet, a basic form of DNA was im-
plemented giving PlebNet the ability to develop itself over future generations knowing which servers
to buy and which not. Each PlebNet agent has a list of tuples containing available providers and
a value representing how good it is. This value is increased when a server is successfully bought
and decreased when not. When deciding which server to buy, it chooses a random provider giving
providers with a higher score a higher chance of being chosen. After choosing a provider, the agent
has to choose between different server specifications. This includes the number of CPU-cores, memory
and bandwidth. As these options directly impact the performance of the agent, it has to choose an
option which is the most cost-effective. However, for now it chooses the cheapest option.
After having chosen and bought a server, the agent has to install all software. This is done via the
create-child bash script together with the IP address and root password of the new server. This
bash script first creates all needed directories, then it downloads the latest version of the PlebNet
project from GitHub and afterwards the install bash script is used. This script installs all needed
python dependencies and then installs PlebNet. After this is all done, a single call to the setup

function is made.

echo "*/2 * * * * root /usr/local/bin/plebnet check" > /etc/cron.d/plebnet

Then the Linux software utility cron is used for letting the agent call the check function every two
minutes with the above written line of code.

10

2.3.3 Original state

The received code was not optimal as it was not functioning anymore. There were several errors we
encountered while testing the functionality of the initial system. Some methods in PlebNet made
calls to methods in Cloudomate which had been removed or changed by the master group working
on improving Cloudomate. Each agent created a single configuration file for creating accounts at the
VPS providers and as these providers restrict the number of accounts per email to one, each agent
could only buy a single server per VPS provider. This meant that after having bought a server, it
would decrease the DNA value for that provider as it was unable to buy more servers. The level of
documentation and commenting on the code was low, which made it harder to grasp the purpose
of different files and understand the relation between different packages. As some methods where
over 100 lines long, some comments or documentation would have helped whilst debugging the errors
encountered.

11

CHAPTER 3

Requirements analysis

After studying the related work delivered by the previous groups the next step of the project was
to create a list of requirements based on this research. This list would detail all the features that
needed to be added to the new version of PlebNet. The list of requirements was created using the
MOSCOW method, The MOSCOW method groups all requirements based on their priority together.
It recognises four priorities these being: must haves, should haves, could haves, won’t haves. The
resulting MOSCOW list with an explanation for each item is given below.

3.1 Must haves

Must haves: these are the functionalities which should be implemented for the project to be successful.

Fully operational end-to-end system: Both PlebNet and Cloudomate have been developed by a
single group after which Cloudomate has been developed even further resulting in PlebNet not being
able to function anymore together with Cloudomate. PlebNet has to be modified in such a way that
it can use Cloudomate again. This must result in a system which can earn money, automatically buy
servers with the money earned, install itself on these new servers and repeat this cycle. Money is
earned by functioning as an exit node for the Tribler network. By functioning as an exit node, credits
(called MB) can be earned. These credits must then be sold on the Tribler marketplace for bitcoins.
With this money, a new server must be bought via Cloudomate from a list of providers which accept
bitcoin. After the server is bought, PlebNet must automatically install the source code of PlebNet
and Cloudomate onto the new server.

Autonomous installation: When a new server is bought, PlebNet is responsible for successfully
initialising a new PlebNet agent on this server. To achieve this PlebNet has to be able too au-
tonomously install PlebNet, Cloudomate and Tribler as well as all the required dependencies of these
three systems on the new server.

Status monitoring: Because PlebNet is a fully autonomous self-replicating system it is nearly
impossible for a user to keep oversight of all the PlebNet agents in the system and whether or not
these agents are still alive. To give the user this oversight status monitoring has to be implemented.
Status monitoring means that all PlebNet agents in the system will send their status to a central
receiver which collects and displays them for the user.

successful continuous integration in PlebNet: Continuous integration is the principal of inte-
grating code into a shared repository. This shared repository is then regularly verified by an automated
build. This is useful because it allows development teams to easily detect and locate errors in the
code. The Continuous integration tool that will be used for PlebNet is Jenkins CI. This tool has been
chosen because both Tribler and Cloudomate already use Jenkins CI and because PlebNet is reliant
on both these systems using a different continuous integration tool would only lead to more overhead
for future development teams.

12

3.2 Should haves

Should haves: these are the functionalities that are wanted by the client, but the software is usable
without their implementation.

improving the project documentation: The current version of the project lacks sufficient doc-
umentation and there exists no clear overview of how the project is structured. In order to make it
easier for new developers to gain oversight of the project a so called UML diagram should be made
explaining the basic function and interaction of classes with each other. On top of the UML diagram
the projects read.me (a text file explaining how someone uses PlebNet) should be updated because
currently it only contains a single line.

improving code maintainability: The current version of the project should be improved upon
in terms of maintainability. Here maintainability is defined as a combination of two things. First is
that the current code lacks comments explaining how the functions work and what they should do.
This makes it difficult for new developers to gain insight in the inner workings of the code. So it
is important to add these comments. The second part is having all external dependencies(calls to
systems that are outside of PlebNet) go through one dedicated class. The current version already
has these dedicated classes however most other classes still contain external dependencies. This is an
issue because if one of these external systems where to make changes to its system all of these classes
would have to be updated. If these external dependencies went through a dedicated class only that
class would need to be updated making it much easier for PlebNet to adapt to changes in external
systems.

Dynamically add new VPS provider to the existing PlebNet VPS options: In the current
version of the project, the list of available VPS providers is hard-coded in both PlebNet and Cloudo-
mate. PlebNet should be able to retrieve the list of available VPS providers from Cloudomate. When
a child agent is installed, any new providers added to Cloudomate should be automatically added to
the VPS options of the child agent.

Installing VPN protection: Because most VPS providers do not accept their services being used
for distributing copyrighted material. Therefore there exists a risk that the VPS provider sees what
the PlebNet agent is doing and promptly bans the VPS server. To prevent the agent from being
banned PlebNet should be able to install VPN protection.

3.3 Could haves

Could haves: these functionalities will only be implemented when there is time available at the end
of the project

Transfer obsolete funds: At the end of the life cycle of an agent, the agent will most likely have
some money left which was not enough to buy a new server with. Because each agent has their own
wallet if an agent reaches the end of their life cycle its left over money will simply be lost. To prevent
losing this money, the agent could be able to transfer this money to a central node or to one of its
child nodes.

The ability to create an issue on GitHub In order to be able to improve the agents in the
long term, it is necessary to be notified about (possible) problems and errors in the code. This
can be achieved by a notification to the developers, but a direct and clear way to handle these
notifications is by implementing an automated issue creator. When an error occurs, this posts an

13

issue on GitHub(GitHub being the repository service where the code is stored), including all important
information such as provider, trace call-back and other settings.

Genetic Algorithm for reproduction The bot could be programmed to dynamically chose a
survival strategy whenever it creates a new child. Possibilities are the decision which VPS to acquire,
or the trading strategy on the Tribler market. It could adjust these strategies based on success and
failures in agents lifetime. And it could pass on this survival strategy to its child nodes. So over
multiple generations agents will develop better survival strategies.

Simulate VPS provider to allow for free end-to-end testing End-to-end testing is very dif-
ficult for PlebNet. This is because it has to buy and run on a new VPS instance and buying a new
VPS instance for each end-to-end test is expensive. So to solve this a fully controlled environment
could be set up. thist allows the developers to simulate different settings and prove the concept of
PlebNet. The configurations can be quickly restored and the system improved.

Ability to monitor the status of the online agents live Instead of only being able to receive
notifications such as heartbeats from the running agents, it could also be possible to ask for specific
information from all online agents, or one in particular. This could be the current DNA configuration,
the time until shutdown or the amount of processed data on Tribler. The information should be read
only, so that the agents cannot be altered and live independent of central influences.

Package PlebNet with its dependencies for easier installations Currently PlebNet is in-
stalled using batch scripts. A batch script is a file of text with commands that are executed sequen-
tially. So PlebNet and all of its dependencies are now downloaded and installed sequentially. This
costs time to install. An alternative to this could be used by delivering a pre-installed package which in
comparison would result in relatively simple and clean installation of PlebNet and all dependencies.

3.4 Won’t haves

Won’t haves: these are the functionalities that are outside the scope of this project, however they
might be nice to implement later on.

Adding new VPS/VPN services This project focuses on implementing the end-to-end usability
of PlebNet and improving or adding new functionalities. The addition of new services would fall under
improving Cloudomate. For PlebNet to function it only needs a hand full of available services and at
the start of the project these were already implemented. So it is not necessary for the functionality
of PlebNet to implement this feature. However it could be done afterwards by new groups that want
to improve Cloudomate.

The ability to extend the lease of the current VPS It could be possible to implement the
functionality that instead of letting the PlebNet agent buy a new VPS server it could instead choose
to extend its own lease(currently all VPS’s are leased for one month). However this would require
extra work for each VPS option to implement and there is next to no practical difference between a
PlebNet agent extending its own VPS license and a PlebNet agent buying a new VPS. So for that
reason this feature is considered outside the scope of this project.

Improve Cloudomate for standalone use The functionality of Cloudomate can be improved so
that it becomes useful for standalone use outside of PlebNet. However this would not benefit the
overall goal of the project which is to make PlebNet a fully operational end-to-end system. for that
reason this feature is outside the scope of this project.

14

CHAPTER 4

System architecture

The first step in creating a fully functional version of PlebNet is to analyse the provided system
architecture and determine the structure, as this is the core of the application. In this chapter the old
structure is analysed and the modification to the code are explained.

4.1 Old Architecture

As PlebNet lacked proper documentation regarding the code and comments were ommited, it resulted
to be quite a task to create an overview. By going through all the code, file by file, it was possible to
get a grasp of the original structure. A dependency diagram was created and is shown below.

Figure 4.1: Interpackage dependency diagram of the provided code. Blue lines indicate internal
dependencies and red lines external. Red files/packages indicate unused code. The amount of arrows
between different files indicate the amount of calls made between the files. More lines results in a
higher connectivity.

15

Figure 4.1 shows the different packages and files of PlebNet and their dependencies. The first things
to notice regarding the structure are the unused files. These can be removed completely, but were
probably left as the overview was lost.

The core python file is the cmdline.py file. This file contains 370 line of code (loc) which handles all
the calls made to PlebNet and most of it is done internally. This ranges from the complete initialisation
of PlebNet to acquiring Bitcoin balance and buying servers. The scope of this file is too broad for
a single file and the purpose of the file can only be described as being the complete functionality of
PlebNet.

It was also noted that the cloudomatecontroller was not used to its full potential. It contained
several methods which had nothing to do with Cloudomate, and lacked other methods which were
required for PlebNet. This resulted in other classes making direct calls to Cloudomate, bypassing the
controller. When Cloudomate is updated and calls are change, this means that multiple PlebNet files
are outdated and have to be adapted. If the controller is the only class with direct dependencies to
Cloudomate, it is easy to keep PlebNet up-to-date. The same applies to other external dependencies
such as Electrum and Tribler, but these lacked a controller in the original code.

The provided structure seems inadequate to use when PlebNet should be easily maintained and/or
modified. The modifications which are made will be discussed in the next section.

4.2 New Architecture

While reviewing the code written for PlebNet by the previous group, it was noted that there were
some classes which had too many responsibilities as well as some classes which were not used at all
by PlebNet. Because of these reasons, It was decided to restructure PlebNet in such a way that every
package within PlebNet would have its own responsibility and within these packages the responsibilities
per file should be clearly defined as well.

The first part of the refactoring process is to determine the new main structure: The package
devision. In the old structure the main folder PlebNet/ contained 2 packages (VPS and agent) and
multiple separate files. The agent package is kept, as its responsibilities are clear: handling PlebNet.
The core file cmdline.py is kept as well. This file should handle the commandline input. The other
files are separated or removed, which resulted in the structure shown below.

Figure 4.2: Package diagram

16

The updated structure results in a better understandable dependency diagram as well, as shown
below. The cmdline.py is still the entry of the entire system, but it is not the core anymore. Its
responsibilities are reduced to handling the input from the commandline (while running these are the
plebnet setup and plebnet check calls) and redirect the calls to the proper package/files.

Figure 4.3: Interpackage dependency diagram of the provided code. Blue lines indicate internal
dependencies and red lines external. The communication package and the dependencies on the logger
are left out for readability as they are not part of the core of PlebNet. The amount of arrows between
different files indicate the amount of calls made between the files. More lines results in a higher
connectivity.

The structure of the refactored PlebNet can be seen in the package diagram in Fig. 4.2. The
responsibility of every package is as follows:

The controller package contains the all the code which makes calls to external submodules,
in this case Tribler and Cloudomate. This way, whenever something changes in these depen-
dencies, the only code which needs to be updated is located inside the controller package. It
was decided to split up the Triblercontroller in to multiple separate controllers, as the file would
become to large (>200 lines of code). Each of the new subcontrollers (market controller,
wallet controller and tribler controller have their own specific tasks withing the com-
munication to Tribler.

The agent package contains the DNA configuration of the agent as well as the code which
makes calls to the various controllers for running Tribler and Cloudomate for buying new services.
The responsibility of this package is everything regarding the agent operations.

The clone package is responsible for installing PlebNet on the newly bought servers and
initialising this new agent. This package contains multiple bash scrips as these are used to run
before python is installed.

17

The communication package contains modules which can send messages to the real world.
For now, the PlebNet agent is able to communicate via IRC as well as create a GitHub issue
when an uncaught error occurs. This can be extended to contain modules for visualising the
current network. It should be kept in mind that this communication should be read only, as the
agents should not be altered by external parties.

The settings package contains all methods which handle the settins of the agent. These
settings include the loggin information for GitHub and IRC, and the use of the logger. These
settings are inherited from the parent node and can be set from the command line, or in the
files in the subdirectory configuration

The utilities package contains classes which are project wide used and do not belong to one of
the discussed packages above, this includes the logger and a file for project wide configurations.

4.2.1 Lower level architecture

On the file/class level the architecture did not require large refactoring as the actual process of running
plebnet can be described as a linear process: check the balance, if sufficient buy a VPS and install.
This does not require many different classes, just many lines of order code and methods.

In the provided code the class DNA was used (plebnet/agent/dna.py), which makes sense as the
dna can be seen as an instance, and while handling the cloning, there can be multiple instances of dna.
However, the calls made to this dna were done is such a manner that there were multiple instance of
dna at the same time, resulting in problems when the dna was updated, but not written to a file and
reloaded before every use. This is solved in the new version of PlebNet by using singletons whenever
a class is used. This way every alife instance is the same and updates will handled properly.
singletons usage

18

CHAPTER 5

Improving PlebNet

In this chapter, PlebNet is being discussed in detail. As mentioned before, PlebNet is responsible for
running a Tribler exit node on a VPS, earn ’bandwidth tokens’ (MBs) from Tribler and sell these for
Bitcoin in order to purchase new VPSes and replicate itself. Although the project is still in its early
stages, the long-term goal of PlebNet is to be an autonomous self-replicating organism. A PlebNet
agent should be able to make certain choices in regard to its environment, be able to adapt and
replicate itself. Because these goals are difficult to achieve, especially within a nine week time frame,
the short-term goal is to create a system that could run an exit node on servers and replicate itself.
The following sections discuss the different functionalities of PlebNet.

5.1 Initialisation

Initialisation of PlebNet encompasses the installation process of the agent, Tribler, Cloudomate and
Electrum. Because Linux VPSes are generally cheaper than Windows instances and offer more flex-
ibility in terms of server setup, PlebNet was designed exclusively for Linux servers. The Ubuntu
16.04 distribution was chosen as the default Linux distribution for development because this is the
distribution that most, if not all VPS providers offer. PlebNet is also able to run on Ubuntu 18.04
and Debian 8, and should be able to run on most Debian derivatives with some modifications. The
project is largely written in Python2.7, along several bash scripts for configuring servers.

5.1.1 Packaging

One of the challenges of installing PlebNet was that it has to be able to run on different servers. While
the Ubuntu distributions are similar, there are still slight differences in the available packages/libraries
in the Ubuntu software repositories depending on the distribution version. Additionally, not all
dependencies can be installed via Ubuntu’s Advanced Packaging Tool (APT) due to the many Python
packages needed to run Tribler. Therefore, Python’s package manager ”Pip” was used to install most
Python dependencies.

Snaps

We have researched the possibility of packaging code as Snaps[9], allowing for a more stable way
of installing PlebNet in a containerised fashion. As PlebNet now uses over twenty packages, it is
vulnerable to changes in these dependencies as a single change can be enough to stop the system
from functioning. When using Snaps, the version of the packages at the creation of the snap will be
used, resulting in a single package created specifically for PlebNet. Unfortunately, Snaps works by
mounting a virtual filesystem which will not work on most VPSes due to restricted access as can be
seen in Fig. 5.1

19

Figure 5.1: The virtual filesystem could not be mounted on a VPS

5.1.2 Wallet creation

The initial version of PlebNet used the Electrum wallet library directly for creating a wallet. After
trying to make asks and bids on the Tribler Marketplace, it gave an error that a Bitcoin wallet had
to be created first. After some research, it became apparent that the wallet was not linked to Tribler
and Tribler was unable to use it. Because we could not figure out how to link them, we decided to use
the functions within Tribler for creating new wallets. This also solved the issue of having Electrum
as a direct dependency for both PlebNet and Tribler, as Tribler also uses Electrum to create a wallet.

curl -X PUT http://localhost:8085/wallets/BTC --data "password=secret"

curl -X PUT http://localhost:8085/wallets/TBTC --data "password=secret"

With these PUT requests both Bitcoin and Testnet Bitcoin wallets can be created via the Tribler web
API. With the wallet now being created via Tribler, it is also possible to

5.2 Trading

When the agent has earned MBs by running as an exit node it needs to sell these on the Tribler
marketplace for Bitcoin. In 2.2.2 the commands of the Tribler marketplace where explained. And
these commands still worked and where not changed during the Project. What was changed is that
a market strategy had to be implemented in PlebNet this market strategy determines when PlebNet
should sell its MBs. The current strategy implemented is a very basic strategy. PlebNet sells by
creating asks. It regularly checks the amount of MBs it has and if it has at least one MB it will create
an ask trying to sell all its MBs. The price of the MBs is determined as follows PlebNet requests the
amount of Bitcoins it needs to buy a new VPS and this amount is divided with the amount of MBs.
This means that PlebNet is always selling all its MBs for the amount of Bitcoins necessary to buy a
new VPS no matter the amount of MBs. After the ask is created a timestamp is stored in PlebNet
and PlebNet waits for exactly one hour. Now two things can happen in that hour either someone
accepts the ask and a transaction is made or the ask expires(an ask always expires after an hour).
After this hour has passed PlebNet will create a new ask trying to sell all of the MBs it has at that
point and that is the cycle of the PlebNet market strategy.

This strategy is clearly very simple and there is a lot of room of improvement to create a smarter
market strategy for PlebNet. This however was left outside of the scope of the project for two reasons.
One it would cost a lot of time to implement and while it would improve PlebNet it would not help
with the overall goal of this project which is to get PlebNet functional from end-to-end. The second
reason is the Tribler marketplace itself. It is still in early development meaning there are as of now no
buyers that are willing to trade Bitcoin for MBs and it is difficult to implement a competitive market
strategy if there are no buyers available.

As mentioned before there are no current buyers of MBs on the Tribler marketplace so to be able to
sell Triblers MBs this buyer has to be simulated with a bot. The bot works as follows: It queries
all the asks in the market, for each ask it creates a bid that exactly matches that and after that bid

20

is made Tribler will automatically create a transaction between the ask and the bid selling all MBs
from PlebNet to the bot. Currently the bot only buys with TBTC to showcase the proof of concept
of trading.

5.3 Acquiring new VPS

The key functionality of the agent is self-replication. As mentioned before, only Linux VPSes are
considered in the choosing and purchasing process. Cloudomate is used to purchase new VPSes, the
user information needed for purchase is provided by PlebNet which generates somewhat believable
identities for its children.

5.3.1 Purchasing

As the server is initialised, the agent chooses which server will be bought for the next child. While the
agent is earning MB’s and trading them for actual Bitcoin, it keeps checking Cloudomate to determine
the current price for the previously chosen VPS and the transaction fee.

Once enough Bitcoin is accumulated, the agent approaches Cloudomate to attempt and purchase.
As Cloudomate was updated and refactored before the initialisation of this project, many of the
dependencies for this approaching were broken. The first step was to restore the communication
between PlebNet and Cloudomate. This also included the centralisation of the dependencies in a
specific Cloudomate controller which handles all communication and dependencies between these two
programs. This should prove useful in the future when one of the applications is updated, as only one
bridging connection should be restored. As the dependencies were fixed, the first purchases could be
made.

curl -X POST http://localhost:8085/wallets/BTC/transfer --data

"amount=0.3&destination=xxxxx"

As the wallet used is now created via Tribler, PlebNet has its own wallet class which it passes on to
Cloudomate for purchasing VPSes. This wallet uses the POST request above for transferring money
to the specified Bitcoin address.

5.3.2 Identities

The purchase of an VPS is fully handled by Cloudomate. It requires the availability of sufficient
funds and an user identity which is used provide the information for the user details such as a name
and an address. The parent node creates this identity for its child and uses it to purchase a new
VPS. Creating one single account for the entire network would also result in a Single Point of Failure
(SPoF), which could easily take down the network in case the account is banned.

During the course of the project the agent was banned multiple times and some of the purchases
were dennied. Most of the time this had to do with the fact that the same VPS host was approached
with a significant amount of requests from a single ip address during the implementation of a new
host. This will not pose problems for the PlebNet network, as a single agent (represented by a unique
ip address) will not be able buy dozens of new VPSes per day.

An agent is not able to reuse an email address for a new purchase, as the VPS host will notify that
there already exists an account with that email address. This is email is a requirement for purchasing,
but it is solved by using a functionality of gmail. By using a single gmail address, for example
plebbot@gmail.com and using the appendix +[randomstuff] an infinite amount of new emails can

21

be generated, which all send the mail to the original plebbot@gmail.com, while the servers do not
recognise them as being similar. The [randomstuff] is chosen to be the username of the newly
created instance. This username is generated by adding the first and lastname from the identity. As
these names are randomly picked from a large database in the faker package of python, these can be
considered to be unique. Some providers, such as CrownCloud, checked their sales manually and still
found out that we were buying automatically. As shown in Fig. 5.2

Figure 5.2: CrownCloud asking questions due to large amounts of purchase attempts

This however, occured as the implementation in Cloudomate was tested. In real life this situation
would only occur if a single agent buys multiple servers a day of the same host.

5.3.3 Modifying DNA for the new child

This phase of the purchasing results in an update for the agents’ DNA. When a purchase is made
succesfully, the gen for the provider is increased with a certain rate (set in the dna.py file). The
opposite happens when a purchase is not successful. The exact influence of the mutation algorithm
on the survival probability should be investigated, but did not fit whitin the time reserved for this
project.

Accessing the new VPS

If the purchase is successful, Cloudomate returns the IP address of the new VPS and its root password.
The server is than added to an internal list with available servers. As it takes some time for the server
to be initialised by the host, the agent keeps trying to log in onto the new server every iteration.

5.4 Cloning

After acquiring a new server, the agent will attempt to gain access to the server. When the server is
online, the agent will start installing a new version of PlebNet and initialise a new agent.

5.4.1 approach new vps

During the purchase of a new VPS, cloudomate returns the root password and the ip address of the
newly acquired server. This is stored in the configuration file (Child DNA.json) and this can be used
to log on into the new server via ssh. The first code to run on the bash of the new agent is defined
in the create-child.sh file. This creates the required directories and install the proper certificates.
This file contains all contact between the parent and the child node. The final step is to download
the latest version of the install.sh file from GitHub and and run it.

22

5.5 Monitoring

As the program is running headless on a distant machine, inaccessible and password protected, it is not
possible to find information regarding its status and progress. This also means the once the software
is deployed on a server, it is unknown whether or not PlebNet keeps running or died somewhere in
the process. Implementing a proper monitoring strategy allows for observation and perhaps even
interaction with the online agents.

5.5.1 Legacy communication

The initial version of PlebNet used both email and Twitter[10] for communicating with the outside
world. Email was used to send data such as the server configuration of the agent as well as Tribler
related information such as upload/download numbers. The way email communication was imple-
mented was trough a mail server which belonged to one of the developers of PlebNet. Having no
access to this mail server, we looked into using the google mail server but it required each agent to
be authenticated. For this reason we decided to remove the means of communicating through email.
Twitter was used to send a message upon spawning a child. The downside of using Twitter is that it
does not provide two-way communication and it is has scalability issues, when the network consists
of a large number of agents each sending its status, it will flood the Twitter feed. For these reasons
we decided to remove the Twitter communication module as well.

Whenever a new server is acquired, the host sends an email with the specifications to an email
address. This email address can be chosen to be accessible by the person who installed the initial
bot and provides some information regarding the clone speed of the online servers and the amount of
online agents. However, it does not notify anyone if the server is banned or runs into other trouble
such as runtime errors. This can be solved by implementing a better notification strategy.

5.5.2 IRC

An example of a solid communication network is Internet Relay Chat, or IRC[11]. This protocol is in
use since 1988 and still has hundreds of thousands of users. IRC works by setting up a connection to
a server node and once the bot is on, it can join a certain channel. As long as the IRC client is online
and responsive to PING messages, it is notified about all messages in its channels. This means that
all agents can join a chosen channel and provide information in heartbeats. This way it is possible
to keep track of the still alive agents. As a new agent is installed it can send information regarding
its DNA and configuration. By sending these notifications to a public chat, it is possible for anyone
to keep track of the events in the botnet. This also prevent single points of failure in the network.
Contrary to sending messages to a single access account, which could be lost.

23

Figure 5.3: IRC communication showing the usage of the commands !host, !alive and !init

Another useful feature of IRC is the ability to send messages not only to channels, but also to
specific users. As an agent joins an IRC server, it generates a nickname, plebbot<number> with a
random number. Other users in the same channel are notified about this join and can respond to it.
This method allows for asking certain information about configuration or upload/download numbers
regarding Tribler. The following methods are implemented:

• !alive asks for a heartbeat

• !host asks for the host information

• !init asks for information regarding the initialisation of the agent

• !MB wallet asks for the MB wallet address

• !BTC wallet asks for the BTC wallet address

• !TBTC wallet asks for the TBTC wallet address

• !MB balance asks for the MB balance

• !BTC balance asks for the BTC balance

• !TBTC balance asks for the TBTC balance

• !matchmakers asks for the number of matchmakers connected

• !uploaded asks for amount of MBs uploaded

• !downloaded asks for amount of MBs downloaded

• !helped asks for the amount of peers helped by the agent

• !helped by asks for the amount of peers that helped the agent

These commands can be send to all online agents by posting in the PlebNet channel or to a specific
agent by sending a private message. New commands can be added easily in the ircbot.py file, but
it should be kept in mind that these commands should not alter the agents. When it is possible to
alter the configuration or the behaviour of the agent externally, the agent becomes dependent and
other actors can change settings as well. This feature is added for monitoring purposes and added
commands should oblige to this.

24

5.5.3 Git issues

The previous method of monitoring does allow for live communication, but it does not provide the
means to properly handle errors which occur during the live stage of the PlebNet agents. Git issues
are an efficient way to handle these errors. For each error which occurs, the agent should create an
git issue and post the relevant information. This information should include information regarding
the settings of the agent, the error and the event resulting in the error. This is done by including the
error traceback and the full log of the agent. This way the behaviour of the agent can be analysed
and improved for further generations of the network. An example of such an issue is shown in Fig.
5.4.

Figure 5.4: An automatically created git issue

The git issuer has to be enabled in the PlebNet configuration. A GitHub account is required and
the proper repository has to be set. This can be done manually in the configuration, or using the
command line setup:
plebnet conf setup -gu <username> -gp <password> -go <repo owner>

-gr <git repo> -ga 1

25

5.6 Additional

5.6.1 VPN

As additional functionality, a VPN is installed on the server. The VPN protects the server from
DMCA claims to which most providers unfortunately respond by shutting down the server. The VPN
purchasing functionaly was previously implemented in Cloudomate, but the process of purchasing and
installing by the agent still needed to be implemented.
Installing a VPN as it turned out posed a few difficulties. Firstly, in order for a VPN to be installed on
a VPS, TUN and TAP devices need to be enabled. The TUN(neling) interface is a virtual network de-
vices work allowing programs such as OpenVPN to attach to it (ref) https://www.kernel.org/doc/Documentation/networking/tuntap.txt
. TUN/TAP is generally not enabled on servers by default by providers, and may not even be allowed
by some (Fig. 5.5). Furthermore, enabling TUN/TAP happens in the control panel of the provider,
which has a different set of credentials than the client area (where server IP and statistics can be
found). Accessing the control panel includes having to be able to access and parse the agent’s email
containing the credentials. Finally, Cloudomate has to be modified to access the control panel and
change the TUN/TAP options.

Figure 5.5: The TUN/TAP option on Linevast’s control panel.

26

CHAPTER 6

Cloudomate

In this chapter the major changes to Cloudomate are discussed. As mentioned before, Cloudomate is
responsible for providing the VPS and VPN options to PlebNet as well as handling the purchasing of
these servers. The ultimate goal of the project is to make PlebNet fully operational and therefore the
focus of this project is on improving PlebNet and not on improving the functionality of Cloudomate.
However to make PlebNet fully operational certain changes have to be made to Cloudomate.
The changes are classified under four categories. The first category is to fix the random user generation
of Cloudomate, The second category is fixing the VPS options. The third is to have Cloudomate give
its VPS options dynamically to PlebNet. and the final change is to add testnet support to Cloudomate.

6.1 fixing random user generation

For Cloudomate to be able to buy a server it needs to fill in a user form. For it to be able to do that
Cloudomate needs user information. A user could give its information to Cloudomate or Cloudomate
could generate random user information for them. This second option is the option that PlebNet uses.
However there was an error where Cloudomate would create a random user’s data use it to buy a
server but then Cloudomate would not save this user information. This was a problem because the user
information generated includes the root password and username needed to gain access to the bought
server. This meant that Cloudomate would buy a server but would not have access to it. Normally
this information can be salvaged because most VPS providers sent the username and root password in
an email however the email address would also be randomly generated by Cloudomate. This problem
was solved by making by storing the user information in a configuration in a configuration file which
can then be read when the information is queried by either the user or the PlebNet agent.

6.2 fixing the VPS providers

The ultimate goal of Cloudomate is to buy VPS providers for PlebNet to use as agents. However many
of the VPS providers implemented in Cloudomate have made changes to their services. Examples
of these changes would be changing the layout of their websites or changing the Bitcoin gateway
used for the transactions. These changes make it impossible for Cloudomate to buy VPS servers of
these providers. At the start of the project Cloudomate had six VPS providers implemented these
were: Linevast, Blueangelhost, ccihosting, crowncloud, pulseserver and undergroundprivate. Of these
six only Blueangelhost still works for Cloudomate making PlebNet completely reliant on one VPS
provider. And if that provider were to make changes PlebNet would not be able to replicate itself
anymore. So to prevent this from happening the other five providers have to be fixed or in the case
of them not being fixable a replacement provider has to be implemented.

6.2.1 unfixable providers

First the providers that aren’t fixable will be discussed. These providers are Ccihosting, Pulseserver
and Crowncloud. Ccihosting and Pulseserver are not fixable for the same reason and that reason is that

27

they both use Coinpayments as their Bitcoin transaction gateway. This gateway made a major change
during this project that makes it unusable for a program like Cloudomate. That change is how it han-
dles invoices. The way invoices work is as follows after Cloudomate has ordered a VPS server an invoice
is made on the providers corresponding gateway. To make the payment Cloudomate has to go to the
gateway url with the corresponding invoice. from that web page Cloudomate can collect the address
and the amount needed for the payment. With this information Cloudomate can make the purchase
and acquire the VPS server. The way Coinpayments handles this invoice url is fundamentally different
from different gateways. Take Bitpay as an example their the invoice can be added to the url itself in
and an invoice url would look as follows https://bitpay.com/invoice?id=exampleID. In Coinpayments
this isn’t the case their invoice url’s look as follows https://www.coinpayments.net/index.php. How-
ever if you just go too that url it will direct you to the main page of Coinpayments. here the invoice
id is given as a secret token and the page has to be accessed with that token to be able to see the
invoice. And the python library Cloudomate uses to access these urls beautifulsoup doesn’t have a
way implemented to access these urls with a secret token. So for that reason if Cloudomate makes an
order to Ccihosting or Pulserver it isn’t able to access the invoice url and therefore it cannot retrieve
the address and amount it needs for the transaction. So for that reason Cloudomate is unable to use
these two providers.

The other provider Crowncloud was not fixable for a different reason. And this reason was also a
problem the previous development group had issues with. This issue is that it is possible to buy a
Crowncloud VPS server however Crowncloud doesn’t give the buyer an option to set the root pass-
word during purchasing. So when Cloudomate purchases a Crowncloud instance it generates and
saves a root password however Crowncloud doesn’t allow setting a root password during purchasing
and creates its own root password. This means that the root password in Cloudomate is not correct
and won’t be able to be used to access the bought Crowncloud VPS server. However Cloudomate and
PlebNet are not aware that this is the case so they will try to access the VPS server with a wrong
password and this will cause errors.

To change this one of the following would need to be implemented. Crowncloud sends an email with
the root password this email would have to be scraped either to retrieve the root password and set
this password in Cloudomate or the email would have to be scrapped to find a link to the Crowncloud
control panel. In this control panel a new root password for the bought server could be set but this
would require new scraping and form filling methods that are not implemented in Cloudomate. So
either way to fix Crowncloud many methods had to be written specifically for this VPS provider and
for that reason it was decided to leave Crowncloud and focus on other VPS providers.

6.2.2 fixed and new providers

Now the VPS providers that have been fixed and the ones that have been newly added will be dis-
cussed. These providers were Linevast, Undergroundprivate and a new provider called 2-Sync. First
Linevast will be discussed. Linevast was relatively easy to fix. The were fully operational for most of
the project however during the project Linevast decided to change its main web page which listed all
its VPS options. So this made it impossible for Cloudomate to read the VPS options which include
the purchase URLs for each option. And without these URLs it is impossible for Cloudomate to
buy the VPS options. After repairing the Scrapping methods Cloudomate was able to retrieve these
options again and after that Cloudomate was able to buy Linevast servers again.

The next provider fixed is Underground private they had changed their Bitcoin gateway from blockchainv2
to spectrocoin. Too fix this two things had to be done. First when a VPS server is ordered the link to
the gateway isn’t automatically given. The page has to be loaded first and after five seconds of loading
the web page is automatically sent to the gateway invoice. However Cloudomate uses Beatifulsoup
for webscraping and that library is a static browser so automatically loading doesn’t work. Luckily

28

once an order is made a button is displayed on the webpage and with a simple on click function
Beautifulsoup can go to the gateway. The second thing that had to be changed was once Cloudomate
could access the invoice url it had to scrape the relevant inforamtion. After implementing this it was
possible to buy VPS servers from Undergroundprivate again.

The final provider is one that wasn’t fixed but was added is 2-Sync. 2-Sync is a website that offers not
one but many types of VPS provider however in Cloudomate only the Ukrainian VPS provider was
implemented. 2-Sync itself was chosen because the website design and forms used are similar to other
already implemented VPS providers so implementing 2-sync itself did not cost a lot of extra work.
Only the Ukrainian option was chosen because it uses a simple self designed gateway from which the
relevant information could be easily scraped 6.1. This wasn’t the case for many other 2-Sync providers
which used more complicated gateways with on example being Coinpayments. The implementation
of 2-Sync itself went relatively easy without issues.

Figure 6.1: 2-Sync gateway

At the start of the project six VPS providers were implemented now after fixing and adding VPS
providers there are now four fully functioning VPS providers in Cloudomate. These are Blueangelhost,
Linevast, Undergroundprivate and 2-Sync.

6.3 Dynamically sending VPS options to PlebNet

The problem with the delivered version of the previous development group was that the VPS options
where hard coded both in PlebNet and in Cloudomate. This is an issue for the following reason. If
a provider were to be removed from Cloudomate or a new provider were to be added PlebNet would
not be aware of that unless a developer manually added updated the options in PlebNet. This could
lead to instances were PlebNet is unable to buy from certain VPS providers or tries to buy from a
provider that is no longer supported by Cloudomate. To fix this issue Cloudomate had to directly
send its options to PlebNet so that when the providers are changed PlebNet’s VPS provider list is
automatically updated. The way this is implemented is quite simple. There is a list of working
providers in Cloudomate and PlebNet can request this list via the Cloudomate controller. And with
this list PlebNet will always stay up to date with Cloudomate.

29

6.4 Adding end-to-end testing support

One of the major additions to PlebNet is implementing end-to-end testing. However part of the
end-to-end process of PlebNet is buying a server through Cloudomate. So to implement end-to-end
testing certain additions had to be made to Cloudomate. These additions are twofold. The first being
the implementation of buying proxmox containers these containers are used to mock the VPSes that
PlebNet has to run on. This is by adding proxhost to the VPS providers. proxhost is a mock website
of a VPS server provider. This website Add screenshot of website is used by Cloudomate
like any other. Cloudomate scrapes the web page to gain VPS options and purchase the proxmox
container. After this mock payment that goes through the Bitpay gateway the proxmox container is
initialised for PlebNet to use.

The second addition is adding testnet support testnet is an alternative currency provided by Bitcoin
that is used exclusively for testing purposes meaning the currency used has no real value. But to be
able to make transactions with this new currency Cloudomate had to be updated. The updates were
relatively minor. If Cloudomate is used standalone the user has to provide a –testnet command in the
command line. After this Cloudomate sets a universal variable which means that Cloudomate will
only allow the user to buy form the proxhost provider. And all payments will use testnet and not
Bitcoin. If PlebNet creates a testnet wallet it will set the same universal variable. Cloudomate will see
this and again only allow PlebNet to buy from the mock proxhost provider with testnet coins. With
these changes if PlebNet is end-to-end tested Cloudomate will mock the purchasing of a server and
deliver the proxmox container back to PlebNet making that part of the end-to-end test possible.

30

CHAPTER 7

Quality assurance

this chapter is still work in progress

After refactoring PlebNet, both PlebNet and Cloudomate had to be tested. As our main focus was
on PlebNet, we decided to fix the existing failing tests of Cloudomate and not write any new tests
for Cloudomate. PlebNet was not tested at all, so we decided to test functionalities of PlebNet
independent of each other as well as end-to-end test the whole system. Keeping track of the project
was done using Jenkins as a continuous integration tool. [12]

7.1 Unit testing

7.1.1 Testing Cloudomate

Certain tests that used to work on Cloudomate failed at the start of this project. So one of the early
priorities was to fix these tests and make sure that the Cloudomate Jenkins build would succeed. The
tests that have been successfully fixed are as follows: fixed the way that bitcoin urls are split up, fixed
the list options method for AzireVPN, Made it so that the email used does not end in @email.com this
particular address was blocked by multiple vps providers and fixed the command line test class. This
class had an issue with mocking which caused other test classes to fail. The tests that haven’t been
able to be fixed are as follows: The tests for the Coinbase gateway failed this is because the test URL
wasn’t supported anymore. To fix this a new test URL had to be set up but this wasn’t done because
none of the providers used the Coinbase gateway anymore so that class and its corresponding tests
were considered obsolete. The tests that gave the most trouble were the VPS purchase tests. These
tests scrape VPS providers website make an order, fill in the user form and scan the bitcoin payment
gateway for the details necessary to make the transaction. The tests didn’t actually purchasing these
VPS servers. Because the tests were reliant on the VPS providers websites these websites had to be
consistent for the purpose of the tests working. However for many providers this wasn’t the case.
websites layouts were changed, as mentioned in the gateways section multiple providers changed from
bitcoin payments, increasing the difficulty of scraping for example by adding new on click buttons and
some of the VPS providers websites where down for up to a day at a time which makes testing these
providers impossible. This resulted in many difficulties often resulting that every day one of these
tests would fail for a new reason. So these tests are now skipped because the websites they rely on
were considered to be too variable.

7.1.2 Testing PlebNet

As there were no tests written for PlebNet by the previous group and since we were planning to change
the structure of PlebNet, we decided to wait with testing until the new structure was implemented.
After refactoring, it became easier to test PlebNet as calls to dependencies were handled by a single
dedicated controller. The behaviour of these controller functions could now be mocked and thus
simplify testing. Problems while testing !!

31

Jenkins

As stated earlier, Jenkins is the framework used for continuous integration. This includes running all
tests with each pull request as well as creating a coverage report with each build. Jenkins is chosen,
as the Tribler organisation uses it already and the previous group used it for Cloudomate as well.
This way all projects are maintained by a single service. While setting up Jenkins, there were some
problems we ran into. Our project is intended to run as root and uses several directories for storing
data such as log files and configuration files. We had to be sure that these directories are correctly
called. As well as creating a virtual environment on Jenkins in order to install our dependencies in.
As we have never worked with Jenkins before, setting this up took some trials. Fig. 7.1 shows the
coverage percentage per build. As can be seen, there are some drops in coverage which are caused by
the problems described above.

Figure 7.1: Coverage percentage per build

The total coverage we have achieved for PlebNet is 76% . More details can be seen in Fig. 7.2.

32

Figure 7.2: Coverage report on Jenkins

7.2 End-to-end testing

To properly test whether PlebNet performs well from beginning to end, a Proxmox server is used to
to emulate VPS providers. PlebNet is placed on one of the Proxmox containers. The remaining free
servers are provided by Cloudomate as options under ’ProxHost’ and can be bought through the Bitpay
gateway using testnet Bitcoins. The motivation behind such an end-to-end testing system is that it
allows for easier testing opportunities. Actual providers are quick to shutdown their servers when
DMCA claims are filed, making it difficult to test anything related to Tribler. Furthermore, having to
test PlebNet by purchasing real servers is not a cost efficient and stable way to develop. In addition to
providers shutting down servers, providers are also quick to change their web layout, making purchases
via Cloudomate unreliable when the focus is on PlebNet. Although repairing Cloudomate’s parsing
of hosts is a largely trivial task, it is another issue that this system helps minimize.

33

7.2.1 Proxmox

The Proxmox server is managed via ansible scripts. Using ansible, creating, cloning and restoring
containers can be done automatically. The backend consists of three parts: the web api, used for
managing bought containers; the Flask application and payment controller and the ansible scripts.
The ansible scripts contain tasks that create Debian or Ubuntu containers and set up the network
including peervpn.
Peervpn is used to create a network in which the containers can be assessed from outside the network
by peers that are on the same VPN. The reason for this is because the containers are behind a single
ipv4 (NAT), while ip routing can be used to gain assess to individual containers, assigning a unique
ip address to each container more realistic as far as trying to emulate a real provider.
The Flask application provides entrance to the management section and contain routes which are
assessing to cloudomate allowing for purchase and status requests from cloudomate.

Figure 7.3: Overview of the Proxmox server. Containers are connected with each other through
PeerVPN.

7.2.2 Bitpay testnet

Bitpay offers a testing service (test.bitpay.com) which makes use of testnet Bitcoins. With a merchant
account, invoices can be created by ProxHost. These invoices can be paid using the Electrum wallet
in testnet mode. To make use of the API Bitpay provides, the BitPay library for Python2.7 was used.
Each machine hosting ProxHost needs to first have a token verified from the Bitpay control panel.

7.2.3 Web API

A minimal web API was created to destroy containers bought by Cloudomate. Additionally, containers
for testing can be created and destroyed.

7.3 Maintainability

7.3.1 SIG

34

Figure 7.4: A simplified UML diagram of the end-to-end system. The Flask component ”Connect”
allows Cloudomate or web users to purchase containers. When a purchase is made, ProxOrders
creates an invoice which Connect returns as a HTTP response. ProxHost can either create or destroy
containers by creating an AnsibleRunner object with the appropriate parameters.

35

Figure 7.5: The minimal web API provides an easy way to destroy and create containers.

Figure 7.6: The testnet Bitpay merchant page. Invoices can be created and paid in testnet Bitcoins.

36

CHAPTER 8

Conclusions

At the end of a project it is always good to look back and conclude was has been done. This chapter
does exactly that and it also discusses what can be improved in PlebNet in the future.

8.1 Conclusions

The Must haves are all implemented. As all the must haves which were determined at the start
of the project are met, the minimal requirements are accomplished. The system can now be used as
it is end-to-end operational with testnet and with actual Bitcoin. This results in a usable version of
PlebNet which can keep it self alive as it earns enough MB while running as an exit node and is able
to trade these for sufficient BTC funds to acquire new VPS instances for its children. The network
is stable if these requirements are met. For now the incentive is too low for the market to provide
enough BTC to keep PlebNet running, but this can be simulated by the buybot which is implemented
as well. As the idea behind the Tribler market work out, the network should become more self-reliant.

The monitoring of PlebNet is also improved as the IRC can be used to ask for information from the
online agents. This can be used to monitor the stability of the system as a whole or a specific agent
running on a specific server. This provides useful insights in the effectiveness of PlebNet in providing
sufficient exit-nodes for Tribler to be anonymous.

The continuous integration was also accomplished and can be used to verify the behaviour of
PlebNet, as it verifies that all tests succeed.

The Should haves are all implemented. The first two were regarding the project work flow:
improving documentation and maintainability. This should allow the next generation of programmes
who work on PlebNet to have a better start and understanding of the code. This is mostly accom-
plished by implementing a clear structure for PlebNet and add comments and other documentation
such as UMLs. As the structure is also discussed in this report, it should be possible to retrace our
steps in decision making regarding the structure.

The Could haves are mostly implemented. The option to live monitoring and to create GitHub
issues are added to the features of PlebNet. This allows PlebNet to provide useful information to
improve the system. The work done to make use of Proxmox for end-to-end testing in a controlled
environment also allow the possibilities to test certain behaviour, while being in full control of all the
restraints.

The unimplemented Could haves were untouched due to the time restraints. The transferring of
funds at the end of the life-cycle or another end of the bot are to be considered carefully. This will
often mean that there should be some form of communication between bots, which is undesirable in a
distributed system, as it is uncertain whether the other party can be trusted. This strategy requires
an extensive research and decision making which did not fit in the time for this project. The same

37

applies for the genetics part of PlebNet. It allows the implementation of multiple strategies, but
should be tested on their effectiveness on staying alive as a system.

The packaging of PlebNet was abandoned as it was considered unstable and heavily dependent on
the VPS settings of the providers. The current method, using the install scripts, provides enough
stability and can easily be adapted or extended.

The Won’t haves are mostly left alone. During the project however, it was decided that new
VPS hosts had to be implemented in order for the system to be stable enough, as most of the
originally implemented providers did not work anymore. This resulted in the addition of two more
hosts to Cloudomate.

8.2 Ethical Considerations

Peer-to-peer networks have existed since the early years of the internet; Napster, Kazaa and Limewire
were among the most popular file-sharing services. Nowadays, Bittorrent is used worldwide and many
variants of Bittorrent clients have been introduced such as qBittorrent, µtorrent, Transmission and
streaming clients such as Popcorn-time and Tribler.

The main controversy surrounding P2P networks is that most content shared within these networks
is copyrighted material. While the question whether sharing copyrighted material is ethical or not is
a long discussion in and of itself, it is perhaps fair to say that the taboo surrounding P2P networks
that allow people to download movies, music, software and literature without paying is deserving.

However, a P2P network is in its purest form just a file-sharing network. Similar to a village in
which people can gossip and share their possessions, such a network is a way to exchange information
in the digital age. In a similar vein, when the library containing all the books in the village is burned
down, almost all information is lost. However, if the villagers store their books in a decentralised
manner (storing books in their own homes), the information is much more likely to be preserved.
These arguments are not to oppose public libraries, but are rather to illustrate the benefits of P2P
networks; it is for example not uncommon for people to turn to torrents for content that would
otherwise be impossible to attain, be it due to the content not being available for purchase anywhere
or due to one’s financial circumstances. With P2P networks, communities consisting of people from
all over the world can be formed, allowing people in developing countries for example to have access
to education.

As mentioned in the introduction, free speech and fair use of digital content are being threatened by
upcoming laws. While the arguments for these laws are to protect the creators of intellectual property
(IP) such as movies and music, the line between fair and unfair use of digital content is difficult to
draw. Following the trends of these laws, it is not hard to imagine a world in which information
sharing is strictly monitored, stunting the growth of academic fields and personal development.

Tribler allows for peer-to-peer file-sharing while preserving the user’s anonymity. Although P2P
networks and the torrenting world in general are resilient, which is apparent when one thinks of the
resilience of The Pirate Bay (ref) https://torrentfreak.com/the-pirate-bay-remains-on-top-11-years-
after-the-raid-170531/ , the need for a healthy community of users is important for these networks.
Specifically, in the case of Tribler which protect its users, a large network of exit nodes is needed due
to its Tor-like framework.

38

PlebNet decreases the need for users to volunteer as exit nodes and therefore protects the privacy
of Tribler users. The government and big corporations should not be able to censor or limit our use
of the internet. If we were to live in a society in which free speech and information are not privileges
but rights, resilient P2P networks with anonymity is imperative. For this reason, we believe that this
project in conjunction with Tribler is ethical.

8.3 Discussion

Between the start of the project and the end a learning curve was noted. For most of the team
members it was new to program for Linux and fully use this operating system. The working with
Linux resulted in some new approaches which had to be understand, such as the full use of the terminal
and the problems regarding dual boots and Virtual boxes did not speed up the initial phase. This,
in combination with the lack of documentation of the provided code, resulted in a chaotic start. The
goal was clear, but there was so much to achieve before PlebNet would be anything like the goal.
This resulted in quite some struggles during the start of the project, but after creating UML’s of the
structure and creating our own documentation, the lack of structure became more clear. Refactoring
resulted in a clearer overview and a better task division between the group members.

Some remarks regarding the origanization of the project have to be made. First of all it took some
time to find an optimal and efficient way of using sprints. In the beginning the effort estimation were
to optimistic and each member received too many tasks to perform. During the project this was
improved and the sprints were better executed. This resulted in the tasks being performed in order
based on their priority. The sprints were finished on Monday morning, followed by the start of the
next sprint and every Friday the progress was discussed to see determine which tasks required more
attention. This resulted in a pleasant cooperation.

The use of programming tools such as Github was done properly. Initially, every member had its
own fork, but this resulted in an overload of merges and made it hard when multiple members were
working on the same code, resulting in many merge conflicts. Therefore it was decided to create
one main fork for each module (PlebNet, Tribler, Cloudomate) and use that one to merge into. The
handling of merging and pull requests was done in such a way that all pull requests were first checked
by another team member, before accepting. This worked well for the group and the projects.

All in all, in can be concluded that a lot was learned over the course of the project, regarding
organisation skills as well as new programming skills.

8.4 Further work

PlebNet in its current form is far from finished. The basics work and PlebNet is able to run and
maintain itself, but this does not mean that there is no future work to be done here. First of all the
monitoring can be expanded. More methods can be added to provide a better insight in the state
of the agents. The use of Twitter and other social media can also be implemented for promotional
purposes. Another good addition would be to create a visualisation tool which displays the tree
structure of an online network and the data flowing through.

In order for the system to be stable, it requires multiple VPS and VPN providers to be implemented.
As a change in interface of the purchasing pages can easily remove a provider from the available list in
Cloudomate, it is required that this list is expanded further. Neglecting to do so would leave PlebNet
inoperable.

39

The trading can be improved as well. Currently the bots aims to sell all MB to be able to buy a new
VPS after a single deal. Multiple strategies, some even including spending Bitcoin on MB whenever
the price is right, can be tested and implemented to increase the life expectancy of the network. The
BTC earned by a bot which is about to die is lost with the current implementation. This could be
sent to a single child, or even spread out over multiple children.

The genetics part of PlebNet also deserves an update. The current algorithm is low-level and it
takes many iteration before the DNA changes significantly to favour one provider over another. Using
proxmox it can be evaluated what the effect of different update rates is and how they would affect
the survival rate of PlebNet. It would also be interesting to look at more genes beside the provider
choosing. For example the usage of new newest version of PlebNet or a known-to-be-stable version.
Or using different trading tactics based on DNA. This is an interesting field and can help greatly to
improve PlebNet.

The agents should also be better armed against being banned to use a certain provider. The
purchasing behaviour could be more human-like by automatically creating a new email address with a
trusted extension (@gmail for example). Having a unique ip for every bot and a unique email address
for each sale. This would make it hard to detect automated purchases.

40

Bibliography

[1] Toezicht op aftapwet is onder meer gericht op ’sleepnet’
en delen van data. https://tweakers.net/nieuws/138031/

toezicht-op-aftapwet-is-onder-meer-gericht-op-sleepnet-en-delen-van-data.html.
Accessed: June 11, 2018.

[2] Net Neutrality Has Officially Been Repealed. Here’s How That Could Affect You. https:

//www.nytimes.com/2018/06/11/technology/net-neutrality-repeal.html. Accessed: June
11, 2018.

[3] Article 13 could ”destroy the internet as we know it”: What is it, why is it contro-
versial and what will it mean for memes? http://www.alphr.com/politics/1009470/

article-13-EU-what-is-it-copyright. Accessed: June 11, 2018.

[4] What Is Fair Use? https://fairuse.stanford.edu/overview/fair-use/what-is-fair-use.
Accessed: June 11, 2018.

[5] Tribler - Privacy using our Tor-inspired onion routing. https://www.tribler.org/. Accessed:
April 24, 2018.

[6] Electrum Bitcoin Wallet. https://electrum.org/#home. Accessed: April 27, 2018.

[7] N.C. Bakker, R. van de Berg, and S.A. Boodt. Autonomous Self-replicating Code. June 2016.

[8] J. Heijligers, R. van den Berg, and M. Hoppenbrouwer. Plebnet: Botnet for good. June 2017.

[9] Snapcraft. https://docs.snapcraft.io/snaps/. Accessed May 17, 2018.

[10] Twitter. https://twitter.com/?lang=nl. Accessed: June 15, 2018.

[11] mIRC: Internet Relay Chat client. https://www.mirc.com/. Accessed: May 2, 2018.

[12] Jenkins. https://jenkins.tribler.org/job/GH_PlebNet/.

41

APPENDIX A

Class Diagram

42

APPENDIX B

SIG feedback week 5

Beste,

Hierbij ontvang je onze evaluatie van de door jou opgestuurde code. De evaluatie bevat een aantal
aanbevelingen die meegenomen kunnen worden in de laatste fase van het project.

Deze evaluatie heeft als doel om studenten bewuster te maken van de onderhoudbaarheid van hun
code en dient niet gebruikt te worden voor andere doeleinden.

Mochten er nog vragen of opmerkingen zijn dan hoor ik dat graag.

Met vriendelijke groet,

Dennis Bijlsma

[Feedback]

De code van het systeem scoort 4.1 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Unit
Interfacing en Unit Size.

Op dit moment is de score dusdanig hoog dat we geen concrete aanbevelingen voor verdere verbetering
hebben, hulde! Wel is het zaak om ervoor te zorgen dat jullie dit niveau tijdens het vervolg van het
project vast weten te houden, en al helemaal op het moment dat de deadline in zicht komt.

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid tests blijft nog wel wat
achter bij de hoeveelheid productiecode, hopelijk lukt het nog om dat tijdens het vervolg van het
project te laten stijgen.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase.

43

APPENDIX C

Project Description

The goal of this Bachelor end project is to create a Bitcoin-based entity which can earn money, mutate,
multiply, and dies. We provide a crude starting project which needs decades of further work in order
to be considered ’really’ living. This project builds upon existing code that creates autonomous life.
Two previous groups have worked on this system and their documentation can be found in the TU
Delft repository (see here and here). Recently, two groups of master students have expanded the
project.

You will create an Internet-deployed system which can earn money, replicate itself, and which has
no human control. In the past, humanity has created chess programs that it can no longer beat. The
distant future of an omniscient computer system that on day chooses to exterminate humanity in the
Terminator films is not the focus of your project. You will create software that is beyond human
control and includes features such as earning money (Bitcoin) and self-replicating code (the software
buys a server and spawn a clone). Earning money consists of helping others become anonymous using
the Tor-like protocols developed at TUDelft and our own bandwidth token designed for this purpose,
called Tribler tokens. A cardinal unanswered question is how to securely pass the wallets with Tribler
tokens and Bitcoin to the offspring servers. You Python software is able to accomplish some parts of
the following functionality:

• Earn income in a form of a bandwidth token (existing code).

• Sell these earned tokens on a decentralized market for Bitcoin or other currencies.

• Buy a server with Bitcoin or Ethereum without human intervention (see our existing PyPi
scripts).

• Login to this Linux server and install itself with code from the Github repository.

• Automatically buy and install VPN protection to hide the outgoing traffic from the servers.

The software should be able to have a simplistic form of genetic evolution. Key parameters will be
inherited to offspring servers and altered with a mutation probability. For instance, what software
version of yourself to use (latest release?), what type of server to prefer buying (quad core, 4GB mem,
etc), and whether you offer Tor exit node services for income or not. Bitcoins owned by TUDelft will
be used to bootstrap your research

44

