
TU DELFT

MASTER THESIS

MediTrail: a blockchain-based
tamper-proof auditable access log for

medical data

Author:
Angela PLOMP

Supervisor:
Dr. Johan POUWELSE

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Distributed Systems Group
Computer Science

January 7, 2019

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

iii

TU DELFT

Abstract
EEMCS

Computer Science

Master of Science

MediTrail: a blockchain-based tamper-proof auditable access log for medical
data

by Angela PLOMP

After several incident in which the privacy of patients was violated, the need for
logging of access to medical data is evident. In this master thesis, the first proto-
type is presented for a blockchain-based access log for medical data. This prototype
uses a novel blockchain to create a tamper-proof log. Patients each have their own
blockchain in which health care providers can participate as well. At any time, a
user can check the access logs of their data on the online MediTrail portal. Users can
also validate an entry by placing a digital signature. The prototype performs well
when no consensus algorithm is used. Achieving consensus with Proof of Elapsed
Time slows the system down significantly due to the needed configurations. The
prototype succeeds in providing the patient with knowledge and power over their
data in the form of a tamper-proof auditable access log.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

v

Contents

Abstract iii

1 Introduction 1
1.1 The leading use case . 1
1.2 Digitalized medical records . 1

1.2.1 History of medical records . 1
1.2.2 Data ownership . 1

1.3 Cyber crime and other concerns . 2
1.3.1 Data theft or leakage . 2
1.3.2 Privacy concerns around EMRs 2
1.3.3 Impact of the GDPR . 3

2 Problem statement 5
2.1 Barbie’s medical records in HiX . 5
2.2 Research goal . 5

2.2.1 Accountability on access . 6
2.2.2 Validation of EMR entries . 6

2.3 Research question . 7
2.4 Requirements . 7

2.4.1 Requirements for accountability and validation 7
2.4.2 Requirements from the CIA triad 7
2.4.3 Requirements for the user experience 8

2.5 Research method . 8

3 Background 9
3.1 Introduction to blockchain . 9

3.1.1 Blocks . 9
3.1.2 Tamper-proof qualities of blockchains 9

3.2 Consensus algorithms . 10
3.2.1 Byzantine Generals Problem . 10
3.2.2 Byzantine Fault Tolerant protocols 10

Practical BFT . 11
HoneyBadger BFT . 11

3.2.3 Proof-of-work-based consensus algorithms 11
3.2.4 Proof-of-elapsed-time . 12
3.2.5 Other types of consensus algorithms 12

3.3 Identity and verification . 13
3.3.1 Identities and signatures . 13
3.3.2 Self-sovereign identities . 13
3.3.3 Digital signatures . 13
3.3.4 Elliptic Curve Digital Signature Algorithm 14
3.3.5 Elliptic curve threshold signatures 14
3.3.6 Threshold ECDSA in a fully distributed system 14

vi

3.3.7 Identity-based signatures . 14
3.3.8 Schnorr signatures . 15

4 Related work 17
4.1 Access logging in current widely-used EMR systems 17

4.1.1 Chipsoft . 17
4.1.2 Epic . 18

4.2 Blockchain-based EMR systems . 18
4.2.1 Scientific work . 18

MedRec . 18
OpenPDS . 19
Healthcare Data Gateway . 19
Enigma . 20

4.2.2 Startups and industry-based projects 21
Mijn Zorg Log . 21
MedMij . 21

4.2.3 E-health in Estonia . 21
4.3 Discussion of existing systems . 21

4.3.1 Implementation details . 22
4.3.2 Fitness of MedRec for prototype requirements 23

5 System architecture and design choices 25
5.1 From requirements to use cases . 25

5.1.1 Use cases . 25
5.1.2 Use case diagram . 26
5.1.3 Integration with existing tools 26

5.2 Selection of blockchain technology . 26
5.2.1 TrustChain . 27
5.2.2 Ethereum . 27
5.2.3 Kademlia . 27
5.2.4 Novel blockchain . 27

5.3 Consensus mechanism . 27
5.3.1 Proof of work . 28
5.3.2 Practical BFT . 28
5.3.3 HoneyBadger BFT . 28
5.3.4 Proof of Elapsed Time . 28

5.4 Digital signature algorithm and implementation 29
5.4.1 Theoretical considerations on the DSA choice 29
5.4.2 Practical considerations on the DSA choice 29

5.5 Monitoring access to files . 30
5.5.1 Monitoring files on OS . 30
5.5.2 Monitoring download of files on webpage 31

5.6 Final architecture and implementation choices 31

6 MediTrail prototype general overview 33
6.1 Overview . 33
6.2 The web page . 34

6.2.1 Identification and authentication 34
6.2.2 Home page . 34
6.2.3 My files page . 34
6.2.4 My logs page . 34

vii

6.3 Blockchain and algorithms . 35
6.3.1 The blockchain . 35
6.3.2 File upload . 36
6.3.3 File signing . 36
6.3.4 File access . 37

7 Validation and performance 39
7.1 Solving Barbie’s problem . 39

7.1.1 Fulfillment of accountability and validation requirements . . . 39
Accountability on access . 39
Validation of entries . 39

7.1.2 Fulfillment of CIA triad requirements 40
Confidentiality . 40
Integrity . 40
Availability . 40

7.1.3 Fulfillment of user experience requirements 40
Easy navigation . 40
Clear information . 41
Verifiably untampered . 41

7.2 Resistance against attacks . 41
7.2.1 Sybil attacks . 41
7.2.2 Non technology based attacks 41

7.3 Correctness of blockchain . 41
7.4 Speed of MediTrail features . 42

7.4.1 Uploading files on the MediTrail portal 42
7.4.2 Signing files in the My Files list 43
7.4.3 Downloading files in the My files list 44

7.5 General discussion of performance . 46
7.6 Reflection on research methodology . 46

8 Conclusions and future work 47
8.1 Conclusions . 47
8.2 Future work . 47

Bibliography 49

1

Chapter 1

Introduction

1.1 The leading use case

In January 2018, Dutch reality star Samantha "Barbie" de Jong received acute medical
care in the Haga Hospital in The Hague (De Telegraaf 2018). Her hospitalization
was met with great interest from several media companies, who speculated about
possible causes. A few weeks later, it turned out that an abnormally large number
of Haga Hospital employees had looked into one partical patient’s files: Ms. De
Jong’s. In order to look into the files, they even ignored a warning screen. All doctors
and nurses have access to the electronic medical record of all patients currently or
previously hospitalized. Haga Hospital apologized for the incident and started an
investigation, sending an official warning to the illegitimate readers of the records.
This news resparked a debate about the merits and risks of storing medical data the
way we do.

1.2 Digitalized medical records

Medical records have existed for ages and are now not only useful for individual
patient tracking, but for research on populations as well.

1.2.1 History of medical records

One of the oldest medical documentations found is an Egyptian papyrus, dating
from 1600 BC. It contains a didactic recording of a surgery (Gillum 2013). Later, in
Ancient Greece, Hippocrates (460-370 BC), one of the most famous doctors of world
history made a big contribution to medical records. He documented many medical
case studies, notes and philosophical ponderings, bundled in the Hippocratic Cor-
pus. As the interest in natural science in general and human anatomy in particular
rose during the 17th and 18th century in the Western world, more and more records
were kept on the suspected origin and possible treatment of diseases. Still, these
records were kept for educational purposes and not to track individual patients’
health trajectory. This only started to change in the 20th century. Most governments
of european countries started requiring physicians to keep records on their patients
in a specific format. With the rise of (affordable) personal computers in the 1960s,
medical records moved towards digital files that can be shared between health care
providers such as GP’s, hospitals and specialized clinics.

1.2.2 Data ownership

A central question with regard to medical information is ownership of the data.
Many patients feel that they do not control access to their data, but would like to be

2 Chapter 1. Introduction

able to access the data themselves, look at the history of data access and give or deny
access permissions to healthcare providers (World Economic Forum 2012). The data
is about them, so they feel they should have ultimate control over it. Patients that
doubts the confidentiality of their records may not make completely honest disclo-
sures, holding back potentially crucial information. Without complete and accurate
information, health care providers may misdiagnose the patient or provide inade-
quate treatment. On the other hand, the data has been collected and stored by the
healthcare providers. They invest time and money into this process. The burden of
coming up with policies and implementation of these policies also lies on the health
care provider (Kostkova et al. 2016).

1.3 Cyber crime and other concerns

As in any digital information system, providing adequate protection of the data is a
serious concern. Medical data have qualities that make them particularly attractive
for cyber criminals and fraudsters.

1.3.1 Data theft or leakage

EMRs may contain extremely sensitive data: It is assumed that most people would
not want others to know if they suffer from stigmatized illnesses like sexually trans-
mittable diseases or mental disorders. In a more practical way, information about
someone’s medical history may for example have a negative effect on their chances
of being hired for a job. In some parts of the world, medical identity theft is a prob-
lem, which is a special case of identity theft. This is when a person uses another
person’s identity to fraudulently receive health care or prescription drugs. Accord-
ing to a study on medical identity theft from 2016, the last years showed an upward
trend in the number of medical identity theft cases in the USA. The main causes for
this identity theft are the stealing or abusing of credentials of family members, a data
breach at a healthcare provider or the submission of credentials on a phishing page
(Ponemon Institute 2016).

1.3.2 Privacy concerns around EMRs

The United Kingdom launched NHS Care.Data in 2013, an initiative to centralize pa-
tient health care data. Patient information could be legally shared with stakeholders
outside of the NHS or medical research community. A report found multiple severe
problems with this system in terms of privacy and patients’ power over their own
data (Presser et al. 2015). Data was processed without properly consulting or even
informing patients. Sometimes, data was optimistically categorized as anonymous
or pseudonymous even though there exist known techniques to deduce personal in-
formation from it (. Li, T. Li, and Venkatasubramanian 2007). GPs were required to
send records to the central database, but were simultaneously required by another
law to keep the records confidential, which led to legal complications. Another sys-
tem by the NHS, the Detailed Record System, was classified by researchers as "al-
most certainly illegal under human rights or data protection law" (Anderson et al.
2009).

1.3. Cyber crime and other concerns 3

1.3.3 Impact of the GDPR

In May 2018, the General Data Protection Regulation (GDPR) came into effect in the
European Union, as a replacement of the Data Protection Directive (DPD) of 1995.
The DPD already forced EU member states to take into account data protection on
computers and other electronic devices (Calder 2016). The GDPR presents six prin-
ciples that should be adhered to when collecting, storing and processing data. These
mainly concern the proportionality of the data gathering for a certain goal and trans-
parency of and consent for the use of the data. Organisations are held responsible
for proving that they comply with the rules. The GDPR is not specifically designed
for medical data. There may exist conflicting objectives when it comes to ensuring
privacy rights versus providing adequate access to data (European Society of Ra-
diology 2017). The GDPR requires healthcare providers to grant patients access to
their files, as long as the access requests are not ’manifestly unfounded or excessive’.
The Regulation provides several exemptions and derogations for the use of health
data, if applying the law would prevent or seriously impair research (McCall 2018).

5

Chapter 2

Problem statement

The central problem of this thesis is to present a new method of logging all access to
medical files in a tamper-proof way, focusing on the principles of non-repudiation
and patient power. The patient has access to all data in our model.

2.1 Barbie’s medical records in HiX

The hospital where Ms. De Jong was treated for her medical problems, Haga Hospi-
tal, uses ChipSoft’s HiX software for the storage and processing of patient’s medical
records (HagaZiekenhuis 2016). HiX does record the access of users to the digital
files. During a routine check, the access to Ms. De Jong records by staff who were
not treating her came to light. This violation of her privacy is deemed unacceptable
by many people. Physicist and philosopher Vincent Icke attributes the incident not
only to the snooping employees, but to the design of EMR systems as well. He pro-
posed that an app should be made to let patients see the access log of their medical
data (Icke 2018). In this research, my hope is to contribute to the development of a
more secure medical record file system in which the patient’s involvement is central.
Ms. De Jong should have easy access to the log of persons who viewed the record
herself. Additionally, she should know the exact contents of these records and agree
with their storage.

2.2 Research goal

The goal of this master thesis project, is to research the possibilities of expanding pa-
tients’ power over and knowledge about their medical records. This power consists
of two parts:

1. Accountability on access: knowing who has accessed the file;

2. Validation of EMR entries by both the health care provider and the patient.

In addition to this, the traditional security goals for any information system contain-
ing sensitive data still stand: confidentiality, integrity and availability. In the earlier
days of medical record systems, there was a lack of clear security policies for these
kinds of systems, as a consequence of little awareness of the ethical and legal duties
for medical data protection. Anderson (1996) presented a security policy model for
clinical information systems, consisting of nine principles. In the next paragraph,
the relevance of these principles and other frameworks for accountability on access
and validation of entries in medical systems will be explored.

6 Chapter 2. Problem statement

2.2.1 Accountability on access

In 2007, Scotland dealt with a very similar case to De Jong’s when over 50 employ-
ees of an NHS hospital illicitly looked into a celebrity’s medical record (Carvel 2017).
This scandal occurred just before upgrading the medical file systems to a new and
controversial version, in which data would be accessible for some companies as well.
However, an NHS spokesperson stated something very interesting: "The reality of the
situation is that, for the first time in the history of medical records, the new IT systems be-
ing implemented across the NHS have a fully integrated audit trail that tracks access to
any care record to safeguard and maximise patient confidentiality." The fact of the mat-
ter is that the new system which provided the audit trail, made it possible to hold
the health care providers accountable for their privacy invasion. Accountability on
access means that a patient can verify who has accessed accessed a file, and when.
There should be no way for someone to access the file without leaving a trace. When
a patient questions the legitimacy of an access event, the person who looked into
the file can be asked for an explanation. One of the aforementioned Anderson’s
nine principles is stated as follows: "All access to clinical records shall be marked on
the record with the subject’s name, as well as the date and time. A audit trail must also be
kept of all deletions" (R. J. Anderson 1996). A recent paper that points out the lack
of patient-centered transparency requirements for medical data systems, states that
transparency is needed for accountability. The authors define ex-post transparency
as "enabling the patient to be informed or get informed about what happened to his/her med-
ical and personal data" (Spagnuelo and Lenzini 2016). In order to fulfill this ex-post
transparency goal, a number of transparency requirements were formulated. When
it comes to the relation between transparency and accountability, the most relevant
of these requirements are:

1. The medical record system must provide the patient with accountability mech-
anisms.

2. The medical record system must provide the patient with evidence regarding
permissions history for auditing purposes.

3. The medical record system must provide the patient with evidence of security
breaches.

These requirements guide the design of an EMR system that center the patient’s need
of privacy and power over their own data. Thus, these criteria will be used in the set
up of the requirements for the system presented in this thesis.

2.2.2 Validation of EMR entries

According to University of Leeds researchers, an EMR is valid if all events have
been recorded and all records signify an event. Additionally, it should be clear what
every record means (Neal, Heywood, and Morley 1996). Later, researchers have
extended this definition to: "Medical records, whether paper or electronic, record health
events. Records are valid when all those events that constitute a medical record are cor-
rectly recorded and all the entries in the record truly signify an event" (Hassey, Gerrett,
and Wilson 2001). In this master thesis, validation of EMR entries means that an
entry becomes official only when both the patient and the health care provider have
agreed to the entry. This is similar to a person sending a registered letter and the
recipient signing for delivery. The patient cannot claim not to know the content
of the entry. Research found out that there are significant discrepancies between

2.3. Research question 7

health care reported by physicians themselves, patient surveys, and written medi-
cal records (Stange et al. 1998). Another interpretation of the concept of validation
of EMR entries is to verify whether the content of the records, e.g. lab results, are
actually accurate. This is not related to patient power over data and therefore out of
scope for this research.

2.3 Research question

Taking the aforementioned considerations into account, the research question for
this thesis project is as follows:
R: “How can blockchain technology be used to design an Electronic Medical Record (EMR)
system, that guarantees accountability on access and validation on entry addition?’

This question can be split into two subquestions:
R1: "How can blockchain technology be used to guarantee accountability on access in an
EMR?"
R2: "How can blockchain technology be used to validate entries in an EMR?"

When the two subquestions are answered, the main research question can be an-
swered as well. The proposed solution will be supported by a simple prototype as a
proof-of-concept.

2.4 Requirements

Before making a design, it should be clear what the requirements are. These are
used for both the design of the system and the validation after building the proto-
type. Some requirements are general, others are specifically needed for answering
the research questions.

2.4.1 Requirements for accountability and validation

The proposed system should fulfill the following requirements directly related to the
research questions:

1. Accountability on access: Every access to an entry in the EMR system is recorded.
The log contains information on the name of the user who accessed the file, the
name of the file itself, and the timestamp of the event.

2. Validation of entries: A user should be able to sign an entry with a secure
digital signature. The digital signatures should be verifiable by anyone in the
system.

2.4.2 Requirements from the CIA triad

A standard in the field of information security is the CIA triad. This stands for the se-
curity goals of confidentiality, integrity and availability that any secure information
system should meet. Based on these goals, the following additional requirements
are constructed:

1. Confidentiality: Information stored in the EMR system itself as well as the
event log should only be accessible to the users it is intended for.

8 Chapter 2. Problem statement

2. Integrity: Information stored in the EMR system cannot be changed by and
adversary without being noticed.

3. Availability: Information stored in the EMR system is available for the users
whenever they need or want to access it.

2.4.3 Requirements for the user experience

The prototype for the proposed system is not intended as a ready-to-use system for
the real world. The user experience has a low priority as it is not really needed to
demonstrate the qualities of the system for its intended goal. However, there are
some minimal requirements:

1. The user should be able to navigate between the functionalities of the system
without effort;

2. The information displayed to the user should be clear and easily understand-
able;

3. The user should be able to easily verify that the access log has not been tam-
pered with.

2.5 Research method

First of all, a literature study is conducted on the topic of EMRs and the state-of-the-
art of blockchain-based medical systems. The focus lies on the use of blockchains
to improve patient’s power and knowledge over their data. Then, possible architec-
ture and implementation choices for a system that fills the requirements as stated
in this chapter will be explored. Two aspects are taken into account. First, the de-
sired functionality and ideas found in previous work by researchers that touch upon
this subject. Second, the technologies available in practice. Recent developments
in computer science are sometimes only described in theory, but are not available
as an implementation, e.g. in the form of a library on GitHub. After analyzing the
architecture and implementation options, the prototype will be made. When the pro-
totype is tested, it will be validated by checking it against the requirements stated in
this chapter.

9

Chapter 3

Background

This chapter gives an introduction to the theory that is needed to understand litera-
ture on the related work.

3.1 Introduction to blockchain

Blockchain is a relatively new technology, celebrating its 10th birthday this year. It
is best known as the driving force behind cryptocurrencies as Bitcoin, being the first
implementation of blockchain in 2008, and Ethereum. At the core of a blockchain,
there is a distributed ledger that is tamper-proof under the right circumstances. Es-
sentially, blockchain is a peer-to-peer distributed ledger, which can only be updated
via consensus (Nakamoto 2008). It runs as a layer on top of TCP/IP. Blockchains
can be public, private or semi-private. Anyone can participate in a public (or per-
missionless) blockchain: all participants hold a copy of the ledger but none of the
participants actually own the ledger. This ensures the decentralized nature of the
blockchain. A private blockchain is open only to an organization or consortium.
Semi-private blockchains are a combination of a public and private part (Bashir
2017).

3.1.1 Blocks

As the name implies, a blockchain is in essence a chain of blocks. A block minimally
consists of:

1. The hash of the previous block;

2. A nonce (number used only once);

3. A bundle of transactions.

The first block in a blockchain is called the genesis block. This is hardcoded at the
time the blockchain was started. To add a block to the blockchain, the nodes must
agree on a single version of truth. This is achieved using a consensus algorithm.

3.1.2 Tamper-proof qualities of blockchains

The longer a block has been in the blockchain, the more permanent its status is.
The probability of another version of the blockchain becoming the largest chain, not
containing this particular block, becomes smaller and smaller as the chain grows
longer. Because every block contains a hash pointer to the previous block, one can
access the previous information, but also verify that it has not changed. Tampering
is evident because the hash of the changed information would change, too. A binary

10 Chapter 3. Background

tree with hash pointers is called a Merkle tree. An essential quality of a Merkle
tree is that it can hold many items, but one just needs to remember the root hash in
order to verify membership of the tree in just O(log n) time and space (Szydlo 2004).
Although data can be stored in a blockchain directly, a blockchain is not suitable
to store large amounts of data. This is why many blockchain-based systems use a
distributed hash table (DHT) that only stores pointers to the actual data.

3.2 Consensus algorithms

The goal of a consensus algorithm is to achieve consensus between honest nodes.
Consensus algorithms are used in all kinds of distributed systems. In the case of
blockchain systems, the need for consensus is centered around the question of which
blocks should be added to the chain. There are roughly two categories of consensus
mechanisms: Byzantine fault tolerance-based or proof- and leader-based algorithms.

3.2.1 Byzantine Generals Problem

The need for consensus can be illustrated with the classic Byzantine Generals Prob-
lem (Lamport, Shostak, and Pease 1982). This problem describes a war situation, in
which a group of generals must agree on whether to attack the enemy or to retreat.
If some generals attack but others retreat, the consequences will be poor, especially
for the attacking generals. To ensure an agreement, one commanding general must
send an order to the other (lieutenant) generals, such that:

1. All loyal lieutenant generals obey the same order;

2. If the commanding general is loyal, all loyal lieutenant generals obey his order.

Note that the problem includes the possibility that the commander general is not
loyal himself, and that the goal is not to reach a specific outcome but merely to have
all generals agree to the outcome. It turns out that if there are m malicious generals
and more than 3m honest generals, the loyal generals can reach a consensus applying
the following algorithm:

1. The commander sends his value to the lieutenants: either attack or retreat.

2. Each lieutenant adapts the value he received from the commander. If he did
not receive a value, he adapts the default value retreat. Each lieutenant acts
now sends his value to the remaining lieutenants.

3. Each lieutenant chooses the majority value of the values he received from the
commander and the other lieutenants. If there is a tie, he falls back on the
default value retreat.

The Byzantine generals problem is of great importance in distributed systems. When
applied to blockchains, the nodes can be seen as generals who have to agree on
whether they should add a new block to the chain or not. In a public blockchain,
an attacker could create as many nodes as possible to make sure that there are 3m
or fewer honest nodes. The above algorithm would not be correct anymore. This is
called a Sybil attack.

3.2.2 Byzantine Fault Tolerant protocols

Byzantine fault tolerance means that a system has a mechanism in place to overcome
failures or malicious nodes like described in the Byzantine Generals Problem.

3.2. Consensus algorithms 11

Practical BFT

Almost two decades ago, researchers presented Practical BFT (PBFT) (Castro, Liskov,
et al. 1999). It was a major improvement upon earlier protocols, in the sense that it
previous protocols assumed synchrony. The protocol tolerates a number of mali-
cious or faulty nodes f that is strictly fewer than 1/3 of the total number of nodes n,
such that N ≤ 3 f + 1. PBFT is a weakly synchronous protocol, which relies on some
timing assumptions. Liveness is only guaranteed when the network behaves as ex-
pected. The algorithm works with a leader node which gathers votes and broadcasts
the result to client nodes. In a nutshell, the algorithm works as follows:

1. A client node sends a request to the leader node;

2. Pre-prepare phase: The leader node assigns a sequence number to the request
and broadcasts this to all client nodes;

3. Prepare phase: The replicas [TODO: what is a replica??] acknowledge this
sequence number;

4. Commit phase: The client waits for f + 1 replies from different replicas with
the same result.

When f + 1 nodes have voted for a certain result, this is accepted as the result of the
operation.

HoneyBadger BFT

HoneyBadger BFT is the first practical asynchronous BFT protocol that guarantees
liveness without making any timing assumptions (Miller et al. 2016). Earlier BFT
systems assume weak synchrony, in the sense that every message is is guaranteed to
be delivered with a maximum delay ∆. HoneyBadger BFT however, does not care
about the underlying network. It is even suitable for an asynchronous setting as long
as each pair of nodes is connected by an authenticated point-to-point channel, that
does not drop messages. Additionally, nodes may interact with a trusted dealer dur-
ing the protocol-specific setup phase. Just like in the PBFT protocol, it is necessary
that the 3 f + 1 ≤ N threshold is upheld.

3.2.3 Proof-of-work-based consensus algorithms

Bitcoin uses the proof-of work consensus mechanism to prove that enough compu-
tational resources have been spent in order to be trusted to propose an addition to
the blockchain. Nodes can compete with each other to be selected in proportion to
their computing capacity. For Bitcoin, the proof-of-work requirement is to solve the
following problem (Bashir 2017):

H (N || Phash || Tx || Tx || . . . Tx) < target where
H is an ideal hash function,
N represents a nonce,
Phash is the hash value of the previous block, and
Tx are the transactions in the proposed block.
The hash value of these concatenated fields should be smaller than the set target for
difficulty.

An ideal hash function h satisfies three requirements (Paar and Pelzl 2009):

12 Chapter 3. Background

1. Preimage resistance: given a hash output z, it must be computationally infea-
sible to find an input message x such that z = h(x)

2. Second preimage resistance: it must be computationally infeasible to create
two different messages x1 6= x2 with equal hash values z1 = h(x1) = h(x2) =
z2

3. Collision resistance: it should be computationally infeasible to find two differ-
ent inputs x1 6= x2 with h(x1) = h(x2)

If H is an ideal hash function, it should be computationally impossible to construct
a hash output that satisfies the target as set in the proof-of-work problem. Solv-
ing the problem is therefore done in a brute-force way, letting nodes sacrifice CPU
power in exchange for trust. The high costs of creating malicious pseudonymous
identities prevents Sybil attacks (Vukolić 2015). A drawback is that it is (obviously)
computationally intensive, and therefore uses much energy, which is a strain on the
environment. The consumption is around 500 MW at the moment, and researchers
suspect that it may grow even much larger in the coming few years (Fairley 2017).
Adding a block to the blockchain is done through the following consensus algorithm
(Nakamoto 2008): new transactions are broadcast to all nodes; each node collects
transactions into a block; in each round, a random node (selected by the proof-of-
work) gets to broadcast its block; other nodes accept the block if and only if all trans-
actions in it are valid; nodes express their acceptance of the block by including its
hash in the next block they create.

3.2.4 Proof-of-elapsed-time

The aforementioned proof-of-work based consensus algorithm relies on a kind of
lottery, in which having a large amount of CPU power increases the chances of win-
ning. A similar thought is the basis of proof-of-elapsed-time algorithms (Intel Cor-
poration 2017). The strategy is as follows: Each node chooses a random time to
sleep. The first node to wake up, may propose the next block to be added. There
are two fundamental requirements in order for this to work. The first one is that the
time to sleep for all nodes are indeed randomly chosen. The second requirement is
that all nodes respected this chosen sleeping time. In theory, PoET is designed for an
abstract TEE (trusted execution environment), so it is flexible for multiple TEE im-
plementations. Intel has developed SGX (Software Guard Extensions) chips which
provide an attestation that these requirements are actually fulfilled.

3.2.5 Other types of consensus algorithms

The proof-of-stake algorithm uses the stake that a user has in the system, for example
invested time, to trust that the benefits of performing malicious activities would not
outweigh the benefits of staying in the system as a trusted member (Kiayias et al.
2017).
Deposit-based consensus requires putting in a deposit before proposing a block to
be added to the blockchain. In case the block is rejected by others, the user loses its
deposit (Solat 2017). Reputation-based mechanisms let members elect a leader node,
based on the reputation it has built on the network. When a transaction is added to
a block, it should be clear who has performed this transaction.

3.3. Identity and verification 13

3.3 Identity and verification

Particularly in the medical use case, any access to the EMR should be linked to an
identity. A digital signature confirms the identity, under the condition that such a
signature can be verified but cannot be forged. Digital signatures can be issued using
different algorithms. Bitcoin uses the Elliptic Curve Digital Signature Algorithm
(ECDSA).

3.3.1 Identities and signatures

Accountability on access can only be established when it is guaranteed that the per-
son being recorded as accessing or modifying the file is indeed the person who is
doing so. An identity should have a one-on-one relation to a person.

3.3.2 Self-sovereign identities

This means that we will need a solid identification and authentication method for the
file system. Traditionally, this goal has been attained by using username/password
systems. There are several drawbacks to this system. It provides a terrible user ex-
perience for many people, especially if they have to memorize a large amount of
passwords and change them regularly. This sometimes leads to irresponsible pass-
word behaviour (Adams and Sasse 1999). Another issue is that a user has to create
a new identity for each application. These identities only exist within the context
of each specific website or application, leading to great volumes of data duplication
(Tobin and Reed 2016).

3.3.3 Digital signatures

As paperwork has been replaced by digital entries, digital signatures have taken
over the role of traditional signatures. A digital signature provides proof of the
integrity of the authorship, because anyone can verify that the signature is based on
the author’s public key. On the other hand, only the person who creates the message
should be able to generate a valid signature. In general, the steps to create a digital
signature are as follows:

1. The signature algorithm is a function of the signer’s private key kpr. Hence,
only one person can sign a message x, assuming that the private keys are kept
secret.

2. The message x is an input to the signature algorithm as well, to make sure that
the signature is related to the message and cannot be re-used.

3. A digital signature algorithm is run with the right inputs, which yields signa-
ture s. Then, s is appended to x and the pair (x, s) can be sent.

Digital signatures can be created using a range of different algorithms, based on for
example Digital Signature Algorithm (DSA), prime factorization (RSA-based signa-
tures) or the discrete logarithm problem (ElGamal-based signatures) or on the ellip-
tic curve discrete logarithm problem.

14 Chapter 3. Background

3.3.4 Elliptic Curve Digital Signature Algorithm

Elliptic curves have some advantages over RSA and discrete logarithm-based schemes.
Threshold versions of DSA are unusable in practice (R. Gennaro, Goldfeder, and
Narayanan 2016). One of these advantages is that a small key length provides the
same security as other schemes, but with a shorter processing time. The Elliptic
Curve Digital Signature Algorithm (ECDSA) is defined over prime fields as well as
over Galois fields. Here, the procedures for the more popular version over prime
fields are given (Paar and Pelzl 2009).

1. For key generation, an elliptic curve E is chosen with modulus p, coefficients a
and b and a point A which generates a cyclic group of prime order q. Choose a
random integer d such that 0 < d < q. Compute the new point B = dA.
kpub = (p, a, b, q, A, B)
kpr = (d)

2. In order to generate a signature, an integer such that 0 < kE < q is chosen as
an ephemeral key. Compute R = kE A. Let r = xR (the x-coordinate of point R)
and compute the signature s ≡ (h(x) + d · r)k−1

E mod q.

The main analytical attack against ECDSA, assuming that the parameters are chosen
correctly, is trying to solve the elliptic curve discrete logarithm problem. Consider-
ing that this is an NP-complete problem, it is extremely unrealistic to solve this in
time.

3.3.5 Elliptic curve threshold signatures

Similarly to the threshold encryption schemes discussed before, threshold cryptog-
raphy can be applied to digital signatures. A scheme to achieve this was first pre-
sented in 1992 by Desmedt & Frankel. This method was based on the RSA signature
scheme (Desmedt and Frankel 1991). Since then, many papers have been published
presenting threshold signature schemes. One of them was a robust Elliptic Curve
threshold DSA scheme (. Gennaro et al. 1996). For this project, the focus will be on
Elliptic Curve threshold signature schemes, because of the previously mentioned
advantages. Specifically, a scheme is needed which is fit to execute on a distributed
system.

3.3.6 Threshold ECDSA in a fully distributed system

In 2015, researchers at the Worcester Polytechnic institute presented a fully dis-
tributed signature system for threshold ECDSA, named Nephele (Green and Eisen-
barth 2015). This system is mainly built to protect the key from side-channel attacks
and is designed in such a way that a private key never even needs to appear in
memory. The key generation as well as the signature generation algorithm is fully
distributed. It also allows for fully distributed key re-sharing.

3.3.7 Identity-based signatures

Considering the wish for transition to self-sovereign identities as explained in para-
graph 3.3.1, the possibility of using identity-based signatures should be researched.
Because the core goal of this project is to design a system with patient’s power in

3.3. Identity and verification 15

mind, it would be fitting if patients do not have to rely on an external party to pro-
vide their identification. The idea of identity-based signatures is a public key cryp-
tosystem in which the users do not have to exchange public keys because the pub-
lic key of a user is simply a person’s email address or other personal identification
(Shamir 1984). Requirements for this identification is that it uniquely identifies the
user in a way that cannot be denied afterwards, and that the information is available
to anyone within the system. A trusted party computes the private key for every
user and issues the keys on a smart card.

FIGURE 3.1: Identity-based signature scheme (Shamir 1984)

3.3.8 Schnorr signatures

Since a few years, some Bitcoin enthusiasts have been lobbying for the usage of
Schnorr signatures to sign transactions. One of the major challenges for blockchains
in general is scalability. Consider the scenario that a user would like to send a certain
amount of bitcoins from multiple accounts to one account. In the current system, the
transaction from each source account to the destination account requires its own sig-
nature. However, if it is just one user sending the transaction, they should be able
to place just one signature for the combined transactions. Schnorr signatures enable
users to do this. Cutting superfluous signatures could potentially achieve a signifi-
cant reduction in bandwidth, which in turn makes up space for more transactions:
increasing scalability.

17

Chapter 4

Related work

Almost every hospital in the world uses an EMR system to handle patient data.
A considerable amount of research has been conducted to study possible improve-
ments on the protection of privacy in these systems.

4.1 Access logging in current widely-used EMR systems

The need to have an auditable access trail for EMR systems is not new, and current
systems already have some kind of access logging. In The Netherlands, the EMR
market is dominated by two parties: Chipsoft and Epic.

4.1.1 Chipsoft

The hospital where Ms. De Jong received care uses Chipsoft’s HiX (Healthcare infor-
mation eXchange). Chipsoft is a dutch EMR developer and delivers several versions
of their Microsoft-based HiX software. On their website, there are no implemen-
tation details about some form of logging. An email requesting information about
their implementation and handling of logging never received a response. It would
be safe to assume that Chipsoft does not use blockchain technology for access log-
ging yet.

FIGURE 4.1: Screenshot of HiX software (Chipsoft 2018)

18 Chapter 4. Related work

4.1.2 Epic

Epic is an EMR software developer based in the United States. Their website does
not mention any logging functionality, but the software does provide a patient envi-
ronment in which patients can schedule appointments, complete questionnaires and
message their doctor. Addionally, there is an app that patients can use on their tablet
when they are in the hospital. The app enables them to check their care schedule and
access patient education material.

FIGURE 4.2: Screenshot of Epic software (Ramachandran 2017)

4.2 Blockchain-based EMR systems

There is a high interest in blockchain applications in the health care sector. This is re-
flected in scientific work, pilots in the public sector and startups offering blockchain-
based solutions. Estonia is a pioneer in this field, integrating blockchain technology
in their e-health applications.

4.2.1 Scientific work

This research would definitely not be the first to incorporate blockchain into a EMR
system, although it may be the first one to use blockchain technology for the specific
purpose of empowering patients with knowledge over what happened to their data.
In this section, four papers that present blockchain-based EMR systems are studied.

MedRec

MedRec is a EMR system aimed at managing authentication, confidentiality, ac-
countability and data-sharing. The paper in which this system is presented identifies
interoperability challenges between healthcare provider systems as a major barrier
towards effective data sharing. The authors designed a public key cryptography-
based blockchain structure that could be applied to create append-only, immutable,
timestamped EMRs (Ekblaw et al. 2016). The block content consists of information
about data ownership and viewership permissions. Smart contracts are used to log
events such as data retrieval. A prototype was made to demonstrate the qualities of
the system.

4.2. Blockchain-based EMR systems 19

FIGURE 4.3: Overview of MedRec system (Ekblaw et al. 2016)

OpenPDS

Zyskind & Nathan proposed a model called OpenPDS for an information system in
which a mechanism for returning computations on the data is included: return an-
swers instead of data itself. The contribution of this paper is twofold: Combination
of blockchain and off-blockchain storage to construct a personal data management
platform focused on privacy; Perform trusted computing on blockchain-handled
data. The proposed systems treats users as the owners of their data and provides
them with data transparency and fine-grained access control. A rough sketch of the
functionality of the system is as follows: A users installs the application on a smart-
phone. Data collected on the phone is encrypted using a shared encryption key and
sent to the blockchain. The blockchain routes it to an off-blockchain key-value store
using a DHT, only retaining a SHA-256 hash pointer. Anyone wanting to access the
data can send a request to the blockchain, which in turn verifies the digital signa-
ture of the requester as well as the listed permissions for this user (Zyskind, Nathan,
et al. 2015). Assuming that users manage their keys in a secure manner, the system
provides security and privacy. An adversary cannot really learn interesting informa-
tion from the blockchain itself, because it only stores hash pointers. Even if it would
control a large amount of nodes, the raw data is still encrypted using a key that none
of the nodes possess. Adversaries are prevented from posing as a user because of
the digitally-signed transactions and the decentralized nature of blockchain.

Healthcare Data Gateway

In 2016, Xiao Yue presented a fairly similar system called the Healthcare Data Gate-
way app. It is a combination of a traditional database and a gateway. Personal elec-
tronic medical data is managed by a blockchain. All data requests are evaluated for

20 Chapter 4. Related work

permission. In case of a granted permission, secure multiparty computation (sMPC)
is used to process patient data without risking patient privacy (Yue et al. 2016).

FIGURE 4.4: Example of HDG screenshots (Yue et al. 2016)

Enigma

Enigma is a computation platform proposed by Zyskind et al. Their paper states that
blockchain can neither handle privacy nor heavy computations. Enigma can be con-
nected to an existing blockchain. The goal of the platform is to facilitate developers
to build privacy-by-design, decentralized applications without using a trusted third
party (Zyskind, Nathan, and Pentland 2015). Just like most blockchain-based sys-
tems, it uses a DHT that stores references to the data. sMPC is used by splitting date
between nodes and performing computation on these nodes without transferring
any information from one node to another. Each node has a piece of seemingly ran-
dom data, that is useless on its own. In general, sMPC systems are based on secret
sharing. This is a category of threshold cryptosystems, in which a secret s is divided
into n parts, and at least t shares are required to reconstruct s. Such a system is
written as a (t, n) threshold system. Shamir’s secret sharing scheme is a famous ex-
ample of a secret sharing scheme, which uses polynomial interpolation. The Enigma
platform provides an API which facilitates the uses of a sharing scheme based on

4.3. Discussion of existing systems 21

Shamir’s scheme. In total, there are three decentralized databases in the system: the
public ledger, the DHT and the sMPC database. Nodes are compensated for their
computational resources via computation fees.

4.2.2 Startups and industry-based projects

Several startups and government- or industry-based projects have come up in the
last few years on the subject of blockchain in healthcare. These range from concep-
tual frameworks to functioning prototypes. A few Dutch projects are listed here.

Mijn Zorg Log

Mijn Zorg Log is a smartphone app, developed by the Dutch Health Care Institute
(Dutch: Zorginstituut Nederland) in cooperation with blockchain software company
Ledger Leopard. This app can be used by people who receive home care to log
the hours that the home help spent at their house and the nature of the care. The
home care provider can then verify these hours and use them for their administra-
tion. A permissioned blockchain is used, with two types of nodes: member nodes
and authority nodes. Only authority nodes participate in the mining process. An
experiment has been conducted using this app for administration in maternity care.
The results were mainly positive, especially concerning the self-reported reduction
of the administrative burden (Felix et al. 2018).

MedMij

MedMij is a framework that consists of agreements about how medical data should
be exchanged in a blockchain-based healthcare application. It is therefore not a
working product in itself. Health care providers that want to develop a digital
healthcare application, can hire a MedMij-certified vendor to implement a compliant
system. One of the goals of MedMij is to be an aid in the development of personal
medical portal for patients (Kusiak 2018).

4.2.3 E-health in Estonia

Estonia is leading in the provision of public digital services to its citizens. Upon the
rebirth of this republic in 1991, the digitalization of state administration was deemed
essential (Priisalu and Ottis 2017). All patients can see their medical data through the
Estonian eHealth Patient Portal after authentication with the national ID card which
contains an identification chip. Citizens can deny access to certain medical data to
any care provider, inclusing their own GP. Access to the data is recorded and is avail-
able to the patient upon request. Almost all prescriptions, hospital discharge letters
and insurance claims are digital (Ross 2016). Currently, blockchain software com-
pany Guardtime is testing their blockchain implementation for the eHealth sytem
and is planning to deploy it in the near future (eHealth Estonia 2018).

4.3 Discussion of existing systems

In the previous sections, several papers presenting blockchain-based EMR systems
were discussed. In this section, we take a look at the question why these systems do
not fit the requirements for a tamper-proof logging auditable access log for medical
data, as described in Chapter 2.

22 Chapter 4. Related work

FIGURE 4.5: Screenshot of Estonian eHealth Patient Portal (eHealth
Estonia 2018), screenshot taken by author.

4.3.1 Implementation details

Unfortunately, not every system presented in section 4.2 is accompanied by a pro-
totype. Three systems provided an implementation or a description of a possible
implementation. The following table contains an overview of the implementation
details of these systems.

TABLE 4.1: Functionality and choices of current systems

4.3. Discussion of existing systems 23

MedRec OpenPDS Healthcare Data
Gateway

Maturity level Functioning pro-
totype

Functional de-
sign

Screen designs
only

Goal Manage: data ac-
cess

Manage: data
ownership, trans-
parency and
auditability,
access control

Own, control
and share own
data easily and
securely

Blockchain Ethereum Not specified, but
assumes qualities
similar to Bitcoin

Not specified,
mentions "pri-
vate blockchain
cloud"

Block content Data ownership
viewer permis-
sions

Hash pointers
(Kademlia)

Encrypted
healthcare data

Programming language Python Not specified Not specified
Consensus algorithm Proof-of-Work Proof-of-Work Not specified
Mining reward Access to

aggregated
anonymized
medical data

Not specified Not specified

Identity confirmation DNS-like system
that maps real-
life ID to ETH ad-
dress

Pseudonymous
compound iden-
tities

Not specified

Of these three systems, only MedRec features a working prototype. This automati-
cally discards the other two systems from fitting the requirements of the prototype
that will be built. Even theoretically, the OpenPDS and Healthcare Data Gateway
designs solve other problems than the problem stated in this master thesis. Both
systems have the purpose of facilitating secure multiparty computation.

4.3.2 Fitness of MedRec for prototype requirements

Out of all the studied literature, MedRec is the system that most closely resembles
the envisioned solution for a tamper-proof auditable access log for medical data. It is
a very complete system with a good looking architecture. Still, the system has some
essential shortcomings when compared with the requirements of Chapter 2. These
are the following:

1. Accountability on access: MedRec stores permission information on the blockchain
and information for the verification of data integrity. This means that it pro-
vides the patient with the power to deny access to some other participant in
the system before a certain entry has been read. In the MediTrail system, we are
not concerned with access control, but with providing a log of the viewership
after a certain entry has been read.

2. Validation of entries: MedRec informs patients about the content of the entries
and therefore provides them with the implicit possibility of verifying the data
and taking action if they disagree with an entry. However, there is no official

24 Chapter 4. Related work

way to validate an entry. Within MediTrail, there should exist an option to
explicitly validate an entry.

Considering these shortcomings of even the most related scientific work up to
date, it is deemed necessary to construct a new system (prototype) which does fit
these requirements.

25

Chapter 5

System architecture and design
choices

This chapter describes possible implementation choices and considerations on why
a certain option is chosen for the development of the MediTrail prototype.

5.1 From requirements to use cases

Before designing a system, it is important to know exactly what the system should
be able to do. This means that the development effort for this prototype will heav-
ily focus on the core functionality and any features that are not deemed absolutely
necessary for answering the research questions will be omitted.

5.1.1 Use cases

A straightforward way of describing the actions of users in a system is by creating
use cases. Note the requirements as presented in chapter 2:

1. Accountability on access: Every access to an entry in the EMR system is recorded.
The log contains information on the name of the user who accessed the file, the
name of the file itself, and the timestamp of the event.

2. Validation of entries: A user should be able to sign an entry with a secure
digital signature. The digital signatures should be verifiable by anyone in the
system.

Based on these requirements, we can distinguish the following use cases:

1. A user uploads a file to the system. They indicate whether they require one or
more other users to sign the file. They receive a confirmation of the upload.

2. A user views the list of files that have been uploaded by all users.

3. A user views/downloads any of the files that have been uploaded by all users.

4. A user signs any of the files that have been uploaded by all users. They receive
a confirmation that a signature has been placed.

5. A user views the blockchain log, that contains every event of every user up-
loading, signing or viewing/downloading a file.

These five use cases together form the core functionality of the prototype. Addition-
ally, the system will require some form of identification and authentication to make
sure that only authorized users have access to the system and to accurately log the
actions of the users.

26 Chapter 5. System architecture and design choices

5.1.2 Use case diagram

Use case diagrams show the interaction of users with the system and the features
that users need. The «extend» relationship means that the behaviour in the extending
use case is supplementary to the extended use case. In this case, a user can upload a
file and can choose not to require anyone to sign this file. However, if they choose to
ask other user to sign the file, this is supplementary to the basic uploading function.
In a similar fashion, viewing/downloading and signing a file extend the function of
viewing the list of files.

FIGURE 5.1: Use case diagram

In a peer-to-peer system, all users have the same rights. There are no clients
or servers. Therefore, this use case diagram is valid for any user in the system,
whether they are patients or health care providers. Of course, data on a blockchain is
accessible to anyone participating in the network. That is why every patient has their
own blockchain in this system, which can be accessed by their health care providers.

5.1.3 Integration with existing tools

The MediTrail prototype is not meant as a standalone system, but rather as an exten-
sion to existing EMR systems to facilitate the accountability on access and validation
of entries. It would be for the system to be compatible with existing tools. However,
the implementation details of commercial EMR systems like HiX and Epic are not
public. Therefore the goal will be to make conceptual and implementation choices
that are mostly platform-independent.

5.2 Selection of blockchain technology

There are several ready-to-use blockchain libraries available that could be used for
this project, or a novel blockchain could be built which would be custom to the
specific needs of this project.

5.3. Consensus mechanism 27

5.2.1 TrustChain

Researchers at TU Delft developed TrustChain, a scalable blockchain with an empha-
sis on resilience against one of the primary challenges in permissionless blockchains:
Sybil attacks (Otte 2017). A Sybil attack takes place when an adversary forges many
fake identities to gain a larger influence of that system than it should actually have
(Douceur 2002). The author states that when there is no central trusted authority to
assert the one-on-one correspondence between an entity and its identity, it is prac-
tically impossible to distinguish identities. This poses a fundamental problem for
permissionless blockchains, because they are fully decentralized.

5.2.2 Ethereum

Ethereum is a blockchain that has the possibility of smart contracts as its main fea-
ture. Just like Bitcoin, it uses a proof-of-work mining method to make sure that the
longest blockchain is the one that has received the greatest investment in terms of
computing power (Wood 2014). For Python, there exist several Ethereum libraries,
one of which is PyEthereum.

5.2.3 Kademlia

Kademlia is a Distributed Hash Table (DHT) for peer-to-peer networks with an XOR-
based metric network topology. A DHT stores (key, value) pairs, the key being a
hash, providing a lookup service. Nodes in a Kademlia DHT use UDP to commu-
nicate, but Kademlia has mechanisms to overcome packet loss (Maymounkov and
Mazieres 2002).

5.2.4 Novel blockchain

Besides using existing blockchains, there is the possibility to create an own novel
blockchain from scratch. An advantage of this, is that it provides the researcher
the opportunity to only implement the features that are necessary for the goal. The
prototype will be the first system to use blockchain technology for tamper-proof
logging of access to medical data. It makes sense to create a custom-built blockchain
tailored to the requirements of this specific case, instead of using technology that had
other purposes. A disadvantage is that it might take more time to write functions
that are already defined in the available libraries. This time can then not be spent
on the creation or of some features that would be nice to have, or on issues like the
security of the system.

5.3 Consensus mechanism

For a permissioned blockchain, Byzantine Fault Tolerance (BFT) protocols are usu-
ally used to achieve consensus. Two of these protocols, Practical BFT and Honey-
Badger BFT were discussed in chapter 3. Because adversaries are limited in the
number of nodes they can create, a tolerance for a lower amount of faulty nodes
is accepted. These distributed systems are often small: Google’s fault tolerant lock
service Chubby consists of only five nodes (Burrows 2006). The small size of the
MediTrail blockchain would thus not be extraordinary.

TABLE 5.1: Comparison consensus algorithms

28 Chapter 5. System architecture and design choices

PoW Practical BFT HoneyBadger
BFT

PoET

Synchrony
assumption

Asynchronous Weakly syn-
chronous

Asynchronous Asynchronous

Additional
costs

Potentially
high, due
to power
consumption

Low Low Potentially
high, due to
purchase of
Intel chips

Fitness
for what
blockchain
types

Especially
fit for per-
missionless
systems

Smaller per-
missioned
systems

Permissioned
systems

Permissioned
systems

Implemen-
tation op-
tions

Several
python li-
braries with
usable code,
own imple-
mentation
possible

No easy-to-
use python
library

No easy-to-
use python
library

Own imple-
mentation
possible

5.3.1 Proof of work

A Proof of Work based consensus mechanism is a popular choice for permission-
less blockchains, because of it resilience against sybil attacks. Because MediTrail is a
permissioned blockchain, this high resilience may not be fully needed. When con-
sidering sustainability, this is not the best choice due to the high power consumption
which is not necessary in a restricted setting as the MediTrail system.

5.3.2 Practical BFT

Practical BFT was a major improvement upon earlier BFT algorithms, but is still only
weakly synchronous, which relies on some timing assumptions (Castro, Liskov, et
al. 1999). The protocol tolerates a number of malicious or faulty nodes f that is
strictly fewer than 1/3 of the total number of nodes. Liveness is only guaranteed
when the network behaves as expected. Additionally, it is not as efficient in terms of
time consumption as some newer algorithms (Miller et al. 2016).

5.3.3 HoneyBadger BFT

HoneyBadger is a new and very promising BFT algorithm. The researchers state that
the protocol is specifically designed for the deployment scenario of a permissioned
blockchain (ibid.). HoneyBadger BFT is suitable for even completely asynchronous
networks. This is important, because many nodes in the MediTrail blockchain will be
offline for extended periods of time: patients for example, only have a running node
whenever they access the MediTrail portal. Unfortunately, the HoneyBadgerBFT API
on GitHub does not seem ready to use at all, and making an own implementation of
it would be a very complicated and time-consuming endeavor.

5.3.4 Proof of Elapsed Time

One of the goals for developing the PoET consensus algorithm, was to reduce power
consumption by miners in PoW-based blockchains (Fairley 2017). It provides a

5.4. Digital signature algorithm and implementation 29

lottery-like system, just like PoW, but not based on hashing power. The mechanism
would not be suitable for a permissionless chain, because adversary could then just
make multiple identities, each of them receiving an equal chance in the lottery. For
a permissioned blockchain, it is a secure and efficient algorithm.

5.4 Digital signature algorithm and implementation

During the literature study phase of this project, research was conducted on various
DSA algorithms with the purpose of using these to validate entries in the EMR.
To shortly reiterate the use case for these signatures: When uploading a file, users
should be able to indicate which other users should sign this file. A file should be
marked as validated when all the required signers have signed it.

5.4.1 Theoretical considerations on the DSA choice

In a nutshell, a choice has to be made between regular ECDSA and threshold ECDSA.
In the table below, a comparison between the fitness of ECDSA and threshold ECDSA
for the prototype is made.

TABLE 5.2: Comparison ECDSA and threshold ECDSA
ECDSA Threshold ECDSA

Initial key distribution Each user has one pri-
vate and one public key

Each user has a private
key part

Key redistribution Keys can be kept for an
indefinite time

Keys must be re-
distributed when a
new node enters the
group

Validity of signature Signatures can be
placed independently

Partial signatures must
be remembered in or-
der to construct valid
signature

The group of nodes is a dynamic coalition in the sense that health care providers are
expected to enter or leave regularly. This makes key (re)distribution hard and time-
consuming. Although there exist digital signature schemes that can deal with these
challenges (Lubbe, Boer, and Erkin 2014), there are no ready-to-use implementations
yet.

5.4.2 Practical considerations on the DSA choice

The second concern is more practical in nature. There does not seem to be a a widely
used and thoroughly tested threshold ECDSA library available for Python. Con-
sidering the lack of a reliable threshold ECDSA library for Python, the search was
extended to libaries that support the creation and verification of regular ECDSA sig-
natures. In the following table, three libraries are compared

TABLE 5.3: Comparison of ECDSA libraries

30 Chapter 5. System architecture and design choices

python-ecdsa python-nss ecpy
Popularity (16-07-18) 359 GitHub stars 0 GitHub stars 20 GitHub stars
Language Pure Python C with Python

wrapper
Pure Python

Options ECDSA only
(compatible with
OpenSSL)

Supports many
network security
services

Multiple EC
crypto options

Documentation Abundant docu-
mentation with
clear examples

Limited and par-
tially outdated
documentation

Quality of docu-
mentation is suf-
ficient

Speed 0.06-0.6s per gen-
erated signature,
depending on
key length (on
laptop from 2008)

Not specified,
assumed to be
faster because it
is written in C

Not specified for
signatures

Weaknesses Vulnerable for
timing attacks

Not specified Not specified

This comparison shows that python-ecdsa is the most popular library and has the
most abundant documentation. In turn, the key signature generation is assumed to
be slower than for the other libraries. Because the signatures generations are trig-
gered manually in the system and can only be performed on a limited number of
entries, it is acceptable to use a slower method. Therefore, python-ecdsa is chosen
as the ecdsa library for the prototype.

5.5 Monitoring access to files

One of the core functionalities of the prototype should be the ability to monitor ac-
cess to files and save these events to a blockchain. Therefore, a method is needed to
monitor file events. The first option is to store the files in a directory on the operat-
ing system of the user and incorporate a file monitoring function into the prototype
to watch for changes. The second option is to let the user download the files on the
webpage and use the mouseclick event on the download button as the sign that the
user has indeed accessed the file.

5.5.1 Monitoring files on OS

Hard disk drives retain data even after the device has been turned off. This retention
is called persistent storage. Several operations can be executed on the stored files, as
described in the CRUD (Create, Read, Update, Delete) and REST (Representational
State Transfer) processes. Applied to the case of an EMR system, the four basic
functions of persistent storage in CRUD are:

1. Create: uploading an entry of a medical record;

2. Read: accessing and reading an entry of the medical record;

3. Update: modifying an entry;

4. Delete: destroying an entry.

5.6. Final architecture and implementation choices 31

The research question is centered on accountability on access, so any read event of
the medical files should be monitored. There are some Python tools suitable for this
purpose.

TABLE 5.4: Comparison of file monitoring libraries

py-notify watchdog fsmonitor
Popularity (08-08-18) 1 GitHub stars 3062 GitHub

stars
55 GitHub stars

Language C and Python C and Python Python
Platform Linux only Windows and

Linux
Windows and
Linux

Documentation Limited docu-
mentation

Small tutorial,
some blog posts

Small tutorial

Functionality Tools for Ob-
server program-
ming pattern

Live filesystem
monitoring API
and shell utilities

Live filesystem
monitoring API

Py-notify seems to be slightly outdated, as the current version is several years old
and the documentation page contains dead links. Watchdog is the most popular API
in terms of GitHub stars, contains the most extensive documentation and covers the
functionality that is needed for the prototype.

5.5.2 Monitoring download of files on webpage

If this option is chosen, every file that has been uploaded should be downloadable
by every user in the system. This has two advantages. The first one is that it is user
friendly, as one can directly access the information. The second one is that moni-
toring the access becomes very straightforward: the download of the information
is the access event. The third one is that this solution is independent of how and
where the files are stored. This is important, because we are not aware of the archi-
tecture of existing EMR systems. Of course, this option also has its disadvantage.
The APIs listed in the previous section monitor all the CRUD functions, so if a file
has been modified, the log will show that. In turn, this solution would not be able
to detect this. This does not make the access log less tamper-proof however, because
the modified file will create a new event on the access log if it is re-uploaded.

5.6 Final architecture and implementation choices

After careful consideration of all the aforementioned options and their advantages
and disadvantages, it is time to design an overview of the system. Building a novel
blockchain may take a significant amount of time, but it enables us to tailor the
blockchain exactly to the needs of the system in order to answer the research ques-
tion. In a sense, this project uses the blockchain only for its original basic use: keep-
ing a tamper-proof distributed ledger of events. Developing a novel blockchain also
means that a consensus mechanism for this chain has to be chosen. Both Honey-
Badger BFT and Proof of Elapsed Time are sensible options: they are suitable for
asynchronous permissioned systems and are efficient in energy consumption. Un-
fortunately, the HoneyBadger API is not ready to use and making an own implemen-
tation would be very big task that does not contribute that much to answering the

32 Chapter 5. System architecture and design choices

research question. Proof of Elapsed Time is easier to implement, if one disregards
the SGX chips that provide attestations of the execution of the correct code. Because
the MediTrail system is a prototype and does not have to be held to real-world stan-
dards, it is a pragmatic solution to implement a PoET consensus mechanism without
attestations. One of the functions that the system should fulfill is that a user should
be able to indicate who has to sign the entry, and that the system indicates when all
the required signers have actually signed the entry. Threshold ECDSA is a very ele-
gant solution for this. However, it is inefficient for this specific purpose in terms of
key administration. Because there is a very popular and well-documented ECDSA
library, the choice falls on using ECDSA with python-ecdsa. MediTrail should pro-
vide each user with a list of the uploaded files and the possibility to download them.
Giving accurate information about when a file was viewed and by whom is a core
functionality of the system. Monitoring these events using the download button is a
slightly less thorough way than via file monitoring on the operating system, but it is
more user-friendly and applicable to many storage solutions.

33

Chapter 6

MediTrail prototype general
overview

The MediTrail prototype has been developed. In this chapter, a general overview is
presented of the system and the algorithmics behind it.

6.1 Overview

The MediTrail prototype consists of a blockchain and a website to which a user can
upload files. The nodes in the blockchain are the patients and their health care
providers. Each patient has their own blockchain, so other users of MediTrail do
not have access to other patient’s data.

FIGURE 6.1: Example of nodes participating in blockchain

In the figure above, the hospital node is a special node, indicated by a star.
This is because the node also provides the webpage which patients and health care
providers can use to upload, view and sign files.

34 Chapter 6. MediTrail prototype general overview

6.2 The web page

The web framework Flask is used to construct a simple website and receive HTTP
requests. To create a minimum level of aesthetic appeal, the html files are enhanced
by Bootstrap, a very popular html, css and javascript library.

6.2.1 Identification and authentication

None of the webpages are accessible without authentication. The login page requires
a username and a password. After a valid login, the current user is remembered and
can access any page and functionality. Every other page contains a logout link which
logs the user out and redirects them to the login page.

6.2.2 Home page

On the home page, there is a button to select a file from the user’s computer to upload
it to the system. Under this button there are checkboxes that can be checked if the
user wants to require other users to sign the file. There is no limit to the number
of users that the uploading user can select. When the file has been successfully
uploaded, the user is redirected to a page containing a confirmation of the upload.

FIGURE 6.2: Screenshot of homepage

6.2.3 My files page

All the files that have been uploaded by any of the users are shown in a list on the
My files page. Under the filename there are two links: one for opening the file and
one for signing it. When a user clicks on Open this file, the file is opened in a new tab.
When a user clicks on Sign this file, the file is signed and the user is redirected to a
page containing a confirmation of the signature.

6.2.4 My logs page

A visual representation of the blockchain at the core of this system is found on the
My logs page. The blocks are listed in chronological order (oldest first). In figure 6.4,
a screenshot of a My logs page is shown.

6.3. Blockchain and algorithms 35

FIGURE 6.3: Screenshot of the my files page

6.3 Blockchain and algorithms

In this section, the implementation details of the main features of the prototype are
discussed.

6.3.1 The blockchain

A novel blockchain was constructed for this system, initially based on the SnakeCoin
(Nash 2017). SnakeCoin is known as "the world’s tiniest blockchain." This system
was subsequently expanded with every needed functionality. There are three types
of blocks in the blockchain: UploadBlocks, SigningBlocks and ReadBlocks. All of
these inherit from the superclass Block. A Block contains the following information:

1. Description: a short description of the event

2. Required signers: users that are asked to sign the file named in this block

3. Validation status: indicates whether the named file is waiting for validation

4. Timestamp

5. SHA256 hash of previous block

6. SHA256 hash over this block’s index, timestamp, description, signers, valida-
tion status and previous hash

The description is a short description of the event, giving the most basic informa-
tion. The required signers field gives the list of users that have been asked to sign the
file described in the message. The validation status indicates whether the named file is
still waiting for signatures from the users in the required signers field.

36 Chapter 6. MediTrail prototype general overview

FIGURE 6.4: Screenshot of the my logs page

6.3.2 File upload

When a file has been uploaded to the system, it is stored in the local filestorage. An
UploadBlock is created and added to the blockchain. In addition to the information
in a standard Block, an UploadBlock contains a field uploaded_file which is the name
of the uploaded file.

6.3.3 File signing

To place a signature on a file, the f ind_event_and_sign method is called with postedhash,
the hash value of the UploadBlock of the file, the name of the user and their private
key as parameters. The f ind_most_recent_sign_block_ f or_event method is called.
This starts looking from the most recent SigningBlock to the oldest, until it has found
the most recent SigningBlock for the event in which the file was uploaded that the
user wants to sign. When this block is found, or it is established that there is no such
block, a signature is placed with the user’s private key and a SigningBlock is added

6.3. Blockchain and algorithms 37

with the updated required_signers array.

Data: User u, private key of the user sku, postedhash;
Result: File is signed, sign event is added to blockchain.
initialization;
latest_signing_block = find_latest_signing_block(postedhash);
if lastest_signing_block is null then

sign file with sku;
required_signers← original_upload_block.required_signers.copy();
if u is a required signer then

remove u from required_signers;
end
add SigningBlock to blockchain;

end
if lastest_signing_block is not null then

sign file with sku;
required_signers← latest_signing_block.required_signers.copy();
if u is a required signer then

remove u from required_signers;
end
add SigningBlock to blockchain;

end
Algorithm 1: find_event_and_sign

Data: postedhash;
Result: Returns latest SigningBlock for file with postedhash.
initialization;
latest_signing_block← null;
foreach block in blockchain do

if block is instance of SigningBlock then
if block.hash equals postedhash then

latest_signing_block← block;
end

end
end
return latest_signing_block;

Algorithm 2: find_latest_signing_block

The worst-case time complexity of the method is O(n) with n being the number
of blocks in the blockchain. There is one foreach loop which inspects all blocks from
the most to the least recent, costing linear time. The other operations are executed in
constant time.

6.3.4 File access

When a user accesses a file, a new ReadBlock must be added to the blockchain con-
taining the information about this event. Because file names may not be unique, the

38 Chapter 6. MediTrail prototype general overview

hash of the file that is being accessed is posted. This hash is used to find the file name.

Data: Postedhash;
Result: Read event is added to blockchain;
initialization;
filename;
foreach block in blockchain do

if block is instance of SigningBlock then
if block.hash equals postedhash then

filename← block.uploaded_file.filename;
break;

end
end

end
add ReadBlock;

Algorithm 3: find_event_and_add_read_block

The worst-case time complexity of the method is O(n) with n being the number
of blocks in the blockchain. There is one foreach loop which inspects all blocks from
the oldest to the most recent, costing linear time. The other operations are executed
in constant time.

39

Chapter 7

Validation and performance

In this chapter the validity of the system is assessed against requirements in previous
chapters and the performance of the system is measured.

7.1 Solving Barbie’s problem

This master thesis has attempted to solve a particular problem in a new way with
the application of blockchain technology. In particular, the MediTrail portal should
be the first system that provides patients with power and knowledge over their data
in the form of an auditable access log for their medical data. The goal of this chapter
is to determine the extent to which the MediTrail prototype actually solves Ms. De
Jong’s problem - and that of many other patients.

7.1.1 Fulfillment of accountability and validation requirements

The requirements to the system to satisfy the research goals as described in chapter
2 are accountability on access and validation of entires.

Accountability on access

Requirement: Every access to an entry in the EMR system is recorded. The log con-
tains information on the name of the user who accessed the file, the name of the file
itself, and the timestamp of the event.

MediTrail prototype: Whenever a user accesses an entry via the webpage pertain-
ing to the system, a block logging this event is added to the blockchain. This block
contains the name of the user who uploaded the file, the name of the file and a times-
tamp, in addition to other fields.

Validation of entries

Requirement: A user should be able to sign an entry with a secure digital signature.
The digital signatures should be verifiable by anyone in the system.

MediTrail prototype: All users can sign an entry via the "My files" page. This ac-
tion sends add a block to the chain describing this event. For a user, it may not be
clear how this signature works and thus may not understand its value. There is no
method presented to the user to verify a signature.

40 Chapter 7. Validation and performance

7.1.2 Fulfillment of CIA triad requirements

To adhere to the standards of the CIA triad, the system should satisfy confidentiality,
integrity and availability requirements.

Confidentiality

Requirement: Information stored in the EMR system itself as well as the event log
should only be accessible to the users it is intended for.

MediTrail prototype: The security level of the identification and authorization method
is very low. Credentials like usernames and passwords are hardcoded. It falls out
of the scope of this project to provide proper security for this, because the system is
intended as an extension for existing EMR systems which presumably already have
a secure login system in place.

Integrity

Requirement: Information stored in the EMR system cannot be changed by and ad-
versary without being noticed.

MediTrail prototype: The goal of integrity is very closely related to that of account-
ability in the previous section. A blockchain is responsible for storing the access and
event data. When any of the information in the block is changed, the hash value is
changed and thus the chain of hashes is broken. This is evidence that the log has
been subject to tampering.

Availability

Requirement: Information stored in the EMR system is available for the users when-
ever they need or want to access it.

MediTrail prototype: The system provides the users with a website on which they
can perform the actions. If this website is offline, users cannot access the files, sign
files, or look at the audit log. In theory, the code could be modify to provide a GUI-
less API as well, in order to let nodes send information to each other independently
for the website. Alternatively, multiple health care providers could set up a web
server for the application.

7.1.3 Fulfillment of user experience requirements

The requirements for the user experience focus on easy navigation, clear information
and the evidence of the blockchain being untampered.

Easy navigation

Requirement: The user should be able to navigate between the functionalities of the
system without effort.

MediTrail prototype: The prototype provides the user with a very simple website
which has only four tabs. Any information is therefore easy to find with one click.
Uploading a file is straightforward.

7.2. Resistance against attacks 41

Clear information

Requirement: The information displayed to the user should be clear and easily un-
derstandable.

MediTrail prototype: A user can find information on two pages: the My files page
and the My logs page. On the My files page, the user can download and sign files
using the buttons. There is not much room for confusion here. The My logs page
presents a visual representation of the blockchain to the user. For people unfamiliar
wih blockchain technology, this may be slightly difficult to interpret. On the other
hand, the messages and timestamps in each block should be clear for everyone.

Verifiably untampered

Requirement: The user should be able to easily verify that the access log has not
been tampered with.

MediTrail prototype: Each block on the My logs page contains a hash value and the
hash value of the previous block. By checking the sequence of these hash values,
users can confirm that the chain has not been tampered with.

7.2 Resistance against attacks

If there is a malicious actor in the system, they may try to attack the network in order
to gain control of the blockchain and possibly replace the blockchain by a fraudulent
one.

7.2.1 Sybil attacks

Sybil attacks were briefly discussed in Chapter 3. The threat of Sybil attacks is mainly
present in permissionless blockchains, where anyone can join and make an unlim-
ited amount of nodes. In this system, a user needs an account to the portal with
login credentials in order to create a node. By keeping a good administration of the
accounts, no participant in the system can create more than one node.

7.2.2 Non technology based attacks

MediTrail does not protect against some simple actions that a user of the system
can take after accessing the medical information. For example, the user can take a
picture of the screen or download the file and diffuse it illegitimately. A measure that
could be taken against this behaviour is adding a watermark to every file, containing
information about the user and time and date of the download. This can aid in
tracking down the responsible person in case a file is leaked.

7.3 Correctness of blockchain

In order to use the MediTrail portal to create an auditable access trail, it is necessary
that the blocks in the chain are correct. During use tests, it turned out that there
were sometimes errors in the hashes of the blocks when using the PoET consensus
mechanism. When adding a a large amount of files at once, some blocks did not
contain a new hash value, but used the hash value of the previous block instead.

42 Chapter 7. Validation and performance

As this affects the core functionality of the chain, it was very important to mitigate
this issue. Unfortunately, the only measure that appeared to repair the integrity of
the chain was to set the range for the random sleeping time for nodes quite wide:
between 1 and 10 seconds. As it will become clear from the following sections, this
severely affects the performance of the system. When using the MediTrail portal in a
normal way, like a user would do, this issue does not appear. In that case, the system
works fine with the random sleeping time range set to 0.5-1 seconds.

7.4 Speed of MediTrail features

The performance of the system, particularly the speed of the transactions, should
not be a deterrent to using the MediTrail portal. In this section, we take a look on
how the prototype performs under different configurations. For the experiments
with the PoET consensus, the sleeping time for each node is a random amount of
time between 1000 and 10,000 ms.

7.4.1 Uploading files on the MediTrail portal

The speed of uploading a file and adding the upload event to the blockchain is com-
pared for the system with PoET consensus and no consensus. The results are ob-
tained by executing the method 100 times and dividing the result in ms by 100.

FIGURE 7.1: Time needed for adding upload blocks, no consensus

FIGURE 7.2: Time needed for adding upload blocks, PoET consensus

7.4. Speed of MediTrail features 43

TABLE 7.1: Comparison speed of adding a file upload event to the
chain

Number of required signers PoET, 10n PoET, 20n PoET, 30n No cons.
0 5571 ms 5815 ms 5802 ms 30 ms
1 5971 ms 5267 ms 5352 ms 31 ms
3 5358 ms 5435 ms 5535 ms 27 ms
5 5345 ms 5390 ms 5420 ms 33 ms

Adding an UploadBlock to the blockchain with a limited number of required
signers and no consensus algorithm costs around 30 ms. This time is barely notice-
able for a user and will not be an impediment to the user-friendliness of the system.
This is different for the results with PoET consensus. Adding an upload event to the
blockchain using the PoET consensus algorithm costs between 5 and 6 seconds. The
number of nodes does not seem to matter, which makes sense because the param-
eters for choosing the sleeping time stay set during the experiments. A user who
checks the My Logs page immediately after uploading a file might be annoyed at not
seeing the entry yet.

7.4.2 Signing files in the My Files list

Next, the speed of signing a file and adding the signing event to the blockchain is
compared for the system with PoET consensus and no consensus. The best case is
when the file that should be signed was the latest file to be signed as well. The longer
ago a file has been signed, the more blocks the system has to search, so the longer
the functionality takes. Results are obtained by executing the method 20 times and
dividing the result in ms by 20. This small number of repetitions is due to the need
for manual signing of the files. The experiments without consensus algorithm go up
to 1000 files between the signature placements. Unfortunately, performing the same
large experiments with the PoET configuration would cost too much time compared
to the value of the data. PoET experiments therefore go up to 100 blocks between
the two sign events.

FIGURE 7.3: Time needed for placing a signature and adding a sign-
ing block, no consensus

TABLE 7.2: Comparison speed of signatures plus adding signature
event

44 Chapter 7. Validation and performance

FIGURE 7.4: Time needed for placing a signature and adding a sign-
ing block, PoET consensus

Distance to latest signing block PoET consensus No consensus
0 blocks 3734 ms 545 ms
10 blocks 5363 ms 546 ms
20 blocks 4241 ms 554 ms
30 blocks 3853 ms 549 ms
40 blocks 5315 ms 540 ms
50 blocks 3087 ms 552 ms
70 blocks 5894 ms 545 ms
100 blocks 5867 ms 544 ms
200 blocks no data 552 ms
300 blocks no data 560 ms
400 blocks no data 557 ms
500 blocks no data 561 ms
600 blocks no data 559 ms
700 blocks no data 561 ms
1000 blocks no data 574 ms

With a combined signing and block-adding speed for the signing functionality
of around 550 ms, the results fit into the expected range according to the speed of
signing with python-ecdsa as mentioned in table 5.3. When the PoET consensus
mechanism is added, the speed of placing the signatures almost becomes irrelevant.
There are relatively high differences in average speed between the measures, which
must be due to the randomness in the sleeping times for the nodes in combination
with the low number of repetitions.

7.4.3 Downloading files in the My files list

The speed adding the read event to the blockchain after downloading the file is
compared for the system with PoET consensus and no consensus. The speed of
the download itself is not measured, as it partly depends on the bandwidth of the
internet connection. The results are obtained by executing the method 100 times and
dividing the result in ms by 100. The experiments without consensus algorithm go
up to index 1000 for the upload event of the file. Unfortunately, performing the same
large experiments with the PoET configuration would cost too much time compared
to the value of the data. PoET experiments go up to index 300.

7.4. Speed of MediTrail features 45

FIGURE 7.5: Time needed to add a read block, no consensus

FIGURE 7.6: Time needed to add a read block, PoET consensus

TABLE 7.3: Comparison speed of adding download event
Index of upload event PoET consensus No consensus
1 5731 ms 12 ms
10 5315 ms 12 ms
20 5469 ms 12 ms
30 5484 ms 12 ms
40 5864 ms 13 ms
50 5262 ms 14 ms
70 5689 ms 13 ms
100 5727 ms 13 ms
150 5529 ms 13 ms
200 5802 ms 13 ms
300 5763 ms 14 ms
400 no data 12 ms
500 no data 13 ms
600 no data 13 ms
700 no data 13 ms
1000 no data 13 ms

In hindsight, constructing the code for adding a ReadBlock to the blockchain in
such a way that the search for the file that is being accessed starts at the genesis
block was a wrong choice. It should start at the most recent block. It makes sense

46 Chapter 7. Validation and performance

that, as time passes by and new entries are added regularly, users will want to access
recent files instead of older files. Although the search is conducted in linear time, the
difference in performance may become significant if a blockchain has grown very
long.

7.5 General discussion of performance

In general, the performance of the different functions of the MediTrail prototype is
overwhelmingly dependent on the consensus algorithm. When no consensus algo-
rithm is used, the system works quite fast. Using the PoET consensus algorithm
with the chosen parameters adds tremendous overhead. If a proper implementation
would be made with the appropriate chips for PoET consensus, the sleeping time
for the nodes could decrease significantly and thus the performance would improve
greatly. For now, it is very questionable whether the added security of a consensus
mechanism weighs up against the overhead.

7.6 Reflection on research methodology

The performance tests on the MediTrail prototype are quite limited in terms of the
diversity in configurations. This is mainly due to the fact that the system was de-
veloped for demo purposes and the code is not suitable for large automated tests
without having to make major changes in the code structure. If such a project would
be done again in the future, it would be wise to design the architecture of the sys-
tem in a more flexible and modular way so the performance tests are facilitated.
Development time is a scarce resource in these kinds of projects. If choosing an ex-
isting blockchain like Ethereum instead of building a novel blockchain would have
resulted in the opportunity to create a system that is suitable for more thorough
experiments, it might have been an advantageous choice.

47

Chapter 8

Conclusions and future work

The MediTrail prototype is the first system for EMRs that provides users with a
blockchain-based, tamper-proof auditable access trail. Conceptually, it delivers in
fulfilling the requirements that provide accountability on access and validation of
entries. Implementation-wise, there are major improvements to make.

8.1 Conclusions

There is a considerable societal need for patients to have knowledge and power over
their medical data. The MediTrail portal is a prototype that has been developed with
a twofold purpose: to provide patients with a tamper-proof access log of their data
and to enable patients as well as health care providers to validate an entry in an EMR
system with a digital signature. MediTrail succeeds in presenting a tamper-proof ac-
cess log to patients. Thanks to the novel blockchain that was specifically created for
this purpose, blocks contain only the most relevant information for users. As long
as the master node (hosted at the hospital) is online, a patient can check their access
log at any time. Users can place a digital signature to indicate the validity of a cer-
tain entry. Unfortunately, users cannot verify each other’s signatures. The prototype
underwent some performance tests to measure the speed of different functionalities.
Without using a consensus algorithm, the system performs pretty well. It is fast
enough for users not to notice a waiting time with normal use. After introducing the
Proof of Elapsed Time consensus algorithm, the system performs much worse. Any
transaction can take up to 11, averaging around 5-6 seconds. This is due to the large
window of possible sleeping times for nodes that had to be put in place in order to
prevent errors. In a real world situation, this large overhead can be greatly reduced
by using the right hardware. Although this prototype was never to become a ready-
to-use standalone system, it does succeed in presenting an interesting step in using
blockchain technology for medical data.

8.2 Future work

A weakness against which the system does not properly protect, is the possibility
that a user downloads a file from the system and spreads this via other ways such as
email or by uploading it to a service which makes the file publicly available. Water-
marking the files can aid in determining the source of the file when an investigation
is opened. The question whether a consensus algorithm should be used for the Med-
iTrail blockchain should be further studied. For this master thesis, a system with and
without consensus algorithm was compared. The comparison is not entirely fair, be-
cause of limitations in terms of availability of useful APIs and hardware. If another
suitable consensus algorithm such as HoneyBadger BFT would have been available

48 Chapter 8. Conclusions and future work

in the form of a usable python library, or the researcher would have disposed of the
appropriate Intel chips for PoET consensus, a more interesting comparison in perfor-
mance could have been made. Additionally, the options of creating trust with digital
signatures or with a protocol such as TrustChain should be explored to implement
in this system.

49

Bibliography

Adams, A. and M. A. Sasse (1999). “Users are not the enemy”. In: Communications of
the ACM 42.12, pp. 40–46.

Anderson, Ross J (1996). “A security policy model for clinical information systems”.
In: Security and privacy, 1996. proceedings., 1996 ieee symposium on. IEEE, pp. 30–43.

Anderson et al. (2009). “Database State: A Report Commissioned by the Joseph Rown-
tree Reform Trust Ltd”. In:

Bashir, I. (2017). Mastering Blockchain. Packt Publishing Ltd.
Burrows, Mike (2006). “The Chubby lock service for loosely-coupled distributed sys-

tems”. In: Proceedings of the 7th symposium on Operating systems design and imple-
mentation. USENIX Association, pp. 335–350.

Calder, A. (2016). EU GDPR A Pocket Guide. IT Governance Ltd.
Carvel, J. (2017). “Concern over NHS’s IT systems after 50 view celebrity’s details”.

In: The Guardian.
Castro, M., B. Liskov, et al. (1999). “Practical Byzantine fault tolerance”. In: OSDI.

Vol. 99, pp. 173–186.
Chipsoft (2018). Update PAAZ screenshot. https://assets.chipsoft.com/PublishingImages/

Solutions/Oplossingen/HiX%20update%20PAAZ%20screenshot.png. Accessed:
01-10-2018.

De Telegraaf (2018). “Barbie met spoed naar ziekenhuis gebracht”. In: De Telegraaf.
Desmedt, Y. and Y. Frankel (1991). “Shared generation of authenticators and signa-

tures”. In: Annual International Cryptology Conference. Springer, pp. 457–469.
Douceur, John R (2002). “The sybil attack”. In: International workshop on peer-to-peer

systems. Springer, pp. 251–260.
eHealth Estonia (2018). E-health records. https : / / e - estonia . com / solutions /

healthcare/e-health-record/. Accessed: 02-10-2018.
Ekblaw, A. et al. (2016). “A Case Study for Blockchain in Healthcare:“MedRec” pro-

totype for electronic health records and medical research data”. In: Proceedings of
IEEE Open & Big Data Conference. Vol. 13, p. 13.

European Society of Radiology (2017). “The new EU General Data Protection Regu-
lation: what the radiologist should know”. In: Insights into imaging 8.3, pp. 295–
299.

Fairley, P. (2017). “The Ridiculous Amount of Energy It Takes to Run Bitcoin”. In:
IEEE Spectrum.

Felix, I. et al. (2018). Praktijkproef blockchain kraamzorg met Mijn Zorg Log.
Gennaro, Rosario, Steven Goldfeder, and Arvind Narayanan (2016). “Threshold-

optimal DSA/ECDSA signatures and an application to Bitcoin wallet security”.
In: International Conference on Applied Cryptography and Network Security. Springer,
pp. 156–174.

Gennaro, R. et al. (1996). “Robust threshold DSS signatures”. In: International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Springer, pp. 354–
371.

https://assets.chipsoft.com/PublishingImages/Solutions/Oplossingen/HiX%20update%20PAAZ%20screenshot.png
https://assets.chipsoft.com/PublishingImages/Solutions/Oplossingen/HiX%20update%20PAAZ%20screenshot.png
https://e-estonia.com/solutions/healthcare/e-health-record/
https://e-estonia.com/solutions/healthcare/e-health-record/

50 BIBLIOGRAPHY

Gillum, Richard F (2013). “From papyrus to the electronic tablet: a brief history of the
clinical medical record with lessons for the digital age”. In: The American journal
of medicine 126.10, pp. 853–857.

Green, Marc and Thomas Eisenbarth (2015). “Strength in Numbers: Threshold ECDSA
to Protect Keys in the Cloud”. In: IACR Cryptology ePrint Archive 2015, p. 1169.

HagaZiekenhuis (2016). “HagaZiekenhuis stapt succesvol over naar EPD HiX”. In:
Hassey, Alan, David Gerrett, and Ali Wilson (2001). “A survey of validity and utility

of electronic patient records in a general practice”. In: Bmj 322.7299, pp. 1401–
1405.

Icke, V. (2018). “Barbie wees ons op ontwerpfout in Elektronisch Patientendossier”.
In: NRC Handelsblad.

Intel Corporation (2017). Sawtooth introduction. https://sawtooth.hyperledger.
org/docs/core/nightly/0-8/introduction.html. Accessed: 05-11-2018.

Kiayias, A . et al. (2017). “Ouroboros: A provably secure proof-of-stake blockchain
protocol”. In: Annual International Cryptology Conference. Springer, pp. 357–388.

Kostkova, P . et al. (2016). “Who owns the data? Open data for healthcare”. In: Fron-
tiers in public health 4, p. 7.

Kusiak, L. (2018). “Baas over eigen zorgdata”. In: Zorgvisie ICT 19.4, pp. 12–14.
Lamport, L., R. Shostak, and M. Pease (1982). “The Byzantine generals problem”. In:

ACM Transactions on Programming Languages and Systems (TOPLAS) 4.3, pp. 382–
401.

Li, N., T Li, and S Venkatasubramanian (2007). “t-closeness: Privacy beyond k-anonymity
and l-diversity”. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, pp. 106–115.

Lubbe, J.C.A. van der, M.J. de Boer, and Z. Erkin (2014). “A Signature Scheme for
a Dynamic Coalition Defence Environment Without Trusted Third Parties”. In:
International Conference on Cryptography and Information Security in the Balkans.
Springer, pp. 237–249.

Maymounkov, Petar and David Mazieres (2002). “Kademlia: A peer-to-peer infor-
mation system based on the xor metric”. In: International Workshop on Peer-to-Peer
Systems. Springer, pp. 53–65.

McCall, Becky (2018). What does the GDPR mean for the medical community?
Miller, Andrew et al. (2016). “The honey badger of BFT protocols”. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
pp. 31–42.

Nakamoto, S. (2008). “Bitcoin: A peer-to-peer electronic cash system”. In:
Nash, G. (2017). Let’s build the tiniest Blockchain. https : / / medium . com / crypto -

currently/lets- build- the- tiniest- blockchain- e70965a248b. Accessed:
29-10-2018.

Neal, Richard D, Philip L Heywood, and Stephen Morley (1996). “Real world data—retrieval
and validation of consultation data from four general practices”. In: Family Prac-
tice 13.5, pp. 455–461.

Otte, P. et al. (2017). “TrustChain: A Sybil-resistant scalable blockchain”. In: Future
Generation Computer Systems.

Paar, Christof and Jan Pelzl (2009). Understanding cryptography: a textbook for students
and practitioners. Springer Science & Business Media.

Ponemon Institute (2016). Sixth Annual Study on Privacy and Security of Healthcare
Data.

Presser, L. et al. (2015). “Care. data and access to UK health records: patient privacy
and public trust”. In: Technology Science 2015081103.

https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduction.html
https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduction.html
https://medium.com/crypto-currently/lets-build-the-tiniest-blockchain-e70965a248b
https://medium.com/crypto-currently/lets-build-the-tiniest-blockchain-e70965a248b

BIBLIOGRAPHY 51

Priisalu, Jaan and Rain Ottis (2017). “Personal control of privacy and data: Estonian
experience”. In: Health and technology 7.4, pp. 441–451.

Ramachandran, D. (2017). Epic software screenshot. http://caduceusblog.com/wp-
content/uploads/2017/08/Epic-WideScrn.jpg. Accessed: 01-10-2018.

Ross, R. (2016). Lights and shadows of healthcare digitalization: Estonian experience since
2007. http : / / www . marebalticum . org / brehca / images / stories / wis2016 /
wis2016keynoteross.pdf. Accessed: 02-10-2018.

Shamir, Adi (1984). “Identity-based cryptosystems and signature schemes”. In: Work-
shop on the theory and application of cryptographic techniques. Springer, pp. 47–53.

Solat, S. (2017). “RDV: Register, Deposit, Vote: a full decentralized consensus algo-
rithm for blockchain based networks”. In: arXiv preprint arXiv:1707.05091.

Spagnuelo, Dayana and Gabriele Lenzini (2016). “Patient-centred transparency re-
quirements for medical data sharing systems”. In: New Advances in Information
Systems and Technologies. Springer, pp. 1073–1083.

Stange, Kurt C et al. (1998). “How valid are medical records and patient question-
naires for physician profiling and health services research?: A comparison with
direct observation of patient visits”. In: Medical care, pp. 851–867.

Szydlo, M. (2004). “Merkle tree traversal in log space and time”. In: International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer, pp. 541–
554.

Tobin, A. and D. Reed (2016). “The Inevitable Rise of Self-Sovereign Identity”. In:
The Sovrin Foundation.

Vukolić, M. (2015). “The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication”. In: International Workshop on Open Problems in Network Security. Springer,
pp. 112–125.

Wood, Gavin (2014). “Ethereum: A secure decentralised generalised transaction ledger”.
In: Ethereum project yellow paper 151, pp. 1–32.

World Economic Forum (2012). Rethinking personal data: A new lens for strengthening
trust.

Yue, X. et al. (2016). “Healthcare data gateways: found healthcare intelligence on
blockchain with novel privacy risk control”. In: Journal of medical systems 40.10,
p. 218.

Zyskind, G., O. Nathan, and A. Pentland (2015). “Enigma: Decentralized computa-
tion platform with guaranteed privacy”. In: arXiv preprint arXiv:1506.03471.

Zyskind, G., O. Nathan, et al. (2015). “Decentralizing privacy: Using blockchain to
protect personal data”. In: Security and Privacy Workshops (SPW), 2015 IEEE. IEEE,
pp. 180–184.

http://caduceusblog.com/wp-content/uploads/2017/08/Epic-WideScrn.jpg
http://caduceusblog.com/wp-content/uploads/2017/08/Epic-WideScrn.jpg
http://www.marebalticum.org/brehca/images/stories/wis2016/wis2016keynoteross.pdf
http://www.marebalticum.org/brehca/images/stories/wis2016/wis2016keynoteross.pdf

	Abstract
	Introduction
	The leading use case
	Digitalized medical records
	History of medical records
	Data ownership

	Cyber crime and other concerns
	Data theft or leakage
	Privacy concerns around EMRs
	Impact of the GDPR

	Problem statement
	Barbie's medical records in HiX
	Research goal
	Accountability on access
	Validation of EMR entries

	Research question
	Requirements
	Requirements for accountability and validation
	Requirements from the CIA triad
	Requirements for the user experience

	Research method

	Background
	Introduction to blockchain
	Blocks
	Tamper-proof qualities of blockchains

	Consensus algorithms
	Byzantine Generals Problem
	Byzantine Fault Tolerant protocols
	Practical BFT
	HoneyBadger BFT

	Proof-of-work-based consensus algorithms
	Proof-of-elapsed-time
	Other types of consensus algorithms

	Identity and verification
	Identities and signatures
	Self-sovereign identities
	Digital signatures
	Elliptic Curve Digital Signature Algorithm
	Elliptic curve threshold signatures
	Threshold ECDSA in a fully distributed system
	Identity-based signatures
	Schnorr signatures

	Related work
	Access logging in current widely-used EMR systems
	Chipsoft
	Epic

	Blockchain-based EMR systems
	Scientific work
	MedRec
	OpenPDS
	Healthcare Data Gateway
	Enigma

	Startups and industry-based projects
	Mijn Zorg Log
	MedMij

	E-health in Estonia

	Discussion of existing systems
	Implementation details
	Fitness of MedRec for prototype requirements

	System architecture and design choices
	From requirements to use cases
	Use cases
	Use case diagram
	Integration with existing tools

	Selection of blockchain technology
	TrustChain
	Ethereum
	Kademlia
	Novel blockchain

	Consensus mechanism
	Proof of work
	Practical BFT
	HoneyBadger BFT
	Proof of Elapsed Time

	Digital signature algorithm and implementation
	Theoretical considerations on the DSA choice
	Practical considerations on the DSA choice

	Monitoring access to files
	Monitoring files on OS
	Monitoring download of files on webpage

	Final architecture and implementation choices

	MediTrail prototype general overview
	Overview
	The web page
	Identification and authentication
	Home page
	My files page
	My logs page

	Blockchain and algorithms
	The blockchain
	File upload
	File signing
	File access

	Validation and performance
	Solving Barbie's problem
	Fulfillment of accountability and validation requirements
	Accountability on access
	Validation of entries

	Fulfillment of CIA triad requirements
	Confidentiality
	Integrity
	Availability

	Fulfillment of user experience requirements
	Easy navigation
	Clear information
	Verifiably untampered

	Resistance against attacks
	Sybil attacks
	Non technology based attacks

	Correctness of blockchain
	Speed of MediTrail features
	Uploading files on the MediTrail portal
	Signing files in the My Files list
	Downloading files in the My files list

	General discussion of performance
	Reflection on research methodology

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

