Truly Universal Binary

Mitchell Olsthoorn
March 26, 2019

1 Introduction

evolution of code modularization debian > plugins > websites > micro services > smart contracts

Over the years, the way we use code has evolved with the changing need of the users and the
society as a whole. This evolution started off with specific applications written for each use case
and each platform it had to run on. These application took a lot of time to develop and could
not be reused. To reduce this time, abstraction libraries were built to make it possible to run
these applications on similar platforms. These abstraction layers, however, were still limited to
broader types of platforms e.g. Linux, Unix, Windows, Mac. The platform libraries could now be
maintained and distributed separately. This led to easier development and application that could
be used on more systems.

The Debian package system is a good example of the beginning of this evolution. It made
it possible for code that was meant to be used as a library to be packaged separately for both
system and user code. This allowed applications to indicate which library would be requirement
for the application and the system would make sure it is available to it. This possibility allowed
applications to be developed even faster.

These new code libraries provided a lot of benefit and speed to application developers, but to
improve the ecosystem further a new step had to be made. At this point when applications were
distributed they were static. The was no option to adapt the application to include features that
the user would like. Also users that wanted to add there own functionality had to go through the
developers to accomplish this. To solve this, larger application began to include plugin systems.
A plugin system allows different parts of the code to be changed or to add functionality to the
application. This paradigm allowed rapid development of extra features by both developers and
the users of the application.

A very early example of a program with a plugin system is Winamp. The Winamp developers
used the plugin system to provide users with a customisable package that could serve each user’s
preference. A large community formed around the application with different plugins for every
imaginable feature. This was the start of the plugin community.

When the whole application movement started to go to the web, this same plugin paradigm
started to exist. These plugins allowed external parties to add functionalities to some of the biggest
websites. A good example of this is Facebook plugins. Even now when Facebook is in a decline,
people still actively use and rely on plugins hosted on Facebook.

This modularization continued when web application started to use the micro-services archi-
tecture. This allowed web application to move towards modules that had very small tasks that
they were specifically designed for. This facilitated code reuse on a big scale with platforms like
NPM and reusable web components.

The decentralised application community eventually also started to work on modular applica-
tions in the form of smart contracts. Ethereum is a good example of this.

this thesis presents a new paradigm for trustworthy computing. We build on the large body of
work around smart contracts and make it more generic, scalable, removed global consensus, and
need for oracles. It represents the next step in the continued evolution of computing models.



	Introduction

