Self-Sovereign Identity: Proving Power over Legal Entities

Master's Thesis Defense

Tim Speelman

EENHEID OOST-NEDERLAND DISTRICT GELDERLAND-ZUID BASISTEAM TWEESTROMENLAND Telefoon 0900 8844

Proces-verbaalnummer

PROCES-VERBAAL aangifte

Feit Plaats delict Pleegdatum/tijd : Gekwalificeerde diefstal in/uit bedrijf/kantoor : : Tussen vrijdag 29 mei 2020 om 17:30 uur en maandag 1 juni 2020 om 16:00 uur

Ik, verbalisant, _____, hoofdagent van politie Eenheid Oost-Nederland, verklaar het volgende:

Op dinsdag 2 juni 2020 om 07:47 uur, kwam ik ter plaatse van het misdrijf op de locatie Nijmegen, bij een persoon die mij opgaf te zijn:²

What is identity?

- Latin identitas: sameness.
- These claims are about the *same* subject:
 - .. is 28 years old,
 - .. is male,
 - .. has Master's degree
 - .. is named Tim Speelman
 - .. has BSN 209051251
 - .. has e-mail timspeelman@live.nl

What is identity?

Person

Identifier

Attribute

Tim

Has Master's degree

<section-header><section-header><section-header><section-header><section-header><text><text><section-header><section-header><section-header><section-header><text>

What is identity?

Communication between trusted party and a relying party (Bob)

1. Direct communication:

harms independence and privacy

2. Alternative: Tamper-proof credential (unforgeable)

[Use one example]

Intro / Self-Sovereign Identity

- User in control with one app: agent (or *wallet*).
 - Agent manages identifiers (and secrets)
 - Agent manages attributes (linked to those identifiers)
 - Interoperability: one app in all cases

Research Challenge

Universal identity infrastructure with validity across **wide range** of identity problems, for natural persons and legal entities.

Methodology

Incremental approach. [immersed in practice]

- 1. Create **theoretical framework** for self-sovereignty.
- 2. Design and prototype **infrastructure** for one use case.
- 3. Experimentally validate resulting technology.

Intro **Research Challenge** Methodology > Starting Point: TrustChain **Case Study Universal SSI infrastructure Experimental Validation** Conclusion

Starting Point: TrustChain (1/2)

- Academic peer-to-peer networking stack supporting SSI.
- Ongoing experiment by TU Delft, Dutch government, IDEMIA.
- Next phase: integration with third parties.

Starting Point: TrustChain (2/2)

- Create pseudonyms: public/private keypairs.
- Secure peer to peer networking
 - Identity based: send to public key.
 - Android to Android, without servers
- Attesting to attributes
- Verifying attributes
- What binds a pseudonym to a real person?
 - 1st factor: holds the private key
- Passport-grade authentication using real time facial recognition (selfie).

Intro Research Challenge Methodology Starting Point: TrustChain

> Case Study

Problem Step 1: Entrepreneur Passport Step 2: Peer-to-peer authorisation Universal SSI infrastructure Experimental Validation Conclusion

Use Self-Sovereign Identity to ..

prove that a person is authorised to act on behalf of some legal entity (organisation).

Scope: Netherlands, Dutch legal system

Step 1. Entrepreneur Passport

- Trade Register (KVK):
 - Stores legal entities by KVK number.
 - Maps natural persons (BSN) to legal entities (KVKNR)
- Issuing procedure:
 - 1. Verify Nym: BSN(x)_{NL}
 - 2. Look up KVKNR L belonging to BSN x
 - 3. Attest Nym: FULL(L)_{KVK}
- Authentication Risk (both when issuing and when verifying)
 - Nym: FULL (L) $_{KVK}$ conditional on Nym: BSN (x) $_{NL}$ blinded

Step 2. Peer-to-peer authorisation

- Attributes
 - Auth(P,L): Authorized
- Issuing procedure:
 - 1. Verify Nym belongs to Bettie.
 - 2. Attest Nym: FULL(L)_x
- Authentication Risk
 - Nym:FULL(L)_x conditional on Nym:BSN(x)_{NL}

Bevoegdheid aanvragen Vraag een bevoegd persoon u te machtigen

<

Bedrag	
€ 10000	\$
Welk bedrag wil u mogen bested	len?
+ ORGANISATIES	SPECIFICEREN
NNULEREN	DOORGAAN
NNULEREN	DOORGAAN
ANNULEREN	DOORGAAN
ANNULEREN	DOORGAAN

Mijn Machtigingsverzoek

<

Î

Dit verzoek is nog niet beantwoord. Deel dit verzoek via Whatsapp met een bevoegd persoon, om u te laten machtigen.

DELEN VIA WHATSAPP

< Mijn Bevoegdheden Inkoop tot € 10.000,namens Janssen B.V. Janssen B.V. KVK-nr 12341234 Korteweg 1, Delft Uitgegeven door Tim Speelman Uitgegeven op 13 januari 2020 Geldig tot 13 januari 2021 TOON ALLES

Step 2. Peer-to-peer authorisation Verification

A person S proves to a verifier V that he has power P over legal entity L.

Requirements:

- 1. V needs attributes of entire chain.
- 2. V must trust these attributes.
- 3. Attributes must provide power P.

Verification: Collecting Attributes

- Interactive (online)
- Passive (public, offline)
- Proxy (via subject)

Preferred: Proxy or Passive

Step 2. Peer-to-peer authorisation

Verification: Power Evaluation

- Pow(): S₂ assigned power P over L to S₁
- Trust(): S is trusted to have power P over L
- Q(S,P,L): S has power P over L
 - A trusted root S_n for which hold Trust(Sn, Pn, L),
 - Attributes satisfy $Pow(S_i, P_i, L, S_{i+1})$ for i in N<n
 - $P_i \le P_{i+1}$ for all i

Step 2. Peer-to-peer authorisation

Verification: conditions for Trust

Individual responsibility

Authentication

System Integrity

Requires (missing) revocation.

Scan een QR Code × Let op: op Apple apparaten kan dit alleen in de Safari browser.

ANNULEREN

HANDMATIG INVOEREN

Verifiëren Geslaagd!

×

Tim Speelman

Bevoegd voor: Software tot € 4.800,namens Janssen B.V.

SLUITEN

Attribute Actuality

- Trade Register frequently changes.
- Authorisations should be revocable any time.
- Existing method: Attribute expiration.
- Alternate method: Public single-sided revocation.
 - New requirement for TrustChain

Intro **Research Challenge Methodology** Starting Point: TrustChain Case Study > Universal SSI infrastructure Architecture Authentication **Experimental Validation**

Conclusion

Universal SSI infrastructure

- Universal Wallet
- Collects keys and attributes
- Human interface
- Programmable Controller: KVK
- 3rd party apps
- Communicate via OW/IPv8

Current Architecture (Authentication + Wallet)

Alternative Architecture (Separate Authentication from Wallet)

Intro **Research Challenge** Methodology Starting Point: TrustChain **Case Study Universal SSI infrastructure** > Experimental Validation Conclusion

Conclusions (1/2)

- Problem: Use Self-Sovereign Identity to prove that a person is authorised to act on behalf of some legal entity (organisation).
- New requirements elicited for TrustChain:
 - Public single-sided revocation required for actuality
 - Passive/Proxy Verification mechanism required for chains of issuers
- App will be further developed by KVK
- KVK can be valuable issuer (entrepreneur passport), but may be restricted by legal framework and business model

Conclusions (2/2)

• Contributions to **Research Challenge:**

Universal identity infrastructure with validity across **wide range** of identity problems, for natural persons and legal entities.

- Semantic Layer Design
 - Independent Wallet application needed to serve user.
 - Integration with UC-specific third party apps is needed for a complex case such as authorisation by legal entities.
 - Integration with third party authentication apps is needed.
- Developed prototype contributes to interoperable SSI infrastructure.
- Theoretical framework improves discourse by adding under-emphasized principles, providing structure and elaborating on the boundaries of sovereignty.