
Something about CRDT application

E. M. Bongers

Something about CRDT application

Master’s Thesis in Computer Science

Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

E. M. Bongers

25th October 2020

Author
E. M. Bongers

Title
Something about CRDT applications

MSc presentation
25th October 2020

Graduation Committee
ir. M. de Vos (supervisor) Delft University of Technology

Abstract

TODO ABSTRACT

iv

Preface

TODO MOTIVATION FOR RESEARCH TOPIC

TODO ACKNOWLEDGEMENTS Thanks to M. de Vos for getting stuck with me.

I will do everyone a favour and promise to not pursue further academic advance-
ment after this.

E. M. Bongers

Delft, The Netherlands
25th October 2020

v

vi

Contents

Preface v

1 Introduction 1

2 Background & State-of-the-Art 3
2.1 Distributed Systems and Central Components 3
2.2 Synchronization . 4
2.3 Operational Transformation . 4
2.4 Conflict-free Replicated Data Type 4
2.5 TODO Priority queue . 6

vii

viii

Chapter 1

Introduction

TODO INTRODUCTION

TODO ORGANISATIONAL DESCRIPTION OF THESIS

1

2

Chapter 2

Background & State-of-the-Art

TODO: Intro TODO: Organization

2.1 Distributed Systems and Central Components

Distributed systems refer to a group of computers where each computer does a part
of the work (computing/storage/communication/etc.) in service to the collective
in order to achieve some end goal. Many such systems exist in the world with
http (the world wide web) being a prime example and the domain name system
(DNS) another. However these distributed systems rely on centralized components
(such as central servers) to perform some critical function, and such centralized
components are a weak point for a distributed system.

Centralized components have three aspects that make them undesirable in any
distributed system. First of al central components are a single point of failure,
so part of the service cannot be provided if they are unreachable or unresponsive.
Secondly, they are inevitably controlled by a single entity, and any entity is influ-
encable by private actors and governments. The worst case being manipulation of
the service provided by the central component. This is generally impossible to de-
tect and can severely affect the functioning of a distributed system. Thirdly, central
components also have a monetary cost associated with them and the distributed
system user community has to provide for this in some way.

Often the use of central components is a design compromise. It is often easy to
have a (part of a) process execute in a controlled and trusted environment. This
simplifies designs greatly. A good example of this are MMO games, a distributed
system where the actual game simulation happenes in a controlled environment on
a central server cluster. However distributed gaming without a central component
has yet to be perfected, thus for some designs it might be the only practical choice.

While central components can be used to great effect, they are to be eschewed in
distributed systems that wish to operate reliably in the face of adverse conditions.
The resulting distributed systems are called peer-to-peer systems, each participant

3

is an equal peer1.

2.2 Synchronization

Explain about the CAP theorem [1].
As CRDT paper points out, Partition is always going to happen at internet scale,

someone will have a bad link somewhere. So any system will need to account
for that. Availability is paramount because of user expectation. So they throw
Consistency under the bus and aim for Strong Eventual Consistency. (TODO: clean
this)

2.3 Operational Transformation

Explain about OT as proposed by [2]
Explain what it’s limitations are. Why do we want CRDTs? Are the better?

2.4 Conflict-free Replicated Data Type

To solve the synchronization issue several solutions have been proposed, a recent
paradigm is that of Conflict-free Replicated Data Type (CRDT) as described in [3].
The idea of a CRDT is to achieve strong eventual consistency of a replicated data-
structure by structuring data and updates in such a way that no conflicts can arrise.
This then allows trivial automatic merging of different versions or updates of the
data structure. In terms of the CAP theorem this provides Availability and Parti-
tion tolerance, but with a strong formal guarante that Consistency will be reached
eventually.

The description of CRDT in [3] provides two formal models for reasoning about
CRDTs, the state-based Convergent Replicated Data Type (CvRDT) and Op-based
Commutative Replicated Data Type (CmRDT). The two models are equivalent but
(apparently) CvRDTs are convenient for formal reasoning and CmRDTs are more
convenient in implementations.

The CvRDT model is based on a join semilattice, in this case it means a partial
ordering on the set of all states held by all replicas, and a function (known as ’join’
or ’least upper bound’) for pairs in the set. The join function produces a state
that orders strictly greater than its two inputs and is commutative, idempotent and
associative. A further requirement is that if a pair of elements from the set order
equally (x ≤ y and y ≤ x) then x ≡ y. Together these conditions imply that states
can always be joined, and the result monotonically proceeds up the partial ordering
chain. It must therefore converge to a maximal element in the partial ordering, one
where all initial states have been joined, and because of the equivalence relation any
maximal element will do. Although in practice the maximal element could well be

1and no peer is more equal than others

4

singular, the greatest element of the partial ordering. The CvRDT definition of a
CRDT permits testing of a data type to determine if it is a CVDT, but it leaves a
lot (everything) to the imagination when it comes to designing one. Lets see if the
CmRDT definition is more practically usefull.

The CmRDT model assumes a reliable causally ordered broadcast communica-
tion protocol and uses that to deliver state update operations to all replicas. To each
state update operation is bound a side-effect free precondition test that determines
if an update operation may be applied. If at a replica two updates are pending, i.e.
their preconditions satisfied, applying either update may not invalidate the precon-
ditions of the other. This allows updates to be executed in any order once their
preconditions are met, or put another way, all concurrent operations must be com-
mutative. This ensures that updates can always be applied eventually, and thus lead
to an equivalent state at each replica.

Within the study of CRDTs there are several basic data structures that are known,
such as a vector clock, monotonic counters and add only sets. (TODO: find all
the others) Compsitions of these basic datastructures develops more advanced data
structures. For example using two monotonic counters I and D its possible to create
a non-monotonic counter by computing I - D. But more complex compositions
allow for sets, dictionaries and directed graphs.

Thoughts about crdt:

• They lead to full replication of an objects state. All the nodes are eventu-
ally aware (and incorporate) all the updates from the other replicas. This
is somewhat at odds with (infinite) scalability, growing groups attempting to
synchronize a single data structure will falter at some point. One idea to push
this back somewhat is to deliberately partition the network and only have the
partitions merge every so often. But this is still a lot of state to keep around.
Especially things like a vector clock don’t scale at all well.

• There is a ”test” for what constitutes a crdt, that means that there are multiple
basic crdt structures, that can be composed in new ways. I think many will
have sought for them and described them in literature. There could be real
gems in there.

• CRDTs have applications outside of peer-to-peer systems, they might be use-
full in parallel computing. They are also usefull for databases since they
explicitly aim for eventual consistent state.

• TrustChain is in some way a CRDT, the blocks form a partially ordered
set (full block (A, B) as a subset of all blocks, and is dominated by any
fullblock containing A+1 or B+1. Question to awnser, is there a join, a least
upper bound to full block (A, B)? I think there might be multiple. But also
TrustChain doesn’t have a true update function either. Its an add only set.

5

2.5 TODO Priority queue

Kleppmann’s Local First ”manifesto” for crdts looks like the sort of angle I could
aim for, big tech sucks, crdts to the rescue!

Merkle-CRDTs paper is interesting, since it promises to do something about the
clock that is needed in some crdts. It also scales to ”upto thousands” of clients. Is
that good enough for practical situations or should the aim be milions?

Vagvisir and FabricCRDT look slightly less interresting since TrustChain is
already pretty close (if not equivalent) to a CRDT. Will check if they add anything,
but I doubt it.

There are a lot of projects that combine crdts with ipfs, i’m not sure of our lab’s
feelings on ipfs, and also what the reason is that this combination is attractive.

6

Bibliography

[1] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,” in
Proceedings of the Seventh Workshop on Hot Topics in Operating Systems,
pp. 174–178, 1999.

[2] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in
Proceedings of the 1989 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’89, (New York, NY, USA), p. 399–407, Association
for Computing Machinery, 1989.

[3] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free rep-
licated data types,” in Symposium on Self-Stabilizing Systems, pp. 386–400,
Springer, 2011.

7

