
Towards Data Resilience for Fully Distributed Self-Sovereign Identity Managers

Kalin Kostadinov , Martijn de Vos , Johan Pouwelse
k.k.kostadinov@student.tudelft.nl , m.a.devos-1@tudelft.nl

Delft University of Technology

Abstract

1 Introduction
Every person on the Internet uses at least one digital iden-
tity. And service providers rely on them for building trust
with their users. Unfortunately, the creators of the Inter-
net have not designed a unified identity layer. Thus, ser-
vice providers need to handle authentication and authoriza-
tion themselves [1] which explains why every service has at
least one identity management system. As a result, those sys-
tems control users’ identities, so identity owners cannot ad-
minister their data.

In recent years, identity management has become a big
concern for governments which has led to a large amount of
research and regulations in the field [2]. There is a need for a
novel identity management system, and its formal description
stands in the middle of all the work [3]. It promises to not take
control over an identity from its rightful owner and achieves
this by satisfying the requirements for Self-Sovereign Iden-
tity [4]. SSI allows every identity holder to store and manage
their data. For that, they need to use resources under their
jurisdiction.

There are already several implementations that cover part
of SSI’s properties [5], and they have matured over the past
couple of years. However, the biggest obstacle preventing
them all from going mainstream is the problem of adoption .SSI adoption
For these implementations to be adopted, they need to fulfill
a long list of real-world usage requirements. Solutions gener-
ally fall into two groups.

The first one uses global consensus and requires the ex-
istence of a single data structure (blockchain). This struc-
ture contains information about all transactions in the net-
work. Unfortunately, most real-world identity use cases re-
quire high throughput and low latency. However, the global
consensus needs time and computing resources until nodes in
the network agree upon the legitimacy of transactions. Also,
in some cases, there needs to be support for offline transac-
tions. Again, global consensus stands in the way because it
gets resolved online. Thus, this group of identity managers is
not well suited for solving the problem of adoption.

The second group of identity managers uses either local
consensus or no consensus at all. These implementations gen-

erally satisfy real-world requirements for throughput and la-
tency. Such systems are also fully distributed, thus allowing
offline transactions. They have superior functionality to the
first group, but they have no data resilience. The problem
arises from the fact that such identity managers keep all data
in one physical place. And in the case that an identity owner
loses access to his identity manager, the identity gets lost ir-
revocably. For example, implementations that work only on
mobile devices are vulnerable to physical damage, theft, and
loss.

There is a need for a solution to the data resilience problem
of fully distributed SSI management systems. It will be a
step forward to solving the problem of adoption. Thus, data
resilience as a sub-problem of adoption is a research area that
is worthwhile exploring. The following research question is
at the center of this work:

How to make fully distributed Self-Sovereign
Identity management systems data resilient?

The remainder of this article has the following organiza-
tion. First, section 2 formally specifies the underlying prob-
lem. Second, section 3 defines three possible solutions and
assesses all their positives and negatives. Section 4 consists
of a recommendation about the best solution and the techni-
cal details of implementing it. Then, section 5 goes over the
reproducibility of the conducted research. Finally, section 6
discusses results, draws the main conclusions, and suggests
ideas for future work.

2 Requirements for Data Resilience
Data resilience means that an identity holder should always
be able to access his identifying information. Since users of
SSI managers are obliged to handle the resources for hosting
their identity managers, redundancy is the main component
for achieving data resilience. It comes as a consequence of
the fact that in fully distributed networks, nodes have vul-
nerable storage. To make a system resistant to data loss and storage vul-

nerability
in fully dis-
tributed net-
works

corruption, a protocol keeping identities in at least two sepa-
rate locations could solve the problem. An implementation of
this supposedly looks like a backup system. However, storing
identities calls for additional requirements to the ones tradi-
tional backup systems are satisfying.

Since a backup contains the whole transaction history of
a user, the principles of Self-Sovereign Identity should also principles of

SSI



hold for identity managers’ backup protocols. The following
requirements for SSI managers’ backup systems arise.

• Control. It is of great importance where identity back-
ups are stored because identity owners need to have
full control over their data. Backup protocols should
use storage that is under the jurisdiction of the identity
owner. Next to that, encryption of backups should al-
ways take place for privacy and security reasons. With-
out having strong security and privacy, identity owners
could suffer from identity theft, misuse, or unauthorized
modifications.

• Access. Identity backups have to be always accessible
to their owners. As a consequence, high availability is
a goal. Machines with constant access to electricity and
the internet are a must for backup storage. Emergencies
can happen at any time. Thus, identity owners should be
able to recover their identity, no matter when or where
they need to do it.

• Transparency. Backup protocols need to be transpar-
ent. Users should be explicitly aware of how their data
is getting processed and where it is stored. If any such
detail is unclear, we should not expect trust in the pro-
tocol, and regulatory agencies should prevent the adop-
tion of those technologies. There already exist plenty
of good examples when closed source systems have se-
cretly stolen and misused identities.identity mis-

suse • Persistance. Identity backups should reside in storage
with a zero probability of loss or corruption. Backup
protocols aim at allowing users to recover from lost ac-
cess to their identity. In the case a backup gets lost or
corrupted, the identity is lost as well. Then, the user
will have to start collecting claims about himself from
scratch.

• Portability. Identities should be able to exist without
reliance on any third party. Thus, backups should be
transferable to different backup systems or different in-
stances of the same system. Otherwise, any vulnerabil-
ity of a particular backup system’s instance will expose
users to the potential of identity loss or theft.

• Interoperability. Identities consist of a multitude of dif-
ferent claims. Backup protocols must ensure that all sup-
ported claim types by identity managers can be repli-
cated and stored safely. If a backup system does not
know how to store a particular type of claim, then, later,
when needed, this claim will not be recoverable.

• Usability. Adding a backup mechanism to any system
introduces increased complexity and some overhead.
The design of identity managers usually considers dif-
ferent types of users since such systems are supposed to
be used by a whole nation. Not all identity holders have
the technical knowledge about managing their identity
backup system. Thus, seamless integration within the
identity manager itself is a must for backup protocols.
Backups should happen discretely, but users must know
that they can rely on a backup, and it is always available
and up to date.

• Legality. With existing backup systems, there might be
discrepancies between the data and its backup. In terms
of SSI, backup and storage have to be always in sync.
Transactions need to be stored at their backup location
first before completing them and considering them legal.
If there is no synchronization, some transactions might
get lost, and since at least two users are involved in a
transaction, those users might have different knowledge
about one’s identity.

• Access Revocation. Users can access and restore from
their backups through multiple devices. Thus, there
needs to be an access revocation mechanism that pre-
vents rogue devices from reaching identity backups.

The following section lays out three possible solutions to
the problem at hand. For all three of them, there is an evalua-
tion, whether they comply with the above-mentioned require-
ments.

3 Three Emerging Solutions
In the previous section, it became apparent that data resilience
is achievable through the addition of redundancy. And al-
though a backup system might partially solve the problem at
hand, no known backup protocol satisfies all requirements.
Thus, in this section, three solutions are proposed. In the end,
there is a recommendation for the one that meets most of the
requirements.

3.1 Third-Party Storage Providers
The first idea is to use cloud services as backup storage for
identities. It is the most user-friendly solution because cloud
owners are managers of the resources. Users save time and
money since they do not have to deal with data loss and cor-
ruption - company operators handle disk failures. Operators
also replicate the data enough times to ensure persistence.

Furthermore, Third-party storage usually sits near the
backbone of the Internet. Thus, backups are easily reach-
able from any point in the network. This solution offers very
high availability. Also, costs are low since the infrastructure
is used efficiently by many users and one software manages
multiple backups.

However, cloud storage is vulnerable to cyber-attacks. Al-
though security measures are at state of the art, one server
is responsible for the data of multiple users. Attackers have
a better reason to target a cloud service provider than single
users. And in case of a breach, identity backups might disap-
pear or get stolen.

Usually, cloud storage providers use proprietary closed
source software. Thus, it is not always clear how they man-
age users’ data. Identity owners should review such technical
details before choosing a backup service. Using proprietary
software also hinders portability. It makes it difficult, if not
impossible, to move a backup from one cloud storage to an-
other. Another issue is that there are multiple identity man-
agement systems. Storage providers must know how to store
each type of backup. It calls for an unnecessary development
of backup protocols for the same identity manager by differ-
ent storage providers.



Also, backups reside at a multitude of locations across sev-
eral countries. However, some governments do not allow for
identity data to cross borders for legal reasons. Often, there a
local cloud service providers, and their use solves the previ-
ously discussed issue.

Access revocation is another problem. Anyone with cre-
dentials will be able to access a user’s backup and steal one’s
identity.

Identity owners have command over their backups through
a management system, so they have no direct connection to
their data. Also, cloud providers often require users to pay
for services and apply different policies, which allows them to
deny access to services in case of a policy breach. Thus, iden-
tity owners do not have complete control over their backup.
In case of service denial, users might lose their identity irre-
vocably if they lose access to their main identity storage.

3.2 Peer-to-Peer Backup
The second idea is to reproduce the blockchain from the
knowledge of other users about the lost identity. Blockchain
recreation, however, increases complexity because there
might be some offline users during the rebuilding process.
Also, some might not be honest about previous transactions,
and others might not even exist anymore. The benefit here
is that there is no need for a caching mechanism, but the re-
vocation will only be possible through peers, which ignore
the revoked node. Privacy is also a concern in this instance.
It is not desirable to keep identity information, even if it is
encrypted, on untrusted nodes.

The second solution also needs an algorithm that contin-
uously tries to make data backups available. It will add an
enormous amount of excess traffic and waste valuable re-
sources. Phone storage devoted to supporting the backup sys-
tem will become unusable to the owner of the mobile device.
Another issue is the need for a revocation mechanism. It will
rely on a distributed hash table algorithm for gossiping infor-
mation about mobile devices with revoked access to a specific
identity.

3.3 Identity Owner as Storage Provider
The third one is to keep the SSI management system on a
master server, controlled by the identity holder. A central
node that is under the jurisdiction of the identity owner will
add some unwanted overhead. Also, there needs to be a
caching mechanism. It is mandatory for the storing of of-
fline transactions before committing them to the central node.
However, the benefit is that users will easily revoke remote
access, quickly transfer control to other devices and reliably
restore lost identity access.

After an evaluation of both solutions, the third one looks
more suitable for providing data resilience. The reason is that
a central node might run on a machine connected to the wall.
Such a device does not rely on battery size and network cov-
erage. Thus, compared to a smartphone, it seems to have
unlimited resources.

In conclusion, to implement the third solution, the follow-
ing questions need to be answered:

• How to allow transactions when there is no access to the
central node?

• How to deal with cached transactions when they do not
get committed to the central node and get lost?

• How to make cached transactions legally valid?

4 Implementation and Results
The Delft Blockchain Lab develops one of the Self-Sovereign
Identity management systems, called IPv8 [6]. It is ar-
guably the most sophisticated SSI management system. How-
ever, the issue with IPv8 is that it does not offer long-term
data resilience, thus not offering a mechanism for recovery
from identity loss. Every user has its blockchain, called
TrustChain [7], for managing their identity. And Trustchain
allows IPv8 to work as a fully distributed system. The idea
behind this design decision is that users have more control
over their own identity if they are the only ones physically
possessing their data blocks.

Mobile applications are the most effective way of hosting
an identity management system like IPv8. However, mobile
devices are not reliable enough. Thus, it is not clear how users
are supposed to recover their identities when access to them
is lost. IPv8 falls within the group of SSI managers that use
local consensus. Consequently, it suffers from the problem
this paper is trying to solve. That is why we are using IPv8 as
a platform to develop a solution for my research question.

Since we are using IPv8 as a base for improvements, we
have explored its implementation in Kotlin for the super
app [8], which the Delft Blockchain Lab is currently working
on. Our goal is to assess the application and find a suitable
approach for integrating our implementation.

I was previously involved in the development of another
application that also uses IPv8 for storing COVID-19 immu-
nity certificates [9]. The main objective of that project was to
create a user-friendly GUI. If I implement the remote server
solution, I can use the COVID-19 project as an experimental
environment for my findings since it already uses REST API
to communicate with the IPv8 deployment. It also relies on
React Native [10] for its GUI. That means IPv8 can get an
easy implementation for iOS, which the lab is lacking.

Depending on the protocol’s design, it might be helpful to
keep the core back-end that is going to run on the mobile
device in Python, as is the implementation of IPv8 [11] itself.
There is still no publicly available tool that efficiently builds
Python applications for Android, iOS, and other mobile or
embedded operating systems. Therefore, I might make use of
my development, called Porthon. Its goal is to make Python
applications portable and resource-efficient. Currently, there
is a working version of the IPv8 implementation in Python
for Android, and one for iOS is underway.

5 Responsible Research

6 Conclusions and Future Work
A further development that goes beyond the goals of this re-
search project will be the creation of emergency access ”ter-
minals” that will be available at border control, for instance.
They will allow someone access to their identity manager
with restricted controls if their other SSI managers are not



available. Those emergency ”terminals” should only allow
for verification of attestations.

References
[1] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke

Siljee. The identity crisis. security, privacy and usability
issues in identity management. 2011.

[2] European Commission. Regulation (eu) 2016/679 of the
european parliament and of the council. 2016.

[3] Md Sadek Ferdous, Farida Chowdhury, and Madini O.
Alassafi. In search of self-sovereign identity leverag-
ing blockchain technology. IEEE Access, 7:103059–
103079, 2019.

[4] Christopher Allen. The path to self-sovereign identity.
2016.

[5] Dirk van Bokkem, Rico Hageman, Gijs Koning,
Tat Luat Nguyen, and Naqib Zarin. Self-sovereign iden-
tity solutions: The necessity of blockchain technology.
04 2019.

[6] Quinten Stokkink, Dick Epema, and Johan Pouwelse. A
truly self-sovereign identity system. 2020.

[7] Pim Otte, Martijn de Vos, and Johan Pouwelse.
Trustchain: A sybil-resistant scalable blockchain. Fu-
ture Generation Computer Systems: the international
journal of grid computing: theory, methods and appli-
cations, 107:770–780, June 2020.

[8] Tribler. Trustchain super app.
[9] Tribler. Immune: Building a critical infrastructure for

the nation-wide identification of recovered covid-19 pa-
tients.

[10] Facebook. React native.
[11] Tribler. Ipv8.


	Introduction
	Requirements for Data Resilience
	Three Emerging Solutions
	Third-Party Storage Providers
	Peer-to-Peer Backup
	Identity Owner as Storage Provider

	Implementation and Results
	Responsible Research
	Conclusions and Future Work

