adoption

Towards Data Resilience for Fully Distributed Self-Sovereign Identity Managers

Kalin Kostadinov, Martijn de Vos, Johan Pouwelse
k.k.kostadinov @student.tudelft.nl, m.a.devos-1@tudelft.nl
Delft University of Technology

Abstract

1 Introduction

Every person on the Internet uses at least one digital iden-
tity. And service providers rely on them for building trust
with their users. Unfortunately, the creators of the Inter-
net have not designed a unified identity layer. Thus, ser-
vice providers need to handle authentication and authoriza-
tion themselves [1] which explains why every service has at
least one identity management system. As a result, those sys-
tems control users’ identities, so identity owners cannot ad-
minister their data.

In recent years, identity management has become a big
concern for governments which has led to a large amount of
research and regulations in the field [2]. There is a need for a
novel identity management system, and its formal description
stands in the middle of all the work [3]. Tt promises to not take
control over an identity from its rightful owner and achieves
this by satisfying the requirements for Self-Sovereign Iden-
tity [4]. SST allows every identity holder to store and manage
their data. For that, they need to use resources under their
jurisdiction.

There are already several implementations that cover part
of SST’s properties [5], and they have matured over the past
couple of years. However, the biggest obstacle preventing
them all from going mainstream is the problem of adoption .
For these implementations to be adopted, they need to fulfill
a long list of real-world usage requirements. Solutions gener-
ally fall into two groups.

The first one uses global consensus and requires the ex-
istence of a single data structure (blockchain). This struc-
ture contains information about all transactions in the net-
work. Unfortunately, most real-world identity use cases re-
quire high throughput and low latency. However, the global
consensus needs time and computing resources until nodes in
the network agree upon the legitimacy of transactions. Also,
in some cases, there needs to be support for offline transac-
tions. Again, global consensus stands in the way because it
gets resolved online. Thus, this group of identity managers is
not well suited for solving the problem of adoption.

The second group of identity managers uses either local
consensus or no consensus at all. These implementations gen-

erally satisfy real-world requirements for throughput and la-
tency. Such systems are also fully distributed, thus allowing
offline transactions. They have superior functionality to the
first group, but they have no data resilience. The problem
arises from the fact that such identity managers keep all data
in one physical place. And in the case that an identity owner
loses access to his identity manager, the identity gets lost ir-
revocably. For example, implementations that work only on
mobile devices are vulnerable to physical damage, theft, and
loss.

There is a need for a solution to the data resilience problem
of fully distributed SSI management systems. It will be a
step forward to solving the problem of adoption. Thus, data
resilience as a sub-problem of adoption is a research area that
is worthwhile exploring. The following research question is
at the center of this work:

How to make fully distributed Self-Sovereign
Identity management systems data resilient?

The remainder of this article has the following organiza-
tion. First, section 2 formally specifies the underlying prob-
lem. Second, section 3 defines three possible solutions and
assesses all their positives and negatives. Section 4 consists
of a recommendation about the best solution and the techni-
cal details of implementing it. Then, section 5 goes over the
reproducibility of the conducted research. Finally, section 6
discusses results, draws the main conclusions, and suggests
ideas for future work.

2 Requirements for Data Resilience

Data resilience means that an identity holder should always
be able to access his identifying information. Since users of
SSI managers are obliged to handle the resources for hosting
their identity managers, redundancy is the main component
for achieving data resilience. It comes as a consequence of
the fact that in fully distributed networks, nodes have vul-
nerable storage. To make a system resistant to data loss and
corruption, a protocol keeping identities in at least two sepa-
rate locations could solve the problem. An implementation of
this supposedly looks like a backup system. However, storing
identities calls for additional requirements to the ones tradi-
tional backup systems are satisfying.

Since a backup contains the whole transaction history of
a user, the principles of Self-Sovereign Identity should also

P
storage Vi
nerability
in fully d
tributed n
works

ST
principles

SSI

~—



ity mis-

hold for identity managers’ backup protocols. The following
requirements for SSI managers’ backup systems arise.

¢ Control. It is of great importance where identity back-
ups are stored because identity owners need to have
full control over their data. Backup protocols should
use storage that is under the jurisdiction of the identity
owner. Next to that, encryption of backups should al-
ways take place for privacy and security reasons. With-
out having strong security and privacy, identity owners
could suffer from identity theft, misuse, or unauthorized
modifications.

* Access. Identity backups have to be always accessible
to their owners. As a consequence, high availability is
a goal. Machines with constant access to electricity and
the internet are a must for backup storage. Emergencies
can happen at any time. Thus, identity owners should be
able to recover their identity, no matter when or where
they need to do it.

* Transparency. Backup protocols need to be transpar-
ent. Users should be explicitly aware of how their data
is getting processed and where it is stored. If any such
detail is unclear, we should not expect trust in the pro-
tocol, and regulatory agencies should prevent the adop-
tion of those technologies. There already exist plenty
of good examples when closed source systems have se-
cretly stolen and misused identities.

* Persistance. Identity backups should reside in storage
with a zero probability of loss or corruption. Backup
protocols aim at allowing users to recover from lost ac-
cess to their identity. In the case a backup gets lost or
corrupted, the identity is lost as well. Then, the user
will have to start collecting claims about himself from
scratch.

¢ Portability. Identities should be able to exist without
reliance on any third party. Thus, backups should be
transferable to different backup systems or different in-
stances of the same system. Otherwise, any vulnerabil-
ity of a particular backup system’s instance will expose
users to the potential of identity loss or theft.

« Interoperability. Identities consist of a multitude of dif-
ferent claims. Backup protocols must ensure that all sup-
ported claim types by identity managers can be repli-
cated and stored safely. If a backup system does not
know how to store a particular type of claim, then, later,
when needed, this claim will not be recoverable.

e Usability. Adding a backup mechanism to any system
introduces increased complexity and some overhead.
The design of identity managers usually considers dif-
ferent types of users since such systems are supposed to
be used by a whole nation. Not all identity holders have
the technical knowledge about managing their identity
backup system. Thus, seamless integration within the
identity manager itself is a must for backup protocols.
Backups should happen discretely, but users must know
that they can rely on a backup, and it is always available
and up to date.

* Legality. With existing backup systems, there might be
discrepancies between the data and its backup. In terms
of SSI, backup and storage have to be always in sync.
Transactions need to be stored at their backup location
first before completing them and considering them legal.
If there is no synchronization, some transactions might
get lost, and since at least two users are involved in a
transaction, those users might have different knowledge
about one’s identity.

* Access Revocation. Users can access and restore from
their backups through multiple devices. Thus, there
needs to be an access revocation mechanism that pre-
vents rogue devices from reaching identity backups.

The following section lays out three possible solutions to
the problem at hand. For all three of them, there is an evalua-
tion, whether they comply with the above-mentioned require-
ments.

3 Three Emerging Solutions

In the previous section, it became apparent that data resilience
is achievable through the addition of redundancy. And al-
though a backup system might partially solve the problem at
hand, no known backup protocol satisfies all requirements.
Thus, in this section, three solutions are proposed. In the end,
there is a recommendation for the one that meets most of the
requirements.

3.1 Third-Party Storage Providers

The first solution is to use cloud storage as a backup space for
identities. It is the most user-friendly solution because cloud
owners are managers of the resources. Users save time and
money since they do not have to deal with data loss and cor-
ruption - company operators handle disk failures. Operators
also replicate the data enough times to ensure persistence.

Furthermore, third-party storage usually sits near the back-
bone of the Internet. Thus, backups are easily reachable from
any point in the network. This solution offers very high avail-
ability. Also, costs are low since the infrastructure is used
efficiently by many users and one software manages multiple
backups.

However, cloud storage is vulnerable to cyber-attacks. Al-
though security measures are at state of the art, one server is
responsible for the data of multiple users. Attackers have a
better reason to target cloud services instead of single users.
And in case of a breach, identity backups might disappear or
get stolen.

Usually, cloud storage providers use proprietary closed
source software. Thus, it is not always clear how they man-
age users’ data. Identity owners should review such techni-
cal details before choosing a backup service. Using propri-
etary software also hinders portability. It makes it difficult,
if not impossible, to move a backup from one cloud storage
provider to another.

Another issue is that there are multiple identity manage-
ment systems. Storage providers must know how to store
each type of backup. It calls for an unnecessary develop-
ment of backup protocols for the same identity manager by
different storage providers.



Also, backups reside at a multitude of locations across sev-
eral countries. However, some governments do not allow for
identity data to cross borders for legal reasons. Often, there
are local cloud service providers, and their use solves the pre-
viously discussed issue.

Access revocation is another problem. Anyone with cre-
dentials will be able to access a user’s backup and steal one’s
identity. There should be extended security measures before
authorization. Also, the backup system should prevent a de-
vice from backing up data if the identity owner loses access
to the device.

Identity owners have command over their backups through
a management system, so they have no direct connection to
their data. Also, cloud providers often require users to pay
for services and apply different policies, which allows them to
deny access to services in case of a policy breach. Thus, iden-
tity owners do not have complete control over their backup.
In case of both service denial and data loss, the damage might
become irreversible.

The last problem that we are going to discuss here is le-
gality. If some transactions do not get stored in the backup
system and then the identity gets lost, after recovery, those
transactions are not going to be part of the identity, thus, al-
lowing for cheating the system. As a result, transactions first
need to be brought to backup before considering them legally
valid. When using third-party storage for identity backups,
users need to be online for transactions to move to backup.
Thus, with cloud storage, offline transactions are not possi-
ble.

3.2 Peer-to-Peer Backup

The second solution is to reproduce the blockchain from the
knowledge of other users about the lost identity. This idea
emerged from the current developments in the field of peer-
to-peer backup systems. The concept is to share an encrypted
version of a user’s identity with enough peers in the network
so that the probability of ending up with an unrecoverable
identity is as low as possible.

With this solution, users again have very little control. On
the one hand, the identity manager constructs backups as a
snapshot of one’s identity and then requests peers to store it.
On the other hand, when users want their identities destroyed,
they have to ask their peers to do so. Users also need to keep
track of the peers who store their backups. If this list of net-
work participants gets lost, identity owners immediately lose
control over their backups.

Availability and persistence are other issues of this solu-
tion. There needs to be an algorithm that keeps track of where
backups are stored. It should also request backup replication
with enough nodes, so there is always at least one available
peer for identity recovery. At no point in time, a user should
not be able to recover his identity. Unfortunately, identity net-
works are very dynamic. There might be some offline users
during the rebuilding process. Also, some might not be hon-
est about previous transactions, and others might not even ex-
ist anymore. As a result, the algorithm would generate lots
of network traffic and use a significant amount of computing
resources to provide availability and persistence. For exam-
ple, phone storage devoted to backups will become unusable

to the owner of the mobile device. Also, there will be a de-
crease in battery life.

Network participants usually run the same version of an
identity manager. However, peers are independent, and some
might decide to run modified versions of the code. Thus, a
peer-to-peer backup system is not very transparent. Without
the consent of the identity owner, peers might decide to sell,
destroy, or modify one’s backup. Privacy is also a concern in
this instance. It is not desirable to keep identity information,
even if it is encrypted, on untrusted nodes.

This solution is highly portable and interoperable. The
main algorithm can move backups between nodes. Further-
more, the actual backup gets created by the identity manager.
Thus, it can create backups from all supported transaction
types. The algorithm resides within the identity manager.
So, the whole process around the creation and distribution
of backups is automated. It is perfect for users since they do
not need to do anything to manage their backups.

As with the first solution, legality is a big problem. Again,
transactions might get lost, allowing users to destroy their
identity if they want to hide a specific transaction. Distribut-
ing backups, with the latest version of one’s identity, among
pees is a must before considering legal the latest transactions.

At last, there is a need for a revocation mechanism. It will
rely on a distributed hash table algorithm that gossips infor-
mation about devices with revoked access to a specific iden-
tity if those devices are lost or stolen.

3.3 Identity Owner as Storage Provider

The third solution is to keep the Self-Sovereign Identity man-
agement system on a master server, controlled by the identity
owner. Users manage their identities through remote devices
like smartphones. The need for a central node under the ju-
risdiction of the identity owner will add some unwanted over-
head. Furthermore, it hinders usability because users need to
have the technical know-how to operate the server. However,
they will have the most control over their identities. Also, this
solution achieves transparency since users are solely respon-
sible for their data.

When a server only takes care of one identity manager,
there is generally a very low probability of identity data get-
ting corrupted or lost. It is because identity managers do
not have computationally intensive processes, and storage re-
quirements are low. Therefore, there is no need for a backup
system. Of course, it holds only if the server has uninter-
rupted access to both electricity and the Internet. However,
the problem of a disaster striking the server arises. Perhaps,
snapshots of the identities should be stored somewhere else
to allow recovery. Replicating them will add persistence.

This solution is highly portable and interoperable as well.
Users have to install a fresh version of their identity manager
on a new central server and recover the identity from the old
server. Again, it works with all types of transactions because
of the backup system’s integration within the identity man-
ager.

However, users cannot expect high availability. Depending
on where identity holders are when they try to access their
identity manager, the master server might not be reachable.
In this case, transactions happen offline, so there is a need for



a caching algorithm that holds transactions before committing
them to the server. This algorithm should account for legality
as well. Thus, transactions should only become legally valid
after their synchronization with the master server.

Remote devices can easily get lost or stolen. Thus, there
should be a mechanism that can prevent the before-mentioned
devices from controlling the identity manager. Such an access
revocation function can be easily integrated with this solution
since a blacklist can help the manager deny access to specific
devices.

After an evaluation of all solutions, the third one looks
more suitable for providing data resilience. The reason is that
a central node might run on a machine connected to the wall.
Such a device does not rely on battery size and network cov-
erage. Thus, compared to a smartphone, it seems to have
unlimited resources.

In conclusion, to implement the third solution, the follow-
ing questions need to be answered:

¢ How to allow transactions when there is no access to the
central node?

* How to deal with cached transactions when they do not
get committed to the central node and get lost?

4 Implementation and Results

The Delft Blockchain Lab develops one of the Self-Sovereign
Identity management systems, called IPv8 [6]. It is ar-
guably the most sophisticated SSI management system. How-
ever, the issue with IPv8 is that it does not offer long-term
data resilience, thus not offering a mechanism for recovery
from identity loss. Every user has its blockchain, called
TrustChain [7], for managing their identity. And Trustchain
allows IPv8 to work as a fully distributed system. The idea
behind this design decision is that users have more control
over their own identity if they are the only ones physically
possessing their data blocks.

Mobile applications are the most effective way of hosting
an identity management system like IPv8. However, mobile
devices are not reliable enough. Thus, it is not clear how users
are supposed to recover their identities when access to them
is lost. IPv8 falls within the group of SSI managers that use
local consensus. Consequently, it suffers from the problem
this paper is trying to solve. That is why we are using IPv8 as
a platform to develop a solution for my research question.

Since we are using IPv8 as a base for improvements, we
have explored its implementation in Kotlin for the super
app [8], which the Delft Blockchain Lab is currently working
on. Our goal is to assess the application and find a suitable
approach for integrating our implementation.

I was previously involved in the development of another
application that also uses IPv8 for storing COVID-19 immu-
nity certificates [9]. The main objective of that project was to
create a user-friendly GUI. If I implement the remote server
solution, I can use the COVID-19 project as an experimental
environment for my findings since it already uses REST API
to communicate with the IPv8 deployment. It also relies on
React Native [10] for its GUIL. That means IPv8 can get an
easy implementation for i0S, which the lab is lacking.

Depending on the protocol’s design, it might be helpful to
keep the core back-end that is going to run on the mobile
device in Python, as is the implementation of IPv8 [11] itself.
There is still no publicly available tool that efficiently builds
Python applications for Android, iOS, and other mobile or
embedded operating systems. Therefore, I might make use of
my development, called Porthon. Its goal is to make Python
applications portable and resource-efficient. Currently, there
is a working version of the IPv8 implementation in Python
for Android, and one for iOS is underway.

5 Responsible Research

6 Conclusions and Future Work

A further development that goes beyond the goals of this re-
search project will be the creation of emergency access ter-
minals” that will be available at border control, for instance.
They will allow someone access to their identity manager
with restricted controls if their other SSI managers are not
available. Those emergency “terminals” should only allow
for verification of attestations.

References

[1] Gergely Alpdr, Jaap-Henk Hoepman, and Johanneke
Siljee. The identity crisis. security, privacy and usability
issues in identity management. 2011.

[2] European Commission. Regulation (eu) 2016/679 of the
european parliament and of the council. 2016.

[3] Md Sadek Ferdous, Farida Chowdhury, and Madini O.
Alassafi. In search of self-sovereign identity leverag-
ing blockchain technology. IEEE Access, 7:103059—
103079, 2019.

[4] Christopher Allen. The path to self-sovereign identity.
2016.

[5] Dirk van Bokkem, Rico Hageman, Gijs Koning,
Tat Luat Nguyen, and Nagqib Zarin. Self-sovereign iden-
tity solutions: The necessity of blockchain technology.
04 2019.

[6] Quinten Stokkink, Dick Epema, and Johan Pouwelse. A
truly self-sovereign identity system. 2020.

[7]1 Pim Otte, Martijn de Vos, and Johan Pouwelse.
Trustchain: A sybil-resistant scalable blockchain. Fu-
ture Generation Computer Systems: the international
Jjournal of grid computing: theory, methods and appli-
cations, 107:770-780, June 2020.

[8] Tribler. Trustchain super app.

[9] Tribler. Immune: Building a critical infrastructure for
the nation-wide identification of recovered covid-19 pa-
tients.

[10] Facebook. React native.
[11] Tribler. Ipv8.



	Introduction
	Requirements for Data Resilience
	Three Emerging Solutions
	Third-Party Storage Providers
	Peer-to-Peer Backup
	Identity Owner as Storage Provider

	Implementation and Results
	Responsible Research
	Conclusions and Future Work

